Guilfoyle, Richard A.; Guo, Zhen
2001-01-01
A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.
Guilfoyle, Richard A.; Guo, Zhen
1999-01-01
A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.
NASA Astrophysics Data System (ADS)
Doohan, Roisin A.; Hayes, Catherine A.; Harhen, Brendan; Karlsson, Niclas Göran
2011-06-01
Collision induced dissociation (CID) fragmentation was compared between reducing and reduced sulfated, sialylated, and neutral O-linked oligosaccharides. It was found that fragmentation of the [M - H]- ions of aldoses with acidic residues gave unique Z-fragmentation of the reducing end GalNAc containing the acidic C-6 branch, where the entire C-3 branch was lost. This fragmentation pathway, which is not seen in the alditols, showed that the process involved charge remote fragmentation catalyzed by a reducing end acidic anomeric proton. With structures containing sialic acid on both the C-3 and C-6 branch, the [M - H]- ions were dominated by the loss of sialic acid. This fragmentation pathway was also pronounced in the [M - 2H]2- ions revealing both the C-6 Z-fragment plus its complementary C-3 C-fragment in addition to glycosidic and cross ring fragmentation. This generation of the Z/C-fragment pairs from GalNAc showed that the charges were not participating in their generation. Fragmentation of neutral aldoses showed pronounced Z-fragmentation believed to be generated by proton migration from the C-6 branch to the negatively charged GalNAc residue followed by charge remote fragmentation similar to the acidic oligosaccharides. In addition, A-type fragments generated by charge induced fragmentation of neutral oligosaccharides were observed when the charge migrated from C-1 of the GalNAc to the GlcNAc residue followed by rearrangement to accommodate the 0,2A-fragmentation. LC-MS also showed that O-linked aldoses existed as interchangeable α/β pyranose anomers, in addition to a third isomer (25% of the total free aldose) believed to be the furanose form.
Amarger, V; Mercier, L
1995-01-01
We have applied the recently developed technique of random amplified polymorphic DNA (RAPD) for the discrimination between two jojoba clones at the genomic level. Among a set of 30 primers tested, a simple reproducible pattern with three distinct fragments for clone D and two distinct fragments for clone E was obtained with primer OPB08. Since RAPD products are the results of arbitrarily priming events and because a given primer can amplify a number of non-homologous sequences, we wondered whether or not RAPD bands, even those of similar size, were derived from different loci in the two clones. To answer this question, two complementary approaches were used: i) cloning and sequencing of the amplification products from clone E; and ii) complementary Southern analysis of RAPD gels using cloned or amplified fragments (directly recovered from agarose gels) as RFLP probes. The data reported here show that the RAPD reaction generates multiple amplified fragments. Some fragments, although resolved as a single band on agarose gels, contain different DNA species of the same size. Furthermore, it appears that the cloned RAPD products of known sequence that do not target repetitive DNA can be used as hybridization probes in RFLP to detect a polymorphism among individuals.
Identification of unknowns in non-targeted analyses (NTA) requires the integration of complementary data types to generate a confident consensus structure. Researchers use a variety of data and tools (e.g., chemical reference databases, spectral matching, fragment prediction too...
Ford, Kristina L.; Zeng, Wei; Heazlewood, Joshua L.; ...
2015-08-28
The analysis of post-translational modifications (PTMs) by proteomics is regarded as a technically challenging undertaking. While in recent years approaches to examine and quantify protein phosphorylation have greatly improved, the analysis of many protein modifications, such as glycosylation, are still regarded as problematic. Limitations in the standard proteomics workflow, such as use of suboptimal peptide fragmentation methods, can significantly prevent the identification of glycopeptides. The current generation of tandem mass spectrometers has made available a variety of fragmentation options, many of which are becoming standard features on these instruments. Lastly, we have used three common fragmentation techniques, namely CID, HCD,more » and ETD, to analyze a glycopeptide and highlight how an integrated fragmentation approach can be used to identify the modified residue and characterize the N-glycan on a peptide.« less
Korch, C
1987-01-01
A cross index is presented for using the improved selectivity offered by the Hung and Wensink (Nucl. Acids Res. 12, 1863-1874, 1984) method of partially filling in 5'-extensions produced by type II restriction endonucleases. After this treatment, DNA fragments which normally cannot be ligated to one another, can be joined providing that complementary cohesive ends have been generated. The uses of this technique, which include the prevention of DNA fragments (both vector and insert) auto-annealing, are discussed. PMID:3033600
Soares, Marcelo B.; Efstratiadis, Argiris
1997-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.
Soares, M.B.; Efstratiadis, A.
1997-06-10
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3{prime} noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.
Musharova, Olga; Klimuk, Evgeny; Datsenko, Kirill A; Metlitskaya, Anastasia; Logacheva, Maria; Semenova, Ekaterina; Severinov, Konstantin; Savitskaya, Ekaterina
2017-04-07
During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ahern, Chris A; Vallejo, Paola; Mortenson, Lindsay; Coronado, Roberto
2001-01-01
Background The L-type Ca2+ channel formed by the dihydropyridine receptor (DHPR) of skeletal muscle senses the membrane voltage and opens the ryanodine receptor (RyR1). This channel-to-channel coupling is essential for Ca2+ signaling but poorly understood. We characterized a single-base frame-shift mutant of α1S, the pore subunit of the DHPR, that has the unusual ability to function voltage sensor for excitation-contraction (EC) coupling by virtue of expressing two complementary hemi-Ca2+ channel fragments. Results Functional analysis of cDNA transfected dysgenic myotubes lacking α1S were carried out using voltage-clamp, confocal Ca2+ indicator fluoresence, epitope immunofluorescence and immunoblots of expressed proteins. The frame-shift mutant (fs-α1S) expressed the N-terminal half of α1S (M1 to L670) and the C-terminal half starting at M701 separately. The C-terminal fragment was generated by an unexpected restart of translation of the fs-α1S message at M701 and was eliminated by a M701I mutation. Protein-protein complementation between the two fragments produced recovery of skeletal-type EC coupling but not L-type Ca2+ current. Discussion A premature stop codon in the II-III loop may not necessarily cause a loss of DHPR function due to a restart of translation within the II-III loop, presumably by a mechanism involving leaky ribosomal scanning. In these cases, function is recovered by expression of complementary protein fragments from the same cDNA. DHPR-RyR1 interactions can be achieved via protein-protein complementation between hemi-Ca2+ channel proteins, hence an intact II-III loop is not essential for coupling the DHPR voltage sensor to the opening of RyR1 channel. PMID:11806762
Szaszkó, Mária; Hajdú, István; Flachner, Beáta; Dobi, Krisztina; Magyar, Csaba; Simon, István; Lőrincz, Zsolt; Kapui, Zoltán; Pázmány, Tamás; Cseh, Sándor; Dormán, György
2017-02-01
A glutaminyl cyclase (QC) fragment library was in silico selected by disconnection of the structure of known QC inhibitors and by lead-like 2D virtual screening of the same set. The resulting fragment library (204 compounds) was acquired from commercial suppliers and pre-screened by differential scanning fluorimetry followed by functional in vitro assays. In this way, 10 fragment hits were identified ([Formula: see text]5 % hit rate, best inhibitory activity: 16 [Formula: see text]). The in vitro hits were then docked to the active site of QC, and the best scoring compounds were analyzed for binding interactions. Two fragments bound to different regions in a complementary manner, and thus, linking those fragments offered a rational strategy to generate novel QC inhibitors. Based on the structure of the virtual linked fragment, a 77-membered QC target focused library was selected from vendor databases and docked to the active site of QC. A PubChem search confirmed that the best scoring analogues are novel, potential QC inhibitors.
Effects of cryogenic temperature on dynamic fragmentation of laser shock-loaded metal foils
NASA Astrophysics Data System (ADS)
de Rességuier, T.; Lescoute, E.; Loison, D.; Chevalier, J. M.; Ducasse, F.
2011-12-01
Although shock-induced fracture and fragmentation of materials at low temperatures are issues of considerable interest for many applications, such as the protection from hypervelocity impacts in outer space or the ongoing development of high energy laser facilities aiming at inertial confinement fusion, little data can be found on the subject yet. In this paper, laser driven shock experiments are performed on gold and aluminum samples at both ambient and cryogenic (down to about 30 K) temperatures. Complementary techniques including transverse optical shadowgraphy, time-resolved velocity measurements, and post-recovery analyses are combined to assess the effects of target temperature upon the processes of microjetting, spallation, and dynamic punching, which are expected to govern fragments generation and ejection. The results indicate that cryogenic temperature tends to reduce the resistance to tensile and shear stresses, promotes brittle fracture, and leads to slightly higher fragments ejection velocities.
Method for construction of normalized cDNA libraries
Soares, Marcelo B.; Efstratiadis, Argiris
1998-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries.
Method for construction of normalized cDNA libraries
Soares, M.B.; Efstratiadis, A.
1998-11-03
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries. 19 figs.
Identifying protein domains by global analysis of soluble fragment data.
Bulloch, Esther M M; Kingston, Richard L
2014-11-15
The production and analysis of individual structural domains is a common strategy for studying large or complex proteins, which may be experimentally intractable in their full-length form. However, identifying domain boundaries is challenging if there is little structural information concerning the protein target. One experimental procedure for mapping domains is to screen a library of random protein fragments for solubility, since truncation of a domain will typically expose hydrophobic groups, leading to poor fragment solubility. We have coupled fragment solubility screening with global data analysis to develop an effective method for identifying structural domains within a protein. A gene fragment library is generated using mechanical shearing, or by uracil doping of the gene and a uracil-specific enzymatic digest. A split green fluorescent protein (GFP) assay is used to screen the corresponding protein fragments for solubility when expressed in Escherichia coli. The soluble fragment data are then analyzed using two complementary approaches. Fragmentation "hotspots" indicate possible interdomain regions. Clustering algorithms are used to group related fragments, and concomitantly predict domain location. The effectiveness of this Domain Seeking procedure is demonstrated by application to the well-characterized human protein p85α. Copyright © 2014 Elsevier Inc. All rights reserved.
Method for construction of normalized cDNA libraries
Soares, Marcelo B.; Efstratiadis, Argiris
1996-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.
Method for construction of normalized cDNA libraries
Soares, M.B.; Efstratiadis, A.
1996-01-09
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form. The method comprises: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.
NASA Astrophysics Data System (ADS)
Zhou, Wen; Håkansson, Kristina
2013-11-01
Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.
USDA-ARS?s Scientific Manuscript database
Complementary b/y fragment ion pairs from post-source decay (PSD) of metastable YahO protein ion were evaluated for use in the calibration of MALDI-TOF-TOF for tandem mass spectrometry (MS/MS). The yahO gene from pathogenic Escherichia coli O157:H7 strain EDL933 was cloned into a pBAD18 plasmid vect...
Brodie, Nicholas I; Huguet, Romain; Zhang, Terry; Viner, Rosa; Zabrouskov, Vlad; Pan, Jingxi; Petrotchenko, Evgeniy V; Borchers, Christoph H
2018-03-06
Top-down hydrogen-deuterium exchange (HDX) analysis using electron capture or transfer dissociation Fourier transform mass spectrometry (FTMS) is a powerful method for the analysis of secondary structure of proteins in solution. The resolution of the method is a function of the degree of fragmentation of backbone bonds in the proteins. While fragmentation is usually extensive near the N- and C-termini, electron capture (ECD) or electron transfer dissociation (ETD) fragmentation methods sometimes lack good coverage of certain regions of the protein, most often in the middle of the sequence. Ultraviolet photodissociation (UVPD) is a recently developed fast-fragmentation technique, which provides extensive backbone fragmentation that can be complementary in sequence coverage to the aforementioned electron-based fragmentation techniques. Here, we explore the application of electrospray ionization (ESI)-UVPD FTMS on an Orbitrap Fusion Lumos Tribrid mass spectrometer to top-down HDX analysis of proteins. We have incorporated UVPD-specific fragment-ion types and fragment-ion mixtures into our isotopic envelope fitting software (HDX Match) for the top-down HDX analysis. We have shown that UVPD data is complementary to ETD, thus improving the overall resolution when used as a combined approach.
Human access and landscape structure effects on Andean forest bird richness
NASA Astrophysics Data System (ADS)
Aubad, Jorge; Aragón, Pedro; Rodríguez, Miguel Á.
2010-07-01
We analyzed the influence of human access and landscape structure on forest bird species richness in a fragmented landscape of the Colombian Andes. In Latin America, habitat loss and fragmentation are considered as the greatest threats to biodiversity because a large number of countryside villagers complement their food and incomes with the extraction of forest resources. Anthropogenic actions may also affect forest species by bird hunting or indirectly through modifying the structure of forest habitats. We surveyed 14 secondary cloud forest remnants to generate bird species richness data for each of them. We also quantified six landscape structure descriptors of forest patch size (patch area and core area), shape (perimeter of each fragment and the Patton's shape index) and isolation (nearest neighbor distance and edge contrast), and generated (using principal components analysis) a synthetic human influence variable based on the distance of each fragment to roads and villages, as well as the total slope of the fragments. Species richness was related to these variables using generalized linear models (GLMs) complemented with model selection techniques based on information theory and partial regression analysis. We found that forest patch size and accessibility were key drivers of bird richness, which increased toward largest patches, but decreased in those more accessible to humans and their potential disturbances. Both patch area and human access effects on forest bird species richness were complementary and similar in magnitude. Our results provide a basis for biodiversity conservation plans and initiatives of Andean forest diversity.
Purification of polymorphic components of complex genomes
Stodolsky, Marvin
1991-01-01
A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments.
Purification of polymorphic components of complex genomes
Stodolsky, M.
1988-01-21
A method for processing related subject and reference macromolecule composed of complementary strand into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 fig.
Purification of polymorphic components of complex genomes
Stodolsky, M.
1991-07-16
A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 figure.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei
2014-09-01
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian; Zheng, Wei; Wang, Zi
2014-09-08
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Diversity-Oriented Synthesis as a Strategy for Fragment Evolution against GSK3β.
Wang, Yikai; Wach, Jean-Yves; Sheehan, Patrick; Zhong, Cheng; Zhan, Chenyang; Harris, Richard; Almo, Steven C; Bishop, Joshua; Haggarty, Stephen J; Ramek, Alexander; Berry, Kayla N; O'Herin, Conor; Koehler, Angela N; Hung, Alvin W; Young, Damian W
2016-09-08
Traditional fragment-based drug discovery (FBDD) relies heavily on structural analysis of the hits bound to their targets. Herein, we present a complementary approach based on diversity-oriented synthesis (DOS). A DOS-based fragment collection was able to produce initial hit compounds against the target GSK3β, allow the systematic synthesis of related fragment analogues to explore fragment-level structure-activity relationship, and finally lead to the synthesis of a more potent compound.
Nucleotide Sequence Analysis of RNA Synthesized from Rabbit Globin Complementary DNA
Poon, Raymond; Paddock, Gary V.; Heindell, Howard; Whitcome, Philip; Salser, Winston; Kacian, Dan; Bank, Arthur; Gambino, Roberto; Ramirez, Francesco
1974-01-01
Rabbit globin complementary DNA made with RNA-dependent DNA polymerase (reverse transcriptase) was used as template for in vitro synthesis of 32P-labeled RNA. The sequences of the nucleotides in most of the fragments resulting from combined ribonuclease T1 and alkaline phosphatase digestion have been determined. Several fragments were long enough to fit uniquely with the α or β globin amino-acid sequences. These data demonstrate that the cDNA was copied from globin mRNA and contained no detectable contaminants. Images PMID:4139714
Diversity-Oriented Synthesis as a Strategy for Fragment Evolution against GSK3β
2016-01-01
Traditional fragment-based drug discovery (FBDD) relies heavily on structural analysis of the hits bound to their targets. Herein, we present a complementary approach based on diversity-oriented synthesis (DOS). A DOS-based fragment collection was able to produce initial hit compounds against the target GSK3β, allow the systematic synthesis of related fragment analogues to explore fragment-level structure–activity relationship, and finally lead to the synthesis of a more potent compound. PMID:27660690
Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker
2007-02-15
Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.
Giehr, Pascal; Walter, Jörn
2018-01-01
The accurate and quantitative detection of 5-methylcytosine is of great importance in the field of epigenetics. The method of choice is usually bisulfite sequencing because of the high resolution and the possibility to combine it with next generation sequencing. Nevertheless, also this method has its limitations. Following the bisulfite treatment DNA strands are no longer complementary such that in a subsequent PCR amplification the DNA methylation patterns information of only one of the two DNA strand is preserved. Several years ago Hairpin Bisulfite sequencing was developed as a method to obtain the pattern information on complementary DNA strands. The method requires fragmentation (usually by enzymatic cleavage) of genomic DNA followed by a covalent linking of both DNA strands through ligation of a short DNA hairpin oligonucleotide to both strands. The ligated covalently linked dsDNA products are then subjected to a conventional bisulfite treatment during which all unmodified cytosines are converted to uracils. During the treatment the DNA is denatured forming noncomplementary ssDNA circles. These circles serve as a template for a locus specific PCR to amplify chromosomal patterns of the region of interest. As a result one ends up with a linearized product, which contains the methylation information of both complementary DNA strands.
Jézéquel, Laetitia; Loeper, Jacqueline; Pompon, Denis
2008-11-01
Combinatorial libraries coding for mosaic enzymes with predefined crossover points constitute useful tools to address and model structure-function relationships and for functional optimization of enzymes based on multivariate statistics. The presented method, called sequence-independent generation of a chimera-ordered library (SIGNAL), allows easy shuffling of any predefined amino acid segment between two or more proteins. This method is particularly well adapted to the exchange of protein structural modules. The procedure could also be well suited to generate ordered combinatorial libraries independent of sequence similarities in a robotized manner. Sequence segments to be recombined are first extracted by PCR from a single-stranded template coding for an enzyme of interest using a biotin-avidin-based method. This technique allows the reduction of parental template contamination in the final library. Specific PCR primers allow amplification of two complementary mosaic DNA fragments, overlapping in the region to be exchanged. Fragments are finally reassembled using a fusion PCR. The process is illustrated via the construction of a set of mosaic CYP2B enzymes using this highly modular approach.
Autonomous generation and loading of DNA guides by bacterial Argonaute
Chandradoss, Stanley D.; Zhu, Yifan; Timmers, Elizabeth M.; Zhang, Yong; Zhao, Hongtu; Lou, Jizhong; Wang, Yanli; Joo, Chirlmin; van der Oost, John
2018-01-01
Summary Several prokaryotic Argonaute proteins (pAgos) utilize small DNA guides to mediate host defense by targeting invading DNA complementary to the DNA guide. It is unknown how these DNA guides are being generated and loaded onto pAgo. Here we demonstrate that guide-free Argonaute from Thermus thermophilus (TtAgo) can degrade dsDNA, thereby generating small dsDNA fragments that subsequently are loaded onto TtAgo. Combining single-molecule fluorescence, molecular dynamic simulations and structural studies, we show that TtAgo loads dsDNA molecules with a preference towards a deoxyguanosine on the passenger strand at the position opposite to the 5’-end of the guide strand. This explains why in vivo TtAgo is preferentially loaded with guides with a 5’-end deoxycytidine. Our data demonstrate that TtAgo can independently generate and selectively load functional DNA guides. PMID:28262506
Padmanabhan, P K; Samant, M; Cloutier, S; Simard, M J; Papadopoulou, B
2012-12-01
Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved.
Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A
2016-01-01
It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.
Woods, Lucy A; Dolezal, Olan; Ren, Bin; Ryan, John H; Peat, Thomas S; Poulsen, Sally-Ann
2016-03-10
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Padmanabhan, P K; Samant, M; Cloutier, S; Simard, M J; Papadopoulou, B
2012-01-01
Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved. PMID:22767185
A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences
Gerasimova, Yulia V.; Hayson, Aaron; Ballantyne, Jack; Kolpashchikov, Dmitry M.
2010-01-01
Molecular beacon (MB) probes are dual-labeled hairpin-shaped oligodeoxyribonucleotides that are extensively used for real-time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real-time assays and improve the accuracy of single-nucleotide polymorphism genotyping. PMID:20665615
Universal DNA-based methods for assessing the diet of grazing livestock and wildlife from feces.
Pegard, Anthony; Miquel, Christian; Valentini, Alice; Coissac, Eric; Bouvier, Frédéric; François, Dominique; Taberlet, Pierre; Engel, Erwan; Pompanon, François
2009-07-08
Because of the demand for controlling livestock diets, two methods that characterize the DNA of plants present in feces were developed. After DNA extraction from fecal samples, a short fragment of the chloroplastic trnL intron was amplified by PCR using a universal primer pair for plants. The first method generates a signature that is the electrophoretic migration pattern of the PCR product. The second method consists of sequencing several hundred DNA fragments from the PCR product through pyrosequencing. These methods were validated with a blind analysis of feces from concentrate- and pasture-fed lambs. The signature method allowed differentiation of the two diets and confirmed the presence of concentrate in one of them. The pyrosequencing method allowed the identification of up to 25 taxa in a diet. These methods are complementary to the chemical methods already used. They could be applied to the control of diets and the study of food preferences.
Dryza, V; Metha, G F
2009-06-28
Gas-phase bimetallic tantalum-zirconium-carbide clusters are generated using a constructed double ablation cluster source. The Ta(3)ZrC(y) (y = 0-4) clusters are examined by photoionization efficiency spectroscopy to extract experimental ionization energies (IEs). The IE trend for the Ta(3)ZrC(y) cluster series is reasonably similar to that of the Ta(4)C(y) cluster series [V. Dryza et al., J. Phys. Chem. A 109, 11180 (2005)], although the IE reductions upon carbon addition are greater for the former. Complementary density functional theory calculations are performed for the various isomers constructed by attaching carbon atoms to the different faces of the tetrahedral Ta(3)Zr cluster. The good agreement between the experimental IE trend and that calculated for these isomers support a 2x2x2 face centered cubic nanocrystal structure for Ta(4)ZrC(4) and nanocrystal fragment structures for the smaller clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langkilde, Annette E., E-mail: annette.langkilde@sund.ku.dk; Morris, Kyle L.; Serpell, Louise C.
The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-raymore » crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.« less
NASA Astrophysics Data System (ADS)
Faber, Peter; Drewnick, Frank; Bierl, Reinhard; Borrmann, Stephan
2017-10-01
The aerosol mass spectrometer (AMS) is well established in investigating highly time-resolved dynamics of submicron aerosol chemical composition including organic aerosol (OA). However, interpretation of mass spectra on molecular level is limited due to strong fragmentation of organic substances and potential reactions inside the AMS ion chamber. Results from complementary filter-based FT-IR absorption measurements were used to explain features in high-resolution AMS mass spectra of different types of OA (e.g. cooking OA, cigarette smoking OA, wood burning OA). Using this approach some AMS fragment ions were validated in this study as appropriate and rather specific markers for a certain class of organic compounds for all particle types under investigation. These markers can therefore be used to get deeper insights in the chemical composition of OA based on AMS mass spectra in upcoming studies. However, the specificity of other fragment ions such as C2H4O2+ (m/z 60.02114) remains ambiguous. In such cases, complementary FT-IR measurements allow the interpretation of highly time-resolved AMS mass spectra at the level of molecular functional groups. Furthermore, this study discusses the challenges in reducing inorganic interferences (e.g. from water and ammonium salts) in FT-IR spectra of atmospheric aerosols to decrease spectral uncertainties for better comparisons and, thus, to get more robust results.
Molecular cloning of a gene encoding translation initiation factor (TIF) from Candida albicans.
Mirbod, F; Nakashima, S; Kitajima, Y; Ghannoum, M A; Cannon, R D; Nozawa, Y
1996-01-01
The differential display technique was applied to compare mRNAs from two clinical isolates of Candida albicans with different virulence; high (potent strain, 16240) and low (weak strain, 18084) extracellular phospholipase activities. Complementary DNA fragments corresponding to several apparently differentially expressed mRNAs were recovered and sequenced. A complementary DNA fragment seen distinctly in the potent phospholipase producing strain was highly homologous to the yeast translation initiation factor (TIF). The selected DNA fragment was then used as a probe to isolate its corresponding complementary DNA clone from a library of C. albicans genomic DNA. The sequence of isolated gene revealed an open reading frame of 1194 nucleotides with the potential to encode a protein of 397 amino acids with a predicted molecular weight of 43 kDa. Over its entire length, the amino acid sequence showed strong homology (78-89%) to Saccharomyces cerevisiae TIF and (63-80%) to mouse eIF-4A proteins. Therefore, our C. albicans gene was identified to be TIF (Ca TIF). Northern blot analysis in the two strains of C. albicans revealed that Ca TIF expression is 1.5-fold higher in the potent phospholipase producing strain. The restriction endonuclease digestion of genomic DNA from this potent strain revealed at least two hybridized bands in Southern blot analysis, suggesting two or more closely related sequences in the C. albicans genome.
Reassembly of a bioluminescent protein Renilla luciferase directed through DNA hybridization.
Cissell, Kyle A; Rahimi, Yasmeen; Shrestha, Suresh; Deo, Sapna K
2009-01-01
Reassembly of split reporter proteins, also referred to as protein complementation, is utilized in the detection of protein-protein or protein-nucleic acid interactions. In this strategy, a reporter protein is fragmented into two inactive polypeptides to which interacting/binding partners are fused. The interaction between fused partners leads to the formation of a reassembled, active reporter. In this Communication, we have presented a proof-of-concept for the detection of a target nucleic acid sequence based on the reassembly of the bioluminescent reporter Renilla luciferase (Rluc), which is driven by DNA hybridization. Although, reassembly of Rluc though protein interactions has been demonstrated by others, the Rluc reassembly through DNA hybridization has not been shown yet, which is the novelty of this work. It is well established that bioluminescence detection offers significant advantages due to the absence of any background signal. In our study, two rationally designed fragments of Rluc were conjugated to complementary oligonucleotide probes. Hybridization of the two probes with fused Rluc fragments resulted in the reassembly of the fragments, generating active Rluc, measurable by the intensity of light given off upon addition of coelenterazine. Our study also shows that the reassembly of Rluc can be inhibited by an oligonucleotide probe that competes to bind to the hybridized probe-Rluc fragment complex, indicating a potential strategy for the quantitative detection of target nucleic acid. We were able to achieve the reassembly of Rluc fused to oligonucleotide probes using femtomole amounts of the probe-fragment protein conjugate. This concentration is approximately 4 orders of magnitude less than that reported using green fluorescent protein (GFP) as the reporter. A DNA-driven Rluc reassembly study performed in a cellular matrix did not show any interference from the matrix.
Tasayco, M L; Fuchs, J; Yang, X M; Dyalram, D; Georgescu, R E
2000-09-05
The approach of comparing folding and folding/binding processes is exquisitely poised to narrow down the regions of the sequence that drive protein folding. We have dissected the small single alpha/beta domain of oxidized Escherichia coli thioredoxin (Trx) into three complementary fragments (N, residues 1-37; M, residues 38-73; and C, residues 74-108) to study them in isolation and upon recombination by far-UV CD and NMR spectroscopy. The isolated fragments show a minimum of ellipticity of ca. 197 nm in their far-UV CD spectra without concentration dependence, chemical shifts of H(alpha) that are close to the random coil values, and no medium- and long-range NOE connectivities in their three-dimensional NMR spectra. These fragments behave as disordered monomers. Only the far-UV CD spectra of binary or ternary mixtures that contain N- and C-fragments are different from the sum of their individual spectra, which is indicative of folding and/or binding of these fragments. Indeed, the cross-peaks corresponding to the rather hydrophobic beta(2) and beta(4) regions of the beta-sheet of Trx disappear from the (1)H-(15)N HSQC spectra of isolated labeled N- and C-fragments, respectively, upon addition of the unlabeled complementary fragments. The disappearing cross-peaks indicate interactions between the beta(2) and beta(4) regions, and their reappearance at lower temperatures indicates unfolding and/or dissociation of heteromers that are predominantly held by hydrophobic forces. Our results argue that the folding of Trx begins by zippering two discontiguous and rather hydrophobic chain segments (beta(2) and beta(4)) corresponding to neighboring strands of the native beta-sheet.
High Resolution Fabry-Perot Spectroscopy Of Comet Fragments 73P/ Schwassmann-Wachmann 3-B,C
NASA Astrophysics Data System (ADS)
Oliversen, Ronald J.; Mierkiewicz, E. J.; Morgenthaler, J. P.; Harris, W. M.; Kokorowski, M.; Kidder, A.; Schnackenberg, T.; Carpena Nunez, J.; Hall, T.; Haffner, L.
2006-09-01
In May 2006, comet 73P/Schwassmann-Wachmann 3 (SW3) made a spectacular close approach to the Earth. During its 1995 apparition, the comet fragmented into several pieces. One of the brighter components, SW3-B, fragmented into dozens of pieces during the 2006 apparition while another bright fragment, SW3-C did not. Understanding the difference between these two fragments will contribute significantly to our understanding of cometary interiors. We performed observations of SW3-B and SW3-C from Kitt Peak using the Fabry-Perot spectrometers at the McMath-Pierce (MMP) telescope from April 29 - May 10 and at the Wisconsin Hydrogen Alpha Mapper (WHαM) from May 1 - 6, 2006. This period is significant due to its proximity to perigee, overlap with complementary observations, and coincidence with the onset and decline-phase of a major outburst/fragmentation event from SW3-B. The MMP and WHAM Fabry-Perot spectrometers made high resolution measurements of [O I] and NH2 emissions near 6300 Å at δV = 5 km/s and 12 km/s with 4.5 arcmin and 1 degree fields of view, respectively. Many of the spectra separate the cometary and terrestrial [O I] lines and allow determination of water production rates. We report the preliminary analysis of these data, including discussion of the radial distribution of emissions, a comparison activity levels between the two fragments, and a comparison with complementary production rate measurements made over the same period. In addition, following the SW3-B May 9 outburst, H20+ measurements near 6200 Å were made to map the acceleration of water ions near the head and down the tail.
What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?
NASA Astrophysics Data System (ADS)
Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan
2017-12-01
Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.
Toward a General Approach for RNA-Templated Hierarchical Assembly of Split-Proteins
Furman, Jennifer L.; Badran, Ahmed H.; Ajulo, Oluyomi; Porter, Jason R.; Stains, Cliff I.; Segal, David J.; Ghosh, Indraneel
2010-01-01
The ability to conditionally turn on a signal or induce a function in the presence of a user-defined RNA target has potential applications in medicine and synthetic biology. Although sequence-specific pumilio repeat proteins can target a limited set of ssRNA sequences, there are no general methods for targeting ssRNA with designed proteins. As a first step toward RNA recognition, we utilized the RNA binding domain of argonaute, implicated in RNA interference, for specifically targeting generic 2-nucleotide, 3' overhangs of any dsRNA. We tested the reassembly of a split-luciferase enzyme guided by argonaute-mediated recognition of newly generated nucleotide overhangs when ssRNA is targeted by a designed complementary guide sequence. This approach was successful when argonaute was utilized in conjunction with a pumilio repeat and expanded the scope of potential ssRNA targets. However, targeting any desired ssRNA remained elusive as two argonaute domains provided minimal reassembled split-luciferase. We next designed and tested a second hierarchical assembly, wherein ssDNA guides are appended to DNA hairpins that serve as a scaffold for high affinity zinc fingers attached to split-luciferase. In the presence of a ssRNA target containing adjacent sequences complementary to the guides, the hairpins are brought into proximity, allowing for zinc finger binding and concomitant reassembly of the fragmented luciferase. The scope of this new approach was validated by specifically targeting RNA encoding VEGF, hDM2, and HER2. These approaches provide potentially general design paradigms for the conditional reassembly of fragmented proteins in the presence of any desired ssRNA target. PMID:20681585
Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.
Rodríguez-Mendoza, Clara; Pineda, Eduardo
2010-12-23
Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.
Dynamic reassembly of peptide RADA16 nanofiber scaffold
NASA Astrophysics Data System (ADS)
Yokoi, Hidenori; Kinoshita, Takatoshi; Zhang, Shuguang
2005-06-01
Nanofiber structures of some peptides and proteins as biological materials have been studied extensively, but their molecular mechanism of self-assembly and reassembly still remains unclear. We report here the reassembly of an ionic self-complementary peptide RADARADARADARADA (RADA16-I) that forms a well defined nanofiber scaffold. The 16-residue peptide forms stable -sheet structure and undergoes molecular self-assembly into nanofibers and eventually a scaffold hydrogel consisting of >99.5% water. In this study, the nanofiber scaffold was sonicated into smaller fragments. Circular dichroism, atomic force microscopy, and rheology were used to follow the kinetics of the reassembly. These sonicated fragments not only quickly reassemble into nanofibers that were indistinguishable from the original material, but their reassembly also correlated with the rheological analyses showing an increase of scaffold rigidity as a function of nanofiber length. The disassembly and reassembly processes were repeated four times and, each time, the reassembly reached the original length. We proposed a plausible sliding diffusion model to interpret the reassembly involving complementary nanofiber cohesive ends. This reassembly process is important for fabrication of new scaffolds for 3D cell culture, tissue repair, and regenerative medicine. atomic force microscopy | circular dichroism | dynamic behaviors | ionic self-complementary peptides | nanofiber hydrogels
Woods, D E; Edge, M D; Colten, H R
1984-01-01
Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718
NASA Astrophysics Data System (ADS)
Verlinde, Christophe L. M. J.; Rudenko, Gabrielle; Hol, Wim G. J.
1992-04-01
A modular method for pursuing structure-based inhibitor design in the framework of a design cycle is presented. The approach entails four stages: (1) a design pathway is defined in the three-dimensional structure of a target protein; (2) this pathway is divided into subregions; (3) complementary building blocks, also called fragments, are designed in each subregion; complementarity is defined in terms of shape, hydrophobicity, hydrogen bond properties and electrostatics; and (4) fragments from different subregions are linked into potential lead compounds. Stages (3) and (4) are qualitatively guided by force-field calculations. In addition, the designed fragments serve as entries for retrieving existing compounds from chemical databases. This linked-fragment approach has been applied in the design of potentially selective inhibitors of triosephosphate isomerase from Trypanosoma brucei, the causative agent of sleeping sickness.
Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water
NASA Astrophysics Data System (ADS)
Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan
2018-04-01
In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.
Polarity of recombination in transformation of Streptococcus pneumoniae
Pasta, Franck; Sicard, Michel A.
1999-01-01
In transformation of Streptococcus pneumoniae DNA enters the cell as single-strand fragments and integrates into the chromosome by homologous recombination. Deletions and insertions of a few hundred base pairs frequently stop the recombination process of a donor strand. In this work we took advantage of such interruptions of recombination to compare the transformation efficiencies of the segments 5′- and 3′-ward from a deletion. The deletion was created in the center of a fragment of the ami locus, and sites around the deletion were labeled by a frameshift generating a restriction site. Heteroduplexes were constructed containing two restriction sites on one strand and two different ones on the complementary strand. ami+ bacteria were transformed with such heteroduplexes. ami− transformants were isolated and individually underwent amplification of the transformed ami region. We have obtained two kinds of amplification products: short when the deletion was integrated, long when recombination stops at the deletion. Each long fragment was tested by the four restriction enzymes to detect which strand and which side of the deletion had recombined. We found that 80% of the cuts were located 5′ to the deletion, showing that, in vivo, the 5′ side is strongly favored by recombination. Further results suggest that exchanges occurring from 5′ to 3′ relative to the donor strand are more efficient than in the opposite direction, thus accounting for the 5′ preference. PMID:10077616
Polarity of recombination in transformation of Streptococcus pneumoniae.
Pasta, F; Sicard, M A
1999-03-16
In transformation of Streptococcus pneumoniae DNA enters the cell as single-strand fragments and integrates into the chromosome by homologous recombination. Deletions and insertions of a few hundred base pairs frequently stop the recombination process of a donor strand. In this work we took advantage of such interruptions of recombination to compare the transformation efficiencies of the segments 5'- and 3'-ward from a deletion. The deletion was created in the center of a fragment of the ami locus, and sites around the deletion were labeled by a frameshift generating a restriction site. Heteroduplexes were constructed containing two restriction sites on one strand and two different ones on the complementary strand. ami+ bacteria were transformed with such heteroduplexes. ami- transformants were isolated and individually underwent amplification of the transformed ami region. We have obtained two kinds of amplification products: short when the deletion was integrated, long when recombination stops at the deletion. Each long fragment was tested by the four restriction enzymes to detect which strand and which side of the deletion had recombined. We found that 80% of the cuts were located 5' to the deletion, showing that, in vivo, the 5' side is strongly favored by recombination. Further results suggest that exchanges occurring from 5' to 3' relative to the donor strand are more efficient than in the opposite direction, thus accounting for the 5' preference.
Relationship between Hot Spot Residues and Ligand Binding Hot Spots in Protein-Protein Interfaces
Zerbe, Brandon S.; Hall, David R.
2013-01-01
In the context of protein-protein interactions, the term “hot spot” refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening. PMID:22770357
Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.
Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima
2012-08-27
In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.
NMR-based platform for fragment-based lead discovery used in screening BRD4-targeted compounds
Yu, Jun-lan; Chen, Tian-tian; Zhou, Chen; Lian, Fu-lin; Tang, Xu-long; Wen, Yi; Shen, Jing-kang; Xu, Ye-chun; Xiong, Bing; Zhang, Nai-xia
2016-01-01
Aim: Fragment-based lead discovery (FBLD) is a complementary approach in drug research and development. In this study, we established an NMR-based FBLD platform that was used to screen novel scaffolds targeting human bromodomain of BRD4, and investigated the binding interactions between hit compounds and the target protein. Methods: 1D NMR techniques were primarily used to generate the fragment library and to screen compounds. The inhibitory activity of hits on the first bromodomain of BRD4 [BRD4(I)] was examined using fluorescence anisotropy binding assay. 2D NMR and X-ray crystallography were applied to characterize the binding interactions between hit compounds and the target protein. Results: An NMR-based fragment library containing 539 compounds was established, which were clustered into 56 groups (8–10 compounds in each group). Eight hits with new scaffolds were found to inhibit BRD4(I). Four out of the 8 hits (compounds 1, 2, 8 and 9) had IC50 values of 100–260 μmol/L, demonstrating their potential for further BRD4-targeted hit-to-lead optimization. Analysis of the binding interactions revealed that compounds 1 and 2 shared a common quinazolin core structure and bound to BRD4(I) in a non-acetylated lysine mimetic mode. Conclusion: An NMR-based platform for FBLD was established and used in discovery of BRD4-targeted compounds. Four potential hit-to-lead optimization candidates have been found, two of them bound to BRD4(I) in a non-acetylated lysine mimetic mode, being selective BRD4(I) inhibitors. PMID:27238211
Kutchukian, Peter S; Wassermann, Anne Mai; Lindvall, Mika K; Wright, S Kirk; Ottl, Johannes; Jacob, Jaison; Scheufler, Clemens; Marzinzik, Andreas; Brooijmans, Natasja; Glick, Meir
2015-06-01
A first step in fragment-based drug discovery (FBDD) often entails a fragment-based screen (FBS) to identify fragment "hits." However, the integration of conflicting results from orthogonal screens remains a challenge. Here we present a meta-analysis of 35 fragment-based campaigns at Novartis, which employed a generic 1400-fragment library against diverse target families using various biophysical and biochemical techniques. By statistically interrogating the multidimensional FBS data, we sought to investigate three questions: (1) What makes a fragment amenable for FBS? (2) How do hits from different fragment screening technologies and target classes compare with each other? (3) What is the best way to pair FBS assay technologies? In doing so, we identified substructures that were privileged for specific target classes, as well as fragments that were privileged for authentic activity against many targets. We also revealed some of the discrepancies between technologies. Finally, we uncovered a simple rule of thumb in screening strategy: when choosing two technologies for a campaign, pairing a biochemical and biophysical screen tends to yield the greatest coverage of authentic hits. © 2014 Society for Laboratory Automation and Screening.
2012-01-01
Background Proteins that are associated with hypertension may be identified by comparing the 2-dimensional gel electrophoresis (2-DE) profiles of the sera of spontaneously hypertensive rats (SHR) with those generated from normotensive Spraque-Dawley rats (SDR). Results Five proteins of high abundance were found to be significantly altered when the 2-DE serum profiles of the SHR were compared to those that were similarly generated from the SDR. Analysis by mass spectrometry and database search identified the proteins as retinol binding protein 4, complement C3, albumin (19.9 kDa fragment), alpha1 macroglobulin and alpha1 antiproteinase, which are all known to be associated with hypertension. The altered expression of the two latter proteins was found to be abrogated when similar analysis was performed on sera of the SHR that were treated with captopril. Conclusion Our data suggests that serum alpha1 macroglobulin and alpha1 antiproteinase are potentially useful complementary biomolecular indicators for monitoring of hypertension. PMID:22416803
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander
2018-02-01
A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
FALSTAFF: A New Tool for Fission Fragment Characterization
NASA Astrophysics Data System (ADS)
Doré, D.; Farget, F.; Lecolley, F.-R.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.; Papaevangelou, Th.
2014-05-01
The future Neutron For Science (NFS) facility to be installed at SPIRAL2 (Caen, France) will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest to the nuclear community, in view of the development of fast reactor technology, will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow for the simultaneous measurement of the velocity and energy of the complementary fragments. The performance of the time-of-flight detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.
FALSTAFF: A new tool for fission studies
NASA Astrophysics Data System (ADS)
Dore, D.; Farget, F.; Lecolley, F.-R.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.; Papaevangelou, Th.
2013-12-01
The future NFS installation will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest for the nuclear community in view of the development of the fast reactor technology will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragments velocity and energy. The performances of TOF detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.
Learning in Tomorrow's Classrooms
ERIC Educational Resources Information Center
Bowman, Richard F.
2015-01-01
Teaching today remains the most individualistic of all the professions, with educators characteristically operating in a highly fragmented world of "their" courses, "their" skills, and "their" students. Learning will occur in the classrooms of the future through a sustainable set of complementary capabilities:…
GC/HRSIR as a Complementary Technique to GC/ECNIMS
Gas chromatography/electron capture negative ion mass spectrometry (GC/ECNIMS) is a highly selective and sensitive technique for the analysis of appropriate analytes in complex matrices. Its major drawback is often the lack of fragmentation indicative of structure that can be use...
Protein subcellular localization assays using split fluorescent proteins
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2009-09-08
The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).
Sjögren, Jonathan; Andersson, Linda; Mejàre, Malin; Olsson, Fredrik
2017-01-01
Fab fragments are valuable research tools in various areas of science including applications in imaging, binding studies, removal of Fc-mediated effector functions, mass spectrometry, infection biology, and many others. The enzymatic tools for the generation of Fab fragments have been discovered through basic research within the field of molecular bacterial pathogenesis. Today, these enzymes are widely applied as research tools and in this chapter, we describe methodologies based on bacterial enzymes to generate Fab fragments from both human and mouse IgG. For all human IgG subclasses, the IdeS enzyme from Streptococcus pyogenes has been applied to generate F(ab')2 fragments that subsequently can be reduced under mild conditions to generate a homogenous pool of Fab' fragments. The enzyme Kgp from Porphyromonas gingivalis has been applied to generate intact Fab fragments from human IgG1 and the Fab fragments can be purified using a CH1-specific affinity resin. The SpeB protease, also from S. pyogenes, is able to digest mouse IgGs and has been applied to digest antibodies and Fab fragments can be purified on light chain affinity resins. In this chapter, we describe methodologies that can be used to obtain Fab fragments from human and mouse IgG using bacterial proteases.
NASA Astrophysics Data System (ADS)
Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu
2017-06-01
A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H]+ was observed in the case of individual alkanes (C5-C19) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. [Figure not available: see fulltext.
Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu
2017-06-01
A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H] + was observed in the case of individual alkanes (C 5 -C 19 ) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. Graphical Abstract ᅟ.
Dereplication of plant phenolics using a mass-spectrometry database independent method.
Borges, Ricardo M; Taujale, Rahil; de Souza, Juliana Santana; de Andrade Bezerra, Thaís; Silva, Eder Lana E; Herzog, Ronny; Ponce, Francesca V; Wolfender, Jean-Luc; Edison, Arthur S
2018-05-29
Dereplication, an approach to sidestep the efforts involved in the isolation of known compounds, is generally accepted as being the first stage of novel discoveries in natural product research. It is based on metabolite profiling analysis of complex natural extracts. To present the application of LipidXplorer for automatic targeted dereplication of phenolics in plant crude extracts based on direct infusion high-resolution tandem mass spectrometry data. LipidXplorer uses a user-defined molecular fragmentation query language (MFQL) to search for specific characteristic fragmentation patterns in large data sets and highlight the corresponding metabolites. To this end, MFQL files were written to dereplicate common phenolics occurring in plant extracts. Complementary MFQL files were used for validation purposes. New MFQL files with molecular formula restrictions for common classes of phenolic natural products were generated for the metabolite profiling of different representative crude plant extracts. This method was evaluated against an open-source software for mass-spectrometry data processing (MZMine®) and against manual annotation based on published data. The targeted LipidXplorer method implemented using common phenolic fragmentation patterns, was found to be able to annotate more phenolics than MZMine® that is based on automated queries on the available databases. Additionally, screening for ascarosides, natural products with unrelated structures to plant phenolics collected from the nematode Caenorhabditis elegans, demonstrated the specificity of this method by cross-testing both groups of chemicals in both plants and nematodes. Copyright © 2018 John Wiley & Sons, Ltd.
Jigsaw model of the origin of life
NASA Astrophysics Data System (ADS)
McGowan, John F.
2002-02-01
It is suggested that life originated in a three-step process referred to as the jigsaw model. RNA, proteins, or similar organic molecules polymerized in a dehydrated carbon-rich environment, on surfaces in a carbon-rich environment, or in another environment where polymerization occurs. These polymers subsequently entered an aqueous environment where they folded into compact structures. It is argued that the folding of randomly generated polymers such as RNA or proteins in water tends to partition the folded polymer into domains with hydrophobic cores and matching shapes to minimize energy. In the aqueous environment hydrolysis or other reactions fragmented the compact structures into two or more matching molecules, occasionally producing simple living systems, also knows as autocatalytic sets of molecules. It is argued that the hydrolysis of folded polymers such as RNA or proteins is not random. The hydrophobic cores of the domains are rarely bisected due to the energy requirements in water. Hydrolysis preferentially fragments the folded polymers into pieces with complementary structures and chemical affinities. Thus the probability of producing a system of matched, interacting molecules in prebiotic chemistry is much higher than usually estimated. Environments where this process may occur are identified. For example, the jigsaw model suggests life may have originated at a seep or carbonaceous fluids beneath the ocean. The polymerization occurred beneath the sea floor. The folding and fragmentation occurred in the ocean. The implications of this hypothesis for seeking life or prebiotic chemistry in the Solar System are explored.
Identification of unknowns in mass spectrometry based non-targeted analyses (NTA) requires the integration of complementary pieces of data to arrive at a confident, consensus structure. Researchers use chemical reference databases, spectral matching, fragment prediction tools, r...
Shirai, Hiroki; Ikeda, Kazuyoshi; Yamashita, Kazuo; Tsuchiya, Yuko; Sarmiento, Jamica; Liang, Shide; Morokata, Tatsuaki; Mizuguchi, Kenji; Higo, Junichi; Standley, Daron M; Nakamura, Haruki
2014-08-01
In the second antibody modeling assessment, we used a semiautomated template-based structure modeling approach for 11 blinded antibody variable region (Fv) targets. The structural modeling method involved several steps, including template selection for framework and canonical structures of complementary determining regions (CDRs), homology modeling, energy minimization, and expert inspection. The submitted models for Fv modeling in Stage 1 had the lowest average backbone root mean square deviation (RMSD) (1.06 Å). Comparison to crystal structures showed the most accurate Fv models were generated for 4 out of 11 targets. We found that the successful modeling in Stage 1 mainly was due to expert-guided template selection for CDRs, especially for CDR-H3, based on our previously proposed empirical method (H3-rules) and the use of position specific scoring matrix-based scoring. Loop refinement using fragment assembly and multicanonical molecular dynamics (McMD) was applied to CDR-H3 loop modeling in Stage 2. Fragment assembly and McMD produced putative structural ensembles with low free energy values that were scored based on the OSCAR all-atom force field and conformation density in principal component analysis space, respectively, as well as the degree of consensus between the two sampling methods. The quality of 8 out of 10 targets improved as compared with Stage 1. For 4 out of 10 Stage-2 targets, our method generated top-scoring models with RMSD values of less than 1 Å. In this article, we discuss the strengths and weaknesses of our approach as well as possible directions for improvement to generate better predictions in the future. © 2014 Wiley Periodicals, Inc.
Aggregation-fragmentation-diffusion model for trail dynamics
Kawagoe, Kyle; Huber, Greg; Pradas, Marc; ...
2017-07-21
We investigate statistical properties of trails formed by a random process incorporating aggregation, fragmentation, and diffusion. In this stochastic process, which takes place in one spatial dimension, two neighboring trails may combine to form a larger one, and also one trail may split into two. In addition, trails move diffusively. The model is defined by two parameters which quantify the fragmentation rate and the fragment size. In the long-time limit, the system reaches a steady state, and our focus is the limiting distribution of trail weights. We find that the density of trail weight has power-law tail P(w)~w –γ formore » small weight w. We obtain the exponent γ analytically and find that it varies continuously with the two model parameters. In conclusion, the exponent γ can be positive or negative, so that in one range of parameters small-weight trails are abundant and in the complementary range they are rare.« less
Study of fission fragment de-excitation by gamma-ray spectrometry with the EXILL experiment
NASA Astrophysics Data System (ADS)
Materna, Thomas; a, Michal Rapał; Letourneau, Alain; Marchix, Anthony; Litaize, Olivier; Sérot, Olivier; Urban, Waldemar; Blanc, Aurélien; Jentschel, Michael; Köster, Ulli; Mutti, Paolo; Soldner, Torsten; Simpson, Gary; Ur, Călin A.; France, Gilles de
2017-09-01
A large array of Ge detectors installed at ILL, around a 235U target irradiated with cold neutrons, (EXILL) allowed measurement of prompt gamma-ray cascades occurring in fission fragments with an unambiguous determination of fragments. Here we present preliminary results of a systematic comparison between experimental γ-ray intensities and those obtained from the Monte-Carlo simulation code FIFRELIN, which is dedicated to the de-excitation of fission fragments. Major γ-ray intensities in the 142Ba and 92Kr fission products, extracted from EXILL data, were compared to FIFRELIN, as well as to reported values (when available) obtained with EUROGAM2 in the spontaneous fission of 248Cm. The evolution of γ-ray intensities in 92Kr versus the complementary partner in fission (i.e. versus the total number of evaporated neutrons by the fission pair) was then extracted and compared to FIFRELIN.
Identification of unknowns in mass spectrometry based non-targeted analyses (NTA) requires the integration of complementary pieces of data to arrive at a confident, consensus structure. Researchers use chemical reference databases, spectral matching, fragment prediction tools, r...
Evidence-based Research in Complementary and Alternative Medicine I: History
2005-01-01
Contemporary Western medicine has witnessed a fragmentation of our conceptualization of the medical endeavor into ‘traditional medicine’ and ‘non-traditional medicine’. The former is meant to refer to the Western medical tradition, the latter encompasses both ‘complementary’ and ‘alternative’ medical practices. Complementary medicine complements conventional medical treatments, and alternative modes of medical interventions are meant to replace traditional Western medicine. Evidence-based research must be directed at establishing the best available evidence in complementary and alternative medicine. This paper is the first of a set of four ‘lectures’ that reviews the process of evidence-based research, and discusses its implications and applications for the early decades of the 21st century. The purpose of this paper is to introduce the series by examining some of the historical and philosophical foundations of this research endeavor. PMID:16322801
Spectroscopic Investigations of Fragment Species in the Coma
NASA Technical Reports Server (NTRS)
Feldman, Paul D.; Cochran, Anita L.; Combi, Michael R.
2004-01-01
The content of the gaseous coma of a comet is dominated by fragment species produced by photolysis of the parent molecules issuing directly from the icy nucleus of the comet. Spectroscopy of these species provides complementary information on the physical state of the coma to that obtained from observations of the parent species. Extraction of physical parameters requires detailed molecular and atomic data together with reliable high-resolution spectra and absolute fluxes of the primary source of excitation, the Sun. The large database of observations, dating back more than a century, provides a means to assess the chemical and evolutionary diversity of comets.
Identifying and analysing protostellar disc fragments in smoothed particle hydrodynamics simulations
NASA Astrophysics Data System (ADS)
Hall, Cassandra; Forgan, Duncan; Rice, Ken
2017-09-01
We present a new method of identifying protostellar disc fragments in a simulation based on density derivatives, and analyse our data using this and the existing CLUMPFIND method, which is based on an ordered search over all particles in gravitational potential energy. Using smoothed particle hydrodynamics, we carry out nine simulations of a 0.25 M⊙ disc around a 1 M⊙ star, all of which fragment to form at least two bound objects. We find that when using all particles ordered in gravitational potential space, only fragments that survive the duration of the simulation are detected. When we use the density derivative method, all fragments are detected, so the two methods are complementary, as using the two methods together allows us to identify all fragments, and to then determine those that are likely to be destroyed. We find a tentative empirical relationship between the dominant azimuthal wavenumber in the disc m and the maximum semimajor axis a fragment may achieve in a simulation, such that amax∝1/m. We find the fragment destruction rate to be around half that predicted from population synthesis models. This is due to fragment-fragment interactions in the early gas phase of the disc, which can cause scattering and eccentricity pumping on short time-scales, and affects the fragment's internal structure. We therefore caution that measurements of eccentricity as a function of semimajor axis may not necessarily constrain the formation mechanism of giant planets and brown dwarfs.
Reverse strand-displacement amplification strategy for rapid detection of p53 gene.
Wang, Lisha; Han, Ying; Xiao, Shuai; Lv, Sha; Wang, Cong; Zhang, Nan; Wang, Zhengyong; Tang, Yongqiong; Li, Hongbo; Lyu, Jianxin; Xu, Huo; Shen, Zhifa
2018-09-01
The development of rapid approaches to detect prognostic markers is significant in reducing the morbidity and mortality of cancer. In this paper, we describe a rapid and specific biosensing platform for target DNA (p53 gene as a model) detection based on reverse strand displacement amplification (R-SDA). When the p53 gene is added, multifuctional molecular beacon (MMB) is unfolded via the hybridization with p53 gene. With the assist of Klenow fragment (KF) and Nt.BbvCI (the nicking endonuclease), p53 gene recycling could be initiated and considerable amount of complementary sequences for the MMBs (Nicked fragments, NFs) could be formed, generating enhanced fluorescence signal. Using this amplification strategy, the proposed biosensor displays the detection limit of 1 nM and a wide linear range from 1 to 100 nM, even if only one type of probe is involved. Notably, remarkable detection specificity for single-base mismatched target p53 gene is achieved. Moreover, the described biosensor also exhibited the stability in real biological samples (human serum). The rapid detection strategy can be performed less than 30 min without harsh reaction conditions or expensive nanoparticles. This biosensor shows great potential for application in clinic assay, especially, for early cancer diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Downie, Kelsey; Adetola, Gbolagade; Carstens, Eric B
2013-11-01
Autographa californica nucleopolyhedrovirus late expression factor 3 (LEF-3) is required for late viral gene expression probably through its numerous functions related to DNA replication, including nuclear localization of the virus helicase P143 and binding to ssDNA. LEF-3 appears to interact with itself as a homo-oligomer, although the details of this oligomeric structure are not yet known. To examine LEF-3-LEF-3 interactions, a bimolecular fluorescent protein complementation assay was used. Pairs of recombinant plasmids expressing full-length LEF-3 fused to one of two complementary fragments (V1 or V2) of a variant of yellow fluorescent protein named 'Venus' were constructed. Plasmids expressing fusions with complementary fragments of Venus were co-transfected into Sf21 cells and analysed by fluorescence microscopy. Co-transfected plasmids expressing full-length V1-LEF-3 and V2-LEF-3 showed positive fluorescence, confirming the formation of homo-oligomers. A series of truncated V1/V2-LEF-3 fusions was constructed and used to investigate interactions with one another as well as with full-length LEF-3.
Wang, Yu Annie; Wu, Di; Auclair, Jared R; Salisbury, Joseph P; Sarin, Richa; Tang, Yang; Mozdzierz, Nicholas J; Shah, Kartik; Zhang, Anna Fan; Wu, Shiaw-Lin; Agar, Jeffery N; Love, J Christopher; Love, Kerry R; Hancock, William S
2017-12-05
With the advent of biosimilars to the U.S. market, it is important to have better analytical tools to ensure product quality from batch to batch. In addition, the recent popularity of using a continuous process for production of biopharmaceuticals, the traditional bottom-up method, alone for product characterization and quality analysis is no longer sufficient. Bottom-up method requires large amounts of material for analysis and is labor-intensive and time-consuming. Additionally, in this analysis, digestion of the protein with enzymes such as trypsin could induce artifacts and modifications which would increase the complexity of the analysis. On the other hand, a top-down method requires a minimum amount of sample and allows for analysis of the intact protein mass and sequence generated from fragmentation within the instrument. However, fragmentation usually occurs at the N-terminal and C-terminal ends of the protein with less internal fragmentation. Herein, we combine the use of the complementary techniques, a top-down and bottom-up method, for the characterization of human growth hormone degradation products. Notably, our approach required small amounts of sample, which is a requirement due to the sample constraints of small scale manufacturing. Using this approach, we were able to characterize various protein variants, including post-translational modifications such as oxidation and deamidation, residual leader sequence, and proteolytic cleavage. Thus, we were able to highlight the complementarity of top-down and bottom-up approaches, which achieved the characterization of a wide range of product variants in samples of human growth hormone secreted from Pichia pastoris.
Sadílek, David; Šťáhlavský, František; Vilímová, Jitka; Zima, Jan
2013-01-01
Abstract Variation in the number of chromosomes was revealed in 61 samples of Cimex lectularius Linnaeus, 1758 from the Czech Republic and other European countries, hosted on Myotis Kaup, 1829 (4) and Homo sapiens Linnaeus, 1758 (57). The karyotype of all the specimens of Cimex lectularius analysed contained 26 autosomes and a varying number of the sex chromosomes. The number of sex chromosomes showed extensive variation, and up to 20 fragments were recorded. Altogether, 12 distinct karyotypes were distinguished. The male karyotypes consisted of 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42 and 47 chromosomes. The females usually exhibited the number of chromosomes which was complementary to the number established in the males from the same sample. However, 11 polymorphic samples were revealed in which the karyotypes of females and males were not complementary each other. The complement with 2n = 26+X1X2Y was found in 44% of the specimens and 57,4% samples of bed bugs studied. The karyotypes with higher chromosome numbers as well as individuals with chromosomal mosaics were usually found within the samples exhibiting particularly extensive variation between individuals, and such complements were not found within samples contaning a few or single specimen. The occurrence of chromosomal mosaics with the karyotype constitution varying between cells of single individual was observed in five specimens (4.3%) from five samples. We assume that polymorphism caused by fragmentation of the X chromosome may result in meiotic problems and non-disjunction can produce unbalanced gametes and result in lowered fitness of individuals carrying higher numbers of the X chromosome fragments. This effect should be apparently enhanced with the increasing number of the fragments and this may be the reason for the observed distribution pattern of individual karyotypes in the studied samples and the rarity of individuals with extremely high chromosome numbers. The assumed lowering of the fitness of individuals carrying higher numbers of the X chromosome fragments could affect population dynamics of variable populations. PMID:24455100
Impact fragmentation of polyurethane and polypropylene cylinder
NASA Astrophysics Data System (ADS)
Kishimura, Hiroaki; Noguchi, Daisuke; Preechasupanya, Worrayut; Matsumoto, Hitoshi
2013-11-01
The impact fragmentation of a bulk polyurethane elastomer (PU) and polypropylene (PP) cylinder have been investigated using a Cu plate projectile launched by a propellant gun at a velocity of 0.53-1.4 km/s. A projectile drills into a PU sample and forms a cavity in the sample. A small number of tiny fragments are formed. When the projectile smashes in at 1.4 km/s, the PU cylinder bursts and PU fragments form. On the other hand, a brittle fracture occurs on the PP cylinder. The mass of fragments from the PU sample generated at a lower impact velocity is distributed in the lognormal form, whereas the mass of fragments from the PU sample generated by a 1.4 km/s impact follows a power-law distribution. The fragment mass distribution of the PP sample generated at a lower impact velocity obeys the power-law form, whereas that generated at a higher impact velocity follows the lognormal form.
Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue
2015-01-01
Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. PMID:26209670
Methods for chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
1995-01-01
Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.
Daugherty, B L; Hotta, K; Kumar, C; Ahn, Y H; Zhu, J D; Pestka, S
1989-01-01
A series of plasmids were constructed to generate RNA complementary to the beta-galactosidase messenger RNA under control of the phage lambda PL promoter. These plasmids generate anti-lacZ mRNA bearing or lacking a synthetic ribosome binding site adjacent to the lambda PL promoter and/or the lacZ ribosome binding site in reverse orientation. Fragments of lacZ DNA from the 5' and/or the 3' region were used in these constructions. When these anti-mRNA molecules were produced in Escherichia coli 294, maximal inhibition of beta-galactosidase synthesis occurred when a functional ribosome binding site was present near the 5' end of the anti-mRNA and the anti-mRNA synthesized was complementary to the 5' region of the mRNA corresponding to the lacZ ribosome binding site and/or the 5'-coding sequence. Anti-mRNAs producing maximal inhibition of beta-galactosidase synthesis exhibited an anti-lacZ mRNA:normal lacZ mRNA ratio of 100:1 or higher. Those showing lower levels of inhibition exhibited much lower anti-lacZ mRNA:normal lacZ mRNA ratios. A functional ribosome binding site at the 5'-end was found to decrease the decay rate of the anti-lacZ mRNAs. In addition, the incorporation of a transcription terminator just downstream of the antisense segment provided for more efficient inhibition of lacZ mRNA translation due to synthesis of smaller and more abundant anti-lacZ mRNAs. The optimal constructions produced undetectable levels of beta-galactosidase synthesis.
NASA Astrophysics Data System (ADS)
Kuo, Chu-Wei; Guu, Shih-Yun; Khoo, Kay-Hooi
2018-04-01
High sensitivity identification of sulfated glycans carried on specific sites of glycoproteins is an important requisite for investigation of molecular recognition events involved in diverse biological processes. However, aiming for resolving site-specific glycosylation of sulfated glycopeptides by direct LC-MS2 sequencing is technically most challenging. Other than the usual limiting factors such as lower abundance and ionization efficiency compared to analysis of non-glycosylated peptides, confident identification of sulfated glycopeptides among the more abundant non-sulfated glycopeptides requires additional considerations in the selective enrichment and detection strategies. Metal oxide has been applied to enrich phosphopeptides and sialylated glycopeptides, but its use to capture sulfated glycopeptides has not been investigated. Likewise, various complementary MS2 fragmentation modes have yet to be tested against sialylated and non-sialylated sulfoglycopeptides due to limited appropriate sample availability. In this study, we have investigated the feasibility of sequencing tryptic sulfated N-glycopeptide and its MS2 fragmentation characteristics by first optimizing the enrichment methods to allow efficient LC-MS detection and MS2 analysis by a combination of CID, HCD, ETD, and EThcD on hybrid and tribrid Orbitrap instruments. Characteristic sulfated glyco-oxonium ions and direct loss of sulfite from precursors were detected as evidences of sulfate modification. It is anticipated that the technical advances demonstrated in this study would allow a feasible extension of our sulfoglycomic analysis to sulfoglycoproteomics. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Kueppers, Ulrich; Scheu, Bettina; Spieler, Oliver; Dingwell, Donald B.
2006-05-01
Products of magma fragmentation can pose a severe threat to health, infrastructure, environment, and aviation. Systematic evaluation of the mechanisms and the consequences of volcanic fragmentation is very difficult as the adjacent processes cannot be observed directly and their deposits undergo transport-related sorting. However, enhanced knowledge is required for hazard assessment and risk mitigation. Laboratory experiments on natural samples allow the precise characterization of the generated pyroclasts and open the possibility for substantial advances in the quantification of fragmentation processes. They hold the promise of precise characterization and quantification of fragmentation efficiency and its dependence on changing material properties and the physical conditions at fragmentation. We performed a series of rapid decompression experiments on three sets of natural samples from Unzen volcano, Japan. The analysis comprised grain-size analysis and surface area measurements. The grain-size analysis is performed by dry sieving for particles larger than 250 μm and wet laser refraction for smaller particles. For all three sets of samples, the grain-size of the most abundant fraction decreases and the weight fraction of newly generated ash particles (up to 40 wt.%) increases with experimental pressure/potential energy for fragmentation. This energy can be estimated from the volume of the gas fraction and the applied pressure. The surface area was determined through Argon adsorption. The fragmentation efficiency is described by the degree of fine-particle generation. Results show that the fragmentation efficiency and the generated surface correlate positively with the applied energy.
FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling.
Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2016-07-01
Speed, accuracy and robustness of building protein fragment library have important implications in de novo protein structure prediction since fragment-based methods are one of the most successful approaches in template-free modeling (FM). Majority of the existing fragment detection methods rely on database-driven search strategies to identify candidate fragments, which are inherently time-consuming and often hinder the possibility to locate longer fragments due to the limited sizes of databases. Also, it is difficult to alleviate the effect of noisy sequence-based predicted features such as secondary structures on the quality of fragment. Here, we present FRAGSION, a database-free method to efficiently generate protein fragment library by sampling from an Input-Output Hidden Markov Model. FRAGSION offers some unique features compared to existing approaches in that it (i) is lightning-fast, consuming only few seconds of CPU time to generate fragment library for a protein of typical length (300 residues); (ii) can generate dynamic-size fragments of any length (even for the whole protein sequence) and (iii) offers ways to handle noise in predicted secondary structure during fragment sampling. On a FM dataset from the most recent Critical Assessment of Structure Prediction, we demonstrate that FGRAGSION provides advantages over the state-of-the-art fragment picking protocol of ROSETTA suite by speeding up computation by several orders of magnitude while achieving comparable performance in fragment quality. Source code and executable versions of FRAGSION for Linux and MacOS is freely available to non-commercial users at http://sysbio.rnet.missouri.edu/FRAGSION/ It is bundled with a manual and example data. chengji@missouri.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Methods for chromosome-specific staining
Gray, J.W.; Pinkel, D.
1995-09-05
Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogeneous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include ways for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes. 3 figs.
Methods and compositions for chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
2003-07-22
Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.
NASA Astrophysics Data System (ADS)
Kroll, J. H.; Wilson, K. R.; Kessler, S. H.; Browne, E. C.; Nah, T.; Smith, J.; Worsnop, D. R.
2014-12-01
The atmospheric oxidation of condensed-phase organic species can have a major influence on the composition, properties, and impacts of organic aerosol (OA); however the rates and products of such "aging" reactions are poorly constrained. Here we describe a series of laboratory experiments aimed at better understanding one class of aging reactions, the heterogeneous oxidation of OA by gas-phase oxidants. Central to these experiments is the availability of vacuum ultraviolet (VUV) light at the Chemical Dynamics Beamline of the Advanced Light Source at LBNL, which enables the implementation of VUV photoionization aerosol mass spectrometry. This technique allows for the real-time, speciated measurement of OA composition, yielding molecular information that is highly complementary to ensemble data from electron-impact ionization. OA composition is measured with both ionization schemes as a function of oxidant exposure within a flow reactor, providing detailed information on the kinetics and products of heterogeneous oxidation over multiple generations of oxidation. Specific topics investigated include the branching between functionalization and fragmentation of OA components, the formation of secondary organic aerosol from photolytically-generated radical species, and the heterogeneous aging of soot-associated organic species.
Multisegment nanowire sensors for the detection of DNA molecules.
Wang, Xu; Ozkan, Cengiz S
2008-02-01
We describe a novel application for detecting specific single strand DNA sequences using multisegment nanowires via a straightforward surface functionalization method. Nanowires comprising CdTe-Au-CdTe segments are fabricated using electrochemical deposition, and electrical characterization indicates a p-type behavior for the multisegment nanostructures, in a back-to-back Schottky diode configuration. Such nanostructures modified with thiol-terminated probe DNA fragments could function as high fidelity sensors for biomolecules at very low concentration. The gold segment is utilized for functionalization and binding of single strand DNA (ssDNA) fragments while the CdTe segments at both ends serve to modulate the equilibrium Fermi level of the heterojunction device upon hybridization of the complementary DNA fragments (cDNA) to the ssDNA over the Au segment. Employing such multisegment nanowires could lead to the fabrication more sophisticated and high multispecificity biosensors via selective functionalization of individual segments for biowarfare sensing and medical diagnostics applications.
Manual for the prediction of blast and fragment loadings on structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
The purpose of this manual is to provide Architect-Engineer (AE) firms guidance for the prediction of air blast, ground shock and fragment loadings on structures as a result of accidental explosions in or near these structures. Information in this manual is the result of an extensive literature survey and data gathering effort, supplemented by some original analytical studies on various aspects of blast phenomena. Many prediction equations and graphs are presented, accompanied by numerous example problems illustrating their use. The manual is complementary to existing structural design manuals and is intended to reflect the current state-of-the-art in prediction of blastmore » and fragment loads for accidental explosions of high explosives at the Pantex Plant. In some instances, particularly for explosions within blast-resistant structures of complex geometry, rational estimation of these loads is beyond the current state-of-the-art.« less
Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo
2015-09-01
The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H(2)O, NH(3), CH(2)O (from serine), C2H4O (from threonine), and H(3)PO(4), whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H](+) and [M + H - H](-) within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.
NASA Astrophysics Data System (ADS)
Sekiya, Sadanori; Nagoshi, Keishiro; Iwamoto, Shinichi; Tanaka, Koichi; Takayama, Mitsuo
2015-09-01
The fragment ions observed with time-of-flight (TOF) and quadrupole ion trap (QIT) TOF mass spectrometers (MS) combined with matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiments of phosphorylated analytes β-casein and its model peptide were compared from the standpoint of the residence timeframe of analyte and fragment ions in the MALDI ion source and QIT cell. The QIT-TOF MS gave fragment c-, z'-, z-ANL, y-, and b-ions, and further degraded fragments originating from the loss of neutrals such as H2O, NH3, CH2O (from serine), C2H4O (from threonine), and H3PO4, whereas the TOF MS merely showed MALDI source-generated fragment c-, z'-, z-ANL, y-, and w-ions. The fragment ions observed in the QIT-TOF MS could be explained by the injection of the source-generated ions into the QIT cell or a cooperative effect of a little internal energy deposition, a long residence timeframe (140 ms) in the QIT cell, and specific amino acid effects on low-energy CID, whereas the source-generated fragments (c-, z'-, z-ANL, y-, and w-ions) could be a result of prompt radical-initiated fragmentation of hydrogen-abundant radical ions [M + H + H]+ and [M + H - H]- within the 53 ns timeframe, which corresponds to the delayed extraction time. The further degraded fragment b/y-ions produced in the QIT cell were confirmed by positive- and negative-ion low-energy CID experiments performed on the source-generated ions (c-, z'-, and y-ions). The loss of phosphoric acid (98 u) from analyte and fragment ions can be explained by a slow ergodic fragmentation independent of positive and negative charges.
Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples
Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel
2017-01-01
Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837
Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes.
Shen, Zhi-Fa; Li, Feng; Jiang, Yi-Fan; Chen, Chang; Xu, Huo; Li, Cong-Cong; Yang, Zhe; Wu, Zai-Sheng
2018-03-06
A highly sensitive and selective colorimetric assay based on a multifunctional molecular beacon with palindromic tail (PMB) was proposed for the detection of target p53 gene. The PMB probe can serve as recognition element, primer, and polymerization template and contains a nicking site and a C-rich region complementary to a DNAzyme. In the presence of target DNA, the hairpin of PMB is opened, and the released palindromic tails intermolecularly hybridize with each other, triggering the autonomous polymerization/nicking/displacement cycles. Although only one type of probe is involved, the system can execute triple and continuous polymerization strand displacement amplifications, generating large amounts of G-quadruplex fragments. These G-rich fragments can bind to hemin and form the DNAzymes that possess the catalytic activity similar to horseradish peroxidase, catalyzing the oxidation of ABTS by H 2 O 2 and producing the colorimetric signal. Utilizing the newly proposed sensing system, target DNA can be detected down to 10 pM with a linear response range from 10 pM to 200 nM, and mutant target DNAs are able to be distinguished even by the naked eye. The desirable detection sensitivity, high specificity, and operation convenience without any separation step and chemical modification demonstrate that the palindromic molecular beacon holds the potential for detecting and monitoring a variety of nucleic acid-related biomarkers.
Kuglstatter, A; Stihle, M; Neumann, C; Müller, C; Schaefer, W; Klein, C; Benz, J
2017-09-01
An increasing number of bispecific therapeutic antibodies are progressing through clinical development. The Knob-into-Hole (KiH) technology uses complementary mutations in the CH3 region of the antibody Fc fragment to achieve heavy chain heterodimerization. Here we describe the X-ray crystal structures of glycosylated and disulfide-engineered heterodimeric KiH Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. The heterodimer structure confirms the KiH design principle and supports the hypothesis that glycosylation stabilizes a closed Fc conformation. Both homodimer structures show parallel Fc fragment architectures, in contrast to recently reported crystal structures of the corresponding aglycosylated Fc fragments which in the absence of disulfide mutations show an unexpected antiparallel arrangement. The glycosylated Knob-Knob Fc fragment is destabilized as indicated by variability in the relative orientation of its CH3 domains. The glycosylated Hole-Hole Fc fragment shows an unexpected intermolecular disulfide bond via the introduced Y349C Hole mutation which results in a large CH3 domain shift and a new CH3-CH3 interface. The crystal structures of glycosylated, disulfide-linked KiH Fc fragment and its Knob-Knob and Hole-Hole side products reported here will facilitate further design of highly efficient antibody heterodimerization strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.
Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne
2011-05-28
Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011
Caruccio, Nicholas
2011-01-01
DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.
2011-01-01
Background Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective. Results An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb). Conclusions The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at specific position is an indispensable condition for the understanding and optimization of DNA photo- and radio-degradation, which are prerequisites for clinical trials of Hal-NBs in anticancer therapy. PMID:21864341
Sobolewski, Ireneusz; Polska, Katarzyna; Zylicz-Stachula, Agnieszka; Jeżewska-Frąckowiak, Joanna; Rak, Janusz; Skowron, Piotr
2011-08-24
Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective. An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb). The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at specific position is an indispensable condition for the understanding and optimization of DNA photo- and radio-degradation, which are prerequisites for clinical trials of Hal-NBs in anticancer therapy.
Procedure for normalization of cDNA libraries
Bonaldo, Maria DeFatima; Soares, Marcelo Bento
1997-01-01
This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.
NASA Astrophysics Data System (ADS)
Feuerstein, Sophie; Plevin, Michael J.; Willbold, Dieter; Brutscher, Bernhard
2012-01-01
An experiment, iHADAMAC, is presented that yields information on the amino-acid type of individual residues in a protein by editing the 1H- 15N correlations into seven different 2D spectra, each corresponding to a different class of amino-acid types. Amino-acid type discrimination is realized via a Hadamard encoding scheme based on four different spin manipulations as recently introduced in the context of the sequential HADAMAC experiment. Both sequential and intra-residue HADAMAC experiments yield highly complementary information that greatly facilitate resonance assignment of proteins with high frequency degeneracy, as demonstrated here for a 188-residue intrinsically disordered protein fragment of the hepatitis C virus protein NS5A.
The Ties That Bind: Mapping the Dynamic Enhancer-Promoter Interactome
Spurrell, Cailyn H.; Dickel, Diane E.; Visel, Axel
2016-11-17
Coupling chromosome conformation capture to molecular enrichment for promoter-containing DNA fragments enables the systematic mapping of interactions between individual distal regulatory sequences and their target genes. Here in this Minireview, we describe recent progress in the application of this technique and related complementary approaches to gain insight into the lineage- and cell-type-specific dynamics of interactions between regulators and gene promoters.
Tan, Guangguo; Yang, Tiehong; Miao, Huayan; Chen, Hao; Chai, Yifeng; Wu, Hong
2015-10-01
High-performance liquid chromatography with diode array detection (HPLC-DAD), time-of-flight mass spectrometry (HPLC-TOFMS) and quadrupole ion trap mass spectrometry (HPLC-QITMS) were used for separation and identification of multi-components in Psoralea corylifolia. Benefiting from combining the accurate mass measurement of HPLC-TOFMS to generate elemental compositions, the complementary multilevel structural information provided by HPLC-QITMS and the characteristic UV spectra obtained from HPLC-DAD, 24 components in P. corylifolia were identified. The five groups of isomers were differentiated based on the fragmentation behaviors in QITMS and UV spectra. It can be concluded that an effective method based on the combination of HPLC-DAD, HPLC-TOFMS and HPLC-QITMS for identification of chemical components in P. corylifolia was established. The results provide essential data for further pharmacological and clinical studies of P. corylifolia and facilitate the rapid quality control of the crude drug. © Crown copyright 2015.
Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens.
Jeong, Tae-Sook; Ryu, Young Bae; Kim, Hoi Young; Curtis-Long, Marcus John; An, Sojin; An, So Jin; Lee, Jin Hwan; Lee, Woo Song; Park, Ki Hun
2008-11-01
Oxidation of low density lipoprotein (LDL) is strongly implicated as a key process in the onset of atherosclerosis. In this study, nine alkylated (C10-C5) flavonoids from Sophora flavescens were examined for their inhibitory effects on copper-induced LDL oxidation. Of the flavonoids tested, sophoraflavanone G (1), kurarinone (2), kurarinol (3), norkurarinol (4), and kuraridin (9) inhibited the generation of thiobarbituric acid reactive substances (TBARS) with IC50s of 7.9, 14.5, 22.0, 26.9, and 17.5 microM, respectively. The most potent inhibitor, compound 1, also demonstrated significant activities in complementary in vitro investigations, such as lag time (130 min at 5 microM), relative electrophoretic mobility (REM) of ox-LDL (80% inhibition at 20 microM), and fragmentation of apoB-100 (inhibition of 71% at 20 microM). Analysis of the structures of these compounds reveals that a resorcinol moiety in the B-ring is strongly correlated with protection of LDL-oxidation.
Multi-Tasking Non-Destructive Laser Technology in Conservation Diagnostic Procedures
NASA Astrophysics Data System (ADS)
Tornari, V.; Tsiranidou, E.; Orphanos, Y.; Falldorf, C.; Klattenhof, R.; Esposito, E.; Agnani, A.; Dabu, R.; Stratan, A.; Anastassopoulos, A.; Schipper, D.; Hasperhoven, J.; Stefanaggi, M.; Bonnici, H.; Ursu, D.
Laser metrology provides techniques that have been successfully applied in industrial structural diagnostic fields but have not yet been refined and optimised for the special investigative requirements found in cultural heritage applications. A major impediment is the partial applicability of various optical coherent techniques, each one narrowing its use down to a specific application. This characteristic is not well suited for a field that encounters a great variety of diagnostic problems ranging from movable, multiple-composition museum objects, to immovable multi-layered wall paintings, statues and wood carvings, to monumental constructions and outdoor cultural heritage sites. Various diagnostic techniques have been suggested and are uniquely suited for each of the mentioned problems but it is this fragmented suitability that obstructs the technology transfer. Since optical coherent techniques for metrology are based on fundamental principles and take advantage of similar procedures for generation of informative signals for data collection, then the imposed limits elevate our aim to identify complementary capabilities to accomplish the needed functionality.
Generation of volcanic ash: a textural study of ash produced in various laboratory experiments
NASA Astrophysics Data System (ADS)
Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.
2010-05-01
In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a few ash particles (< 0.05 g). The morphology and surface textures of the experimentally generated ash particles were imaged through scanning electron microscopy, and the observations will be discussed in terms of fragmentation processes.
Successful generation of structural information for fragment-based drug discovery.
Öster, Linda; Tapani, Sofia; Xue, Yafeng; Käck, Helena
2015-09-01
Fragment-based drug discovery relies upon structural information for efficient compound progression, yet it is often challenging to generate structures with bound fragments. A summary of recent literature reveals that a wide repertoire of experimental procedures is employed to generate ligand-bound crystal structures successfully. We share in-house experience from setting up and executing fragment crystallography in a project that resulted in 55 complex structures. The ligands span five orders of magnitude in affinity and the resulting structures are made available to be of use, for example, for development of computational methods. Analysis of the results revealed that ligand properties such as potency, ligand efficiency (LE) and, to some degree, clogP influence the success of complex structure generation. Copyright © 2015 Elsevier Ltd. All rights reserved.
BBN: Description of the PLUM System as Used for MUC-4
1992-01-01
in the MUC-4 corpus’ . Here are the 8 parse fragments generated by FPP for the first sentence of TST2- MUC4 -0048 : ("SALVADORAN PRESIDENT-ELECT ALFREDO...extensive patterns for fragment combination . Figure 2 shows a graphical version of the semantics generated for the first fragment of S1 in TST2- MUC4 ...trigger. Following is the discourse event structure for the first event in TST2- MUC4 -0048 : Event MURDER Trigger fragments: "SALVADORAN PRESIDENT
Filling the gaps: A speeded word fragment completion megastudy.
Heyman, Tom; Van Akeren, Liselotte; Hutchison, Keith A; Storms, Gert
2016-12-01
In the speeded word fragment completion task, participants have to complete fragments such as tom_to as quickly and accurately as possible. Previous work has shown that this paradigm can successfully capture subtle priming effects (Heyman, De Deyne, Hutchison, & Storms Behavior Research Methods, 47, 580-606, 2015). In addition, it has several advantages over the widely used lexical decision task. That is, the speeded word fragment completion task is more efficient, more engaging, and easier. Given its potential, we conducted a study to gather speeded word fragment completion norms. The goal of this megastudy was twofold. On the one hand, it provides a rich database of over 8,000 stimuli, which can, for instance, be used in future research to equate stimuli on baseline response times. On the other hand, the aim was to gain insight into the underlying processes of the speeded word fragment completion task. To this end, item-level regression and mixed-effects analyses were performed on the response latencies using 23 predictor variables. Since all items were selected from the Dutch Lexicon Project (Keuleers, Diependaele, & Brysbaert Frontiers in Psychology, 1, 174, 2010), we ran the same analyses on lexical decision latencies to compare the two tasks. Overall, the results revealed many similarities, but also some remarkable differences, which are discussed. We propose that both tasks are complementary when examining visual word recognition. The article ends with a discussion of potential process models of the speeded word fragment completion task.
Chimenti, Michael S; Bulfer, Stacie L; Neitz, R Jeffrey; Renslo, Adam R; Jacobson, Matthew P; James, Thomas L; Arkin, Michelle R; Kelly, Mark J S
2015-07-01
The ubiquitous AAA+ ATPase p97 functions as a dynamic molecular machine driving several cellular processes. It is essential in regulating protein homeostasis, and it represents a potential drug target for cancer, particularly when there is a greater reliance on the endoplasmic reticulum-associated protein degradation pathway and ubiquitin-proteasome pathway to degrade an overabundance of secreted proteins. Here, we report a case study for using fragment-based ligand design approaches against this large and dynamic hexamer, which has multiple potential binding sites for small molecules. A screen of a fragment library was conducted by surface plasmon resonance (SPR) and followed up by nuclear magnetic resonance (NMR), two complementary biophysical techniques. Virtual screening was also carried out to examine possible binding sites for the experimental hits and evaluate the potential utility of fragment docking for this target. Out of this effort, 13 fragments were discovered that showed reversible binding with affinities between 140 µM and 1 mM, binding stoichiometries of 1:1 or 2:1, and good ligand efficiencies. Structural data for fragment-protein interactions were obtained with residue-specific [U-(2)H] (13)CH3-methyl-labeling NMR strategies, and these data were compared to poses from docking. The combination of virtual screening, SPR, and NMR enabled us to find and validate a number of interesting fragment hits and allowed us to gain an understanding of the structural nature of fragment binding. © 2015 Society for Laboratory Automation and Screening.
Time-aware service-classified spectrum defragmentation algorithm for flex-grid optical networks
NASA Astrophysics Data System (ADS)
Qiu, Yang; Xu, Jing
2018-01-01
By employing sophisticated routing and spectrum assignment (RSA) algorithms together with a finer spectrum granularity (namely frequency slot) in resource allocation procedures, flex-grid optical networks can accommodate diverse kinds of services with high spectrum-allocation flexibility and resource-utilization efficiency. However, the continuity and the contiguity constraints in spectrum allocation procedures may always induce some isolated, small-sized, and unoccupied spectral blocks (known as spectrum fragments) in flex-grid optical networks. Although these spectrum fragments are left unoccupied, they can hardly be utilized by the subsequent service requests directly because of their spectral characteristics and the constraints in spectrum allocation. In this way, the existence of spectrum fragments may exhaust the available spectrum resources for a coming service request and thus worsens the networking performance. Therefore, many reactive defragmentation algorithms have been proposed to handle the fragmented spectrum resources via re-optimizing the routing paths and the spectrum resources for the existing services. But the routing-path and the spectrum-resource re-optimization in reactive defragmentation algorithms may possibly disrupt the traffic of the existing services and require extra components. By comparison, some proactive defragmentation algorithms (e.g. fragmentation-aware algorithms) were proposed to suppress spectrum fragments from their generation instead of handling the fragmented spectrum resources. Although these proactive defragmentation algorithms induced no traffic disruption and required no extra components, they always left the generated spectrum fragments unhandled, which greatly affected their efficiency in spectrum defragmentation. In this paper, by comprehensively considering the characteristics of both the reactive and the proactive defragmentation algorithms, we proposed a time-aware service-classified (TASC) spectrum defragmentation algorithm, which simultaneously employed proactive and reactive mechanisms in suppressing spectrum fragments with the awareness of services' types and their duration times. By dividing the spectrum resources into several flexible groups according to services' types and limiting both the spectrum allocation and the spectrum re-tuning for a certain service inside one specific spectrum group according to its type, the proposed TASC defragmentation algorithm cannot only suppress spectrum fragments from generation inside each spectrum group, but also handle the fragments generated between two adjacent groups. In this way, the proposed TASC algorithm gains higher efficiency in suppressing spectrum fragments than both the reactive and the proactive defragmentation algorithms. Additionally, as the generation of spectrum fragments is retrained between spectrum groups and the defragmentation procedure is limited inside each spectrum group, the induced traffic disruption for the existing services can be possibly reduced. Besides, the proposed TASC defragmentation algorithm always re-tunes the spectrum resources of the service with the maximum duration time first in spectrum defragmentation procedure, which can further reduce spectrum fragments because of the fact that the services with longer duration times always have higher possibility in inducing spectrum fragments than the services with shorter duration times. The simulation results show that the proposed TASC defragmentation algorithm can significantly reduce the number of the generated spectrum fragments while improving the service blocking performance.
Shuttle data book: SRM fragment velocity model. Presented to the SRB Fragment Model Review Panel
NASA Technical Reports Server (NTRS)
1989-01-01
This study was undertaken to determine the velocity of fragments generated by the range safety destruction (RSD) or random failure of a Space Transportation System (STS) Solid Rocket Motor (SRM). The specific requirement was to provide a fragment model for use in those Galileo and Ulysses RTG safety analyses concerned with possible fragment impact on the spacecraft radioisotope thermoelectric generators (RTGS). Good agreement was obtained between predictions and observations for fragment velocity, velocity distributions, azimuths, and rotation rates. Based on this agreement with the entire data base, the model was used to predict the probable fragment environments which would occur in the event of an STS-SRM RSD or randon failure at 10, 74, 84 and 110 seconds. The results of these predictions are the basis of the fragment environments presented in the Shuttle Data Book (NSTS-08116). The information presented here is in viewgraph form.
Vincke, Cécile; Gutiérrez, Carlos; Wernery, Ulrich; Devoogdt, Nick; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge
2012-01-01
Immunizing a camelid (camels and llamas) with soluble, properly folded proteins raises an affinity-matured immune response in the unique camelid heavy-chain only antibodies (HCAbs). The peripheral blood lymphocytes of the immunized animal are used to clone the antigen-binding antibody fragment from the HCAbs in a phage display vector. A representative aliquot of the library of these antigen-binding fragments is used to retrieve single domain antigen-specific binders by successive rounds of panning. These single domain antibody fragments are cloned in tandem to generate manifold constructs (bivalent, biparatopic or bispecific constructs) to increase their functional affinity, to increase specificity, or to connect two independent antigen molecules.
Procedure for normalization of cDNA libraries
Bonaldo, M.D.; Soares, M.B.
1997-12-30
This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library. 1 fig.
Telomere Fragment Induced Amnion Cell Senescence: A Contributor to Parturition?
Polettini, Jossimara; Behnia, Faranak; Taylor, Brandie D.; Saade, George R.; Taylor, Robert N.; Menon, Ramkumar
2015-01-01
Oxidative stress (OS)-induced senescence of the amniochorion has been associated with parturition at term. We investigated whether telomere fragments shed into the amniotic fluid (AF) correlated with labor status and tested if exogenous telomere fragments (T-oligos) could induce human and murine amnion cell senescence. In a cross-sectional clinical study, AF telomere fragment concentrations quantitated by a validated real-time PCR assay were higher in women in labor at term compared to those not in labor. In vitro treatment of primary human amnion epithelial cells with 40 μM T-oligos ([TTAGGG]2) that mimic telomere fragments, activated p38MAPK, produced senescence-associated (SA) β-gal staining and increased interleukin (IL)-6 and IL-8 production compared to cells treated with complementary DNA sequences (Cont-oligos, [AATCCC]2). T-oligos injected into the uteri of pregnant CD1 mice on day 14 of gestation, led to increased p38MAPK, SA-β-gal (SA β-gal) staining in murine amniotic sacs and higher AF IL-8 levels on day 18, compared to saline treated controls. In summary, term labor AF samples had higher telomere fragments than term not in labor AF. In vitro and in situ telomere fragments increased human and murine amnion p38MAPK, senescence and inflammatory cytokines. We propose that telomere fragments released from senescent fetal cells are indicative of fetal cell aging. Based on our data, these telomere fragments cause oxidative stress associated damages to the term amniotic sac and force them to release other DAMPS, which, in turn, provide a sterile immune response that may be one of the many inflammatory signals required to initiate parturition at term. PMID:26397719
Leaper, Campbell
2011-01-01
Many contemporary theories of social development are similar and/or share complementary constructs. Yet, there have been relatively few efforts toward theoretical integration. The present chapter represents a call for increased theory bridging. The problem of theoretical fragmentation in psychology is reviewed. Seven highlighted reasons for this predicament include differences between behavioral sciences and other sciences, theoretical paradigms as social identities, the uniqueness assumption, information overload, field fixation, linguistic fragmentation, and few incentives for theoretical integration. Afterward, the feasibility of theoretical synthesis is considered. Finally, some possible directions are proposed for theoretical integration among five contemporary theories of social and gender development: social cognitive theory, expectancy-value theory, cognitive-developmental theory, gender schema theory, and self-categorization theory.
Building a Better Fragment Library for De Novo Protein Structure Prediction
de Oliveira, Saulo H. P.; Shi, Jiye; Deane, Charlotte M.
2015-01-01
Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. “Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources”. PMID:25901595
Meade Krosby; Ian Breckheimer; D. John Pierce; Peter H. Singleton; Sonia A. Hall; Karl C. Halupka; William L. Gaines; Robert A. Long; Brad H. McRae; Brian L. Cosentino; Joanne P. Schuett-Hames
2015-01-01
Context  The dual threats of habitat fragmentation and climate change have led to a proliferation of approaches for connectivity conservation planning. Corridor analyses have traditionally taken a focal species approach, but the landscape âânaturalnessââ approach of modeling connectivity among areas of low human modification has gained popularity...
Bialonska, Dobroslawa; Song, Kenneth; Bolton, Philip H.
2011-01-01
Tumor cell lines can replicate faster than normal cells and many also have defective DNA repair pathways. This has lead to the investigation of the inhibition of DNA repair proteins as a means of therapeutic intervention. An alternative approach is to hide or mask damaged DNA from the repair systems. We have developed a protocol to investigate the structures of the complexes of damaged DNA with drug like molecules. Nucleotide resolution structural information can be obtained using an improved hydroxyl radical cleavage protocol. The use of a dTn tail increases the length of the smallest fragments of interest and allows efficient co-precipitation of the fragments with poly(A). The use of a fluorescent label, on the 5′ end of the dTn tail, in conjunction with modified cleavage reaction conditions, avoids the lifetime and other problems with 32P labeling. The structures of duplex DNAs containing AC and CC mismatches in the presence and absence of minor groove binders have been investigated as have those of the fully complementary DNA. The results indicate that the structural perturbations of the mismatches are localized, are sequence dependent and that the presence of a mismatch can alter the binding of drug like molecules. PMID:21893212
Liu, Xiao-Dan; Wei, Yi; Zhou, Xiao-Yang; Pei, Xue; Zhang, Shi-Hong
2015-10-01
Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Adenovirus type 2 DNA replication. I. Evidence for discontinuous DNA synthesis.
Winnacker, E L
1975-01-01
Isolated nuclei from adenovirus type 2-infected HeLa cells catalyze the incorporation of all four deoxyribonucleoside triphosphates into viral DNA. The observed DNA synthesis occurs via a transient formation of DNA fragments with a sedimentation coefficient of 10S. The fragments are precursors to unit-length viral DNA, they are self-complementary to an extent of at least 70%, and they are distributed along most of the viral chromosome. In addition, accumulation of 10S DNA fragments is observed either in intact, virus-infected HeLa cells under conditions where viral DNA synthesis is inhibited by hydroxyurea or in isolated nuclei from virus-infected HeLa cells at low concentrations of deoxyribonucleotides. Under these suboptimal conditions for DNA synthesis in isolated nuclei, ribonucleoside triphosphates determine the size distribution of DNA intermediates. The evidence presented suggests that a ribonucleoside-dependent initiation step as well at two DNA polymerase catalyzed reactions are involved in the discontinuous replication of adenovirus type 2 DNA. PMID:1117487
NASA Astrophysics Data System (ADS)
Constantinescu, Bogdan; Cristea-Stan, Daniela; Szőkefalvi-Nagy, Zoltán; Kovács, Imre; Harsányi, Ildikó; Kasztovszky, Zsolt
2018-02-01
Combined external milli-beam Particle Induced X-ray Emission (PIXE) and Prompt Gamma Activation Analysis (PGAA) analysis was applied to characterize the composition of paste and colorants from some fragments of Byzantine bracelets (10th-12th Centuries AD), late medieval (17th-18th Centuries AD) and modern Murano glass pieces. As fluxes, PGAA revealed the samples are soda-lime glass, except four samples - two medieval vessel white shards and two dark Byzantine fragments of bracelets - which have potash flux. Aluminium was detected in various proportions in all samples indicating different sources for the added sand. The presence of Magnesium is relevant only in one bracelet fragment suggesting the use of plant (wood?) ash and confirming that the Byzantine bracelet is manufactured from the mixture of both types of glass (natron and plant ash based). PGAA also indicated the presence of low quantities of Cadmium, high level of Arsenic and Lead (possibly lead arsenate) in one medieval sample and of ZnO in Murano glass, and of CoO traces (maximum 0.1%) in all blue-colored Byzantine, late medieval to modern Murano glass artefacts. PIXE confirmed the use of small quantities of CoO for blue color, indicated Manganese combined with Iron for dark glass, Copper for green, Lead, Tin and an Arsenic compound (orpiment?) for yellow and in the case of modern Murano glass Selenium and Cadmium to obtain a reddish color. Despite PIXE - PIGE combination is probably the best one for glass analysis, our external milli-PIXE - PGAA methods proved to be adequate complementary tools to determine many chemical elements from glass composition - Si, Na, K, Ca, Al, Mg, various metallic oxides.
Fragment-based drug discovery using rational design.
Jhoti, H
2007-01-01
Fragment-based drug discovery (FBDD) is established as an alternative approach to high-throughput screening for generating novel small molecule drug candidates. In FBDD, relatively small libraries of low molecular weight compounds (or fragments) are screened using sensitive biophysical techniques to detect their binding to the target protein. A lower absolute affinity of binding is expected from fragments, compared to much higher molecular weight hits detected by high-throughput screening, due to their reduced size and complexity. Through the use of iterative cycles of medicinal chemistry, ideally guided by three-dimensional structural data, it is often then relatively straightforward to optimize these weak binding fragment hits into potent and selective lead compounds. As with most other lead discovery methods there are two key components of FBDD; the detection technology and the compound library. In this review I outline the two main approaches used for detecting the binding of low affinity fragments and also some of the key principles that are used to generate a fragment library. In addition, I describe an example of how FBDD has led to the generation of a drug candidate that is now being tested in clinical trials for the treatment of cancer.
Varshavsky, Alexander
2012-01-01
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca2+ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca2+-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca2+ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca2+ alone or Ca2+ and its ionophore (Erickson et al., Science 1978;199:1219–1221; Harris, Pharmacol Biochem Behav 1979;10:527–534; Erickson et al., Pharmacol Biochem Behav 1980;12:651–656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep. PMID:22930402
Payne, Lloyd R.; Cole, David L.
2010-03-30
A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.
Electron Detachment Dissociation of Underivatized Chloride-Adducted Oligosaccharides
NASA Astrophysics Data System (ADS)
Kornacki, James R.; Adamson, Julie T.; Håkansson, Kristina
2012-11-01
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto- N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.
Unterseher, Martin; Schnittler, Martin
2009-05-01
Two cultivation-based isolation techniques - the incubation of leaf fragments (fragment plating) and dilution-to-extinction culturing on malt extract agar - were compared for recovery of foliar endophytic fungi from Fagus sylvatica near Greifswald, north-east Germany. Morphological-anatomical characters of vegetative and sporulating cultures and ITS sequences were used to assign morphotypes and taxonomic information to the isolates. Data analysis included species-accumulation curves, richness estimators, multivariate statistics and null model testing. Fragment plating and extinction culturing were significantly complementary with regard to species composition, because around two-thirds of the 35 fungal taxa were isolated with only one of the two cultivation techniques. The difference in outcomes highlights the need for caution in assessing fungal biodiversity based upon single isolation techniques. The efficiency of cultivation-based studies of fungal endophytes was significantly increased with the combination of the two isolation methods and estimations of species richness, when compared with a 20-years old reference study, which needed three times more isolates with fragment plating to attain the same species richness. Intensified testing and optimisation of extinction culturing in endophyte research is advocated.
Lee, Juyong; Lee, Jinhyuk; Sasaki, Takeshi N; Sasai, Masaki; Seok, Chaok; Lee, Jooyoung
2011-08-01
Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods. Copyright © 2011 Wiley-Liss, Inc.
Wu, Shiaw-Lin; Hühmer, Andreas F R; Hao, Zhiqi; Karger, Barry L
2007-11-01
We have expanded our recent on-line LC-MS platform for large peptide analysis to combine collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced (CRCID) species derived from ETD to determine sites of phosphorylation and glycosylation modifications, as well as the sequence of large peptide fragments (i.e., 2000-10,000 Da) from complex proteins, such as beta-casein, epidermal growth factor receptor (EGFR), and tissue plasminogen activator (t-PA) at the low femtomol level. The incorporation of an additional CID activation step for a charge-reduced species, isolated from ETD fragment ions, improved ETD fragmentation when precursor ions with high m/z (approximately >1000) were automatically selected for fragmentation. Specifically, the identification of the exact phosphorylation sites was strengthened by the extensive coverage of the peptide sequence with a near-continuous product ion series. The identification of N-linked glycosylation sites in EGFR and an O-linked glycosylation site in t-PA were also improved through the enhanced identification of the peptide backbone sequence of the glycosylated precursors. The new strategy is a good starting survey scan to characterize enzymatic peptide mixtures over a broad range of masses using LC-MS with data-dependent acquisition, as the three activation steps can provide complementary information to each other. In general, large peptides can be extensively characterized by the ETD and CRCID steps, including sites of modification from the generated, near-continuous product ion series, supplemented by the CID-MS2 step. At the same time, small peptides (e.g.,
The Ties That Bind: Mapping the Dynamic Enhancer-Promoter Interactome.
Spurrell, Cailyn H; Dickel, Diane E; Visel, Axel
2016-11-17
Coupling chromosome conformation capture to molecular enrichment for promoter-containing DNA fragments enables the systematic mapping of interactions between individual distal regulatory sequences and their target genes. In this Minireview, we describe recent progress in the application of this technique and related complementary approaches to gain insight into the lineage- and cell-type-specific dynamics of interactions between regulators and gene promoters. Copyright © 2016 Elsevier Inc. All rights reserved.
Analysis of sesterterpenoids from Aspergillus terreus using ESI-QTOF and ESI-IT.
Wu, Zhi-Jun; Fang, Dong-Mei; Han, Dan; Li, Guo-You; Chen, Xiao-Zhen; Qi, Hua-Yi; Zhang, Guo-Lin
2010-01-01
Biosynthesis of terretonin was studied due to the interesting skeleton of this series of sesterterpenoids. Very recently, López-Gresa reported two new sesterterpenoids (terretonins E and F) which are inhibitors of the mammalian mitochondrial respiratory chain. Mass spectrometry (MS), especially tandem mass spectrometry, has been one of the most important physicochemical methods for the identification of trace natural products due to it rapidity, sensitivity and low levels of sample consumption. The potential application prospect and unique skeleton prompted us to study structural characterisation using MS. To obtain sufficient information for rapid structural elucidation of this class of compounds using MS. The elemental composition of the product ions was confirmed by low-energy ESI-CID-QTOF-MS/MS analyses. The fragmentation pathways were postulated on the basis of ESI-QTOF-MS/MS/MS and ESI-IT-MS(n) spectra. Common features and major differences between ESI-QTOF-MS/MS and IT-MS(n) spectra were compared. For ESI-QTOF-MS/MS/MS experiments, capillary exit voltage was raised to induce in-source dissociation. Ammonium acetate or acetic acid were added into solutions to improve the intensity of [M + H]+. The collision energy was optimised to achieve sufficient fragmentation. Some fragmentation pathways were unambiguously proposed by the variety of abundance of fragment ions at different collision energies even without MS(n) spectra. Fragmentation pathways of five representative sesterterpenoids were elucidated using ESI-QTOF-MS/MS/MS and ESI-IT-MS(n) in both positive- and negative-ion mode. The key group of characterising fragmentation profiles was ring B, and these fragmentation patterns are helpful to identify different types of sestertepenoids. Complementary information obtained from fragmentation experiments of [M + H]+ (or [M + NH4]+ and [M-H](-) precursor ions is especially valuable for rapid identification of this kind of sesterterpenoid.
Youssef, Noha; Sheik, Cody S.; Krumholz, Lee R.; Najar, Fares Z.; Roe, Bruce A.; Elshahed, Mostafa S.
2009-01-01
Pyrosequencing-based 16S rRNA gene surveys are increasingly utilized to study highly diverse bacterial communities, with special emphasis on utilizing the large number of sequences obtained (tens to hundreds of thousands) for species richness estimation. However, it is not yet clear how the number of operational taxonomic units (OTUs) and, hence, species richness estimates determined using shorter fragments at different taxonomic cutoffs correlates with the number of OTUs assigned using longer, nearly complete 16S rRNA gene fragments. We constructed a 16S rRNA clone library from an undisturbed tallgrass prairie soil (1,132 clones) and used it to compare species richness estimates obtained using eight pyrosequencing candidate fragments (99 to 361 bp in length) and the nearly full-length fragment. Fragments encompassing the V1 and V2 (V1+V2) region and the V6 region (generated using primer pairs 8F-338R and 967F-1046R) overestimated species richness; fragments encompassing the V3, V7, and V7+V8 hypervariable regions (generated using primer pairs 338F-530R, 1046F-1220R, and 1046F-1392R) underestimated species richness; and fragments encompassing the V4, V5+V6, and V6+V7 regions (generated using primer pairs 530F-805R, 805F-1046R, and 967F-1220R) provided estimates comparable to those obtained with the nearly full-length fragment. These patterns were observed regardless of the alignment method utilized or the parameter used to gauge comparative levels of species richness (number of OTUs observed, slope of scatter plots of pairwise distance values for short and nearly complete fragments, and nonparametric and parametric species richness estimates). Similar results were obtained when analyzing three other datasets derived from soil, adult Zebrafish gut, and basaltic formations in the East Pacific Rise. Regression analysis indicated that these observed discrepancies in species richness estimates within various regions could readily be explained by the proportions of hypervariable, variable, and conserved base pairs within an examined fragment. PMID:19561178
Gouwy, Mieke; De Buck, Mieke; Abouelasrar Salama, Sara; Vandooren, Jennifer; Knoops, Sofie; Pörtner, Noëmie; Vanbrabant, Lotte; Berghmans, Nele; Opdenakker, Ghislain; Proost, Paul; Van Damme, Jo; Struyf, Sofie
2018-01-01
Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52–104), SAA1(57–104), and SAA1(58–104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52–104) and SAA1(58–104) and the complementary NH2-terminal peptide SAA1(1–51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58–104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1–51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.
Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri
2007-01-01
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.
Extreme ultraviolet photoionization of aldoses and ketoses
NASA Astrophysics Data System (ADS)
Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.
2011-04-01
Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.
Characterizing DebriSat Fragments: So Many Fragments, So Much Data, and So Little Time
NASA Technical Reports Server (NTRS)
Shiotani, B.; Rivero, M.; Carrasquilla, M.; Allen, S.; Fitz-Coy, N.; Liou, J.-C.; Huynh, T.; Sorge, M.; Cowardin, H.; Opiela, J.;
2017-01-01
To improve prediction accuracy, the DebriSat project was conceived by NASA and DoD to update existing standard break-up models. Updating standard break-up models require detailed fragment characteristics such as physical size, material properties, bulk density, and ballistic coefficient. For the DebriSat project, a representative modern LEO spacecraft was developed and subjected to a laboratory hypervelocity impact test and all generated fragments with at least one dimension greater than 2 mm are collected, characterized and archived. Since the beginning of the characterization phase of the DebriSat project, over 130,000 fragments have been collected and approximately 250,000 fragments are expected to be collected in total, a three-fold increase over the 85,000 fragments predicted by the current break-up model. The challenge throughout the project has been to ensure the integrity and accuracy of the characteristics of each fragment. To this end, the post hypervelocity-impact test activities, which include fragment collection, extraction, and characterization, have been designed to minimize handling of the fragments. The procedures for fragment collection, extraction, and characterization were painstakingly designed and implemented to maintain the post-impact state of the fragments, thus ensuring the integrity and accuracy of the characterization data. Each process is designed to expedite the accumulation of data, however, the need for speed is restrained by the need to protect the fragments. Methods to expedite the process such as parallel processing have been explored and implemented while continuing to maintain the highest integrity and value of the data. To minimize fragment handling, automated systems have been developed and implemented. Errors due to human inputs are also minimized by the use of these automated systems. This paper discusses the processes and challenges involved in the collection, extraction, and characterization of the fragments as well as the time required to complete the processes. The objective is to provide the orbital debris community an understanding of the scale of the effort required to generate and archive high quality data and metadata for each debris fragment 2 mm or larger generated by the DebriSat project.
Separation of 1-23-kb complementary DNA strands by urea-agarose gel electrophoresis.
Hegedüs, Eva; Kókai, Endre; Kotlyar, Alexander; Dombrádi, Viktor; Szabó, Gábor
2009-09-01
Double-stranded (ds), as well as denatured, single-stranded (ss) DNA samples can be analyzed on urea-agarose gels. Here we report that after denaturation by heat in the presence of 8 M urea, the two strands of the same ds DNA fragment of approximately 1-20-kb size migrate differently in 1 M urea containing agarose gels. The two strands are readily distinguished on Southern blots by ss-specific probes. The different migration of the two strands could be attributed to their different, base composition-dependent conformation impinging on the electrophoretic mobility of the ss molecules. This phenomenon can be exploited for the efficient preparation of strand-specific probes and for the separation of the complementary DNA strands for subsequent analysis, offering a new tool for various cell biological research areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Lloyd R.; Cole, David L.
2010-03-30
A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point ofmore » the solid fragment is located within a cavity at least partially enclosed by the array of bars.« less
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
Procedure for assessing the performance of a rockfall fragmentation model
NASA Astrophysics Data System (ADS)
Matas, Gerard; Lantada, Nieves; Corominas, Jordi; Gili, Josep Antoni; Ruiz-Carulla, Roger; Prades, Albert
2017-04-01
A Rockfall is a mass instability process frequently observed in road cuts, open pit mines and quarries, steep slopes and cliffs. It is frequently observed that the detached rock mass becomes fragmented when it impacts with the slope surface. The consideration of the fragmentation of the rockfall mass is critical for the calculation of block's trajectories and their impact energies, to further assess their potential to cause damage and design adequate preventive structures. We present here the performance of the RockGIS model. It is a GIS-Based tool that simulates stochastically the fragmentation of the rockfalls, based on a lumped mass approach. In RockGIS, the fragmentation initiates by the disaggregation of the detached rock mass through the pre-existing discontinuities just before the impact with the ground. An energy threshold is defined in order to determine whether the impacting blocks break or not. The distribution of the initial mass between a set of newly generated rock fragments is carried out stochastically following a power law. The trajectories of the new rock fragments are distributed within a cone. The model requires the calibration of both the runout of the resultant blocks and the spatial distribution of the volumes of fragments generated by breakage during their propagation. As this is a coupled process which is controlled by several parameters, a set of performance criteria to be met by the simulation have been defined. The criteria includes: position of the centre of gravity of the whole block distribution, histogram of the runout of the blocks, extent and boundaries of the young debris cover over the slope surface, lateral dispersion of trajectories, total number of blocks generated after fragmentation, volume distribution of the generated fragments, the number of blocks and volume passages past a reference line and the maximum runout distance Since the number of parameters to fit increases significantly when considering fragmentation, the final parameters selected after the calibration process are a compromise which meet all considered criteria. This methodology has been tested in some recent rockfall where high fragmentation was observed. The RockGIS tool and the fragmentation laws using data collected from recent rockfall have been developed within the RockRisk project (2014-2016, BIA2013-42582-P). This project was funded by the Spanish Ministerio de Economía y Competitividad.
Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø; de Souza, Gustavo A; Sollid, Ludvig M
2016-05-05
This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells.
Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø.; de Souza, Gustavo A.; Sollid, Ludvig M.
2016-01-01
This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306
Lead generation and examples opinion regarding how to follow up hits.
Orita, Masaya; Ohno, Kazuki; Warizaya, Masaichi; Amano, Yasushi; Niimi, Tatsuya
2011-01-01
In fragment-based drug discovery (FBDD), not only identifying the starting fragment hit to be developed but also generating a drug lead from that starting fragment hit is important. Converting fragment hits to leads is generally similar to a high-throughput screening (HTS) hits-to-leads approach in that properties associated with activity for a target protein, such as selectivity against other targets and absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox), and physicochemical properties should be taken into account. However, enhancing the potency of the fragment hit is a key requirement in FBDD, unlike HTS, because initial fragment hits are generally weak. This enhancement is presently achieved by adding additional chemical groups which bind to additional parts of the target protein or by joining or combining two or more hit fragments; however, strategies for effecting greater improvements in effective activity are needed. X-ray analysis is a key technology attractive for converting fragments to drug leads. This method makes it clear whether a fragment hit can act as an anchor and provides insight regarding introduction of functional groups to improve fragment activity. Data on follow-up chemical synthesis of fragment hits has allowed for the differentiation of four different strategies: fragment optimization, fragment linking, fragment self-assembly, and fragment evolution. Here, we discuss our opinion regarding how to follow up on fragment hits, with a focus on the importance of fragment hits as an anchor moiety to so-called hot spots in the target protein using crystallographic data. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yueh-Ning; Hennebelle, Patrick; Chabrier, Gilles, E-mail: yueh-ning.lee@cea.fr
Observations suggest that star formation in filamentary molecular clouds occurs in a two-step process, with the formation of filaments preceding that of prestellar cores and stars. Here, we apply the gravoturbulent fragmentation theory of Hennebelle and Chabrier to a filamentary environment, taking into account magnetic support. We discuss the induced geometrical effect on the cores, with a transition from 3D geometry at small scales to 1D at large ones. The model predicts the fragmentation behavior of a filament for a given mass per unit length (MpL) and level of magnetization. This core mass function (CMF) for individual filaments is thenmore » convolved with the distribution of filaments to obtain the final system CMF. The model yields two major results. (i) The filamentary geometry naturally induces a hierarchical fragmentation process, first into groups of cores, separated by a length equal to a few filament Jeans lengths, i.e., a few times the filament width. These groups then fragment into individual cores. (ii) Non-magnetized filaments with high MpL are found to fragment excessively, at odds with observations. This is resolved by taking into account the magnetic field (treated simply as additional pressure support). The present theory suggests two complementary modes of star formation: although small (spherical or filamentary) structures will collapse directly into prestellar cores, according to the standard Hennebelle–Chabrier theory, the large (filamentary) ones, the dominant population according to observations, will follow the aforedescribed two-step process.« less
NUCFRG2: An evaluation of the semiempirical nuclear fragmentation database
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Cucinotta, F. A.; Shinn, J. L.; Badavi, F. F.; Chun, S. Y.; Norbury, J. W.; Zeitlin, C. J.; Heilbronn, L.; Miller, J.
1995-01-01
A semiempirical abrasion-ablation model has been successful in generating a large nuclear database for the study of high charge and energy (HZE) ion beams, radiation physics, and galactic cosmic ray shielding. The cross sections that are generated are compared with measured HZE fragmentation data from various experimental groups. A research program for improvement of the database generator is also discussed.
Analysis of plasmas generated by fission fragments. [nuclear pumped lasers and helium plasma
NASA Technical Reports Server (NTRS)
Deese, J. E.; Hassan, H. A.
1977-01-01
A kinetic model is developed for a plasma generated by fission fragments and the results are employed to study helium plasma generated in a tube coated with fissionable material. Because both the heavy particles and electrons play important roles in creating the plasma, their effects are considered simultaneously. The calculations are carried out for a range of neutron fluxes and pressures. In general, the predictions of the theory are in good agreement with available intensity measurements. Moreover, the theory predicts the experimentally measured inversions. However, the calculated gain coefficients are such that lasing is not expected to take place in a helium plasma generated by fission fragments. The effects of an externally applied electric field are also considered.
Devi, K Rekha; Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C
2017-12-01
X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case-control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case-control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P < .05 for R/W-W/W genotype). Moreover, it was found that tryptophan allele (W/W genotype) at codon 194 of X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer in premenopausal females (crude odds ratio = 1.66, 95% confidence interval = 1.11-2.46, P < .05 for R/W-W/W genotype). The present study did not reveal any significant association of X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer. The present study has explored that X-ray repair cross complementary 1A (Arg194Trp) gene polymorphism is significantly associated with the increased risk of breast cancer in premenopausal females from northeastern region of India which may be beneficial for prognostic purposes.
Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C.
2017-01-01
X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case–control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case–control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P < .05 for R/W-W/W genotype). Moreover, it was found that tryptophan allele (W/W genotype) at codon 194 of X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer in premenopausal females (crude odds ratio = 1.66, 95% confidence interval = 1.11-2.46, P < .05 for R/W-W/W genotype). The present study did not reveal any significant association of X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer. The present study has explored that X-ray repair cross complementary 1A (Arg194Trp) gene polymorphism is significantly associated with the increased risk of breast cancer in premenopausal females from northeastern region of India which may be beneficial for prognostic purposes. PMID:29332455
Qi, Jing; Dong, Zhen; Zhang, Yu-Xing
2015-12-01
The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit.
Bialonska, Dobroslawa; Song, Kenneth; Bolton, Philip H
2011-11-27
Tumor cell lines can replicate faster than normal cells and many also have defective DNA repair pathways. This has lead to the investigation of the inhibition of DNA repair proteins as a means of therapeutic intervention. An alternative approach is to hide or mask damaged DNA from the repair systems. We have developed a protocol to investigate the structures of the complexes of damaged DNA with drug like molecules. Nucleotide resolution structural information can be obtained using an improved hydroxyl radical cleavage protocol. The use of a dT(n) tail increases the length of the smallest fragments of interest and allows efficient co-precipitation of the fragments with poly(A). The use of a fluorescent label, on the 5' end of the dT(n) tail, in conjunction with modified cleavage reaction conditions, avoids the lifetime and other problems with (32)P labeling. The structures of duplex DNAs containing AC and CC mismatches in the presence and absence of minor groove binders have been investigated as have those of the fully complementary DNA. The results indicate that the structural perturbations of the mismatches are localized, are sequence dependent and that the presence of a mismatch can alter the binding of drug like molecules. Copyright © 2011 Elsevier B.V. All rights reserved.
CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.
Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo
2017-06-25
Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.
Stacked-unstacked equilibrium at the nick site of DNA.
Protozanova, Ekaterina; Yakovchuk, Peter; Frank-Kamenetskii, Maxim D
2004-09-17
Stability of duplex DNA with respect to separation of complementary strands is crucial for DNA executing its major functions in the cell and it also plays a central role in major biotechnology applications of DNA: DNA sequencing, polymerase chain reaction, and DNA microarrays. Two types of interaction are well known to contribute to DNA stability: stacking between adjacent base-pairs and pairing between complementary bases. However, their contribution into the duplex stability is yet to be determined. Now we fill this fundamental gap in our knowledge of the DNA double helix. We have prepared a series of 32, 300 bp-long DNA fragments with solitary nicks in the same position differing only in base-pairs flanking the nick. Electrophoretic mobility of these fragments in the gel has been studied. Assuming the equilibrium between stacked and unstacked conformations at the nick site, all 32 stacking free energy parameters have been obtained. Only ten of them are essential and they govern the stacking interactions between adjacent base-pairs in intact DNA double helix. A full set of DNA stacking parameters has been determined for the first time. From these data and from a well-known dependence of DNA melting temperature on G.C content, the contribution of base-pairing into duplex stability has been estimated. The obtained energy parameters of the DNA double helix are of paramount importance for understanding sequence-dependent DNA flexibility and for numerous biotechnology applications.
1985-01-01
Previous studies (21) have shown that two mouse kappa light (L) chain variable (V) region polymorphisms, the IB-peptide and Efla markers, reflect expression of a characteristic group of V kappa regions, called V kappa Ser, by some inbred strains and not others. Expression of V kappa Ser is controlled by a locus on chromosome 6, the chromosome that contains the kappa locus. To further characterize this V kappa group and begin to analyze the basis for its strain-specific expression, full- length complementary DNA (cDNA) copies were produced of L chain mRNA from the M75 myeloma that had been induced in the C.C58 strain of mice, and which produces a V kappa Ser L chain. The C.C58 strain is congenic with BALB/cAn, differing in the region of chromosome 6 that controls expression of the V kappa polymorphisms and the Lyt-2 and Lyt-3 T cell alloantigens. The complete nucleotide sequence of this cloned cDNA was determined and compared with the nucleotide sequences the most closely related BALB/c myeloma L chains known. Results indicated significant differences throughout the variable region, but particularly toward the 5' portion of the sequence. A probe corresponding to 200 bp of the 5' end of the cloned V kappa Ser cDNA was used in Southern hybridizations of restriction digests of liver DNA from a number of inbred, recombinant, and recombinant inbred strains. Under stringent hybridization conditions, one strongly-hybridizing fragment was observed in Bam HI, Hind III, and Eco RI digests, and based on the size of the fragments, strains could be organized into two groups. The presence of strongly hybridizing Bam HI, Hind III, and Eco RI fragments of 3.2, 2.8, and 2.1 kb, respectively, was found to correlate completely with expression by the strain of the IB-peptide and Efla markers. All nonexpressor strains yielded hybridizing fragments of 7.8, 8.4, and 2.8 kb, respectively. Possible explanations for strain- specific expression of V kappa Ser-associated phenotypic markers are discussed. PMID:3926938
Generation of Polar Semi-Saturated Bicyclic Pyrazoles for Fragment-Based Drug Discovery Campaigns.
Luise, Nicola; Wyatt, Paul
2018-05-07
Synthesising polar semi-saturated bicyclic heterocycles can lead to better starting points for fragment-based drug discovery (FBDD) programs. This communication highlights the application of diverse chemistry to construct bicyclic systems from a common intermediate, where pyrazole, a privileged heteroaromatic able to bind effectively to biological targets, is fused to diverse saturated counterparts. The generated fragments can be further developed either after confirmation of their binding pose or early in the process, as their synthetic intermediates. Essential quality control (QC) for selection of small molecules to add to a fragment library is discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Healy, M.D.; Smith, D.C.; Springer, R.W.
1993-12-31
The organometallic chemical vapor deposition of transition metal carbides (M = Ti, Zr, Hf, and Cr) from tetraneopentyl-metal precursors has been carried out. Metal carbides can be deposited on Si, Al{sub 2}O{sub 3}, and stainless steel substrates from M[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} at temperatures in the range of 300 to 750 C and pressures from 10{sup {minus}2} to 10{sup {minus}4} Torr. Thin films have also been grown using a carrier gas (Ar, H{sub 2}). The effects of variation of the metal center, deposition conditions, and reactor design on the resulting material have been examined by SEM, XPS, XRD, ERDmore » and AES. Hydrocarbon fragments generated in the deposition chamber have been studied in by in-situ mass spectrometry. Complementary studies examining the UHV surface decomposition of Zr[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} have allowed for a better understanding of the mechanism leading to film growth.« less
Discovering and understanding oncogenic gene fusions through data intensive computational approaches
Latysheva, Natasha S.; Babu, M. Madan
2016-01-01
Abstract Although gene fusions have been recognized as important drivers of cancer for decades, our understanding of the prevalence and function of gene fusions has been revolutionized by the rise of next-generation sequencing, advances in bioinformatics theory and an increasing capacity for large-scale computational biology. The computational work on gene fusions has been vastly diverse, and the present state of the literature is fragmented. It will be fruitful to merge three camps of gene fusion bioinformatics that appear to rarely cross over: (i) data-intensive computational work characterizing the molecular biology of gene fusions; (ii) development research on fusion detection tools, candidate fusion prioritization algorithms and dedicated fusion databases and (iii) clinical research that seeks to either therapeutically target fusion transcripts and proteins or leverages advances in detection tools to perform large-scale surveys of gene fusion landscapes in specific cancer types. In this review, we unify these different—yet highly complementary and symbiotic—approaches with the view that increased synergy will catalyze advancements in gene fusion identification, characterization and significance evaluation. PMID:27105842
Varshavsky, Alexander
2012-11-01
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep. Copyright © 2012 The Protein Society.
Chemistry within Molecular Clusters
1992-05-29
within van der Waals clusters. 23 They include the generation of (C2H4F 2),,>4H+ ions from 1,1- difluoroethane clusters, 24 the generation of (CH 3...fragment ions, and identification of the molecule must be made by the characteristic fragmentation pattern. The mass spectrum of 1,1- difluoroethane (DFE
Li, Jianping; Yu, Changyuan; Li, Zhaohui
2014-03-15
A novel polarization-modulator-based complementary frequency shifter (PCFS) has been proposed and then used to implement the generation of a frequency-locked multicarrier with single- and dual-recirculating frequency shifting loops, respectively. The transfer functions and output properties of PCFS and PCFS-based multicarrier generator have been studied theoretically. Based on our simulation results through VPItransmissionMaker software, 100 stable carriers have been obtained with acceptable flatness while no DC bias control is required. The results show that the proposed PCFS has the potential to become a commercial product and then used in various scenarios.
McCoy, E.D.; Richmond, J.Q.; Mushinsky, H.R.; Britt, E.J.; Godley, J.S.
2010-01-01
A recent study showed that populations of the threatened Florida Sand Skink had limited loss of genetic diversity over the past 60 yr as a consequence of anthropogenic fragmentation. This study assumed that 60 yr represents 3037 generations for the Florida Sand Skink, but a new evaluation of markrecapture data shows that 60 yr represents only about 15 generations. This result suggests that too little time may have passed to observe the full genetic consequences of contemporary anthropogenic fragmentation in the Florida Sand Skink and reinforces similar results from other species. We suggest that snapshots of existing genetic variability in fragmented populations are limited in their ability to predict the evolutionary fate of a species unless life-history attributes of the organism are taken into account. Copyright 2010 Society for the Study of Amphibians and Reptiles.
Tsiatsiani, Liana; Giansanti, Piero; Scheltema, Richard A; van den Toorn, Henk; Overall, Christopher M; Altelaar, A F Maarten; Heck, Albert J R
2017-02-03
A key step in shotgun proteomics is the digestion of proteins into peptides amenable for mass spectrometry. Tryptic peptides can be readily sequenced and identified by collision-induced dissociation (CID) or higher-energy collisional dissociation (HCD) because the fragmentation rules are well-understood. Here, we investigate LysargiNase, a perfect trypsin mirror protease, because it cleaves equally specific at arginine and lysine residues, albeit at the N-terminal end. LysargiNase peptides are therefore practically tryptic-like in length and sequence except that following ESI, the two protons are now both positioned at the N-terminus. Here, we compare side-by-side the chromatographic separation properties, gas-phase fragmentation characteristics, and (phospho)proteome sequence coverage of tryptic (i.e., (X) n K/R) and LysargiNase (i.e., K/R(X) n ) peptides using primarily electron-transfer dissociation (ETD) and, for comparison, HCD. We find that tryptic and LysargiNase peptides fragment nearly as mirror images. For LysargiNase predominantly N-terminal peptide ions (c-ions (ETD) and b-ions (HCD)) are formed, whereas for trypsin, C-terminal fragment ions dominate (z-ions (ETD) and y-ions (HCD)) in a homologous mixture of complementary ions. Especially during ETD, LysargiNase peptides fragment into low-complexity but information-rich sequence ladders. Trypsin and LysargiNase chart distinct parts of the proteome, and therefore, the combined use of these enzymes will benefit a more in-depth and reliable analysis of (phospho)proteomes.
Pena, S D; Barreto, G; Vago, A R; De Marco, L; Reinach, F C; Dias Neto, E; Simpson, A J
1994-01-01
Low-stringency single specific primer PCR (LSSP-PCR) is an extremely simple PCR-based technique that detects single or multiple mutations in gene-sized DNA fragments. A purified DNA fragment is subjected to PCR using high concentrations of a single specific oligonucleotide primer, large amounts of Taq polymerase, and a very low annealing temperature. Under these conditions the primer hybridizes specifically to its complementary region and nonspecifically to multiple sites within the fragment, in a sequence-dependent manner, producing a heterogeneous set of reaction products resolvable by electrophoresis. The complex banding pattern obtained is significantly altered by even a single-base change and thus constitutes a unique "gene signature." Therefore LSSP-PCR will have almost unlimited application in all fields of genetics and molecular medicine where rapid and sensitive detection of mutations and sequence variations is important. The usefulness of LSSP-PCR is illustrated by applications in the study of mutants of smooth muscle myosin light chain, analysis of a family with X-linked nephrogenic diabetes insipidus, and identity testing using human mitochondrial DNA. Images PMID:8127912
NASA Astrophysics Data System (ADS)
Chen, Shu-Ting; Her, Guor-Rong
2012-08-01
A strategy based on negative ion electrospray ionization tandem mass spectrometry and closed-ring labeling with both 8-aminopyrene-1,3,6-trisulfonate (APTS) and p-aminobenzoic acid ethyl ester (ABEE) was developed for linkage and branch determination of high-mannose oligosaccharides. X-type cross-ring fragment ions obtained from APTS-labeled oligosaccharides by charge remote fragmentation provided information on linkages near the non-reducing terminus. In contrast, A-type cross-ring fragment ions observed from ABEE-labeled oligosaccharides yielded information on linkages near the reducing terminus. This complementary information provided by APTS- and ABEE-labeled oligosaccharides was utilized to delineate the structures of the high-mannose oligosaccharides. As a demonstration of this approach, the linkages and branches of high-mannose oligosaccharides Man5GlcNAc2, Man6GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 cleaved from the ribonuclease B were assigned from MS2 spectra of ABEE- and APTS-labeled derivatives.
Lutz, David; Wolters-Eisfeld, Gerrit; Joshi, Gunjan; Djogo, Nevena; Jakovcevski, Igor; Schachner, Melitta; Kleene, Ralf
2012-01-01
The functions of the cell adhesion molecule L1 in the developing and adult nervous system are triggered by homophilic and heterophilic interactions that stimulate signal transductions that activate cellular responses. Here, we show that stimulation of signaling by function-triggering L1 antibodies or L1-Fc leads to serine protease-dependent cleavage of full-length L1 at the plasma membrane and generation of a sumoylated transmembrane 70-kDa fragment comprising the intracellular and transmembrane domains and part of the extracellular domain. The 70-kDa transmembrane fragment is transported from the plasma membrane to a late endosomal compartment, released from endosomal membranes into the cytoplasm, and transferred from there into the nucleus by a pathway that depends on importin and chromatin-modifying protein 1. Mutation of the sumoylation site at Lys1172 or of the nuclear localization signal at Lys1147 abolished L1-stimulated generation or nuclear import of the 70-kDa fragment, respectively. Nuclear import of the 70-kDa fragment may activate cellular responses in parallel or in association with phosphorylation-dependent signaling pathways. Alterations in the levels of the 70-kDa fragment during development and in the adult after spinal cord injury or in a mouse model of Alzheimer disease suggest that this fragment is functionally implicated in development, regeneration, neurodegeneration, tumorigenesis, and possibly synaptic plasticity in the mature nervous system. PMID:22431726
Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ
Gray, Joe W.; Pinkel, Daniel
1991-01-01
A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. Probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations.
Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew
2010-01-01
Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less
Kobayashi, Masakazu; Retra, Kim; Figaroa, Francis; Hollander, Johan G; Ab, Eiso; Heetebrij, Robert J; Irth, Hubertus; Siegal, Gregg
2010-09-01
Fragment-based drug discovery (FBDD) has become a widely accepted tool that is complementary to high-throughput screening (HTS) in developing small-molecule inhibitors of pharmaceutical targets. Because a fragment campaign can only be as successful as the hit matter found, it is critical that the first stage of the process be optimized. Here the authors compare the 3 most commonly used methods for hit discovery in FBDD: high concentration screening (HCS), solution ligand-observed nuclear magnetic resonance (NMR), and surface plasmon resonance (SPR). They selected the commonly used saturation transfer difference (STD) NMR spectroscopy and the proprietary target immobilized NMR screening (TINS) as representative of the array of possible NMR methods. Using a target typical of FBDD campaigns, the authors find that HCS and TINS are the most sensitive to weak interactions. They also find a good correlation between TINS and STD for tighter binding ligands, but the ability of STD to detect ligands with affinity weaker than 1 mM K(D) is limited. Similarly, they find that SPR detection is most suited to ligands that bind with K(D) better than 1 mM. However, the good correlation between SPR and potency in a bioassay makes this a good method for hit validation and characterization studies.
Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits.
Larentis, Stefano; Fallahazad, Babak; Movva, Hema C P; Kim, Kyounghwan; Rai, Amritesh; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; Tutuc, Emanuel
2017-05-23
Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe 2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.
Complementary bowtie aperture for localizing and enhancing optical magnetic field
NASA Astrophysics Data System (ADS)
Zhou, Nan; Kinzel, Edward C.; Xu, Xianfan
2011-08-01
Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.
High-voltage pulsed generator for dynamic fragmentation of rocks
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.
2010-10-01
A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.
High-voltage pulsed generator for dynamic fragmentation of rocks.
Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N
2010-10-01
A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.
Sanhueza, Carlos A; Cartmell, Jonathan; El-Hawiet, Amr; Szpacenko, Adam; Kitova, Elena N; Daneshfar, Rambod; Klassen, John S; Lang, Dean E; Eugenio, Luiz; Ng, Kenneth K-S; Kitov, Pavel I; Bundle, David R
2015-01-07
A focused library of virtual heterobifunctional ligands was generated in silico and a set of ligands with recombined fragments was synthesized and evaluated for binding to Clostridium difficile toxins. The position of the trisaccharide fragment was used as a reference for filtering docked poses during virtual screening to match the trisaccharide ligand in a crystal structure. The peptoid, a diversity fragment probing the protein surface area adjacent to a known binding site, was generated by a multi-component Ugi reaction. Our approach combines modular fragment-based design with in silico screening of synthetically feasible compounds and lays the groundwork for future efforts in development of composite bifunctional ligands for large clostridial toxins.
XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hori, Shin-Ichiro; Yamamoto, Tsuyoshi; Obika, Satoshi, E-mail: obika@phs.osaka-u.ac.jp
Antisense oligonucleotides (ASOs) can suppress the expression of a target gene by cleaving pre-mRNA and/or mature mRNA via RNase H1. Following the initial endonucleolytic cleavage by RNase H1, the target RNAs are degraded by a mechanism that is poorly understood. To better understand this degradation pathway, we depleted the expression of two major 5′ to 3′ exoribonucleases (XRNs), named XRN1 and XRN2, and analyzed the levels of 3′ fragments of the target RNAs in vitro. We found that the 3′ fragments of target pre-mRNA generated by ASO were almost completely degraded from their 5′ ends by nuclear XRN2 after RNase H1-mediatedmore » cleavage, whereas the 3′ fragments of mature mRNA were partially degraded by XRN2. In contrast to ASO, small interference RNA (siRNA) could reduce the expression level of only mature mRNA, and the 3′ fragment was degraded by cytoplasmic XRN1. Our findings indicate that the RNAs targeted by RNase H1-dependent ASO are rapidly degraded in the nucleus, contrary to the cytoplasmic degradation pathway mediated by siRNA. - Highlights: • We compared the degradation mechanism of the transcript targeted by ASO and siRNA. • We focused on two 5′ to 3′ exoribonucleases, cytoplasmic XRN1, and nuclear XRN2. • The 3′ fragment of target pre-mRNA generated by ASO was degraded by XRN2. • The 3′ fragment of target mRNA generated by ASO was partially degraded by XRN2. • XRN1 depletion promoted accumulation of the 3′ fragment of mRNA generated by siRNA.« less
High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System
Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C. T.; Shui, Lingling
2017-01-01
DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1–10 Kbp fragment lengths with a yield of 75.30–91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future. PMID:28098208
Explosive volcanism may not be an inevitable consequence of magma fragmentation.
Gonnermann, Helge M; Manga, Michael
2003-11-27
The fragmentation of magma, containing abundant gas bubbles, is thought to be the defining characteristic of explosive eruptions. When viscous stresses associated with the growth of bubbles and the flow of the ascending magma exceed the strength of the melt, the magma breaks into disconnected fragments suspended within an expanding gas phase. Although repeated effusive and explosive eruptions for individual volcanoes are common, the dynamics governing the transition between explosive and effusive eruptions remain unclear. Magmas for both types of eruptions originate from sources with similar volatile content, yet effusive lavas erupt considerably more degassed than their explosive counterparts. One mechanism for degassing during magma ascent, consistent with observations, is the generation of intermittent permeable fracture networks generated by non-explosive fragmentation near the conduit walls. Here we show that such fragmentation can occur by viscous shear in both effusive and explosive eruptions. Moreover, we suggest that such fragmentation may be important for magma degassing and the inhibition of explosive behaviour. This implies that, contrary to conventional views, explosive volcanism is not an inevitable consequence of magma fragmentation.
High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.
Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling
2017-01-18
DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.
Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P
2017-10-01
A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.
Faunal Communities Are Invariant to Fragmentation in Experimental Seagrass Landscapes
Marion, Scott R.; Lombana, Alfonso V.; Orth, Robert J.
2016-01-01
Human-driven habitat fragmentation is cited as one of the most pressing threats facing many coastal ecosystems today. Many experiments have explored the consequences of fragmentation on fauna in one foundational habitat, seagrass beds, but have either surveyed along a gradient of existing patchiness, used artificial materials to mimic a natural bed, or sampled over short timescales. Here, we describe faunal responses to constructed fragmented landscapes varying from 4–400 m2 in two transplant garden experiments incorporating live eelgrass (Zostera marina L.). In experiments replicated within two subestuaries of the Chesapeake Bay, USA across multiple seasons and non-consecutive years, we comprehensively censused mesopredators and epifaunal communities using complementary quantitative methods. We found that community properties, including abundance, species richness, Simpson and functional diversity, and composition were generally unaffected by the number of patches and the size of the landscape, or the intensity of sampling. Additionally, an index of competition based on species co-occurrences revealed no trends with increasing patch size, contrary to theoretical predictions. We extend conclusions concerning the invariance of animal communities to habitat fragmentation from small-scale observational surveys and artificial experiments to experiments conducted with actual living plants and at more realistic scales. Our findings are likely a consequence of the rapid life histories and high mobility of the organisms common to eelgrass beds, and have implications for both conservation and restoration, suggesting that even small patches can rapidly promote abundant and diverse faunal communities. PMID:27244652
Faunal Communities Are Invariant to Fragmentation in Experimental Seagrass Landscapes.
Lefcheck, Jonathan S; Marion, Scott R; Lombana, Alfonso V; Orth, Robert J
2016-01-01
Human-driven habitat fragmentation is cited as one of the most pressing threats facing many coastal ecosystems today. Many experiments have explored the consequences of fragmentation on fauna in one foundational habitat, seagrass beds, but have either surveyed along a gradient of existing patchiness, used artificial materials to mimic a natural bed, or sampled over short timescales. Here, we describe faunal responses to constructed fragmented landscapes varying from 4-400 m2 in two transplant garden experiments incorporating live eelgrass (Zostera marina L.). In experiments replicated within two subestuaries of the Chesapeake Bay, USA across multiple seasons and non-consecutive years, we comprehensively censused mesopredators and epifaunal communities using complementary quantitative methods. We found that community properties, including abundance, species richness, Simpson and functional diversity, and composition were generally unaffected by the number of patches and the size of the landscape, or the intensity of sampling. Additionally, an index of competition based on species co-occurrences revealed no trends with increasing patch size, contrary to theoretical predictions. We extend conclusions concerning the invariance of animal communities to habitat fragmentation from small-scale observational surveys and artificial experiments to experiments conducted with actual living plants and at more realistic scales. Our findings are likely a consequence of the rapid life histories and high mobility of the organisms common to eelgrass beds, and have implications for both conservation and restoration, suggesting that even small patches can rapidly promote abundant and diverse faunal communities.
Functions of Turkish Complementary Schools in the UK: Official vs. Insider Discourses
ERIC Educational Resources Information Center
Çavusoglu, Çise
2014-01-01
Complementary schools in the United Kingdom (UK) are community organised schools with the general aim of teaching younger generations their "native" languages and cultures. However, the aims and practices of these schools are predominantly dependent on changes in the social and political contexts both in the host country (in this case…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delury, Craig, E-mail: c.delury@lancaster.ac.uk; Hart, Claire, E-mail: claire.hart@manchester.ac.uk; Brown, Mick, E-mail: michael.brown@ics.manchester.ac.uk
The Notch ligand Jagged1 is subject to regulated intramembrane proteolysis (RIP) which yields a soluble ectodomain (sJag) and a soluble Jagged1 intracellular domain (JICD). The full-length Jagged1 protein enhances prostate cancer (PCa) cell proliferation and is highly expressed in metastatic cells. However, little is known regarding the mechanisms by which Jagged1 or its RIP-generated fragments might promote PCa bone metastasis. In the current study we show that bone marrow stroma (BMS) induces Jagged1 expression in bone metastatic prostate cancer PC3 cells and that this enhanced expression is mechanistically linked to the promotion of cell migration. We also show that RIP-generatedmore » Jagged1 fragments exert disparate effects on PC3 cell behaviour and Notch signaling. In conclusion, the expression of both the full-length ligand and its RIP-generated fragments must be considered in tandem when attempting to regulate Jagged1 as a possible PCa therapy. - Highlights: • Bone marrow stroma induces Jagged1 expression in prostate cancer (PCa) PC3 cells. • This enhanced expression of full-length Jagged1 is required for PC3 cell migration. • Proteolytic fragments of Jagged1 exert disparate effects on PC3 cell behaviour. • Effects of fragments on cell behaviour do not correlate with Notch signaling. • Effects of Jagged1 and its fragments on PCa metastasis likely to be complex.« less
An Imaging System for Automated Characteristic Length Measurement of Debrisat Fragments
NASA Technical Reports Server (NTRS)
Moraguez, Mathew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Sorge, Marlon; Cowardin, Heather; Opiela, John; Krisko, Paula H.
2015-01-01
The debris fragments generated by DebriSat's hypervelocity impact test are currently being processed and characterized through an effort of NASA and USAF. The debris characteristics will be used to update satellite breakup models. In particular, the physical dimensions of the debris fragments must be measured to provide characteristic lengths for use in these models. Calipers and commercial 3D scanners were considered as measurement options, but an automated imaging system was ultimately developed to measure debris fragments. By automating the entire process, the measurement results are made repeatable and the human factor associated with calipers and 3D scanning is eliminated. Unlike using calipers to measure, the imaging system obtains non-contact measurements to avoid damaging delicate fragments. Furthermore, this fully automated measurement system minimizes fragment handling, which reduces the potential for fragment damage during the characterization process. In addition, the imaging system reduces the time required to determine the characteristic length of the debris fragment. In this way, the imaging system can measure the tens of thousands of DebriSat fragments at a rate of about six minutes per fragment, compared to hours per fragment in NASA's current 3D scanning measurement approach. The imaging system utilizes a space carving algorithm to generate a 3D point cloud of the article being measured and a custom developed algorithm then extracts the characteristic length from the point cloud. This paper describes the measurement process, results, challenges, and future work of the imaging system used for automated characteristic length measurement of DebriSat fragments.
Micro-Satellite Impact Tests to Investigate Multi-Layer Insulation Fragments
NASA Astrophysics Data System (ADS)
Murakami, Junko; Hanada, Toshiya; Liou, J.-C.; Stansbery, Eugene
2009-03-01
This paper summarizes two satellite impact experiments completed in 2008. The objective of the experiments is to investigate the physical properties of satellite fragments, including those originated from Multi-Layer Insulation and a solar panel. One test generated approximately 1,800 fragments while the other produced only 1,000 fragments. This difference came from the number of needle-like fragments from carbon fiber reinforced plastics. All collected fragments were analyzed using the same method as described in the NASA standard breakup model and compared with the breakup model. This paper will present: (1) the area-to-mass ratio, size, and mass distributions of the fragments, and (2) the differences in fragment properties between the two tests.
NASA Astrophysics Data System (ADS)
Matsishin, M.; Rachkov, A.; Lopatynskyi, A.; Chegel, V.; Soldatkin, A.; El'skaya, A.
2017-04-01
An experimental approach for improving the sensitivity of the surface plasmon resonance (SPR) DNA hybridization sensor using gold nanoparticles (GNPs), modified by specific oligonucleotides, was elaborated. An influence of the ionic strength on the aggregation stability of unmodified GNPs and GNPs modified by the thiolated oligonucleotides was investigated by monitoring a value of light extinction at 520 nm that can be considered as a measure of a quantity of the non-aggregated GNPs. While the unmodified GNPs started to aggregate in 0.2 × saline-sodium citrate (SSC), GNPs modified by the negatively charged oligonucleotides were more stable at increasing ionic strength up to 0.5 × SSC. A bioselective element of the SPR DNA hybridization sensor was formed by immobilization on the gold sensor surface of the thiolated oligonucleotides P2, the sequence of which is a fragment of the rpoB gene of Mycobacterium tuberculosis. The injections into the measuring flow cell of the SPR spectrometer of various concentrations of GNPs modified by the complementary oligonucleotides T2-18m caused the pronounced concentration-dependent sequence-specific sensor responses. The magnitude of the sensor responses was much higher than in the case of the free standing complementary oligonucleotides. According to the obtained experimental data, the usage of GNPs modified by specific oligonucleotides can amplify the sensor response of the SPR DNA hybridization sensor in 1200 times.
Fabrichny, Igor P.; Mondielli, Grégoire; Conrod, Sandrine; Martin-Eauclaire, Marie-France; Bourne, Yves; Marchot, Pascale
2012-01-01
The Old World scorpion Androctonus australis hector (Aah) produces one of the most lethal venoms for humans. Peptidic α-toxins AahI to AahIV are responsible for its potency, with AahII accounting for half of it. All four toxins are high affinity blockers of the fast inactivation phase of mammalian voltage-activated Na+ channels. However, the high antigenic polymorphism of α-toxins prevents production of a polyvalent neutralizing antiserum, whereas the determinants dictating their trapping by neutralizing antibodies remain elusive. From an anti-AahII mAb, we generated an antigen binding fragment (Fab) with high affinity and selectivity for AahII and solved a 2.3 Å-resolution crystal structure of the complex. Sequestering of the C-terminal region of the bound toxin within a groove formed by the Fab combining loops is associated with a toxin orientation and main and side chain conformations that dictate the AahII antigenic specificity and efficient neutralization. From an anti-AahI mAb, we also preformed and crystallized a high affinity AahI-Fab complex. The 1.6 Å-resolution structure solved revealed a Fab molecule devoid of a bound AahI and with combining loops involved in packing interactions, denoting expulsion of the bound antigen upon crystal formation. Comparative analysis of the groove-like combining site of the toxin-bound anti-AahII Fab and planar combining surface of the unbound anti-AahI Fab along with complementary data from a flexible docking approach suggests occurrence of distinctive trapping orientations for the two toxins relative to their respective Fab. This study provides complementary templates for designing new molecules aimed at capturing Aah α-toxins and suitable for immunotherapy. PMID:22371498
DNA fragment sizing and sorting by laser-induced fluorescence
Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.
1996-01-01
A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.
Peptide Fragmentation Induced by Radicals at Atmospheric Pressure
Vilkov, Andrey N.; Laiko, Victor V.; Doroshenko, Vladimir M.
2009-01-01
A novel ion dissociation technique, which is capable of providing an efficient fragmentation of peptides at essentially atmospheric pressure conditions, is developed. The fragmentation patterns observed often contain c-type fragments that are specific to ECD/ETD, along with the y-/b- fragments that are specific to CAD. In the presented experimental setup, ion fragmentation takes place within a flow reactor located in the atmospheric pressure region between the ion source and the mass spectrometer. According to a proposed mechanism, the fragmentation results from the interaction of ESI-generated analyte ions with the gas-phase radical species produced by a corona discharge source. PMID:19034885
Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ
Gray, J.W.; Pinkel, D.
1991-07-02
A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings
Electron Detachment Dissociation (EDD) of Fluorescently Labeled Sialylated Oligosaccharides
Zhou, Wen; Håkansson, Kristina
2012-01-01
We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared to IRMPD. Neutral losses and satellite ions such as C – 2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared to 2-AA labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. PMID:22120881
Templeman, Kate; Robinson, Anske; McKenna, Lisa
2016-09-01
The aim of this study was to identify Australian medical students' complementary medicine information needs. Thirty medical students from 10 medical education faculties across Australian universities were recruited. Data were generated using in-depth semi-structured interviews and constructivist grounded theory method was used to analyze and construct data. Students sought complementary medicine information from a range of inadequate sources, such as pharmacological texts, Internet searches, peer-reviewed medical journals, and drug databases. The students identified that many complementary medicine resources may not be regarded as objective, reliable, differentiated, or comprehensive, leaving much that medical education needs to address. Most students sought succinct, easily accessible, evidence-based information to inform safe and appropriate clinical decisions about complementary medicines. A number of preferred resources were identified that can be recommended and actively promoted to medical students. Therefore, specific, evidence-based complementary medicine databases and secondary resources should be subscribed and recommended to medical schools and students, to assist meeting professional responsibilities regarding complementary medicines. These findings may help inform the development of appropriate medical information resources regarding complementary medicines. © 2016 John Wiley & Sons Australia, Ltd.
Jacobs, Donald J; Livesay, Dennis R; Hules, Jeremy; Tasayco, Maria Luisa
2006-05-05
Numerous quantitative stability/flexibility relationships, within Escherichia coli thioredoxin (Trx) and its fragments are determined using a minimal distance constraint model (DCM). A one-dimensional free energy landscape as a function of global flexibility reveals Trx to fold in a low-barrier two-state process, with a voluminous transition state. Near the folding transition temperature, the native free energy basin is markedly skewed to allow partial unfolded forms. Under native conditions the skewed shape is lost, and the protein forms a compact structure with some flexibility. Predictions on ten Trx fragments are generally consistent with experimental observations that they are disordered, and that complementary fragments reconstitute. A hierarchical unfolding pathway is uncovered using an exhaustive computational procedure of breaking interfacial cross-linking hydrogen bonds that span over a series of fragment dissociations. The unfolding pathway leads to a stable core structure (residues 22-90), predicted to act as a kinetic trap. Direct connection between degree of rigidity within molecular structure and non-additivity of free energy is demonstrated using a thermodynamic cycle involving fragments and their hierarchical unfolding pathway. Additionally, the model provides insight about molecular cooperativity within Trx in its native state, and about intermediate states populating the folding/unfolding pathways. Native state cooperativity correlation plots highlight several flexibly correlated regions, giving insight into the catalytic mechanism that facilitates access to the active site disulfide bond. Residual native cooperativity correlations are present in the core substructure, suggesting that Trx can function when it is partly unfolded. This natively disordered kinetic trap, interpreted as a molten globule, has a wide temperature range of metastability, and it is identified as the "slow intermediate state" observed in kinetic experiments. These computational results are found to be in overall agreement with a large array of experimental data.
Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA.
Weiberg, Arne; Pöhler, Dirk; Morgenstern, Burkhard; Karlovsky, Petr
2008-10-13
cDNA-AFLP is a transcriptomics technique which does not require prior sequence information and can therefore be used as a gene discovery tool. The method is based on selective amplification of cDNA fragments generated by restriction endonucleases, electrophoretic separation of the products and comparison of the band patterns between treated samples and controls. Unequal distribution of restriction sites used to generate cDNA fragments negatively affects the performance of cDNA-AFLP. Some transcripts are represented by more than one fragment while other escape detection, causing redundancy and reducing the coverage of the analysis, respectively. With the goal of improving the coverage of cDNA-AFLP without increasing its redundancy, we designed a modified cDNA-AFLP protocol. Immobilized cDNA is sequentially digested with several restriction endonucleases and the released DNA fragments are collected in mutually exclusive pools. To investigate the performance of the protocol, software tool MECS (Multiple Enzyme cDNA-AFLP Simulation) was written in Perl. cDNA-AFLP protocols described in the literature and the new sequential digestion protocol were simulated on sets of cDNA sequences from mouse, human and Arabidopsis thaliana. The redundancy and coverage, the total number of PCR reactions, and the average fragment length were calculated for each protocol and cDNA set. Simulation revealed that sequential digestion of immobilized cDNA followed by the partitioning of released fragments into mutually exclusive pools outperformed other cDNA-AFLP protocols in terms of coverage, redundancy, fragment length, and the total number of PCRs. Primers generating 30 to 70 amplicons per PCR provided the highest fraction of electrophoretically distinguishable fragments suitable for normalization. For A. thaliana, human and mice transcriptome, the use of two marking enzymes and three sequentially applied releasing enzymes for each of the marking enzymes is recommended.
Fjellström, Ola; Akkaya, Sibel; Beisel, Hans-Georg; Eriksson, Per-Olof; Erixon, Karl; Gustafsson, David; Jurva, Ulrik; Kang, Daiwu; Karis, David; Knecht, Wolfgang; Nerme, Viveca; Nilsson, Ingemar; Olsson, Thomas; Redzic, Alma; Roth, Robert; Sandmark, Jenny; Tigerström, Anna; Öster, Linda
2015-01-01
Activated factor XI (FXIa) inhibitors are anticipated to combine anticoagulant and profibrinolytic effects with a low bleeding risk. This motivated a structure aided fragment based lead generation campaign to create novel FXIa inhibitor leads. A virtual screen, based on docking experiments, was performed to generate a FXIa targeted fragment library for an NMR screen that resulted in the identification of fragments binding in the FXIa S1 binding pocket. The neutral 6-chloro-3,4-dihydro-1H-quinolin-2-one and the weakly basic quinolin-2-amine structures are novel FXIa P1 fragments. The expansion of these fragments towards the FXIa prime side binding sites was aided by solving the X-ray structures of reported FXIa inhibitors that we found to bind in the S1-S1’-S2’ FXIa binding pockets. Combining the X-ray structure information from the identified S1 binding 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment and the S1-S1’-S2’ binding reference compounds enabled structure guided linking and expansion work to achieve one of the most potent and selective FXIa inhibitors reported to date, compound 13, with a FXIa IC50 of 1.0 nM. The hydrophilicity and large polar surface area of the potent S1-S1’-S2’ binding FXIa inhibitors compromised permeability. Initial work to expand the 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment towards the prime side to yield molecules with less hydrophilicity shows promise to afford potent, selective and orally bioavailable compounds. PMID:25629509
Vanli, Güliz; Peltzer, Nieves; Dubuis, Gilles; Widmann, Christian
2014-12-01
The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N. Copyright © 2014 Elsevier Inc. All rights reserved.
Use of Complementary Medicine in Older Americans: Results from the Health and Retirement Study
ERIC Educational Resources Information Center
Ness, Jose; Cirillo, Dominic J.; Weir, David R.; Nisly, Nicole L.; Wallace, Robert B.
2005-01-01
Purpose: The correlates of complementary and alternative medicine (CAM) utilization among elders have not been fully investigated. This study was designed to identify such correlates in a large sample of older adults, thus generating new data relevant to consumer education, medical training, and health practice and policy. Design and Methods: A…
Gas-Phase Chemistry of Arylimido-Functionalized Hexamolybdates [Mo6O19]2-
NASA Astrophysics Data System (ADS)
Cao, Jie; Wang, QianQian; Liu, Chang; An, ShuQi
2018-04-01
The gas-phase fragmentations of a series of arylimido derivatives of hexamolybdate [Mo6O18(NC6H5-n R n )]2- (2-10, where R = CH3, i-C3H7, OCH3, NO2; n = 1 or 2) versus the parent species [Mo6O19]2- (1) were systematically studied using electrospray tandem mass spectrometry (ESI). Fragmentation of 1 generates two molybdate fragments only, [Mo3O10]2- and [Mo4O13]2-, whereas decomposition of 2-10 went through two dissociation pathways in which path A generates a variety of molybdate fragments via breaking the Mo-N bond followed by the cleavages of the multiple Mo-O bonds, whereas path B produces a range of molybdate fragments with arylimido group via breaking the multiple Mo-O bonds on POM framework. Moreover, the presences of mixed-oxidation-state molybdate fragments are characteristic for the fragmentation. The gas-phase stability order obtained by energy-variable collision-induced dissociation (CID) experiment reveals that 2-10 are generally less stable than 1 and substitution on the benzene ring exerts a considerable effect on the stabilization of the hybrid clusters. [Figure not available: see fulltext.
Fragmentation of protoplanetary discs around M-dwarfs
NASA Astrophysics Data System (ADS)
Backus, Isaac; Quinn, Thomas
2016-12-01
We investigate the conditions required for planet formation via gravitational instability (GI) and protoplanetary disc (PPD) fragmentation around M-dwarfs. Using a suite of 64 SPH simulations with 106 particles, the parameter space of disc mass, temperature, and radius is explored, bracketing reasonable values based on theory and observation. Our model consists of an equilibrium, gaseous, and locally isothermal disc orbiting a central star of mass M* = M⊙/3. Discs with a minimum Toomre Q of Qmin ≲ 0.9 will fragment and form gravitationally bound clumps. Some previous literature has found Qmin < 1.3-1.5 to be sufficient for fragmentation. Increasing disc height tends to stabilize discs, and when incorporated into Q as Qeff ∝ Q(H/R)α for α = 0.18 is sufficient to predict fragmentation. Some discrepancies in the literature regarding Qcrit may be due to different methods of generating initial conditions (ICs). A series of 15 simulations demonstrates that perturbing ICs slightly out of equilibrium can cause discs to fragment for higher Q. Our method for generating ICs is presented in detail. We argue that GI likely plays a role in PPDs around M-dwarfs and that disc fragmentation at large radii is a plausible outcome for these discs.
Turbulence, cleavage, and the naked embryo: a case for coral clones.
Heyward, A J; Negri, A P
2012-03-02
After mass spawning events, coral embryos, lacking the protective capsule of other metazoans, are directly exposed to the environment at the ocean surface. Here, we present evidence that modest turbulence disrupts the integrity of these embryos, which fragment into totipotent cells that develop into proportionately smaller functional larvae. The level of turbulence required to fragment coral embryos can be generated from small wind-generated waves, which occur frequently during coral spawning on the Great Barrier Reef. The formation of planktonic coral clones, through natural embryo fragmentation of broadcast spawn, is a previously unknown mode of reproduction in the animal kingdom.
Soares, Marcelo Bento; Bonaldo, Maria de Fatima
1998-01-01
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.
Soares, M.B.; Fatima Bonaldo, M. de
1998-12-08
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Heilbronn, L.; Miller, J.; Schimmerling, W.; Townsend, L. W.; Tripathi, R. K.; Wilson, J. W.
1996-01-01
The results of a Monte Carlo model for calculating fragment fluences and LET spectra are compared to data taken with 600 MeV/nucleon iron ions incident on an accelerator beamline configured for irradiation of biological samples, with no target and with 2, 5 and 8 cm of polyethylene. The model uses a multi-generation nuclear fragmentation code, coupled with a formulation of ionization energy loss based on the Bethe-Bloch equation. In the region where the data are reliable and the experimental acceptance is well understood, many of the features of the experimental spectra are well replicated by the model. To obtain good agreement with the experimental data, the model must allow for at least two generations of fragment production in the target.
Vargas, Diana Y.; Kramer, Fred Russell; Tyagi, Sanjay; Marras, Salvatore A. E.
2016-01-01
We describe the use of “SuperSelective” primers that enable the detection and quantitation of somatic mutations whose presence relates to cancer diagnosis, prognosis, and therapy, in real-time PCR assays that can potentially analyze rare DNA fragments present in blood samples (liquid biopsies). The design of these deoxyribonucleotide primers incorporates both a relatively long “5' anchor sequence” that hybridizes strongly to target DNA fragments, and a very short, physically and functionally separate, “3' foot sequence” that is perfectly complementary to the mutant target sequence, but mismatches the wild-type sequence. As few as ten mutant fragments can reliably be detected in the presence of 1,000,000 wild-type fragments, even when the difference between the mutant and the wild type is only a single nucleotide polymorphism. Multiplex PCR assays employing a set of SuperSelective primers, and a corresponding set of differently colored molecular beacon probes, can be used in situations where the different mutations, though occurring in different cells, are located in the same codon. These non-symmetric real-time multiplex PCR assays contain limited concentrations of each SuperSelective primer, thereby enabling the simultaneous determination of each mutation’s abundance by comparing its threshold value to the threshold value of a reference gene present in the sample. PMID:27244445
Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I
2016-01-01
Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.
Helling, Robert B.; Goodman, Howard M.; Boyer, Herbert W.
1974-01-01
By means of agarose-gel electrophoresis, endonuclease R·EcoRI-generated fragments of DNA from various viruses were separated, their molecular weights were determined, and complete or partial fragment maps for lambda, φ80, and hybrid phages were constructed. Images PMID:4372397
Seed-dispersal distributions by trumpeter hornbills in fragmented landscapes
Lenz, Johanna; Fiedler, Wolfgang; Caprano, Tanja; Friedrichs, Wolfgang; Gaese, Bernhard H.; Wikelski, Martin; Böhning-Gaese, Katrin
2011-01-01
Frugivorous birds provide important ecosystem services by transporting seeds of fleshy fruited plants. It has been assumed that seed-dispersal kernels generated by these animals are generally leptokurtic, resulting in little dispersal among habitat fragments. However, little is known about the seed-dispersal distribution generated by large frugivorous birds in fragmented landscapes. We investigated movement and seed-dispersal patterns of trumpeter hornbills (Bycanistes bucinator) in a fragmented landscape in South Africa. Novel GPS loggers provide high-quality location data without bias against recording long-distance movements. We found a very weakly bimodal seed-dispersal distribution with potential dispersal distances up to 14.5 km. Within forest, the seed-dispersal distribution was unimodal with an expected dispersal distance of 86 m. In the fragmented agricultural landscape, the distribution was strongly bimodal with peaks at 18 and 512 m. Our results demonstrate that seed-dispersal distributions differed when birds moved in different habitat types. Seed-dispersal distances in fragmented landscapes show that transport among habitat patches is more frequent than previously assumed, allowing plants to disperse among habitat patches and to track the changing climatic conditions. PMID:21177686
Solforosi, Laura; Mancini, Nicasio; Canducci, Filippo; Clementi, Nicola; Sautto, Giuseppe Andrea; Diotti, Roberta Antonia; Clementi, Massimo; Burioni, Roberto
2012-07-01
A novel phagemid vector, named pCM, was optimized for the cloning and display of antibody fragment (Fab) libraries on the surface of filamentous phage. This vector contains two long DNA "stuffer" fragments for easier differentiation of the correctly cut forms of the vector. Moreover, in pCM the fragment at the heavy-chain cloning site contains an acid phosphatase-encoding gene allowing an easy distinction of the Escherichia coli cells containing the unmodified form of the phagemid versus the heavy-chain fragment coding cDNA. In pCM transcription of heavy-chain Fd/gene III and light chain is driven by a single lacZ promoter. The light chain is directed to the periplasm by the ompA signal peptide, whereas the heavy-chain Fd/coat protein III is trafficked by the pelB signal peptide. The phagemid pCM was used to generate a human combinatorial phage display antibody library that allowed the selection of a monoclonal Fab fragment antibody directed against the nucleoprotein (NP) of Influenza A virus.
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Levasseur-Regourd, A.-C.
2014-07-01
Remote observations of sunlight scattered by solid particles provide information on the particle properties for a large variety of comets. When comets approach the Sun, solid particles and gases are released from the surface or from the inner layers [1,2]. If the comet is close enough to the Earth, the inner coma may be studied. Different coma regions are observed corresponding to different dust properties, e.g., in jets or fresh ejected dust around the coma. Narrow-band continuum filters or broader-band filters in less contaminated spectral domains (red or near infrared) are currently used to avoid or reduce the contributions from gaseous emission. Comet 73P/Schwassmann-Wachmann 3 is a fascinating fragmenting comet. Different observations in 1995 revealed an increase of activity and at least four fragments of the nucleus. In its 2011 apparition, the fragments were well separated and appeared like small individual comets. In 2006, its apparition was very favorable and allowed high- spatial resolution imaging by different complementary techniques. We observed three fragments of comet 73P/Schwassmann-Wachmann 3 from April 27 to May 3, 2006, by imaging polarimetry with the 80-cm telescope at Observatoire de Haute-Provence. The distance to the Earth was smaller than 0.2 au. Fragment C resembles a classical active comet. Regions of high and lower polarization were observed in the inner coma, appearing to change almost periodically. The variation of polarization in the inner coma was important from one night to the next one, the whole coma polarization being about constant for nucleus distances greater than 2000 km and increasing with the phase angle. Fragment B continued its (sequential) fragmentation, with a region of secondary fragments progressively moving away from the main nucleus in the antisolar direction. The chemical composition has been reported as being similar in all the fragments [3], but differences were observed between them in polarization underlining differences in, e.g., structure or size distribution of the particles during their ejection and fragmentation. The variation of polarization in the coma and around the fragments will be presented. Finally, a comparison to other comets, including split comets observed at small geocentric distances, will be provided.
Phenotypic and genotypic analysis of Borrelia burgdorferi isolates from various sources.
Adam, T; Gassmann, G S; Rasiah, C; Göbel, U B
1991-01-01
A total of 17 B. burgdorferi isolates from various sources were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins, restriction enzyme analysis, Southern hybridization with probes complementary to unique regions of evolutionarily conserved genes (16S rRNA and fla), and direct sequencing of in vitro polymerase chain reaction-amplified fragments of the 16S rRNA gene. Three groups were distinguished on the basis of phenotypic and genotypic traits, the latter traced to the nucleotide sequence level. Images PMID:1649797
NASA Astrophysics Data System (ADS)
Shen, Yu-Sheng; Lung, Shih-Chun Candice
2017-02-01
Previous studies have shown both health and environmental benefits of green spaces, especially in moderating temperature and reducing air pollution. However, the characteristics of green structures have been overlooked in previous investigations. In addition, the mediation effects of green structures on respiratory mortality have not been assessed. This study explores the potential mediation pathways and effects of green structure characteristics on respiratory mortality through temperature, primary and secondary air pollutants separately using partial least squares model with data from Taiwan. The measurable characteristics of green structure include the largest patch percentage, landscape proportion, aggregation, patch distance, and fragmentation. The results showed that mortality of pneumonia and chronic lower respiratory diseases could be reduced by minimizing fragmentation and increasing the largest patch percentage of green structure, and the mediation effects are mostly through reducing air pollutants rather than temperature. Moreover, a high proportion of but fragmented green spaces would increase secondary air pollutants and enhance health risks; demonstrating the deficiency of traditional greening policy with primary focus on coverage ratio. This is the first research focusing on mediation effects of green structure characteristics on respiratory mortality, revealing that appropriate green structure planning can be a useful complementary strategy in environmental health management.
Shen, Yu-Sheng; Lung, Shih-Chun Candice
2017-02-23
Previous studies have shown both health and environmental benefits of green spaces, especially in moderating temperature and reducing air pollution. However, the characteristics of green structures have been overlooked in previous investigations. In addition, the mediation effects of green structures on respiratory mortality have not been assessed. This study explores the potential mediation pathways and effects of green structure characteristics on respiratory mortality through temperature, primary and secondary air pollutants separately using partial least squares model with data from Taiwan. The measurable characteristics of green structure include the largest patch percentage, landscape proportion, aggregation, patch distance, and fragmentation. The results showed that mortality of pneumonia and chronic lower respiratory diseases could be reduced by minimizing fragmentation and increasing the largest patch percentage of green structure, and the mediation effects are mostly through reducing air pollutants rather than temperature. Moreover, a high proportion of but fragmented green spaces would increase secondary air pollutants and enhance health risks; demonstrating the deficiency of traditional greening policy with primary focus on coverage ratio. This is the first research focusing on mediation effects of green structure characteristics on respiratory mortality, revealing that appropriate green structure planning can be a useful complementary strategy in environmental health management.
Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers
Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.
1977-01-01
DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713
A Modified Gibson Assembly Method for Cloning Large DNA Fragments with High GC Contents.
Li, Lei; Jiang, Weihong; Lu, Yinhua
2018-01-01
Gibson one-step, isothermal assembly method (Gibson assembly) can be used to efficiently assemble large DNA molecules by in vitro recombination involving a 5'-exonuclease, a DNA polymerase and a DNA ligase. In the past few years, this robust DNA assembly method has been widely applied to seamlessly construct genes, genetic pathways and even entire genomes. Here, we expand this method to clone large DNA fragments with high GC contents, such as antibiotic biosynthetic gene clusters from Streptomyces . Due to the low isothermal condition (50 °C) in the Gibson reaction system, the complementary overlaps with high GC contents are proposed to easily form mismatched linker pairings, which leads to low assembly efficiencies mainly due to vector self-ligation. So, we modified this classic method by the following two steps. First, a pair of universal terminal single-stranded DNA overhangs with high AT contents are added to the ends of the BAC vector. Second, two restriction enzyme sites are introduced into the respective sides of the designed overlaps to achieve the hierarchical assembly of large DNA molecules. The optimized Gibson assembly method facilitates fast acquisition of large DNA fragments with high GC contents from Streptomyces.
Dragan, Anatoliy I; Golberg, Karina; Elbaz, Amit; Marks, Robert; Zhang, Yongxia; Geddes, Chris D
2011-03-07
For analyses of DNA fragment sequences in solution we introduce a 2-color DNA assay, utilizing a combination of the Metal-Enhanced Fluorescence (MEF) effect and microwave-accelerated DNA hybridization. The assay is based on a new "Catch and Signal" technology, i.e. the simultaneous specific recognition of two target DNA sequences in one well by complementary anchor-ssDNAs, attached to silver island films (SiFs). It is shown that fluorescent labels (Alexa 488 and Alexa 594), covalently attached to ssDNA fragments, play the role of biosensor recognition probes, demonstrating strong response upon DNA hybridization, locating fluorophores in close proximity to silver NPs, which is ideal for MEF. Subsequently the emission dramatically increases, while the excited state lifetime decreases. It is also shown that 30s microwave irradiation of wells, containing DNA molecules, considerably (~1000-fold) speeds up the highly selective hybridization of DNA fragments at ambient temperature. The 2-color "Catch and Signal" DNA assay platform can radically expedite quantitative analysis of genome DNA sequences, creating a simple and fast bio-medical platform for nucleic acid analysis. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hendges, Carla D.; Melo, Geruza L.; Gonçalves, Alberto S.; Cerezer, Felipe O.; Cáceres, Nilton C.
2017-10-01
Neotropical primates are among the most well studied forest mammals concerning their population densities. However, few studies have evaluated the factors that influence the spatial variation in the population density of primates, which limits the possibility of inferences towards this animal group, especially at the landscape-level. Here, we compiled density data of Sapajus nigritus from 21 forest patches of the Brazilian Atlantic Forest. We tested the effects of climatic variables (temperature, precipitation), landscape attributes (number of patches, mean inter-patch isolation distance, matrix modification index) and patch size on the population density using linear models and the Akaike information criterion. Our findings showed that the density of S. nigritus is influenced by landscape attributes, particularly by fragmentation and matrix modification. Overall, moderately fragmented landscapes and those surrounded by matrices with intermediate indexes of temporal modification (i.e., crop plantations, forestry) are related to high densities of this species. These results support the assumptions that ecologically flexible species respond positively to forest fragmentation. However, the non-linear relationship between S. nigritus density and number of patches suggests that even the species that are most tolerant to forest cover changes seem to respond positively only at an intermediate level of habitat fragmentation, being dependent of both a moderate degree of forest cover and a high quality matrix. The results we found here can be a common response to fragmentation for those forest dweller species that are able to use the matrix as complementary foraging sites.
Sánchez-Martín, F M; Emiliani, E; Pueyo-Morer, E; Angerri-Feu, O; Sanguedolce, F; Millán, F; Villavicencio, H
2018-04-17
There are currently 3holmium laser, YAG (Ho:YAG) endolithotripsy procedures that are considered basic (fragmentation, pulverisation, "pop-corn" technique). We present the technique of fragmentation targeted at preferred discontinuities (FTPD), a new concept of endolithotripsy by Ho:YAG laser. The FTPD technique is based on the selective application of energy (targeting a specific preselected point) to an area that is visually prone to the formation of a fracture line or preferred discontinuity (conditioned by the anisotropy of the urolithiasis). The ideal energy regimen (setting) is a high range of working energy (2-3J) with a very low frequency range (5-8Hz) and short pulse width. Between January 2015 to February 2017, the FTPD technique was used in 37 procedures (7 NLP, 16 RIRS, 12 URS, 2 cystolithotomies), with a Ho:YAG laser (Lumenis Pulse 120H ® , Tel-Aviv, Israel). Maximum power used: 24W (3J/8Hz) with fibres of 365μ and 273μ (URS, RIRS), and 32W (4J/8Hz) with fibres of 550μ (NLP, cystolithotomy). Strategic improvement was achieved in all cases using the TFPD technique to continue the endolithotripsy or remove fragments. No complications were recorded after the use of this method. FTPD can be considered a complementary option in combination with the basic methods of fragmentation and pulverisation. In our experience, it constitutes significant progress in optimising the performance of Ho:YAG laser endolithotripsy. Copyright © 2018 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.
Vallat, Brinda; Madrid-Aliste, Carlos; Fiser, Andras
2015-08-01
Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.
Deckers, Susanne; Braren, Ingke; Greunke, Kerstin; Meyer, Nadine; Rühl, Dana; Bredehorst, Reinhard; Spillner, Edzard
2009-01-01
Nowadays, recombinant antibody and phage display technology enable the efficient generation of immunotools and a subsequent manipulation for optimized affinity, specificity or overall performance. Such advantages are of particular interest for haptenic target structures, such as TNT (2,4,6-trinitrotoluene). The toxicity of TNT and its breakdown products makes a reliable and fast detection of low levels in aqueous samples highly important. In the present study, we aimed for the generation of scFvs (single-chain antibody fragments) specific for the TNT-surrogate TNP (2,4,6-trinitrophenyl) and their subsequent production as monoclonal avian IgY immunoglobulins providing improved assay performance. Therefore we subjected a human synthetic scFv library to selection following different strategies. TNP-specific human antibody fragments could be identified, characterized for their primary structure and evaluated for production as soluble scFv in Escherichia coli. Additionally, a murine TNP-specific antibody fragment was obtained from the hybridoma 11B3; however, the prokaryotic expression level was found to be limited. To generate and evaluate immunoglobulin formats with superior characteristics, all recombinant antibody fragments then were converted into two different chimaeric bivalent IgY antibody formats. After expression in mammalian cells, the IgY antibodies were assessed for their reactivity towards TNT. The IgY antibodies generated on the basis of the combinatorial library proved to be useful for detection of TNT, thereby emphasizing the high potential of this approach for the development of detection devices for immunoassay-based techniques.
The caspase-generated cleavage product of Ets-1 p51 and Ets-1 p27, Cp17, induces apoptosis.
Choul-Li, Souhaila; Tulasne, David; Aumercier, Marc
2016-11-04
The transcription factor Ets-1 is involved in various physiological processes and invasive pathologies. Human Ets-1 exists under three isoforms: p51, the predominant full-length isoform, p42 and p27, shorter alternatively spliced isoforms. We have previously demonstrated that Ets-1 p51, but not the spliced variant Ets-1 p42, is processed by caspases in vitro and during apoptosis. However, the caspase cleavage of the second spliced variant Ets-1 p27 remains to investigate. In the present study, we demonstrate that Ets-1 p27 is a cleavage substrate of caspases. We show that Ets-1 p27 is processed in vitro by caspase-3, resulting in three C-terminal fragments Cp20, Cp17 and Cp14. Similarly, Ets-1 p27 was cleaved during apoptotic cell death induced by anisomycin, producing fragments consistent with those observed in in vitro cleavage assay. These fragments are generated by cleavage at three sites located in the exon VII-encoded region of Ets-1 p27. As a functional consequences, Cp17 fragment, the major cleavage product generated during apoptosis, induced itself apoptosis when transfected into cells. Our results show that Ets-1 p27 is cleaved in the same manner as Ets-1 p51 within the exon VII-encoded region, thus generating a stable C-terminal fragment that induces cell death by initiating apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Lazinski, David W; Camilli, Andrew
2013-01-01
The amplification of DNA fragments, cloned between user-defined 5' and 3' end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3' termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5' ends. The hybrid oligonucleotide has a user-defined sequence at its 5' end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5' user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA.
Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells.
Murmann, Andrea E; Gao, Quan Q; Putzbach, William E; Patel, Monal; Bartom, Elizabeth T; Law, Calvin Y; Bridgeman, Bryan; Chen, Siquan; McMahon, Kaylin M; Thaxton, C Shad; Peter, Marcus E
2018-03-01
Trinucleotide repeat (TNR) expansions in the genome cause a number of degenerative diseases. A prominent TNR expansion involves the triplet CAG in the huntingtin (HTT) gene responsible for Huntington's disease (HD). Pathology is caused by protein and RNA generated from the TNR regions including small siRNA-sized repeat fragments. An inverse correlation between the length of the repeats in HTT and cancer incidence has been reported for HD patients. We now show that siRNAs based on the CAG TNR are toxic to cancer cells by targeting genes that contain long reverse complementary TNRs in their open reading frames. Of the 60 siRNAs based on the different TNRs, the six members in the CAG/CUG family of related TNRs are the most toxic to both human and mouse cancer cells. siCAG/CUG TNR-based siRNAs induce cell death in vitro in all tested cancer cell lines and slow down tumor growth in a preclinical mouse model of ovarian cancer with no signs of toxicity to the mice. We propose to explore TNR-based siRNAs as a novel form of anticancer reagents. © 2018 The Authors.
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
2007-01-01
The large numbers of nucleus fragments observed are a spectacular illustration of the process of cascading fragmentation in progress, a concept introduced to interpret the properties of the Kreutz system of sungrazers and comet D/1993 F2. The objective is to describe the fragmentation sequence and hierarchy of comet 73P, the nature of the fragmentation process and observed events, and the expected future evolution of this comet. The orbital arc populated by the fragments refers to an interval of 3.74 days in the perihelion time. This result suggests that they all could be products (but not necessarily first-generation fragments) of two 1995 events, in early September (involving an enormous outburst) and at the beginning of November. The interval of perihelion times is equivalent to a range of about 2.5 m/s in separation velocity or 0.00012 the Sun's attraction in nongravitational deceleration. Their combined effect suggests minor orbital momentum changes acquired during fragmentation and decelerations compatible with survival over two revolutions about the Sun. Fragment B is a likely first-generation product of one of the 1995 events. From the behavior of the primary fragment C, 73P is not a dying comet, even though fragment B and others were episodically breaking up into many pieces. Each episode began with the sudden appearance of a starlike nucleus condensation and a rapidly expanding outburst, followed by a development of jets, and a gradual tailward extension of the fading condensation, until the discrete masses embedded in it could be resolved. In April-May, this debris traveled first to the southwest, but models show their eventual motion toward the projected orbit. Fainter fragments were imaged over limited time, apparently because of their erratic activity (interspersed with periods of dormancy) rather than improptu disintegration. A dust trail joining the fragments and reminiscent of comet 141P/Machholz suggests that cascading fragmentation exerts itself profoundly over an extremely broad mass range of particulate debris.
Jiao, Jing; Yang, Lijun; Zhang, Ying; Lu, Haojie
2015-08-21
The analysis of glycan is important for understanding cell biology and disease processes because the glycans play a key role in many important biological behaviors, such as cell division, cellular localization, tumor immunology and inflammation. Nevertheless, it is still hard work to analyze glycans by MALDI-MS, which generally stems from the inherent low abundance and the low ionization efficiency of glycans. Moreover, the difficulty in generating informative fragmentations further hinders glycans structure characterization. In this work, hydrazinonicotinic acid (HYNIC) was used as a novel derivatized reagent for improved and selective detection of glycans. Through tagging the reducing terminus of glycans with the diazanyl group of HYNIC, significant enhancement of the ionization efficiency of glycans was achieved. After derivatization, the signal to noise ratio (S/N) of the maltoheptaose was improved by more than one order of magnitude in positive mode. HYNIC derivatization also allowed the sensitive detection of sialylated glycan in negative mode, with a 15 fold enhancement of S/N. Interestingly, it is noteworthy that the HYNIC reagent not only effectively labeled the reducing end of glycans in the presence of tryptic peptides, but also suppressed the ionization of peptides, enabling the direct detection of glycans from glycoprotein without separation. Therefore, analysis of glycans became easier due to the omission of a pre-separation step. Importantly, by using different acid reagents as the catalyst, derivatized product signals corresponding to [M + Na](+) or [M + H](+) were obtained respectively, which yield complementary fragmentation patterns for the structure elucidation of glycans. Finally, more than 40 N-glycans were successfully detected in 10 μL human serum using this method.
Smirnov, Ivan; Carletti, Eugénie; Kurkova, Inna; Nachon, Florian; Nicolet, Yvain; Mitkevich, Vladimir A.; Débat, Hélène; Avalle, Bérangère; Belogurov, Alexey A.; Kuznetsov, Nikita; Reshetnyak, Andrey; Masson, Patrick; Tonevitsky, Alexander G.; Ponomarenko, Natalia; Makarov, Alexander A.; Friboulet, Alain; Tramontano, Alfonso; Gabibov, Alexander
2011-01-01
Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct. High-resolution crystallographic structures of unmodified and phosphonylated Fabs display a 15-Å-deep two-chamber cavity at the interface of variable light (VL) and variable heavy (VH) fragments having a nucleophilic tyrosine at the base of the site. The depth and structure of the pocket are atypical of antibodies in general but can be compared qualitatively with the catalytic site of cholinesterases. A structurally disordered heavy chain complementary determining region 3 loop, constituting a wall of the cleft, is stabilized after covalent modification by hydrogen bonding to the phosphonate tropinol moiety. These features and presteady state kinetics analysis indicate that an induced fit mechanism operates in this reaction. Mutations of residues located in this stabilized loop do not interfere with direct contacts to the organophosphate ligand but can interrogate second shell interactions, because the H3 loop has a conformation adjusted for binding. Kinetic and thermodynamic parameters along with computational docking support the active site model, including plasticity and simple catalytic components. Although relatively uncomplicated, this catalytic machinery displays both stereo- and chemical selectivity. The organophosphate pesticide paraoxon is hydrolyzed by covalent catalysis with rate-limiting dephosphorylation. This reactibody is, therefore, a kinetically selected protein template that has enzyme-like catalytic attributes. PMID:21896761
Ultraaccurate genome sequencing and haplotyping of single human cells.
Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun
2017-11-21
Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.
Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.
2015-01-01
A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461
Bythell, Benjamin J; Csonka, István P; Suhai, Sándor; Barofsky, Douglas F; Paizs, Béla
2010-11-25
The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated RGD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b(2) ions or facilely rearrange to form anhydrides from which both b(2) and b(2)+H(2)O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b(2) and b(2)+H(2)O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 14057-14065.). In addition to these findings we also report on the mechanisms for the formation of the b(1) ion, neutral loss (H(2)O, NH(3), guanidine) fragment ions, and the d(3) ion.
Computer Model Of Fragmentation Of Atomic Nuclei
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.
1995-01-01
High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.
Greenstein, Alexander; Sofer, Mario; Matzkin, Haim
2004-12-01
To evaluate the efficacy of the Duet lithotripter's novel design of two independent spark-plug generator/reflector systems focused at a common F2. The apparatus allows either simultaneous delivery of shockwaves from both generators (resulting in a per-shock energy delivery at F2 equal to that delivered by its single generator at about 24 kV), alternating (between the two generators), or single-generator delivery of shockwaves at various energy levels and rates. Eighty-five phantom gypsum stones (volume 786 mm3 each) were placed in a net-like basket and immersed in a specially designed waterbath coupled with the Duet lithotripter (Direx Medical Systems Ltd., Petach Tikva, Israel). Shockwaves were delivered at rates of either 60 or 120 per minute and at intensities of 16 or 22.8 kV (electrohydraulic). Energy was delivered either separately from each generator, in an alternating mode, or simultaneously from both generators. The number of shocks required to fragment the stones sufficiently to allow all of the pieces to fall through the basket holes (complete fragmentation) was recorded. The number of shocks required for complete fragmentation in the alternate mode (120 shocks/min, each generator rate 60/min; 22.8kV) was lower than with the single generator, 112 +/- 19 v 134 +/- 18 (at a rate of 120/min; 22.8 kV). The simultaneous mode of dual generator shockwave delivery was more effective than the traditional single generator (114 +/- 28 shocks at a rate of 120/min, 16 kV v 159 +/- 40 shocks at a rate 120/min; 22.8kV). The Duet lithotripter is more effective when used in a simultaneous or alternating mode than is the classical single mode of shock delivery, with the added benefit of shorter treatment time.
Detection of bacterial 16S rRNA using a molecular beacon-based X sensor
Gerasimova, Yulia V.; Kolpashchikov, Dmitry M.
2012-01-01
We demonstrate how a long structurally constrained RNA can be analyzed in homogeneous solution at ambient temperatures with high specificity using a sophisticated biosensor. The sensor consists of a molecular beacon probe as a signal reporter and two DNA adaptor strands, which have fragments complementary to the reporter and to the analyzed RNA. One adaptor strand uses its long RNA-binding arm to unwind the RNA secondary structure. Second adaptor strand with a short RNA-binding arm hybridizes only to a fully complementary site, thus providing high recognition specificity. Overall the three-component sensor and the target RNA form a four-stranded DNA crossover (X) structure. Using this sensor, E.coli 16S rRNA was detected in real time with the detection limit of ~ 0.17 nM. The high specificity of the analysis was proven by differentiating B.subtilus from E.coli 16S rRNA sequences. The sensor responds to the presence of the analyte within seconds. PMID:23021850
Xavier, Miguel J; Nixon, Brett; Roman, Shaun D; Aitken, Robert John
2018-01-01
Current approaches for DNA extraction and fragmentation from mammalian spermatozoa provide several challenges for the investigation of the oxidative stress burden carried in the genome of male gametes. Indeed, the potential introduction of oxidative DNA damage induced by reactive oxygen species, reducing agents (dithiothreitol or beta-mercaptoethanol), and DNA shearing techniques used in the preparation of samples for chromatin immunoprecipitation and next-generation sequencing serve to cofound the reliability and accuracy of the results obtained. Here we report optimised methodology that minimises, or completely eliminates, exposure to DNA damaging compounds during extraction and fragmentation procedures. Specifically, we show that Micrococcal nuclease (MNase) digestion prior to cellular lysis generates a greater DNA yield with minimal collateral oxidation while randomly fragmenting the entire paternal genome. This modified methodology represents a significant improvement over traditional fragmentation achieved via sonication in the preparation of genomic DNA from human spermatozoa for downstream applications, such as next-generation sequencing. We also present a redesigned bioinformatic pipeline framework adjusted to correctly analyse this form of data and detect statistically relevant targets of oxidation.
Advances in fragment-based drug discovery platforms.
Orita, Masaya; Warizaya, Masaichi; Amano, Yasushi; Ohno, Kazuki; Niimi, Tatsuya
2009-11-01
Fragment-based drug discovery (FBDD) has been established as a powerful alternative and complement to traditional high-throughput screening techniques for identifying drug leads. At present, this technique is widely used among academic groups as well as small biotech and large pharmaceutical companies. In recent years, > 10 new compounds developed with FBDD have entered clinical development, and more and more attention in the drug discovery field is being focused on this technique. Under the FBDD approach, a fragment library of relatively small compounds (molecular mass = 100 - 300 Da) is screened by various methods and the identified fragment hits which normally weakly bind to the target are used as starting points to generate more potent drug leads. Because FBDD is still a relatively new drug discovery technology, further developments and optimizations in screening platforms and fragment exploitation can be expected. This review summarizes recent advances in FBDD platforms and discusses the factors important for the successful application of this technique. Under the FBDD approach, both identifying the starting fragment hit to be developed and generating the drug lead from that starting fragment hit are important. Integration of various techniques, such as computational technology, X-ray crystallography, NMR, surface plasmon resonance, isothermal titration calorimetry, mass spectrometry and high-concentration screening, must be applied in a situation-appropriate manner.
Takita, Eiji; Kohda, Katsunori; Tomatsu, Hajime; Hanano, Shigeru; Moriya, Kanami; Hosouchi, Tsutomu; Sakurai, Nozomu; Suzuki, Hideyuki; Shinmyo, Atsuhiko; Shibata, Daisuke
2013-01-01
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation. PMID:23897972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705; Park, Jeong-Eun
2012-01-06
Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{submore » 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan
2013-04-27
Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwindmore » of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.« less
Fragment-based approaches to TB drugs.
Marchetti, Chiara; Chan, Daniel S H; Coyne, Anthony G; Abell, Chris
2018-02-01
Tuberculosis is an infectious disease associated with significant mortality and morbidity worldwide, particularly in developing countries. The rise of antibiotic resistance in Mycobacterium tuberculosis (Mtb) urgently demands the development of new drug leads to tackle resistant strains. Fragment-based methods have recently emerged at the forefront of pharmaceutical development as a means to generate more effective lead structures, via the identification of fragment molecules that form weak but high quality interactions with the target biomolecule and subsequent fragment optimization. This review highlights a number of novel inhibitors of Mtb targets that have been developed through fragment-based approaches in recent years.
NASA Technical Reports Server (NTRS)
Egli, M.; Usman, N.; Rich, A.
1993-01-01
We have crystallized three double-helical DNA-RNA chimeric duplexes and determined their structures by X-ray crystallography at resolutions between 2 and 2.25 A. The two self-complementary duplexes [r(G)d(CGTATACGC)]2 and [d(GCGT)r(A)d(TACGC)]2, as well as the Okazaki fragment d(GGGTATACGC).r(GCG)d(TATACCC), were found to adopt A-type conformations. The crystal structures are non-isomorphous, and the crystallographic environments for the three chimeras are different. A number of intramolecular interactions of the ribose 2'-hydroxyl groups contribute to the stabilization of the A-conformation. Hydrogen bonds between 2'-hydroxyls and 5'-oxygens or phosphate oxygens, in addition to the previously observed hydrogen bonds to 1'-oxygens of adjacent riboses and deoxyriboses, are observed in the DNA-RNA chimeric duplexes. The crystalline chimeric duplexes do not show a transition between the DNA A- and B-conformations. CD spectra suggest that the Okazaki fragment assumes an A-conformation in solution as well. In this molecule the three RNA residues may therefore lock the complete decamer in the A-conformation. Crystals of an all-DNA strand with the same sequence as the self-complementary chimeras show a morphology which is different from those of the chimera crystals. Moreover, the oligonucleotide does not match any of the sequence characteristics of DNAs usually adopting the A-conformation in the crystalline state (e.g., octamers with short alternating stretches of purines and pyrimidines). In DNA-RNA chimeric duplexes, it is therefore possible that a single RNA residue can drive the conformational equilibrium toward the A-conformation.
Diploid male dynamics under different numbers of sexual alleles and male dispersal abilities.
Faria, Luiz R R; Soares, Elaine Della Giustina; Carmo, Eduardo do; Oliveira, Paulo Murilo Castro de
2016-09-01
Insects in the order Hymenoptera (bees, wasps and ants) present an haplodiploid system of sexual determination in which fertilized eggs become females and unfertilized eggs males. Under single locus complementary sex-determination (sl-CSD) system, the sex of a specimen depends on the alleles at a single locus: when diploid, an individual will be a female if heterozygous and male if homozygous. Significant diploid male (DM) production may drive a population to an extinction scenario called "diploid male vortex". We aimed at studying the dynamics of populations of a sl-CSD organism under several combinations of two parameters: male flight abilities and number of sexual alleles. In these simulations, we evaluated the frequency of DM and a genetic diversity measure over 10,000 generations. The number of sexual alleles varied from 10 to 100 and, at each generation, a male offspring might fly to another random site within a varying radius R. Two main results emerge from our simulations: (i) the number of DM depends more on male flight radius than on the number of alleles; (ii) in large geographic regions, the effect of males flight radius on the allelic diversity turns out much less pronounced than in small regions. In other words, small regions where inbreeding normally appears recover genetic diversity due to large flight radii. These results may be particularly relevant when considering the population dynamics of species with increasingly limited dispersal ability (e.g., forest-dependent species of euglossine bees in fragmented landscapes).
Fragment-based discovery of a potent NAMPT inhibitor.
Korepanova, Alla; Longenecker, Kenton L; Pratt, Steve D; Panchal, Sanjay C; Clark, Richard F; Lake, Marc; Gopalakrishnan, Sujatha M; Raich, Diana; Sun, Chaohong; Petros, Andrew M
2017-12-12
NAMPT expression is elevated in many cancers, making this protein a potential target for anticancer therapy. We have carried out both NMR based and TR-FRET based fragment screens against human NAMPT and identified six novel binders with a range of potencies. Co-crystal structures were obtained for two of the fragments bound to NAMPT while for the other four fragments force-field driven docking was employed to generate a bound pose. Based on structural insights arising from comparison of the bound fragment poses to that of bound FK866 we were able to synthetically elaborate one of the fragments into a potent NAMPT inhibitor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2011-11-30
The jet fragmentation function and transverse profile for jets with 25 GeV < p Tjet < 500 GeV and |η jet| < 1.2 produced in proton–proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb –1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measuredmore » fragmentation function. Furthermore, none of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.« less
Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I.
Odelberg, S J; Weiss, R B; Hata, A; White, R
1995-01-01
Recombinant DNA molecules are often generated during the polymerase chain reaction (PCR) when partially homologous templates are available [e.g., see Pääbo et al. (1990) J. Biol. Chem. 265, 4718-4721]. It has been suggested that these recombinant molecules are a consequence of truncated extension products annealing to partially homologous templates on subsequent PCR cycles. However, we demonstrate here that recombinants can be generated during a single round of primer extension in the absence of subsequent heat denaturation, indicating that template-switching produces some of these recombinant molecules. Two types of template-switches were observed: (i) switches to pre-existing templates and (ii) switches to the complementary nascent strand. Recombination is reduced several fold when the complementary template strands are physically separated by attachment to streptavidin magnetic beads. This result supports the hypothesis that either the polymerase or at least one of the two extending strands switches templates during DNA synthesis and that interaction between the complementary template strands is necessary for efficient template-switching. Images PMID:7596836
Determining Complementary Properties with Quantum Clones.
Thekkadath, G S; Saaltink, R Y; Giner, L; Lundeen, J S
2017-08-04
In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.
Determining Complementary Properties with Quantum Clones
NASA Astrophysics Data System (ADS)
Thekkadath, G. S.; Saaltink, R. Y.; Giner, L.; Lundeen, J. S.
2017-08-01
In a classical world, simultaneous measurements of complementary properties (e.g., position and momentum) give a system's state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precision with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones' state corresponds to "twins" of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the system's state, just as in the classical case. We demonstrate this experimentally using polarized single photons.
Lakshmanan, Rajeswari; Wolff, Jeremy J.; Alvarado, Rudy; Loo, Joseph A.
2014-01-01
A comparison of different data-independent fragmentation methods combined with liquid chromatography (LC) coupled to high resolution Fourier-transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS) is presented for top-down MS of protein mixtures. Proteins composing the 20S and 19S proteasome complex and their post-translational modifications were identified using a 15-Tesla FT-ICR mass spectrometer. The data-independent fragmentation modes with LC timescales allowed for higher duty cycle measurements that better suit on-line LC-FT-ICR-MS. Protein top-down dissociation was effected by funnel-skimmer collisionally activated dissociation (FS-CAD) and CASI (Continuous Accumulation of Selected Ions)-CAD. The N-terminus for 9 out of the 14 20S proteasome proteins were found to be modified, and the α3 protein was found to be phosphorylated; these results are consistent with previous reports. Mass measurement accuracy with the LC-FT-ICR system for the 20–30 kDa 20S proteasome proteins was 1 ppm. The intact mass of the 100 kDa Rpn1 subunit from the 19S proteasome complex regulatory particle was measured with a deviation of 17 ppm. The CASI-CAD technique is a complementary tool for intact protein fragmentation and is an effective addition to the growing inventory of dissociation methods which are compatible with on-line protein separation coupled to FT-ICR MS. PMID:24478249
NASA Astrophysics Data System (ADS)
Herren, L. W.; Walters, L. J.; Beach, K. S.
2006-05-01
During the past decade, the relative abundance of the brown macroalgae Dictyota spp. has been high in the Florida Keys. Recent studies have shown that members of this genus successfully reproduce via vegetative fragmentation. To investigate the importance of fragmentation on the reef community, this study examined: (1) the degree of epiphytism on benthic organisms, (2) the rate of fragment production through fish foraging activities, (3) the likelihood of fragment entanglement, and (4) the fragment attachment and success rate. It was found that reef fish contributed substantially to the fragment pool; furthermore, most fish-produced fragments produced rhizoids and attached to sand grains within 24 h in the field. Fragments of Dictyota spp. most commonly became entangled around and then attached themselves to the green alga Halimeda tuna, and other Dictyota spp. These results suggest that vegetative fragmentation of Dictyota spp. plays an important role in the changing community structure on the Florida Keys reef tract.
The Range Safety Debris Catalog Analysis in Preparation for the Pad Abort One Flight Test
NASA Technical Reports Server (NTRS)
Kutty, Prasad; Pratt, William
2010-01-01
With each flight test a Range Safety Data Package is assembled to understand the potential consequences of various failure scenarios. Debris catalog analysis considers an overpressure failure of the Abort Motor and the resulting debris field created 1. Characterize debris fragments generated by failure: weight, shape, and area 2. Compute fragment ballistic coefficients 3. Compute fragment ejection velocities.
IMPACT fragmentation model developments
NASA Astrophysics Data System (ADS)
Sorge, Marlon E.; Mains, Deanna L.
2016-09-01
The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss a number of the modifications that have been made to improve IMPACT and why these modifications were made. Comparisons between observational data and the IMPACT predictions will be discussed in the context of these model revisions and the overall behavior of model results. A number of future areas of investigation that were uncovered in the process of the analysis efforts will also be reviewed.
NASA Astrophysics Data System (ADS)
Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.
2015-04-01
Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone represents a zone of multiple fragmentation, fluid flow, crystallization and quartz dissolution and precipitation, and is regarded as key example of large-scale cyclic interaction of these processes. The geological evidence of interactions between processes implies that feedbacks and highly non-linear mechanical behaviour generated the complex meso- and microstructures. The fault zone rheology may also therefore have been complex.
Kohl, Beate; Wagner, Carsten A; Huelseweh, Birgit; Busch, Andreas E; Werner, Andreas
1998-01-01
Renal handling of inorganic phosphate (Pi) involves a Na+-Pi cotransport system which is well conserved between vertebrates. The members of this protein family, denoted NaPi-II, share a topology with, it is thought, eight transmembrane domains. The transporter is proposed to be proteolytically cleaved within a large hydrophilic loop in vivo. The consequences of an interrupted backbone were tested by constructing cDNA clones encoding different N- (1-3 and 1-5) and C-terminal (4-8 and 6-8) complementary fragments of NaPi-II from winter flounder. When the cognate fragments were used in combination (1-3 plus 4-8; 1-5 plus 6-8) they comprised the full complement of the putative transporter domains. None of the four individual fragments or the 1-5 plus 6-8 combination when expressed in Xenopus oocytes increased Pi flux. Coexpression of fragments 1-3 plus 4-8 stimulated transport activity identical to that for expressed wild-type NaPi-II with regard to pH dependency and Km for Na+ and Pi binding; however, the maximal transport rate (vmax) was lower. Immunohistochemistry on cryosections confined the functionally active 1-3 plus 4-8 combination to the oocyte membrane. This was not the case for the 1-5 plus 6-8 combination or any of the individual fragments, all of which failed to induce fluorescence. A second immunohistochemical approach using intact oocytes allowed determination of the extracellular regions of the protein. Epitopes within the loop between transmembrane domains 3 and 4 enhanced fluorescence. Neither N- nor C-terminal tags induced fluorescence. PMID:9508800
Logan, A C; Chow, K P; George, A; Weinstein, P D; Cebra, J J
1991-03-01
Lymphoid tissue fragment cultures were established to analyze the differentiative processes among B cells in Peyer's patches (PP) and peripheral lymph nodes (PLN), especially those in germinal centers. PP cultures from both conventionally reared mice and formerly germ-free mice colonized with Morganella morganii could be maintained for greater than 12 days with continued B-cell division, especially among cells binding high levels of peanut agglutinin, a characteristic of germinal center cells. PLN cultures from conventionally reared mice injected with a heat-killed vaccine of M. morganii could be maintained for the same amount of time. Over this period, PP cultures continued to secrete immunoglobulin A (IgA) as well as smaller amounts of IgM. PP cultures from formerly germ-free mice colonized with M. morganii showed net increases of IgA antiphosphocholine (anti-PC) antibodies with avidities as high as those of the prototypic T15 monoclonal antibody. Similar PLN fragment cultures from conventionally reared mice given footpad injections of M. morganii showed net increases of IgM and IgG anti-PC antibodies in the culture fluid. Thus, although M. morganii stimulated lymphoid tissues in vivo to produce an anti-PC response in vitro when given by either the oral or the parenteral route, the antibody isotypes differed between PP and PLN fragment cultures. Fragment culturing may offer a complementary and simpler way to detect a local secretory IgA response than does either measuring IgA antibody in secretions or detecting IgA antibody in the cytoplasm of plasma cells in the lamina propria of gastrointestinal or respiratory tissue.
NASA Astrophysics Data System (ADS)
Neumann, Lars; Ritscher, Allegra; Müller, Gerhard; Hafenbradl, Doris
2009-08-01
For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.
Who cares about the history of science?
Chang, Hasok
2017-01-01
The history of science has many functions. Historians should consider how their work contributes to various functions, going beyond a simple desire to understand the past correctly. There are both internal and external functions of the history of science in relation to science itself; I focus here on the internal, as they tend to be neglected these days. The internal functions can be divided into orthodox and complementary. The orthodox function is to assist with the understanding of the content and methods of science as it is now practised. The complementary function is to generate and improve scientific knowledge where current science itself fails to do so. Complementary functions of the history of science include the raising of critical awareness, and the recovery and extension of past scientific knowledge that has become forgotten or neglected. These complementary functions are illustrated with some concrete examples.
2004-01-01
Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and also generate superoxide radicals (O2•−), and hence H2O2, via an oxidative burst. Reaction of MPO with H2O2 in the presence of chloride ions generates HOCl (the physiological mixture of hypochlorous acid and its anion present at pH 7.4). Exposure of glycosaminoglycans to a MPO–H2O2–Cl− system or reagent HOCl generates long-lived chloramides [R-NCl-C(O)-R′] derived from the glycosamine N-acetyl functions. Decomposition of these species by transition metal ions gives polymer-derived amidyl (nitrogen-centred) radicals [R-N•-C(O)-R′], polymer-derived carbon-centred radicals and site-specific strand scission. In the present study, we have shown that exposure of glycosaminoglycan chloramides to O2•− also promotes chloramide decomposition and glycosaminoglycan fragmentation. These processes are inhibited by superoxide dismutase, metal ion chelators and the metal ion-binding protein BSA, consistent with chloramide decomposition and polymer fragmentation occurring via O2•−-dependent one-electron reduction, possibly catalysed by trace metal ions. Polymer fragmentation induced by O2•− [generated by the superoxide thermal source 1, di-(4-carboxybenzyl)hyponitrite] was demonstrated to be entirely chloramide dependent as no fragmentation occurred with the native polymers or when the chloramides were quenched by prior treatment with methionine. EPR spin-trapping experiments using 5,5-dimethyl1-pyrroline-N-oxide and 2-methyl-2-nitrosopropane have provided evidence for both O2•− and polymer-derived carbon-centred radicals as intermediates. The results obtained are consistent with a mechanism involving one-electron reduction of the chloramides to yield polymer-derived amidyl radicals, which subsequently undergo intramolecular hydrogen atom abstraction reactions to give carbon-centred radicals. The latter undergo fragmentation reactions in a site-specific manner. This synergistic damage to glycosaminoglycans induced by HOCl and O2•− may be of significance at sites of inflammation where both oxidants are generated concurrently. PMID:15078224
Bruderer, Tobias; Varesio, Emmanuel; Hidasi, Anita O; Duchoslav, Eva; Burton, Lyle; Bonner, Ron; Hopfgartner, Gérard
2018-03-01
High-quality mass spectral libraries have become crucial in mass spectrometry-based metabolomics. Here, we investigate a workflow to generate accurate mass discrete and composite spectral libraries for metabolite identification and for SWATH mass spectrometry data processing. Discrete collision energy (5-100 eV) accurate mass spectra were collected for 532 metabolites from the human metabolome database (HMDB) by flow injection analysis and compiled into composite spectra over a large collision energy range (e.g., 10-70 eV). Full scan response factors were also calculated. Software tools based on accurate mass and predictive fragmentation were specially developed and found to be essential for construction and quality control of the spectral library. First, elemental compositions constrained by the elemental composition of the precursor ion were calculated for all fragments. Secondly, all possible fragments were generated from the compound structure and were filtered based on their elemental compositions. From the discrete spectra, it was possible to analyze the specific fragment form at each collision energy and it was found that a relatively large collision energy range (10-70 eV) gives informative MS/MS spectra for library searches. From the composite spectra, it was possible to characterize specific neutral losses as radical losses using in silico fragmentation. Radical losses (generating radical cations) were found to be more prominent than expected. From 532 metabolites, 489 provided a signal in positive mode [M+H] + and 483 in negative mode [M-H] - . MS/MS spectra were obtained for 399 compounds in positive mode and for 462 in negative mode; 329 metabolites generated suitable spectra in both modes. Using the spectral library, LC retention time, response factors to analyze data-independent LC-SWATH-MS data allowed the identification of 39 (positive mode) and 72 (negative mode) metabolites in a plasma pool sample (total 92 metabolites) where 81 previously were reported in HMDB to be found in plasma. Graphical abstract Library generation workflow for LC-SWATH MS, using collision energy spread, accurate mass, and fragment annotation.
Fragman: an R package for fragment analysis.
Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Salazar, Walter; Zalapa, Juan
2016-04-21
Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and quantitative trait loci (QTL) mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available software programs exist for fragment analysis; however, most of them are platform dependent and lack high-throughput applicability. We present the R package Fragman to serve as a freely available and platform independent resource for automatic scoring of DNA fragment lengths diversity panels and biparental populations. The program analyzes DNA fragment lengths generated in Applied Biosystems® (ABI) either manually or automatically by providing panels or bins. The package contains additional tools for converting the allele calls to GenAlEx, JoinMap® and OneMap software formats mainly used for genetic diversity and generating linkage maps in plant and animal populations. Easy plotting functions and multiplexing friendly capabilities are some of the strengths of this R package. Fragment analysis using a unique set of cranberry (Vaccinium macrocarpon) genotypes based on microsatellite markers is used to highlight the capabilities of Fragman. Fragman is a valuable new tool for genetic analysis. The package produces equivalent results to other popular software for fragment analysis while possessing unique advantages and the possibility of automation for high-throughput experiments by exploiting the power of R.
DNA attachment to support structures
Balhorn, Rodney L.; Barry, Christopher H.
2002-01-01
Microscopic beads or other structures are attached to nucleic acids (DNA) using a terminal transferase. The transferase adds labeled dideoxy nucleotide bases to the ends of linear strands of DNA. The labels, such as the antigens digoxigenin and biotin, bind to the antibody compounds or other appropriate complementary ligands, which are bound to the microscopic beads or other support structures. The method does not require the synthesis of a synthetic oligonucleotide probe. The method can be used to tag or label DNA even when the DNA has an unknown sequence, has blunt ends, or is a very large fragment (e.g., >500 kilobase pairs).
The Phenalenyl Free Radical - a Jahn-Teller D3H PAH
NASA Astrophysics Data System (ADS)
O'Connor, G. D.; Troy, T. P.; Roberts, D. A.; Chalyavi, N.; Fückel, B.; Crossley, M. J.; Nauta, K.; Schmidt, T. W.; Stanton, J. F.
2012-06-01
After benzene and naphthalene, the smallest polycyclic aromatic hydrocarbon bearing six-membered rings is the threefold-symmetric phenalenyl radical. Despite the fact that it is so fundamental, its electronic spectroscopy has not been rigorously scrutinized, in spite of growing interest in graphene fragments for molecular electronic applications. Here we used complementary laser spectroscopic techniques to probe the jet-cooled phenalenyl radical in vacuo. Its spectrum reveals the interplay between four electronic states that exhibit Jahn-Teller and pseudo-Jahn-Teller (Herzberg-Teller) vibronic coupling. The coupling mechanism has been elucidated by the application of various ab initio quantum-chemical techniques.
Bedard-Gilligan, Michele; Zoellner, Lori A.
2012-01-01
Several prominent theories of posttraumatic stress disorder (PTSD) posit that peritraumatic dissociation results in insufficient encoding of the trauma memory and that persistent dissociation prevents memory elaboration, resulting in memory fragmentation and PTSD. In this review, we summarize the empirical literature on peritraumatic and trait dissociation and trauma narrative fragmentation as measured by meta-memory and rater/objective coding. Across 16 studies to date, the association between dissociation and fragmentation was most prominent when examining peritraumatic dissociation and patient's own ratings of memory fragmentation. This relationship did not hold when examining trait dissociation or rater-coded or computer-generated measures of fragmentation. Thus, initial evidence points more toward a strong self-reported association between constructs that is not supported on more objective fragmentation coding. Measurement overlap, construct ambiguity, and exclusion of potential confounds may underlie lack of a strong association between dissociation and objective-rated fragmentation. PMID:22348400
Electron detachment dissociation of fluorescently labeled sialylated oligosaccharides.
Zhou, Wen; Håkansson, Kristina
2011-12-01
We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lin, Chiao-Chi; Lyu, Yadong; Yu, Li-Chieh; Gu, Xiaohong
2016-09-01
Channel cracking fragmentation testing and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were utilized to study mechanical and chemical degradation of a multilayered backsheet after outdoor and accelerated laboratory aging. A model sample of commercial PPE backsheet, namely polyethylene terephthalate/polyethylene terephthalate/ethylene vinyl acetate (PET/PET/EVA) was investigated. Outdoor aging was performed in Gaithersburg, Maryland, USA for up to 510 days, and complementary accelerated laboratory aging was conducted on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure). Fracture energy, mode I stress intensity factor and film strength were analyzed using an analytical model based on channel cracking fragmentation testing results. The correlation between mechanical and chemical degradation was discussed for both outdoor and accelerated laboratory aging. The results of this work provide preliminary understanding on failure mechanism of backsheets after weathering, laying the groundwork for linking outdoor and indoor accelerated laboratory testing for multilayer photovoltaic backsheets.
Arsen'eva, T E; Lebedeva, S A; Trukhachev, A L; Vasil'eva, E A; Ivanova, V S; Bozhko, N V
2010-01-01
To characterize species specificity of officially recommended tests for differentiation of Yersiniapestis and Yersinia pseudotuberculosis and propose additional tests allowing for more accurate identification. Natural, laboratory and typical strains oftwo Yersinia species were studied using microbiological, molecular and biochemical methods. For PCR species-specific primers complementary to certain fragments of chromosomal DNA of each species as well as to several plasmid genes of Y. pestis were used. It was shown that such attributes of Y. pestis as form of colonies, fermentation ofrhamnose, melibiose and urea, susceptibility to diagnostic phages, nutritional requirements could be lost in pestis bacterial species or detected in pseudotuberculosis species. Such attribute as mobility as well as positive result of CoA-reaction on fraction V antigen are more reliable. Guaranteed differentiation of typical and changed according to differential tests strains is provided only by PCR-analysis with primers vlml2for/ISrev216 and JS respectively, which are homologous to certain chromosome fragments of one of two Yersinia species.
De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
Schneider, G; Lee, M L; Stahl, M; Schneider, P
2000-07-01
An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.
Yeast Pif1 Accelerates Annealing of Complementary DNA Strands
2015-01-01
Pif1 is a helicase involved in the maintenance of nuclear and mitochondrial genomes in eukaryotes. Here we report a new activity of Saccharomyces cerevisiae Pif1, annealing of complementary DNA strands. We identified preferred substrates for annealing as those that generate a duplex product with a single-stranded overhang relative to a blunt end duplex. Importantly, we show that Pif1 can anneal DNA in the presence of ATP and Mg2+. Pif1-mediated annealing also occurs in the presence of single-stranded DNA binding proteins. Additionally, we show that partial duplex substrates with 3′-single-stranded overhangs such as those generated during double-strand break repair can be annealed by Pif1. PMID:25393406
Yeast Pif1 accelerates annealing of complementary DNA strands.
Ramanagoudr-Bhojappa, Ramanagouda; Byrd, Alicia K; Dahl, Christopher; Raney, Kevin D
2014-12-09
Pif1 is a helicase involved in the maintenance of nuclear and mitochondrial genomes in eukaryotes. Here we report a new activity of Saccharomyces cerevisiae Pif1, annealing of complementary DNA strands. We identified preferred substrates for annealing as those that generate a duplex product with a single-stranded overhang relative to a blunt end duplex. Importantly, we show that Pif1 can anneal DNA in the presence of ATP and Mg(2+). Pif1-mediated annealing also occurs in the presence of single-stranded DNA binding proteins. Additionally, we show that partial duplex substrates with 3'-single-stranded overhangs such as those generated during double-strand break repair can be annealed by Pif1.
Vollenhofer-Schrumpf, Sabine; Buresch, Ronald; Schinkinger, Manfred
2007-03-01
We have developed a new method for the detection of nucleic acid hybridization, based on a simple latex agglutination test that can be evaluated by the unaided eye. Nucleic acid, e.g., a polymerase chain reaction (PCR) product, is denatured and incubated with polystyrene beads carrying covalently bound complementary oligonucleotide sequences. Hybridization of the nucleic acids leads to aggregation of the latex particles, thereby verifying the presence of target sequence. The test is performed at room temperature, and results are available within 10 min. As a proof of principle, the hybridization/latex agglutination assay was applied to the detection of purified PCR fragments either specific for Salmonella spp. or a synthetic sequence, and to the detection of Salmonella enterica in artificially contaminated chicken samples. A few nanograms of purified PCR fragments were detectable. In artificially contaminated chicken samples, 3 colony-forming units (cfu)/25 g were detected in one of three replicates, and 30 cfu/25 g were detected in both of two replicates when samples for PCR were taken directly from primary enrichment, demonstrating the practical applicability of this test system. Even multiplex detection might be achievable. This novel kind of assay could be useful for a range of applications where hybridization of nucleic acids, e.g., PCR fragments, is to be detected.
NASA Astrophysics Data System (ADS)
Fragkaki, A. G.; Angelis, Y. S.; Tsantili-Kakoulidou, A.; Koupparis, M.; Georgakopoulos, C.
2009-08-01
Anabolic androgenic steroids (AAS) are included in the List of prohibited substances of the World Anti-Doping Agency (WADA) as substances abused to enhance athletic performance. Gas chromatography coupled to mass spectrometry (GC-MS) plays an important role in doping control analyses identifying AAS as their enolized-trimethylsilyl (TMS)-derivatives using the electron ionization (EI) mode. This paper explores the suitability of complementary GC-MS mass spectra and statistical analysis (principal component analysis, PCA and partial least squares-discriminant analysis, PLS-DA) to differentiate AAS as a function of their structural and conformational features expressed by their fragment ions. The results obtained showed that the application of PCA yielded a classification among the AAS molecules which became more apparent after applying PLS-DA to the dataset. The application of PLS-DA yielded a clear separation among the AAS molecules which were, thus, classified as: 1-ene-3-keto, 3-hydroxyl with saturated A-ring, 1-ene-3-hydroxyl, 4-ene-3-keto, 1,4-diene-3-keto and 3-keto with saturated A-ring anabolic steroids. The study of this paper also presents structurally diagnostic fragment ions and dissociation routes providing evidence for the presence of unknown AAS or chemically modified molecules known as designer steroids.
incaRNAfbinv: a web server for the fragment-based design of RNA sequences
Drory Retwitzer, Matan; Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme; Barash, Danny
2016-01-01
Abstract In recent years, new methods for computational RNA design have been developed and applied to various problems in synthetic biology and nanotechnology. Lately, there is considerable interest in incorporating essential biological information when solving the inverse RNA folding problem. Correspondingly, RNAfbinv aims at including biologically meaningful constraints and is the only program to-date that performs a fragment-based design of RNA sequences. In doing so it allows the design of sequences that do not necessarily exactly fold into the target, as long as the overall coarse-grained tree graph shape is preserved. Augmented by the weighted sampling algorithm of incaRNAtion, our web server called incaRNAfbinv implements the method devised in RNAfbinv and offers an interactive environment for the inverse folding of RNA using a fragment-based design approach. It takes as input: a target RNA secondary structure; optional sequence and motif constraints; optional target minimum free energy, neutrality and GC content. In addition to the design of synthetic regulatory sequences, it can be used as a pre-processing step for the detection of novel natural occurring RNAs. The two complementary methodologies RNAfbinv and incaRNAtion are merged together and fully implemented in our web server incaRNAfbinv, available at http://www.cs.bgu.ac.il/incaRNAfbinv. PMID:27185893
Zhang, Liangyi; Reilly, James P.
2009-01-01
157 nm photodissociation of N-linked glycopeptides was investigated in MALDI tandem time-of-flight (TOF) and linear ion trap mass spectrometers. Singly-charged glycopeptides yielded abundant peptide and glycan fragments. The peptide fragments included a series of x-, y-, v- and w- ions with the glycan remaining intact. These provide information about the peptide sequence and the glycosylation site. In addition to glycosidic fragments, abundant cross-ring glycan fragments that are not observed in low-energy CID were detected. These fragments provide insight into the glycan sequence and linkages. Doubly-charged glycopeptides generated by nanospray in the linear ion trap mass spectrometer also yielded peptide and glycan fragments. However, the former were dominated by low-energy fragments such as b- and y- type ions while glycan was primarily cleaved at glycosidic bonds. PMID:19113943
The impact of supernova fragments on the evolution of multisupernova remnants
NASA Technical Reports Server (NTRS)
Franco, J.; Ferrara, A.; Rozyczka, M.; Tenorio-Tgale, G.; Cox, D. P.
1993-01-01
Analytical approximations and 2D hydrodynamical simulations are used to examine the interaction of supernova fragments with the internal structure of large multisupernova remnants (MSRs). The fragments are thermalized by reverse shocks generated in the interaction with the MSR interior, which is assumed to be hot and rarefied. The evolution is divided into two stages: before and after reaching a reference distance, R(E), from the explosion site. As the density of the expanding fragment drops, the reverse shock accelerates, and, when the distance R(E) is reached, it begins to effectively erode the fragment. At some selected evolutionary times, the X-ray emission from the shocked fragment is also calculated. The direct bombardment of the MRS shell by the shocked fragment has a series of important consequences: it excites, punctures, and deforms the expanding shell.
Tugnoli, Alessandro; Gubinelli, Gianfilippo; Landucci, Gabriele; Cozzani, Valerio
2014-08-30
The evaluation of the initial direction and velocity of the fragments generated in the fragmentation of a vessel due to internal pressure is an important information in the assessment of damage caused by fragments, in particular within the quantitative risk assessment (QRA) of chemical and process plants. In the present study an approach is proposed to the identification and validation of probability density functions (pdfs) for the initial direction of the fragments. A detailed review of a large number of past accidents provided the background information for the validation procedure. A specific method was developed for the validation of the proposed pdfs. Validated pdfs were obtained for both the vertical and horizontal angles of projection and for the initial velocity of the fragments. Copyright © 2014 Elsevier B.V. All rights reserved.
Pascolutti, Mauro; Campitelli, Marc; Nguyen, Bao; Pham, Ngoc; Gorse, Alain-Dominique; Quinn, Ronald J.
2015-01-01
Natural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products). PCA analysis was used to illustrate the positioning of the fragment subset within the property space of the non-fragment sized natural products in the dataset. Structural diversity was analysed by three distinct methods: atom function analysis, using pharmacophore fingerprints, atom type analysis, using radial fingerprints, and scaffold analysis. Small pharmacophore triplets, representing the range of chemical features present in natural products that are capable of engaging in molecular interactions with small, contiguous areas of protein binding surfaces, were analysed. We demonstrate that fragment-sized natural products capture more than half of the small pharmacophore triplet diversity observed in non fragment-sized natural product datasets. Atom type analysis using radial fingerprints was represented by a self-organizing map. We examined the structural diversity of non-flat fragment-sized natural product scaffolds, rich in sp3 configured centres. From these results we demonstrate that 2-ring fragment-sized natural products effectively balance the opposing characteristics of minimal complexity and broad structural diversity when compared to the larger, more complex fragment-like natural products. These naturally-derived fragments could be used as the starting point for the generation of a highly diverse library with the scope for further medicinal chemistry elaboration due to their minimal structural complexity. This study highlights the possibility to capture a high proportion of the individual molecular interaction motifs embedded within natural products using a fragment screening library spanning 422 structural clusters and comprised of approximately 2800 natural products. PMID:25902039
A strategic account of the cue-depreciation effect.
Thapar, A; Greene, R L
1995-12-01
A word fragment is less likely to be completed if it is presented incrementally (R______P, R____R _ P, R_I__R_P, R_I__R O P) than if it is presented all at once (e.g., R_I__R O P). This phenomenon is known as the cue-depreciation effect. The present study examined the role of strategies in this phenomenon. The magnitude of the cue-depreciation effect was increased when subjects were asked to adopt a passive generation approach to word fragment completion. The current study investigated an extension of Bruner and Potter's (1964) early hypothesis-generation account of the cue-depreciation effect. Findings demonstrated the influence of completion strategies for a general theory of fragment completion.
Transmission Infrastructure | Energy Analysis | NREL
aggregating geothermal with other complementary generating technologies, in renewable energy zones infrastructure planning and expansion to enable large-scale deployment of renewable energy in the future. Large Energy, FERC, NERC, and the regional entities, transmission providers, generating companies, utilities
Varnes, Jeffrey G; Geschwindner, Stefan; Holmquist, Christopher R; Forst, Janet; Wang, Xia; Dekker, Niek; Scott, Clay W; Tian, Gaochao; Wood, Michael W; Albert, Jeffrey S
2016-01-01
Fragment-based drug design (FBDD) relies on direct elaboration of fragment hits and typically requires high resolution structural information to guide optimization. In fragment-assisted drug discovery (FADD), fragments provide information to guide selection and design but do not serve as starting points for elaboration. We describe FADD and high-throughput screening (HTS) campaign strategies conducted in parallel against PDE10A where fragment hit co-crystallography was not available. The fragment screen led to prioritized fragment hits (IC50's ∼500μM), which were used to generate a hypothetical core scaffold. Application of this scaffold as a filter to HTS output afforded a 4μM hit, which, after preparation of a small number of analogs, was elaborated into a 16nM lead. This approach highlights the strength of FADD, as fragment methods were applied despite the absence of co-crystallographical information to efficiently identify a lead compound for further optimization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recombinant Kinase Production and Fragment Screening by NMR Spectroscopy.
Han, Byeonggu; Ahn, Hee-Chul
2016-01-01
During the past decade fragment-based drug discovery (FBDD) has rapidly evolved and several drugs or drug candidates developed by FBDD approach are clinically in use or in clinical trials. For example, vemurafenib, a V600E mutated BRAF inhibitor, was developed by utilizing FBDD approach and approved by FDA in 2011. In FBDD, screening of fragments is the starting step for identification of hits and lead generation. Fragment screening usually relies on biophysical techniques by which the protein-bound small molecules can be detected. NMR spectroscopy has been extensively used to study the molecular interaction between the protein and the ligand, and has many advantages in fragment screening over other biophysical techniques. This chapter describes the practical aspects of fragment screening by saturation transfer difference NMR.
Apparatus and method for igniting an in situ oil shale retort
Chambers, Carlon C.
1981-01-01
A method and apparatus for conducting such method are disclosed for igniting a fragmented permeable mass of formation particles in an in situ oil shale retort. The method is conducted by forming a hole through unfragmented formation to the fragmented mass. An oxygen-containing gas is introduced into the hole. A fuel is introduced into a portion of the hole spaced apart from the fragmented mass. The fuel and oxygen-containing gas mix forming a combustible mixture which is ignited for establishing a combustion zone in a portion of the hole spaced apart from the fragmented mass. The hot gas generated in the combustion zone is conducted from the hole into the fragmented mass for heating a portion of the fragmented mass above an ignition temperature of oil shale.
The 'retro-design' concept for novel kinase inhibitors.
Müller, Gerhard; Sennhenn, Peter C; Woodcock, Timothy; Neumann, Lars
2010-07-01
Protein kinases are among the most attractive therapeutic targets for a broad range of diseases. This feature review highlights and classifies the main design principles employed to generate active and selective kinase inhibitors. In particular, emphasis is focused on a fragment-based lead-generation approach, which constitutes a novel design method for developing type II kinase inhibitors with distinct binding kinetic attributes. This 'retro-design' strategy relies on a customized fragment library, and contrasts the traditional approach used in the design of type II inhibitors.
Role of a Novel Family of Short RNAs, tRFs, in Prostate Cancer
2017-08-01
SUPPLEMENTARY NOTES 14. ABSTRACT tRFs are precisely generated fragments of tRNA which are shown to function by associating to Argonaute proteins . Unlike...In 2009, Prof. Dutta and colleagues discovered a tRNA related fragment generated from tRNA trailer sequence involved in cell proliferation in...different organisms by mining a number of small RNA-Seq data (Kumar et al. 2014). He also showed that tRFs bind to Argonaute proteins and interacts with its
Construction of Biologically Functional Bacterial Plasmids In Vitro
Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.
1973-01-01
The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039
Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population
Letcher, Benjamin H.; Nislow, Keith H.; Coombs, Jason A.; O'Donnell, Matthew J.; Dubreuil, Todd L.
2007-01-01
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∼45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation. PMID:18188404
Population response to habitat fragmentation in a stream-dwelling brook trout population
Letcher, B.H.; Nislow, K.H.; Coombs, J.A.; O'Donnell, M. J.; Dubreuil, T.L.
2007-01-01
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (-45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tribuory populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can 'rescue' isolated populations, particularly in one-dimensional stream networks where both natural and anthropegenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation.
Conversion of scFv peptide-binding specificity for crystal chaperone development
Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.
2011-01-01
In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 Å resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a ∼52 Å channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries. PMID:21217145
Critical Assessment of Small Molecule Identification 2016: automated methods.
Schymanski, Emma L; Ruttkies, Christoph; Krauss, Martin; Brouard, Céline; Kind, Tobias; Dührkop, Kai; Allen, Felicity; Vaniya, Arpana; Verdegem, Dries; Böcker, Sebastian; Rousu, Juho; Shen, Huibin; Tsugawa, Hiroshi; Sajed, Tanvir; Fiehn, Oliver; Ghesquière, Bart; Neumann, Steffen
2017-03-27
The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest ( www.casmi-contest.org ) was held in 2016, with two new categories for automated methods. This article covers the 208 challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/identification. The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in "Category 2: Best Automatic Structural Identification-In Silico Fragmentation Only", won by Team Brouard with 41% challenge wins. The winner of "Category 3: Best Automatic Structural Identification-Full Information" was Team Kind (MS-FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and chemistry-based approaches are shown to perform in complementary ways. The improvement in (semi-)automated fragmentation methods for small molecule identification has been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate numbers, open up great possibilities for high-throughput annotation of untargeted analysis for "known unknowns". As more high quality training data becomes available, the improvements in machine learning methods will likely continue, but the alternative approaches still provide valuable complementary information. Improved integration of experimental context will also improve identification success further for "real life" annotations. The true "unknown unknowns" remain to be evaluated in future CASMI contests. Graphical abstract .
Fragment-to-Lead Medicinal Chemistry Publications in 2015.
Johnson, Christopher N; Erlanson, Daniel A; Murray, Christopher W; Rees, David C
2017-01-12
Fragment-based drug discovery (FBDD) is now well-established as a technology for generating new chemical leads and drugs. This Miniperspective provides a tabulated overview of the fragment-to-lead literature published in the year 2015, together with a commentary on trends observed across the FBDD field during this time. It is hoped that this tabulated summary will provide a useful point of reference for both FBDD practitioners and the wider medicinal chemistry community.
NASA Astrophysics Data System (ADS)
Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy
2018-05-01
Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.
Self-organized mechano-chemical dynamics in amoeboid locomotion of Physarum fragments
NASA Astrophysics Data System (ADS)
Zhang, Shun; Guy, Robert D.; Lasheras, Juan C.; del Álamo, Juan C.
2017-05-01
The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (∼100 μm) fragments of the true slime mold Physarum polycephalum. In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating Physarum fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating Physarum fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that Physarum fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatio-temporal patterns of calcium concentration that regulate the generation of contractile forces.
NASA Astrophysics Data System (ADS)
Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy
2018-01-01
Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.
Zhou, Zhan; Zhang, Jing; Zhang, Yan; Ma, Guanghui; Su, Zhiguo
2016-01-20
Conventional preparation strategies for antibody-drug conjugates (ADCs) result in heterogeneous products with various molecular sizes and species. In this study, we developed a homogeneous preparation strategy by site-specific conjugation of the anticancer drug with an antibody fragment. The model drug doxorubicin (DOX) was coupled to the Fab' fragment of anti-CD20 IgG at its permissive sites through a heterotelechelic PEG linker, generating an antibody fragment-drug conjugate (AFDC). Anti-CD20 IgG was digested and reduced specifically with β-mercaptoethylamine to generate the Fab' fragment with two free mercapto groups in its hinge region. Meanwhile, DOX was conjugated with α-succinimidylsuccinate ω-maleimide polyethylene glycol (NHS-PEG-MAL) to form MAL-PEG-DOX, which was subsequently linked to the free mercapto containing Fab' fragment to form a Fab'-PEG-DOX conjugate. The dual site-specific bioconjugation was achieved through the combination of highly selective reduction of IgG and introduction of heterotelechelic PEG linker. The resulting AFDC provides an utterly homogeneous product, with a definite ratio of one fragment to two drugs. Laser confocal microscopy and cell ELISA revealed that the AFDC could accumulate in the antigen-positive Daudi tumor cell. In addition, the Fab'-PEG-DOX retained appreciable targeting ability and improved antitumor activity, demonstrating an excellent therapeutic effect on the lymphoma mice model for better cure rate and significantly reduced side effects.
Ash production by attrition in volcanic conduits and plumes.
Jones, T J; Russell, J K
2017-07-17
Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (<15 min) thereby rapidly raising the fractal dimension of tephra deposits. Furthermore, a new metric, the Entropy of Information, is introduced to quantify the degree of attrition (secondary fragmentation) from grain size data. Attrition elevates fine ash production which, in turn, has consequences for eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.
Composite Overwrap Fragmentation Observations, Concerns, and Recommendations
NASA Technical Reports Server (NTRS)
Bangham, Mike; Hovater, Mary
2017-01-01
A series of test activities has raised some concerns about the generation of orbital debris caused by failures of composite overwrapped pressure vessels (COPVs). These tests have indicated that a large number of composite fragments can be produced by either pressure burst failures or by high-speed impacts. A review of prior high-speed tests with COPV indicates that other tests have produced large numbers of composite fragments. As was the case with the test referenced here, the tests tended to produce a large number of small composite fragments with relatively low velocities induced by the impact and or gas expansion.
Searching Fragment Spaces with feature trees.
Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger
2009-02-01
Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.
Xu, Yi-Fan; Lu, Wenyun; Rabinowitz, Joshua D.
2015-01-15
Liquid chromatography–mass spectrometry (LC-MS) technology allows for rapid quantitation of cellular metabolites, with metabolites identified by mass spectrometry and chromatographic retention time. Recently, with the development of rapid scanning high-resolution high accuracy mass spectrometers and the desire for high throughput screening, minimal or no chromatographic separation has become increasingly popular. Furthermore, when analyzing complex cellular extracts, however, the lack of chromatographic separation could potentially result in misannotation of structurally related metabolites. Here, we show that, even using electrospray ionization, a soft ionization method, in-source fragmentation generates unwanted byproducts of identical mass to common metabolites. For example, nucleotide-triphosphates generate nucleotide-diphosphates, andmore » hexose-phosphates generate triose-phosphates. We also evaluated yeast intracellular metabolite extracts and found more than 20 cases of in-source fragments that mimic common metabolites. Finally and accordingly, chromatographic separation is required for accurate quantitation of many common cellular metabolites.« less
Universality of fragment shapes.
Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea
2015-03-16
The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.
NASA Technical Reports Server (NTRS)
Gouge, Michael F.
2011-01-01
Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.
Universality of fragment shapes
Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea
2015-01-01
The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300
Lazinski, David W.; Camilli, Andrew
2013-01-01
The amplification of DNA fragments, cloned between user-defined 5′ and 3′ end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3′ termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5′ ends. The hybrid oligonucleotide has a user-defined sequence at its 5′ end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5′ user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA. PMID:23311318
Sun, Xiaoyong; Wang, Lin; Ding, Jiechao; Wang, Yanru; Wang, Jiansheng; Zhang, Xiaoyang; Che, Yulei; Liu, Ziwei; Zhang, Xinran; Ye, Jiazhen; Wang, Jie; Sablok, Gaurav; Deng, Zhiping; Zhao, Hongwei
2016-10-01
A new regulatory class of small endogenous RNAs called circular RNAs (circRNAs) has been described as miRNA sponges in animals. Using 16 Arabidopsis thaliana RNA-Seq data sets, we identified 803 circRNAs in RNase R-/non-RNase R-treated samples. The results revealed the following features: Canonical and noncanonical splicing can generate circRNAs; chloroplasts are a hotspot for circRNA generation; furthermore, limited complementary sequences exist not only in introns, but also in the sequences flanking splice sites. The latter finding suggests that multiple combinations between complementary sequences may facilitate the formation of the circular structure. Our results contribute to a better understanding of this novel class of plant circRNAs. © 2016 Federation of European Biochemical Societies.
Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne
2013-10-31
Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.
NASA Astrophysics Data System (ADS)
Hari, Yvonne; Dugovič, Branislav; Istrate, Alena; Fignolé, Annabel; Leumann, Christian J.; Schürch, Stefan
2016-07-01
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.
Busti, Elena; Bordoni, Roberta; Castiglioni, Bianca; Monciardini, Paolo; Sosio, Margherita; Donadio, Stefano; Consolandi, Clarissa; Rossi Bernardi, Luigi; Battaglia, Cristina; De Bellis, Gianluca
2002-01-01
Background PCR amplification of bacterial 16S rRNA genes provides the most comprehensive and flexible means of sampling bacterial communities. Sequence analysis of these cloned fragments can provide a qualitative and quantitative insight of the microbial population under scrutiny although this approach is not suited to large-scale screenings. Other methods, such as denaturing gradient gel electrophoresis, heteroduplex or terminal restriction fragment analysis are rapid and therefore amenable to field-scale experiments. A very recent addition to these analytical tools is represented by microarray technology. Results Here we present our results using a Universal DNA Microarray approach as an analytical tool for bacterial discrimination. The proposed procedure is based on the properties of the DNA ligation reaction and requires the design of two probes specific for each target sequence. One oligo carries a fluorescent label and the other a unique sequence (cZipCode or complementary ZipCode) which identifies a ligation product. Ligated fragments, obtained in presence of a proper template (a PCR amplified fragment of the 16s rRNA gene) contain either the fluorescent label or the unique sequence and therefore are addressed to the location on the microarray where the ZipCode sequence has been spotted. Such an array is therefore "Universal" being unrelated to a specific molecular analysis. Here we present the design of probes specific for some groups of bacteria and their application to bacterial diagnostics. Conclusions The combined use of selective probes, ligation reaction and the Universal Array approach yielded an analytical procedure with a good power of discrimination among bacteria. PMID:12243651
Modeling extracellular matrix degradation balance with proteinase/transglutaminase cycle.
Larreta-Garde, Veronique; Berry, Hugues
2002-07-07
Extracellular matrix mass balance is implied in many physiological and pathological events, such as metastasis dissemination. Widely studied, its destructive part is mainly catalysed by extracellular proteinases. Conversely, the properties of the constructive part are less obvious, cellular neo-synthesis being usually considered as its only element. In this paper, we introduce the action of transglutaminase in a mathematical model for extracellular matrix remodeling. This extracellular enzyme, catalysing intermolecular protein cross-linking, is considered here as a reverse proteinase as far as the extracellular matrix physical state is concerned. The model is based on a proteinase/transglutaminase cycle interconverting insoluble matrix and soluble proteolysis fragments, with regulation of cellular proteinase expression by the fragments. Under "closed" (batch) conditions, i.e. neglecting matrix influx and fragment efflux from the system, the model is bistable, with reversible hysteresis. Extracellular matrix proteins concentration abruptly switches from low to high levels when transglutaminase activity exceeds a threshold value. Proteinase concentration usually follows the reverse complementary kinetics, but can become apparently uncoupled from extracellular matrix concentration for some parameter values. When matrix production by the cells and fragment degradation are taken into account, the dynamics change to sustained oscillations because of the emergence of a stable limit cycle. Transitions out of and into oscillation areas are controlled by the model parameters. Biological interpretation indicates that these oscillations could represent the normal homeostatic situation, whereas the other exhibited dynamics can be related to pathologies such as tumor invasion or fibrosis. These results allow to discuss the insights that the model could contribute to the comprehension of these complex biological events.
An anti-DNA antibody prefers damaged dsDNA over native.
Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I
2017-01-01
DNA-protein interactions, including DNA-antibody complexes, have both fundamental and practical significance. In particular, antibodies against double-stranded DNA play an important role in the pathogenesis of autoimmune diseases. Elucidation of structural mechanisms of an antigen recognition and interaction of anti-DNA antibodies provides a basis for understanding the role of DNA-containing immune complexes in human pathologies and for new treatments. Here we used Molecular Dynamic simulations of bimolecular complexes of a segment of dsDNA with a monoclonal anti-DNA antibody's Fab-fragment to obtain detailed structural and physical characteristics of the dynamic intermolecular interactions. Using a computationally modified crystal structure of a Fab-DNA complex (PDB: 3VW3), we studied in silico equilibrium Molecular Dynamics of the Fab-fragment associated with two homologous dsDNA fragments, containing or not containing dimerized thymine, a product of DNA photodamage. The Fab-fragment interactions with the thymine dimer-containing DNA was thermodynamically more stable than with the native DNA. The amino acid residues constituting a paratope and the complementary nucleotide epitopes for both Fab-DNA constructs were identified. Stacking and electrostatic interactions were shown to play the main role in the antibody-dsDNA contacts, while hydrogen bonds were less significant. The aggregate of data show that the chemically modified dsDNA (containing a covalent thymine dimer) has a higher affinity toward the antibody and forms a stronger immune complex. These findings provide a mechanistic insight into formation and properties of the pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus, associated with skin photosensibilization and DNA photodamage.
Decay of Plutonium isotopes via spontaneous and heavy-ion induced fission paths
NASA Astrophysics Data System (ADS)
Sharma, Kanishka; Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.
2018-04-01
Based on the collective clusterization approach, we have extended our earlier study on α-decay, exotic cluster-decay, and heavy particle radioactivity, to the phenomenon of spontaneous fission (SF) in the ground-state (g.s.) decays of even mass 234-246Pu parents. The calculations for the SF half-lives of these Pu-isotopes have been made within the framework of preformed cluster model (PCM), both for spherical as well as β2-deformed choices of shapes, and a comparison is made with the relevant available experimental data, which prefer spherical shapes. The importance of the orientation degree of freedom (hot compact or cold elongated configurations) is also explored. Next, in order to look for the exclusive role of heavy-ion induced fission, the dynamics of 6He + 238U reaction forming 244Pu* is studied over the center of mass energy range of E c . m . = 15.0- 28.8MeV, using the dynamical cluster-decay model (DCM), an extension of the PCM with temperature T- and angular momentum ℓ-effects included. The β2-deformed fragments of 244Pu* in the mass range A2 = 106- 113 (plus their complementary heavy fragments), corresponding to asymmetric fission peaks, are found contributing towards the fission cross-section. Finally, the potential energy surfaces and barrier modification effects are presented for the relative comparison of spontaneous and the heavy-ion induced fission processes. Both are found to behave similar with respect to the probable emission of fragments and hence point out to the shell closure property of the decay fragments.
Adding Concrete Syntax to a Prolog-Based Program Synthesis System
NASA Technical Reports Server (NTRS)
Fischer, Bernd; Visser, Eelco
2003-01-01
Program generation and transformation systems manipulate large, pa- rameterized object language fragments. Support for user-definable concrete syntax makes this easier but is typically restricted to certain object and meta languages. We show how Prolog can be retrofitted with concrete syntax and describe how a seamless interaction of concrete syntax fragments with an existing legacy meta-programming system based on abstract syntax is achieved. We apply the approach to gradually migrate the schemas of the AUTOBAYES program synthesis system to concrete syntax. Fit experiences show that this can result in a considerable reduction of the code size and an improved readability of the code. In particular, abstracting out fresh-variable generation and second-order term construction allows the formulation of larger continuous fragments and improves the locality in the schemas.
Kent, Angela D.; Smith, Dan J.; Benson, Barbara J.; Triplett, Eric W.
2003-01-01
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library. PMID:14602639
Musi, Valeria; Spolaore, Barbara; Picotti, Paola; Zambonin, Marcello; De Filippis, Vincenzo; Fontana, Angelo
2004-05-25
Limited proteolysis of the 153-residue chain of horse apomyoglobin (apoMb) by thermolysin results in the selective cleavage of the peptide bond Pro88-Leu89. The N-terminal (residues 1-88) and C-terminal (residues 89-153) fragments of apoMb were isolated to homogeneity and their conformational and association properties investigated in detail. Far-UV circular dichroism (CD) measurements revealed that both fragments in isolation acquire a high content of helical secondary structure, while near-UV CD indicated the absence of tertiary structure. A 1:1 mixture of the fragments leads to a tight noncovalent protein complex (1-88/89-153, nicked apoMb), characterized by secondary and tertiary structures similar to those of intact apoMb. The apoMb complex binds heme in a nativelike manner, as given by CD measurements in the Soret region. Second-derivative absorption spectra in the 250-300 nm region provided evidence that the degree of exposure of Tyr residues in the nicked species is similar to that of the intact protein at neutral pH. Also, the microenvironment of Trp residues, located in positions 7 and 14 of the 153-residue chain of the protein, is similar in both protein species, as given by fluorescence emission data. Moreover, in analogy to intact apoMb, the nicked protein binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonate (ANS). Taken together, our results indicate that the two proteolytic fragments 1-88 and 89-153 of apoMb adopt partly folded states characterized by sufficiently nativelike conformational features that promote their specific association and mutual stabilization into a nicked protein species much resembling in its structural features intact apoMb. It is suggested that the formation of a noncovalent complex upon fragment complementation can mimic the protein folding process of the entire protein chain, with the difference that the folding of the complementary fragments is an intermolecular process. In particular, this study emphasizes the importance of interactions between marginally stable elements of secondary structure in promoting the tertiary contacts of a native protein. Considering that apoMb has been extensively used as a paradigm in protein folding studies for the past few decades, the novel fragment complementing system of apoMb here described appears to be very useful for investigating the initial as well as late events in protein folding.
Simulations Using Random-Generated DNA and RNA Sequences
ERIC Educational Resources Information Center
Bryce, C. F. A.
1977-01-01
Using a very simple computer program written in BASIC, a very large number of random-generated DNA or RNA sequences are obtained. Students use these sequences to predict complementary sequences and translational products, evaluate base compositions, determine frequencies of particular triplet codons, and suggest possible secondary structures.…
Generating Customized Verifiers for Automatically Generated Code
NASA Technical Reports Server (NTRS)
Denney, Ewen; Fischer, Bernd
2008-01-01
Program verification using Hoare-style techniques requires many logical annotations. We have previously developed a generic annotation inference algorithm that weaves in all annotations required to certify safety properties for automatically generated code. It uses patterns to capture generator- and property-specific code idioms and property-specific meta-program fragments to construct the annotations. The algorithm is customized by specifying the code patterns and integrating them with the meta-program fragments for annotation construction. However, this is difficult since it involves tedious and error-prone low-level term manipulations. Here, we describe an annotation schema compiler that largely automates this customization task using generative techniques. It takes a collection of high-level declarative annotation schemas tailored towards a specific code generator and safety property, and generates all customized analysis functions and glue code required for interfacing with the generic algorithm core, thus effectively creating a customized annotation inference algorithm. The compiler raises the level of abstraction and simplifies schema development and maintenance. It also takes care of some more routine aspects of formulating patterns and schemas, in particular handling of irrelevant program fragments and irrelevant variance in the program structure, which reduces the size, complexity, and number of different patterns and annotation schemas that are required. The improvements described here make it easier and faster to customize the system to a new safety property or a new generator, and we demonstrate this by customizing it to certify frame safety of space flight navigation code that was automatically generated from Simulink models by MathWorks' Real-Time Workshop.
Secondary Ion Mass Spectrometry Imaging of Tissues, Cells, and Microbial Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderton, Christopher R.; Gamble, Lara J.
2016-03-01
Mass spectrometry imaging (MSI) techniques are increasingly being utilized within many biological fields, including medicine, pathology, microbial ecology, and more. Of the MSI methods available, secondary ion mass spectrometry (SIMS) offers the highest lateral resolution of any technique. Moreover, SIMS versatility in the number of different operating modes and types of mass spectrometers available has made it an increasing popular method for bio-related measurements. Here, we discuss SIMS ability to image tissues, single cells, and microbes with a particular emphasis on the types chemical and spatial information that can be ascertained by the different types of SIMS instruments and methods.more » The recently developed Fourier transform ion cyclotron resonance (FTICR) SIMS located at PNNL is capable of generating molecular maps of tissues with an unprecedented mass resolving power and mass accuracy, with respect to SIMS measurements. ToF-SIMS can generate chemical maps, where detection of small molecules and fragments can be acquired with an order of magnitude better lateral resolution than the FTICR-SIMS. Furthermore, many of commercially available ToF-SIMS instruments are capable of depth profiling measurements, offering the ability to attain three-dimensional information of one’s sample. The NanoSIMS instrument offers the highest lateral resolution of any MSI method available. In practice, NanoSIMS regularly achieves sub-100 nm resolution of atomic and diatomic secondary ions within biological samples. The strengths of the different SIMS methods are more and more being leveraged in both multimodal-imaging endeavors that use complementary MSI techniques as well with optical, fluorescence, and force microscopy methods.« less
Palukaitis, P; García-Arenal, F; Sulzinski, M A; Zaitlin, M
1983-12-01
The single-stranded (ss) and double-stranded (ds) RNAs produced in tobacco tissue as a result of infection by tobacco mosaic virus (TMV) have been reinvestigated. 32P-labeled probes consisting of either cDNA or viral RNA, complementary to specific regions of either the viral RNA or its negative strand, respectively, were used in "Northern" hybridization experiments. Of the 10 ssRNA bands observed, all but four appeared to be artifacts of electrophoresis. These four RNAs were found on polyribosomes and are presumed to be true mRNAs; three were identified as the well-known genomic RNA, the I2-mRNA and the coat protein mRNA, or LMC. The fourth RNA species of MW approximately 1.2 x 10(6) had not previously been specifically identified as a subgenomic RNA of TMV. The viral RNA which gave rise to the six artifactual ssRNA bands was heterogeneous in size and was shown to be encapsidated in vivo. Upon electrophoresis, these heterogeneous RNA fragments comigrated approximately with plant rRNAs also present in the extracts, generating the observed artifactual bands. Four dsRNAs were also identified. From molecular weight and hybridization analyses, they appeared to be double-stranded forms of the above four polyribosome-associated ssRNAs. Attempts to translate proteins from the denatured dsRNAs in vitro were unsuccessful. A population of low-molecular-weight, TMV-specific ssRNAs, (+) and (-) in sequence, was generated during infection; however these RNAs were believed to be breakdown products.
Ball, Sarah E; Bovero, Stefano; Sotgiu, Giuseppe; Tessa, Giulia; Angelini, Claudio; Bielby, Jon; Durrant, Christopher; Favelli, Marco; Gazzaniga, Enrico; Garner, Trenton W J
2017-02-01
The identification of historic and contemporary barriers to dispersal is central to the conservation of endangered amphibians, but may be hindered by their complex life history and elusive nature. The complementary information generated by mitochondrial (mtDNA) and microsatellite markers generates a valuable tool in elucidating population structure and the impact of habitat fragmentation. We applied this approach to the study of an endangered montane newt, Euproctus platycephalus . Endemic to the Mediterranean island of Sardinia, it is threatened by anthropogenic activity, disease, and climate change. We have demonstrated a clear hierarchy of structure across genetically divergent and spatially distinct subpopulations. Divergence between three main mountain regions dominated genetic partitioning with both markers. Mitochondrial phylogeography revealed a deep division dating to ca. 1 million years ago (Mya), isolating the northern region, and further differentiation between the central and southern regions ca. 0.5 Mya, suggesting an association with Pleistocene severe glacial oscillations. Our findings are consistent with a model of southward range expansion during glacial periods, with postglacial range retraction to montane habitat and subsequent genetic isolation. Microsatellite markers revealed further strong population structure, demonstrating significant divergence within the central region, and partial differentiation within the south. The northern population showed reduced genetic diversity. Discordance between mitochondrial and microsatellite markers at this scale indicated a further complexity of population structure, in keeping with male-biased dispersal and female philopatry. Our study underscores the need to elucidate cryptic population structure in the ecology and conservation strategies for endangered island-restricted amphibians, especially in the context of disease and climate change.
Vella, Laura J; Cappai, Roberto
2012-07-01
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The proteolytic processing of the amyloid precursor protein (APP) into the β-amyloid (Aβ) peptide is a central event in AD. While the pathway that generates Aβ is well described, many questions remain concerning general APP metabolism and its metabolites. It is becoming clear that the amino-terminal region of APP can be processed to release small N-terminal fragments (NTFs). The purpose of this study was to investigate the occurrence and generation of APP NTFs in vivo and in cell culture (SH-SY5Y) in order to delineate the cellular pathways implicated in their generation. We were able to detect 17- to 28-kDa APP NTFs in human and mouse brain tissue that are distinct from N-APP fragments previously reported. We show that the 17- to 28-kDa APP NTFs were highly expressed in mice from the age of 2 wk to adulthood. SH-SY5Y studies indicate the generation of APP NTFs involves a novel APP processing pathway, regulated by protein kinase C, but independent of α-secretase or β-secretase 1 (BACE) activity. These results identify a novel, developmentally regulated APP processing pathway that may play an important role in the physiological function of APP.
3D reconstruction of highly fragmented bone fractures
NASA Astrophysics Data System (ADS)
Willis, Andrew; Anderson, Donald; Thomas, Thad; Brown, Thomas; Marsh, J. Lawrence
2007-03-01
A system for the semi-automatic reconstruction of highly fragmented bone fractures, developed to aid in treatment planning, is presented. The system aligns bone fragment surfaces derived from segmentation of volumetric CT scan data. Each fragment surface is partitioned into intact- and fracture-surfaces, corresponding more or less to cortical and cancellous bone, respectively. A user then interactively selects fracture-surface patches in pairs that coarsely correspond. A final optimization step is performed automatically to solve the N-body rigid alignment problem. The work represents the first example of a 3D bone fracture reconstruction system and addresses two new problems unique to the reconstruction of fractured bones: (1) non-stationary noise inherent in surfaces generated from a difficult segmentation problem and (2) the possibility that a single fracture surface on a fragment may correspond to many other fragments.
Attrition of limestone by impact loading in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrizio Scala; Fabio Montagnaro; Piero Salatino
2007-09-15
The present study addresses limestone attrition and fragmentation associated with impact loading, a process which may occur extensively in various regions of fluidized bed (FB) combustors/gasifiers, primarily the jetting region of the bottom bed, the exit region of the riser, and the cyclone. An experimental protocol for the characterization of the propensity of limestone to undergo attrition/fragmentation by impact loading is reported. The application of the protocol is demonstrated with reference to an Italian limestone whose primary fragmentation and attrition by surface wear have already been characterized in previous studies. The experimental procedure is based on the characterization of themore » amount and particle size distribution of the debris generated upon the impact of samples of sorbent particles against a target. Experiments were carried out at a range of particle impact velocities between 10 and 45 m/s, consistent with jet velocities corresponding to typical pressure drops across FB gas distributors. The protocol has been applied to either raw or preprocessed limestone samples. In particular, the effect of calcination, sulfation, and calcination/recarbonation cycles on the impact damage suffered by sorbent particles has been assessed. The measurement of particle voidage and pore size distribution by mercury intrusion was also accomplished to correlate fragmentation with the structural properties of the sorbent samples. Fragmentation by impact loading of the limestone is significant. Lime displays the largest propensity to undergo impact damage, followed by the sorbent sulfated to exhaustion, the recarbonated sorbent, and the raw limestone. Fragmentation of the raw limestone and of the sulfated lime follows a pattern typical of the failure of brittle materials. The fragmentation behavior of lime and recarbonated lime better conforms to a disintegration failure mode, with an extensive generation of very fine fragments. 27 refs., 9 figs. 1 tab.« less
Evolutions in fragment-based drug design: the deconstruction–reconstruction approach
Chen, Haijun; Zhou, Xiaobin; Wang, Ailan; Zheng, Yunquan; Gao, Yu; Zhou, Jia
2014-01-01
Recent advances in the understanding of molecular recognition and protein–ligand interactions have facilitated rapid development of potent and selective ligands for therapeutically relevant targets. Over the past two decades, a variety of useful approaches and emerging techniques have been developed to promote the identification and optimization of leads that have high potential for generating new therapeutic agents. Intriguingly, the innovation of a fragment-based drug design (FBDD) approach has enabled rapid and efficient progress in drug discovery. In this critical review, we focus on the construction of fragment libraries and the advantages and disadvantages of various fragment-based screening (FBS) for constructing such libraries. We also highlight the deconstruction–reconstruction strategy by utilizing privileged fragments of reported ligands. PMID:25263697
Sankar, Punnaivanam; Alain, Krief; Aghila, Gnanasekaran
2010-05-24
We have developed a model structure-editing tool, ChemEd, programmed in JAVA, which allows drawing chemical structures on a graphical user interface (GUI) by selecting appropriate structural fragments defined in a fragment library. The terms representing the structural fragments are organized in fragment ontology to provide a conceptual support. ChemEd describes the chemical structure in an XML document (ChemFul) with rich semantics explicitly encoding the details of the chemical bonding, the hybridization status, and the electron environment around each atom. The document can be further processed through suitable algorithms and with the support of external chemical ontologies to generate understandable reports about the functional groups present in the structure and their specific environment.
Rapid Characterization of Microorganisms by Mass Spectrometry—What Can Be Learned and How?
NASA Astrophysics Data System (ADS)
Fenselau, Catherine C.
2013-08-01
Strategies for the rapid and reliable analysis of microorganisms have been sought to meet national needs in defense, homeland security, space exploration, food and water safety, and clinical diagnosis. Mass spectrometry has long been a candidate technique because it is extremely rapid and can provide highly specific information. It has excellent sensitivity. Molecular and fragment ion masses provide detailed fingerprints, which can also be interpreted. Mass spectrometry is also a broad band method—everything has a mass—and it is automatable. Mass spectrometry is a physiochemical method that is orthogonal and complementary to biochemical and morphological methods used to characterize microorganisms.
Rapid characterization of microorganisms by mass spectrometry--what can be learned and how?
Fenselau, Catherine C
2013-08-01
Strategies for the rapid and reliable analysis of microorganisms have been sought to meet national needs in defense, homeland security, space exploration, food and water safety, and clinical diagnosis. Mass spectrometry has long been a candidate technique because it is extremely rapid and can provide highly specific information. It has excellent sensitivity. Molecular and fragment ion masses provide detailed fingerprints, which can also be interpreted. Mass spectrometry is also a broad band method--everything has a mass--and it is automatable. Mass spectrometry is a physiochemical method that is orthogonal and complementary to biochemical and morphological methods used to characterize microorganisms.
Scaling violation in the fragmentation region of inclusive nucleon spektrum
NASA Technical Reports Server (NTRS)
Machavariani, S. K.; Nikolsky, S. I.; Chubenko, A. P.
1985-01-01
Spectra of cosmic ray showers associated with hadrons of various energies from 5 to 80 TeV were investigated. Results could be interpreted as scaling violation in the fragmentation region of secondary particles generated in inelastic interactions of primary protons at the energy above 30 TeV.
Chemistry Within Molecular Clusters
1992-06-01
reactions, and only occur within van der Waals clusters. 23 They include the generation of (C2H4F2),>4H+ ions from 1,1- difluoroethane clusters, 4 the...of fragment ions, and identification of the molecule must be made by the characteristic fragmentation pattern. The mass spectrum of 1,1- difluoroethane
Fragmentation and Interrogation as an Approach to Integration
ERIC Educational Resources Information Center
Wallick, Karl; Zaretsky, Michael
2010-01-01
This article tracks the generative role of research and fragmentation as a means for integrating technology and form within an architecture technology lecture class and a co-requisite design studio. The complexity of teaching building systems integration within a design studio context is achieved by removing any expectation of building design…
Reconstitution of infectious laryngotracheitis from a collection of overlapping cosmid clones
USDA-ARS?s Scientific Manuscript database
We have generated overlapping cosmids that span the complete genome of infectious laryngotracheitis virus (ILTV) and have used these clones in transfection experiments to reconstitute the virus. This is the first example of the use of large deoxyribose nucleic acid fragment(s) (cosmid, fosmid, bact...
The dehydroalanine effect in the fragmentation of ions derived from polypeptides
Pilo, Alice L.; Peng, Zhou; McLuckey, Scott A.
2016-01-01
The fragmentation of peptides and proteins upon collision-induced dissociation (CID) is highly dependent on sequence and ion type (e.g. protonated, deprotonated, sodiated, odd electron, etc.). Some amino acids, for example aspartic acid and proline, have been found to enhance certain cleavages along the backbone. Here, we show that peptides and proteins containing dehydroalanine, a non-proteinogenic amino acid with an unsaturated side-chain, undergo enhanced cleavage of the N—Cα bond of the dehydroalanine residue to generate c- and z-ions. Because these fragment ion types are not commonly observed upon activation of positively charged even-electron species, they can be used to identify dehydroalanine residues and localize them within the peptide or protein chain. While dehydroalanine can be generated in solution, it can also be generated in the gas phase upon CID of various species. Oxidized S-alkyl cysteine residues generate dehydroalanine upon activation via highly efficient loss of the alkyl sulfenic acid. Asymmetric cleavage of disulfide bonds upon collisional activation of systems with limited proton mobility also generates dehydroalanine. Furthermore, we show that gas-phase ion/ion reactions can be used to facilitate the generation of dehydroalanine residues via, for example, oxidation of S-alkyl cysteine residues and conversion of multiply-protonated peptides to radical cations. In the latter case, loss of radical side-chains to generate dehydroalanine from some amino acids gives rise to the possibility for residue-specific backbone cleavage of polypeptide ions. PMID:27484024
Gateau, Jérôme; Rigneault, Hervé; Guillon, Marc
2017-01-27
Intensity maxima and zeros of speckle patterns obtained behind a diffuser are experimentally interchanged by applying a spiral phase delay of charge ±1 to the impinging coherent beam. This transform arises from the expectation that tightly focused beams, which have a planar wave front around the focus, are so changed into vortex beams and vice versa. The statistics of extrema locations and the intensity distribution of the so-generated "complementary" patterns are characterized by numerical simulations. It is demonstrated experimentally that the incoherent superposition of the three "complementary speckle patterns" yield a synthetic speckle grain size enlarged by a factor of sqrt[3]. A cyclic permutation of optical vortices and intensity maxima is unexpectedly observed and discussed.
Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling.
Kristensen, Jacob H; Karsdal, Morten A; Sand, Jannie Mb; Willumsen, Nicholas; Diefenbach, Claudia; Svensson, Birte; Hägglund, Per; Oersnes-Leeming, Diana J
2015-05-03
During the pathological destruction of lung tissue, neutrophil elastase (NE) degrades elastin, one of the major constituents of lung parenchyma. However there are no non-invasive methods to quantify NE degradation of elastin. We selected specific elastin fragments generated by NE for antibody generation and developed an ELISA assay (EL-NE) for the quantification of NE-degraded elastin. Monoclonal antibodies were developed against 10 NE-specific cleavage sites on elastin. One EL-NE assay was tested for analyte stability, linearity and intra- and inter-assay variation. The NE specificity was demonstrated using elastin cleaved in vitro with matrix metalloproteinases (MMPs), cathepsin G (CatG), NE and intact elastin. Clinical relevance was assessed by measuring levels of NE-generated elastin fragments in serum of patients diagnosed with idiopathic pulmonary fibrosis (IPF, n = 10) or lung cancer (n = 40). Analyte recovery of EL-NE for human serum was between 85% and 104%, the analyte was stable for four freeze/thaw cycles and after 24 h storage at 4°C. EL-NE was specific for NE-degraded elastin. Levels of NE-generated elastin fragments for elastin incubated in the presence of NE were 900% to 4700% higher than those seen with CatG or MMP incubation or in intact elastin. Serum levels of NE-generated elastin fragments were significantly increased in patients with IPF (137%, p = 0.002) and in patients with lung cancer (510%, p < 0.001) compared with age- and sex-matched controls. The EL-NE assay was specific for NE-degraded elastin. The EL-NE assay was able to specifically quantify NE-degraded elastin in serum. Serum levels of NE-degraded elastin might be used to detect excessive lung tissue degradation in lung cancer and IPF.
Route to three-dimensional fragments using diversity-oriented synthesis
Hung, Alvin W.; Ramek, Alex; Wang, Yikai; Kaya, Taner; Wilson, J. Anthony; Clemons, Paul A.; Young, Damian W.
2011-01-01
Fragment-based drug discovery (FBDD) has proven to be an effective means of producing high-quality chemical ligands as starting points for drug-discovery pursuits. The increasing number of clinical candidate drugs developed using FBDD approaches is a testament of the efficacy of this approach. The success of fragment-based methods is highly dependent on the identity of the fragment library used for screening. The vast majority of FBDD has centered on the use of sp2-rich aromatic compounds. An expanded set of fragments that possess more 3D character would provide access to a larger chemical space of fragments than those currently used. Diversity-oriented synthesis (DOS) aims to efficiently generate a set of molecules diverse in skeletal and stereochemical properties. Molecules derived from DOS have also displayed significant success in the modulation of function of various “difficult” targets. Herein, we describe the application of DOS toward the construction of a unique set of fragments containing highly sp3-rich skeletons for fragment-based screening. Using cheminformatic analysis, we quantified the shapes and physical properties of the new 3D fragments and compared them with a database containing known fragment-like molecules. PMID:21482811
Route to three-dimensional fragments using diversity-oriented synthesis.
Hung, Alvin W; Ramek, Alex; Wang, Yikai; Kaya, Taner; Wilson, J Anthony; Clemons, Paul A; Young, Damian W
2011-04-26
Fragment-based drug discovery (FBDD) has proven to be an effective means of producing high-quality chemical ligands as starting points for drug-discovery pursuits. The increasing number of clinical candidate drugs developed using FBDD approaches is a testament of the efficacy of this approach. The success of fragment-based methods is highly dependent on the identity of the fragment library used for screening. The vast majority of FBDD has centered on the use of sp(2)-rich aromatic compounds. An expanded set of fragments that possess more 3D character would provide access to a larger chemical space of fragments than those currently used. Diversity-oriented synthesis (DOS) aims to efficiently generate a set of molecules diverse in skeletal and stereochemical properties. Molecules derived from DOS have also displayed significant success in the modulation of function of various "difficult" targets. Herein, we describe the application of DOS toward the construction of a unique set of fragments containing highly sp(3)-rich skeletons for fragment-based screening. Using cheminformatic analysis, we quantified the shapes and physical properties of the new 3D fragments and compared them with a database containing known fragment-like molecules.
Advice offered by practitioners of complementary/ alternative medicine: an important ethical issue.
Ernst, E
2009-12-01
The current popularity of complementary/alternative medicine (CAM) generates many challenges to medical ethics. The one discussed here is the advice offered by CAM practitioners. Using selected examples, the author tries to demonstrate that some of the advice issued through the popular media or provided by acupuncturists, chiropractors, herbalists, homeopaths, pharmacists, and doctors is misleading or dangerous. This, the author argues, can impinge on the main principle of medical ethics: beneficence, nonmaleficence, and autonomy. We should work toward correcting this deplorable situation.
An Analysis of the FY-1C, Iridium 33, and Cosmos 2251 Fragments
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2014-01-01
The beginning of the year 2013 marks the sixth anniversary of the destruction of the Fengyun-1C (FY-1C) weather satellite as the result of an anti-satellite test conducted by China in January 2007 and the fourth anniversary of the accidental collision between Cosmos 2251 and the operational Iridium 33 in February 2009. These two events represent the worst satellite breakups in history. A total of 5579 fragments have been cataloged by the U.S. Space Surveillance Network (SSN), and almost 5000 of them were still in orbit in January 2013. In addition to these cataloged objects, hundreds of thousands (or more) of fragments down to the millimeter size regime were also generated during the breakups. These fragments are too small to be tracked by the SSN, but are large enough to be a safety concern for human space activities and robotic missions in low Earth orbit (LEO, the region below 2000 km altitude). Like their cataloged siblings, many of them remain in orbit today. These two breakup events dramatically changed the landscape of the orbital debris environment in LEO. The spatial density of the cataloged population in January 2013 is shown as the top blue curve. The combined FY-1C, Iridium 33, and Cosmos 2251 fragments (black curve) account for about 50 percent of the cataloged population below an altitude of 1000 km. They are also responsible for the concentrations at 770 km and 850 km, altitudes at which the collisions occurred. The effects of the FY-1C, Iridium 33, and Cosmos 2251 fragments will continue to be felt for decades to come. For example, approximately half of the generated FY-1C fragments will remain in orbit 20 years from now. In general, the Iridium 33 and Cosmos 2251 fragments will decay faster than the FY-1C fragments because of their lower altitudes. Of the Iridium 33 and Cosmos 2251 fragments, the former have much shorter orbital lifetimes than the latter, because lightweight composite materials were heavily used in the construction of the Iridium vehicle, leading to the higher area-to-mass ratios of the fragments.
Yang, Jiang-Yan; Walicki, Jöel; Jaccard, Evrim; Dubuis, Gilles; Bulat, Natasa; Hornung, Jean-Pierre; Thorens, Bernard; Widmann, Christian
2009-01-01
OBJECTIVE Our laboratory has previously established in vitro that a caspase-generated RasGAP NH2-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic β-cells in a physiological setting. RESEARCH DESIGN AND METHODS A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS Pancreatic β-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor κB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo β-cell apoptosis. CONCLUSIONS Fragment N efficiently increases the overall resistance of β-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools. PMID:19696184
Structure-guided fragment-based in silico drug design of dengue protease inhibitors.
Knehans, Tim; Schüller, Andreas; Doan, Danny N; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M S; Weil, Tanja; Vasudevan, Subhash G
2011-03-01
An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC(50) = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC(50) = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.
Structure-guided fragment-based in silico drug design of dengue protease inhibitors
NASA Astrophysics Data System (ADS)
Knehans, Tim; Schüller, Andreas; Doan, Danny N.; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M. S.; Weil, Tanja; Vasudevan, Subhash G.
2011-03-01
An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC50 = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC50 = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.
Factors associated with the timing of introduction of complementary feeding: the Generation R Study.
Tromp, I I M; Briedé, S; Kiefte-de Jong, J C; Renders, C M; Jaddoe, V W V; Franco, O H; Hofman, A; Raat, H; Moll, H A
2013-06-01
Many parents do not follow recommendations for the timing of introduction of complementary feeding. The aim of this study was to identify determinants associated with the timing of introduction of complementary feeding in a multiethnic birth cohort. Subjects were 3561 mothers and infants participating in a prospective cohort study. The timing of introduction of complementary feeding and maternal and infant characteristics were obtained by parent-derived questionnaires. Regression analyses were performed to identify determinants for the timing of introduction of complementary feeding (<3, 3-6 and ≥ 6 months). In total, 62% of infants were introduced to complementary feeding before the age of 6 months. Determinants for very early (<3 months) introduction were being a single parent and infant day care attendance. Determinants for early (3-6 months) introduction were young maternal age, multiple parities, no infant family history of asthma, atopy and no infant history of allergy to cow's milk. Determinants for both very early and early introduction were low educational level and not fully breastfeeding for 4 months. Maternal educational level was only significantly associated with the timing of introduction in mothers of Western origin. This study confirmed determinants for the timing of introduction of complementary feeding that have been identified by previous studies, which may be appropriate targets for education and guidance. Moreover, mothers whose infants attend day care and have a family history of asthma, atopy or allergy to cow's milk may need guidance to follow infant feeding recommendations.
Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith
2015-01-01
Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. PMID:26109071
Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith
2015-08-07
Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications.
Bian, Yuemin; Xie, Xiang-Qun Sean
2018-04-09
Fragment-based drug design (FBDD) has become an effective methodology for drug development for decades. Successful applications of this strategy brought both opportunities and challenges to the field of Pharmaceutical Science. Recent progress in the computational fragment-based drug design provide an additional approach for future research in a time- and labor-efficient manner. Combining multiple in silico methodologies, computational FBDD possesses flexibilities on fragment library selection, protein model generation, and fragments/compounds docking mode prediction. These characteristics provide computational FBDD superiority in designing novel and potential compounds for a certain target. The purpose of this review is to discuss the latest advances, ranging from commonly used strategies to novel concepts and technologies in computational fragment-based drug design. Particularly, in this review, specifications and advantages are compared between experimental and computational FBDD, and additionally, limitations and future prospective are discussed and emphasized.
Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors.
Kohlmann, Anna; Zech, Stephan G; Li, Feng; Zhou, Tianjun; Squillace, Rachel M; Commodore, Lois; Greenfield, Matthew T; Lu, Xiaohui; Miller, David P; Huang, Wei-Sheng; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Zhang, Sen; Dodd, Rory; Liu, Shuangying; Xu, Rongsong; Xu, Yongjin; Miret, Juan J; Rivera, Victor; Clackson, Tim; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C
2013-02-14
Lactate dehydrogenase A (LDH-A) catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway. Cancer cells rely heavily on glycolysis instead of oxidative phosphorylation to generate ATP, a phenomenon known as the Warburg effect. The inhibition of LDH-A by small molecules is therefore of interest for potential cancer treatments. We describe the identification and optimization of LDH-A inhibitors by fragment-based drug discovery. We applied ligand based NMR screening to identify low affinity fragments binding to LDH-A. The dissociation constants (K(d)) and enzyme inhibition (IC(50)) of fragment hits were measured by surface plasmon resonance (SPR) and enzyme assays, respectively. The binding modes of selected fragments were investigated by X-ray crystallography. Fragment growing and linking, followed by chemical optimization, resulted in nanomolar LDH-A inhibitors that demonstrated stoichiometric binding to LDH-A. Selected molecules inhibited lactate production in cells, suggesting target-specific inhibition in cancer cell lines.
Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin
2014-04-04
Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.
Enzyme-linked immunosorbent assay detection and bioactivity of Cry1Ab protein fragments.
Albright, Vurtice C; Hellmich, Richard L; Coats, Joel R
2016-12-01
The continuing use of transgenic crops has led to an increased interest in the fate of insecticidal crystalline (Cry) proteins in the environment. Enzyme-linked immunosorbent assays (ELISAs) have emerged as the preferred detection method for Cry proteins in environmental matrices. Concerns exist that ELISAs are capable of detecting fragments of Cry proteins, which may lead to an overestimation of the concentration of these proteins in the environment. Five model systems were used to generate fragments of the Cry1Ab protein, which were then analyzed by ELISAs and bioassays. Fragments from 4 of the model systems were not detectable by ELISA and did not retain bioactivity. Fragments from the proteinase K model system were detectable by ELISA and retained bioactivity. In most cases, ELISAs appear to provide an accurate estimation of the amount of Cry proteins in the environment, as detectable fragments retained bioactivity and nondetectable fragments did not retain bioactivity. Environ Toxicol Chem 2016;35:3101-3112. © 2016 SETAC. © 2016 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Barbara; Karsili, Tolga N. V.; Ashfold, Michael N. R., E-mail: mike.ashfold@bristol.ac.uk
Velocity map imaging methods, with a new and improved ion optics design, have been used to explore the near ultraviolet photodissociation dynamics of gas phase 2-bromo- and 2-iodothiophene molecules. In both cases, the ground (X) and spin-orbit excited (X*) (where X = Br, I) atom products formed at the longest excitation wavelengths are found to recoil with fast, anisotropic velocity distributions, consistent with prompt C–X bond fission following excitation via a transition whose dipole moment is aligned parallel to the breaking bond. Upon tuning to shorter wavelengths, this fast component fades and is progressively replaced by a slower, isotropic recoilmore » distribution. Complementary electronic structure calculations provide a plausible explanation for this switch in fragmentation behaviour—namely, the opening of a rival C–S bond extension pathway to a region of conical intersection with the ground state potential energy surface. The resulting ground state molecules are formed with more than sufficient internal energy to sample the configuration space associated with several parent isomers and to dissociate to yield X atom products in tandem with both cyclic and ring-opened partner fragments.« less
Zimdars, Andreas; Gebala, Magdalena; Hartwich, Gerhard; Neugebauer, Sebastian; Schuhmann, Wolfgang
2015-10-01
The direct electrochemical detection of synthetic DNA and native 16S rRNA fragments isolated from Escherichia coli is described. Oligonucleotides are detected via selective post-labeling of double stranded DNA and DNA-RNA duplexes with a biotinylated intercalator that enables high-specific binding of a streptavidin/alkaline phosphatase conjugate. The alkaline phosphatase catalyzes formation of p-aminophenol that is subsequently oxidized at the underlying gold electrode and hence enables the detection of complementary hybridization of the DNA capture strands due to the enzymatic signal amplification. The hybridization assay was performed on microarrays consisting of 32 individually addressable gold microelectrodes. Synthetic DNA strands with sequences representing six different pathogens which are important for the diagnosis of urinary tract infections could be detected at concentrations of 60 nM. Native 16S rRNA isolated from the different pathogens could be detected at a concentration of 30 fM. Optimization of the sensing surface is described and influences on the assay performance are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Fragments of quartz monzodiorite and felsite in Apollo 14 soil particles
NASA Technical Reports Server (NTRS)
Jolliff, B. L.
1991-01-01
Samples of 'evolved' lithologies, felsite, quartz monzodiorite (QMD), and whitlockite-rich quartz monzodiorite, were identified compositionally and petrographically among 2-4-mm soil particles from Apollo 14. Fragments of QMD were found to be extremely rare in the Apollo 14 samples. Felsite is similar to previously reported samples. QMD 14161,7069 is similar to 15405 QMD and has ITE concentrations in KREEP-like concentration ratios of about twice the ITE concentrations of average high-K KREEP. QMD cumulate has the highest measured REE concentrations of any lunar sample to date with the exception of individual whitlockite grains. Felsite and whitlockite-rich lithologies appear to be petrogenetically related and have complementary compositions representing separated fractions of the QMD or KREEP-like parental melt. Felsite is a silica-rich fraction of the residual liquid or it is a derivative of the silica-rich fraction. Felsite or lunar granite of this type results from residual liquid separation following crystal-liquid separation of a QMD-like parent melt with concentration ratios of ITEs similar to those of KREEP.
Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector.
Long, Jingming; Furch, Federico J; Durá, Judith; Tremsin, Anton S; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J J
2017-07-07
A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (<6 μm) is achieved by the use of a center-of-mass centroiding algorithm. This performance is achieved while retaining a high event rate (10 4 per s). The spectrometer was characterized and used in a proof-of-principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO 2 ), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.
Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector
NASA Astrophysics Data System (ADS)
Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.
2017-07-01
A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (<6 μm) is achieved by the use of a center-of-mass centroiding algorithm. This performance is achieved while retaining a high event rate (104 per s). The spectrometer was characterized and used in a proof-of-principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.
de Araujo, Anna Erika Vieira; de Souza, Natalia Plinio; de Sousa, Alvaro Paiva Braga; Lara, Flavio Alves; Senna, Jose Procopio Moreno
2018-05-01
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a worldwide health problem. In a previous study, a murine monoclonal antibody (mMAB), capable of binding to PBP2a within MRSA strains, was generated. F(ab') 2 antibody fragments are widely described in the literature as immunochemical tools and reagents for diagnostics and therapeutics, particularly because of their low immunogenicity and rapid pharmacokinetics. In this study, F(ab') 2 fragments from mMAB were generated by enzymatic digestion, using pepsin. They were purified by affinity chromatography using protein A and concentrated by a MWCO 50 kDa filtration unit. The results indicate that it is possible to obtain F(ab') 2 fragments by pepsin digestion. ELISA, western blotting, and fluorescence microscopy data demonstrated that F(ab') 2 affinity for PBP2a is not lost even after the enzymatic digestion process. As expected, in the pharmacokinetics tests, F(ab') 2 presented a faster elimination (between 12 and 18 h) compared to IgG. These F(ab') 2 fragments could be used in future immunodiagnostic applications, including in vitro or in situ radiolabeling and in the treatment of infections caused by this important pathogen.
Schüller, Andreas; Suhartono, Marcel; Fechner, Uli; Tanrikulu, Yusuf; Breitung, Sven; Scheffer, Ute; Göbel, Michael W; Schneider, Gisbert
2008-02-01
Principles of fragment-based molecular design are presented and discussed in the context of de novo drug design. The underlying idea is to dissect known drug molecules in fragments by straightforward pseudo-retro-synthesis. The resulting building blocks are then used for automated assembly of new molecules. A particular question has been whether this approach is actually able to perform scaffold-hopping. A prospective case study illustrates the usefulness of fragment-based de novo design for finding new scaffolds. We were able to identify a novel ligand disrupting the interaction between the Tat peptide and TAR RNA, which is part of the human immunodeficiency virus (HIV-1) mRNA. Using a single template structure (acetylpromazine) as reference molecule and a topological pharmacophore descriptor (CATS), new chemotypes were automatically generated by our de novo design software Flux. Flux features an evolutionary algorithm for fragment-based compound assembly and optimization. Pharmacophore superimposition and docking into the target RNA suggest perfect matching between the template molecule and the designed compound. Chemical synthesis was straightforward, and bioactivity of the designed molecule was confirmed in a FRET assay. This study demonstrates the practicability of de novo design to generating RNA ligands containing novel molecular scaffolds.
Construction of Red Fox Chromosomal Fragments from the Short-Read Genome Assembly.
Rando, Halie M; Farré, Marta; Robson, Michael P; Won, Naomi B; Johnson, Jennifer L; Buch, Ronak; Bastounes, Estelle R; Xiang, Xueyan; Feng, Shaohong; Liu, Shiping; Xiong, Zijun; Kim, Jaebum; Zhang, Guojie; Trut, Lyudmila N; Larkin, Denis M; Kukekova, Anna V
2018-06-20
The genome of a red fox ( Vulpes vulpes ) was recently sequenced and assembled using next-generation sequencing (NGS). The assembly is of high quality, with 94X coverage and a scaffold N50 of 11.8 Mbp, but is split into 676,878 scaffolds, some of which are likely to contain assembly errors. Fragmentation and misassembly hinder accurate gene prediction and downstream analysis such as the identification of loci under selection. Therefore, assembly of the genome into chromosome-scale fragments was an important step towards developing this genomic model. Scaffolds from the assembly were aligned to the dog reference genome and compared to the alignment of an outgroup genome (cat) against the dog to identify syntenic sequences among species. The program Reference-Assisted Chromosome Assembly (RACA) then integrated the comparative alignment with the mapping of the raw sequencing reads generated during assembly against the fox scaffolds. The 128 sequence fragments RACA assembled were compared to the fox meiotic linkage map to guide the construction of 40 chromosomal fragments. This computational approach to assembly was facilitated by prior research in comparative mammalian genomics, and the continued improvement of the red fox genome can in turn offer insight into canid and carnivore chromosome evolution. This assembly is also necessary for advancing genetic research in foxes and other canids.
Causes and consequences of habitat fragmentation in river networks.
Fuller, Matthew R; Doyle, Martin W; Strayer, David L
2015-10-01
Increases in river fragmentation globally threaten freshwater biodiversity. Rivers are fragmented by many agents, both natural and anthropogenic. We review the distribution and frequency of these major agents, along with their effects on connectivity and habitat quality. Most fragmentation research has focused on terrestrial habitats, but theories and generalizations developed in terrestrial habitats do not always apply well to river networks. For example, terrestrial habitats are usually conceptualized as two-dimensional, whereas rivers often are conceptualized as one-dimensional or dendritic. In addition, river flow often leads to highly asymmetric effects of barriers on habitat and permeability. New approaches tailored to river networks can be applied to describe the network-wide effects of multiple barriers on both connectivity and habitat quality. The net effects of anthropogenic fragmentation on freshwater biodiversity are likely underestimated, because of time lags in effects and the difficulty of generating a single, simple signal of fragmentation that applies to all aquatic species. We conclude by presenting a decision tree for managing freshwater fragmentation, as well as some research horizons for evaluating fragmented riverscapes. © 2015 New York Academy of Sciences.
Raman-based system for DNA sequencing-mapping and other separations
Vo-Dinh, Tuan
1994-01-01
DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.
Semantics of Context-Free Fragments of Natural Languages.
ERIC Educational Resources Information Center
Suppes, Patrick
The objective of this paper is to combine the viewpoint of model-theoretic semantics and generative grammar, to define semantics for context-free languages, and to apply the results to some fragments of natural language. Following the introduction in the first section, Section 2 describes a simple artificial example to illustrate how a semantic…
Gillet, Ludovic C.; Navarro, Pedro; Tate, Stephen; Röst, Hannes; Selevsek, Nathalie; Reiter, Lukas; Bonner, Ron; Aebersold, Ruedi
2012-01-01
Most proteomic studies use liquid chromatography coupled to tandem mass spectrometry to identify and quantify the peptides generated by the proteolysis of a biological sample. However, with the current methods it remains challenging to rapidly, consistently, reproducibly, accurately, and sensitively detect and quantify large fractions of proteomes across multiple samples. Here we present a new strategy that systematically queries sample sets for the presence and quantity of essentially any protein of interest. It consists of using the information available in fragment ion spectral libraries to mine the complete fragment ion maps generated using a data-independent acquisition method. For this study, the data were acquired on a fast, high resolution quadrupole-quadrupole time-of-flight (TOF) instrument by repeatedly cycling through 32 consecutive 25-Da precursor isolation windows (swaths). This SWATH MS acquisition setup generates, in a single sample injection, time-resolved fragment ion spectra for all the analytes detectable within the 400–1200 m/z precursor range and the user-defined retention time window. We show that suitable combinations of fragment ions extracted from these data sets are sufficiently specific to confidently identify query peptides over a dynamic range of 4 orders of magnitude, even if the precursors of the queried peptides are not detectable in the survey scans. We also show that queried peptides are quantified with a consistency and accuracy comparable with that of selected reaction monitoring, the gold standard proteomic quantification method. Moreover, targeted data extraction enables ad libitum quantification refinement and dynamic extension of protein probing by iterative re-mining of the once-and-forever acquired data sets. This combination of unbiased, broad range precursor ion fragmentation and targeted data extraction alleviates most constraints of present proteomic methods and should be equally applicable to the comprehensive analysis of other classes of analytes, beyond proteomics. PMID:22261725
SPR-based fragment screening with neurotensin receptor 1 generates novel small molecule ligands
Huber, Sylwia; Casagrande, Fabio; Hug, Melanie N.; Wang, Lisha; Heine, Philipp; Kummer, Lutz; Plückthun, Andreas; Hennig, Michael
2017-01-01
The neurotensin receptor 1 represents an important drug target involved in various diseases of the central nervous system. So far, the full exploitation of potential therapeutic activities has been compromised by the lack of compounds with favorable physicochemical and pharmacokinetic properties which efficiently penetrate the blood-brain barrier. Recent progress in the generation of stabilized variants of solubilized neurotensin receptor 1 and its subsequent purification and successful structure determination presents a solid starting point to apply the approach of fragment-based screening to extend the chemical space of known neurotensin receptor 1 ligands. In this report, surface plasmon resonance was used as primary method to screen 6369 compounds. Thereby 44 hits were identified and confirmed in competition as well as dose-response experiments. Furthermore, 4 out of 8 selected hits were validated using nuclear magnetic resonance spectroscopy as orthogonal biophysical method. Computational analysis of the compound structures, taking the known crystal structure of the endogenous peptide agonist into consideration, gave insight into the potential fragment-binding location and interactions and inspires chemistry efforts for further exploration of the fragments. PMID:28510609
Predicting intensity ranks of peptide fragment ions.
Frank, Ari M
2009-05-01
Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm into models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal multiple reaction monitoring (MRM) transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html.
Predicting Intensity Ranks of Peptide Fragment Ions
Frank, Ari M.
2009-01-01
Accurate modeling of peptide fragmentation is necessary for the development of robust scoring functions for peptide-spectrum matches, which are the cornerstone of MS/MS-based identification algorithms. Unfortunately, peptide fragmentation is a complex process that can involve several competing chemical pathways, which makes it difficult to develop generative probabilistic models that describe it accurately. However, the vast amounts of MS/MS data being generated now make it possible to use data-driven machine learning methods to develop discriminative ranking-based models that predict the intensity ranks of a peptide's fragment ions. We use simple sequence-based features that get combined by a boosting algorithm in to models that make peak rank predictions with high accuracy. In an accompanying manuscript, we demonstrate how these prediction models are used to significantly improve the performance of peptide identification algorithms. The models can also be useful in the design of optimal MRM transitions, in cases where there is insufficient experimental data to guide the peak selection process. The prediction algorithm can also be run independently through PepNovo+, which is available for download from http://bix.ucsd.edu/Software/PepNovo.html. PMID:19256476
Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses.
Duffy, Martin J; Kelly, Orla; Calvert, Christopher R; King, Raymond B; Belshaw, Louise; Kelly, Thomas J; Costello, John T; Timson, David J; Bryan, William A; Kierspel, Thomas; Turcu, I C Edmond; Cacho, Cephise M; Springate, Emma; Williams, Ian D; Greenwood, Jason B
2013-09-01
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel; ...
2017-05-22
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
Malecka, Kamila; Michalczuk, Lech; Radecka, Hanna; Radecki, Jerzy
2014-10-09
A DNA biosensor for detection of specific oligonucleotides sequences of Plum Pox Virus (PPV) in plant extracts and buffer is proposed. The working principles of a genosensor are based on the ion-channel mechanism. The NH2-ssDNA probe was deposited onto a glassy carbon electrode surface to form an amide bond between the carboxyl group of oxidized electrode surface and amino group from ssDNA probe. The analytical signals generated as a result of hybridization were registered in Osteryoung square wave voltammetry in the presence of [Fe(CN)6]3-/4- as a redox marker. The 22-mer and 42-mer complementary ssDNA sequences derived from PPV and DNA samples from plants infected with PPV were used as targets. Similar detection limits of 2.4 pM (31.0 pg/mL) and 2.3 pM (29.5 pg/mL) in the concentration range 1-8 pM were observed in the presence of the 22-mer ssDNA and 42-mer complementary ssDNA sequences of PPV, respectively. The genosensor was capable of discriminating between samples consisting of extracts from healthy plants and leaf extracts from infected plants in the concentration range 10-50 pg/mL. The detection limit was 12.8 pg/mL. The genosensor displayed good selectivity and sensitivity. The 20-mer partially complementary DNA sequences with four complementary bases and DNA samples from healthy plants used as negative controls generated low signal.
De Paepe, Marianne; Hutinet, Geoffrey; Son, Olivier; Amarir-Bouhram, Jihane; Schbath, Sophie; Petit, Marie-Agnès
2014-01-01
Bacteriophages (or phages) dominate the biosphere both numerically and in terms of genetic diversity. In particular, genomic comparisons suggest a remarkable level of horizontal gene transfer among temperate phages, favoring a high evolution rate. Molecular mechanisms of this pervasive mosaicism are mostly unknown. One hypothesis is that phage encoded recombinases are key players in these horizontal transfers, thanks to their high efficiency and low fidelity. Here, we associate two complementary in vivo assays and a bioinformatics analysis to address the role of phage encoded recombinases in genomic mosaicism. The first assay allowed determining the genetic determinants of mosaic formation between lambdoid phages and Escherichia coli prophage remnants. In the second assay, recombination was monitored between sequences on phage λ, and allowed to compare the performance of three different Rad52-like recombinases on the same substrate. We also addressed the importance of homologous recombination in phage evolution by a genomic comparison of 84 E. coli virulent and temperate phages or prophages. We demonstrate that mosaics are mainly generated by homology-driven mechanisms that tolerate high substrate divergence. We show that phage encoded Rad52-like recombinases act independently of RecA, and that they are relatively more efficient when the exchanged fragments are divergent. We also show that accessory phage genes orf and rap contribute to mosaicism. A bioinformatics analysis strengthens our experimental results by showing that homologous recombination left traces in temperate phage genomes at the borders of recently exchanged fragments. We found no evidence of exchanges between virulent and temperate phages of E. coli. Altogether, our results demonstrate that Rad52-like recombinases promote gene shuffling among temperate phages, accelerating their evolution. This mechanism may prove to be more general, as other mobile genetic elements such as ICE encode Rad52-like functions, and play an important role in bacterial evolution itself. PMID:24603854
Constraining the Energetics of Explosive Lava-Water Interactions
NASA Astrophysics Data System (ADS)
Fitch, E. P.; Fagents, S. A.
2017-12-01
During volcanic eruptions, water, such as groundwater or melted ice or snow, may interact with magma within the conduit during eruption, generating explosions when the heat of the magma causes the water to rapidly turn to steam and expand, resulting in what we call a "phreatomagmatic" eruption. In 2010, the eruption of Eyjafjallajökull volcano in Iceland produced a plume of fine ash, through the interaction between magma and glacial melt water, which resulted in the closure of substantial airspace, ultimately costing a total of almost 5 billion dollars. Although an important area of study, it is difficult to quantify the effect of eternal water on eruption intensity when the gas inside of magma is also expanding and fragmenting the magma. In an attempt to understand the energetics of magma-water interactions, small-scale laboratory experiments have been performed. Explosion energy is found to depend mostly on kinetic energy, which is proportional to dispersal distance, and fragmentation energy, which is proportional to the mean grain size of the ejecta, and the mass percent of ash-sized grains. It is thought that in order to generate heat transfer rates sufficiently rapid to cause explosive detonation, the source melt must be finely fragmented, producing ash-sized grains. Those grains undergo brittle fragmentation due to rapid cooling and weak shock waves generated by the vaporization of superheated water. We take the novel approach of studying explosive interactions between lava and water to obtain additional explosion energy constraints. We identified and analyzed numerous beds of lava-water explosion ejecta of varying explosion energy, and we analyzed the ash-sized grains of these beds in detail. We verified that the mass of ash-sized grains increases with increasing explosion energy, and can form at the interface between lava and water. We found that brittle fragmentation occurs to a greater degree as grain size decreases and that the ash of highly-energetic explosions undergoes the most brittle fragmentation. Therefore, our next steps will be to use these results to constrain the fragmentation and kinetic energy, in order to calculate the total energy and heat-transfer rate of lava-water explosions as important analogs for phreatomagmatic eruptions.
Shen, Rong; Han, Wei; Fiorin, Giacomo; Islam, Shahidul M; Schulten, Klaus; Roux, Benoît
2015-10-01
The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with the consensus model of the resting state VSD and the spin-spin distance histograms from ESR/DEER experiments on T4 lysozyme are accurately reproduced.
NASA Technical Reports Server (NTRS)
Cheng, R. J.
1982-01-01
Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.
NASA Astrophysics Data System (ADS)
Dã¡Vila, Alã¡N.; Escudero, Christian; López, Jorge, , Dr.
2004-10-01
Several methods have been developed in order to study phase transitions in nuclear fragmentation. The one used in this research is Percolation. This method allows us to adjust resulting data to heavy ion collisions experiments. In systems, such as atomic nuclei or molecules, energy is put into the system. The system's particles move away from each other until their links are broken. Some particles will still be linked. The fragments' distribution is found to be a power law. We are witnessing then a critical phenomenon. In our model the particles are represented as occupied spaces in a cubical array. Each particle has a bound to each one of its 6 neighbors. Each bound can be active if the two particles are linked or inactive if they are not. When two or more particles are linked, a fragment is formed. The probability for a specific link to be broken cannot be calculated, so the probability for a bound to be active is going to be used as parameter when trying to adjust the data. For a given probability p several arrays are generated. The fragments are counted. The fragments' distribution is then adjusted to a power law. The probability that generates the better fit is going to be the critical probability that indicates a phase transition. The better fit is found by seeking the fragments' distribution that gives the minimal chi squared when compared to a power law. As additional evidence of criticality the entropy and normalized variance of the mass are also calculated for each probability.
[A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].
Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi
2005-01-01
We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.
Circular RNAs: Unexpected outputs of many protein-coding genes
Wilusz, Jeremy E.
2017-01-01
ABSTRACT Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs, some of which accumulate to higher levels than their associated linear mRNA. Recent work has revealed widespread mechanisms that dictate whether the spliceosome generates a linear or circular RNA. For most genes, circular RNA biogenesis via backsplicing is far less efficient than canonical splicing, but circular RNAs can accumulate due to their long half-lives. Backsplicing is often initiated when complementary sequences from different introns base pair and bring the intervening splice sites close together. This process is further regulated by the combinatorial action of RNA binding proteins, which allow circular RNAs to be expressed in unique patterns. Some genes do not require complementary sequences to generate RNA circles and instead take advantage of exon skipping events. It is still unclear what most mature circular RNAs do, but future investigations into their functions will be facilitated by recently described methods to modulate circular RNA levels. PMID:27571848
Second-generation supramolecular dendrimer with a defined structure due to orthogonal binding.
Eckelmann, Jens; Dethlefs, Christiane; Brammer, Stefan; Doğan, Ahmet; Uphoff, Andreas; Lüning, Ulrich
2012-07-02
A second-generation supramolecular dendrimer has been prepared by orthogonal multiple hydrogen bonding. In the first (inner) recognition domain, the interaction of one bis-isocyanuric acid (25) with two branching units (21) that carry complementary Hamilton receptors has been exploited. In the second (outer) generation, the two ADDA (A=hydrogen-bond acceptor, D=donor) receptors of each branching unit (21) have bound complementary DAAD units (4). The problem of limited solubility of the building blocks has been overcome by the introduction of branched ethylhexyl residues and by the use of flexible alkylene or oligo(ethylene glycol) linking chains. The orthogonal binding of the two hydrogen-bonding pairs was elucidated by chemical induced shift NMR titrations, which proved that the two pairs, isocyanuric acid with the Hamilton receptor and ADDA with DAAD, bind preferentially. The formation of the supramolecular self-assembled 1:2:4 dendrimer with a molecular weight of 5065 g mol(-1) was investigated by diffusion NMR spectroscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Scruggs, T.; Moraguez, M.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.
2016-01-01
Debris fragments from the hypervelocity impact testing of DebriSat are being collected and characterized for use in updating existing satellite breakup models. One of the key parameters utilized in these models is the ballistic coefficient of the fragment which is directly related to its area-to-mass ratio. However, since the attitude of fragments varies during their orbital lifetime, it is customary to use the average cross-sectional area in the calculation of the area-to-mass ratio. The average cross-sectional area is defined as the average of the projected surface areas perpendicular to the direction of motion and has been shown to be equal to one-fourth of the total surface area of a convex object. Unfortunately, numerous fragments obtained from the DebriSat experiment show significant concavity (i.e., shadowing) and thus we have explored alternate methods for computing the average cross-sectional area of the fragments. An imaging system based on the volumetric reconstruction of a 3D object from multiple 2D photographs of the object was developed for use in determining the size characteristic (i.e., characteristics length) of the DebriSat fragments. For each fragment, the imaging system generates N number of images from varied azimuth and elevation angles and processes them using a space-carving algorithm to construct a 3D point cloud of the fragment. This paper describes two approaches for calculating the average cross-sectional area of debris fragments based on the 3D imager. Approach A utilizes the constructed 3D object to generate equally distributed cross-sectional area projections and then averages them to determine the average cross-sectional area. Approach B utilizes a weighted average of the area of the 2D photographs to directly compute the average cross-sectional area. A comparison of the accuracy and computational needs of each approach is described as well as preliminary results of an analysis to determine the "optimal" number of images needed for the 3D imager to accurately measure the average cross sectional area of objects with known dimensions.
Tulloch, Ayesha I T; Pichancourt, Jean-Baptiste; Gosper, Carl R; Sanders, Angela; Chadès, Iadine
2016-10-01
Changed fire regimes have led to declines of fire-regime-adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction, and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly modified Mediterranean ecosystem in southwestern Australia where current fire regimes vary. In highly fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly reduced number of species exhibiting positive growth rates after 100 years of management. By exploring the consequences of managing fire, we are able to identify which species are likely to disappear under a given fire regime. Identifying the appropriate complementarity of fire intervals, and their species-specific as well as community-level consequences, is crucial to reduce local extinctions of species in fragmented fire-prone landscapes. © 2016 by the Ecological Society of America.
Huang, Shih-Ying; Chang, Jia-Ru; Liao, Yu-Chieh; Dou, Horng-Yunn; Chuang, Min-Chieh
2018-05-12
Tuberculosis (TB) remains one of the major infectious diseases worldwide. The pathogenic bacterium, Mycobacterium tuberculosis (M.tb), continuously evolves strains carrying drug-resistance genes, thus posing a growing challenge to TB prevention and treatment. We report a diagnostic system that uses a molecular beacon probe and an assistant strand as the core to simultaneously interact with an M.tb-specific fragment (in IS6110) and a single nucleotide substitution (SNS)-encoded segment (in rpoB) associated with drug resistance. A single fluorescent output in three-tiered levels was produced for combinatorial interpretations based on formation of a four-way DNA junction (4WJ). The SNS caused the 4WJ to partially dissociate, thus resulting in medium-level fluorescence. By contrast, high- and low-level fluorescence, represented the complete complementary complex and absence of either targeted fragments, respectively. Manipulating the length of the analyte-binding arm realized the medium output. The thermodynamics and kinetics of 4WJ construction were investigated to maximize the tiered-output performance. Biocatalytic amplification driven by the Klenow Fragment and Nt.AlwI was incorporated into the method to enhance the signal 64-fold and ensure long-term stability of the three-tiered output. The detection accuracy of the sensing system was verified using unpurified amplicons with templates of extracted DNA and boiled bacterial solutions. The tiered-output mechanism was usable at bacterial loads ranging from 4 × 10 0 to 4 × 10 3 CFU per reaction. The interference caused by nontuberculous mycobacteria was minimal. The results demonstrated the integrity of the sensing method as an alternative strategy for rapid screening of M.tb and detecting rifampin-resistance. Copyright © 2017 Elsevier B.V. All rights reserved.
Variegated tropical landscapes conserve diverse dung beetle communities.
Costa, Cristiane; Oliveira, Victor Hugo F; Maciel, Rafaella; Beiroz, Wallace; Korasaki, Vanesca; Louzada, Julio
2017-01-01
Conserving biodiversity in tropical landscapes is a major challenge to scientists and conservationists. Current rates of deforestation, fragmentation, and land use intensification are producing variegated landscapes with undetermined values for the conservation of biological communities and ecosystem functioning. Here, we investigate the importance of tropical variegated landscapes to biodiversity conservation, using dung beetle as focal taxa. The study was carried out in 12 variegated landscapes where dung beetles were sampled using six pitfall traps, 30 m apart from each other, along a transect in each studied landscape use and cover classes-LUCC (forest fragment and corridor, coffee plantation, and pasture). We baited each pitfall trap with 30 g of human feces and left open for a 48 h period. We also measured three environmental variables reflecting structural differences among the studied classes: canopy cover, local vegetation heterogeneity and soil sand content. We collected 52 species and 2,695 individuals of dung beetles. We observed significant differences in the mean species richness, abundance and biomass among classes, with forest fragments presenting the highest values, forest corridors and coffee plantations presenting intermediate values, and pastures the lowest values. Regarding community structure, we also found significant differences among classes. Canopy cover was the only variable explaining variation in dung beetle species richness, abundance, biomass, and community structure. The relative importance of spatial turnover was greater than nestedness-resultant component in all studied landscapes. This study evaluated the ecological patterns of dung beetle communities in variegated tropical landscapes highlighting the importance of these landscapes for conservation of tropical biodiversity. However, we encourage variegation for the management of landscapes that have already been fragmented or as a complementary initiative of current conservation practices (e.g., protection of natural habitats and establishment of reserves).
Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation.
Price, W D; Schnier, P D; Williams, E R
1996-03-01
A new method for the dissociation of large ions formed by electrospray ionization is demonstrated. Ions trapped in a Fourier transform mass spectrometer at pressures below 10(-)(8) Torr are dissociated by elevating the vacuum chamber to temperatures up to 215 °C. Rate constants for dissociation are measured and found to be independent of pressure below 10(-)(7) Torr. This indicates that the ions are activated by absorption of blackbody radiation emitted from the chamber walls. Dissociation efficiencies as high as 100% are obtained. There is no apparent mass limit to this method; ions as large as ubiquitin (8.6 kDa) are readily dissociated. Thermally stable ions, such as melittin 3+ (2.8 kDa), did not dissociate at temperatures up to 200 °C. This method is highly selective for low-energy fragmentation, from which limited sequence information can be obtained. From the temperature dependence of the dissociation rate constants, Arrhenius activation energies in the low-pressure limit are obtained. The lowest energy dissociation processes for the singly and doubly protonated ions of bradykinin are loss of NH(3) and formation of the b(2)/y(7) complementary pair, with activation energies of 1.3 and 0.8 eV, respectively. No loss of NH(3) is observed for the doubly protonated ion; some loss of H(2)O occurs. These results show that charge-charge interactions not only lower the activation energy for dissociation but also can dramatically change the fragmentation, most likely through changes in the gas-phase conformation of the ion. Dissociation of ubiquitin ions produces fragmentation similar to that obtained by IRMPD and SORI-CAD. Higher charge state ions dissociate to produce y and b ions; the primary fragmentation process for low charge state ions is loss of H(2)O.
Patterns of bird functional diversity on land-bridge island fragments.
Ding, Zhifeng; Feeley, Kenneth J; Wang, Yanping; Pakeman, Robin J; Ding, Ping
2013-07-01
The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on functional diversity remains relatively poorly understood. We conducted bird functional diversity studies on a set of 41 recently isolated land-bridge islands in the Thousand Island Lake, China. We analysed differences in bird species richness and a recently developed suite of complementary functional diversity indices (FRic, volume of functional space occupied; FEve, evenness of abundance distribution in the functional trait space; FDiv, divergence in the distribution of abundance in the trait volume) across different gradients (island area and isolation). We found no correlations between FRic and FEve or FEve and FDiv, but negative correlations between FRic and FDiv. As predicted, island area accounted for most of the variation in bird species richness, whereas isolation explained most of the variation in species evenness (decreasing species evenness with increasing isolation). Functional diversity appears to be more strongly influenced by habitat filtering as opposed to limiting similarity. More specifically, across all islands, both FRic and FEve were significantly lower than expected for randomly assembled communities, but FDiv showed no clear patterns. FRic increased with island area, FEve decreased with island area and FDiv showed no clear patterns. Our finding that FEve decreases with island area at TIL may indicate low functional stability on such islands, and as such large islands and habitat patches may deserve extra attention and/or protection. These results help to demonstrate the importance of considering the effects of fragmentation on functional diversity in habitat management and reserve design plans. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation
NASA Astrophysics Data System (ADS)
Xiao, Weizhan; Hu, Yongjun; Li, Weixing; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi
2015-01-01
While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C2H5OH) ṡ H+ (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH2O ṡ (C2H5OH)H+ (m/z = 77), the measured mass spectra revealed that a new fragment (C2H5OH) ṡ (CH3)+ (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C2H5OH) ṡ H+ and CH2O ṡ (C2H5OH)H+ have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.
Siegel, Marshall M; Kong, Fangming; Feng, Xidong; Carter, Guy T
2009-12-01
Three lipocyclopeptide antibiotics, aspartocins A (1), B (2), and C (3), were obtained from the aspartocin complex by HPLC separation methodology. Their structures were elucidated using previously published chemical degradation results coupled with spectroscopic studies including ESI-MS, ESI-Nozzle Skimmer-MSMS and NMR. All three aspartocin compounds share the same cyclic decapeptide core of cyclo [Dab2 (Asp1-FA)-Pip3-MeAsp4-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11]. They differ only in the fatty acid side chain moiety (FA) corresponding to (Z)-13-methyltetradec-3-ene-carbonyl, (+,Z)-12-methyltetradec-3-ene-carbonyl and (Z)-12-methyltridec-3-ene-carbonyl for aspartocins A (1), B (2), and C (3), respectively. All of the sequence ions were observed by ESI-MSMS of the doubly charged parent ions. However, a number of the sequence ions observed were of low abundance. To fully sequence the lipocyclopeptide antibiotic structures, these low abundance sequence ions together with complementary sequence ions were confirmed by ESI-Nozzle-Skimmer-MSMS of the singly charged linear peptide parent fragment ions H-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11-Dab2(1+)-Asp1-FA. Cyclization of the aspartocins was demonstrated to occur via the beta-amino group of Dab2 from ions of moderate intensity in the ESI-MSMS spectra. As the fatty acid moieties do not undergo internal fragmentations under the experimental ESI mass spectral conditions used, the 14 Da mass difference between the fatty acid moieties of aspartocins A (1) and B (2) versus aspartocin C (3) was used as an internal mass tag to differentiate fragment ions containing fatty acid moieties and those not containing the fatty acid moieties. The most numerous and abundant fragment ions observed in the tandem mass spectra are due to the cleavage of the tertiary nitrogen amide of the pipecolic acid residue-3 (16 fragment ions) and the proline residue-11 (7 fragment ions). In addition, the neutral loss of ethanimine from alpha,beta-diaminobutyric acid residue 9 was observed for the parent molecular ion and for 7 fragment ions. Copyright 2009 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Nelson, K.; Clarke, J.; Stoodley, I.; Creagh, T.
2015-01-01
The generational approach to conceptualising first-year student learning behaviour has made a useful contribution to understanding student engagement. It has an explicit focus on student behaviour and we suggest that a Capability Maturity Model interpretation may provide a complementary extension of that understanding as it builds on the…
J. Schellekens; F. N. Scatena; L.A. Bruijnzee; A. I. J. M. van Dijk; M. M. A. Groen; R. J. P. van Hogezand
2004-01-01
Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and...
K.D. Jermstad; A.M. Reem; J.R. Henifin; N.C. Wheeler; D.B Neale
1994-01-01
A total of 225 new genetic loci [151 restriction fragment length polymorphisms (RFLP) and 74 random amplified polymorphic DNAs (RAPD)] in coastal Douglas- fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] have been identified using a three-generation outbred pedigree. The Mendelian inheritance of 16 RFLP loci and 29...
Raman-based system for DNA sequencing-mapping and other separations
Vo-Dinh, T.
1994-04-26
DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.
Development of fiber shields for engine containment. [mathematical models
NASA Technical Reports Server (NTRS)
Bristow, R. J.; Davidson, C. D.
1977-01-01
Tests were conducted in translational launchers and spin pits to generate empirical data used in the design of a Kevlar shield for containing engine burst debris. Methods are given for modeling the relationship of fragment characteristics to shielding requirements. The change in relative importance of shield mounting provisions as fragment energy is increased is discussed.
Knowledge-based fragment binding prediction.
Tang, Grace W; Altman, Russ B
2014-04-01
Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.
Knowledge-based Fragment Binding Prediction
Tang, Grace W.; Altman, Russ B.
2014-01-01
Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971
Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong
2012-09-01
Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.
Ammonium sulfate and MALDI in-source decay: a winning combination for sequencing peptides
Delvolve, Alice; Woods, Amina S.
2009-01-01
In previous papers we highlighted the role of ammonium sulfate in increasing peptide fragmentation by in source decay (ISD). The current work systematically investigated effects of MALDI extraction delay, peptide amino acid composition, matrix and ammonium sulfate concentration on peptides ISD fragmentation. The data confirmed that ammonium sulfate increased peptides signal to noise ratio as well as their in source fragmentation resulting in complete sequence coverage regardless of the amino acid composition. This method is easy, inexpensive and generates the peptides sequence instantly. PMID:19877641
Virtual fragment preparation for computational fragment-based drug design.
Ludington, Jennifer L
2015-01-01
Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.
Bolan, Shiv; Kunhikrishnan, Anitha; Seshadri, Balaji; Choppala, Girish; Naidu, Ravi; Bolan, Nanthi S; Ok, Yong Sik; Zhang, Ming; Li, Chun-Guang; Li, Feng; Noller, Barry; Kirkham, Mary Beth
2017-11-01
The last few decades have seen the rise of alternative medical approaches including the use of herbal supplements, natural products, and traditional medicines, which are collectively known as 'Complementary medicines'. However, there are increasing concerns on the safety and health benefits of these medicines. One of the main hazards with the use of complementary medicines is the presence of heavy metal(loid)s such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). This review deals with the characteristics of complementary medicines in terms of heavy metal(loid)s sources, distribution, bioavailability, toxicity, and human risk assessment. The heavy metal(loid)s in these medicines are derived from uptake by medicinal plants, cross-contamination during processing, and therapeutic input of metal(loid)s. This paper discusses the distribution of heavy metal(loid)s in these medicines, in terms of their nature, concentration, and speciation. The importance of determining bioavailability towards human health risk assessment was emphasized by the need to estimate daily intake of heavy metal(loid)s in complementary medicines. The review ends with selected case studies of heavy metal(loid) toxicity from complementary medicines with specific reference to As, Cd, Pb, and Hg. The future research opportunities mentioned in the conclusion of review will help researchers to explore new avenues, methodologies, and approaches to the issue of heavy metal(loid)s in complementary medicines, thereby generating new regulations and proposing fresh approach towards safe use of these medicines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Unravelling the structural and mechanistic basis of CRISPR-Cas systems.
van der Oost, John; Westra, Edze R; Jackson, Ryan N; Wiedenheft, Blake
2014-07-01
Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments of foreign DNA into CRISPR loci, and following transcription and processing of these loci, the CRISPR RNAs (crRNAs) guide the Cas proteins to complementary invading nucleic acid, which results in target interference. In this Review, we summarize the recent structural and biochemical insights that have been gained for the three major types of CRISPR-Cas systems, which together provide a detailed molecular understanding of the unique and conserved mechanisms of RNA-guided adaptive immunity in bacteria and archaea.
Shieh, H S; Berman, H M; Dabrow, M; Neidle, S
1980-01-01
A 2:2 complex of proflavine and deoxycytidylyl-3', 5'-guanosine has been crystallized and its structure determined by x-ray crystallography. The two dinucleoside phosphate strands form self complementary duplexes with Watson Crick hydrogen bonds. One proflavin is asymmetrically intercalated between the base pairs and the other is stacked above them. The conformations of the nucleotides are unusual in that one strand has C3',C2'endomixed sugar puckering and the other has C3',C3' endo deoxyribose sugars. These results show that the conformation of the 3'sugar is of secondary importance to the intercalated geometry. PMID:7355129
Cui, Helen W; Devlies, Wout; Ravenscroft, Samuel; Heers, Hendrik; Freidin, Andrew J; Cleveland, Robin O; Ganeshan, Balaji; Turney, Benjamin W
2017-07-01
Understanding the factors affecting success of extracorporeal shockwave lithotripsy (SWL) would improve informed decision-making on the most appropriate treatment modality for an individual patient. Although stone size and skin-to-stone distance do correlate with fragmentation efficacy, it has been shown that stone composition and architecture, as reflected by structural heterogeneity on CT, are also important factors. This study aims to determine if CT texture analysis (CTTA), a novel, nondestructive, and objective tool that generates statistical metrics reflecting stone heterogeneity, could have utility in predicting likelihood of SWL success. Seven spontaneously passed, intact renal tract stones, were scanned ex vivo using standard CT KUB and micro-CT. The stones were then fragmented in vitro using a clinical lithotripter, after which, chemical composition analysis was performed. CTTA was used to generate a number of metrics that were correlated to the number of shocks needed to fragment the stone. CTTA metrics reflected stone characteristics and composition, and predicted ease of SWL fragmentation. The strongest correlation with number of shocks required to fragment the stone was mean Hounsfield unit (HU) density (r = 0.806, p = 0.028) and a CTTA metric measuring the entropy of the pixel distribution of the stone image (r = 0.804, p = 0.039). Using multiple linear regression analysis, the best model showed that CTTA metrics of entropy and kurtosis could predict 92% of the outcome of number of shocks needed to fragment the stone. This was superior to using stone volume or density. CTTA metrics entropy and kurtosis have been shown in this experimental ex vivo setting to strongly predict fragmentation by SWL. This warrants further investigation in a larger clinical study for the contribution of CT textural metrics as a measure of stone heterogeneity, along with other known clinical factors, to predict likelihood of SWL success.
Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki
2016-01-01
A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628
The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria
Staals, Raymond H. J.; Endtz, Hubert P.; van Baarlen, Peter; van der Oost, John
2014-01-01
SUMMARY Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular. PMID:24600041
The role of CRISPR-Cas systems in virulence of pathogenic bacteria.
Louwen, Rogier; Staals, Raymond H J; Endtz, Hubert P; van Baarlen, Peter; van der Oost, John
2014-03-01
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular.
Research on the photoelectric measuring method of warhead fragment velocity
NASA Astrophysics Data System (ADS)
Liu, Ji; Yu, Lixia; Zhang, Bin; Liu, Xiaoyan
2016-09-01
The velocity of warhead fragment is the key criteria to determine its mutilation efficiency. But owing to the small size, larger quantity, irregular shape, high speed, arbitrary direction, large dispersion of warhead fragment and adverse environment, the test of fragment velocity parameter is very difficult. The paper designed an optoelectronic system to measure the average velocity of warhead fragments accurately. The apparatus included two parallel laser screens spaced apart at a known fixed distance for providing time measurement between start and stop signals. The large effective screen area was composed of laser source, retro-reflector and large area photo-diode. Whenever a moving fragment interrupted two optical screens, the system would generate a target signal. Due to partial obscuration of the incident energy and the poor test condition of the explosion, fragment target signal is easily disturbed. Therefore, fragments signal processing technology has become a key technology of the system. The noise of signal was reduced by employing wavelet decomposition and reconstruction. The time of fragment passing though the target was obtained by adopting peak detection algorithm. Based on the method of search peak in different width scale and waveform trend by using optima wavelet, the problem of rolling waveform was solved. Lots of fragments experiments of the different types of the warheads were conducted. Experimental results show that: warhead fragments capture rate of system is better than 98%, which can give velocity of each fragment in the density of less than 20 pieces per m2.
A comparison of DNA fragmentation methods - Applications for the biochip technology.
Sapojnikova, Nelly; Asatiani, Nino; Kartvelishvili, Tamar; Asanishvili, Lali; Zinkevich, Vitaly; Bogdarina, Irina; Mitchell, Julian; Al-Humam, Abdulmohsen
2017-08-20
The efficiency of hybridization signal detection in a biochip is affected by the method used for test DNA preparation, such as fragmentation, amplification and fluorescent labelling. DNA fragmentation is the commonest methods used and it is recognised as a critical step in biochip analysis. Currently methods used for DNA fragmentation are based either on sonication or on the enzymatic digestion. In this study, we compared the effect of different types of enzymatic DNA fragmentations, using DNase I to generate ssDNA breaks, NEBNext dsDNA fragmentase and SaqAI restrictase, on DNA labelling. DNA from different Desulfovibrio species was used as a substrate for these enzymes. Of the methods used, DNA fragmented by NEBNext dsDNA Fragmentase digestion was subsequently labelled with the greatest efficiency. As a result of this, the use of this enzyme to fragment target DNA increases the sensitivity of biochip-based detection significantly, and this is an important consideration when determining the presence of targeted DNA in ecological and medical samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Effective progression of nuclear magnetic resonance-detected fragment hits.
Eaton, Hugh L; Wyss, Daniel F
2011-01-01
Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade as an alternate lead generation tool to HTS approaches. Several compounds have now progressed into the clinic which originated from a fragment-based approach, demonstrating the utility of this emerging field. While fragment hit identification has become much more routine and may involve different screening approaches, the efficient progression of fragment hits into quality lead series may still present a major bottleneck for the broadly successful application of FBDD. In our laboratory, we have extensive experience in fragment-based NMR screening (SbN) and the subsequent iterative progression of fragment hits using structure-assisted chemistry. To maximize impact, we have applied this approach strategically to early- and high-priority targets, and those struggling for leads. Its application has yielded a clinical candidate for BACE1 and lead series in about one third of the SbN/FBDD projects. In this chapter, we will give an overview of our strategy and focus our discussion on NMR-based FBDD approaches. Copyright © 2011 Elsevier Inc. All rights reserved.
Fragment-based approaches to the discovery of kinase inhibitors.
Mortenson, Paul N; Berdini, Valerio; O'Reilly, Marc
2014-01-01
Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.
Binding-Site Compatible Fragment Growing Applied to the Design of β2-Adrenergic Receptor Ligands.
Chevillard, Florent; Rimmer, Helena; Betti, Cecilia; Pardon, Els; Ballet, Steven; van Hilten, Niek; Steyaert, Jan; Diederich, Wibke E; Kolb, Peter
2018-02-08
Fragment-based drug discovery is intimately linked to fragment extension approaches that can be accelerated using software for de novo design. Although computers allow for the facile generation of millions of suggestions, synthetic feasibility is however often neglected. In this study we computationally extended, chemically synthesized, and experimentally assayed new ligands for the β 2 -adrenergic receptor (β 2 AR) by growing fragment-sized ligands. In order to address the synthetic tractability issue, our in silico workflow aims at derivatized products based on robust organic reactions. The study started from the predicted binding modes of five fragments. We suggested a total of eight diverse extensions that were easily synthesized, and further assays showed that four products had an improved affinity (up to 40-fold) compared to their respective initial fragment. The described workflow, which we call "growing via merging" and for which the key tools are available online, can improve early fragment-based drug discovery projects, making it a useful creative tool for medicinal chemists during structure-activity relationship (SAR) studies.
From Large-scale to Protostellar Disk Fragmentation into Close Binary Stars
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Cruz, Fidel; Gabbasov, Ruslan; Klapp, Jaime; Ramírez-Velasquez, José
2018-04-01
Recent observations of young stellar systems with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Karl G. Jansky Very Large Array are helping to cement the idea that close companion stars form via fragmentation of a gravitationally unstable disk around a protostar early in the star formation process. As the disk grows in mass, it eventually becomes gravitationally unstable and fragments, forming one or more new protostars in orbit with the first at mean separations of 100 au or even less. Here, we report direct numerical calculations down to scales as small as ∼0.1 au, using a consistent Smoothed Particle Hydrodynamics code, that show the large-scale fragmentation of a cloud core into two protostars accompanied by small-scale fragmentation of their circumstellar disks. Our results demonstrate the two dominant mechanisms of star formation, where the disk forming around a protostar (which in turn results from the large-scale fragmentation of the cloud core) undergoes eccentric (m = 1) fragmentation to produce a close binary. We generate two-dimensional emission maps and simulated ALMA 1.3 mm continuum images of the structure and fragmentation of the disks that can help explain the dynamical processes occurring within collapsing cloud cores.
An accurate algorithm for the detection of DNA fragments from dilution pool sequencing experiments.
Bansal, Vikas
2018-01-01
The short read lengths of current high-throughput sequencing technologies limit the ability to recover long-range haplotype information. Dilution pool methods for preparing DNA sequencing libraries from high molecular weight DNA fragments enable the recovery of long DNA fragments from short sequence reads. These approaches require computational methods for identifying the DNA fragments using aligned sequence reads and assembling the fragments into long haplotypes. Although a number of computational methods have been developed for haplotype assembly, the problem of identifying DNA fragments from dilution pool sequence data has not received much attention. We formulate the problem of detecting DNA fragments from dilution pool sequencing experiments as a genome segmentation problem and develop an algorithm that uses dynamic programming to optimize a likelihood function derived from a generative model for the sequence reads. This algorithm uses an iterative approach to automatically infer the mean background read depth and the number of fragments in each pool. Using simulated data, we demonstrate that our method, FragmentCut, has 25-30% greater sensitivity compared with an HMM based method for fragment detection and can also detect overlapping fragments. On a whole-genome human fosmid pool dataset, the haplotypes assembled using the fragments identified by FragmentCut had greater N50 length, 16.2% lower switch error rate and 35.8% lower mismatch error rate compared with two existing methods. We further demonstrate the greater accuracy of our method using two additional dilution pool datasets. FragmentCut is available from https://bansal-lab.github.io/software/FragmentCut. vibansal@ucsd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Levels of circulating MMP-7 degraded elastin are elevated in pulmonary disorders.
Kristensen, J H; Larsen, L; Dasgupta, B; Brodmerkel, C; Curran, M; Karsdal, M A; Sand, J M B; Willumsen, N; Knox, A J; Bolton, C E; Johnson, S R; Hägglund, P; Svensson, B; Leeming, D J
2015-11-01
Elastin is a signature protein of the lungs. Matrix metalloproteinase-7 (MMP-7) is important in lung defence mechanisms and degrades elastin. However, MMP-7 activity in regard to elastin degradation has never been quantified serologically in patients with lung diseases. An assay for the quantification of MMP-7 generated elastin fragments (ELM7) was therefore developed to investigate MMP-7 derived elastin degradation in pulmonary disorders such as idiopathic pulmonary fibrosis (IPF) and lung cancer. Monoclonal antibodies (mABs) were raised against eight carefully selected MMP-7 cleavage sites on elastin. After characterisation and validation of the mABs, one mAB targeting the ELM7 fragment was chosen. ELM7 fragment levels were assessed in serum samples from patients diagnosed with IPF (n=123, baseline samples, CTgov reg. NCT00786201), and lung cancer (n=40) and compared with age- and sex-matched controls. The ELM7 assay was specific towards in vitro MMP-7 degraded elastin and the ELM7 neoepitope but not towards other MMP-7 derived elastin fragments. Serum ELM7 levels were significantly increased in IPF (113%, p<0.0001) and lung cancer (96%, p<0.0001) compared to matched controls. MMP-7-generated elastin fragments can be quantified in serum and may reflect pathological lung tissue turnover in several important lung diseases. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
De Angelis, Maria; Cassone, Angela; Rizzello, Carlo G; Gagliardi, Francesca; Minervini, Fabio; Calasso, Maria; Di Cagno, Raffaella; Francavilla, Ruggero; Gobbetti, Marco
2010-01-01
As shown by R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay (ELISA), selected sourdough lactobacilli, in combination with fungal proteases, hydrolyzed gluten (72 h at 37 degrees C) of various cultivars of Triticum turgidum L. var. durum to less than 20 ppm. Complementary electrophoretic, chromatography, and mass spectrometry techniques were used to characterize the gluten and epitope hydrolysis. Nine peptidases were partially purified from the pooled cytoplasmic extract of the sourdough lactobacilli and used to hydrolyze the 33-mer epitope, the most immunogenic peptide generated during digestion of Triticum species. At least three peptidases (general aminopeptidase type N [PepN], X-prolyl dipeptidyl aminopeptidase [PepX], and endopeptidase PepO) were necessary to detoxify the 33-mer without generation of related immunogenic epitopes. After 14 h of incubation, the combination of all or at least six different peptidases totally hydrolyzed the 33-mer (200 mM) into free amino acids. The same results were found for other immunogenic epitopes, such as fragments 57-68 of alpha 9-gliadin, 62-75 of A-gliadin, and 134-153 of gamma-gliadin. When peptidases were used for fermentation of durum wheat semolina, they caused the hydrolysis of gluten to ca. 2 ppm. The in vivo digestion was simulated, and proteins/peptides extracted from pepsin-trypsin (PT) digestion of durum wheat semolina fermented with selected sourdough lactobacilli induced the expression of gamma interferon and interleukin 2 at levels comparable to those of the negative control. Durum wheat semolina fermented with sourdough lactobacilli was freeze-dried and used for making Italian-type pasta. The scores for cooking and sensory properties for this pasta were higher that those of conventional gluten-free pasta.
De Angelis, Maria; Cassone, Angela; Rizzello, Carlo G.; Gagliardi, Francesca; Minervini, Fabio; Calasso, Maria; Di Cagno, Raffaella; Francavilla, Ruggero; Gobbetti, Marco
2010-01-01
As shown by R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay (ELISA), selected sourdough lactobacilli, in combination with fungal proteases, hydrolyzed gluten (72 h at 37°C) of various cultivars of Triticum turgidum L. var. durum to less than 20 ppm. Complementary electrophoretic, chromatography, and mass spectrometry techniques were used to characterize the gluten and epitope hydrolysis. Nine peptidases were partially purified from the pooled cytoplasmic extract of the sourdough lactobacilli and used to hydrolyze the 33-mer epitope, the most immunogenic peptide generated during digestion of Triticum species. At least three peptidases (general aminopeptidase type N [PepN], X-prolyl dipeptidyl aminopeptidase [PepX], and endopeptidase PepO) were necessary to detoxify the 33-mer without generation of related immunogenic epitopes. After 14 h of incubation, the combination of all or at least six different peptidases totally hydrolyzed the 33-mer (200 mM) into free amino acids. The same results were found for other immunogenic epitopes, such as fragments 57-68 of α9-gliadin, 62-75 of A-gliadin, and 134-153 of γ-gliadin. When peptidases were used for fermentation of durum wheat semolina, they caused the hydrolysis of gluten to ca. 2 ppm. The in vivo digestion was simulated, and proteins/peptides extracted from pepsin-trypsin (PT) digestion of durum wheat semolina fermented with selected sourdough lactobacilli induced the expression of gamma interferon and interleukin 2 at levels comparable to those of the negative control. Durum wheat semolina fermented with sourdough lactobacilli was freeze-dried and used for making Italian-type pasta. The scores for cooking and sensory properties for this pasta were higher that those of conventional gluten-free pasta. PMID:19948868
Vugrinec, Sascha; Kroth, Peter G.
2012-01-01
Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms. PMID:22629333
ACFIS: a web server for fragment-based drug discovery
Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu
2016-01-01
In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown ‘chemical space’ to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for ‘chemical space’, which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. PMID:27150808
Adaptation to fragmentation: evolutionary dynamics driven by human influences.
Cheptou, Pierre-Olivier; Hargreaves, Anna L; Bonte, Dries; Jacquemyn, Hans
2017-01-19
Fragmentation-the process by which habitats are transformed into smaller patches isolated from each other-has been identified as a major threat for biodiversity. Fragmentation has well-established demographic and population genetic consequences, eroding genetic diversity and hindering gene flow among patches. However, fragmentation should also select on life history, both predictably through increased isolation, demographic stochasticity and edge effects, and more idiosyncratically via altered biotic interactions. While species have adapted to natural fragmentation, adaptation to anthropogenic fragmentation has received little attention. In this review, we address how and whether organisms might adapt to anthropogenic fragmentation. Drawing on selected case studies and evolutionary ecology models, we show that anthropogenic fragmentation can generate selection on traits at both the patch and landscape scale, and affect the adaptive potential of populations. We suggest that dispersal traits are likely to experience especially strong selection, as dispersal both enables migration among patches and increases the risk of landing in the inhospitable matrix surrounding them. We highlight that suites of associated traits are likely to evolve together. Importantly, we show that adaptation will not necessarily rescue populations from the negative effects of fragmentation, and may even exacerbate them, endangering the entire metapopulation.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).
ACFIS: a web server for fragment-based drug discovery.
Hao, Ge-Fei; Jiang, Wen; Ye, Yuan-Nong; Wu, Feng-Xu; Zhu, Xiao-Lei; Guo, Feng-Biao; Yang, Guang-Fu
2016-07-08
In order to foster innovation and improve the effectiveness of drug discovery, there is a considerable interest in exploring unknown 'chemical space' to identify new bioactive compounds with novel and diverse scaffolds. Hence, fragment-based drug discovery (FBDD) was developed rapidly due to its advanced expansive search for 'chemical space', which can lead to a higher hit rate and ligand efficiency (LE). However, computational screening of fragments is always hampered by the promiscuous binding model. In this study, we developed a new web server Auto Core Fragment in silico Screening (ACFIS). It includes three computational modules, PARA_GEN, CORE_GEN and CAND_GEN. ACFIS can generate core fragment structure from the active molecule using fragment deconstruction analysis and perform in silico screening by growing fragments to the junction of core fragment structure. An integrated energy calculation rapidly identifies which fragments fit the binding site of a protein. We constructed a simple interface to enable users to view top-ranking molecules in 2D and the binding mode in 3D for further experimental exploration. This makes the ACFIS a highly valuable tool for drug discovery. The ACFIS web server is free and open to all users at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Uribe, M; Sánchez, J M; Tielve, J M; Dávila, B; Gurza, L; Bosques, F; Kettenhofen, W; Sánchez, C; Castorena, G
1990-07-01
Fifty seven patients were selected from 620 cases with gallstones to be treated with an electromagnetic shock wave generator (Lithostar Plus). The machine has an overhead module with an electromagnetic generator able to produce 150-150 bar of pressure in the center of the focal zone (2 x 8 cms.) An in line ultrasound probe permits in vivo view of stone localization and fragmentations. The wide aperture of the device permits to treat patients with little pain in ambulatory basis. The mean age of the patients was 50 +/- 14 years, 57 were female and 20 were male. Stones were single in 35 cases and were multiple (2-4 gallstones) in the rest. The patients received a mean of 2620 +/- 371 shock waves. Intravenous analgesia (Fentanyl 87 +/- 40 ug p/session) was required in 26 cases. In 58.5% of the cases, fragmentation produced gallstone-rests of < 0.5 cm. Larger fragments (> 0.5 cm), were observed after an initial shock wave session in 33%. These patients underwent additional treatments sessions. Hence patients received 1.8 +/- 0.8 sessions. Minor fragmentation or no fragmentation after the first session was observed in the 14.5%. Mild biliary pain appeared in 17 patients and acute biliary colic in 2, one of these underwent emergency cholecystectomy. Overall gallstone disappearance after one year after lithotripsy, plus bile acid therapy (10-12 mg Kg day) was 72%. Patients with single gallstones were free of stones of fragments in 92% of the cases, after the same period of follow up.
NASA Astrophysics Data System (ADS)
Yamamoto, Masa-Yuki; Ishihara, Yoshiaki; Hiramatsu, Yoshihiro; Kitamura, Kazuki; Ueda, Masayoshi; Shiba, Yasuo; Furumoto, Muneyoshi; Fujita, Kazuhisa
2011-10-01
Acoustic/infrasonic/seismic waves were observed during the re-entry of the Japanese asteroid explorer ``HAYABUSA'' at 6 ground sites in Woomera, Australia, on 2010 June 13. Overpressure values of infrasound waves were detected at 3 ground sites in a range from 1.3 Pa, 1.0 Pa, and 0.7 Pa with each distance of 36.9 km, 54.9 km, and 67.8 km, respectively, apart from the SRC trajectory. Seismic waveforms through air-to-ground coupling processes were also detected at 6 sites, showing a one-to-one correspondence to infrasound waves at all simultaneous observation sites. Audible sound up to 1 kHz was recorded at one site with a distance of 67.8 km. The mother spacecraft was fragmented from 75 km down to 38 km with a few explosive enhancements of emissions. A persistent train of HAYABUSA re-entry was confirmed at an altitude range of between 92 km down to 82 km for about 3 minutes. Light curves of 136 fragmented parts of the spacecraft were analyzed in detail based on video observations taken at multiple ground sites, being classified into three types of fragmentations, i.e., melting, explosive, and re-fragmented types. In a comparison between infrasonic waves and video-image analyses, regarding the generation of sonic-boom type shock waves by hypersonically moving artificial meteors, both the sample return capsule and fragmented parts of the mother spacecraft, at an altitude of 40 ± 1 km were confirmed with a one-to-one correspondence with each other.
Critical Features of Fragment Libraries for Protein Structure Prediction
dos Santos, Karina Baptista
2017-01-01
The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928
Critical Features of Fragment Libraries for Protein Structure Prediction.
Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel
2017-01-01
The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.
Accelerated lamellar disintegration in eutectoid steel
NASA Astrophysics Data System (ADS)
Mishra, Shakti; Mishra, Alok; Show, Bijay Kumar; Maity, Joydeep
2017-04-01
The fastest kinetics of lamellar disintegration (predicted duration of 44 min) in AISI 1080 steel is obtained with a novel approach of incomplete austenitisation-based cyclic heat treatment involving forced air cooling with an air flow rate of 8.7 m3 h-1. A physical model for process kinetics is proposed that involves lamellar fragmentation, lamellar thickening, divorced eutectoid growth and generation of new lamellar faults in remaining cementite lamellae in each cycle. Lamellar fragmentation is accentuated with faster rate of cooling through generation of more intense lamellar faults; but divorced eutectoid growth is ceased. Accordingly, as compared to still air cooling, much faster kinetics of lamellar disintegration is obtained by forced air cooling together with the generation of much smaller submicroscopic cementite particles (containing more proportion of plate-shaped non-spheroids) in divorced eutectoid region.
Raza, Qaisar; Nicolaou, Mary; Snijder, Marieke B; Stronks, Karien; Seidell, Jacob C
2017-08-01
To test Koctürk's model of dietary change among South-Asian Surinamese in the Netherlands. The model categorizes foods into staple, complementary and accessory foods and postulates that dietary change after migration begins with accessory foods while foods associated with ethnic identity (staple foods) change at a slower rate. Cross-sectional data from the HELIUS study. Dietary intake was assessed with an FFQ. Acculturation was based on social contacts and sense of belonging and was translated into four strategies of acculturation: assimilation, integration, separation and marginalization. Other indicators of acculturation included residence duration, age at migration and migration generation status. Amsterdam, the Netherlands. Participants of Dutch (n 1456) and South-Asian Surinamese origin (n 968). Across all acculturation strategies, South-Asian Surinamese participants reported significantly higher intakes of rice (staple food) and chicken (complementary food) and significantly lower intakes of red meat and vegetables (complementary foods) and cookies and sweets (accessory food) than Dutch participants. Men, second-generation and assimilated South-Asian Surinamese were inclined towards Dutch foods such as potato, pasta and red meat. Accessory foods like fruits showed variation across acculturation strategies. Consistent with the Koctürk model, the intake of staple foods was stable among South-Asian Surinamese irrespective of acculturation strategy while the intake of accessory foods like fruit varied. Contrary to expectations, South-Asian Surinamese showed consistently high intakes of complementary foods like chicken and fish irrespective of acculturation strategy. Public health practitioners should take into consideration the complex and dynamic nature of dietary acculturation.
Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.
2014-01-01
A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote-fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers. PMID:24781458
Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B; Holy, Timothy E; Gross, Michael L
2014-08-01
A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.
FBMC receiver for multi-user asynchronous transmission on fragmented spectrum
NASA Astrophysics Data System (ADS)
Doré, Jean-Baptiste; Berg, Vincent; Cassiau, Nicolas; Kténas, Dimitri
2014-12-01
Relaxed synchronization and access to fragmented spectrum are considered for future generations of wireless networks. Frequency division multiple access for filter bank multicarrier (FBMC) modulation provides promising performance without strict synchronization requirements contrary to conventional orthogonal frequency division multiplexing (OFDM). The architecture of a FBMC receiver suitable for this scenario is considered. Carrier frequency offset (CFO) compensation is combined with intercarrier interference (ICI) cancellation and performs well under very large frequency offsets. Channel estimation and interpolation had to be adapted and proved effective even for heavily fragmented spectrum usage. Channel equalization can sustain large delay spread. Because all the receiver baseband signal processing functionalities are proposed in the frequency domain, the overall architecture is suitable for multiuser asynchronous transmission on fragmented spectrum.
Khashan, Raed S
2015-01-01
As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated to mine these complexes to aid in the drug design and development process. We present free software which is developed as a tool for performing similarity search across ligand-receptor complexes for identifying binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand's fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments (FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to explore available databases.
Recombinant Immunotoxin Therapy of Solid Tumors: Challenges and Strategies.
Shan, Liang; Liu, Yuanyi; Wang, Paul
2013-01-01
Immunotoxins are a group of protein-based therapeutics, basically comprising two functional moieties: one is the antibody or antibody Fv fragment that allows the immunotoxin to bind specifically to target cells; another is the plant or bacterial toxin that kills the cells upon internalization. Immunotoxins have several unique features which are superior to conventional chemotherapeutics, including high specificity, extraordinary potency, and no known drug resistance. Development of immunotoxins evolves with time and technology, but significant progress has been achieved in the past 20 years after introduction of recombinant DNA technique and generation of the first single-chain variable fragment of monoclonal antibodies. Since then, more than 1,000 recombinant immunotoxins have been generated against cancer. However, most success in immunotoxin therapy has been achieved against hematological malignancies, several issues persist to be significant barriers for effective therapy of human solid tumors. Further development of immunotoxins will largely focus on the improvement of penetration capability to solid tumor mass and elimination of immunogenicity occurred when given repeatedly to patients. Promising strategies may include construction of recombinant antibody fragments with higher binding affinity and stability, elimination of immunodominant T- and B-cell epitopes of toxins, modification of immunotoxins with macromolecules like poly(ethylene glycol) and liposomes, and generation of immunotoxins with humanized antibody fragments and human endogenous cytotoxic enzymes. In this paper, we briefly reviewed the evolution of immunotoxin development and then discussed the challenges of immunotoxin therapy for human solid tumors and the potential strategies we may seek to overcome the challenges.
Structure Identification Using the US EPA's CompTox Chemistry Dashboard (CompTox CoP)
Community of practice webinar presentation on the Identification of unknowns in non-targeted analyses (NTA) requires the integration of complementary data types to generate a confident consensus structure.
ERIC Educational Resources Information Center
Ludwig, Nancy M.
2011-01-01
Enrollment in higher education in the United States has experienced significant growth in the last two decades. Growth is not only seen in the increasing numbers; diversity is increasing with more minority and non-traditionally aged students attending college. Many of these students are first-generation college (FGC) students; those whose parents…
Suárez-Montes, Pilar; Chávez-Pesqueira, Mariana
2016-01-01
Introduction Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate), indirect gene flow and contemporary pollen dynamics in the understory herb Aphelandra aurantiaca. Also, we assessed its present-day genetic structure under different past demographic scenarios. Methods Twelve populations of A. aurantiaca were sampled in large (4), medium (3), and small (5) forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28–30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population. Results Despite prevailing habitat fragmentation, populations of A. aurantiaca possess high genetic variation (He = 0.61), weak genetic structure (Rst = 0.037), and slight inbreeding in small fragments. Effective population sizes (Ne) were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events were detected. Aphelandra aurantiaca shows a mixed mating system (tm = 0.81) and the outcrossing rate have not been affected by habitat fragmentation. A strong pollen pool structure was detected due to few effective pollen donors (Nep) and low distance pollen movement, pointing that most plants received pollen from close neighbors. Past demographic fluctuations may have affected the present population genetic structure as Bayesian coalescent analysis revealed the signature of past population expansion, possibly during warmer conditions after the last glacial maximum. Discussion Habitat fragmentation has not increased genetic differentiation or reduced genetic diversity of A. aurantiaca despite dozens of generations since the onset of fragmentation in the region of Los Tuxtlas. Instead, past population expansion is compatible with the lack of observed genetic structure. The predicted negative effects of rainforest fragmentation on genetic diversity and population structure of A. aurantiaca seem to have been buffered owing to its large effective populations and long-distance dispersal events. In particular, its mixed-mating system, mostly of outcrossing, suggests high efficiency of pollinators promoting connectivity and reducing inbreeding. However, some results point that the effects of fragmentation are underway, as two small fragments showed higher membership probabilities to their population of origin, suggesting genetic isolation. Our findings underscore the importance of fragment size to maintain genetic connectivity across the landscape. PMID:28028460
Punchihewa, Chandanamali; Dai, Jixun; Carver, Megan; Yang, Danzhou
2007-01-01
Human topoisomerase I (topo I) is an essential cellular enzyme that relaxes DNA supercoiling. The 6.3 kDa C-terminal domain of topo I contains the active site tyrosine (Tyr723) but lacks enzymatic activity by itself. Activity can be fully reconstituted when the C-terminal is associated with the 56 kDa core domain. Even though several crystal structures of topo I/DNA complexes are available, crystal structures of the free topo I protein or its individual domain fragments have been difficult to obtain. In this report we analyze the human topo I C-terminal domain structure using a variety of biophysical methods. Our results indicate that this fragment protein (topo6.3) appears to be in a molten globule state. It appears to have a native-like tertiary fold that contains a large population of α-helix secondary structure and extensive surface hydrophobic regions. Topo6.3 is known to be readily activated with the association of the topo I core domain, and the molten globule state of topo6.3 is likely to be an energy-favorable conformation for the free topo I C-terminal domain protein. The structural fluctuation and plasticity may represent an efficient mechanism in the topo I functional pathway, where the flexibility aids in the complementary association with the core domain and in the formation of a fully productive topo I complex. PMID:17434318
NASA Astrophysics Data System (ADS)
Sonoda, Tetsu
2009-10-01
The projectile fragment separator BigRIPS of RIBF at RIKEN provides a wide variety of short-lived radioactive isotope (RI) ions without restrictions on their lifetime or chemical properties. A universal slow RI-beam facility (SLOWRI) to decelerate the beams from BigRIPS using an RF-carpet ion guide has been proposed as a principal facility of RIBF. However, beam time at such a modern accelerator facility is always limited and operational costs are high. We therefore propose an additional scheme as a complementary option to SLOWRI to drastically enhance the usability of such an expensive facility. In BigRIPS, a single primary beam produces thousands of isotopes but only one isotope is used for an experiment while the other >99.99% of isotopes are simply dumped in the slits or elsewhere in the fragment separator. We plan to locate a compact gas cell with 1 bar Ar at the slits. The thermalized ions in the cell will be quickly neutralized and transported to the exit by gas flow and resonantly re-ionized by lasers. Such low energy RI-beams will always be provided without any restriction to the main experiment. It will allow us to run parasitic experiments for precision atomic or decay spectroscopy, mass measurements. Furthermore, the resonance ionization in the cell itself can be used for high-sensitive laser spectroscopy, which will expand our knowledge of the ground state property of unstable nuclei.
Road networks predict human influence on Amazonian bird communities
Ahmed, Sadia E.; Lees, Alexander C.; Moura, Nárgila G.; Gardner, Toby A.; Barlow, Jos; Ferreira, Joice; Ewers, Robert M.
2014-01-01
Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called ‘roadless volume (RV)’ at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation. PMID:25274363
Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.
Vaniya, Arpana; Fiehn, Oliver
2015-06-01
Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations.
Postfragmentation density function for bacterial aggregates in laminar flow
Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John
2014-01-01
The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. PMID:21599205
Role of mTOR, Bad, and Survivin in RasGAP Fragment N-Mediated Cell Protection
Yang, Jiang-Yan; Widmann, Christian
2013-01-01
Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response. PMID:23826368
Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS.
Lou, Xianwen; Li, Bao; de Waal, Bas F M; Schill, Jurgen; Baker, Matthew B; Bovee, Ralf A A; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W
2018-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges. Copyright © 2017 John Wiley & Sons, Ltd.
General-Purpose Heat Source Safety Verification Test Program: Edge-on flyer plate tests
NASA Astrophysics Data System (ADS)
George, T. G.
1987-03-01
The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of Pu-238 alpha-decay to an array of thermoelectric elements. Each module contains four Pu-238O2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-TO) plate is approximately 140 m/s.
Xiao, Li; Wei, Hui; Himmel, Michael E.; Jameel, Hasan; Kelley, Stephen S.
2014-01-01
Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR) and pyrolysis-molecular beam mass spectrometry (Py-mbms) are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis) and for building regression models (partial least square regression) between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated. This review aims to serve as a guide for choosing the most effective data analysis methods for NIR and Py-mbms characterization of biomass. PMID:25147552
Stochastic Generation of Monthly Rainfall Data
NASA Astrophysics Data System (ADS)
Srikanthan, R.
2009-03-01
Monthly rainfall data is generally needed in the simulation of water resources systems, and in the estimation of water yield from large catchments. Monthly streamflow data generation models are usually applied to generate monthly rainfall data, but this presents problems for most regions, which have significant months of no rainfall. In an earlier study, Srikanthan et al. (J. Hydrol. Eng., ASCE 11(3) (2006) 222-229) recommended the modified method of fragments to disaggregate the annual rainfall data generated by a first-order autoregressive model. The main drawback of this approach is the occurrence of similar patterns when only a short length of historic data is available. Porter and Pink (Hydrol. Water Res. Symp. (1991) 187-191) used synthetic fragments from a Thomas-Fiering monthly model to overcome this drawback. As an alternative, a new two-part monthly model is nested in an annual model to generate monthly rainfall data which preserves both the monthly and annual characteristics. This nested model was applied to generate rainfall data from seven rainfall stations located in eastern and southern parts of Australia, and the results showed that the model performed satisfactorily.
Le, Chi Chip; MacMillan, David W C
2015-09-23
In this study we demonstrate that molecular fragments, which can be readily coupled via a simple, in situ RO-C═OR bond-forming reaction, can subsequently undergo metal insertion-decarboxylation-recombination to generate Csp(2)-Csp(3) bonds when subjected to metallaphotoredox catalysis. In this embodiment the conversion of a wide variety of mixed anhydrides (formed in situ from carboxylic acids and acyl chlorides) to fragment-coupled ketones is accomplished in good to high yield. A three-step synthesis of the medicinal agent edivoxetine is also described using this new decarboxylation-recombination protocol.
Does the generation effect occur for pictures?
Kinjo, H; Snodgrass, J G
2000-01-01
The generation effect is the finding that self-generated stimuli are recalled and recognized better than read stimuli. The effect has been demonstrated primarily with words. This article examines the effect for pictures in two experiments: Subjects named complete pictures (name condition) and fragmented pictures (generation condition). In Experiment 1, memory was tested in 3 explicit tasks: free recall, yes/no recognition, and a source-monitoring task on whether each picture was complete or fragmented (the complete/incomplete task). The generation effect was found for all 3 tasks. However, in the recognition and source-monitoring tasks, the generation effect was observed only in the generation condition. We hypothesized that absence of the effect in the name condition was due to the sensory or process match effect between study and test pictures and the superior identification of pictures in the name condition. Therefore, stimuli were changed from pictures to their names in Experiment 2. Memory was tested in the recognition task, complete/incomplete task, and second source-monitoring task (success/failure) on whether each picture had been identified successfully. The generation effect was observed for all 3 tasks. These results suggest that memory of structural and semantic characteristics and of success in identification of generated pictures may contribute to the generation effect.
Electronic switching circuit uses complementary non-linear components
NASA Technical Reports Server (NTRS)
Zucker, O. S.
1972-01-01
Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.
Witt, Claudia M; Huang, Wen-jing; Lao, Lixing; Berman, Brian M
2013-08-01
In clinical research on complementary and integrative medicine, experts and scientists have often pursued a research agenda in spite of an incomplete understanding of the needs of end users. Consequently, the majority of previous clinical trials have mainly assessed the efficacy of interventions. Scant data is available on their effectiveness. Comparative effectiveness research (CER) promises to support decision makers by generating evidence that compares the benefits and harms of best care options. This evidence, more generalizable than evidence generated by traditional randomized clinical trials (RCTs), is better suited to inform real-world care decisions. An emphasis on CER supports the development of the evidence base for clinical and policy decision-making. Whereas in most areas of complementary and integrative medicine data on CER is scarce, available acupuncture research already contributes to CER evidence. This paper will introduce CER and make suggestions for future research.
Witt, Claudia M; Huang, Wen-jing; Lao, Lixing; Bm, Berman
2012-10-01
In clinical research on complementary and integrative medicine, experts and scientists have often pursued a research agenda in spite of an incomplete understanding of the needs of end users. Consequently, the majority of previous clinical trials have mainly assessed the efficacy of interventions. Scant data is available on their effectiveness. Comparative effectiveness research (CER) promises to support decision makers by generating evidence that compares the benefits and harms of the best care options. This evidence, more generalizable than the evidence generated by traditional randomized controlled trials (RCTs), is better suited to inform real-world care decisions. An emphasis on CER supports the development of the evidence base for clinical and policy decision-making. Whereas in most areas of complementary and integrative medicine data on comparative effectiveness is scarce, available acupuncture research already contributes to CER evidence. This paper will introduce CER and make suggestions for future research.
Theillet, François-Xavier; Frank, Martin; Vulliez-Le Normand, Brigitte; Simenel, Catherine; Hoos, Sylviane; Chaffotte, Alain; Bélot, Frédéric; Guerreiro, Catherine; Nato, Farida; Phalipon, Armelle; Mulard, Laurence A; Delepierre, Muriel
2011-12-01
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties. © The Author 2011. Published by Oxford University Press. All rights reserved.
Juin, Camille; Bonnet, Antoine; Nicolau, Elodie; Bérard, Jean-Baptiste; Devillers, Romain; Thiéry, Valérie; Cadoret, Jean-Paul; Picot, Laurent
2015-01-01
A fast and high-resolution UPLC-MSE analysis was used to identify phytoplankton pigments in an ethanol extract of Porphyridium purpureum (Pp) devoid of phycobiliproteins. In a first step, 22 standard pigments were analyzed by UPLC-MSE to build a database including retention time and accurate masses of parent and fragment ions. Using this database, seven pigments or derivatives previously reported in Pp were unequivocally identified: β,β-carotene, chlorophyll a, zeaxanthin, chlorophyllide a, pheophorbide a, pheophytin a, and cryptoxanthin. Minor amounts of Divinyl chlorophyll a, a chemotaxonomic pigment marker for prochlorophytes, were also unequivocally identified using the database. Additional analysis of ionization and fragmentation patterns indicated the presence of ions that could correspond to hydroxylated derivatives of chlorophyll a and pheophytin a, produced during the ethanolic extraction, as well as previously described galactosyldiacylglycerols, the thylakoid coenzyme plastoquinone, and gracilamide B, a molecule previously reported in the red seaweed Gracillaria asiatica. These data point to UPLC-MSE as an efficient technique to identify phytoplankton pigments for which standards are available, and demonstrate its major interest as a complementary method for the structural elucidation of ionizable marine molecules. PMID:25913708
Terminations of DNA synthesis on 'proflavine and light'-treated phi X174 single-stranded DNA.
Piette, J; Calberg-Bacq, C M; Lopez, M; van de Vorst, A
1984-04-05
Bacteriophage phi X174 single-stranded DNA molecules were primed with five different restriction fragments and irradiated with visible light in the presence of proflavine. This photodamaged DNA was used as template for the in vitro complementary chain synthesis by E. coli DNA polymerase I (Klenow fragment). Chain terminations were observed by polyacrylamide gel electrophoresis of the synthesized products and localized by comparison with standard sequencing performed simultaneously on the untreated template. 90% of the chain terminations occurred one nucleotide before a guanine residue in the template strand. More than 80% of the sequenced guanine residues were blocking lesions demonstrating the absence of 'hot-spots' for the photodamaging effect of proflavine. At a defined position, the chain termination frequency increased linearly with the irradiation time and was directly influenced by the proflavine concentration present. An important part of lesions resulted from the action of singlet oxygen produced by excited proflavine as shown by the effect that both NaN3 and 2H2O exerted on the reaction. The induced blocking lesions must be important in vivo since no complete replicative forms could be extracted from cell infected with bacteriophages inactivated by 'proflavine and light' treatment.
Peptide de novo sequencing of mixture tandem mass spectra
Hotta, Stéphanie Yuki Kolbeck; Verano‐Braga, Thiago; Kjeldsen, Frank
2016-01-01
The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co‐isolation and thus prone to false identifications. The deconvolution approach matched complementary b‐, y‐ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co‐isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20–35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications. PMID:27329701
Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O
2005-03-01
The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.
Introduction to fragment-based drug discovery.
Erlanson, Daniel A
2012-01-01
Fragment-based drug discovery (FBDD) has emerged in the past decade as a powerful tool for discovering drug leads. The approach first identifies starting points: very small molecules (fragments) that are about half the size of typical drugs. These fragments are then expanded or linked together to generate drug leads. Although the origins of the technique date back some 30 years, it was only in the mid-1990s that experimental techniques became sufficiently sensitive and rapid for the concept to be become practical. Since that time, the field has exploded: FBDD has played a role in discovery of at least 18 drugs that have entered the clinic, and practitioners of FBDD can be found throughout the world in both academia and industry. Literally dozens of reviews have been published on various aspects of FBDD or on the field as a whole, as have three books (Jahnke and Erlanson, Fragment-based approaches in drug discovery, 2006; Zartler and Shapiro, Fragment-based drug discovery: a practical approach, 2008; Kuo, Fragment based drug design: tools, practical approaches, and examples, 2011). However, this chapter will assume that the reader is approaching the field with little prior knowledge. It will introduce some of the key concepts, set the stage for the chapters to follow, and demonstrate how X-ray crystallography plays a central role in fragment identification and advancement.
Apparatus and method for producing fragment-free openings
Cherry, Christopher R.
2001-01-01
An apparatus and method for explosively penetrating hardened containers such as steel drums without producing metal fragmentation is disclosed. The apparatus can be used singularly or in combination with water disrupters and other disablement tools. The apparatus is mounted in close proximity to the target and features a main sheet explosive that is initiated at least three equidistant points along the sheet's periphery. A buffer material is placed between the sheet explosive and the target. As a result, the metallic fragments generated from the detonation of the detonator are attenuated so that no fragments from the detonator are transferred to the target. As a result, an opening can be created in containers such as steel drums through which access to the IED is obtained to defuse it with projectiles or fluids.
The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*
Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.
2015-01-01
During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667
An extended patch-dynamic framework for food chains in fragmented landscapes
Liao, Jinbao; Chen, Jiehong; Ying, Zhixia; Hiebeler, David E.; Nijs, Ivan
2016-01-01
Habitat destruction, a key determinant of species loss, can be characterized by two components, patch loss and patch fragmentation, where the former refers to the reduction in patch availability, and the latter to the division of the remaining patches. Classical metacommunity models have recently explored how food web dynamics respond to patch loss, but the effects of patch fragmentation have largely been overlooked. Here we develop an extended patch-dynamic model that tracks the patch occupancy of the various trophic links subject to colonization-extinction-predation dynamics by incorporating species dispersal with patch connectivity. We found that, in a simple food chain, species at higher trophic level become extinct sooner with increasing patch loss and fragmentation due to the constraint in resource availability, confirming the trophic rank hypothesis. Yet, effects of fragmentation on species occupancy are largely determined by patch loss, with maximal fragmentation effects occurring at intermediate patch loss. Compared to the spatially explicit simulations that we also performed, the current model with pair approximation generates similar community patterns especially in spatially clustered landscapes. Overall, our extended framework can be applied to model more complex food webs in fragmented landscapes, broadening the scope of existing metacommunity theory. PMID:27608823
Ultra-low background DNA cloning system.
Goto, Kenta; Nagano, Yukio
2013-01-01
Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r)). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r) 5' UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r) 3' UTR. This cassette allowed conversion of the Amp(r)-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r) sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.
Guan, Jiwen; Hu, Yongjun; Zou, Hao; Cao, Lanlan; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi
2012-09-28
In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH(3)COOH)(n)·H(+), the feature related to the fragment ions (CH(3)COOH)H(+)·COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH(3)COOH)·H(+) and (CH(3)COOH)H(+)·COO are obtained. With the aid of theoretical calculations, seven fragmentation channels of acetic acid dimer cations were discussed, where five cation isomers of acetic acid dimer are involved. While four of them are found to generate the protonated species, only one of them can dissociate into a C-C bond cleavage product (CH(3)COOH)H(+)·COO. After surmounting the methyl hydrogen-transfer barrier 10.84 ± 0.05 eV, the opening of dissociative channel to produce ions (CH(3)COOH)(+) becomes the most competitive path. When photon energy increases to 12.4 eV, we also found dimer cations can be fragmented and generate new cations (CH(3)COOH)·CH(3)CO(+). Kinetics, thermodynamics, and entropy factors for these competitive dissociation pathways are discussed. The present report provides a clear picture of the photoionization and dissociation processes of the acetic acid dimer in the range of the photon energy 9-15 eV.
In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever
NASA Astrophysics Data System (ADS)
Toepak, E. P.; Tambunan, U. S. F.
2017-02-01
Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.
Imaging Systems for Size Measurements of Debrisat Fragments
NASA Technical Reports Server (NTRS)
Shiotani, B.; Scruggs, T.; Toledo, R.; Fitz-Coy, N.; Liou, J. C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.
2017-01-01
The overall objective of the DebriSat project is to provide data to update existing standard spacecraft breakup models. One of the key sets of parameters used in these models is the physical dimensions of the fragments (i.e., length, average-cross sectional area, and volume). For the DebriSat project, only fragments with at least one dimension greater than 2 mm are collected and processed. Additionally, a significant portion of the fragments recovered from the impact test are needle-like and/or flat plate-like fragments where their heights are almost negligible in comparison to their other dimensions. As a result, two fragment size categories were defined: 2D objects and 3D objects. While measurement systems are commercially available, factors such as measurement rates, system adaptability, size characterization limitations and equipment costs presented significant challenges to the project and a decision was made to develop our own size characterization systems. The size characterization systems consist of two automated image systems, one referred to as the 3D imaging system and the other as the 2D imaging system. Which imaging system to use depends on the classification of the fragment being measured. Both imaging systems utilize point-and-shoot cameras for object image acquisition and create representative point clouds of the fragments. The 3D imaging system utilizes a space-carving algorithm to generate a 3D point cloud, while the 2D imaging system utilizes an edge detection algorithm to generate a 2D point cloud. From the point clouds, the three largest orthogonal dimensions are determined using a convex hull algorithm. For 3D objects, in addition to the three largest orthogonal dimensions, the volume is computed via an alpha-shape algorithm applied to the point clouds. The average cross-sectional area is also computed for 3D objects. Both imaging systems have automated size measurements (image acquisition and image processing) driven by the need to quickly and accurately measure tens of thousands of debris fragments. Moreover, the automated size measurement reduces potential fragment damage/mishandling and ability for accuracy and repeatability. As the fragment characterization progressed, it became evident that the imaging systems had to be revised. For example, an additional view was added to the 2D imaging system to capture the height of the 2D object. This paper presents the DebriSat project's imaging systems and calculation techniques in detail; from design and development to maturation. The experiences and challenges are also shared.
Scientific Approaches | Office of Cancer Clinical Proteomics Research
CPTAC employs two complementary scientific approaches, a "Targeting Genome to Proteome" (Targeting G2P) approach and a "Mapping Proteome to Genome" (Mapping P2G) approach, in order to address biological questions from data generated on a sample.
Retrieval Mode Distinguishes the Testing Effect from the Generation Effect
ERIC Educational Resources Information Center
Karpicke, Jeffrey D.; Zaromb, Franklin M.
2010-01-01
A series of four experiments examined the effects of generation vs. retrieval practice on subsequent retention. Subjects were first exposed to a list of target words. Then the subjects were shown the targets again intact for Read trials or they were shown fragments of the targets. Subjects in Generate conditions were told to complete the fragments…
NASA Astrophysics Data System (ADS)
Michel, Patrick; Richardson, D. C.
2007-10-01
We have made major improvements in simulations of asteroid disruption by computing explicitly aggregate formations during the gravitational reaccumulation of small fragments, allowing us to obtain information on their spin and shape. First results will be presented taking as examples asteroid families that we reproduced successfully with previous less sophisticated simulations. In the last years, we have simulated successfully the formation of asteroid families using a SPH hydrocode to compute the fragmentation following the impact of a projectile on the parent body, and the N-body code pkdgrav to compute the mutual interactions of the fragments. We found that fragments generated by the disruption of a km-size asteroid can have large enough masses to be attracted by each other during their ejection. Consequently, many reaccumulations take place. Eventually most large fragments correspond to gravitational aggregates formed by reaccumulation of smaller ones. Moreover, formation of satellites occurs around the largest and other big remnants. In these previous simulations, when fragments reaccumulate, they merge into a single sphere whose mass is the sum of their masses. Thus, no information is obtained on the actual shape of the aggregates, their spin, ... For the first time, we have now simulated the disruption of a family parent body by computing explicitly the formation of aggregates, along with the above-mentioned properties. Once formed these aggregates can interact and/or collide with each other and break up during their evolution. We will present these first simulations and their possible implications on properties of asteroids generated by disruption. Results can for instance be compared with data provided by the Japanese space mission Hayabusa of the asteroid Itokawa, a body now understood to be a reaccumulated fragment from a larger parent body. Acknowledgments: PM and DCR acknowledge supports from the French Programme National de Planétologie and grants NSF AST0307549&AST0708110.
Unravelling the structural and mechanistic basis of CRISPR–Cas systems
van der Oost, John; Westra, Edze R.; Jackson, Ryan N.; Wiedenheft, Blake
2014-01-01
Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments of foreign DNA into CRISPR loci, and following transcription and processing of these loci, the CRISPR RNAs (crRNAs) guide the Cas proteins to complementary invading nucleic acid, which results in target interference. In this Review, we summarize the recent structural and biochemical insights that have been gained for the three major types of CRISPR–Cas systems, which together provide a detailed molecular understanding of the unique and conserved mechanisms of RNA-guided adaptive immunity in bacteria and archaea. PMID:24909109
Birone, Claire; Brown, Maria; Hernandez, Jesus; Neff, Sherry; Williams, Daniel; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.
2014-01-01
High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size. PMID:24988328
Cole, Krystal; Roessler, Christian G; Mulé, Elizabeth A; Benson-Xu, Emma J; Mullen, Jeffrey D; Le, Benjamin A; Tieman, Alanna M; Birone, Claire; Brown, Maria; Hernandez, Jesus; Neff, Sherry; Williams, Daniel; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S
2014-01-01
High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.
NASA Astrophysics Data System (ADS)
Gearhart, Joshua; Niffte Collaboration
2017-09-01
Fission fragment mass distributions are important observables for developing next generation dynamical models of fission. Many previous measurements have utilized ionization chambers to measure fission fragment energies and emission angles which are then used for mass calculations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has built a time projection chamber (fissionTPC) that is capable of measuring additional quantities such as the ionization profiles of detected particles, allowing for the association of an individual fragment's ionization profile with its mass. The fragment masses are measured using the previously established 2E method. The fissionTPC takes its data using a continuous incident neutron energy spectrum provided by the Los Alamos Neutron Science CEnter (LANSCE). Mass distribution measurements across a continuous range of neutron energies put stronger constraints on fission models than similar measurements conducted at a handful of discrete neutron energies. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0003180 and DE-NA0002921.
1987-01-01
Plasmodial fragments of Physarum polycephalum, excised from anterior regions of a thin-spread plasmodium, contracted-relaxed cyclicly with a period of 3-5 min. The area of the fragments decreased approximately 10% during contraction. In most cases, there was little endoplasmic streaming which indicates that contractions were synchronized throughout the fragment. By both polarized light and fluorescence microscopy, the organization and distribution of the cytoplasmic actomyosin fibrils in the fragments changed in synchrony with the contraction cycle. The fibrils formed during the contraction phase, and finally became a highly organized framework consisting of a three- dimensional network of numerous fibrils with many converging points (the nodes). During relaxation, the fibrils degenerated and disappeared almost completely, though some very weak fibrils remained near the nodes and the periphery. The results obtained by fluorometry of the fragments, stained with rhodamine-phalloidin, suggested that the G-F transformation of actin is not the main underlying process of the fibrillar formation. PMID:3611192
Recombinant human antibody fragment against tetanus toxoid produced by phage display.
Neelakantam, B; Sridevi, N V; Shukra, A M; Sugumar, P; Samuel, S; Rajendra, L
2014-03-01
Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen.
Catana, Cornel
2009-03-01
Using a well-defined set of fragments/pharmacophores, a new methodology to calculate fragment/ pharmacophore descriptors for any molecule onto which at least one fragment/pharmacophore can be mapped is presented. To each fragment/pharmacophore present in a molecule, we attach a descriptor that is calculated by identifying the molecule's atoms onto which it maps and summing over its constituent atomic descriptors. The attached descriptors are named C-fragment/pharmacophore descriptors, and this methodology can be applied to any descriptors defined at the atomic level, such as the partition coefficient, molar refractivity, electrotopological state, etc. By using this methodology, the same fragment/pharmacophore can be shown to have different values in different molecules resulting in better discrimination power. As we know, fragment and pharmacophore fingerprints have a lot of applications in chemical informatics. This study has attempted to find the impact of replacing the traditional value of "1" in a fingerprint with real numbers derived form C-fragment/pharmacophore descriptors. One way to do this is to assess the utility of C-fragment/ pharmacophore descriptors in modeling different end points. Here, we exemplify with data from CYP and hERG. The fact that, in many cases, the obtained models were fairly successful and C-fragment descriptors were ranked among the top ones supports the idea that they play an important role in correlation. When we modeled hERG with C-pharmacophore descriptors, however, the model performances decreased slightly, and we attribute this, mainly to the fact that there is no technique capable of handling multiple instances (states). We hope this will open new research, especially in the emerging field of machine learning. Further research is needed to see the impact of C-fragment/pharmacophore descriptors in similarity/dissimilarity applications.
Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan
2012-10-08
One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.
Love, Julia E; Day, Ryan J; Gause, Justin W; Brown, Raquel J; Pu, Xinzhu; Theis, Dustin I; Caraway, Chad A; Poon, Wayne W; Rahman, Abir A; Morrison, Brad E; Rohn, Troy T
2017-01-01
Although harboring the apolipoprotein E4 ( APOE4 ) allele is a well known risk factor in Alzheimer's disease (AD), the mechanism by which it contributes to disease risk remains elusive. To investigate the role of proteolysis of apoE4 as a potential mechanism, we designed and characterized a site-directed cleavage antibody directed at position D151 of the mature form of apoE4 and E3. Characterization of this antibody indicated a high specificity for detecting synthesized recombinant proteins corresponding to the amino acid sequences 1-151 of apoE3 and E4 that would generate the 17 kDa (p17) fragment. In addition, this antibody also detected a ~17 kDa amino-terminal fragment of apoE4 following incubation with collagenase and matrix metalloproteinase-9 (MMP-9), but did not react with full-length apoE4. Application of this amino-terminal apoE cleavage-fragment (nApoECFp17) antibody, revealed nuclear labeling within glial cells and labeling of a subset of neurofibrillary tangles in the human AD brain. A quantitative analysis indicated that roughly 80% of labeled nuclei were microglia. To confirm these findings, cultured BV2 microglia cells were incubated with the amino-terminal fragment of apoE4 corresponding to the cleavage site at D151. The results indicated efficient uptake of this fragment and trafficking to the nucleus that also resulted in significant cell death. In contrast, a similarly designed apoE3 fragment showed no toxicity and primarily localized within the cytoplasm. These data suggest a novel cleavage event by which apoE4 is cleaved by the extracellular proteases, collagenase and MMP-9, generating an amino-terminal fragment that is then taken up by microglia, traffics to the nucleus and promotes cell death. Collectively, these findings provide important mechanistic insights into the mechanism by which harboring the APOE4 allele may elevate dementia risk observed in AD.
Electron distribution function in a plasma generated by fission fragments
NASA Technical Reports Server (NTRS)
Hassan, H. A.; Deese, J. E.
1976-01-01
A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material shows that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux.
Thermal fatigue as the origin of regolith on small asteroids.
Delbo, Marco; Libourel, Guy; Wilkerson, Justin; Murdoch, Naomi; Michel, Patrick; Ramesh, K T; Ganino, Clément; Verati, Chrystele; Marchi, Simone
2014-04-10
Space missions and thermal infrared observations have shown that small asteroids (kilometre-sized or smaller) are covered by a layer of centimetre-sized or smaller particles, which constitute the regolith. Regolith generation has traditionally been attributed to the fall back of impact ejecta and by the break-up of boulders by micrometeoroid impact. Laboratory experiments and impact models, however, show that crater ejecta velocities are typically greater than several tens of centimetres per second, which corresponds to the gravitational escape velocity of kilometre-sized asteroids. Therefore, impact debris cannot be the main source of regolith on small asteroids. Here we report that thermal fatigue, a mechanism of rock weathering and fragmentation with no subsequent ejection, is the dominant process governing regolith generation on small asteroids. We find that thermal fragmentation induced by the diurnal temperature variations breaks up rocks larger than a few centimetres more quickly than do micrometeoroid impacts. Because thermal fragmentation is independent of asteroid size, this process can also contribute to regolith production on larger asteroids. Production of fresh regolith originating in thermal fatigue fragmentation may be an important process for the rejuvenation of the surfaces of near-Earth asteroids, and may explain the observed lack of low-perihelion, carbonaceous, near-Earth asteroids.
Weber, Malte; Weiss, Etienne; Engel, Alfred M
2003-07-01
Scl-70 is the major antigen recognised by autoantibodies in the sera of patients with systemic sclerosis (SSc). The autoantibodies that specifically react with Scl-70 are highly characteristic of the disease and represent valuable markers for the diagnosis of SSc. We describe a novel strategy for cloning autoantibody fragments starting with a small blood sample from an SSc patient. B cells isolated from the collected peripheral blood mononuclear cells (PBMCs) were cultured in vitro using the EL4-B5 system. Anti-Scl-70 IgG-producing cells were pooled for RNA preparation followed by the generation of phagemid libraries of approximately 10(7) independent single-chain Fvs (scFvs). The screening of these libraries by phage display allowed us to isolate four anti-Scl-70 scFvs following three rounds of biopanning. About 10 times more starting blood material was needed to generate scFv libraries of similar size from PBMCs of an SSc patient and only two anti-Scl-70 scFvs were isolated after three rounds of phage selection. Together, this work shows that functional autoantibody fragments can be advantageously cloned after in vitro expansion of B cells. The isolated anti-Scl-70 autoantibody fragments represent useful tools for calibrating SSc diagnostic assays.
Practical method to identify orbital anomaly as spacecraft breakup in the geostationary region
NASA Astrophysics Data System (ADS)
Hanada, Toshiya; Uetsuhara, Masahiko; Nakaniwa, Yoshitaka
2012-07-01
Identifying a spacecraft breakup is an essential issue to define the current orbital debris environment. This paper proposes a practical method to identify an orbital anomaly, which appears as a significant discontinuity in the observation data, as a spacecraft breakup. The proposed method is applicable to orbital anomalies in the geostationary region. Long-term orbital evolutions of breakup fragments may conclude that their orbital planes will converge into several corresponding regions in inertial space even if the breakup epoch is not specified. This empirical method combines the aforementioned conclusion with the search strategy developed at Kyushu University, which can identify origins of observed objects as fragments released from a specified spacecraft. This practical method starts with selecting a spacecraft that experienced an orbital anomaly, and formulates a hypothesis to generate fragments from the anomaly. Then, the search strategy is applied to predict the behavior of groups of fragments hypothetically generated. Outcome of this predictive analysis specifies effectively when, where and how we should conduct optical measurements using ground-based telescopes. Objects detected based on the outcome are supposed to be from the anomaly, so that we can confirm the anomaly as a spacecraft breakup to release the detected objects. This paper also demonstrates observation planning for a spacecraft anomaly in the geostationary region.
Le, Chi “Chip”; MacMillan, David W. C.
2015-01-01
In this study we demonstrate that molecular fragments, which can be readily coupled via a simple, in situ RO—C=OR bond-forming reaction, can subsequently undergo metal insertion–decarboxylation–recombination to generate Csp2–Csp3 bonds when subjected to metallaphotoredox catalysis. In this embodiment the conversion of a wide variety of mixed anhydrides (formed in situ from carboxylic acids and acyl chlorides) to fragment-coupled ketones is accomplished in good to high yield. A three-step synthesis of the medicinal agent edivoxetine is also described using this new decarboxylation–recombination protocol. PMID:26333771
He, M; Taussig, M J
2001-08-01
We describe a format for production of protein arrays termed 'protein in situ array' (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface to which the tagged protein adheres as soon as it is synthesised. Because proteins generated by cell-free synthesis are usually soluble and functional, this method can overcome problems of insolubility or degradation associated with bacterial expression of recombinant proteins. Moreover, the use of PCR-generated DNA enables rapid production of proteins or domains based on genome information alone and will be particularly useful where cloned material is not available. Here we show that human single-chain antibody fragments (three domain, V(H)/K form) and an enzyme (luciferase) can be functionally arrayed by the PISA method.
TOOLS FOR COMPARATIVE ANALYSIS OF ALTERNATIVES: COMPETING OR COMPLEMENTARY PERSPECTIVES?
A third generation of environmental policymaking and risk management will increasingly impose environmental measures, which may give rise to analyzing countervailing risks. Therefore, a comprehensive analysis of these risks associated with the decision alternatives at hand will e...
Siejak, Przemysław; Frackowiak, Danuta
2007-09-25
Changes in the yield of the fluorescence emitted by pigments of photosynthetic organisms could be used for the establishment of the presence of some toxic substances. The presence of colloidal metals can be indicated by enhancement of pigments' emission as a result of plasmons generation. The spectra of the pigments of cyanobacterium Synechocystis located in the bacterium fragments and in solutions with and without colloidal silver additions have been measured. The quantum yield of the pigments' fluorescence in solution has been observed to increase at some wavelength of excitation, while the fluorescence of the pigments in the bacteria fragments has been only quenched as a consequence of interactions with colloidal silver particles. Close contact between pigment molecules located in bacteria fragments and silver particles is probably not possible. We plan in future to investigate the influence of other, more typical metal pollutants of water, using similar spectral methods and several other photosynthetic bacteria pigments, in solution, in cell fragments and in the whole bacteria organisms.
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.
Sharma, Upasna; Conine, Colin C; Shea, Jeremy M; Boskovic, Ana; Derr, Alan G; Bing, Xin Y; Belleannee, Clemence; Kucukural, Alper; Serra, Ryan W; Sun, Fengyun; Song, Lina; Carone, Benjamin R; Ricci, Emiliano P; Li, Xin Z; Fauquier, Lucas; Moore, Melissa J; Sullivan, Robert; Mello, Craig C; Garber, Manuel; Rando, Oliver J
2016-01-22
Several recent studies link parental environments to phenotypes in subsequent generations. In this work, we investigate the mechanism by which paternal diet affects offspring metabolism. Protein restriction in mice affects small RNA (sRNA) levels in mature sperm, with decreased let-7 levels and increased amounts of 5' fragments of glycine transfer RNAs (tRNAs). In testicular sperm, tRNA fragments are scarce but increase in abundance as sperm mature in the epididymis. Epididymosomes (vesicles that fuse with sperm during epididymal transit) carry RNA payloads matching those of mature sperm and can deliver RNAs to immature sperm in vitro. Functionally, tRNA-glycine-GCC fragments repress genes associated with the endogenous retroelement MERVL, in both embryonic stem cells and embryos. Our results shed light on sRNA biogenesis and its dietary regulation during posttesticular sperm maturation, and they also link tRNA fragments to regulation of endogenous retroelements active in the preimplantation embryo. Copyright © 2016, American Association for the Advancement of Science.
SHOP: a method for structure-based fragment and scaffold hopping.
Fontaine, Fabien; Cross, Simon; Plasencia, Guillem; Pastor, Manuel; Zamora, Ismael
2009-03-01
A new method for fragment and scaffold replacement is presented that generates new families of compounds with biological activity, using GRID molecular interaction fields (MIFs) and the crystal structure of the targets. In contrast to virtual screening strategies, this methodology aims only to replace a fragment of the original molecule, maintaining the other structural elements that are known or suspected to have a critical role in ligand binding. First, we report a validation of the method, recovering up to 95% of the original fragments searched among the top-five proposed solutions, using 164 fragment queries from 11 diverse targets. Second, six key customizable parameters are investigated, concluding that filtering the receptor MIF using the co-crystallized ligand atom type has the greatest impact on the ranking of the proposed solutions. Finally, 11 examples using more realistic scenarios have been performed; diverse chemotypes are returned, including some that are similar to compounds that are known to bind to similar targets.
Bacterial predator–prey dynamics in microscale patchy landscapes
Rotem, Or; Jurkevitch, Edouard; Dekker, Cees
2016-01-01
Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299
Postfragmentation density function for bacterial aggregates in laminar flow.
Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John; Bortz, David M
2011-04-01
The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. ©2011 American Physical Society
Mechanics of fragmentation of crocodile skin and other thin films.
Qin, Zhao; Pugno, Nicola M; Buehler, Markus J
2014-05-27
Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin.
Mechanics of fragmentation of crocodile skin and other thin films
Qin, Zhao; Pugno, Nicola M.; Buehler, Markus J.
2014-01-01
Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin. PMID:24862190
Mechanics of fragmentation of crocodile skin and other thin films
NASA Astrophysics Data System (ADS)
Qin, Zhao; Pugno, Nicola M.; Buehler, Markus J.
2014-05-01
Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin.
NASA Technical Reports Server (NTRS)
Richardson, Erin; Hays, M. J.; Blackwood, J. M.; Skinner, T.
2014-01-01
The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 s blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo set of L-FOAM catalogues to quantify risk for a multitude of potential CS destruct scenarios. Examples include the effect of warning time on the survivability of an escaping crew capsule or the maximum fragment velocities generated by the ignition of leaking propellants in internal cavities.
Comparing forest fragmentation and its drivers in China and the USA with Globcover v2.2
Chen, Mingshi; Mao, Lijun; Zhou, Chunguo; Vogelmann, James E.; Zhu, Zhiliang
2010-01-01
Forest loss and fragmentation are of major concern to the international community, in large part because they impact so many important environmental processes. The main objective of this study was to assess the differences in forest fragmentation patterns and drivers between China and the conterminous United States (USA). Using the latest 300-m resolution global land cover product, Globcover v2.2, a comparative analysis of forest fragmentation patterns and drivers was made. The fragmentation patterns were characterized by using a forest fragmentation model built on the sliding window analysis technique in association with landscape indices. Results showed that China’s forests were substantially more fragmented than those of the USA. This was evidenced by a large difference in the amount of interior forest area share, with China having 48% interior forest versus the 66% for the USA. China’s forest fragmentation was primarily attributed to anthropogenic disturbances, driven particularly by agricultural expansion from an increasing and large population, as well as poor forest management practices. In contrast, USA forests were principally fragmented by natural land cover types. However, USA urban sprawl contributed more to forest fragmentation than in China. This is closely tied to the USA’s economy, lifestyle and institutional processes. Fragmentation maps were generated from this study, which provide valuable insights and implications regarding habitat planning for rare and endangered species. Such maps enable development of strategic plans for sustainable forest management by identifying areas with high amounts of human-induced fragmentation, which improve risk assessments and enable better targeting for protection and remediation efforts. Because forest fragmentation is a long-term, complex process that is highly related to political, institutional, economic and philosophical arenas, both nations need to take effective and comprehensive measures to mitigate the negative effects of forest loss and fragmentation on the existing forest ecosystems.
Comparing forest fragmentation and its drivers in China and the USA with Globcover v2.2.
Li, Mingshi; Mao, Lijun; Zhou, Chunguo; Vogelmann, James E; Zhu, Zhiliang
2010-12-01
Forest loss and fragmentation are of major concern to the international community, in large part because they impact so many important environmental processes. The main objective of this study was to assess the differences in forest fragmentation patterns and drivers between China and the conterminous United States (USA). Using the latest 300-m resolution global land cover product, Globcover v2.2, a comparative analysis of forest fragmentation patterns and drivers was made. The fragmentation patterns were characterized by using a forest fragmentation model built on the sliding window analysis technique in association with landscape indices. Results showed that China's forests were substantially more fragmented than those of the USA. This was evidenced by a large difference in the amount of interior forest area share, with China having 48% interior forest versus the 66% for the USA. China's forest fragmentation was primarily attributed to anthropogenic disturbances, driven particularly by agricultural expansion from an increasing and large population, as well as poor forest management practices. In contrast, USA forests were principally fragmented by natural land cover types. However, USA urban sprawl contributed more to forest fragmentation than in China. This is closely tied to the USA's economy, lifestyle and institutional processes. Fragmentation maps were generated from this study, which provide valuable insights and implications regarding habitat planning for rare and endangered species. Such maps enable development of strategic plans for sustainable forest management by identifying areas with high amounts of human-induced fragmentation, which improve risk assessments and enable better targeting for protection and remediation efforts. Because forest fragmentation is a long-term, complex process that is highly related to political, institutional, economic and philosophical arenas, both nations need to take effective and comprehensive measures to mitigate the negative effects of forest loss and fragmentation on the existing forest ecosystems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bivalent monoclonal IgY antibody formats by conversion of recombinant antibody fragments.
Greunke, Kerstin; Spillner, Edzard; Braren, Ingke; Seismann, Henning; Kainz, Sabine; Hahn, Ulrich; Grunwald, Thomas; Bredehorst, Reinhard
2006-07-13
Monoclonal IgY have the potential to become unique tools for diagnostic research and therapeutic purposes since avian antibodies provide several advantages due to their phylogenetic difference when compared to mammalian antibodies. The mechanism of avian immunoglobulin gene diversification renders chicken an excellent source for the generation of recombinant scFv as well as Fab antibody libraries of high diversity. One major limitation of these antibody fragments, however, is their monovalent format, impairing the functional affinity of the molecules and, thereby, their applicability in prevalent laboratory methods. In this study, we generated vectors for conversion of avian recombinant antibody fragments into different types of bivalent IgY antibody formats. To combine the properties of established mammalian monoclonal antibodies with those of IgY constant domains, we additionally generated bivalent murine/avian chimeric antibody constructs. When expressed in HEK-293 cells, all constructs yielded bivalent disulfide-linked antibodies, which exhibit a glycosylation pattern similar to that of native IgY as assessed by lectin blot analysis. After purification by one step procedures, the chimeric and the entire avian bivalent antibody formats were analyzed for antigen binding and interaction with secondary reagents. The data demonstrate that all antibody formats provide comparable antigen binding characteristics and the well established properties of avian constant domains.
Galaon, Toma; Vacaresteanu, Catalina; Anghel, Dan-Florin; David, Victor
2014-05-01
Nine important 1,4-benzodiazepines and zolpidem were characterized by liquid chromatography-mass spectrometry using a multimode ionization source able to generate ions using both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and a single quadrupole mass analyzer. An optimum chromatographic separation was applied for all target compounds in less than 8 minutes using a Zorbax Eclipse Plus column (100 × 4.6 mm, 3.5 µm) kept at 35°C and a 0.3% HCOOH/ACN/IPA (61:34:5) mobile phase pumped at 1 ml/min. Optimization of LC-MS method generated low limit of quantitation (LOQ) values situated in the range 0.3-20.5 ng/ml. Comparison between differences in method sensitivity, under specified chromatographic conditions, when using ESI-only, APCI-only, and simultaneous ESI-APCI ionization with such a multimode source was discussed. Mixed ESI-APCI(+) mode proved to be the most sensitive ionization generating an average 35% detector response increase compared to ESI-only ionization and 350% detector response increase with respect to APCI-only ionization. Characterization of the nine benzodiazepines and zolpidem concerning their MS fragmentation pathway following 'in-source' collision-induced dissociation is discussed in detail and some general trends regarding these fragmentations are set. Copyright © 2013 John Wiley & Sons, Ltd.
Type 1 ribosome-inactivating proteins depurinate plant 25S rRNA without species specificity.
Prestle, J; Schönfelder, M; Adam, G; Mundry, K W
1992-01-01
Four different type 1 ribosome-inactivating proteins (RIPs) with RNA N-glycosidase activity were tested for their ability to attack the large rRNA of plant ribosomes derived from tobacco plants, as well as from the plant species from which the particular RIP had been isolated. Incubation of tobacco ribosomes with RIPs isolated from either Phytolacca americana L. (pokeweed), Dianthus barbatus L. (carnation), Spinacia oleracea L. (spinach) or Chenopodium amaranthicolor Coste and Reyn. (chenopodium) rendered the 25S rRNA sensitive to aniline-catalyzed hydrolysis, generating a single rRNA-fragment of about 350 nucleotides. The same fragment was generated when rRNAs from pokeweed, carnation, spinach or chenopodium ribosomes were aniline-treated without any deliberate treatment of the ribosomes with the respective RIP. This indicated that ribosomes from all RIP-producing plants were already inactivated by their own RIPs during preparation. These results demonstrate that plant ribosomes are generally susceptible to RIP attack, including modification by their own RIPs. Direct sequencing of the newly generated fragments revealed that a single N-glycosidic bond at an adenosine residue within the highly conserved sequence 5'-AGUACGAGAGGA-3' was cleaved by all of the RIPs investigated, a situation also found in animal, yeast and Escherichia coli ribosomes. Images PMID:1620614
Transport of Light Ions in Matter
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.
1998-01-01
A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.
Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki
2016-07-15
A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Complementary roles of two resilient neotropical mammalian seed dispersers
NASA Astrophysics Data System (ADS)
de Almeida, Adriana; Morris, Rebecca J.; Lewis, Owen T.; Mikich, Sandra B.
2018-04-01
Capuchin monkeys (Cebus spp. and Sapajus spp.) and coatis (Nasua spp.) coexist in most neotropical forests, including small forest remnants. Both capuchins and coatis eat fruit and disperse seeds, but little is known about whether their roles in seed dispersal are redundant or complementary. We compiled 49 studies from the literature on feeding by capuchins and/or coatis, of which 19 were comprehensive enough for our analyses. We determined the relative importance of fruit eating to each species and compared their diets. Additionally, we analysed the structure of three fruit-frugivore networks built with both animal groups and the fruits they eat and evaluated whether fruit traits influenced the network topology. Fruits represented the largest part of capuchin and coati diets, even though coatis have been known for their opportunistic and generalist diets. Capuchins and coatis also exhibited similar general diet parameters (niche breadth and trophic diversity). The three networks exhibited high connectance values and variable niche overlap. A Multiple Correspondence Analysis, failed to detect any trait or trait combination related to food use. In conclusion, capuchins and coatis both have generalist diets; they feed on many different species of fruits and exhibit important complementarity as seed dispersers. Both are likely to be particularly important seed dispersers in disturbed and fragmented forests.
Methods for Genome-Wide Analysis of Gene Expression Changes in Polyploids
Wang, Jianlin; Lee, Jinsuk J.; Tian, Lu; Lee, Hyeon-Se; Chen, Meng; Rao, Sheetal; Wei, Edward N.; Doerge, R. W.; Comai, Luca; Jeffrey Chen, Z.
2007-01-01
Polyploidy is an evolutionary innovation, providing extra sets of genetic material for phenotypic variation and adaptation. It is predicted that changes of gene expression by genetic and epigenetic mechanisms are responsible for novel variation in nascent and established polyploids (Liu and Wendel, 2002; Osborn et al., 2003; Pikaard, 2001). Studying gene expression changes in allopolyploids is more complicated than in autopolyploids, because allopolyploids contain more than two sets of genomes originating from divergent, but related, species. Here we describe two methods that are applicable to the genome-wide analysis of gene expression differences resulting from genome duplication in autopolyploids or interactions between homoeologous genomes in allopolyploids. First, we describe an amplified fragment length polymorphism (AFLP)–complementary DNA (cDNA) display method that allows the discrimination of homoeologous loci based on restriction polymorphisms between the progenitors. Second, we describe microarray analyses that can be used to compare gene expression differences between the allopolyploids and respective progenitors using appropriate experimental design and statistical analysis. We demonstrate the utility of these two complementary methods and discuss the pros and cons of using the methods to analyze gene expression changes in autopolyploids and allopolyploids. Furthermore, we describe these methods in general terms to be of wider applicability for comparative gene expression in a variety of evolutionary, genetic, biological, and physiological contexts. PMID:15865985
NASA Astrophysics Data System (ADS)
Eck, M.; Mukunda, M.
The proliferation of space vehicle launch sites and the projected utilization of these facilities portends an increase in the number of on-pad, ascent, and on-orbit solid-rocket motor (SRM) casings and liquid-rocket tanks which will randomly fail or will fail from range destruct actions. Beyond the obvious safety implications, these failures may have serious resource implications for mission system and facility planners. SRM-casing failures and liquid-rocket tankage failures result in the generation of large, high velocity fragments which may be serious threats to the safety of launch support personnel if proper bunkers and exclusion areas are not provided. In addition, these fragments may be indirect threats to the general public's safety if they encounter hazardous spacecraft payloads which have not been designed to withstand shrapnel of this caliber. They may also become threats to other spacecraft if, by failing on-orbit, they add to the ever increasing space-junk collision cross-section. Most prior attempts to assess the velocity of fragments from failed SRM casings have simply assigned the available chamber impulse to available casing and fuel mass and solved the resulting momentum balance for velocity. This method may predict a fragment velocity which is high or low by a factor of two depending on the ratio of fuel to casing mass extant at the time of failure. Recognizing the limitations of existing methods, the authors devised an analytical approach which properly partitions the available impulse to each major system-mass component. This approach uses the Physics International developed PISCES code to couple the forces generated by an Eulerian modeled gas flow field to a Lagrangian modeled fuel and casing system. The details of a predictive analytical modeling process as well as the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed in this paper. Methods for applying similar modeling techniques to liquid-tankage-over-pressure failures are also discussed. These methods have been calibrated against observed SRM ascent failures and on-orbit tankage failures. Casing-quadrant sized fragments with velocities exceeding 100 m/s resulted from Titan 34D-SRM range destruct actions at 10 s mission elapsed time (MET). Casing-quadrant sized fragments with velocities of approx. 200 m/s resulted from STS-SRM range destruct actions at 110 s MET. Similar sized fragments for Ariane third stage and Delta second stage tankage were predicted to have maximum velocities of 260 and 480 m/s respectively. Good agreement was found between the predictions and observations for five specific events and it was concluded that the methods developed have good potential for use in predicting the fragmentation process of a number of generically similar casing and tankage systems.
Sub-fragmentation of structural-reactive-material casings under explosion
NASA Astrophysics Data System (ADS)
Zhang, Fan
2015-06-01
The sub-fragmentation of structural reactive material (SRM) thick-casings is to generate fine fragments during casing fragmentation under explosive loading for their efficient energy release to enhance air blast. This has been investigated using a cylindrical casing made from either rich Al-MoO3 or Al-W-based granular composites. The former composite was to study the concept of reactive hot spots where the reaction of reactive particles, which were distributed into base SRM in a fuel-rich equivalence ratio, created heat and gas products during SRM fragmentation. The expansion of these distributed hot spots initiated local fractures of the casing, leading to fine fragments. The Al-W-based composite investigated the concept of impedance mismatch, where shock dynamics at the interfaces of different impedance ingredients resulted in non-uniform, high local temperatures and stresses and late in times the dissimilar inertia resulted in different accelerations, leading to material separation and fine fragments. The casings were manufactured through both hot iso-static pressing and cold gas dynamic spray deposition. Explosion experiments were conducted in a 3 m diameter, 23 m3 cylindrical chamber for these cased charges in a casing-to-explosive mass ratio of 1.75. The results demonstrated the presence of fine fragments and more efficient fragment combustion, compared with previous results, and indicated the effectiveness of both concepts. This work was jointly funded by Defence R&D Canada and the Advanced Energetics Program of DTRA (Dr. William H. Wilson).
Baculovirus display of functional antibody Fab fragments.
Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki
2015-08-01
The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.
Characterization of hypervelocity metal fragments for explosive initiation
Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.; ...
2017-07-17
The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, includingmore » copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. As a result, these types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.« less
Characterization of hypervelocity metal fragments for explosive initiation
NASA Astrophysics Data System (ADS)
Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.; Olles, Joseph D.
2017-07-01
The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, including copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. These types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.
Fragment informatics and computational fragment-based drug design: an overview and update.
Sheng, Chunquan; Zhang, Wannian
2013-05-01
Fragment-based drug design (FBDD) is a promising approach for the discovery and optimization of lead compounds. Despite its successes, FBDD also faces some internal limitations and challenges. FBDD requires a high quality of target protein and good solubility of fragments. Biophysical techniques for fragment screening necessitate expensive detection equipment and the strategies for evolving fragment hits to leads remain to be improved. Regardless, FBDD is necessary for investigating larger chemical space and can be applied to challenging biological targets. In this scenario, cheminformatics and computational chemistry can be used as alternative approaches that can significantly improve the efficiency and success rate of lead discovery and optimization. Cheminformatics and computational tools assist FBDD in a very flexible manner. Computational FBDD can be used independently or in parallel with experimental FBDD for efficiently generating and optimizing leads. Computational FBDD can also be integrated into each step of experimental FBDD and help to play a synergistic role by maximizing its performance. This review will provide critical analysis of the complementarity between computational and experimental FBDD and highlight recent advances in new algorithms and successful examples of their applications. In particular, fragment-based cheminformatics tools, high-throughput fragment docking, and fragment-based de novo drug design will provide the focus of this review. We will also discuss the advantages and limitations of different methods and the trends in new developments that should inspire future research. © 2012 Wiley Periodicals, Inc.
2012-01-01
Background Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases. Methods Elastin fragments were identified by mass-spectrometry and one sequence, generated by MMP-9 and -12 (ELN-441), was selected for monoclonal antibody generation and used in the development of an ELISA. Soluble and insoluble elastin from lung was cleaved in vitro and the time-dependent release of fragments was assessed in the ELN-441 assay. The release of ELN-441 in human serum from patients with chronic obstructive pulmonary disease (COPD) (n = 10) and idiopathic pulmonary fibrosis (IPF) (n = 29) were compared to healthy matched controls (n = 11). Results The sequence ELN-441 was exclusively generated by MMP-9 and -12 and was time-dependently released from soluble lung elastin. ELN-441 levels were 287% higher in patients diagnosed with COPD (p < 0.001) and 124% higher in IPF patients (p < 0.0001) compared with controls. ELN-441 had better diagnostic value in COPD patients (AUC 97%, p = 0.001) than in IPF patients (AUC 90%, p = 0.0001). The odds ratios for differentiating controls from COPD or IPF were 24 [2.06–280] for COPD and 50 [2.64–934] for IPF. Conclusions MMP-9 and -12 time-dependently released the ELN-441 epitope from elastin. This fragment was elevated in serum from patients with the lung diseases IPF and COPD, however these data needs to be validated in larger clinical settings. PMID:22818364
Garbe, Daniel; Thiel, Ilka V; Mootz, Henning D
2010-10-01
Split inteins link their fused peptide or protein sequences with a peptide bond in an autocatalytic reaction called protein trans-splicing. This reaction is becoming increasingly important for a variety of applications in protein semisynthesis, polypeptide circularisation, construction of biosensors, or segmental isotopic labelling of proteins. However, split inteins exhibit greatly varying solubility, efficiency and tolerance towards the nature of the fused sequences as well as reaction conditions. We envisioned that phage display as an in vitro selection technique would provide a powerful tool for the directed evolution of split inteins with improved properties. As a first step towards this goal, we show that presentation of active split inteins on an M13 bacteriophage is feasible. Two different C-terminal intein fragments of the Ssp DnaB intein, artificially split at amino acid positions 104 and 11, were encoded in a phagemid vector in fusion to a truncated gpIII protein. For efficient production of hybrid phages, the presence of a soluble domain tag at their N-termini was necessary. Immunoblot analysis revealed that the hybrid phages supported protein trans-splicing with a protein or a synthetic peptide, respectively, containing the complementary intein fragment. Incorporation of biotin or desthiobiotin by this reaction provides a straightforward strategy for future enrichment of desired mutants from randomised libraries of the C-terminal intein fragments on streptavidin beads. Protein semisynthesis on a phage could also be exploited for the selection of chemically modified proteins with unique properties. © 2010 European Peptide Society and John Wiley & Sons, Ltd.