Sample records for generating probabilistic boolean

  1. Generating probabilistic Boolean networks from a prescribed transition probability matrix.

    PubMed

    Ching, W-K; Chen, X; Tsing, N-K

    2009-11-01

    Probabilistic Boolean networks (PBNs) have received much attention in modeling genetic regulatory networks. A PBN can be regarded as a Markov chain process and is characterised by a transition probability matrix. In this study, the authors propose efficient algorithms for constructing a PBN when its transition probability matrix is given. The complexities of the algorithms are also analysed. This is an interesting inverse problem in network inference using steady-state data. The problem is important as most microarray data sets are assumed to be obtained from sampling the steady-state.

  2. Identifying a Probabilistic Boolean Threshold Network From Samples.

    PubMed

    Melkman, Avraham A; Cheng, Xiaoqing; Ching, Wai-Ki; Akutsu, Tatsuya

    2018-04-01

    This paper studies the problem of exactly identifying the structure of a probabilistic Boolean network (PBN) from a given set of samples, where PBNs are probabilistic extensions of Boolean networks. Cheng et al. studied the problem while focusing on PBNs consisting of pairs of AND/OR functions. This paper considers PBNs consisting of Boolean threshold functions while focusing on those threshold functions that have unit coefficients. The treatment of Boolean threshold functions, and triplets and -tuplets of such functions, necessitates a deepening of the theoretical analyses. It is shown that wide classes of PBNs with such threshold functions can be exactly identified from samples under reasonable constraints, which include: 1) PBNs in which any number of threshold functions can be assigned provided that all have the same number of input variables and 2) PBNs consisting of pairs of threshold functions with different numbers of input variables. It is also shown that the problem of deciding the equivalence of two Boolean threshold functions is solvable in pseudopolynomial time but remains co-NP complete.

  3. A Comparison of Two Methods for Boolean Query Relevancy Feedback.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1984-01-01

    Evaluates and compares two recently proposed automatic methods for relevance feedback of Boolean queries (Dillon method, which uses probabilistic approach as basis, and disjunctive normal form method). Conclusions are drawn concerning the use of effective feedback methods in a Boolean query environment. Nineteen references are included. (EJS)

  4. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    NASA Astrophysics Data System (ADS)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  5. Computing preimages of Boolean networks.

    PubMed

    Klotz, Johannes; Bossert, Martin; Schober, Steffen

    2013-01-01

    In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.

  6. Verification and Optimal Control of Context-Sensitive Probabilistic Boolean Networks Using Model Checking and Polynomial Optimization

    PubMed Central

    Hiraishi, Kunihiko

    2014-01-01

    One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value (ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem, a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma, is presented. The proposed methods provide us useful tools in control theory of GRNs. PMID:24587766

  7. SETS. Set Equation Transformation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrell, R.B.

    1992-01-13

    SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access throughmore » nullification of sensors in its protection system.« less

  8. Probabilistic Relational Structures and Their Applications

    ERIC Educational Resources Information Center

    Domotor, Zoltan

    The principal objects of the investigation reported were, first, to study qualitative probability relations on Boolean algebras, and secondly, to describe applications in the theories of probability logic, information, automata, and probabilistic measurement. The main contribution of this work is stated in 10 definitions and 20 theorems. The basic…

  9. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.

    PubMed

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde

    2015-08-28

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.

  10. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks

    PubMed Central

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W. C.; Cao, Jinde

    2015-01-01

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results. PMID:26315380

  11. BoolNet--an R package for generation, reconstruction and analysis of Boolean networks.

    PubMed

    Müssel, Christoph; Hopfensitz, Martin; Kestler, Hans A

    2010-05-15

    As the study of information processing in living cells moves from individual pathways to complex regulatory networks, mathematical models and simulation become indispensable tools for analyzing the complex behavior of such networks and can provide deep insights into the functioning of cells. The dynamics of gene expression, for example, can be modeled with Boolean networks (BNs). These are mathematical models of low complexity, but have the advantage of being able to capture essential properties of gene-regulatory networks. However, current implementations of BNs only focus on different sub-aspects of this model and do not allow for a seamless integration into existing preprocessing pipelines. BoolNet efficiently integrates methods for synchronous, asynchronous and probabilistic BNs. This includes reconstructing networks from time series, generating random networks, robustness analysis via perturbation, Markov chain simulations, and identification and visualization of attractors. The package BoolNet is freely available from the R project at http://cran.r-project.org/ or http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/ under Artistic License 2.0. hans.kestler@uni-ulm.de Supplementary data are available at Bioinformatics online.

  12. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.

    PubMed

    Caglar, Mehmet Umut; Pal, Ranadip

    2013-01-01

    Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.

  13. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks

    PubMed Central

    Lähdesmäki, Harri; Hautaniemi, Sampsa; Shmulevich, Ilya; Yli-Harja, Olli

    2006-01-01

    A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes. PMID:17415411

  14. A Note about Information Science Research.

    ERIC Educational Resources Information Center

    Salton, Gerard

    1985-01-01

    Discusses the relationship between information science research and practice and briefly describes current research on 10 topics in information retrieval literature: vector processing retrieval strategy, probabilistic retrieval models, inverted file procedures, relevance feedback, Boolean query formulations, front-end procedures, citation…

  15. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    ERIC Educational Resources Information Center

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  16. Topology of Document Retrieval Systems.

    ERIC Educational Resources Information Center

    Everett, Daniel M.; Cater, Steven C.

    1992-01-01

    Explains the use of a topological structure to examine the closeness between documents in retrieval systems and analyzes the topological structure of a vector-space model, a fuzzy-set model, an extended Boolean model, a probabilistic model, and a TIRS (Topological Information Retrieval System) model. Proofs for the results are appended. (17…

  17. Automatic query formulations in information retrieval.

    PubMed

    Salton, G; Buckley, C; Fox, E A

    1983-07-01

    Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.

  18. Recent development and biomedical applications of probabilistic Boolean networks

    PubMed Central

    2013-01-01

    Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered. A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed. A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels. PMID:23815817

  19. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting.

    PubMed

    Rosselló, Josep L; Alomar, Miquel L; Morro, Antoni; Oliver, Antoni; Canals, Vincent

    2016-08-01

    Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.

  20. Bell-Boole Inequality: Nonlocality or Probabilistic Incompatibility of Random Variables?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2008-06-01

    The main aim of this report is to inform the quantum information community about investigations on the problem of probabilistic compatibility of a family of random variables: a possibility to realize such a family on the basis of a single probability measure (to construct a single Kolmogorov probability space). These investigations were started hundred of years ago by J. Boole (who invented Boolean algebras). The complete solution of the problem was obtained by Soviet mathematician Vorobjev in 60th. Surprisingly probabilists and statisticians obtained inequalities for probabilities and correlations among which one can find the famous Bell’s inequality and its generalizations. Such inequalities appeared simply as constraints for probabilistic compatibility. In this framework one can not see a priori any link to such problems as nonlocality and “death of reality” which are typically linked to Bell’s type inequalities in physical literature. We analyze the difference between positions of mathematicians and quantum physicists. In particular, we found that one of the most reasonable explanations of probabilistic incompatibility is mixing in Bell’s type inequalities statistical data from a number of experiments performed under different experimental contexts.

  1. Modeling the Normal and Neoplastic Cell Cycle with 'Realistic Boolean Genetic Networks': Their Application for Understanding Carcinogenesis and Assessing Therapeutic Strategies

    NASA Technical Reports Server (NTRS)

    Szallasi, Zoltan; Liang, Shoudan

    2000-01-01

    In this paper we show how Boolean genetic networks could be used to address complex problems in cancer biology. First, we describe a general strategy to generate Boolean genetic networks that incorporate all relevant biochemical and physiological parameters and cover all of their regulatory interactions in a deterministic manner. Second, we introduce 'realistic Boolean genetic networks' that produce time series measurements very similar to those detected in actual biological systems. Third, we outline a series of essential questions related to cancer biology and cancer therapy that could be addressed by the use of 'realistic Boolean genetic network' modeling.

  2. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    PubMed

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  3. Using Common Table Expressions to Build a Scalable Boolean Query Generator for Clinical Data Warehouses

    PubMed Central

    Harris, Daniel R.; Henderson, Darren W.; Kavuluru, Ramakanth; Stromberg, Arnold J.; Johnson, Todd R.

    2015-01-01

    We present a custom, Boolean query generator utilizing common-table expressions (CTEs) that is capable of scaling with big datasets. The generator maps user-defined Boolean queries, such as those interactively created in clinical-research and general-purpose healthcare tools, into SQL. We demonstrate the effectiveness of this generator by integrating our work into the Informatics for Integrating Biology and the Bedside (i2b2) query tool and show that it is capable of scaling. Our custom generator replaces and outperforms the default query generator found within the Clinical Research Chart (CRC) cell of i2b2. In our experiments, sixteen different types of i2b2 queries were identified by varying four constraints: date, frequency, exclusion criteria, and whether selected concepts occurred in the same encounter. We generated non-trivial, random Boolean queries based on these 16 types; the corresponding SQL queries produced by both generators were compared by execution times. The CTE-based solution significantly outperformed the default query generator and provided a much more consistent response time across all query types (M=2.03, SD=6.64 vs. M=75.82, SD=238.88 seconds). Without costly hardware upgrades, we provide a scalable solution based on CTEs with very promising empirical results centered on performance gains. The evaluation methodology used for this provides a means of profiling clinical data warehouse performance. PMID:25192572

  4. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic Boolean Logic applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Signal to Noise Ratio SPICE Simulation Program with Integrated Circuit Emphasis TIFF Tagged Image File Format USC University of Southern California xvii...sources can create errors in digital circuits. These effects can be simulated using Simulation Program with Integrated Circuit Emphasis ( SPICE ) or...compute summary statistics. 4.1 Circuit Simulations Noisy analog circuits can be simulated in SPICE or Cadence SpectreTM software via noisy voltage

  5. Advanced Feedback Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1985-01-01

    In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…

  6. Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.

    PubMed

    Zhang, Jianming; Sclaroff, Stan

    2016-05-01

    We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.

  7. On the inherent competition between valid and spurious inductive inferences in Boolean data

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    Inductive inference is the process of extracting general rules from specific observations. This problem also arises in the analysis of biological networks, such as genetic regulatory networks, where the interactions are complex and the observations are incomplete. A typical task in these problems is to extract general interaction rules as combinations of Boolean covariates, that explain a measured response variable. The inductive inference process can be considered as an incompletely specified Boolean function synthesis problem. This incompleteness of the problem will also generate spurious inferences, which are a serious threat to valid inductive inference rules. Using random Boolean data as a null model, here we attempt to measure the competition between valid and spurious inductive inference rules from a given data set. We formulate two greedy search algorithms, which synthesize a given Boolean response variable in a sparse disjunct normal form, and respectively a sparse generalized algebraic normal form of the variables from the observation data, and we evaluate numerically their performance.

  8. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm using Probabilistic Boolean Logic applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Ripple-Carry RCA Ripple-Carry Adder RF Radio Frequency RMS Root-Mean-Square SEU Single Event Upset SIPI Signal and Image Processing Institute SNR...correctness, where 0.5 < p < 1, and a probability (1−p) of error. Errors could be caused by noise, radio frequency (RF) interference, crosstalk...utilized in the Apollo Guidance Computer is the three input NOR Gate. . . At the time that the decision was made to use in- 11 tegrated circuits, the

  9. Demonstration of Inexact Computing Implemented in the JPEG Compression Algorithm Using Probabilistic Boolean Logic Applied to CMOS Components

    DTIC Science & Technology

    2015-12-24

    Ripple-Carry RCA Ripple-Carry Adder RF Radio Frequency RMS Root-Mean-Square SEU Single Event Upset SIPI Signal and Image Processing Institute SNR...correctness, where 0.5 < p < 1, and a probability (1−p) of error. Errors could be caused by noise, radio frequency (RF) interference, crosstalk...utilized in the Apollo Guidance Computer is the three input NOR Gate. . . At the time that the decision was made to use in- 11 tegrated circuits, the

  10. Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity.

    PubMed

    Sailem, Heba; Bousgouni, Vicky; Cooper, Sam; Bakal, Chris

    2014-01-22

    One goal of cell biology is to understand how cells adopt different shapes in response to varying environmental and cellular conditions. Achieving a comprehensive understanding of the relationship between cell shape and environment requires a systems-level understanding of the signalling networks that respond to external cues and regulate the cytoskeleton. Classical biochemical and genetic approaches have identified thousands of individual components that contribute to cell shape, but it remains difficult to predict how cell shape is generated by the activity of these components using bottom-up approaches because of the complex nature of their interactions in space and time. Here, we describe the regulation of cellular shape by signalling systems using a top-down approach. We first exploit the shape diversity generated by systematic RNAi screening and comprehensively define the shape space a migratory cell explores. We suggest a simple Boolean model involving the activation of Rac and Rho GTPases in two compartments to explain the basis for all cell shapes in the dataset. Critically, we also generate a probabilistic graphical model to show how cells explore this space in a deterministic, rather than a stochastic, fashion. We validate the predictions made by our model using live-cell imaging. Our work explains how cross-talk between Rho and Rac can generate different cell shapes, and thus morphological heterogeneity, in genetically identical populations.

  11. A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors

    PubMed Central

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng

    2017-01-01

    Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ-connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm. PMID:28587084

  12. A Max-Flow Based Algorithm for Connected Target Coverage with Probabilistic Sensors.

    PubMed

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao; Wang, Wensheng

    2017-05-25

    Coverage is a fundamental issue in the research field of wireless sensor networks (WSNs). Connected target coverage discusses the sensor placement to guarantee the needs of both coverage and connectivity. Existing works largely leverage on the Boolean disk model, which is only a coarse approximation to the practical sensing model. In this paper, we focus on the connected target coverage issue based on the probabilistic sensing model, which can characterize the quality of coverage more accurately. In the probabilistic sensing model, sensors are only be able to detect a target with certain probability. We study the collaborative detection probability of target under multiple sensors. Armed with the analysis of collaborative detection probability, we further formulate the minimum ϵ -connected target coverage problem, aiming to minimize the number of sensors satisfying the requirements of both coverage and connectivity. We map it into a flow graph and present an approximation algorithm called the minimum vertices maximum flow algorithm (MVMFA) with provable time complex and approximation ratios. To evaluate our design, we analyze the performance of MVMFA theoretically and also conduct extensive simulation studies to demonstrate the effectiveness of our proposed algorithm.

  13. PyBoolNet: a python package for the generation, analysis and visualization of boolean networks.

    PubMed

    Klarner, Hannes; Streck, Adam; Siebert, Heike

    2017-03-01

    The goal of this project is to provide a simple interface to working with Boolean networks. Emphasis is put on easy access to a large number of common tasks including the generation and manipulation of networks, attractor and basin computation, model checking and trap space computation, execution of established graph algorithms as well as graph drawing and layouts. P y B ool N et is a Python package for working with Boolean networks that supports simple access to model checking via N u SMV, standard graph algorithms via N etwork X and visualization via dot . In addition, state of the art attractor computation exploiting P otassco ASP is implemented. The package is function-based and uses only native Python and N etwork X data types. https://github.com/hklarner/PyBoolNet. hannes.klarner@fu-berlin.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Optical programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2011-11-10

    Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.

  15. Integrating machine learning techniques into robust data enrichment approach and its application to gene expression data.

    PubMed

    Erdoğdu, Utku; Tan, Mehmet; Alhajj, Reda; Polat, Faruk; Rokne, Jon; Demetrick, Douglas

    2013-01-01

    The availability of enough samples for effective analysis and knowledge discovery has been a challenge in the research community, especially in the area of gene expression data analysis. Thus, the approaches being developed for data analysis have mostly suffered from the lack of enough data to train and test the constructed models. We argue that the process of sample generation could be successfully automated by employing some sophisticated machine learning techniques. An automated sample generation framework could successfully complement the actual sample generation from real cases. This argument is validated in this paper by describing a framework that integrates multiple models (perspectives) for sample generation. We illustrate its applicability for producing new gene expression data samples, a highly demanding area that has not received attention. The three perspectives employed in the process are based on models that are not closely related. The independence eliminates the bias of having the produced approach covering only certain characteristics of the domain and leading to samples skewed towards one direction. The first model is based on the Probabilistic Boolean Network (PBN) representation of the gene regulatory network underlying the given gene expression data. The second model integrates Hierarchical Markov Model (HIMM) and the third model employs a genetic algorithm in the process. Each model learns as much as possible characteristics of the domain being analysed and tries to incorporate the learned characteristics in generating new samples. In other words, the models base their analysis on domain knowledge implicitly present in the data itself. The developed framework has been extensively tested by checking how the new samples complement the original samples. The produced results are very promising in showing the effectiveness, usefulness and applicability of the proposed multi-model framework.

  16. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    NASA Astrophysics Data System (ADS)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  17. State feedback control design for Boolean networks.

    PubMed

    Liu, Rongjie; Qian, Chunjiang; Liu, Shuqian; Jin, Yu-Fang

    2016-08-26

    Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network. In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results. This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.

  18. Discrete interference modeling via boolean algebra.

    PubMed

    Beckhoff, Gerhard

    2011-01-01

    Two types of boolean functions are considered, the locus function of n variables, and the interval function of ν = n - 1 variables. A 1-1 mapping is given that takes elements (cells) of the interval function to antidual pairs of elements in the locus function, and vice versa. A set of ν binary codewords representing the intervals are defined and used to generate the codewords of all genomic regions. Next a diallelic three-point system is reviewed in the light of boolean functions, which leads to redefining complete interference by a logic function. Together with the upper bound of noninterference already defined by a boolean function, it confines the region of interference. Extensions of these two functions to any finite number of ν are straightforward, but have been also made in terms of variables taken from the inclusion-exclusion principle (expressing "at least" and "exactly equal to" a decimal integer). Two coefficients of coincidence for systems with more than three loci are defined and discussed, one using the average of several individual coefficients and the other taking as coefficient a real number between zero and one. Finally, by way of a malfunction of the mod-2 addition, it is shown that a four-point system may produce two different functions, one of which exhibiting loss of a class of odd recombinants.

  19. Phase transition of Boolean networks with partially nested canalizing functions

    NASA Astrophysics Data System (ADS)

    Jansen, Kayse; Matache, Mihaela Teodora

    2013-07-01

    We generate the critical condition for the phase transition of a Boolean network governed by partially nested canalizing functions for which a fraction of the inputs are canalizing, while the remaining non-canalizing inputs obey a complementary threshold Boolean function. Past studies have considered the stability of fully or partially nested canalizing functions paired with random choices of the complementary function. In some of those studies conflicting results were found with regard to the presence of chaotic behavior. Moreover, those studies focus mostly on ergodic networks in which initial states are assumed equally likely. We relax that assumption and find the critical condition for the sensitivity of the network under a non-ergodic scenario. We use the proposed mathematical model to determine parameter values for which phase transitions from order to chaos occur. We generate Derrida plots to show that the mathematical model matches the actual network dynamics. The phase transition diagrams indicate that both order and chaos can occur, and that certain parameters induce a larger range of values leading to order versus chaos. The edge-of-chaos curves are identified analytically and numerically. It is shown that the depth of canalization does not cause major dynamical changes once certain thresholds are reached; these thresholds are fairly small in comparison to the connectivity of the nodes.

  20. The Boolean Is Dead, Long Live the Boolean! Natural Language versus Boolean Searching in Introductory Undergraduate Instruction

    ERIC Educational Resources Information Center

    Lowe, M. Sara; Maxson, Bronwen K.; Stone, Sean M.; Miller, Willie; Snajdr, Eric; Hanna, Kathleen

    2018-01-01

    Boolean logic can be a difficult concept for first-year, introductory students to grasp. This paper compares the results of Boolean and natural language searching across several databases with searches created from student research questions. Performance differences between databases varied. Overall, natural search language is at least as good as…

  1. Discrete dynamic modeling of cellular signaling networks.

    PubMed

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  2. Origins of Chaos in Autonomous Boolean Networks

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua; Cavalcante, Hugo; Gauthier, Daniel; Zhang, Rui

    2010-03-01

    Networks with nodes consisting of ideal Boolean logic gates are known to display either steady states, periodic behavior, or an ultraviolet catastrophe where the number of logic-transition events circulating in the network per unit time grows as a power-law. In an experiment, non-ideal behavior of the logic gates prevents the ultraviolet catastrophe and may lead to deterministic chaos. We identify certain non-ideal features of real logic gates that enable chaos in experimental networks. We find that short-pulse rejection and the asymmetry between the logic states tends to engender periodic behavior. On the other hand, a memory effect termed ``degradation'' can generate chaos. Our results strongly suggest that deterministic chaos can be expected in a large class of experimental Boolean-like networks. Such devices may find application in a variety of technologies requiring fast complex waveforms or flat power spectra. The non-ideal effects identified here also have implications for the statistics of attractors in large complex networks.

  3. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  4. Concept locator: a client-server application for retrieval of UMLS metathesaurus concepts through complex boolean query.

    PubMed

    Nadkarni, P M

    1997-08-01

    Concept Locator (CL) is a client-server application that accesses a Sybase relational database server containing a subset of the UMLS Metathesaurus for the purpose of retrieval of concepts corresponding to one or more query expressions supplied to it. CL's query grammar permits complex Boolean expressions, wildcard patterns, and parenthesized (nested) subexpressions. CL translates the query expressions supplied to it into one or more SQL statements that actually perform the retrieval. The generated SQL is optimized by the client to take advantage of the strengths of the server's query optimizer, and sidesteps its weaknesses, so that execution is reasonably efficient.

  5. Computational complexity of Boolean functions

    NASA Astrophysics Data System (ADS)

    Korshunov, Aleksei D.

    2012-02-01

    Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.

  6. GENERAL A Hierarchy of Compatibility and Comeasurability Levels in Quantum Logics with Unique Conditional Probabilities

    NASA Astrophysics Data System (ADS)

    Gerd, Niestegge

    2010-12-01

    In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lüders-von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases.

  7. Integrated-Circuit Pseudorandom-Number Generator

    NASA Technical Reports Server (NTRS)

    Steelman, James E.; Beasley, Jeff; Aragon, Michael; Ramirez, Francisco; Summers, Kenneth L.; Knoebel, Arthur

    1992-01-01

    Integrated circuit produces 8-bit pseudorandom numbers from specified probability distribution, at rate of 10 MHz. Use of Boolean logic, circuit implements pseudorandom-number-generating algorithm. Circuit includes eight 12-bit pseudorandom-number generators, outputs are uniformly distributed. 8-bit pseudorandom numbers satisfying specified nonuniform probability distribution are generated by processing uniformly distributed outputs of eight 12-bit pseudorandom-number generators through "pipeline" of D flip-flops, comparators, and memories implementing conditional probabilities on zeros and ones.

  8. An autocatalytic network model for stock markets

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-02-01

    The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.

  9. Cryptographic Boolean Functions with Biased Inputs

    DTIC Science & Technology

    2015-07-31

    theory of random graphs developed by Erdős and Rényi [2]. The graph properties in a random graph expressed as such Boolean functions are used by...distributed Bernoulli variates with the parameter p. Since our scope is within the area of cryptography , we initiate an analysis of cryptographic...Boolean functions with biased inputs, which we refer to as µp-Boolean functions, is a common generalization of Boolean functions which stems from the

  10. A Simple Blueprint for Automatic Boolean Query Processing.

    ERIC Educational Resources Information Center

    Salton, G.

    1988-01-01

    Describes a new Boolean retrieval environment in which an extended soft Boolean logic is used to automatically construct queries from original natural language formulations provided by users. Experimental results that compare the retrieval effectiveness of this method to conventional Boolean and vector processing are discussed. (27 references)…

  11. Reservoir computing with a single time-delay autonomous Boolean node

    NASA Astrophysics Data System (ADS)

    Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.

    2015-02-01

    We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.

  12. A sparse matrix algorithm on the Boolean vector machine

    NASA Technical Reports Server (NTRS)

    Wagner, Robert A.; Patrick, Merrell L.

    1988-01-01

    VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.

  13. Optimal stabilization of Boolean networks through collective influence

    NASA Astrophysics Data System (ADS)

    Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming

    2018-03-01

    Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.

  14. Effect of memory in non-Markovian Boolean networks illustrated with a case study: A cell cycling process

    NASA Astrophysics Data System (ADS)

    Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.

    2016-11-01

    The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.

  15. On the Computation of Comprehensive Boolean Gröbner Bases

    NASA Astrophysics Data System (ADS)

    Inoue, Shutaro

    We show that a comprehensive Boolean Gröbner basis of an ideal I in a Boolean polynomial ring B (bar A,bar X) with main variables bar X and parameters bar A can be obtained by simply computing a usual Boolean Gröbner basis of I regarding both bar X and bar A as variables with a certain block term order such that bar X ≫ bar A. The result together with a fact that a finite Boolean ring is isomorphic to a direct product of the Galois field mathbb{GF}_2 enables us to compute a comprehensive Boolean Gröbner basis by only computing corresponding Gröbner bases in a polynomial ring over mathbb{GF}_2. Our implementation in a computer algebra system Risa/Asir shows that our method is extremely efficient comparing with existing computation algorithms of comprehensive Boolean Gröbner bases.

  16. Mining TCGA Data Using Boolean Implications

    PubMed Central

    Sinha, Subarna; Tsang, Emily K.; Zeng, Haoyang; Meister, Michela; Dill, David L.

    2014-01-01

    Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression) from the glioblastoma (GBM) and ovarian serous cystadenoma (OV) data sets from The Cancer Genome Atlas (TCGA). We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray/TCGANetworks/. PMID:25054200

  17. Synchronization of coupled large-scale Boolean networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fangfei, E-mail: li-fangfei@163.com

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  18. Computing with motile bio-agents

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Burrage, Kevin; Nicolau, Dan V.

    2007-12-01

    We describe a model of computation of the parallel type, which we call 'computing with bio-agents', based on the concept that motions of biological objects such as bacteria or protein molecular motors in confined spaces can be regarded as computations. We begin with the observation that the geometric nature of the physical structures in which model biological objects move modulates the motions of the latter. Consequently, by changing the geometry, one can control the characteristic trajectories of the objects; on the basis of this, we argue that such systems are computing devices. We investigate the computing power of mobile bio-agent systems and show that they are computationally universal in the sense that they are capable of computing any Boolean function in parallel. We argue also that using appropriate conditions, bio-agent systems can solve NP-complete problems in probabilistic polynomial time.

  19. Automatic Query Formulations in Information Retrieval.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1983-01-01

    Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…

  20. State feedback controller design for the synchronization of Boolean networks with time delays

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Li, Jianning; Shen, Lijuan

    2018-01-01

    State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.

  1. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    PubMed

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  2. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.

    PubMed

    Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M

    2017-11-25

    Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.

  3. Development of Boolean calculus and its application

    NASA Technical Reports Server (NTRS)

    Tapia, M. A.

    1979-01-01

    Formal procedures for synthesis of asynchronous sequential system using commercially available edge-sensitive flip-flops are developed. Boolean differential is defined. The exact number of compatible integrals of a Boolean differential were calculated.

  4. Probabilistic load simulation: Code development status

    NASA Astrophysics Data System (ADS)

    Newell, J. F.; Ho, H.

    1991-05-01

    The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.

  5. Boolean integral calculus

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne

    1988-01-01

    The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.

  6. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    PubMed Central

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  7. Proposed method to construct Boolean functions with maximum possible annihilator immunity

    NASA Astrophysics Data System (ADS)

    Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit

    2017-07-01

    Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.

  8. Stationary and structural control in gene regulatory networks: basic concepts

    NASA Astrophysics Data System (ADS)

    Dougherty, Edward R.; Pal, Ranadip; Qian, Xiaoning; Bittner, Michael L.; Datta, Aniruddha

    2010-01-01

    A major reason for constructing gene regulatory networks is to use them as models for determining therapeutic intervention strategies by deriving ways of altering their long-run dynamics in such a way as to reduce the likelihood of entering undesirable states. In general, two paradigms have been taken for gene network intervention: (1) stationary external control is based on optimally altering the status of a control gene (or genes) over time to drive network dynamics; and (2) structural intervention involves an optimal one-time change of the network structure (wiring) to beneficially alter the long-run behaviour of the network. These intervention approaches have mainly been developed within the context of the probabilistic Boolean network model for gene regulation. This article reviews both types of intervention and applies them to reducing the metastatic competence of cells via intervention in a melanoma-related network.

  9. A Hypermedia Computer-Aided Parasitology Tutoring System.

    ERIC Educational Resources Information Center

    Theodoropoulos, Georgios; Loumos, Vassili

    A hypermedia tutoring system for teaching parasitology to college students was developed using an object oriented software development tool, Knowledge Pro. The program was designed to meet four objectives: knowledge incorporation, tutoring, indexing of key words for Boolean search, and random generation of quiz questions with instant scoring. The…

  10. To Boolean or Not To Boolean.

    ERIC Educational Resources Information Center

    Hildreth, Charles R.

    1983-01-01

    This editorial addresses the issue of whether or not to provide free-text, keyword/boolean search capabilities in the information retrieval mechanisms of online public access catalogs and discusses online catalogs developed prior to 1980--keyword searching, phrase searching, and precoordination and postcoordination. (EJS)

  11. Minimum energy control and optimal-satisfactory control of Boolean control network

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Lu, Xiwen

    2013-12-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  12. Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks.

    PubMed

    Muñoz, Stalin; Carrillo, Miguel; Azpeitia, Eugenio; Rosenblueth, David A

    2018-01-01

    Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined "regulation" graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin , a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ "symbolic" techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as "clause learning" considerably increasing Griffin 's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.

  13. On the Run-Time Optimization of the Boolean Logic of a Program.

    ERIC Educational Resources Information Center

    Cadolino, C.; Guazzo, M.

    1982-01-01

    Considers problem of optimal scheduling of Boolean expression (each Boolean variable represents binary outcome of program module) on single-processor system. Optimization discussed consists of finding operand arrangement that minimizes average execution costs representing consumption of resources (elapsed time, main memory, number of…

  14. Boolean integral calculus for digital systems

    NASA Technical Reports Server (NTRS)

    Tucker, J. H.; Tapia, M. A.; Bennett, A. W.

    1985-01-01

    The concept of Boolean integration is introduced and developed. When the changes in a desired function are specified in terms of changes in its arguments, then ways of 'integrating' (i.e., realizing) the function, if it exists, are presented. Boolean integral calculus has applications in design of logic circuits.

  15. Application of a Discrete Nonlinear Spectral Model to Ideal Cases of Wind Wave Generation.

    DTIC Science & Technology

    1982-04-01

    WRITE (6965)) bBD ODRM4T (IHII C SKI ’> 3 LINS i AND WRITE PLOT TITLE (IDOCHAR S PER LINE t 10 LINES AXI4CH-,(NClkR*9) /10 dRJTE (660) (TJL..EfI),I-I...A*CaGE.D.)JPP-J>P 𔃻 I F ( 8 D Do)) jpp-j P?+2 MiFPPeE)’i)&O TO 44 73 40JT-NPr(NIN,JPP) ;o TD (72, 14,7b,7BhNOUT 44 IF(A*3)q46q4b47 46 JPP-2 ;0 TO 73...EXTEZNAL FJNrI3N LAND IJS 13 THE BOOLEAN I.EoLDGICAL$ AND 01’ Td C FULLWORD INTEGCRS. C EXTEtNAL FJN:TION LOR, I,JS 1)7 THE BOOLEAN OR OF TWO FULLWORD

  16. Boolean Classes and Qualitative Inquiry. WCER Working Paper No. 2006-3

    ERIC Educational Resources Information Center

    Nathan, Mitchell J.; Jackson, Kristi

    2006-01-01

    The prominent role of Boolean classes in qualitative data analysis software is viewed by some as an encroachment of logical positivism on qualitative research methodology. The authors articulate an embodiment perspective, in which Boolean classes are viewed as conceptual metaphors for apprehending and manipulating data, concepts, and categories in…

  17. Development of a computer-aided design software for dental splint in orthognathic surgery

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-12-01

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.

  18. Development of a computer-aided design software for dental splint in orthognathic surgery

    PubMed Central

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-01-01

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated. PMID:27966601

  19. Development of a computer-aided design software for dental splint in orthognathic surgery.

    PubMed

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-12-14

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.

  20. Algebraic model checking for Boolean gene regulatory networks.

    PubMed

    Tran, Quoc-Nam

    2011-01-01

    We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.

  1. E-Referencer: Transforming Boolean OPACs to Web Search Engines.

    ERIC Educational Resources Information Center

    Khoo, Christopher S. G.; Poo, Danny C. C.; Toh, Teck-Kang; Hong, Glenn

    E-Referencer is an expert intermediary system for searching library online public access catalogs (OPACs) on the World Wide Web. It is implemented as a proxy server that mediates the interaction between the user and Boolean OPACs. It transforms a Boolean OPAC into a retrieval system with many of the search capabilities of Web search engines.…

  2. Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.

    PubMed

    Mori, Fumito; Mochizuki, Atsushi

    2017-07-14

    Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.

  3. Monotone Boolean approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulme, B.L.

    1982-12-01

    This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application formore » the analysis of noncoherent fault trees and event tree sequences.« less

  4. On spectral techniques in analysis of Boolean networks

    NASA Astrophysics Data System (ADS)

    Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli

    2005-06-01

    In this work we present results that can be used for analysis of Boolean networks. The results utilize Fourier spectra of the functions in the network. An accurate formula is given for Derrida plots of networks of finite size N based on a result on Boolean functions presented in another context. Derrida plots are widely used to examine the stability issues of Boolean networks. For the limit N→∞, we give a computationally simple form that can be used as a good approximation for rather small networks as well. A formula for Derrida plots of random Boolean networks (RBNs) presented earlier in the literature is given an alternative derivation. It is shown that the information contained in the Derrida plot is equal to the average Fourier spectrum of the functions in the network. In the case of random networks the mean Derrida plot can be obtained from the mean spectrum of the functions. The method is applied to real data by using the Boolean functions found in genetic regulatory networks of eukaryotic cells in an earlier study. Conventionally, Derrida plots and stability analysis have been computed with statistical sampling resulting in poorer accuracy.

  5. Automatic Screening for Perturbations in Boolean Networks.

    PubMed

    Schwab, Julian D; Kestler, Hans A

    2018-01-01

    A common approach to address biological questions in systems biology is to simulate regulatory mechanisms using dynamic models. Among others, Boolean networks can be used to model the dynamics of regulatory processes in biology. Boolean network models allow simulating the qualitative behavior of the modeled processes. A central objective in the simulation of Boolean networks is the computation of their long-term behavior-so-called attractors. These attractors are of special interest as they can often be linked to biologically relevant behaviors. Changing internal and external conditions can influence the long-term behavior of the Boolean network model. Perturbation of a Boolean network by stripping a component of the system or simulating a surplus of another element can lead to different attractors. Apparently, the number of possible perturbations and combinations of perturbations increases exponentially with the size of the network. Manually screening a set of possible components for combinations that have a desired effect on the long-term behavior can be very time consuming if not impossible. We developed a method to automatically screen for perturbations that lead to a user-specified change in the network's functioning. This method is implemented in the visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive attractor search.

  6. Synthesizing Biomolecule-based Boolean Logic Gates

    PubMed Central

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  7. Synthesizing biomolecule-based Boolean logic gates.

    PubMed

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  8. Polynomial algebra of discrete models in systems biology.

    PubMed

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  9. Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines

    DTIC Science & Technology

    1989-09-01

    Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer F ( Abstract In this...Projects Agency under contract number N00014-87-K-0825. Author Information Devadas : Department of Electrical Engineering and Computer Science, Room 36...MA 02139; (617) 253-0292. 0 * Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Siivas Devadas

  10. Integrating Multiple Data Sources for Combinatorial Marker Discovery: A Study in Tumorigenesis.

    PubMed

    Bandyopadhyay, Sanghamitra; Mallik, Saurav

    2018-01-01

    Identification of combinatorial markers from multiple data sources is a challenging task in bioinformatics. Here, we propose a novel computational framework for identifying significant combinatorial markers ( s) using both gene expression and methylation data. The gene expression and methylation data are integrated into a single continuous data as well as a (post-discretized) boolean data based on their intrinsic (i.e., inverse) relationship. A novel combined score of methylation and expression data (viz., ) is introduced which is computed on the integrated continuous data for identifying initial non-redundant set of genes. Thereafter, (maximal) frequent closed homogeneous genesets are identified using a well-known biclustering algorithm applied on the integrated boolean data of the determined non-redundant set of genes. A novel sample-based weighted support ( ) is then proposed that is consecutively calculated on the integrated boolean data of the determined non-redundant set of genes in order to identify the non-redundant significant genesets. The top few resulting genesets are identified as potential s. Since our proposed method generates a smaller number of significant non-redundant genesets than those by other popular methods, the method is much faster than the others. Application of the proposed technique on an expression and a methylation data for Uterine tumor or Prostate Carcinoma produces a set of significant combination of markers. We expect that such a combination of markers will produce lower false positives than individual markers.

  11. Study of Strategies Used in Online Searching: 2. Positional Logic--an Example of the Importance of Selecting the Right Boolean Operator.

    ERIC Educational Resources Information Center

    Oldroyd, Betty K.; Schroder, J. J.

    1982-01-01

    Reviews the advantages and disadvantages of different types of term combination using the positional logic capability of online information retrieval systems and describes a study in which searches for material on "microwave integrated circuits" were conducted in order to find the most economical way of generating the most relevant…

  12. Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets.

    PubMed

    Park, Inho; Lee, Kwang H; Lee, Doheon

    2010-06-15

    Gene set analysis has become an important tool for the functional interpretation of high-throughput gene expression datasets. Moreover, pattern analyses based on inferred gene set activities of individual samples have shown the ability to identify more robust disease signatures than individual gene-based pattern analyses. Although a number of approaches have been proposed for gene set-based pattern analysis, the combinatorial influence of deregulated gene sets on disease phenotype classification has not been studied sufficiently. We propose a new approach for inferring combinatorial Boolean rules of gene sets for a better understanding of cancer transcriptome and cancer classification. To reduce the search space of the possible Boolean rules, we identify small groups of gene sets that synergistically contribute to the classification of samples into their corresponding phenotypic groups (such as normal and cancer). We then measure the significance of the candidate Boolean rules derived from each group of gene sets; the level of significance is based on the class entropy of the samples selected in accordance with the rules. By applying the present approach to publicly available prostate cancer datasets, we identified 72 significant Boolean rules. Finally, we discuss several identified Boolean rules, such as the rule of glutathione metabolism (down) and prostaglandin synthesis regulation (down), which are consistent with known prostate cancer biology. Scripts written in Python and R are available at http://biosoft.kaist.ac.kr/~ihpark/. The refined gene sets and the full list of the identified Boolean rules are provided in the Supplementary Material. Supplementary data are available at Bioinformatics online.

  13. Automated unit-level testing with heuristic rules

    NASA Technical Reports Server (NTRS)

    Carlisle, W. Homer; Chang, Kai-Hsiung; Cross, James H.; Keleher, William; Shackelford, Keith

    1990-01-01

    Software testing plays a significant role in the development of complex software systems. Current testing methods generally require significant effort to generate meaningful test cases. The QUEST/Ada system is a prototype system designed using CLIPS to experiment with expert system based test case generation. The prototype is designed to test for condition coverage, and attempts to generate test cases to cover all feasible branches contained in an Ada program. This paper reports on heuristics sued by the system. These heuristics vary according to the amount of knowledge obtained by preprocessing and execution of the boolean conditions in the program.

  14. Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks

    NASA Astrophysics Data System (ADS)

    Gong, Xinwei

    This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical phases and for highly disordered networks, peaking somewhere in the disordered phase. Individual nodes with high complexity have, on average, a larger influence on the system dynamics. Lastly, a semi-annealed approximation that preserves the correlation between states at neighboring nodes is introduced to study a social game-inspired network model in which all links are bidirectional and all nodes have a self-input. The technique developed here is shown to yield accurate predictions of distribution of players' states, and accounts for some nontrivial collective behavior of game theoretic interest.

  15. A look-ahead probabilistic contingency analysis framework incorporating smart sampling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Etingov, Pavel V.; Ren, Huiying

    2016-07-18

    This paper describes a framework of incorporating smart sampling techniques in a probabilistic look-ahead contingency analysis application. The predictive probabilistic contingency analysis helps to reflect the impact of uncertainties caused by variable generation and load on potential violations of transmission limits.

  16. A Boolean Consistent Fuzzy Inference System for Diagnosing Diseases and Its Application for Determining Peritonitis Likelihood

    PubMed Central

    Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan

    2015-01-01

    Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand. PMID:27069500

  17. Network dynamics and systems biology

    NASA Astrophysics Data System (ADS)

    Norrell, Johannes A.

    The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the transition point, called critical, exhibit many of the features of regulatory networks, and recent studies suggest that some specific regulatory networks are indeed near-critical. We ask whether certain statistical measures of the ensemble behavior of large continuous networks are reproduced by Boolean models. We find that, in spite of the lack of correspondence between attractors observed in smaller systems, the statistical characterization given by the continuous and Boolean models show close agreement, and the transition between order and disorder known in Boolean systems can occur in continuous systems as well. One effect that is not present in Boolean systems, the failure of information to propagate down chains of elements of arbitrary length, is present in a class of continuous networks. In these systems, a modified Boolean theory that takes into account the collective effect of propagation failure on chains throughout the network gives a good description of the observed behavior. We find that propagation failure pushes the system toward greater order, resulting in a partial or complete suppression of the disordered phase. Finally, we explore a dynamical process of direct biological relevance: asymmetric cell division in A. thaliana. The long term goal is to develop a model for the process that accurately accounts for both wild type and mutant behavior. To contribute to this endeavor, we use confocal microscopy to image roots in a SHORT-ROOT inducible mutant. We compute correlation functions between the locations of asymmetrically divided cells, and we construct stochastic models based on a few simple assumptions that accurately predict the non-zero correlations. Our result shows that intracellular processes alone cannot be responsible for the observed divisions, and that an intercell signaling mechanism could account for the measured correlations.

  18. Generative Topic Modeling in Image Data Mining and Bioinformatics Studies

    ERIC Educational Resources Information Center

    Chen, Xin

    2012-01-01

    Probabilistic topic models have been developed for applications in various domains such as text mining, information retrieval and computer vision and bioinformatics domain. In this thesis, we focus on developing novel probabilistic topic models for image mining and bioinformatics studies. Specifically, a probabilistic topic-connection (PTC) model…

  19. "Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis

    PubMed Central

    2011-01-01

    Background In Thomas' formalism for modeling gene regulatory networks (GRNs), branching time, where a state can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because infinitely many paths may appear, limiting ordinary simulators to statistical conclusions. Model checkers for branching time, by contrast, are able to prove properties in the presence of infinitely many paths. Results We have developed Antelope ("Analysis of Networks through TEmporal-LOgic sPEcifications", http://turing.iimas.unam.mx:8080/AntelopeWEB/), a model checker for analyzing and constructing Boolean GRNs. Currently, software systems for Boolean GRNs use branching time almost exclusively for asynchrony. Antelope, by contrast, also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness of modeling these two phenomena in the development of a Boolean GRN of the Arabidopsis thaliana root stem cell niche. There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First, ordinary model checkers normally only verify whether or not a given set of model states has a given property. In comparison, a model checker for Boolean GRNs is preferable if it reports the set of states having a desired property. Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express some interesting properties of Boolean GRNs. Antelope tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property, our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g., NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard Computation-Tree Logic (CTL) with hybrid-logic operators. Conclusions We illustrate the advantages of Antelope when (a) modeling incomplete networks and environment interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties with hybrid CTL. PMID:22192526

  20. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell.

    PubMed

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-07-07

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.

  1. Theory and calculus of cubical complexes

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1973-01-01

    Combination switching networks with multiple outputs may be represented by Boolean functions. Report has been prepared which describes derivation and use of extraction algorithm that may be adapted to simplification of such simultaneous Boolean functions.

  2. Dynamic Boolean Mathematics

    ERIC Educational Resources Information Center

    Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla; Lynch-Davis, Kathleen

    2016-01-01

    Dynamic mathematical environments allow users to reify mathematical concepts through multiple representations, transform mathematical relations and organically explore mathematical properties, investigate integrated mathematics, and develop conceptual understanding. Herein, we integrate Boolean algebra, the functionalities of a dynamic…

  3. Total Parenteral Nutrition

    MedlinePlus

    ... Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options, SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy) at System.IO.FileStream..ctor(String path, FileMode mode, FileAccess ...

  4. A genetic code Boolean structure. II. The genetic information system as a Boolean information system.

    PubMed

    Sanchez, Robersy; Grau, Ricardo

    2005-09-01

    A Boolean structure of the genetic code where Boolean deductions have biological and physicochemical meanings was discussed in a previous paper. Now, from these Boolean deductions we propose to define the value of amino acid information in order to consider the genetic information system as a communication system and to introduce the semantic content of information ignored by the conventional information theory. In this proposal, the value of amino acid information is proportional to the molecular weight of amino acids with a proportional constant of about 1.96 x 10(25) bits per kg. In addition to this, for the experimental estimations of the minimum energy dissipation in genetic logic operations, we present two postulates: (1) the energy Ei (i=1,2,...,20) of amino acids in the messages conveyed by proteins is proportional to the value of information, and (2) amino acids are distributed according to their energy Ei so the amino acid population in proteins follows a Boltzmann distribution. Specifically, in the genetic message carried by the DNA from the genomes of living organisms, we found that the minimum energy dissipation in genetic logic operations was close to kTLn(2) joules per bit.

  5. An Improvement to a Multi-Client Searchable Encryption Scheme for Boolean Queries.

    PubMed

    Jiang, Han; Li, Xue; Xu, Qiuliang

    2016-12-01

    The migration of e-health systems to the cloud computing brings huge benefits, as same as some security risks. Searchable Encryption(SE) is a cryptography encryption scheme that can protect the confidentiality of data and utilize the encrypted data at the same time. The SE scheme proposed by Cash et al. in Crypto2013 and its follow-up work in CCS2013 are most practical SE Scheme that support Boolean queries at present. In their scheme, the data user has to generate the search tokens by the counter number one by one and interact with server repeatedly, until he meets the correct one, or goes through plenty of tokens to illustrate that there is no search result. In this paper, we make an improvement to their scheme. We allow server to send back some information and help the user to generate exact search token in the search phase. In our scheme, there are only two round interaction between server and user, and the search token has [Formula: see text] elements, where n is the keywords number in query expression, and [Formula: see text] is the minimum documents number that contains one of keyword in query expression, and the computation cost of server is [Formula: see text] modular exponentiation operation.

  6. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    PubMed

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  7. Improving the quantum cost of reversible Boolean functions using reorder algorithm

    NASA Astrophysics Data System (ADS)

    Ahmed, Taghreed; Younes, Ahmed; Elsayed, Ashraf

    2018-05-01

    This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed-Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.

  8. Volumetric T-spline Construction Using Boolean Operations

    DTIC Science & Technology

    2013-07-01

    SUBTITLE Volumetric T-spline Construction Using Boolean Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Acknowledgements The work of L. Liu and Y. Zhang was supported by ONR-YIP award N00014- 10-1-0698 and an ONR Grant N00014-08-1-0653. T. J.R. Hughes was sup- 16...T-spline Construction Using Boolean Operations 17 ported by ONR Grant N00014-08-1-0992, NSF GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF

  9. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556

  10. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying, E-mail: chengying@nju.edu.cn

    2015-03-16

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logicmore » and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.« less

  11. Boolean networks with veto functions

    NASA Astrophysics Data System (ADS)

    Ebadi, Haleh; Klemm, Konstantin

    2014-08-01

    Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expressions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., Proc. Natl. Acad. Sci. USA 105, 1913 (2008), 10.1073/pnas.0705088105], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Li et al., Proc. Natl. Acad. Sci. USA 101, 4781 (2004), 10.1073/pnas.0305937101; Davidich et al., PLoS ONE 3, e1672 (2008), 10.1371/journal.pone.0001672], no or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.

  12. Data-Driven Sampling Matrix Boolean Optimization for Energy-Efficient Biomedical Signal Acquisition by Compressive Sensing.

    PubMed

    Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao

    2017-04-01

    Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.

  13. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors.

    PubMed

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2013-06-01

    A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.

  14. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    PubMed

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  15. A transition calculus for Boolean functions. [logic circuit analysis

    NASA Technical Reports Server (NTRS)

    Tucker, J. H.; Bennett, A. W.

    1974-01-01

    A transition calculus is presented for analyzing the effect of input changes on the output of logic circuits. The method is closely related to the Boolean difference, but it is more powerful. Both differentiation and integration are considered.

  16. Probabilistic generation of random networks taking into account information on motifs occurrence.

    PubMed

    Bois, Frederic Y; Gayraud, Ghislaine

    2015-01-01

    Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate realistic graphs with several hundred nodes mimicking a gene transcription interaction network in Escherichia coli.

  17. Probabilistic Generation of Random Networks Taking into Account Information on Motifs Occurrence

    PubMed Central

    Bois, Frederic Y.

    2015-01-01

    Abstract Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate realistic graphs with several hundred nodes mimicking a gene transcription interaction network in Escherichia coli. PMID:25493547

  18. Probabilistic Harmonic Analysis on Distributed Photovoltaic Integration Considering Typical Weather Scenarios

    NASA Astrophysics Data System (ADS)

    Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang

    2017-05-01

    Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.

  19. Characterizing short-term stability for Boolean networks over any distribution of transfer functions

    DOE PAGES

    Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; ...

    2016-07-05

    Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.

  20. Inferring Boolean network states from partial information

    PubMed Central

    2013-01-01

    Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the interpretation of the measurements is not straightforward and since the data contain noise. In order to facilitate a more reliable mapping between datasets and Boolean networks, we develop an algorithm that infers network trajectories from a dataset distorted by noise. We analyze our algorithm theoretically and demonstrate its accuracy using simulation and microarray expression data. PMID:24006954

  1. Saturation: An efficient iteration strategy for symbolic state-space generation

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Luettgen, Gerald; Siminiceanu, Radu; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents a novel algorithm for generating state spaces of asynchronous systems using Multi-valued Decision Diagrams. In contrast to related work, the next-state function of a system is not encoded as a single Boolean function, but as cross-products of integer functions. This permits the application of various iteration strategies to build a system's state space. In particular, this paper introduces a new elegant strategy, called saturation, and implements it in the tool SMART. On top of usually performing several orders of magnitude faster than existing BDD-based state-space generators, the algorithm's required peak memory is often close to the nal memory needed for storing the overall state spaces.

  2. On construction of stochastic genetic networks based on gene expression sequences.

    PubMed

    Ching, Wai-Ki; Ng, Michael M; Fung, Eric S; Akutsu, Tatsuya

    2005-08-01

    Reconstruction of genetic regulatory networks from time series data of gene expression patterns is an important research topic in bioinformatics. Probabilistic Boolean Networks (PBNs) have been proposed as an effective model for gene regulatory networks. PBNs are able to cope with uncertainty, corporate rule-based dependencies between genes and discover the sensitivity of genes in their interactions with other genes. However, PBNs are unlikely to use directly in practice because of huge amount of computational cost for obtaining predictors and their corresponding probabilities. In this paper, we propose a multivariate Markov model for approximating PBNs and describing the dynamics of a genetic network for gene expression sequences. The main contribution of the new model is to preserve the strength of PBNs and reduce the complexity of the networks. The number of parameters of our proposed model is O(n2) where n is the number of genes involved. We also develop efficient estimation methods for solving the model parameters. Numerical examples on synthetic data sets and practical yeast data sequences are given to demonstrate the effectiveness of the proposed model.

  3. Boolean Operations with Prism Algebraic Patches

    PubMed Central

    Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi

    2009-01-01

    In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262

  4. A generative, probabilistic model of local protein structure.

    PubMed

    Boomsma, Wouter; Mardia, Kanti V; Taylor, Charles C; Ferkinghoff-Borg, Jesper; Krogh, Anders; Hamelryck, Thomas

    2008-07-01

    Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state. Our method represents a significant theoretical and practical improvement over the widely used fragment assembly technique by avoiding the drawbacks associated with a discrete and nonprobabilistic approach.

  5. Quantum algorithms on Walsh transform and Hamming distance for Boolean functions

    NASA Astrophysics Data System (ADS)

    Xie, Zhengwei; Qiu, Daowen; Cai, Guangya

    2018-06-01

    Walsh spectrum or Walsh transform is an alternative description of Boolean functions. In this paper, we explore quantum algorithms to approximate the absolute value of Walsh transform W_f at a single point z0 (i.e., |W_f(z0)|) for n-variable Boolean functions with probability at least 8/π 2 using the number of O(1/|W_f(z_{0)|ɛ }) queries, promised that the accuracy is ɛ , while the best known classical algorithm requires O(2n) queries. The Hamming distance between Boolean functions is used to study the linearity testing and other important problems. We take advantage of Walsh transform to calculate the Hamming distance between two n-variable Boolean functions f and g using O(1) queries in some cases. Then, we exploit another quantum algorithm which converts computing Hamming distance between two Boolean functions to quantum amplitude estimation (i.e., approximate counting). If Ham(f,g)=t≠0, we can approximately compute Ham( f, g) with probability at least 2/3 by combining our algorithm and {Approx-Count(f,ɛ ) algorithm} using the expected number of Θ( √{N/(\\lfloor ɛ t\\rfloor +1)}+√{t(N-t)}/\\lfloor ɛ t\\rfloor +1) queries, promised that the accuracy is ɛ . Moreover, our algorithm is optimal, while the exact query complexity for the above problem is Θ(N) and the query complexity with the accuracy ɛ is O(1/ɛ 2N/(t+1)) in classical algorithm, where N=2n. Finally, we present three exact quantum query algorithms for two promise problems on Hamming distance using O(1) queries, while any classical deterministic algorithm solving the problem uses Ω(2n) queries.

  6. Development of Boolean calculus and its applications. [digital systems design

    NASA Technical Reports Server (NTRS)

    Tapia, M. A.

    1980-01-01

    The development of Boolean calculus for its application to developing digital system design methodologies that would reduce system complexity, size, cost, speed, power requirements, etc., is discussed. Synthesis procedures for logic circuits are examined particularly asynchronous circuits using clock triggered flip flops.

  7. Compact universal logic gates realized using quantization of current in nanodevices.

    PubMed

    Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua

    2007-12-12

    This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.

  8. Phase transition in NK-Kauffman networks and its correction for Boolean irreducibility

    NASA Astrophysics Data System (ADS)

    Zertuche, Federico

    2014-05-01

    In a series of articles published in 1986, Derrida and his colleagues studied two mean field treatments (the quenched and the annealed) for NK-Kauffman networks. Their main results lead to a phase transition curve Kc 2 pc(1-pc)=1 (0

  9. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  10. Solving a discrete model of the lac operon using Z3

    NASA Astrophysics Data System (ADS)

    Gutierrez, Natalia A.

    2014-05-01

    A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.

  11. A generative probabilistic model and discriminative extensions for brain lesion segmentation – with application to tumor and stroke

    PubMed Central

    Menze, Bjoern H.; Van Leemput, Koen; Lashkari, Danial; Riklin-Raviv, Tammy; Geremia, Ezequiel; Alberts, Esther; Gruber, Philipp; Wegener, Susanne; Weber, Marc-André; Székely, Gabor; Ayache, Nicholas; Golland, Polina

    2016-01-01

    We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM) to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as “tumor core” or “fluid-filled structure”, but without a one-to-one correspondence to the hypo-or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the generative-discriminative model to be one of the top ranking methods in the BRATS evaluation. PMID:26599702

  12. Perturbation propagation in random and evolved Boolean networks

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Szejka, Agnes; Drossel, Barbara

    2009-03-01

    In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.

  13. Multilayer neural networks with extensively many hidden units.

    PubMed

    Rosen-Zvi, M; Engel, A; Kanter, I

    2001-08-13

    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.

  14. Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks

    PubMed Central

    Pinho, Ricardo; Garcia, Victor; Irimia, Manuel; Feldman, Marcus W.

    2014-01-01

    Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs). The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals. PMID:25375153

  15. Toxicological Tipping Points: Learning Boolean Networks from High-Content Imaging Data. (BOSC meeting)

    EPA Science Inventory

    The objective of this work is to elucidate biological networks underlying cellular tipping points using time-course data. We discretized the high-content imaging (HCI) data and inferred Boolean networks (BNs) that could accurately predict dynamic cellular trajectories. We found t...

  16. Boolean linear differential operators on elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, Ángel

    2014-12-01

    In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.

  17. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE PAGES

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...

    2017-07-11

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  18. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  19. Describing the What and Why of Students' Difficulties in Boolean Logic

    ERIC Educational Resources Information Center

    Herman, Geoffrey L.; Loui, Michael C.; Kaczmarczyk, Lisa; Zilles, Craig

    2012-01-01

    The ability to reason with formal logic is a foundational skill for computer scientists and computer engineers that scaffolds the abilities to design, debug, and optimize. By interviewing students about their understanding of propositional logic and their ability to translate from English specifications to Boolean expressions, we characterized…

  20. WOVOdat, A Worldwide Volcano Unrest Database, to Improve Eruption Forecasts

    NASA Astrophysics Data System (ADS)

    Widiwijayanti, C.; Costa, F.; Win, N. T. Z.; Tan, K.; Newhall, C. G.; Ratdomopurbo, A.

    2015-12-01

    WOVOdat is the World Organization of Volcano Observatories' Database of Volcanic Unrest. An international effort to develop common standards for compiling and storing data on volcanic unrests in a centralized database and freely web-accessible for reference during volcanic crises, comparative studies, and basic research on pre-eruption processes. WOVOdat will be to volcanology as an epidemiological database is to medicine. Despite the large spectrum of monitoring techniques, the interpretation of monitoring data throughout the evolution of the unrest and making timely forecasts remain the most challenging tasks for volcanologists. The field of eruption forecasting is becoming more quantitative, based on the understanding of the pre-eruptive magmatic processes and dynamic interaction between variables that are at play in a volcanic system. Such forecasts must also acknowledge and express the uncertainties, therefore most of current research in this field focused on the application of event tree analysis to reflect multiple possible scenarios and the probability of each scenario. Such forecasts are critically dependent on comprehensive and authoritative global volcano unrest data sets - the very information currently collected in WOVOdat. As the database becomes more complete, Boolean searches, side-by-side digital and thus scalable comparisons of unrest, pattern recognition, will generate reliable results. Statistical distribution obtained from WOVOdat can be then used to estimate the probabilities of each scenario after specific patterns of unrest. We established main web interface for data submission and visualizations, and have now incorporated ~20% of worldwide unrest data into the database, covering more than 100 eruptive episodes. In the upcoming years we will concentrate in acquiring data from volcano observatories develop a robust data query interface, optimizing data mining, and creating tools by which WOVOdat can be used for probabilistic eruption forecasting. The more data in WOVOdat, the more useful it will be.

  1. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-06-01

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03169b

  2. Evolution of canalizing Boolean networks

    NASA Astrophysics Data System (ADS)

    Szejka, A.; Drossel, B.

    2007-04-01

    Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.

  3. Probabilistic Risk Assessment of Hydraulic Fracturing in Unconventional Reservoirs by Means of Fault Tree Analysis: An Initial Discussion

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; McHugh, R.; Wei, X.

    2016-12-01

    The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.

  4. Adaptiveness in monotone pseudo-Boolean optimization and stochastic neural computation.

    PubMed

    Grossi, Giuliano

    2009-08-01

    Hopfield neural network (HNN) is a nonlinear computational model successfully applied in finding near-optimal solutions of several difficult combinatorial problems. In many cases, the network energy function is obtained through a learning procedure so that its minima are states falling into a proper subspace (feasible region) of the search space. However, because of the network nonlinearity, a number of undesirable local energy minima emerge from the learning procedure, significantly effecting the network performance. In the neural model analyzed here, we combine both a penalty and a stochastic process in order to enhance the performance of a binary HNN. The penalty strategy allows us to gradually lead the search towards states representing feasible solutions, so avoiding oscillatory behaviors or asymptotically instable convergence. Presence of stochastic dynamics potentially prevents the network to fall into shallow local minima of the energy function, i.e., quite far from global optimum. Hence, for a given fixed network topology, the desired final distribution on the states can be reached by carefully modulating such process. The model uses pseudo-Boolean functions both to express problem constraints and cost function; a combination of these two functions is then interpreted as energy of the neural network. A wide variety of NP-hard problems fall in the class of problems that can be solved by the model at hand, particularly those having a monotonic quadratic pseudo-Boolean function as constraint function. That is, functions easily derived by closed algebraic expressions representing the constraint structure and easy (polynomial time) to maximize. We show the asymptotic convergence properties of this model characterizing its state space distribution at thermal equilibrium in terms of Markov chain and give evidence of its ability to find high quality solutions on benchmarks and randomly generated instances of two specific problems taken from the computational graph theory.

  5. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  6. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    2017-08-31

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  7. Circulant Matrices and Affine Equivalence of Monomial Rotation Symmetric Boolean Functions

    DTIC Science & Technology

    2015-01-01

    definitions , including monomial rotation symmetric (MRS) Boolean functions and affine equivalence, and a known result for such quadratic functions...degree of the MRS is, we have a similar result as [40, Theorem 1.1] for n = 4p (p prime), or squarefree integers n, which along with our Theorem 5.2

  8. User Practices in Keyword and Boolean Searching on an Online Public Access Catalog.

    ERIC Educational Resources Information Center

    Ensor, Pat

    1992-01-01

    Discussion of keyword and Boolean searching techniques in online public access catalogs (OPACs) focuses on a study conducted at Indiana State University that examined users' attitudes toward searching on NOTIS (Northwestern Online Total Integrated System). Relevant literature is reviewed, and implications for library instruction are suggested. (17…

  9. Using Vector and Extended Boolean Matching in an Expert System for Selecting Foster Homes.

    ERIC Educational Resources Information Center

    Fox, Edward A.; Winett, Sheila G.

    1990-01-01

    Describes FOCES (Foster Care Expert System), a prototype expert system for choosing foster care placements for children which integrates information retrieval techniques with artificial intelligence. The use of prototypes and queries in Prolog routines, extended Boolean matching, and vector correlation are explained, as well as evaluation by…

  10. A Construction of Boolean Functions with Good Cryptographic Properties

    DTIC Science & Technology

    2014-01-01

    be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT...2008, LNCS 5350, Springer–Verlag, 2008, pp. 425–440. [10] C. Carlet and K. Feng, “An Infinite Class of Balanced Vectorial Boolean Functions with Optimum

  11. Using computer algebra and SMT solvers in algebraic biology

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  12. Therapeutic target discovery using Boolean network attractors: improvements of kali

    PubMed Central

    Guziolowski, Carito

    2018-01-01

    In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modelling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are (i) the possibility to work on asynchronous Boolean networks, (ii) a finer assessment of therapeutic targets and (iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modelled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but cannot replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery. PMID:29515890

  13. 3D Boolean operations in virtual surgical planning.

    PubMed

    Charton, Jerome; Laurentjoye, Mathieu; Kim, Youngjun

    2017-10-01

    Boolean operations in computer-aided design or computer graphics are a set of operations (e.g. intersection, union, subtraction) between two objects (e.g. a patient model and an implant model) that are important in performing accurate and reproducible virtual surgical planning. This requires accurate and robust techniques that can handle various types of data, such as a surface extracted from volumetric data, synthetic models, and 3D scan data. This article compares the performance of the proposed method (Boolean operations by a robust, exact, and simple method between two colliding shells (BORES)) and an existing method based on the Visualization Toolkit (VTK). In all tests presented in this article, BORES could handle complex configurations as well as report impossible configurations of the input. In contrast, the VTK implementations were unstable, do not deal with singular edges and coplanar collisions, and have created several defects. The proposed method of Boolean operations, BORES, is efficient and appropriate for virtual surgical planning. Moreover, it is simple and easy to implement. In future work, we will extend the proposed method to handle non-colliding components.

  14. Generalization and capacity of extensively large two-layered perceptrons.

    PubMed

    Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido

    2002-09-01

    The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the overlap between two networks in the combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit. The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of discrete hidden-to-output couplings. The critical number of examples per input dimension, alpha(c), at which the transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of continuous hidden-to-output couplings, the generalization error decreases according to the same power law as for the perceptron, with the prefactor being different.

  15. A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation--With Application to Tumor and Stroke.

    PubMed

    Menze, Bjoern H; Van Leemput, Koen; Lashkari, Danial; Riklin-Raviv, Tammy; Geremia, Ezequiel; Alberts, Esther; Gruber, Philipp; Wegener, Susanne; Weber, Marc-Andre; Szekely, Gabor; Ayache, Nicholas; Golland, Polina

    2016-04-01

    We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as "tumor core" or "fluid-filled structure", but without a one-to-one correspondence to the hypo- or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative -discriminative model to be one of the top ranking methods in the BRATS evaluation.

  16. Building a high-resolution T2-weighted MR-based probabilistic model of tumor occurrence in the prostate.

    PubMed

    Nagarajan, Mahesh B; Raman, Steven S; Lo, Pechin; Lin, Wei-Chan; Khoshnoodi, Pooria; Sayre, James W; Ramakrishna, Bharath; Ahuja, Preeti; Huang, Jiaoti; Margolis, Daniel J A; Lu, David S K; Reiter, Robert E; Goldin, Jonathan G; Brown, Matthew S; Enzmann, Dieter R

    2018-02-19

    We present a method for generating a T2 MR-based probabilistic model of tumor occurrence in the prostate to guide the selection of anatomical sites for targeted biopsies and serve as a diagnostic tool to aid radiological evaluation of prostate cancer. In our study, the prostate and any radiological findings within were segmented retrospectively on 3D T2-weighted MR images of 266 subjects who underwent radical prostatectomy. Subsequent histopathological analysis determined both the ground truth and the Gleason grade of the tumors. A randomly chosen subset of 19 subjects was used to generate a multi-subject-derived prostate template. Subsequently, a cascading registration algorithm involving both affine and non-rigid B-spline transforms was used to register the prostate of every subject to the template. Corresponding transformation of radiological findings yielded a population-based probabilistic model of tumor occurrence. The quality of our probabilistic model building approach was statistically evaluated by measuring the proportion of correct placements of tumors in the prostate template, i.e., the number of tumors that maintained their anatomical location within the prostate after their transformation into the prostate template space. Probabilistic model built with tumors deemed clinically significant demonstrated a heterogeneous distribution of tumors, with higher likelihood of tumor occurrence at the mid-gland anterior transition zone and the base-to-mid-gland posterior peripheral zones. Of 250 MR lesions analyzed, 248 maintained their original anatomical location with respect to the prostate zones after transformation to the prostate. We present a robust method for generating a probabilistic model of tumor occurrence in the prostate that could aid clinical decision making, such as selection of anatomical sites for MR-guided prostate biopsies.

  17. Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming.

    PubMed

    Ostrowski, M; Paulevé, L; Schaub, T; Siegel, A; Guziolowski, C

    2016-11-01

    Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that end, we identify a necessary condition that must be satisfied by the dynamics of a Boolean network to be consistent with a discretized time series trace. Based on this condition, we use Answer Set Programming to compute an over-approximation of the set of Boolean networks which fit best with experimental data and provide the corresponding encodings. Combined with model-checking approaches, we end up with a global learning algorithm. Our approach is able to learn logic models with a true positive rate higher than 78% in two case studies of mammalian signaling networks; for a larger case study, our method provides optimal answers after 7min of computation. We quantified the gain in our method predictions precision compared to learning approaches based on static data. Finally, as an application, our method proposes erroneous time-points in the time series data with respect to the optimal learned logic models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    PubMed

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.

  19. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    PubMed Central

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213

  20. Identification of Boolean Network Models From Time Series Data Incorporating Prior Knowledge.

    PubMed

    Leifeld, Thomas; Zhang, Zhihua; Zhang, Ping

    2018-01-01

    Motivation: Mathematical models take an important place in science and engineering. A model can help scientists to explain dynamic behavior of a system and to understand the functionality of system components. Since length of a time series and number of replicates is limited by the cost of experiments, Boolean networks as a structurally simple and parameter-free logical model for gene regulatory networks have attracted interests of many scientists. In order to fit into the biological contexts and to lower the data requirements, biological prior knowledge is taken into consideration during the inference procedure. In the literature, the existing identification approaches can only deal with a subset of possible types of prior knowledge. Results: We propose a new approach to identify Boolean networks from time series data incorporating prior knowledge, such as partial network structure, canalizing property, positive and negative unateness. Using vector form of Boolean variables and applying a generalized matrix multiplication called the semi-tensor product (STP), each Boolean function can be equivalently converted into a matrix expression. Based on this, the identification problem is reformulated as an integer linear programming problem to reveal the system matrix of Boolean model in a computationally efficient way, whose dynamics are consistent with the important dynamics captured in the data. By using prior knowledge the number of candidate functions can be reduced during the inference. Hence, identification incorporating prior knowledge is especially suitable for the case of small size time series data and data without sufficient stimuli. The proposed approach is illustrated with the help of a biological model of the network of oxidative stress response. Conclusions: The combination of efficient reformulation of the identification problem with the possibility to incorporate various types of prior knowledge enables the application of computational model inference to systems with limited amount of time series data. The general applicability of this methodological approach makes it suitable for a variety of biological systems and of general interest for biological and medical research.

  1. Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Gao, Yi

    The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.

  2. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.

    PubMed

    Pecevski, Dejan; Maass, Wolfgang

    2016-01-01

    Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.

  3. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123

    PubMed Central

    Pecevski, Dejan

    2016-01-01

    Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214

  4. Probabilistic Structural Analysis Theory Development

    NASA Technical Reports Server (NTRS)

    Burnside, O. H.

    1985-01-01

    The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.

  5. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2013-07-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlet, Jason R.; Mayo, Jackson R.

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less

  7. Interpolation of the Extended Boolean Retrieval Model.

    ERIC Educational Resources Information Center

    Zanger, Daniel Z.

    2002-01-01

    Presents an interpolation theorem for an extended Boolean information retrieval model. Results show that whenever two or more documents are similarly ranked at any two points for a query containing exactly two terms, then they are similarly ranked at all points in between; and that results can fail for queries with more than two terms. (Author/LRW)

  8. The Concept of the "Imploded Boolean Search": A Case Study with Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Tomaszewski, Robert

    2016-01-01

    Critical thinking and analytical problem-solving skills in research involves using different search strategies. A proposed concept for an "Imploded Boolean Search" combines three unique identifiable field types to perform a search: keyword(s), numerical value(s), and a chemical structure or reaction. The object of this type of search is…

  9. Energy and criticality in random Boolean networks

    NASA Astrophysics Data System (ADS)

    Andrecut, M.; Kauffman, S. A.

    2008-06-01

    The central issue of the research on the Random Boolean Networks (RBNs) model is the characterization of the critical transition between ordered and chaotic phases. Here, we discuss an approach based on the ‘energy’ associated with the unsatisfiability of the Boolean functions in the RBNs model, which provides an upper bound estimation for the energy used in computation. We show that in the ordered phase the RBNs are in a ‘dissipative’ regime, performing mostly ‘downhill’ moves on the ‘energy’ landscape. Also, we show that in the disordered phase the RBNs have to ‘hillclimb’ on the ‘energy’ landscape in order to perform computation. The analytical results, obtained using Derrida's approximation method, are in complete agreement with numerical simulations.

  10. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    PubMed

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  11. A PROBABILISTIC POPULATION EXPOSURE MODEL FOR PM10 AND PM 2.5

    EPA Science Inventory

    A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM10, and PM2.5, exposures of an urban, population has been developed. This model is intended to be used to predict exposure (magnitude, frequency, and duration) ...

  12. Boolean network inference from time series data incorporating prior biological knowledge.

    PubMed

    Haider, Saad; Pal, Ranadip

    2012-01-01

    Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points. We present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. We applied our inference approach to 6 time point transcriptomic data on Human Mammary Epithelial Cell line (HMEC) after application of Epidermal Growth Factor (EGF) and generated a BN with a plausible biological structure satisfying the data. We further defined and applied a similarity measure to compare synthetic BNs and BNs generated through the proposed approach constructed from transitions of various paths of the synthetic BNs. We have also compared the performance of our algorithm with two existing BN inference algorithms. Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. The framework when applied to experimental data and data generated from synthetic BNs were able to estimate BNs with high similarity scores. Comparison with existing BN inference algorithms showed the better performance of our proposed algorithm for limited time series data. The proposed framework can also be applied to optimize the connectivity of a GRN from experimental data when the prior biological knowledge on regulators is limited or not unique.

  13. E-Area LLWF Vadose Zone Model: Probabilistic Model for Estimating Subsided-Area Infiltration Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J.; Flach, G.

    A probabilistic model employing a Monte Carlo sampling technique was developed in Python to generate statistical distributions of the upslope-intact-area to subsided-area ratio (Area UAi/Area SAi) for closure cap subsidence scenarios that differ in assumed percent subsidence and the total number of intact plus subsided compartments. The plan is to use this model as a component in the probabilistic system model for the E-Area Performance Assessment (PA), contributing uncertainty in infiltration estimates.

  14. Probabilistic wind/tornado/missile analyses for hazard and fragility evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.J.; Reich, M.

    Detailed analysis procedures and examples are presented for the probabilistic evaluation of hazard and fragility against high wind, tornado, and tornado-generated missiles. In the tornado hazard analysis, existing risk models are modified to incorporate various uncertainties including modeling errors. A significant feature of this paper is the detailed description of the Monte-Carlo simulation analyses of tornado-generated missiles. A simulation procedure, which includes the wind field modeling, missile injection, solution of flight equations, and missile impact analysis, is described with application examples.

  15. An investigation into the probabilistic combination of quasi-static and random accelerations

    NASA Technical Reports Server (NTRS)

    Schock, R. W.; Tuell, L. P.

    1984-01-01

    The development of design load factors for aerospace and aircraft components and experiment support structures, which are subject to a simultaneous vehicle dynamic vibration (quasi-static) and acoustically generated random vibration, require the selection of a combination methodology. Typically, the procedure is to define the quasi-static and the random generated response separately, and arithmetically add or root sum square to get combined accelerations. Since the combination of a probabilistic and a deterministic function yield a probabilistic function, a viable alternate approach would be to determine the characteristics of the combined acceleration probability density function and select an appropriate percentile level for the combined acceleration. The following paper develops this mechanism and provides graphical data to select combined accelerations for most popular percentile levels.

  16. Current-induced modulation of backward spin-waves in metallic microstructures

    NASA Astrophysics Data System (ADS)

    Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji

    2017-03-01

    We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.

  17. Designing Networks that are Capable of Self-Healing and Adapting

    DTIC Science & Technology

    2017-04-01

    from statistical mechanics, combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we... principles for self-healing networks, and applications, and construct an all-possible-paths model for network adaptation. 2015-11-16 UNIT CONVERSION...combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we will undertake the fol

  18. Learning Orthographic Structure With Sequential Generative Neural Networks.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  19. Equilibrium and nonequilibrium properties of Boolean decision problems on scale-free graphs with competing interactions with external biases

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.

    2013-03-01

    We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.

  20. Implementing neural nets with programmable logic

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1988-01-01

    Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less

  2. Stabilizing Motifs in Autonomous Boolean Networks and the Yeast Cell Cycle Oscillator

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua

    2009-03-01

    Synchronously updated Boolean networks are widely used to model gene regulation. Some properties of these model networks are known to be artifacts of the clocking in the update scheme. Autonomous updating is a less artificial scheme that allows one to introduce small timing perturbations and study stability of the attractors. We argue that the stabilization of a limit cycle in an autonomous Boolean network requires a combination of motifs such as feed-forward loops and auto-repressive links that can correct small fluctuations in the timing of switching events. A recently published model of the transcriptional cell-cycle oscillator in yeast contains the motifs necessary for stability under autonomous updating [1]. [1] D. A. Orlando, et al. Nature (London), 4530 (7197):0 944--947, 2008.

  3. From cyclone tracks to the costs of European winter storms: A probabilistic loss assessment model

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Corti, Thierry; Reese, Stefan; Wueest, Marc; Viktor, Elisabeth; Zimmerli, Peter

    2014-05-01

    The quantitative assessment of the potential losses of European winter storms is essential for the economic viability of a global reinsurance company. For this purpose, reinsurance companies generally use probabilistic loss assessment models. This work presents an innovative approach to develop physically meaningful probabilistic events for Swiss Re's new European winter storm loss model. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20th Century Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of properties of historical events (e.g. track, intensity). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account. The low-resolution wind footprints taken from 20th Century Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints of the historical and probabilistic winter storm events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country- and risk-specific vulnerability functions and detailed market- or client-specific exposure information to compute (re-)insurance risk premiums.

  4. Probabilistic simple sticker systems

    NASA Astrophysics Data System (ADS)

    Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, Nor Haniza; Turaev, Sherzod

    2017-04-01

    A model for DNA computing using the recombination behavior of DNA molecules, known as a sticker system, was introduced by by L. Kari, G. Paun, G. Rozenberg, A. Salomaa, and S. Yu in the paper entitled DNA computing, sticker systems and universality from the journal of Acta Informatica vol. 35, pp. 401-420 in the year 1998. A sticker system uses the Watson-Crick complementary feature of DNA molecules: starting from the incomplete double stranded sequences, and iteratively using sticking operations until a complete double stranded sequence is obtained. It is known that sticker systems with finite sets of axioms and sticker rules generate only regular languages. Hence, different types of restrictions have been considered to increase the computational power of sticker systems. Recently, a variant of restricted sticker systems, called probabilistic sticker systems, has been introduced [4]. In this variant, the probabilities are initially associated with the axioms, and the probability of a generated string is computed by multiplying the probabilities of all occurrences of the initial strings in the computation of the string. Strings for the language are selected according to some probabilistic requirements. In this paper, we study fundamental properties of probabilistic simple sticker systems. We prove that the probabilistic enhancement increases the computational power of simple sticker systems.

  5. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review

    PubMed Central

    McClelland, James L.

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered. PMID:23970868

  6. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review.

    PubMed

    McClelland, James L

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.

  7. The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments

    NASA Astrophysics Data System (ADS)

    Chen, Fajing; Jiao, Meiyan; Chen, Jing

    2013-04-01

    Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.

  8. Superposition-Based Analysis of First-Order Probabilistic Timed Automata

    NASA Astrophysics Data System (ADS)

    Fietzke, Arnaud; Hermanns, Holger; Weidenbach, Christoph

    This paper discusses the analysis of first-order probabilistic timed automata (FPTA) by a combination of hierarchic first-order superposition-based theorem proving and probabilistic model checking. We develop the overall semantics of FPTAs and prove soundness and completeness of our method for reachability properties. Basically, we decompose FPTAs into their time plus first-order logic aspects on the one hand, and their probabilistic aspects on the other hand. Then we exploit the time plus first-order behavior by hierarchic superposition over linear arithmetic. The result of this analysis is the basis for the construction of a reachability equivalent (to the original FPTA) probabilistic timed automaton to which probabilistic model checking is finally applied. The hierarchic superposition calculus required for the analysis is sound and complete on the first-order formulas generated from FPTAs. It even works well in practice. We illustrate the potential behind it with a real-life DHCP protocol example, which we analyze by means of tool chain support.

  9. Discrete Dynamics Lab

    NASA Astrophysics Data System (ADS)

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  10. Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs

    NASA Technical Reports Server (NTRS)

    Raimondi, Franco; Lomunscio, Alessio

    2004-01-01

    We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.

  11. Feedback Controller Design for the Synchronization of Boolean Control Networks.

    PubMed

    Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling

    2016-09-01

    This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.

  12. Computer Aided Instruction for a Course in Boolean Algebra and Logic Design. Final Report (Revised).

    ERIC Educational Resources Information Center

    Roy, Rob

    The use of computers to prepare deficient college and graduate students for courses that build upon previously acquired information would solve the growing problem of professors who must spend up to one third of their class time in review of material. But examination of students who were taught Boolean Algebra and Logic Design by means of Computer…

  13. Approximate circuits for increased reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less

  14. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    It took much effort in the early days of non-Euclidean geometry to break away from the mindset that all spaces are flat and that two distinct parallel lines do not cross. Up to that point, all that was known was Euclidean geometry, and it was difficult to imagine anything else. We have suffered a similar handicap brought on by the enormous relevance of Boolean algebra to the problems of our age-logic and set theory. Previously, I demonstrated that the algebra of questions is not Boolean, but rather is described by the free distributive algebra. To get to this stage took much effort, as many obstacles-most self-placed-had to be overcome. As Boolean algebras were all I had ever known, it was almost impossible for me to imagine working with an algebra where elements do not have complements. With this realization, it became very clear that the sum and product rules of probability theory at the most basic level had absolutely nothing to do with the Boolean algebra of logical statements. Instead, a measure of degree of inclusion can be invented for many different partially ordered sets, and the sum and product rules fall out of the associativity and distributivity of the algebra. To reinforce this very important idea, this paper will go over how these constructions are made, while focusing on the underlying assumptions. I will derive the sum and product rules for a distributive lattice in general and demonstrate how this leads to probability theory on the Boolean lattice and is related to the calculus of quantum mechanical amplitudes on the partially ordered set of experimental setups. I will also discuss the rules that can be derived from modular lattices and their relevance to the cross-ratio of projective geometry.

  15. Identification of control targets in Boolean molecular network models via computational algebra.

    PubMed

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  16. A geomorphic approach to 100-year floodplain mapping for the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Jafarzadegan, Keighobad; Merwade, Venkatesh; Saksena, Siddharth

    2018-06-01

    Floodplain mapping using hydrodynamic models is difficult in data scarce regions. Additionally, using hydrodynamic models to map floodplain over large stream network can be computationally challenging. Some of these limitations of floodplain mapping using hydrodynamic modeling can be overcome by developing computationally efficient statistical methods to identify floodplains in large and ungauged watersheds using publicly available data. This paper proposes a geomorphic model to generate probabilistic 100-year floodplain maps for the Conterminous United States (CONUS). The proposed model first categorizes the watersheds in the CONUS into three classes based on the height of the water surface corresponding to the 100-year flood from the streambed. Next, the probability that any watershed in the CONUS belongs to one of these three classes is computed through supervised classification using watershed characteristics related to topography, hydrography, land use and climate. The result of this classification is then fed into a probabilistic threshold binary classifier (PTBC) to generate the probabilistic 100-year floodplain maps. The supervised classification algorithm is trained by using the 100-year Flood Insurance Rated Maps (FIRM) from the U.S. Federal Emergency Management Agency (FEMA). FEMA FIRMs are also used to validate the performance of the proposed model in areas not included in the training. Additionally, HEC-RAS model generated flood inundation extents are used to validate the model performance at fifteen sites that lack FEMA maps. Validation results show that the probabilistic 100-year floodplain maps, generated by proposed model, match well with both FEMA and HEC-RAS generated maps. On average, the error of predicted flood extents is around 14% across the CONUS. The high accuracy of the validation results shows the reliability of the geomorphic model as an alternative approach for fast and cost effective delineation of 100-year floodplains for the CONUS.

  17. The computational core and fixed point organization in Boolean networks

    NASA Astrophysics Data System (ADS)

    Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R.

    2006-03-01

    In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows us to prune simple logical cascades and underdetermined variables, returning thereby the computational core of the network. Second, we apply the cavity method to analyse the number and organization of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter being characterized by the existence of an exponential number of macroscopically separated fixed point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied in the analysis of and in silico experiments on the gene regulatory networks of baker's yeast (Saccharomyces cerevisiae) and the segment-polarity genes of the fruitfly Drosophila melanogaster.

  18. Observability of Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Wu, Yuhu; Xu, Jingxue; Sun, Xi-Ming; Wang, Wei

    2017-04-01

    Boolean multiplex (multilevel) networks (BMNs) are currently receiving considerable attention as theoretical arguments for modeling of biological systems and system level analysis. Studying control-related problems in BMNs may not only provide new views into the intrinsic control in complex biological systems, but also enable us to develop a method for manipulating biological systems using exogenous inputs. In this article, the observability of the Boolean multiplex control networks (BMCNs) are studied. First, the dynamical model and structure of BMCNs with control inputs and outputs are constructed. By using of Semi-Tensor Product (STP) approach, the logical dynamics of BMCNs is converted into an equivalent algebraic representation. Then, the observability of the BMCNs with two different kinds of control inputs is investigated by giving necessary and sufficient conditions. Finally, examples are given to illustrate the efficiency of the obtained theoretical results.

  19. Boolean network representation of contagion dynamics during a financial crisis

    NASA Astrophysics Data System (ADS)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-01-01

    This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.

  20. Scientific assessment of accuracy, skill and reliability of ocean probabilistic forecast products.

    NASA Astrophysics Data System (ADS)

    Wei, M.; Rowley, C. D.; Barron, C. N.; Hogan, P. J.

    2016-02-01

    As ocean operational centers are increasingly adopting and generating probabilistic forecast products for their customers with valuable forecast uncertainties, how to assess and measure these complicated probabilistic forecast products objectively is challenging. The first challenge is how to deal with the huge amount of the data from the ensemble forecasts. The second one is how to describe the scientific quality of probabilistic products. In fact, probabilistic forecast accuracy, skills, reliability, resolutions are different attributes of a forecast system. We briefly introduce some of the fundamental metrics such as the Reliability Diagram, Reliability, Resolution, Brier Score (BS), Brier Skill Score (BSS), Ranked Probability Score (RPS), Ranked Probability Skill Score (RPSS), Continuous Ranked Probability Score (CRPS), and Continuous Ranked Probability Skill Score (CRPSS). The values and significance of these metrics are demonstrated for the forecasts from the US Navy's regional ensemble system with different ensemble members. The advantages and differences of these metrics are studied and clarified.

  1. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2014-09-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  2. Modeling stochasticity and robustness in gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  3. Boolean decision problems with competing interactions on scale-free networks: Equilibrium and nonequilibrium behavior in an external bias

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.

    2014-02-01

    We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.

  4. Probabilistic tsunami hazard analysis: Multiple sources and global applications

    USGS Publications Warehouse

    Grezio, Anita; Babeyko, Andrey; Baptista, Maria Ana; Behrens, Jörn; Costa, Antonio; Davies, Gareth; Geist, Eric L.; Glimsdal, Sylfest; González, Frank I.; Griffin, Jonathan; Harbitz, Carl B.; LeVeque, Randall J.; Lorito, Stefano; Løvholt, Finn; Omira, Rachid; Mueller, Christof; Paris, Raphaël; Parsons, Thomas E.; Polet, Jascha; Power, William; Selva, Jacopo; Sørensen, Mathilde B.; Thio, Hong Kie

    2017-01-01

    Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.

  5. Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications

    NASA Astrophysics Data System (ADS)

    Grezio, Anita; Babeyko, Andrey; Baptista, Maria Ana; Behrens, Jörn; Costa, Antonio; Davies, Gareth; Geist, Eric L.; Glimsdal, Sylfest; González, Frank I.; Griffin, Jonathan; Harbitz, Carl B.; LeVeque, Randall J.; Lorito, Stefano; Løvholt, Finn; Omira, Rachid; Mueller, Christof; Paris, Raphaël.; Parsons, Tom; Polet, Jascha; Power, William; Selva, Jacopo; Sørensen, Mathilde B.; Thio, Hong Kie

    2017-12-01

    Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.

  6. A probabilistic and continuous model of protein conformational space for template-free modeling.

    PubMed

    Zhao, Feng; Peng, Jian; Debartolo, Joe; Freed, Karl F; Sosnick, Tobin R; Xu, Jinbo

    2010-06-01

    One of the major challenges with protein template-free modeling is an efficient sampling algorithm that can explore a huge conformation space quickly. The popular fragment assembly method constructs a conformation by stringing together short fragments extracted from the Protein Data Base (PDB). The discrete nature of this method may limit generated conformations to a subspace in which the native fold does not belong. Another worry is that a protein with really new fold may contain some fragments not in the PDB. This article presents a probabilistic model of protein conformational space to overcome the above two limitations. This probabilistic model employs directional statistics to model the distribution of backbone angles and 2(nd)-order Conditional Random Fields (CRFs) to describe sequence-angle relationship. Using this probabilistic model, we can sample protein conformations in a continuous space, as opposed to the widely used fragment assembly and lattice model methods that work in a discrete space. We show that when coupled with a simple energy function, this probabilistic method compares favorably with the fragment assembly method in the blind CASP8 evaluation, especially on alpha or small beta proteins. To our knowledge, this is the first probabilistic method that can search conformations in a continuous space and achieves favorable performance. Our method also generated three-dimensional (3D) models better than template-based methods for a couple of CASP8 hard targets. The method described in this article can also be applied to protein loop modeling, model refinement, and even RNA tertiary structure prediction.

  7. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  8. Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Rabiti, Cristian

    Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements minus seasonal trends).more » The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system con guration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. As a result, requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated.« less

  9. Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems

    DOE PAGES

    Chen, Jun; Rabiti, Cristian

    2016-11-25

    Hybrid energy systems consisting of multiple energy inputs and multiple energy outputs have been proposed to be an effective element to enable ever increasing penetration of clean energy. In order to better understand the dynamic and probabilistic behavior of hybrid energy systems, this paper proposes a model combining Fourier series and autoregressive moving average (ARMA) to characterize historical weather measurements and to generate synthetic weather (e.g., wind speed) data. In particular, Fourier series is used to characterize the seasonal trend in historical data, while ARMA is applied to capture the autocorrelation in residue time series (e.g., measurements minus seasonal trends).more » The generated synthetic wind speed data is then utilized to perform probabilistic analysis of a particular hybrid energy system con guration, which consists of nuclear power plant, wind farm, battery storage, natural gas boiler, and chemical plant. As a result, requirements on component ramping rate, economic and environmental impacts of hybrid energy systems, and the effects of deploying different sizes of batteries in smoothing renewable variability, are all investigated.« less

  10. Floral Morphogenesis: Stochastic Explorations of a Gene Network Epigenetic Landscape

    PubMed Central

    Aldana, Maximino; Benítez, Mariana; Cortes-Poza, Yuriria; Espinosa-Soto, Carlos; Hartasánchez, Diego A.; Lotto, R. Beau; Malkin, David; Escalera Santos, Gerardo J.; Padilla-Longoria, Pablo

    2008-01-01

    In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different genetic configurations during development. PMID:18978941

  11. Using Synchronous Boolean Networks to Model Several Phenomena of Collective Behavior

    PubMed Central

    Kochemazov, Stepan; Semenov, Alexander

    2014-01-01

    In this paper, we propose an approach for modeling and analysis of a number of phenomena of collective behavior. By collectives we mean multi-agent systems that transition from one state to another at discrete moments of time. The behavior of a member of a collective (agent) is called conforming if the opinion of this agent at current time moment conforms to the opinion of some other agents at the previous time moment. We presume that at each moment of time every agent makes a decision by choosing from the set (where 1-decision corresponds to action and 0-decision corresponds to inaction). In our approach we model collective behavior with synchronous Boolean networks. We presume that in a network there can be agents that act at every moment of time. Such agents are called instigators. Also there can be agents that never act. Such agents are called loyalists. Agents that are neither instigators nor loyalists are called simple agents. We study two combinatorial problems. The first problem is to find a disposition of instigators that in several time moments transforms a network from a state where the majority of simple agents are inactive to a state with the majority of active agents. The second problem is to find a disposition of loyalists that returns the network to a state with the majority of inactive agents. Similar problems are studied for networks in which simple agents demonstrate the contrary to conforming behavior that we call anticonforming. We obtained several theoretical results regarding the behavior of collectives of agents with conforming or anticonforming behavior. In computational experiments we solved the described problems for randomly generated networks with several hundred vertices. We reduced corresponding combinatorial problems to the Boolean satisfiability problem (SAT) and used modern SAT solvers to solve the instances obtained. PMID:25526612

  12. Exact Algorithms for Output Encoding, State Assignment and Four-Level Boolean Minimization

    DTIC Science & Technology

    1989-10-01

    APPROVED FOR PUBLIC DISTRIBUTION • DTIC MASSACHUSETTS INTITUTE OF TECHNOLOGY M VLSI PUBLICATIONSJAN 17 1990 VLSI Memo No. 89-569 JN. 9October 1989...nunijize large funclions exacly within reasonable amocunt. of CPt targeting twro-level logic imnplemientations involve finding ap- time. However, thle ,, m ...0(NV!) m ~iimizations . n5 10 The inptut encoding problemt can be exactly solved using mrultiple-valued Boolean nimuization. We present an exact (a) (b

  13. Boolean logic tree of graphene-based chemical system for molecular computation and intelligent molecular search query.

    PubMed

    Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing

    2014-05-06

    The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.

  14. A single-layer platform for Boolean logic and arithmetic through DNA excision in mammalian cells

    PubMed Central

    Weinberg, Benjamin H.; Hang Pham, N. T.; Caraballo, Leidy D.; Lozanoski, Thomas; Engel, Adrien; Bhatia, Swapnil; Wong, Wilson W.

    2017-01-01

    Genetic circuits engineered for mammalian cells often require extensive fine-tuning to perform their intended functions. To overcome this problem, we present a generalizable biocomputing platform that can engineer genetic circuits which function in human cells with minimal optimization. We used our Boolean Logic and Arithmetic through DNA Excision (BLADE) platform to build more than 100 multi-input-multi-output circuits. We devised a quantitative metric to evaluate the performance of the circuits in human embryonic kidney and Jurkat T cells. Of 113 circuits analysed, 109 functioned (96.5%) with the correct specified behavior without any optimization. We used our platform to build a three-input, two-output Full Adder and six-input, one-output Boolean Logic Look Up Table. We also used BLADE to design circuits with temporal small molecule-mediated inducible control and circuits that incorporate CRISPR/Cas9 to regulate endogenous mammalian genes. PMID:28346402

  15. An Automated Design Framework for Multicellular Recombinase Logic.

    PubMed

    Guiziou, Sarah; Ulliana, Federico; Moreau, Violaine; Leclere, Michel; Bonnet, Jerome

    2018-05-18

    Tools to systematically reprogram cellular behavior are crucial to address pressing challenges in manufacturing, environment, or healthcare. Recombinases can very efficiently encode Boolean and history-dependent logic in many species, yet current designs are performed on a case-by-case basis, limiting their scalability and requiring time-consuming optimization. Here we present an automated workflow for designing recombinase logic devices executing Boolean functions. Our theoretical framework uses a reduced library of computational devices distributed into different cellular subpopulations, which are then composed in various manners to implement all desired logic functions at the multicellular level. Our design platform called CALIN (Composable Asynchronous Logic using Integrase Networks) is broadly accessible via a web server, taking truth tables as inputs and providing corresponding DNA designs and sequences as outputs (available at http://synbio.cbs.cnrs.fr/calin ). We anticipate that this automated design workflow will streamline the implementation of Boolean functions in many organisms and for various applications.

  16. Tracking perturbations in Boolean networks with spectral methods

    NASA Astrophysics Data System (ADS)

    Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli

    2005-08-01

    In this paper we present a method for predicting the spread of perturbations in Boolean networks. The method is applicable to networks that have no regular topology. The prediction of perturbations can be performed easily by using a presented result which enables the efficient computation of the required iterative formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the method is applied to show the spread of perturbations in networks containing a distribution of functions found from biological data. The advances in the study of the spread of perturbations can directly be applied to enable ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be computed and thus distributions of functions compared with each other with respect to the amount of order they create in random networks.

  17. Process-driven inference of biological network structure: feasibility, minimality, and multiplicity

    NASA Astrophysics Data System (ADS)

    Zeng, Chen

    2012-02-01

    For a given dynamic process, identifying the putative interaction networks to achieve it is the inference problem. In this talk, we address the computational complexity of inference problem in the context of Boolean networks under dominant inhibition condition. The first is a proof that the feasibility problem (is there a network that explains the dynamics?) can be solved in polynomial-time. Second, while the minimality problem (what is the smallest network that explains the dynamics?) is shown to be NP-hard, a simple polynomial-time heuristic is shown to produce near-minimal solutions, as demonstrated by simulation. Third, the theoretical framework also leads to a fast polynomial-time heuristic to estimate the number of network solutions with reasonable accuracy. We will apply these approaches to two simplified Boolean network models for the cell cycle process of budding yeast (Li 2004) and fission yeast (Davidich 2008). Our results demonstrate that each of these networks contains a giant backbone motif spanning all the network nodes that provides the desired main functionality, while the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. Moreover, we show that the bioprocesses of these two cell cycle models differ considerably from a typically generated process and are intrinsically cascade-like.

  18. Differential theory of learning for efficient neural network pattern recognition

    NASA Astrophysics Data System (ADS)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  19. A Probabilistic Account of Exemplar and Category Generation

    ERIC Educational Resources Information Center

    Jern, Alan; Kemp, Charles

    2013-01-01

    People are capable of imagining and generating new category exemplars and categories. This ability has not been addressed by previous models of categorization, most of which focus on classifying category exemplars rather than generating them. We develop a formal account of exemplar and category generation which proposes that category knowledge is…

  20. Emergence of diversity in homogeneous coupled Boolean networks

    NASA Astrophysics Data System (ADS)

    Kang, Chris; Aguilar, Boris; Shmulevich, Ilya

    2018-05-01

    The origin of multicellularity in metazoa is one of the fundamental questions of evolutionary biology. We have modeled the generic behaviors of gene regulatory networks in isogenic cells as stochastic nonlinear dynamical systems—coupled Boolean networks with perturbation. Model simulations under a variety of dynamical regimes suggest that the central characteristic of multicellularity, permanent spatial differentiation (diversification), indeed can arise. Additionally, we observe that diversification is more likely to occur near the critical regime of Lyapunov stability.

  1. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    PubMed

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.

  2. Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part I: Theory and Simulations

    PubMed Central

    Marmarelis, Vasilis Z.; Zanos, Theodoros P.; Berger, Theodore W.

    2010-01-01

    This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II). PMID:19517238

  3. Inferring Toxicological Responses of HepG2 Cells from ...

    EPA Pesticide Factsheets

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 different concentrations (0.39-200µM). Cell state was characterized by p53 activation (p53), c-Jun activation (SK), phospho-Histone H2A.x (OS), phospho-Histone H3 (MA), alpha tubulin (Mt), mitochondrial membrane potential (MMP), mitochondrial mass (MM), cell cycle arrest (CCA), nuclear size (NS) and cell number (CN). Dynamic cell state perturbations due to each chemical concentration were utilized to infer coarse-grained dependencies between cellular functions as Boolean networks (BNs). BNs were inferred from data in two steps. First, the data for each state variable were discretized into changed/active (> 1 standard deviation), and unchanged/inactive values. Second, the discretized data were used to learn Boolean relationships between variables. In our case, a BN is a wiring diagram between nodes that represent 10 previously described observable phenotypes. Functional relationships between nodes were represented as Boolean functions. We found that inferred BN show that HepG2 cell response is chemical and concentration specific. We observed presence of both point and cycle BN attractors. In addition, there are instances where Boolean functions were not found. We believe that this may be either

  4. Probabilistic #D data fusion for multiresolution surface generation

    NASA Technical Reports Server (NTRS)

    Manduchi, R.; Johnson, A. E.

    2002-01-01

    In this paper we present an algorithm for adaptive resolution integration of 3D data collected from multiple distributed sensors. The input to the algorithm is a set of 3D surface points and associated sensor models. Using a probabilistic rule, a surface probability function is generated that represents the probability that a particular volume of space contains the surface. The surface probability function is represented using an octree data structure; regions of space with samples of large conariance are stored at a coarser level than regions of space containing samples with smaller covariance. The algorithm outputs an adaptive resolution surface generated by connecting points that lie on the ridge of surface probability with triangles scaled to match the local discretization of space given by the algorithm, we present results from 3D data generated by scanning lidar and structure from motion.

  5. The exposure of Sydney (Australia) to earthquake-generated tsunamis, storms and sea level rise: a probabilistic multi-hazard approach

    PubMed Central

    Dall'Osso, F.; Dominey-Howes, D.; Moore, C.; Summerhayes, S.; Withycombe, G.

    2014-01-01

    Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney. PMID:25492514

  6. The exposure of Sydney (Australia) to earthquake-generated tsunamis, storms and sea level rise: a probabilistic multi-hazard approach.

    PubMed

    Dall'Osso, F; Dominey-Howes, D; Moore, C; Summerhayes, S; Withycombe, G

    2014-12-10

    Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney.

  7. Evaluation of properties over phylogenetic trees using stochastic logics.

    PubMed

    Requeno, José Ignacio; Colom, José Manuel

    2016-06-14

    Model checking has been recently introduced as an integrated framework for extracting information of the phylogenetic trees using temporal logics as a querying language, an extension of modal logics that imposes restrictions of a boolean formula along a path of events. The phylogenetic tree is considered a transition system modeling the evolution as a sequence of genomic mutations (we understand mutation as different ways that DNA can be changed), while this kind of logics are suitable for traversing it in a strict and exhaustive way. Given a biological property that we desire to inspect over the phylogeny, the verifier returns true if the specification is satisfied or a counterexample that falsifies it. However, this approach has been only considered over qualitative aspects of the phylogeny. In this paper, we repair the limitations of the previous framework for including and handling quantitative information such as explicit time or probability. To this end, we apply current probabilistic continuous-time extensions of model checking to phylogenetics. We reinterpret a catalog of qualitative properties in a numerical way, and we also present new properties that couldn't be analyzed before. For instance, we obtain the likelihood of a tree topology according to a mutation model. As case of study, we analyze several phylogenies in order to obtain the maximum likelihood with the model checking tool PRISM. In addition, we have adapted the software for optimizing the computation of maximum likelihoods. We have shown that probabilistic model checking is a competitive framework for describing and analyzing quantitative properties over phylogenetic trees. This formalism adds soundness and readability to the definition of models and specifications. Besides, the existence of model checking tools hides the underlying technology, omitting the extension, upgrade, debugging and maintenance of a software tool to the biologists. A set of benchmarks justify the feasibility of our approach.

  8. Hybrid Modeling of Cell Signaling and Transcriptional Reprogramming and Its Application in C. elegans Development.

    PubMed

    Fertig, Elana J; Danilova, Ludmila V; Favorov, Alexander V; Ochs, Michael F

    2011-01-01

    Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multiscale, organism-level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extracellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs) in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1) the effects of varying scaffold protein concentration on signal strength, (2) amplification of signals in expression, (3) the relative external ligand concentration in a known geometry, and (4) feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.

  9. INFERENCE BUILDING BLOCKS

    DTIC Science & Technology

    2018-02-15

    address the problem that probabilistic inference algorithms are diÿcult and tedious to implement, by expressing them in terms of a small number of...building blocks, which are automatic transformations on probabilistic programs. On one hand, our curation of these building blocks reflects the way human...reasoning with low-level computational optimization, so the speed and accuracy of the generated solvers are competitive with state-of-the-art systems. 15

  10. Maritime Threat Detection Using Probabilistic Graphical Models

    DTIC Science & Technology

    2012-01-01

    CRF, unlike an HMM, can represent local features, and does not require feature concatenation. MLNs For MLNs, we used Alchemy ( Alchemy 2011), an...open source statistical relational learning and probabilistic inferencing package. Alchemy supports generative and discriminative weight learning, and...that Alchemy creates a new formula for every possible combination of the values for a1 and a2 that fit the type specified in their predicate

  11. American College of Rheumatology/European League Against Rheumatism remission criteria for rheumatoid arthritis maintain reliable performance when evaluated in 44 joints.

    PubMed

    Kaneko, Yuko; Kondo, Harumi; Takeuchi, Tsutomu

    2013-08-01

    To investigate the performance of the new remission criteria for rheumatoid arthritis (RA) in daily clinical practice and the effect of possible misclassification of remission when 44 joints are assessed. Disease activity and remission rate were calculated according to the Disease Activity Score (DAS28), Simplified Disease Activity Index (SDAI), Clinical Disease Activity Index (CDAI), and a Boolean-based definition for 1402 patients with RA in Keio University Hospital. Characteristics of patients in remission were investigated, and the number of misclassified patients was determined--those classified as being in remission based on 28-joint count but as nonremission based on a 44-joint count for each definition criterion. Of all patients analyzed, 46.6%, 45.9%, 41.0%, and 31.5% were classified as in remission in the DAS28, SDAI, CDAI, and Boolean definitions, respectively. Patients classified into remission based only on the DAS28 showed relatively low erythrocyte sedimentation rates but greater swollen joint counts than those classified into remission based on the other definitions. In patients classified into remission based only on the Boolean criteria, the mean physician global assessment was greater than the mean patient global assessment. Although 119 patients had ≤ 1 involved joint in the 28-joint count but > 1 in the 44-joint count, only 34 of these 119 (2.4% of all subjects) were found to have been misclassified into remission. In practice, about half of patients with RA can achieve clinical remission within the DAS28, SDAI, and CDAI; and one-third according to the Boolean-based definition. Patients classified in remission based on a 28-joint count may have pain and swelling in the feet, but misclassification of remission was relatively rare and was seen in only 2.4% of patients under a Boolean definition. The 28-joint count can be sufficient for assessing clinical remission based on the new remission criteria.

  12. Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data

    NASA Astrophysics Data System (ADS)

    Garanzha, V. A.; Kudryavtseva, L. N.

    2012-03-01

    A method is proposed for the generation of three-dimensional tetrahedral meshes from incomplete, weakly structured, and inconsistent data describing a geometric model. The method is based on the construction of a piecewise smooth scalar function defining the body so that its boundary is the zero isosurface of the function. Such implicit description of three-dimensional domains can be defined analytically or can be constructed from a cloud of points, a set of cross sections, or a "soup" of individual vertices, edges, and faces. By applying Boolean operations over domains, simple primitives can be combined with reconstruction results to produce complex geometric models without resorting to specialized software. Sharp edges and conical vertices on the domain boundary are reproduced automatically without using special algorithms. Refs. 42. Figs. 25.

  13. Toward sensor-based context aware systems.

    PubMed

    Sakurai, Yoshitaka; Takada, Kouhei; Anisetti, Marco; Bellandi, Valerio; Ceravolo, Paolo; Damiani, Ernesto; Tsuruta, Setsuo

    2012-01-01

    This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.

  14. ADAM: analysis of discrete models of biological systems using computer algebra.

    PubMed

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.

  15. Random Boolean networks for autoassociative memory: Optimization and sequential learning

    NASA Astrophysics Data System (ADS)

    Sherrington, D.; Wong, K. Y. M.

    Conventional neural networks are based on synaptic storage of information, even when the neural states are discrete and bounded. In general, the set of potential local operations is much greater. Here we discuss some aspects of the properties of networks of binary neurons with more general Boolean functions controlling the local dynamics. Two specific aspects are emphasised; (i) optimization in the presence of noise and (ii) a simple model for short-term memory exhibiting primacy and recency in the recall of sequentially taught patterns.

  16. Security analysis of boolean algebra based on Zhang-Wang digital signature scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jinbin, E-mail: jbzheng518@163.com

    2014-10-06

    In 2005, Zhang and Wang proposed an improvement signature scheme without using one-way hash function and message redundancy. In this paper, we show that this scheme exits potential safety concerns through the analysis of boolean algebra, such as bitwise exclusive-or, and point out that mapping is not one to one between assembly instructions and machine code actually by means of the analysis of the result of the assembly program segment, and which possibly causes safety problems unknown to the software.

  17. Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.

    PubMed

    Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2015-08-07

    The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.

  18. QA-driven Guidelines Generation for Bacteriotherapy

    PubMed Central

    Pasche, Emilie; Teodoro, Douglas; Gobeill, Julien; Ruch, Patrick; Lovis, Christian

    2009-01-01

    PURPOSE We propose a question-answering (QA) driven generation approach for automatic acquisition of structured rules that can be used in a knowledge authoring tool for antibiotic prescription guidelines management. METHODS: The rule generation is seen as a question-answering problem, where the parameters of the questions are known items of the rule (e.g. an infectious disease, caused by a given bacterium) and answers (e.g. some antibiotics) are obtained by a question-answering engine. RESULTS: When looking for a drug given a pathogen and a disease, top-precision of 0.55 is obtained by the combination of the Boolean engine (PubMed) and the relevance-driven engine (easyIR), which means that for more than half of our evaluation benchmark at least one of the recommended antibiotics was automatically acquired by the rule generation method. CONCLUSION: These results suggest that such an automatic text mining approach could provide a useful tool for guidelines management, by improving knowledge update and discovery. PMID:20351908

  19. Climatological attribution of wind power ramp events in East Japan and their probabilistic forecast based on multi-model ensembles downscaled by analog ensemble using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji

    2016-04-01

    Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.

  20. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    PubMed Central

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  1. Virulo

    EPA Science Inventory

    Virulo is a probabilistic model for predicting virus attenuation. Monte Carlo methods are used to generate ensemble simulations of virus attenuation due to physical, biological, and chemical factors. The model generates a probability of failure to achieve a chosen degree o...

  2. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  3. Phase diagram of restricted Boltzmann machines and generalized Hopfield networks with arbitrary priors.

    PubMed

    Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele

    2018-02-01

    Restricted Boltzmann machines are described by the Gibbs measure of a bipartite spin glass, which in turn can be seen as a generalized Hopfield network. This equivalence allows us to characterize the state of these systems in terms of their retrieval capabilities, both at low and high load, of pure states. We study the paramagnetic-spin glass and the spin glass-retrieval phase transitions, as the pattern (i.e., weight) distribution and spin (i.e., unit) priors vary smoothly from Gaussian real variables to Boolean discrete variables. Our analysis shows that the presence of a retrieval phase is robust and not peculiar to the standard Hopfield model with Boolean patterns. The retrieval region becomes larger when the pattern entries and retrieval units get more peaked and, conversely, when the hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at low load retrieval always exists below some critical temperature, for every pattern distribution ranging from the Boolean to the Gaussian case.

  4. Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic.

    PubMed

    D'Souza, Noel; Salehi Fashami, Mohammad; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2016-02-10

    Nanomagnetic implementations of Boolean logic have attracted attention because of their nonvolatility and the potential for unprecedented overall energy-efficiency. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque severely compromise the energy-efficiency. Recently, there have been experimental reports of utilizing the Spin Hall effect for switching magnets, and theoretical proposals for strain induced switching of single-domain magnetostrictive nanomagnets, that might reduce the dissipative losses significantly. Here, we experimentally demonstrate, for the first time that strain-induced switching of single-domain magnetostrictive nanomagnets of lateral dimensions ∼200 nm fabricated on a piezoelectric substrate can implement a nanomagnetic Boolean NOT gate and steer bit information unidirectionally in dipole-coupled nanomagnet chains. On the basis of the experimental results with bulk PMN-PT substrates, we estimate that the energy dissipation for logic operations in a reasonably scaled system using thin films will be a mere ∼1 aJ/bit.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, O.; Departamento de Fisica, Facultad de Ciencias Basicas, Universidad de Antofagasta, Casilla 170, Antofagasta; Bergou, J.

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  6. The Epistemic Representation of Information Flow Security in Probabilistic Systems

    DTIC Science & Technology

    1995-06-01

    The new characterization also means that our security crite- rion is expressible in a simpler logic and model. 1 Introduction Multilevel security is...ber generator) during its execution. Such probabilistic choices are useful in a multilevel security context for Supported by grants HKUST 608/94E from... 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and

  7. Orion Script Generator

    NASA Technical Reports Server (NTRS)

    Dooling, Robert J.

    2012-01-01

    NASA Engineering's Orion Script Generator (OSG) is a program designed to run on Exploration Flight Test One Software. The script generator creates a SuperScript file that, when run, accepts the filename for a listing of Compact Unique Identifiers (CUIs). These CUIs will correspond to different variables on the Orion spacecraft, such as the temperature of a component X, the active or inactive status of another component Y, and so on. OSG will use a linked database to retrieve the value for each CUI, such as "100 05," "True," and so on. Finally, OSG writes SuperScript code to display each of these variables before outputting the ssi file that allows recipients to view a graphical representation of Orion Flight Test One's status through these variables. This project's main challenge was creating flexible software that accepts and transfers many types of data, from Boolean (true or false) values to "Unsigned Long Long'' values (any number from 0 to 18,446,744,073,709,551,615). We also needed to allow bit manipulation for each variable, requiring us to program functions that could convert any of the multiple types of data into binary code. Throughout the project, we explored different methods to optimize the speed of working with the CUI database and long binary numbers. For example, the program handled extended binary numbers much more efficiently when we stored them as collections of Boolean values (true or false representing 1 or 0) instead of as collections of character strings or numbers. We also strove to make OSG as user-friendly and accommodating of different needs as possible its default behavior is to display a current CUI's maximum value and minimum value with three to five intermediate values in between, all in descending order. Fortunately, users can also add other input on the same lines as each CUI name to request different high values, low values, display options (ascending, sine, and so on), and interval sizes for generating intermediate values. Developing input validation took up quite a bit of time, but OSG's flexibility in the end was worth it.

  8. Commercialization of NESSUS: Status

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Millwater, Harry R.

    1991-01-01

    A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.

  9. bayesPop: Probabilistic Population Projections

    PubMed Central

    Ševčíková, Hana; Raftery, Adrian E.

    2016-01-01

    We describe bayesPop, an R package for producing probabilistic population projections for all countries. This uses probabilistic projections of total fertility and life expectancy generated by Bayesian hierarchical models. It produces a sample from the joint posterior predictive distribution of future age- and sex-specific population counts, fertility rates and mortality rates, as well as future numbers of births and deaths. It provides graphical ways of summarizing this information, including trajectory plots and various kinds of probabilistic population pyramids. An expression language is introduced which allows the user to produce the predictive distribution of a wide variety of derived population quantities, such as the median age or the old age dependency ratio. The package produces aggregated projections for sets of countries, such as UN regions or trading blocs. The methodology has been used by the United Nations to produce their most recent official population projections for all countries, published in the World Population Prospects. PMID:28077933

  10. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback.

    PubMed

    Lilienthal, S; Klein, M; Orbach, R; Willner, I; Remacle, F; Levine, R D

    2017-03-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series.

  11. featsel: A framework for benchmarking of feature selection algorithms and cost functions

    NASA Astrophysics Data System (ADS)

    Reis, Marcelo S.; Estrela, Gustavo; Ferreira, Carlos Eduardo; Barrera, Junior

    In this paper, we introduce featsel, a framework for benchmarking of feature selection algorithms and cost functions. This framework allows the user to deal with the search space as a Boolean lattice and has its core coded in C++ for computational efficiency purposes. Moreover, featsel includes Perl scripts to add new algorithms and/or cost functions, generate random instances, plot graphs and organize results into tables. Besides, this framework already comes with dozens of algorithms and cost functions for benchmarking experiments. We also provide illustrative examples, in which featsel outperforms the popular Weka workbench in feature selection procedures on data sets from the UCI Machine Learning Repository.

  12. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams

    DTIC Science & Technology

    1992-07-01

    memories , where careful attention has been given to programming the memory management routines [Brace et al 19901. To extract maximum performance, it...OBDDs) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as...indicated 3 X X2 X3 f 000 0 0 01 0X22 0 10 0 0 11 1 d 1 0 0 0 X3 X 3X 1 01 1 1 10 0 - i"o11 10o 1 1 Figure 1: Truth Table and Decison Tree Repremmtatios

  13. Consistent Correlations for Parameterised Boolean Equation Systems with Applications in Correctness Proofs for Manipulations

    NASA Astrophysics Data System (ADS)

    Willemse, Tim A. C.

    We introduce the concept of consistent correlations for parameterised Boolean equation systems (PBESs), motivated largely by the laborious proofs of correctness required for most manipulations in this setting. Consistent correlations focus on relating the equations that occur in PBESs, rather than their solutions. For a fragment of PBESs, consistent correlations are shown to coincide with a recently introduced form of bisimulation. Finally, we show that bisimilarity on processes induces consistent correlations on PBESs encoding model checking problems. We apply our theory to two example manipulations from the literature.

  14. A Parallel Approach in Computing Correlation Immunity up to Six Variables

    DTIC Science & Technology

    2015-03-10

    their nonlinearity is divisible by 4. Let CI(n, k) (respectively, BCI (n, k)) be the number of exact order k correlation im- mune, (respectively...further balanced) n-variable Boolean functions. The notations CI(n, k, d), BCI (n, k, d) restricts the previous count to degree d Boolean functions...Theorem 3. The following are true: (i) BCI (n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI (n, k, 1) = 2 ( n k+1 ) , 0 ≤ k ≤ n− 1. (ii) BCI (n, n− 2) = 2

  15. On Weak and Strong 2k- bent Boolean Functions

    DTIC Science & Technology

    2016-01-01

    U.S.A. Email: pstanica@nps.edu Abstract—In this paper we introduce a sequence of discrete Fourier transforms and define new versions of bent...denotes the complex conjugate of z. An important tool in our analysis is the discrete Fourier transform , known in Boolean functions literature, as Walsh...Hadamard, or Walsh–Hadamard transform , which is the func- tion Wf : Fn2 → C, defined by Wf (u) = 2− n 2 ∑ x∈Vn (−1)f(x)⊕u·x. Any f ∈ Bn can be

  16. Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder

    NASA Astrophysics Data System (ADS)

    Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian

    2018-04-01

    Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.

  17. Visualising probabilistic flood forecast information: expert preferences and perceptions of best practice in uncertainty communication

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Stephens, E. M.; Thielen, J.; Salomon, P.; Demeritt, D.; van Andel, S.; Wetterhall, F.; Alfieri, L.

    2011-12-01

    The aim of this paper is to understand and to contribute to improved communication of the probabilistic flood forecasts generated by Hydrological Ensemble Prediction Systems (HEPS) with particular focus on the inter expert communication. Different users are likely to require different kinds of information from HEPS and thus different visualizations. The perceptions of this expert group are important both because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to non-experts. In this paper we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider essential information that should accompany plots and diagrams. In this paper we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable.

  18. Constructing probabilistic scenarios for wide-area solar power generation

    DOE PAGES

    Woodruff, David L.; Deride, Julio; Staid, Andrea; ...

    2017-12-22

    Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less

  19. Constructing probabilistic scenarios for wide-area solar power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, David L.; Deride, Julio; Staid, Andrea

    Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less

  20. Logic circuits from zero forcing.

    PubMed

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  1. Boolean dynamics of genetic regulatory networks inferred from microarray time series data

    DOE PAGES

    Martin, Shawn; Zhang, Zhaoduo; Martino, Anthony; ...

    2007-01-31

    Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this paper we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our methodmore » first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation–inhibition networks to match the discretized data. In conclusion, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics.« less

  2. A survey of SAT solver

    NASA Astrophysics Data System (ADS)

    Gong, Weiwei; Zhou, Xu

    2017-06-01

    In Computer Science, the Boolean Satisfiability Problem(SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. SAT is one of the first problems that was proven to be NP-complete, which is also fundamental to artificial intelligence, algorithm and hardware design. This paper reviews the main algorithms of the SAT solver in recent years, including serial SAT algorithms, parallel SAT algorithms, SAT algorithms based on GPU, and SAT algorithms based on FPGA. The development of SAT is analyzed comprehensively in this paper. Finally, several possible directions for the development of the SAT problem are proposed.

  3. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  4. A Parallel Approach in Computing Correlation Immunity up to Six Variables

    DTIC Science & Technology

    2015-07-24

    nonlinearity is divisible by 4. Let CI(n, k) (respectively, BCI (n, k)) be the number of exact order k corre- lation immune, (respectively, further...balanced) n-variable Boolean functions. The notations CI(n, k, d), BCI (n, k, d) restricts the previous count to degree d Boolean functions. Theorem 3...The following are true: (i) BCI (n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI (n, k, 1) = 2 ( n k+1 ) , 0 ≤ k ≤ n− 1. (ii) BCI (n, n− 2) = 2 ( n n−1

  5. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.

    PubMed

    Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K

    2010-03-29

    A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

  6. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    DOEpatents

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  7. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  8. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  9. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.

    PubMed

    Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen

    2008-02-01

    A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.

  10. Differential theory of learning for efficient neural network pattern recognition

    NASA Astrophysics Data System (ADS)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-08-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generalize well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  11. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  12. Quantum-like Modeling of Cognition

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2015-09-01

    This paper begins with a historical review of the mutual influence of physics and psychology, from Freud's invention of psychic energy inspired by von Boltzmann' thermodynamics to the enrichment quantum physics gained from the side of psychology by the notion of complementarity (the invention of Niels Bohr who was inspired by William James), besides we consider the resonance of the correspondence between Wolfgang Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of development of mathematical models for laws of thought starting with Boolean logic and progressing towards foundations of classical probability theory. Interestingly, the laws of classical logic and probability are routinely violated not only by quantum statistical phenomena but by cognitive phenomena as well. This is yet another common feature between quantum physics and psychology. In particular, cognitive data can exhibit a kind of the probabilistic interference effect. This similarity with quantum physics convinced a multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists) to apply the mathematical apparatus of quantum mechanics to modeling of cognition. We illustrate this activity by considering a few concrete phenomena: the order and disjunction effects, recognition of ambiguous figures, categorization-decision making. In Appendix 1 we briefly present essentials of theory of contextual probability and a method of representations of contextual probabilities by complex probability amplitudes (solution of the ``inverse Born's problem'') based on a quantum-like representation algorithm (QLRA).

  13. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework.

    PubMed

    Briggs, Andrew H; Ades, A E; Price, Martin J

    2003-01-01

    In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.

  14. Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers.

    PubMed

    Campbell, Kieran R; Yau, Christopher

    2017-03-15

    Modeling bifurcations in single-cell transcriptomics data has become an increasingly popular field of research. Several methods have been proposed to infer bifurcation structure from such data, but all rely on heuristic non-probabilistic inference. Here we propose the first generative, fully probabilistic model for such inference based on a Bayesian hierarchical mixture of factor analyzers. Our model exhibits competitive performance on large datasets despite implementing full Markov-Chain Monte Carlo sampling, and its unique hierarchical prior structure enables automatic determination of genes driving the bifurcation process. We additionally propose an Empirical-Bayes like extension that deals with the high levels of zero-inflation in single-cell RNA-seq data and quantify when such models are useful. We apply or model to both real and simulated single-cell gene expression data and compare the results to existing pseudotime methods. Finally, we discuss both the merits and weaknesses of such a unified, probabilistic approach in the context practical bioinformatics analyses.

  15. Probabilistic Modeling of High-Temperature Material Properties of a 5-Harness 0/90 Sylramic Fiber/ CVI-SiC/ MI-SiC Woven Composite

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.; Tong, Michael; Murthy, P. L. N.; Mital, Subodh

    1998-01-01

    An integrated probabilistic approach has been developed to assess composites for high temperature applications. This approach was used to determine thermal and mechanical properties and their probabilistic distributions of a 5-harness 0/90 Sylramic fiber/CVI-SiC/Mi-SiC woven Ceramic Matrix Composite (CMC) at high temperatures. The purpose of developing this approach was to generate quantitative probabilistic information on this CMC to help complete the evaluation for its potential application for HSCT combustor liner. This approach quantified the influences of uncertainties inherent in constituent properties called primitive variables on selected key response variables of the CMC at 2200 F. The quantitative information is presented in the form of Cumulative Density Functions (CDFs). Probability Density Functions (PDFS) and primitive variable sensitivities on response. Results indicate that the scatters in response variables were reduced by 30-50% when the uncertainties in the primitive variables, which showed the most influence, were reduced by 50%.

  16. Efficient feature subset selection with probabilistic distance criteria. [pattern recognition

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Recursive expressions are derived for efficiently computing the commonly used probabilistic distance measures as a change in the criteria both when a feature is added to and when a feature is deleted from the current feature subset. A combinatorial algorithm for generating all possible r feature combinations from a given set of s features in (s/r) steps with a change of a single feature at each step is presented. These expressions can also be used for both forward and backward sequential feature selection.

  17. A Probabilistic Assessment of Failure for Air Force Building Systems

    DTIC Science & Technology

    2015-03-26

    Rain Water Drainage System 1.000 0.225 0.085 0.424 0.800 0.968 0.998 4.449 D209001 Special Piping Systems 0.436 0.088 0.289 0.881 0.998 1.000 1.000...Rain Water Drainage 0.522 D2090 Other Plumbing Systems 0.303 D 30 H V A C D3010 Energy Supply 0.316 D3020 Heat Generating Systems 0.636 D3030...A PROBABILISTIC ASSESSMENT OF FAILURE FOR AIR FORCE BUILDING SYSTEMS THESIS Stephanie L

  18. First USGS urban seismic hazard maps predict the effects of soils

    USGS Publications Warehouse

    Cramer, C.H.; Gomberg, J.S.; Schweig, E.S.; Waldron, B.A.; Tucker, K.

    2006-01-01

    Probabilistic and scenario urban seismic hazard maps have been produced for Memphis, Shelby County, Tennessee covering a six-quadrangle area of the city. The nine probabilistic maps are for peak ground acceleration and 0.2 s and 1.0 s spectral acceleration and for 10%, 5%, and 2% probability of being exceeded in 50 years. Six scenario maps for these three ground motions have also been generated for both an M7.7 and M6.2 on the southwest arm of the New Madrid seismic zone ending at Marked Tree, Arkansas. All maps include the effect of local geology. Relative to the national seismic hazard maps, the effect of the thick sediments beneath Memphis is to decrease 0.2 s probabilistic ground motions by 0-30% and increase 1.0 s probabilistic ground motions by ???100%. Probabilistic peak ground accelerations remain at levels similar to the national maps, although the ground motion gradient across Shelby County is reduced and ground motions are more uniform within the county. The M7.7 scenario maps show ground motions similar to the 5%-in-50-year probabilistic maps. As an effect of local geology, both M7.7 and M6.2 scenario maps show a more uniform seismic ground-motion hazard across Shelby County than scenario maps with constant site conditions (i.e., NEHRP B/C boundary).

  19. Decision-level fusion of SAR and IR sensor information for automatic target detection

    NASA Astrophysics Data System (ADS)

    Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon

    2017-05-01

    We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.

  20. Efficient Boundary Extraction of BSP Solids Based on Clipping Operations.

    PubMed

    Wang, Charlie C L; Manocha, Dinesh

    2013-01-01

    We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.

  1. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  2. Verification of Java Programs using Symbolic Execution and Invariant Generation

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina; Visser, Willem

    2004-01-01

    Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.

  3. Effect of remission definition on healthcare cost savings estimates for patients with rheumatoid arthritis treated with biologic therapies.

    PubMed

    Barnabe, Cheryl; Thanh, Nguyen Xuan; Ohinmaa, Arto; Homik, Joanne; Barr, Susan G; Martin, Liam; Maksymowych, Walter P

    2014-08-01

    Sustained remission in rheumatoid arthritis (RA) results in healthcare utilization cost savings. We evaluated the variation in estimates of savings when different definitions of remission [2011 American College of Rheumatology/European League Against Rheumatism Boolean Definition, Simplified Disease Activity Index (SDAI) ≤ 3.3, Clinical Disease Activity Index (CDAI) ≤ 2.8, and Disease Activity Score-28 (DAS28) ≤ 2.6] are applied. The annual mean healthcare service utilization costs were estimated from provincial physician billing claims, outpatient visits, and hospitalizations, with linkage to clinical data from the Alberta Biologics Pharmacosurveillance Program (ABioPharm). Cost savings in patients who had a 1-year continuous period of remission were compared to those who did not, using 4 definitions of remission. In 1086 patients, sustained remission rates were 16.1% for DAS28, 8.8% for Boolean, 5.5% for CDAI, and 4.2% for SDAI. The estimated mean annual healthcare cost savings per patient achieving remission (relative to not) were SDAI $1928 (95% CI 592, 3264), DAS28 $1676 (95% CI 987, 2365), and Boolean $1259 (95% CI 417, 2100). The annual savings by CDAI remission per patient were not significant at $423 (95% CI -1757, 2602). For patients in DAS28, Boolean, and SDAI remission, savings were seen both in costs directly related to RA and its comorbidities, and in costs for non-RA-related conditions. The magnitude of the healthcare cost savings varies according to the remission definition used in classifying patient disease status. The highest point estimate for cost savings was observed in patients attaining SDAI remission and the least with the CDAI; confidence intervals for these estimates do overlap. Future pharmacoeconomic analyses should employ all response definitions in assessing the influence of treatment.

  4. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach

    NASA Astrophysics Data System (ADS)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru

    2014-12-01

    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  5. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling

    PubMed Central

    Wittmann, Dominik M; Krumsiek, Jan; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Klamt, Steffen; Theis, Fabian J

    2009-01-01

    Background The understanding of regulatory and signaling networks has long been a core objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature, which allows the construction of Boolean models, where the state of a component is either 'off' or 'on'. While often able to capture the essential behavior of a network, these models can never reproduce detailed time courses of concentration levels. Nowadays however, experiments yield more and more quantitative data. An obvious question therefore is how qualitative models can be used to explain and predict the outcome of these experiments. Results In this contribution we present a canonical way of transforming Boolean into continuous models, where the use of multivariate polynomial interpolation allows transformation of logic operations into a system of ordinary differential equations (ODE). The method is standardized and can readily be applied to large networks. Other, more limited approaches to this task are briefly reviewed and compared. Moreover, we discuss and generalize existing theoretical results on the relation between Boolean and continuous models. As a test case a logical model is transformed into an extensive continuous ODE model describing the activation of T-cells. We discuss how parameters for this model can be determined such that quantitative experimental results are explained and predicted, including time-courses for multiple ligand concentrations and binding affinities of different ligands. This shows that from the continuous model we may obtain biological insights not evident from the discrete one. Conclusion The presented approach will facilitate the interaction between modeling and experiments. Moreover, it provides a straightforward way to apply quantitative analysis methods to qualitatively described systems. PMID:19785753

  6. The DAS28-ESR cutoff value necessary to achieve remission under the new Boolean-based remission criteria in patients receiving tocilizumab.

    PubMed

    Hirabayashi, Yasuhiko; Ishii, Tomonori

    2013-01-01

    To seek the cutoff value of the 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) that is necessary to achieve remission under the new Boolean-based criteria, we analyzed the data for 285 patients with rheumatoid arthritis registered between May 2008 and November 2009 by the Michinoku Tocilizumab Study Group and observed for 1 year after receiving tocilizumab (TCZ) in real clinical practice. Remission rates under the DAS28-ESR criteria and the Boolean criteria were assessed every 6 months after the first TCZ dose. The DAS28-ESR cutoff value necessary to achieve remission under the new criteria was analyzed by receiver operating characteristic (ROC) analysis. Data were analyzed using last observation carried forward. After 12 months of TCZ use, remission was achieved in 164 patients (57.5 %) by DAS28-ESR and 71 patients (24.9 %) under the new criteria for clinical trials. CRP levels scarcely affected remission rates, and the difference between remission rates defined by DAS28-ESR and by the new criteria was mainly due to patient global assessment (PGA). Improvement of PGA was inversely related to disease duration. ROC analysis revealed that the DAS28-ESR cutoff value necessary to predict remission under the new criteria for clinical trials was 1.54, with a sensitivity of 88.7 %, specificity of 85.5 %, positive predictive value of 67.0 %, and negative predictive value of 95.8 %. A DAS28-ESR cutoff value of 1.54 may be reasonable to predict achievement of remission under the new Boolean-based criteria for clinical trials in patients receiving TCZ.

  7. Towards a high-speed quantum random number generator

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  8. Learning Orthographic Structure with Sequential Generative Neural Networks

    ERIC Educational Resources Information Center

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-01-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in…

  9. Classic articles and workbook: EPRI monographs on simulation of electric power production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, J.P.

    1991-12-01

    This monograph republishes several articles including a seminal one on probabilistic production costing for electric power generation. That article is given in the original French along with a English translation. Another article, written by R. Booth, gives a popular explanation of the theory, and a workbook by B. Manhire is included that carries through a simple example step by step. The classical analysis of non-probabilistic generator dispatch by L.K. Kirchmayer is republished along with an introductory essay by J.P. Stremel that puts in perspective the monograph material. The article in French was written by H. Baleriaux, E. Jamoulle, and Fr.more » Linard de Guertechin and first published in Brussels in 1967. It derived a method for calculating the expected value of production costs by modifying a load duration curve through the use of probability factors that account for unplanned random generator outages. Although the paper showed how pump storage plants could be included and how linear programming could be applied, the convolution technique used in the probabilistic calculations is the part most widely applied. The tutorial paper by Booth was written in a light style, and its lucidity helped popularize the method. The workbook by Manhire also shows how the calculation can be shortened significantly using cumulants to approximate the load duration curve.« less

  10. Information Retrieval Performance of Probabilistically Generated, Problem-Specific Computerized Provider Order Entry Pick-Lists: A Pilot Study

    PubMed Central

    Rothschild, Adam S.; Lehmann, Harold P.

    2005-01-01

    Objective: The aim of this study was to preliminarily determine the feasibility of probabilistically generating problem-specific computerized provider order entry (CPOE) pick-lists from a database of explicitly linked orders and problems from actual clinical cases. Design: In a pilot retrospective validation, physicians reviewed internal medicine cases consisting of the admission history and physical examination and orders placed using CPOE during the first 24 hours after admission. They created coded problem lists and linked orders from individual cases to the problem for which they were most indicated. Problem-specific order pick-lists were generated by including a given order in a pick-list if the probability of linkage of order and problem (PLOP) equaled or exceeded a specified threshold. PLOP for a given linked order-problem pair was computed as its prevalence among the other cases in the experiment with the given problem. The orders that the reviewer linked to a given problem instance served as the reference standard to evaluate its system-generated pick-list. Measurements: Recall, precision, and length of the pick-lists. Results: Average recall reached a maximum of .67 with a precision of .17 and pick-list length of 31.22 at a PLOP threshold of 0. Average precision reached a maximum of .73 with a recall of .09 and pick-list length of .42 at a PLOP threshold of .9. Recall varied inversely with precision in classic information retrieval behavior. Conclusion: We preliminarily conclude that it is feasible to generate problem-specific CPOE pick-lists probabilistically from a database of explicitly linked orders and problems. Further research is necessary to determine the usefulness of this approach in real-world settings. PMID:15684134

  11. The value of prior knowledge in machine learning of complex network systems.

    PubMed

    Ferranti, Dana; Krane, David; Craft, David

    2017-11-15

    Our overall goal is to develop machine-learning approaches based on genomics and other relevant accessible information for use in predicting how a patient will respond to a given proposed drug or treatment. Given the complexity of this problem, we begin by developing, testing and analyzing learning methods using data from simulated systems, which allows us access to a known ground truth. We examine the benefits of using prior system knowledge and investigate how learning accuracy depends on various system parameters as well as the amount of training data available. The simulations are based on Boolean networks-directed graphs with 0/1 node states and logical node update rules-which are the simplest computational systems that can mimic the dynamic behavior of cellular systems. Boolean networks can be generated and simulated at scale, have complex yet cyclical dynamics and as such provide a useful framework for developing machine-learning algorithms for modular and hierarchical networks such as biological systems in general and cancer in particular. We demonstrate that utilizing prior knowledge (in the form of network connectivity information), without detailed state equations, greatly increases the power of machine-learning algorithms to predict network steady-state node values ('phenotypes') and perturbation responses ('drug effects'). Links to codes and datasets here: https://gray.mgh.harvard.edu/people-directory/71-david-craft-phd. dcraft@broadinstitute.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners.

    PubMed

    Chen, Kevin T; Izquierdo-Garcia, David; Poynton, Clare B; Chonde, Daniel B; Catana, Ciprian

    2017-03-01

    To propose an MR-based method for generating continuous-valued head attenuation maps and to assess its accuracy and reproducibility. Demonstrating that novel MR-based photon attenuation correction methods are both accurate and reproducible is essential prior to using them routinely in research and clinical studies on integrated PET/MR scanners. Continuous-valued linear attenuation coefficient maps ("μ-maps") were generated by combining atlases that provided the prior probability of voxel positions belonging to a certain tissue class (air, soft tissue, or bone) and an MR intensity-based likelihood classifier to produce posterior probability maps of tissue classes. These probabilities were used as weights to generate the μ-maps. The accuracy of this probabilistic atlas-based continuous-valued μ-map ("PAC-map") generation method was assessed by calculating the voxel-wise absolute relative change (RC) between the MR-based and scaled CT-based attenuation-corrected PET images. To assess reproducibility, we performed pair-wise comparisons of the RC values obtained from the PET images reconstructed using the μ-maps generated from the data acquired at three time points. The proposed method produced continuous-valued μ-maps that qualitatively reflected the variable anatomy in patients with brain tumor and agreed well with the scaled CT-based μ-maps. The absolute RC comparing the resulting PET volumes was 1.76 ± 2.33 %, quantitatively demonstrating that the method is accurate. Additionally, we also showed that the method is highly reproducible, the mean RC value for the PET images reconstructed using the μ-maps obtained at the three visits being 0.65 ± 0.95 %. Accurate and highly reproducible continuous-valued head μ-maps can be generated from MR data using a probabilistic atlas-based approach.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyadera, Takayuki; Imai, Hideki; Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551

    This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloningmore » on effect algebras and hidden variables.« less

  14. Computer Program Development Specification for Ada Integrated Environment. Ada Compiler Phases B5-AIE (1). COMP (1).

    DTIC Science & Technology

    1982-11-05

    routines required by the Back End. 3.3 Detailed Functional Requirements 3.3.1 Front End 3.3.1.1 DRIVER The DRIVER is the primary user interface to the...Main 2. Exam ple" !.i ,, , ,vari able • id -: go for B Boolean Ai ’ A" ’ I type d 1 I , for Boolean I (from Standard) i I - - for A function i fuction ...TN in. If a TN cannot be allocated to the primary area of storage it needs(such as a register) it is allocated to the spill area reserved in the local

  15. A comparison of Boolean-based retrieval to the WAIS system for retrieval of aeronautical information

    NASA Technical Reports Server (NTRS)

    Marchionini, Gary; Barlow, Diane

    1994-01-01

    An evaluation of an information retrieval system using a Boolean-based retrieval engine and inverted file architecture and WAIS, which uses a vector-based engine, was conducted. Four research questions in aeronautical engineering were used to retrieve sets of citations from the NASA Aerospace Database which was mounted on a WAIS server and available through Dialog File 108 which served as the Boolean-based system (BBS). High recall and high precision searches were done in the BBS and terse and verbose queries were used in the WAIS condition. Precision values for the WAIS searches were consistently above the precision values for high recall BBS searches and consistently below the precision values for high precision BBS searches. Terse WAIS queries gave somewhat better precision performance than verbose WAIS queries. In every case, a small number of relevant documents retrieved by one system were not retrieved by the other, indicating the incomplete nature of the results from either retrieval system. Relevant documents in the WAIS searches were found to be randomly distributed in the retrieved sets rather than distributed by ranks. Advantages and limitations of both types of systems are discussed.

  16. Feedback topology and XOR-dynamics in Boolean networks with varying input structure

    NASA Astrophysics Data System (ADS)

    Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.

    2009-08-01

    We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.

  17. Intrinsic noise and deviations from criticality in Boolean gene-regulatory networks

    NASA Astrophysics Data System (ADS)

    Villegas, Pablo; Ruiz-Franco, José; Hidalgo, Jorge; Muñoz, Miguel A.

    2016-10-01

    Gene regulatory networks can be successfully modeled as Boolean networks. A much discussed hypothesis says that such model networks reproduce empirical findings the best if they are tuned to operate at criticality, i.e. at the borderline between their ordered and disordered phases. Critical networks have been argued to lead to a number of functional advantages such as maximal dynamical range, maximal sensitivity to environmental changes, as well as to an excellent tradeoff between stability and flexibility. Here, we study the effect of noise within the context of Boolean networks trained to learn complex tasks under supervision. We verify that quasi-critical networks are the ones learning in the fastest possible way -even for asynchronous updating rules- and that the larger the task complexity the smaller the distance to criticality. On the other hand, when additional sources of intrinsic noise in the network states and/or in its wiring pattern are introduced, the optimally performing networks become clearly subcritical. These results suggest that in order to compensate for inherent stochasticity, regulatory and other type of biological networks might become subcritical rather than being critical, all the most if the task to be performed has limited complexity.

  18. On the number of different dynamics in Boolean networks with deterministic update schedules.

    PubMed

    Aracena, J; Demongeot, J; Fanchon, E; Montalva, M

    2013-04-01

    Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Feedback topology and XOR-dynamics in Boolean networks with varying input structure.

    PubMed

    Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M

    2009-08-01

    We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.

  20. Boolean logic analysis for flow regime recognition of gas-liquid horizontal flow

    NASA Astrophysics Data System (ADS)

    Ramskill, Nicholas P.; Wang, Mi

    2011-10-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air-water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime.

  1. Scope of Various Random Number Generators in Ant System Approach for TSP

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam Ali

    2007-01-01

    Experimented on heuristic, based on an ant system approach for traveling Salesman problem, are several quasi and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is just to seek an answer to the controversial performance ranking of the generators in probabilistic/statically sense.

  2. Approximate probabilistic cellular automata for the dynamics of single-species populations under discrete logisticlike growth with and without weak Allee effects.

    PubMed

    Mendonça, J Ricardo G; Gevorgyan, Yeva

    2017-05-01

    We investigate one-dimensional elementary probabilistic cellular automata (PCA) whose dynamics in first-order mean-field approximation yields discrete logisticlike growth models for a single-species unstructured population with nonoverlapping generations. Beginning with a general six-parameter model, we find constraints on the transition probabilities of the PCA that guarantee that the ensuing approximations make sense in terms of population dynamics and classify the valid combinations thereof. Several possible models display a negative cubic term that can be interpreted as a weak Allee factor. We also investigate the conditions under which a one-parameter PCA derived from the more general six-parameter model can generate valid population growth dynamics. Numerical simulations illustrate the behavior of some of the PCA found.

  3. The Two-Dimensional Gabor Function Adapted to Natural Image Statistics: A Model of Simple-Cell Receptive Fields and Sparse Structure in Images.

    PubMed

    Loxley, P N

    2017-10-01

    The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.

  4. A probabilistic drought forecasting framework: A combined dynamical and statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh

    In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initialmore » condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.« less

  5. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    PubMed

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  6. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more

    PubMed Central

    Rivas, Elena; Lang, Raymond; Eddy, Sean R.

    2012-01-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308

  7. Automated Test Case Generator for Phishing Prevention Using Generative Grammars and Discriminative Methods

    ERIC Educational Resources Information Center

    Palka, Sean

    2015-01-01

    This research details a methodology designed for creating content in support of various phishing prevention tasks including live exercises and detection algorithm research. Our system uses probabilistic context-free grammars (PCFG) and variable interpolation as part of a multi-pass method to create diverse and consistent phishing email content on…

  8. Mixing zone and drinking water intake dilution factor and wastewater generation distributions to enable probabilistic assessment of down-the-drain consumer product chemicals in the U.S.

    PubMed

    Kapo, Katherine E; McDonough, Kathleen; Federle, Thomas; Dyer, Scott; Vamshi, Raghu

    2015-06-15

    Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.) was utilized to determine probabilistic distributions for no decay and decay-based dilution factors in mean annual and low (7Q10) flow conditions. The dilution factors derived in this study are "combined" dilution factors which account for both hydrologic dilution and cumulative upstream effluent contributions that will differ depending on the rate of in-stream decay due to biodegradation, volatilization, sorption, etc. for the chemical being evaluated. The median dilution factors estimated in this study (based on various in-stream decay rates from zero decay to a 1h half-life) for WWTP mixing zones dominated by domestic wastewater flow ranged from 132 to 609 at mean flow and 5 to 25 at low flow, while median dilution factors at drinking water intakes (mean flow) ranged from 146 to 2×10(7) depending on the in-stream decay rate. WWTPs within the iSTREEM® model were used to generate a distribution of per capita wastewater generated in the U.S. The dilution factor and per capita wastewater generation distributions developed by this work can be used to conduct probabilistic exposure assessments for down-the-drain chemicals in influent wastewater, wastewater treatment plant mixing zones and at drinking water intakes in the conterminous U.S. In addition, evaluation of types and abundance of U.S. wastewater treatment processes provided insight into treatment trends and the flow volume treated by each type of process. Moreover, removal efficiencies of chemicals can differ by treatment type. Hence, the availability of distributions for per capita wastewater production, treatment type, and dilution factors at a national level provides a series of practical and powerful tools for building probabilistic exposure models. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Probabilistic Seismic Risk Model for Western Balkans

    NASA Astrophysics Data System (ADS)

    Stejskal, Vladimir; Lorenzo, Francisco; Pousse, Guillaume; Radovanovic, Slavica; Pekevski, Lazo; Dojcinovski, Dragi; Lokin, Petar; Petronijevic, Mira; Sipka, Vesna

    2010-05-01

    A probabilistic seismic risk model for insurance and reinsurance purposes is presented for an area of Western Balkans, covering former Yugoslavia and Albania. This territory experienced many severe earthquakes during past centuries producing significant damage to many population centres in the region. The highest hazard is related to external Dinarides, namely to the collision zone of the Adriatic plate. The model is based on a unified catalogue for the region and a seismic source model consisting of more than 30 zones covering all the three main structural units - Southern Alps, Dinarides and the south-western margin of the Pannonian Basin. A probabilistic methodology using Monte Carlo simulation was applied to generate the hazard component of the model. Unique set of damage functions based on both loss experience and engineering assessments is used to convert the modelled ground motion severity into the monetary loss.

  10. Probabilistic structural analysis of space propulsion system LOX post

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Rajagopal, K. R.; Ho, H. W.; Cunniff, J. M.

    1990-01-01

    The probabilistic structural analysis program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress; Cruse et al., 1988) is applied to characterize the dynamic loading and response of the Space Shuttle main engine (SSME) LOX post. The design and operation of the SSME are reviewed; the LOX post structure is described; and particular attention is given to the generation of composite load spectra, the finite-element model of the LOX post, and the steps in the NESSUS structural analysis. The results are presented in extensive tables and graphs, and it is shown that NESSUS correctly predicts the structural effects of changes in the temperature loading. The probabilistic approach also facilitates (1) damage assessments for a given failure model (based on gas temperature, heat-shield gap, and material properties) and (2) correlation of the gas temperature with operational parameters such as engine thrust.

  11. Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, G. Ghodrati; Dehkordi, M. Raeisi; Amrei, S. A. Razavian

    2008-07-08

    This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrencemore » relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.« less

  12. Displaying uncertainty: investigating the effects of display format and specificity.

    PubMed

    Bisantz, Ann M; Marsiglio, Stephanie Schinzing; Munch, Jessica

    2005-01-01

    We conducted four studies regarding the representation of probabilistic information. Experiments 1 through 3 compared performance on a simulated stock purchase task, in which information regarding stock profitability was probabilistic. Two variables were manipulated: display format for probabilistic information (blurred and colored icons, linguistic phrases, numeric expressions, and combinations) and specificity level (in which the number and size of discrete steps into which the probabilistic information was mapped differed). Results indicated few performance differences attributable to display format; however, performance did improve with greater specificity. Experiment 4, in which participants generated membership functions corresponding to three display formats, found a high degree of similarity in functions across formats and participants and a strong relationship between the shape of the membership function and the intended meaning of the representation. These results indicate that participants can successfully interpret nonnumeric representations of uncertainty and can use such representations in a manner similar to the way numeric expressions are used in a decision-making task. Actual or potential applications of this research include the use of graphical representations of uncertainty in systems such as command and control and situation displays.

  13. Probabilistic stability analysis: the way forward for stability analysis of sustainable power systems.

    PubMed

    Milanović, Jovica V

    2017-08-13

    Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  14. Optimal quantum operations at zero energy cost

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Yang, Yuxiang

    2017-08-01

    Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how coherence can be manipulated without exchanging energy with the surrounding environment. We start from the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we extend our results to transitions where the input state is generally mixed and we apply our findings to the task of purifying quantum coherence.

  15. Proposal of a method for evaluating tsunami risk using response-surface methodology

    NASA Astrophysics Data System (ADS)

    Fukutani, Y.

    2017-12-01

    Information on probabilistic tsunami inundation hazards is needed to define and evaluate tsunami risk. Several methods for calculating these hazards have been proposed (e.g. Løvholt et al. (2012), Thio (2012), Fukutani et al. (2014), Goda et al. (2015)). However, these methods are inefficient, and their calculation cost is high, since they require multiple tsunami numerical simulations, therefore lacking versatility. In this study, we proposed a simpler method for tsunami risk evaluation using response-surface methodology. Kotani et al. (2016) proposed an evaluation method for the probabilistic distribution of tsunami wave-height using a response-surface methodology. We expanded their study and developed a probabilistic distribution of tsunami inundation depth. We set the depth (x1) and the slip (x2) of an earthquake fault as explanatory variables and tsunami inundation depth (y) as an object variable. Subsequently, tsunami risk could be evaluated by conducting a Monte Carlo simulation, assuming that the generation probability of an earthquake follows a Poisson distribution, the probability distribution of tsunami inundation depth follows the distribution derived from a response-surface, and the damage probability of a target follows a log normal distribution. We applied the proposed method to a wood building located on the coast of Tokyo Bay. We implemented a regression analysis based on the results of 25 tsunami numerical calculations and developed a response-surface, which was defined as y=ax1+bx2+c (a:0.2615, b:3.1763, c=-1.1802). We assumed proper probabilistic distribution for earthquake generation, inundation height, and vulnerability. Based on these probabilistic distributions, we conducted Monte Carlo simulations of 1,000,000 years. We clarified that the expected damage probability of the studied wood building is 22.5%, assuming that an earthquake occurs. The proposed method is therefore a useful and simple way to evaluate tsunami risk using a response-surface and Monte Carlo simulation without conducting multiple tsunami numerical simulations.

  16. ORNL Pre-test Analyses of A Large-scale Experiment in STYLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Paul T; Yin, Shengjun; Klasky, Hilda B

    Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes work-in-kind support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current statusmore » of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finiteelement solutions.« less

  17. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2010-05-01

    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs and benefits of mitigation actions have to be evaluated and compared, weighting them with the probability of occurrence of a specific threatening volcanic event. An action should be taken when the benefit of that action outweighs the costs. It is worth remarking that this strategy does not guarantee to recommend a decision that we would have taken with the benefit of hindsight. However, this strategy will be successful over the long-tem. Furthermore, it has the overwhelming advantage of providing a quantitative decision rule that is set before any emergency, and thus it will be justifiable at any stage of the process. In our present application, we are trying to set up a cost-benefit scheme for the call of an evacuation to protect people in the Auckland Volcanic Field against base surge invasion. Considering the heterogeneity of the urban environment and the size of the region at risk, we propose a cost-benefit scheme that is space dependent, to take into account higher costs when an eruption threatens sensible sites for the city and/or the nation, such as the international airport or the harbour. Finally, we compare our findings with the present Contingency Plan for Auckland.

  18. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    PubMed Central

    2011-01-01

    Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817

  19. Online probabilistic learning with an ensemble of forecasts

    NASA Astrophysics Data System (ADS)

    Thorey, Jean; Mallet, Vivien; Chaussin, Christophe

    2016-04-01

    Our objective is to produce a calibrated weighted ensemble to forecast a univariate time series. In addition to a meteorological ensemble of forecasts, we rely on observations or analyses of the target variable. The celebrated Continuous Ranked Probability Score (CRPS) is used to evaluate the probabilistic forecasts. However applying the CRPS on weighted empirical distribution functions (deriving from the weighted ensemble) may introduce a bias because of which minimizing the CRPS does not produce the optimal weights. Thus we propose an unbiased version of the CRPS which relies on clusters of members and is strictly proper. We adapt online learning methods for the minimization of the CRPS. These methods generate the weights associated to the members in the forecasted empirical distribution function. The weights are updated before each forecast step using only past observations and forecasts. Our learning algorithms provide the theoretical guarantee that, in the long run, the CRPS of the weighted forecasts is at least as good as the CRPS of any weighted ensemble with weights constant in time. In particular, the performance of our forecast is better than that of any subset ensemble with uniform weights. A noteworthy advantage of our algorithm is that it does not require any assumption on the distributions of the observations and forecasts, both for the application and for the theoretical guarantee to hold. As application example on meteorological forecasts for photovoltaic production integration, we show that our algorithm generates a calibrated probabilistic forecast, with significant performance improvements on probabilistic diagnostic tools (the CRPS, the reliability diagram and the rank histogram).

  20. Boolean function applied to Mimosa pudica movements.

    PubMed

    De Luccia, Thiago Paes de Barros; Friedman, Pedro

    2011-09-01

    Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis.

  1. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Zhong, Y. P.; Deng, Y. F.

    2013-12-21

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  2. Questions Revisited: A Close Examination of Calculus of Inference and Inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Koga, Dennis (Technical Monitor)

    2003-01-01

    In this paper I examine more closely the way in which probability theory, the calculus of inference, is derived from the Boolean lattice structure of logical assertions ordered by implication. I demonstrate how the duality between the logical conjunction and disjunction in Boolean algebra is lost when deriving the probability calculus. In addition, I look more closely at the other lattice identities to verify that they are satisfied by the probability calculus. Last, I look towards developing the calculus of inquiry demonstrating that there is a sum and product rule for the relevance measure as well as a Bayes theorem. Current difficulties in deriving the complete inquiry calculus will also be discussed.

  3. Optical reversible programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2012-07-20

    Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

  4. Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases

    NASA Astrophysics Data System (ADS)

    Zengler, Christoph; Küchlin, Wolfgang

    We extend clause learning as performed by most modern SAT Solvers by integrating the computation of Boolean Gröbner bases into the conflict learning process. Instead of learning only one clause per conflict, we compute and learn additional binary clauses from a Gröbner basis of the current conflict. We used the Gröbner basis engine of the logic package Redlog contained in the computer algebra system Reduce to extend the SAT solver MiniSAT with Gröbner basis learning. Our approach shows a significant reduction of conflicts and a reduction of restarts and computation time on many hard problems from the SAT 2009 competition.

  5. Adaptation and survivors in a random Boolean network.

    PubMed

    Nakamura, Ikuo

    2002-04-01

    We introduce the competitive agent with imitation strategy in a random Boolean network, in which the agent plays a competitive game that rewards those in minority. After a long time interval, the worst performer changes its strategy to the one of the best and the process is repeated. The network, initially in a chaotic state, evolves to an intermittent state and finally reaches a frozen state. Time series of survived species (whose strategies are imitated by other agents) in the system depend on the connectivity of each agent. In a system with various connectivity groups, the low connectivity groups win the minority game over the high connectivity groups. We also compared the result with mutation strategy system.

  6. Magnon-based logic in a multi-terminal YIG/Pt nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganzhorn, Kathrin, E-mail: kathrin.ganzhorn@wmi.badw.de; Klingler, Stefan; Wimmer, Tobias

    2016-07-11

    Boolean logic is the foundation of modern digital information processing. Recently, there has been a growing interest in phenomena based on pure spin currents, which allows to move from charge to spin based logic gates. We study a proof-of-principle logic device based on the ferrimagnetic insulator Yttrium Iron Garnet, with Pt strips acting as injectors and detectors for non-equilibrium magnons. We experimentally observe incoherent superposition of magnons generated by different injectors. This allows to implement a fully functional majority gate, enabling multiple logic operations (AND and OR) in one and the same device. Clocking frequencies of the order of severalmore » GHz and straightforward down-scaling make our device promising for applications.« less

  7. Satellite-map position estimation for the Mars rover

    NASA Technical Reports Server (NTRS)

    Hayashi, Akira; Dean, Thomas

    1989-01-01

    A method for locating the Mars rover using an elevation map generated from satellite data is described. In exploring its environment, the rover is assumed to generate a local rover-centered elevation map that can be used to extract information about the relative position and orientation of landmarks corresponding to local maxima. These landmarks are integrated into a stochastic map which is then matched with the satellite map to obtain an estimate of the robot's current location. The landmarks are not explicitly represented in the satellite map. The results of the matching algorithm correspond to a probabilistic assessment of whether or not the robot is located within a given region of the satellite map. By assigning a probabilistic interpretation to the information stored in the satellite map, researchers are able to provide a precise characterization of the results computed by the matching algorithm.

  8. Analysis of several Boolean operation based trajectory generation strategies for automotive spray applications

    NASA Astrophysics Data System (ADS)

    Gao, Guoyou; Jiang, Chunsheng; Chen, Tao; Hui, Chun

    2018-05-01

    Industrial robots are widely used in various processes of surface manufacturing, such as thermal spraying. The established robot programming methods are highly time-consuming and not accurate enough to fulfil the demands of the actual market. There are many off-line programming methods developed to reduce the robot programming effort. This work introduces the principle of several based robot trajectory generation strategy on planar surface and curved surface. Since the off-line programming software is widely used and thus facilitates the robot programming efforts and improves the accuracy of robot trajectory, the analysis of this work is based on the second development of off-line programming software Robot studio™. To meet the requirements of automotive paint industry, this kind of software extension helps provide special functions according to the users defined operation parameters. The presented planning strategy generates the robot trajectory by moving an orthogonal surface according to the information of coating surface, a series of intersection curves are then employed to generate the trajectory points. The simulation results show that the path curve created with this method is successive and smooth, which corresponds to the requirements of automotive spray industrial applications.

  9. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  10. Bounds on the number of hidden neurons in three-layer binary neural networks.

    PubMed

    Zhang, Zhaozhi; Ma, Xiaomin; Yang, Yixian

    2003-09-01

    This paper investigates an important problem concerning the complexity of three-layer binary neural networks (BNNs) with one hidden layer. The neuron in the studied BNNs employs a hard limiter activation function with only integer weights and an integer threshold. The studies are focused on implementations of arbitrary Boolean functions which map from [0, 1]n into [0, 1]. A deterministic algorithm called set covering algorithm (SCA) is proposed for the construction of a three-layer BNN to implement an arbitrary Boolean function. The SCA is based on a unit sphere covering (USC) of the Hamming space (HS) which is chosen in advance. It is proved that for the implementation of an arbitrary Boolean function of n-variables (n > or = 3) by using SCA, [3L/2] hidden neurons are necessary and sufficient, where L is the number of unit spheres contained in the chosen USC of the n-dimensional HS. It is shown that by using SCA, the number of hidden neurons required is much less than that by using a two-parallel hyperplane method. In order to indicate the potential ability of three-layer BNNs, a lower bound on the required number of hidden neurons which is derived by using the method of estimating the Vapnik-Chervonenkis (VC) dimension is also given.

  11. A probabilistic framework for single-sensor acoustic emission source localization in thin metallic plates

    NASA Astrophysics Data System (ADS)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-09-01

    Tracking edge-reflected acoustic emission (AE) waves can allow the localization of their sources. Specifically, in bounded isotropic plate structures, only one sensor may be used to perform these source localizations. The primary goal of this paper is to develop a three-step probabilistic framework to quantify the uncertainties associated with such single-sensor localizations. According to this framework, a probabilistic approach is first used to estimate the direct distances between AE sources and the sensor. Then, an analytical model is used to reconstruct the envelope of edge-reflected AE signals based on the source-to-sensor distance estimations and their first arrivals. Finally, the correlation between the probabilistically reconstructed envelopes and recorded AE signals are used to estimate confidence contours for the location of AE sources. To validate the proposed framework, Hsu-Nielsen pencil lead break (PLB) tests were performed on the surface as well as the edges of an aluminum plate. The localization results show that the estimated confidence contours surround the actual source locations. In addition, the performance of the framework was tested in a noisy environment simulated by two dummy transducers and an arbitrary wave generator. The results show that in low-noise environments, the shape and size of the confidence contours depend on the sources and their locations. However, at highly noisy environments, the size of the confidence contours monotonically increases with the noise floor. Such probabilistic results suggest that the proposed probabilistic framework could thus provide more comprehensive information regarding the location of AE sources.

  12. Probabilistic Analysis of Large-Scale Composite Structures Using the IPACS Code

    NASA Technical Reports Server (NTRS)

    Lemonds, Jeffrey; Kumar, Virendra

    1995-01-01

    An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.

  13. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE PAGES

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  14. Fast, noise-free memory for photon synchronization at room temperature.

    PubMed

    Finkelstein, Ran; Poem, Eilon; Michel, Ohad; Lahad, Ohr; Firstenberg, Ofer

    2018-01-01

    Future quantum photonic networks require coherent optical memories for synchronizing quantum sources and gates of probabilistic nature. We demonstrate a fast ladder memory (FLAME) mapping the optical field onto the superposition between electronic orbitals of rubidium vapor. Using a ladder-level system of orbital transitions with nearly degenerate frequencies simultaneously enables high bandwidth, low noise, and long memory lifetime. We store and retrieve 1.7-ns-long pulses, containing 0.5 photons on average, and observe short-time external efficiency of 25%, memory lifetime (1/ e ) of 86 ns, and below 10 -4 added noise photons. Consequently, coupling this memory to a probabilistic source would enhance the on-demand photon generation probability by a factor of 12, the highest number yet reported for a noise-free, room temperature memory. This paves the way toward the controlled production of large quantum states of light from probabilistic photon sources.

  15. Continuous variables logic via coupled automata using a DNAzyme cascade with feedback† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03892a Click here for additional data file.

    PubMed Central

    Lilienthal, S.; Klein, M.; Orbach, R.; Willner, I.; Remacle, F.

    2017-01-01

    The concentration of molecules can be changed by chemical reactions and thereby offer a continuous readout. Yet computer architecture is cast in textbooks in terms of binary valued, Boolean variables. To enable reactive chemical systems to compute we show how, using the Cox interpretation of probability theory, one can transcribe the equations of chemical kinetics as a sequence of coupled logic gates operating on continuous variables. It is discussed how the distinct chemical identity of a molecule allows us to create a common language for chemical kinetics and Boolean logic. Specifically, the logic AND operation is shown to be equivalent to a bimolecular process. The logic XOR operation represents chemical processes that take place concurrently. The values of the rate constants enter the logic scheme as inputs. By designing a reaction scheme with a feedback we endow the logic gates with a built in memory because their output then depends on the input and also on the present state of the system. Technically such a logic machine is an automaton. We report an experimental realization of three such coupled automata using a DNAzyme multilayer signaling cascade. A simple model verifies analytically that our experimental scheme provides an integrator generating a power series that is third order in time. The model identifies two parameters that govern the kinetics and shows how the initial concentrations of the substrates are the coefficients in the power series. PMID:28507669

  16. Selective monitoring

    NASA Astrophysics Data System (ADS)

    Homem-de-Mello, Luiz S.

    1992-04-01

    While in NASA's earlier space missions such as Voyager the number of sensors was in the hundreds, future platforms such as the Space Station Freedom will have tens of thousands sensors. For these planned missions it will be impossible to use the comprehensive monitoring strategy that was used in the past in which human operators monitored all sensors all the time. A selective monitoring strategy must be substituted for the current comprehensive strategy. This selective monitoring strategy uses computer tools to preprocess the incoming data and direct the operators' attention to the most critical parts of the physical system at any given time. There are several techniques that can be used to preprocess the incoming information. This paper presents an approach to using diagnostic reasoning techniques to preprocess the sensor data and detect which parts of the physical system require more attention because components have failed or are most likely to have failed. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that assertions can be made from instantaneous measurements. And the system must be such that changes are slow enough to allow the computation.

  17. What is the Value Added to Adaptation Planning by Probabilistic Projections of Climate Change?

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.

    2008-12-01

    Probabilistic projections of climate change offer new sources of risk information to support regional impacts assessment and adaptation options appraisal. However, questions continue to surround how best to apply these scenarios in a practical context, and whether the added complexity and computational burden leads to more robust decision-making. This paper provides an overview of recent efforts in the UK to 'bench-test' frameworks for employing probabilistic projections ahead of the release of the next generation, UKCIP08 projections (in November 2008). This is involving close collaboration between government agencies, research and stakeholder communities. Three examples will be cited to illustrate how probabilistic projections are already informing decisions about future flood risk management in London, water resource planning in trial river basins, and assessments of risks from rising water temperatures to Atlantic salmon stocks in southern England. When compared with conventional deterministic scenarios, ensemble projections allow exploration of a wider range of management options and highlight timescales for implementing adaptation measures. Users of probabilistic scenarios must keep in mind that other uncertainties (e.g., due to impacts model structure and parameterisation) should be handled in an equally rigorous way to those arising from climate models and emission scenarios. Finally, it is noted that a commitment to long-term monitoring is also critical for tracking environmental change, testing model projections, and for evaluating the success (or not) of any scenario-led interventions.

  18. The value of less connected agents in Boolean networks

    NASA Astrophysics Data System (ADS)

    Epstein, Daniel; Bazzan, Ana L. C.

    2013-11-01

    In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality that help to see how agents are organized.

  19. Stabilization of perturbed Boolean network attractors through compensatory interactions

    PubMed Central

    2014-01-01

    Background Understanding and ameliorating the effects of network damage are of significant interest, due in part to the variety of applications in which network damage is relevant. For example, the effects of genetic mutations can cascade through within-cell signaling and regulatory networks and alter the behavior of cells, possibly leading to a wide variety of diseases. The typical approach to mitigating network perturbations is to consider the compensatory activation or deactivation of system components. Here, we propose a complementary approach wherein interactions are instead modified to alter key regulatory functions and prevent the network damage from triggering a deregulatory cascade. Results We implement this approach in a Boolean dynamic framework, which has been shown to effectively model the behavior of biological regulatory and signaling networks. We show that the method can stabilize any single state (e.g., fixed point attractors or time-averaged representations of multi-state attractors) to be an attractor of the repaired network. We show that the approach is minimalistic in that few modifications are required to provide stability to a chosen attractor and specific in that interventions do not have undesired effects on the attractor. We apply the approach to random Boolean networks, and further show that the method can in some cases successfully repair synchronous limit cycles. We also apply the methodology to case studies from drought-induced signaling in plants and T-LGL leukemia and find that it is successful in both stabilizing desired behavior and in eliminating undesired outcomes. Code is made freely available through the software package BooleanNet. Conclusions The methodology introduced in this report offers a complementary way to manipulating node expression levels. A comprehensive approach to evaluating network manipulation should take an "all of the above" perspective; we anticipate that theoretical studies of interaction modification, coupled with empirical advances, will ultimately provide researchers with greater flexibility in influencing system behavior. PMID:24885780

  20. Disparity between ultrasound and clinical findings in psoriatic arthritis.

    PubMed

    Husic, Rusmir; Gretler, Judith; Felber, Anja; Graninger, Winfried B; Duftner, Christina; Hermann, Josef; Dejaco, Christian

    2014-08-01

    To investigate the association between psoriatic arthritis (PsA)-specific clinical composite scores and ultrasound-verified pathology as well as comparison of clinical and ultrasound definitions of remission. We performed a prospective study on 70 consecutive PsA patients. Clinical assessments included components of Disease Activity Index for Psoriatic Arthritis (DAPSA) and the Composite Psoriatic Disease Activity Index (CPDAI). Minimal disease activity (MDA) and the following remission criteria were applied: CPDAI joint, entheses and dactylitis domains (CPDAI-JED)=0, DAPSA≤3.3, Boolean's remission definition and physician-judged remission (rem-phys). B-mode and power Doppler (PD-) ultrasound findings were semiquantitatively scored at 68 joints (evaluating synovia, peritendinous tissue, tendons and bony changes) and 14 entheses. Ultrasound remission and minimal ultrasound disease activity (MUDA) were defined as PD-score=0 and PD-score ≤1, respectively, at joints, peritendinous tissue, tendons and entheses. DAPSA but not CPDAI correlated with B-mode and PD-synovitis. Ultrasound signs of enthesitis, dactylitis, tenosynovitis and perisynovitis were not linked with clinical composites. Clinical remission or MDA was observed in 15.7% to 47.1% of PsA patients. Ultrasound remission and MUDA were present in 4.3% and 20.0% of patients, respectively. Joint and tendon-related PD-scores were higher in patients with active versus inactive disease according to CPDAI-JED, DAPSA, Boolean's and rem-phys, whereas no difference was observed regarding enthesitis and perisynovitis. DAPSA≤3.3 (OR 3.9, p=0.049) and Boolean's definition (OR 4.6, p=0.03) were more useful to predict MUDA than other remission criteria. PsA-specific composite scores partially reflect ultrasound findings. DAPSA and Boolean's remission definitions better identify MUDA patients than other clinical criteria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Effects of varying the step particle distribution on a probabilistic transport model

    NASA Astrophysics Data System (ADS)

    Bouzat, S.; Farengo, R.

    2005-12-01

    The consequences of varying the step particle distribution on a probabilistic transport model, which captures the basic features of transport in plasmas and was recently introduced in Ref. 1 [B. Ph. van Milligen et al., Phys. Plasmas 11, 2272 (2004)], are studied. Different superdiffusive transport mechanisms generated by a family of distributions with algebraic decays (Tsallis distributions) are considered. It is observed that the possibility of changing the superdiffusive transport mechanism improves the flexibility of the model for describing different situations. The use of the model to describe the low (L) and high (H) confinement modes is also analyzed.

  2. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.

    PubMed

    Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence

    2012-08-29

    Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential equations on probability distributions. We developed a C++ software, MaBoSS, that is able to simulate such a system by applying Kinetic Monte-Carlo (or Gillespie algorithm) on the Boolean state space. This software, parallelized and optimized, computes the temporal evolution of probability distributions and estimates stationary distributions. Applications of the Boolean Kinetic Monte-Carlo are demonstrated for three qualitative models: a toy model, a published model of p53/Mdm2 interaction and a published model of the mammalian cell cycle. Our approach allows to describe kinetic phenomena which were difficult to handle in the original models. In particular, transient effects are represented by time dependent probability distributions, interpretable in terms of cell populations.

  3. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.

    PubMed

    Kendal, W S

    2000-04-01

    To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.

  4. Control of Stochastic Master Equation Models of Genetic Regulatory Networks by Approximating Their Average Behavior

    NASA Astrophysics Data System (ADS)

    Umut Caglar, Mehmet; Pal, Ranadip

    2010-10-01

    The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology

  5. Probabilistic Tsunami Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes thousands of earthquake scenarios. We have carried out preliminary tsunami hazard calculations for different return periods for western North America and Hawaii based on thousands of earthquake scenarios around the Pacific rim and along the coast of North America. We will present tsunami hazard maps for several return periods and also discuss how to use these results for probabilistic inundation and runup mapping. Our knowledge of certain types of tsunami sources is very limited (e.g. submarine landslides), but a probabilistic framework for tsunami hazard evaluation can include even such sources and their uncertainties and present the overall hazard in a meaningful and consistent way.

  6. High-Resolution Underwater Mapping Using Side-Scan Sonar

    PubMed Central

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379

  7. Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions

    PubMed Central

    Testolin, Alberto; Zorzi, Marco

    2016-01-01

    Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage. PMID:27468262

  8. Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions.

    PubMed

    Testolin, Alberto; Zorzi, Marco

    2016-01-01

    Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.

  9. Boolean function applied to Mimosa pudica movements

    PubMed Central

    Friedman, Pedro

    2011-01-01

    Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis. PMID:21847029

  10. Fisher information at the edge of chaos in random Boolean networks.

    PubMed

    Wang, X Rosalind; Lizier, Joseph T; Prokopenko, Mikhail

    2011-01-01

    We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control parameters, offers a natural interpretation of the phase diagram in RBNs. We report that this measure is maximized near the order-chaos phase transitions in RBNs, since this is the region where the system is most sensitive to its parameters. Furthermore, we use this study of RBNs to clarify the relationship between Shannon and Fisher information measures.

  11. Investigating Cell Criticality

    NASA Astrophysics Data System (ADS)

    Serra, R.; Villani, M.; Damiani, C.; Graudenzi, A.; Ingrami, P.; Colacci, A.

    Random Boolean networks provide a way to give a precise meaning to the notion that living beings are in a critical state. Some phenomena which are observed in real biological systems (distribution of "avalanches" in gene knock-out experiments) can be modeled using random Boolean networks, and the results can be analytically proven to depend upon the Derrida parameter, which also determines whether the network is critical. By comparing observed and simulated data one can then draw inferences about the criticality of biological cells, although with some care because of the limited number of experimental observations. The relationship between the criticality of a single network and that of a set of interacting networks, which simulate a tissue or a bacterial colony, is also analyzed by computer simulations.

  12. Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.

    PubMed

    Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai

    2017-08-02

    Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.

  13. Reliable computation from contextual correlations

    NASA Astrophysics Data System (ADS)

    Oestereich, André L.; Galvão, Ernesto F.

    2017-12-01

    An operational approach to the study of computation based on correlations considers black boxes with one-bit inputs and outputs, controlled by a limited classical computer capable only of performing sums modulo-two. In this setting, it was shown that noncontextual correlations do not provide any extra computational power, while contextual correlations were found to be necessary for the deterministic evaluation of nonlinear Boolean functions. Here we investigate the requirements for reliable computation in this setting; that is, the evaluation of any Boolean function with success probability bounded away from 1 /2 . We show that bipartite CHSH quantum correlations suffice for reliable computation. We also prove that an arbitrarily small violation of a multipartite Greenberger-Horne-Zeilinger noncontextuality inequality also suffices for reliable computation.

  14. The pseudo-Boolean optimization approach to form the N-version software structure

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality. Some additional modifications of MVP have been made to solve the problem of N-version systems design. Those algorithms take into account the discovered specific features of the objective function. The practical experiments have shown the advantage of using these algorithm modifications because of reducing a search space.

  15. A procedure concept for local reflex control of grasping

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Chang, Jeffrey

    1989-01-01

    An architecture is proposed for the control of robotic devices, and in particular of anthropomorphic hands, characterized by a hierarchical structure in which every level of the architecture contains data and control function with varying degree of abstraction. Bottom levels of the hierarchy interface directly with sensors and actuators, and process raw data and motor commands. Higher levels perform more symbolic types of tasks, such as application of boolean rules and general planning operations. Layers implementation has to be consistent with the type of operation and its requirements for real time control. It is proposed to implement the rule level with a Boolean Artificial Neural Network characterized by a response time sufficient for producing reflex corrective action at the actuator level.

  16. Probabilistic topic modeling for the analysis and classification of genomic sequences

    PubMed Central

    2015-01-01

    Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734

  17. Towards an improved ensemble precipitation forecast: A probabilistic post-processing approach

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2017-03-01

    Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced to build ensemble precipitation forecasts based on the statistical relationship between observations and forecasts. More specifically, the approach relies on a transfer function that is developed based on a bivariate joint distribution between the observations and the simulations in the historical period. The transfer function is used to post-process the forecast. In this study, we propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is carried out by comparing the performance of the generated ensemble precipitation with the outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed to generate the post-processed ensemble precipitation. Deterministic and probabilistic verification frameworks are utilized in order to evaluate the outputs from the proposed technique. Distribution of seasonal precipitation for the generated ensemble from the copula-based technique is compared to the observation and raw forecasts for three sub-basins located in the Western United States. Results show that both techniques are successful in producing reliable and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable improvement in the ensemble forecast in both deterministic and probabilistic verification, in particular in characterizing the extreme events in wet seasons.

  18. Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.

    2003-01-01

    Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.

  19. NEXT GENERATION MULTIMEDIA/MULTIPATHWAY EXPOSURE MODELING

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation model for pesticides (SHEDS-Pesticides) supports the efforts of EPA to better understand human exposures and doses to multimedia, multipathway pollutants. It is a physically-based, probabilistic computer model that predicts, for u...

  20. Biocomputing nanoplatforms as therapeutics and diagnostics.

    PubMed

    Evans, A C; Thadani, N N; Suh, J

    2016-10-28

    Biocomputing nanoplatforms are designed to detect and integrate single or multiple inputs under defined algorithms, such as Boolean logic gates, and generate functionally useful outputs, such as delivery of therapeutics or release of optically detectable signals. Using sensing modules composed of small molecules, polymers, nucleic acids, or proteins/peptides, nanoplatforms have been programmed to detect and process extrinsic stimuli, such as magnetic fields or light, or intrinsic stimuli, such as nucleic acids, enzymes, or pH. Stimulus detection can be transduced by the nanomaterial via three different mechanisms: system assembly, system disassembly, or system transformation. The increasingly sophisticated suite of biocomputing nanoplatforms may be invaluable for a multitude of applications, including medical diagnostics, biomedical imaging, environmental monitoring, and delivery of therapeutics to target cell populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Information processing in dendrites I. Input pattern generalisation.

    PubMed

    Gurney, K N

    2001-10-01

    In this paper and its companion, we address the question as to whether there are any general principles underlying information processing in the dendritic trees of biological neurons. In order to address this question, we make two assumptions. First, the key architectural feature of dendrites responsible for many of their information processing abilities is the existence of independent sub-units performing local non-linear processing. Second, any general functional principles operate at a level of abstraction in which neurons are modelled by Boolean functions. To accommodate these assumptions, we therefore define a Boolean model neuron-the multi-cube unit (MCU)-which instantiates the notion of the discrete functional sub-unit. We then use this model unit to explore two aspects of neural functionality: generalisation (in this paper) and processing complexity (in its companion). Generalisation is dealt with from a geometric viewpoint and is quantified using a new metric-the set of order parameters. These parameters are computed for threshold logic units (TLUs), a class of random Boolean functions, and MCUs. Our interpretation of the order parameters is consistent with our knowledge of generalisation in TLUs and with the lack of generalisation in randomly chosen functions. Crucially, the order parameters for MCUs imply that these functions possess a range of generalisation behaviour. We argue that this supports the general thesis that dendrites facilitate input pattern generalisation despite any local non-linear processing within functionally isolated sub-units.

  2. Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata.

    PubMed

    Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk

    2015-11-01

    We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours' values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level.

  3. Evolution of a designless nanoparticle network into reconfigurable Boolean logic

    NASA Astrophysics Data System (ADS)

    Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.

    2015-12-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.

  4. Predictive computation of genomic logic processing functions in embryonic development

    PubMed Central

    Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.

    2012-01-01

    Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416

  5. Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata

    PubMed Central

    Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk

    2016-01-01

    We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours’ values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level. PMID:27660398

  6. A probabilistic analysis of the crystal oscillator behavior at low drive levels

    NASA Astrophysics Data System (ADS)

    Shmaliy, Yuriy S.; Brendel, Rémi

    2008-03-01

    The paper discusses a probabilistic model of a crystal oscillator at low drive levels where the noise intensity is comparable with the oscillation amplitude. The stationary probability density of the oscillations envelope is derived and investigated for the nonlinear resonator loses. A stochastic explanation is given for the well-known phenomenon termed sleeping sickness associated with losing a facility of self-excitation by a crystal oscillator after a long storage without a power supply. It is shown that, with low drive levels leading to an insufficient feedback, a crystal oscillator generates the noise-induced oscillations rather than it absolutely "falls in sleep".

  7. MODELING ENVIRONMENTAL EXPOSURES TO PARTICULATE MATTER AND PESTICIDES

    EPA Science Inventory

    This presentation describes initial results from on-going research at EPA on modeling human exposures to particulate matter and residential pesticides. A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM1o and P...

  8. Scope of Various Random Number Generators in ant System Approach for TSP

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam Ali

    2007-01-01

    Experimented on heuristic, based on an ant system approach for traveling salesman problem, are several quasi- and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is mainly to seek an answer to the controversial issue "which generator is the best in terms of quality of the result (accuracy) as well as cost of producing the result (time/computational complexity) in a probabilistic/statistical sense."

  9. Design of a Nanoscale, CMOS-Integrable, Thermal-Guiding Structure for Boolean-Logic and Neuromorphic Computation.

    PubMed

    Loke, Desmond; Skelton, Jonathan M; Chong, Tow-Chong; Elliott, Stephen R

    2016-12-21

    One of the requirements for achieving faster CMOS electronics is to mitigate the unacceptably large chip areas required to steer heat away from or, more recently, toward the critical nodes of state-of-the-art devices. Thermal-guiding (TG) structures can efficiently direct heat by "meta-materials" engineering; however, some key aspects of the behavior of these systems are not fully understood. Here, we demonstrate control of the thermal-diffusion properties of TG structures by using nanometer-scale, CMOS-integrable, graphene-on-silica stacked materials through finite-element-methods simulations. It has been shown that it is possible to implement novel, controllable, thermally based Boolean-logic and spike-timing-dependent plasticity operations for advanced (neuromorphic) computing applications using such thermal-guide architectures.

  10. Modeling gene regulatory networks: A network simplification algorithm

    NASA Astrophysics Data System (ADS)

    Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.

    2016-12-01

    Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.

  11. Stability of Boolean multilevel networks.

    PubMed

    Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir

    2012-09-01

    The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.

  12. Developing and Implementing the Data Mining Algorithms in RAVEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ramazan Sonat; Maljovec, Daniel Patrick; Alfonsi, Andrea

    The RAVEN code is becoming a comprehensive tool to perform probabilistic risk assessment, uncertainty quantification, and verification and validation. The RAVEN code is being developed to support many programs and to provide a set of methodologies and algorithms for advanced analysis. Scientific computer codes can generate enormous amounts of data. To post-process and analyze such data might, in some cases, take longer than the initial software runtime. Data mining algorithms/methods help in recognizing and understanding patterns in the data, and thus discover knowledge in databases. The methodologies used in the dynamic probabilistic risk assessment or in uncertainty and error quantificationmore » analysis couple system/physics codes with simulation controller codes, such as RAVEN. RAVEN introduces both deterministic and stochastic elements into the simulation while the system/physics code model the dynamics deterministically. A typical analysis is performed by sampling values of a set of parameter values. A major challenge in using dynamic probabilistic risk assessment or uncertainty and error quantification analysis for a complex system is to analyze the large number of scenarios generated. Data mining techniques are typically used to better organize and understand data, i.e. recognizing patterns in the data. This report focuses on development and implementation of Application Programming Interfaces (APIs) for different data mining algorithms, and the application of these algorithms to different databases.« less

  13. New Aspects of Probabilistic Forecast Verification Using Information Theory

    NASA Astrophysics Data System (ADS)

    Tödter, Julian; Ahrens, Bodo

    2013-04-01

    This work deals with information-theoretical methods in probabilistic forecast verification, particularly concerning ensemble forecasts. Recent findings concerning the "Ignorance Score" are shortly reviewed, then a consistent generalization to continuous forecasts is motivated. For ensemble-generated forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up a natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The useful properties of the conceptually appealing CRIGN are illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This algorithm can also be used to calculate the decomposition of the more traditional CRPS exactly. The applicability of the "new" measures is demonstrated in a small evaluation study of ensemble-based precipitation forecasts.

  14. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph.

    PubMed

    Benoit, Gaëtan; Lemaitre, Claire; Lavenier, Dominique; Drezen, Erwan; Dayris, Thibault; Uricaru, Raluca; Rizk, Guillaume

    2015-09-14

    Data volumes generated by next-generation sequencing (NGS) technologies is now a major concern for both data storage and transmission. This triggered the need for more efficient methods than general purpose compression tools, such as the widely used gzip method. We present a novel reference-free method meant to compress data issued from high throughput sequencing technologies. Our approach, implemented in the software LEON, employs techniques derived from existing assembly principles. The method is based on a reference probabilistic de Bruijn Graph, built de novo from the set of reads and stored in a Bloom filter. Each read is encoded as a path in this graph, by memorizing an anchoring kmer and a list of bifurcations. The same probabilistic de Bruijn Graph is used to perform a lossy transformation of the quality scores, which allows to obtain higher compression rates without losing pertinent information for downstream analyses. LEON was run on various real sequencing datasets (whole genome, exome, RNA-seq or metagenomics). In all cases, LEON showed higher overall compression ratios than state-of-the-art compression software. On a C. elegans whole genome sequencing dataset, LEON divided the original file size by more than 20. LEON is an open source software, distributed under GNU affero GPL License, available for download at http://gatb.inria.fr/software/leon/.

  15. System Level Uncertainty Assessment for Collaborative RLV Design

    NASA Technical Reports Server (NTRS)

    Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew

    2002-01-01

    A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.

  16. Using probabilistic theory to develop interpretation guidelines for Y-STR profiles.

    PubMed

    Taylor, Duncan; Bright, Jo-Anne; Buckleton, John

    2016-03-01

    Y-STR profiling makes up a small but important proportion of forensic DNA casework. Often Y-STR profiles are used when autosomal profiling has failed to yield an informative result. Consequently Y-STR profiles are often from the most challenging samples. In addition to these points, Y-STR loci are linked, meaning that evaluation of haplotype probabilities are either based on overly simplified counting methods or computationally costly genetic models, neither of which extend well to the evaluation of mixed Y-STR data. For all of these reasons Y-STR data analysis has not seen the same advances as autosomal STR data. We present here a probabilistic model for the interpretation of Y-STR data. Due to the fact that probabilistic systems for Y-STR data are still some way from reaching active casework, we also describe how data can be analysed in a continuous way to generate interpretational thresholds and guidelines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Probabilistic analysis for fatigue strength degradation of materials

    NASA Technical Reports Server (NTRS)

    Royce, Lola

    1989-01-01

    This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.

  18. Unsteady Probabilistic Analysis of a Gas Turbine System

    NASA Technical Reports Server (NTRS)

    Brown, Marilyn

    2003-01-01

    In this work, we have considered an annular cascade configuration subjected to unsteady inflow conditions. The unsteady response calculation has been implemented into the time marching CFD code, MSUTURBO. The computed steady state results for the pressure distribution demonstrated good agreement with experimental data. We have computed results for the amplitudes of the unsteady pressure over the blade surfaces. With the increase in gas turbine engine structural complexity and performance over the past 50 years, structural engineers have created an array of safety nets to ensure against component failures in turbine engines. In order to reduce what is now considered to be excessive conservatism and yet maintain the same adequate margins of safety, there is a pressing need to explore methods of incorporating probabilistic design procedures into engine development. Probabilistic methods combine and prioritize the statistical distributions of each design variable, generate an interactive distribution and offer the designer a quantified relationship between robustness, endurance and performance. The designer can therefore iterate between weight reduction, life increase, engine size reduction, speed increase etc.

  19. Incorporating seismic phase correlations into a probabilistic model of global-scale seismology

    NASA Astrophysics Data System (ADS)

    Arora, Nimar

    2013-04-01

    We present a probabilistic model of seismic phases whereby the attributes of the body-wave phases are correlated to those of the first arriving P phase. This model has been incorporated into NET-VISA (Network processing Vertically Integrated Seismic Analysis) a probabilistic generative model of seismic events, their transmission, and detection on a global seismic network. In the earlier version of NET-VISA, seismic phase were assumed to be independent of each other. Although this didn't affect the quality of the inferred seismic bulletin, for the most part, it did result in a few instances of anomalous phase association. For example, an S phase with a smaller slowness than the corresponding P phase. We demonstrate that the phase attributes are indeed highly correlated, for example the uncertainty in the S phase travel time is significantly reduced given the P phase travel time. Our new model exploits these correlations to produce better calibrated probabilities for the events, as well as fewer anomalous associations.

  20. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    PubMed

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.

  1. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    PubMed Central

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124

  2. When Gravity Fails: Local Search Topology

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Cheeseman, Peter; Stutz, John; Lau, Sonie (Technical Monitor)

    1997-01-01

    Local search algorithms for combinatorial search problems frequently encounter a sequence of states in which it is impossible to improve the value of the objective function; moves through these regions, called {\\em plateau moves), dominate the time spent in local search. We analyze and characterize {\\em plateaus) for three different classes of randomly generated Boolean Satisfiability problems. We identify several interesting features of plateaus that impact the performance of local search algorithms. We show that local minima tend to be small but occasionally may be very large. We also show that local minima can be escaped without unsatisfying a large number of clauses, but that systematically searching for an escape route may be computationally expensive if the local minimum is large. We show that plateaus with exits, called benches, tend to be much larger than minima, and that some benches have very few exit states which local search can use to escape. We show that the solutions (i.e. global minima) of randomly generated problem instances form clusters, which behave similarly to local minima. We revisit several enhancements of local search algorithms and explain their performance in light of our results. Finally we discuss strategies for creating the next generation of local search algorithms.

  3. Land Use, Land Conservation, and Wind Energy Development Outcomes in New England

    NASA Astrophysics Data System (ADS)

    Weimar, William Cameron

    This dissertation provides three independent research inquiries. The first examines how inter-governmental policy, site-specific, and social factors lead to the success, prolonged delay, or failure of inland wind power projects in New England. The three case studies examined include the 48 megawatt Glebe Mountain Wind Farm proposal in southern Vermont, the 30 megawatt Hoosac Wind Farm in western Massachusetts, and the 24 megawatt Lempster Wind Farm in southern New Hampshire. To ascertain why the project outcomes varied, 45 semi-structured interviews were conducted with a range of stakeholders, including wind development firms, utility companies, state regulatory agencies, regional planning commissions, town officials, land conservation organizations, and opposition groups. The second study establishes a comprehensive set of thirty-seven explanatory variables to determine the amount of suitable land and the corresponding electricity generation potential within the prime wind resource areas of Western Massachusetts. The explanatory variables are incorporated into Boolean GIS suitability models which represent the two divergent positions towards wind power development in Massachusetts, and a third, balanced model. The third study determines that exurban residential development is not the only land use factor that reduces wind power development potential in Western Massachusetts. A set of Boolean GIS models for 1985 and 2009 find the onset of conservation easements on private lands having the largest impact. During this 25 year period a combination of land use conversion and land conservation has reduced the access to prime wind resource areas by 18% (11,601 hectares), an equivalent loss of 5,800--8,700 GWh/year of zero carbon electricity generation. The six main findings from this research are: (1) Visual aesthetics remain the main factor of opposition to specific projects; (2) The Not-in-my Backyard debate for wind power remains unsettled; (3) Widespread support exists for regional land use energy plans; (4) The wind resources of Western Massachusetts can significantly contribute to the state's current renewable portfolio standard while balancing conservation and renewable energy development objectives; However, (5) a combination of exurban residential development and conservation easements significantly reduces wind power development potential over time; and (6) a need exists to legally define wind as a publicly beneficial resource.

  4. A Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans

    PubMed Central

    2014-01-01

    An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results. PMID:25276219

  5. Distribution functions of probabilistic automata

    NASA Technical Reports Server (NTRS)

    Vatan, F.

    2001-01-01

    Each probabilistic automaton M over an alphabet A defines a probability measure Prob sub(M) on the set of all finite and infinite words over A. We can identify a k letter alphabet A with the set {0, 1,..., k-1}, and, hence, we can consider every finite or infinite word w over A as a radix k expansion of a real number X(w) in the interval [0, 1]. This makes X(w) a random variable and the distribution function of M is defined as usual: F(x) := Prob sub(M) { w: X(w) < x }. Utilizing the fixed-point semantics (denotational semantics), extended to probabilistic computations, we investigate the distribution functions of probabilistic automata in detail. Automata with continuous distribution functions are characterized. By a new, and much more easier method, it is shown that the distribution function F(x) is an analytic function if it is a polynomial. Finally, answering a question posed by D. Knuth and A. Yao, we show that a polynomial distribution function F(x) on [0, 1] can be generated by a prob abilistic automaton iff all the roots of F'(x) = 0 in this interval, if any, are rational numbers. For this, we define two dynamical systems on the set of polynomial distributions and study attracting fixed points of random composition of these two systems.

  6. Near Real-Time Probabilistic Damage Diagnosis Using Surrogate Modeling and High Performance Computing

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Zubair, Mohammad; Ranjan, Desh

    2017-01-01

    This work investigates novel approaches to probabilistic damage diagnosis that utilize surrogate modeling and high performance computing (HPC) to achieve substantial computational speedup. Motivated by Digital Twin, a structural health management (SHM) paradigm that integrates vehicle-specific characteristics with continual in-situ damage diagnosis and prognosis, the methods studied herein yield near real-time damage assessments that could enable monitoring of a vehicle's health while it is operating (i.e. online SHM). High-fidelity modeling and uncertainty quantification (UQ), both critical to Digital Twin, are incorporated using finite element method simulations and Bayesian inference, respectively. The crux of the proposed Bayesian diagnosis methods, however, is the reformulation of the numerical sampling algorithms (e.g. Markov chain Monte Carlo) used to generate the resulting probabilistic damage estimates. To this end, three distinct methods are demonstrated for rapid sampling that utilize surrogate modeling and exploit various degrees of parallelism for leveraging HPC. The accuracy and computational efficiency of the methods are compared on the problem of strain-based crack identification in thin plates. While each approach has inherent problem-specific strengths and weaknesses, all approaches are shown to provide accurate probabilistic damage diagnoses and several orders of magnitude computational speedup relative to a baseline Bayesian diagnosis implementation.

  7. Analysis of flood hazard under consideration of dike breaches

    NASA Astrophysics Data System (ADS)

    Vorogushyn, S.; Apel, H.; Lindenschmidt, K.-E.; Merz, B.

    2009-04-01

    The study focuses on the development and application of a new modelling system which allows a comprehensive flood hazard assessment along diked river reaches under consideration of dike failures. The proposed Inundation Hazard Assessment Model (IHAM) represents a hybrid probabilistic-deterministic model. It comprises three models interactively coupled at runtime. These are: (1) 1D unsteady hydrodynamic model of river channel and floodplain flow between dikes, (2) probabilistic dike breach model which determines possible dike breach locations, breach widths and breach outflow discharges, and (3) 2D raster-based diffusion wave storage cell model of the hinterland areas behind the dikes. Due to the unsteady nature of the 1D and 2D coupled models, the dependence between hydraulic load at various locations along the reach is explicitly considered. The probabilistic dike breach model describes dike failures due to three failure mechanisms: overtopping, piping and slope instability caused by the seepage flow through the dike core (micro-instability). Dike failures for each mechanism are simulated based on fragility functions. The probability of breach is conditioned by the uncertainty in geometrical and geotechnical dike parameters. The 2D storage cell model driven by the breach outflow boundary conditions computes an extended spectrum of flood intensity indicators such as water depth, flow velocity, impulse, inundation duration and rate of water rise. IHAM is embedded in a Monte Carlo simulation in order to account for the natural variability of the flood generation processes reflected in the form of input hydrographs and for the randomness of dike failures given by breach locations, times and widths. The scenario calculations for the developed synthetic input hydrographs for the main river and tributary were carried out for floods with return periods of T = 100; 200; 500; 1000 a. Based on the modelling results, probabilistic dike hazard maps could be generated that indicate the failure probability of each discretised dike section for every scenario magnitude. Besides the binary inundation patterns that indicate the probability of raster cells being inundated, IHAM generates probabilistic flood hazard maps. These maps display spatial patterns of the considered flood intensity indicators and their associated return periods. The probabilistic nature of IHAM allows for the generation of percentile flood hazard maps that indicate the median and uncertainty bounds of the flood intensity indicators. The uncertainty results from the natural variability of the flow hydrographs and randomness of dike breach processes. The same uncertainty sources determine the uncertainty in the flow hydrographs along the study reach. The simulations showed that the dike breach stochasticity has an increasing impact on hydrograph uncertainty in downstream direction. Whereas in the upstream part of the reach the hydrograph uncertainty is mainly stipulated by the variability of the flood wave form, the dike failures strongly shape the uncertainty boundaries in the downstream part of the reach. Finally, scenarios of polder deployment for the extreme floods with T = 200; 500; 1000 a were simulated with IHAM. The results indicate a rather weak reduction of the mean and median flow hydrographs in the river channel. However, the capping of the flow peaks resulted in a considerable reduction of the overtopping failures downstream of the polder with a simultaneous slight increase of the piping and slope micro-instability frequencies explained by a more durable average impoundment. The developed IHAM simulation system represents a new scientific tool for studying fluvial inundation dynamics under extreme conditions incorporating effects of technical flood protection measures. With its major outputs in form of novel probabilistic inundation and dike hazard maps, the IHAM system has a high practical value for decision support in flood management.

  8. Probabilistic forecasts based on radar rainfall uncertainty

    NASA Astrophysics Data System (ADS)

    Liguori, S.; Rico-Ramirez, M. A.

    2012-04-01

    The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at gauges location, and then interpolated back onto the radar domain, in order to obtain probabilistic radar rainfall fields in real time. The deterministic nowcasting model integrated in the STEPS system [7-8] has been used for the purpose of propagating the uncertainty and assessing the benefit of implementing the radar ensemble generator for probabilistic rainfall forecasts and ultimately sewer flow predictions. For this purpose, events representative of different types of precipitation (i.e. stratiform/convective) and significant at the urban catchment scale (i.e. in terms of sewer overflow within the urban drainage system) have been selected. As high spatial/temporal resolution is required to the forecasts for their use in urban areas [9-11], the probabilistic nowcasts have been set up to be produced at 1 km resolution and 5 min intervals. The forecasting chain is completed by a hydrodynamic model of the urban drainage network. The aim of this work is to discuss the implementation of this probabilistic system, which takes into account the radar error to characterize the forecast uncertainty, with consequent potential benefits in the management of urban systems. It will also allow a comparison with previous findings related to the analysis of different approaches to uncertainty estimation and quantification in terms of rainfall [12] and flows at the urban scale [13]. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and Dr. Alan Seed from the Australian Bureau of Meteorology for providing the radar data and the nowcasting model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1.

  9. Understanding genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Kauffman, Stuart

    2003-04-01

    Random Boolean networks (RBM) were introduced about 35 years ago as first crude models of genetic regulatory networks. RBNs are comprised of N on-off genes, connected by a randomly assigned regulatory wiring diagram where each gene has K inputs, and each gene is controlled by a randomly assigned Boolean function. This procedure samples at random from the ensemble of all possible NK Boolean networks. The central ideas are to study the typical, or generic properties of this ensemble, and see 1) whether characteristic differences appear as K and biases in Boolean functions are introducted, and 2) whether a subclass of this ensemble has properties matching real cells. Such networks behave in an ordered or a chaotic regime, with a phase transition, "the edge of chaos" between the two regimes. Networks with continuous variables exhibit the same two regimes. Substantial evidence suggests that real cells are in the ordered regime. A key concept is that of an attractor. This is a reentrant trajectory of states of the network, called a state cycle. The central biological interpretation is that cell types are attractors. A number of properties differentiate the ordered and chaotic regimes. These include the size and number of attractors, the existence in the ordered regime of a percolating "sea" of genes frozen in the on or off state, with a remainder of isolated twinkling islands of genes, a power law distribution of avalanches of gene activity changes following perturbation to a single gene in the ordered regime versus a similar power law distribution plus a spike of enormous avalanches of gene changes in the chaotic regime, and the existence of branching pathway of "differentiation" between attractors induced by perturbations in the ordered regime. Noise is serious issue, since noise disrupts attractors. But numerical evidence suggests that attractors can be made very stable to noise, and meanwhile, metaplasias may be a biological manifestation of noise. As we learn more about the wiring diagram and constraints on rules controlling real genes, we can build refined ensembles reflecting these properties, study the generic properties of the refined ensembles, and hope to gain insight into the dynamics of real cells.

  10. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    NASA Technical Reports Server (NTRS)

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  11. Probabilistic, Seismically-Induced Landslide Hazard Mapping of Western Oregon

    NASA Astrophysics Data System (ADS)

    Olsen, M. J.; Sharifi Mood, M.; Gillins, D. T.; Mahalingam, R.

    2015-12-01

    Earthquake-induced landslides can generate significant damage within urban communities by damaging structures, obstructing lifeline connection routes and utilities, generating various environmental impacts, and possibly resulting in loss of life. Reliable hazard and risk maps are important to assist agencies in efficiently allocating and managing limited resources to prepare for such events. This research presents a new methodology in order to communicate site-specific landslide hazard assessments in a large-scale, regional map. Implementation of the proposed methodology results in seismic-induced landslide hazard maps that depict the probabilities of exceeding landslide displacement thresholds (e.g. 0.1, 0.3, 1.0 and 10 meters). These maps integrate a variety of data sources including: recent landslide inventories, LIDAR and photogrammetric topographic data, geology map, mapped NEHRP site classifications based on available shear wave velocity data in each geologic unit, and USGS probabilistic seismic hazard curves. Soil strength estimates were obtained by evaluating slopes present along landslide scarps and deposits for major geologic units. Code was then developed to integrate these layers to perform a rigid, sliding block analysis to determine the amount and associated probabilities of displacement based on each bin of peak ground acceleration in the seismic hazard curve at each pixel. The methodology was applied to western Oregon, which contains weak, weathered, and often wet soils at steep slopes. Such conditions have a high landslide hazard even without seismic events. A series of landslide hazard maps highlighting the probabilities of exceeding the aforementioned thresholds were generated for the study area. These output maps were then utilized in a performance based design framework enabling them to be analyzed in conjunction with other hazards for fully probabilistic-based hazard evaluation and risk assessment. a) School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA

  12. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  13. Integrated Risk-Informed Decision-Making for an ALMR PRISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, Michael David; Belles, Randy; Denning, Richard S.

    Decision-making is the process of identifying decision alternatives, assessing those alternatives based on predefined metrics, selecting an alternative (i.e., making a decision), and then implementing that alternative. The generation of decisions requires a structured, coherent process, or a decision-making process. The overall objective for this work is that the generalized framework is adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace ormore » supplement human decision makers with reconfigurable decision-making modules that can perform a given set of tasks rationally, consistently, and reliably. Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The probabilistic portion of the decision-making engine of the supervisory control system is based on the control actions associated with an ALMR PRISM. Newly incorporated into the probabilistic models are the prognostic/diagnostic models developed by Pacific Northwest National Laboratory. These allow decisions to incorporate the health of components into the decision–making process. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic portion of the decision-making engine uses thermal-hydraulic modeling and components for an advanced liquid-metal reactor Power Reactor Inherently Safe Module. The deterministic multi-attribute decision-making framework uses various sensor data (e.g., reactor outlet temperature, steam generator drum level) and calculates its position within the challenge state, its trajectory, and its margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. The metrics that are evaluated are based on reactor trip set points. The integration of the deterministic calculations using multi-physics analyses and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermalhydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies, and developing a user interface to mimic display panels at a modern nuclear power plant.« less

  14. Mode identification using stochastic hybrid models with applications to conflict detection and resolution

    NASA Astrophysics Data System (ADS)

    Naseri Kouzehgarani, Asal

    2009-12-01

    Most models of aircraft trajectories are non-linear and stochastic in nature; and their internal parameters are often poorly defined. The ability to model, simulate and analyze realistic air traffic management conflict detection scenarios in a scalable, composable, multi-aircraft fashion is an extremely difficult endeavor. Accurate techniques for aircraft mode detection are critical in order to enable the precise projection of aircraft conflicts, and for the enactment of altitude separation resolution strategies. Conflict detection is an inherently probabilistic endeavor; our ability to detect conflicts in a timely and accurate manner over a fixed time horizon is traded off against the increased human workload created by false alarms---that is, situations that would not develop into an actual conflict, or would resolve naturally in the appropriate time horizon-thereby introducing a measure of probabilistic uncertainty in any decision aid fashioned to assist air traffic controllers. The interaction of the continuous dynamics of the aircraft, used for prediction purposes, with the discrete conflict detection logic gives rise to the hybrid nature of the overall system. The introduction of the probabilistic element, common to decision alerting and aiding devices, places the conflict detection and resolution problem in the domain of probabilistic hybrid phenomena. A hidden Markov model (HMM) has two stochastic components: a finite-state Markov chain and a finite set of output probability distributions. In other words an unobservable stochastic process (hidden) that can only be observed through another set of stochastic processes that generate the sequence of observations. The problem of self separation in distributed air traffic management reduces to the ability of aircraft to communicate state information to neighboring aircraft, as well as model the evolution of aircraft trajectories between communications, in the presence of probabilistic uncertain dynamics as well as partially observable and uncertain data. We introduce the Hybrid Hidden Markov Modeling (HHMM) formalism to enable the prediction of the stochastic aircraft states (and thus, potential conflicts), by combining elements of the probabilistic timed input output automaton and the partially observable Markov decision process frameworks, along with the novel addition of a Markovian scheduler to remove the non-deterministic elements arising from the enabling of several actions simultaneously. Comparisons of aircraft in level, climbing/descending and turning flight are performed, and unknown flight track data is evaluated probabilistically against the tuned model in order to assess the effectiveness of the model in detecting the switch between multiple flight modes for a given aircraft. This also allows for the generation of probabilistic distribution over the execution traces of the hybrid hidden Markov model, which then enables the prediction of the states of aircraft based on partially observable and uncertain data. Based on the composition properties of the HHMM, we study a decentralized air traffic system where aircraft are moving along streams and can perform cruise, accelerate, climb and turn maneuvers. We develop a common decentralized policy for conflict avoidance with spatially distributed agents (aircraft in the sky) and assure its safety properties via correctness proofs.

  15. A framework for the probabilistic analysis of meteotsunamis

    USGS Publications Warehouse

    Geist, Eric L.; ten Brink, Uri S.; Gove, Matthew D.

    2014-01-01

    A probabilistic technique is developed to assess the hazard from meteotsunamis. Meteotsunamis are unusual sea-level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation is proposed for the probabilistic analysis, based on previous frameworks established for both tsunamis and storm surges, incorporating different sources and source parameters of meteotsunamis. Parameterization of atmospheric disturbances and numerical modeling is performed for the computation of maximum meteotsunami wave amplitudes near the coast. A historical record of pressure disturbances is used to establish a continuous analytic distribution of each parameter as well as the overall Poisson rate of occurrence. A demonstration study is presented for the northeast U.S. in which only isolated atmospheric pressure disturbances from squall lines and derechos are considered. For this study, Automated Surface Observing System stations are used to determine the historical parameters of squall lines from 2000 to 2013. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of squall lines is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a numerical hydrodynamic model. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using multiple synthetic catalogs, resampled from the parent parameter distributions, yield mean and quantile hazard curves. Further refinements and improvements for probabilistic analysis of meteotsunamis are discussed.

  16. EXPOSURE TO PESTICIDES BY MEDIUM AND ROUTE: THE 90TH PERCENTILE AND RELATED UNCERTAINTIES

    EPA Science Inventory

    This study investigates distributions of exposure to chlorpyrifos and diazinon using the database generated in the state of Arizona by the National Human Exposure Assessment Survey (NHEXAS-AZ). Exposure to pesticide and associated uncertainties are estimated using probabilistic...

  17. Quantum Enhanced Inference in Markov Logic Networks

    NASA Astrophysics Data System (ADS)

    Wittek, Peter; Gogolin, Christian

    2017-04-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  18. Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction.

    PubMed

    Blaiotta, Claudia; Freund, Patrick; Cardoso, M Jorge; Ashburner, John

    2018-02-01

    In this paper we present a hierarchical generative model of medical image data, which can capture simultaneously the variability of both signal intensity and anatomical shapes across large populations. Such a model has a direct application for learning average-shaped probabilistic tissue templates in a fully automated manner. While in principle the generality of the proposed Bayesian approach makes it suitable to address a wide range of medical image computing problems, our work focuses primarily on neuroimaging applications. In particular we validate the proposed method on both real and synthetic brain MR scans including the cervical cord and demonstrate that it yields accurate alignment of brain and spinal cord structures, as compared to state-of-the-art tools for medical image registration. At the same time we illustrate how the resulting tissue probability maps can readily be used to segment, bias correct and spatially normalise unseen data, which are all crucial pre-processing steps for MR imaging studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Relative multiplexing for minimising switching in linear-optical quantum computing

    NASA Astrophysics Data System (ADS)

    Gimeno-Segovia, Mercedes; Cable, Hugo; Mendoza, Gabriel J.; Shadbolt, Pete; Silverstone, Joshua W.; Carolan, Jacques; Thompson, Mark G.; O'Brien, Jeremy L.; Rudolph, Terry

    2017-06-01

    Many existing schemes for linear-optical quantum computing (LOQC) depend on multiplexing (MUX), which uses dynamic routing to enable near-deterministic gates and sources to be constructed using heralded, probabilistic primitives. MUXing accounts for the overwhelming majority of active switching demands in current LOQC architectures. In this manuscript we introduce relative multiplexing (RMUX), a general-purpose optimisation which can dramatically reduce the active switching requirements for MUX in LOQC, and thereby reduce hardware complexity and energy consumption, as well as relaxing demands on performance for various photonic components. We discuss the application of RMUX to the generation of entangled states from probabilistic single-photon sources, and argue that an order of magnitude improvement in the rate of generation of Bell states can be achieved. In addition, we apply RMUX to the proposal for percolation of a 3D cluster state by Gimeno-Segovia et al (2015 Phys. Rev. Lett. 115 020502), and we find that RMUX allows an 2.4× increase in loss tolerance for this architecture.

  20. Data Analysis with Graphical Models: Software Tools

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.

    1994-01-01

    Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.

  1. Quantum Enhanced Inference in Markov Logic Networks.

    PubMed

    Wittek, Peter; Gogolin, Christian

    2017-04-19

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  2. Quantum Enhanced Inference in Markov Logic Networks

    PubMed Central

    Wittek, Peter; Gogolin, Christian

    2017-01-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning. PMID:28422093

  3. Electrical Circuits in the Mathematics/Computer Science Classroom.

    ERIC Educational Resources Information Center

    McMillan, Robert D.

    1988-01-01

    Shows how, with little or no electrical background, students can apply Boolean algebra concepts to design and build integrated electrical circuits in the classroom that will reinforce important ideas in mathematics. (PK)

  4. Topological Aspects of Information Retrieval.

    ERIC Educational Resources Information Center

    Egghe, Leo; Rousseau, Ronald

    1998-01-01

    Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)

  5. Combinatorial optimization in foundry practice

    NASA Astrophysics Data System (ADS)

    Antamoshkin, A. N.; Masich, I. S.

    2016-04-01

    The multicriteria mathematical model of foundry production capacity planning is suggested in the paper. The model is produced in terms of pseudo-Boolean optimization theory. Different search optimization methods were used to solve the obtained problem.

  6. Defining of the BDX930 Assembly Language

    NASA Technical Reports Server (NTRS)

    Boyer, R. S.; Moore, J. S.

    1983-01-01

    A definition of the BDX930 assembly language is presented. Various definition problems and suggested solutions are included. A class of defined recognizers based on boolean valued nowrecursive functions is employed in preprocessing.

  7. Analog Approach to Constraint Satisfaction Enabled by Spin Orbit Torque Magnetic Tunnel Junctions.

    PubMed

    Wijesinghe, Parami; Liyanagedera, Chamika; Roy, Kaushik

    2018-05-02

    Boolean satisfiability (k-SAT) is an NP-complete (k ≥ 3) problem that constitute one of the hardest classes of constraint satisfaction problems. In this work, we provide a proof of concept hardware based analog k-SAT solver, that is built using Magnetic Tunnel Junctions (MTJs). The inherent physics of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics of an analog satisfiability (SAT) solver. In the presence of thermal noise, the MTJ based system can successfully solve Boolean satisfiability problems. Most importantly, our results exhibit that, the proposed MTJ based hardware SAT solver is capable of finding a solution to a significant fraction (at least 85%) of hard 3-SAT problems, within a time that has a polynomial relationship with the number of variables(<50).

  8. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks

    PubMed Central

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  9. Remission of rheumatoid arthritis and potential determinants: a national multi-center cross-sectional survey.

    PubMed

    Wang, Guan-Ying; Zhang, Sa-Li; Wang, Xiu-Ru; Feng, Min; Li, Chun; An, Yuan; Li, Xiao-Feng; Wang, Li-Zhi; Wang, Cai-Hong; Wang, Yong-Fu; Yang, Rong; Yan, Hui-Ming; Wang, Guo-Chun; Lu, Xin; Liu, Xia; Zhu, Ping; Chen, Li-Na; Jin, Hong-Tao; Liu, Jin-Ting; Guo, Hui-Fang; Chen, Hai-Ying; Xie, Jian-Li; Wei, Ping; Wang, Jun-Xiang; Liu, Xiang-Yuan; Sun, Lin; Cui, Liu-Fu; Shu, Rong; Liu, Bai-Lu; Yu, Ping; Zhang, Zhuo-Li; Li, Guang-Tao; Li, Zhen-Bin; Yang, Jing; Li, Jun-Fang; Jia, Bin; Zhang, Feng-Xiao; Tao, Jie-Mei; Lin, Jin-Ying; Wei, Mei-Qiu; Liu, Xiao-Min; Ke, Dan; Hu, Shao-Xian; Ye, Cong; Han, Shu-Ling; Yang, Xiu-Yan; Li, Hao; Huang, Ci-Bo; Gao, Ming; Lai, Bei; Cheng, Yong-Jing; Li, Xing-Fu; Song, Li-Jun; Yu, Xiao-Xia; Wang, Ai-Xue; Wu, Li-Jun; Wang, Yan-Hua; He, Lan; Sun, Wen-Wen; Gong, Lu; Wang, Xiao-Yuan; Wang, Yi; Zhao, Yi; Li, Xiao-Xia; Wang, Yan; Zhang, Yan; Su, Yin; Zhang, Chun-Fang; Mu, Rong; Li, Zhan-Guo

    2015-02-01

    The aim of this study is to investigate the remission rate of rheumatoid arthritis (RA) in China and identify its potential determinants. A multi-center cross-sectional study was conducted from July 2009 to January 2012. Data were collected by face-to-face interviews of the rheumatology outpatients in 28 tertiary hospitals in China. The remission rates were calculated in 486 RA patients according to different definitions of remission: the Disease Activity Score in 28 joints (DAS28), the Simplified Disease Activity Index (SDAI), the Clinical Disease Activity Index (CDAI), and the American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) Boolean definition. Potential determinants of RA remission were assessed by univariate and multivariate analyses. The remission rates of RA from this multi-center cohort were 8.6% (DAS28), 8.4% (SDAI), 8.2% (CDAI), and 6.8% (Boolean), respectively. Favorable factors associated with remission were: low Health Assessment Questionnaire (HAQ) score, absence of rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP), and treatment of methotrexate (MTX) and hydroxychloroquine (HCQ). Younger age was also predictive for the DAS28 and the Boolean remission. Multivariate analyses revealed a low HAQ score, the absence of anti-CCP, and the treatment with HCQ as independent determinants of remission. The clinical remission rate of RA patients was low in China. A low HAQ score, the absence of anti-CCP, and HCQ were significant independent determinants for RA remission.

  10. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. © 2016 The Authors.

  11. Psychological state is related to the remission of the Boolean-based definition of patient global assessment in patients with rheumatoid arthritis.

    PubMed

    Fusama, Mie; Miura, Yasushi; Yukioka, Kumiko; Kuroiwa, Takanori; Yukioka, Chikako; Inoue, Miyako; Nakanishi, Tae; Murata, Norikazu; Takai, Noriko; Higashi, Kayoko; Kuritani, Taro; Maeda, Keiji; Sano, Hajime; Yukioka, Masao; Nakahara, Hideko

    2015-09-01

    To evaluate whether the psychological state is related to the Boolean-based definition of patient global assessment (PGA) remission in patients with rheumatoid arthritis (RA). Patients with RA who met the criteria of swollen joint count (SJC) ≤ 1, tender joint count (TJC) ≤ 1 and C-reactive protein (CRP) ≤ 1 were divided into two groups, PGA remission group (PGA ≤ 1 cm) and non-remission group (PGA > 1 cm). Anxiety was evaluated utilizing the Hospital Anxiety and Depression Scale-Anxiety (HADS-A), while depression was evaluated with HADS-Depression (HADS-D) and the Center for Epidemiologic Studies Depression Scale (CES-D). Comparison analyses were done between the PGA remission and non-remission groups in HADS-A, HADS-D and CES-D. Seventy-eight patients met the criteria for SJC ≤ 1, TJC ≤ 1 and CRP ≤ 1. There were no significant differences between the PGA remission group (n = 45) and the non-remission group (n = 33) in age, sex, disease duration and Steinbrocker's class and stage. HADS-A, HADS-D and CES-D scores were significantly lower in the PGA remission group. Patients with RA who did not meet the PGA remission criteria despite good disease condition were in a poorer psychological state than those who satisfied the Boolean-based definition of clinical remission. Psychological support might be effective for improvement of PGA, resulting in the attainment of true remission.

  12. Rubbery computing

    NASA Astrophysics Data System (ADS)

    Wilson, Katherine E.; Henke, E.-F. Markus; Slipher, Geoffrey A.; Anderson, Iain A.

    2017-04-01

    Electromechanically coupled dielectric elastomer actuators (DEAs) and dielectric elastomer switches (DESs) may form digital logic circuitry made entirely of soft and flexible materials. The expansion in planar area of a DEA exerts force across a DES, which is a soft electrode with strain-dependent resistivity. When compressed, the DES drops steeply in resistance and changes state from non-conducting to conducting. Logic operators may be achieved with different arrangements of interacting DE actuators and switches. We demonstrate combinatorial logic elements, including the fundamental Boolean logic gates, as well as sequential logic elements, including latches and flip-flops. With both data storage and signal processing abilities, the necessary calculating components of a soft computer are available. A noteworthy advantage of a soft computer with mechanosensitive DESs is the potential for responding to environmental strains while locally processing information and generating a reaction, like a muscle reflex.

  13. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    NASA Astrophysics Data System (ADS)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  14. Accuracy of Probabilistic Linkage Using the Enhanced Matching System for Public Health and Epidemiological Studies.

    PubMed

    Aldridge, Robert W; Shaji, Kunju; Hayward, Andrew C; Abubakar, Ibrahim

    2015-01-01

    The Enhanced Matching System (EMS) is a probabilistic record linkage program developed by the tuberculosis section at Public Health England to match data for individuals across two datasets. This paper outlines how EMS works and investigates its accuracy for linkage across public health datasets. EMS is a configurable Microsoft SQL Server database program. To examine the accuracy of EMS, two public health databases were matched using National Health Service (NHS) numbers as a gold standard unique identifier. Probabilistic linkage was then performed on the same two datasets without inclusion of NHS number. Sensitivity analyses were carried out to examine the effect of varying matching process parameters. Exact matching using NHS number between two datasets (containing 5931 and 1759 records) identified 1071 matched pairs. EMS probabilistic linkage identified 1068 record pairs. The sensitivity of probabilistic linkage was calculated as 99.5% (95%CI: 98.9, 99.8), specificity 100.0% (95%CI: 99.9, 100.0), positive predictive value 99.8% (95%CI: 99.3, 100.0), and negative predictive value 99.9% (95%CI: 99.8, 100.0). Probabilistic matching was most accurate when including address variables and using the automatically generated threshold for determining links with manual review. With the establishment of national electronic datasets across health and social care, EMS enables previously unanswerable research questions to be tackled with confidence in the accuracy of the linkage process. In scenarios where a small sample is being matched into a very large database (such as national records of hospital attendance) then, compared to results presented in this analysis, the positive predictive value or sensitivity may drop according to the prevalence of matches between databases. Despite this possible limitation, probabilistic linkage has great potential to be used where exact matching using a common identifier is not possible, including in low-income settings, and for vulnerable groups such as homeless populations, where the absence of unique identifiers and lower data quality has historically hindered the ability to identify individuals across datasets.

  15. Price of Fairness in Kidney Exchange

    DTIC Science & Technology

    2014-05-01

    solver uses branch-and-price, a technique that proves optimality by in- crementally generating only a small part of the model during tree search [8...factors like fail- ure probability and chain position, as in the probabilistic model ). We will use this multiplicative re-weighting in our experiments in...Table 2 gives the average loss in efficiency for each of these models over multiple generated pool sizes, with 40 runs per pool size per model , under

  16. A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation.

    DOT National Transportation Integrated Search

    2015-12-01

    This study adopts a dwelling unit level of analysis and considers a probabilistic choice set generation approach for residential choice modeling. In doing so, we accommodate the fact that housing choices involve both characteristics of the dwelling u...

  17. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses

    PubMed Central

    Myers, Risa B.; Herskovic, Jorge R.

    2011-01-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDW) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a clinical data warehouse containing synthetic patient data. We present a synthetic clinical data warehouse (CDW), and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing’s sensitivity and specificity both by conducting a “Simulated Expert Review” where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a “Bayesian Chain”, using Bayes’ Theorem to calculate the probability of a patient having a condition after each visit. The second method is a “one-shot” approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes’ Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our Bayesian framework. Use of these probabilistic techniques will enable more accurate patient counts and better results for applications requiring this metric. PMID:21986292

  18. A probabilistic seismic model for the European Arctic

    NASA Astrophysics Data System (ADS)

    Hauser, Juerg; Dyer, Kathleen M.; Pasyanos, Michael E.; Bungum, Hilmar; Faleide, Jan I.; Clark, Stephen A.; Schweitzer, Johannes

    2011-01-01

    The development of three-dimensional seismic models for the crust and upper mantle has traditionally focused on finding one model that provides the best fit to the data while observing some regularization constraints. In contrast to this, the inversion employed here fits the data in a probabilistic sense and thus provides a quantitative measure of model uncertainty. Our probabilistic model is based on two sources of information: (1) prior information, which is independent from the data, and (2) different geophysical data sets, including thickness constraints, velocity profiles, gravity data, surface wave group velocities, and regional body wave traveltimes. We use a Markov chain Monte Carlo (MCMC) algorithm to sample models from the prior distribution, the set of plausible models, and test them against the data to generate the posterior distribution, the ensemble of models that fit the data with assigned uncertainties. While being computationally more expensive, such a probabilistic inversion provides a more complete picture of solution space and allows us to combine various data sets. The complex geology of the European Arctic, encompassing oceanic crust, continental shelf regions, rift basins and old cratonic crust, as well as the nonuniform coverage of the region by data with varying degrees of uncertainty, makes it a challenging setting for any imaging technique and, therefore, an ideal environment for demonstrating the practical advantages of a probabilistic approach. Maps of depth to basement and depth to Moho derived from the posterior distribution are in good agreement with previously published maps and interpretations of the regional tectonic setting. The predicted uncertainties, which are as important as the absolute values, correlate well with the variations in data coverage and quality in the region. A practical advantage of our probabilistic model is that it can provide estimates for the uncertainties of observables due to model uncertainties. We will demonstrate how this can be used for the formulation of earthquake location algorithms that take model uncertainties into account when estimating location uncertainties.

  19. Automated Library System Specifications.

    DTIC Science & Technology

    1986-06-01

    University), LIS (Georqetown Universitv Medical Center) 20 DiSTRI3UT!ON.. AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION :UNCLASSIFIED...Interface) acquisitions, patron access catalo. (Boolean search), authority Afiles, zana ~ezient reports. Serials control expected in 1985. INDIVIDUALIZATIOI

  20. From Cyclone Tracks to the Costs of European Winter Storms: A Probabilistic Loss Assessment Model

    NASA Astrophysics Data System (ADS)

    Orwig, K.; Renggli, D.; Corti, T.; Reese, S.; Wueest, M.; Viktor, E.; Zimmerli, P.

    2014-12-01

    European winter storms cause billions of dollars of insured losses every year. Therefore, it is essential to understand potential impacts of future events, and the role reinsurance can play to mitigate the losses. The authors will present an overview on natural catastrophe risk assessment modeling in the reinsurance industry, and the development of a new innovative approach for modeling the risk associated with European winter storms.The new innovative approach includes the development of physically meaningful probabilistic (i.e. simulated) events for European winter storm loss assessment. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20thCentury Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of historical event properties (e.g. track, intensity, etc.). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account.The low-resolution wind footprints taken from the 20thCentury Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints for both the simulated and historical events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country and site-specific vulnerability functions and detailed market- or client-specific information to compute annual expected losses.

  1. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources

    USGS Publications Warehouse

    Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.

    2009-01-01

    The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.

  2. An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae

    PubMed Central

    Lee, Insuk; Li, Zhihua; Marcotte, Edward M.

    2007-01-01

    Background Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org. PMID:17912365

  3. Encoding probabilistic brain atlases using Bayesian inference.

    PubMed

    Van Leemput, Koen

    2009-06-01

    This paper addresses the problem of creating probabilistic brain atlases from manually labeled training data. Probabilistic atlases are typically constructed by counting the relative frequency of occurrence of labels in corresponding locations across the training images. However, such an "averaging" approach generalizes poorly to unseen cases when the number of training images is limited, and provides no principled way of aligning the training datasets using deformable registration. In this paper, we generalize the generative image model implicitly underlying standard "average" atlases, using mesh-based representations endowed with an explicit deformation model. Bayesian inference is used to infer the optimal model parameters from the training data, leading to a simultaneous group-wise registration and atlas estimation scheme that encompasses standard averaging as a special case. We also use Bayesian inference to compare alternative atlas models in light of the training data, and show how this leads to a data compression problem that is intuitive to interpret and computationally feasible. Using this technique, we automatically determine the optimal amount of spatial blurring, the best deformation field flexibility, and the most compact mesh representation. We demonstrate, using 2-D training datasets, that the resulting models are better at capturing the structure in the training data than conventional probabilistic atlases. We also present experiments of the proposed atlas construction technique in 3-D, and show the resulting atlases' potential in fully-automated, pulse sequence-adaptive segmentation of 36 neuroanatomical structures in brain MRI scans.

  4. Adaptive predictors based on probabilistic SVM for real time disruption mitigation on JET

    NASA Astrophysics Data System (ADS)

    Murari, A.; Lungaroni, M.; Peluso, E.; Gaudio, P.; Vega, J.; Dormido-Canto, S.; Baruzzo, M.; Gelfusa, M.; Contributors, JET

    2018-05-01

    Detecting disruptions with sufficient anticipation time is essential to undertake any form of remedial strategy, mitigation or avoidance. Traditional predictors based on machine learning techniques can be very performing, if properly optimised, but do not provide a natural estimate of the quality of their outputs and they typically age very quickly. In this paper a new set of tools, based on probabilistic extensions of support vector machines (SVM), are introduced and applied for the first time to JET data. The probabilistic output constitutes a natural qualification of the prediction quality and provides additional flexibility. An adaptive training strategy ‘from scratch’ has also been devised, which allows preserving the performance even when the experimental conditions change significantly. Large JET databases of disruptions, covering entire campaigns and thousands of discharges, have been analysed, both for the case of the graphite and the ITER Like Wall. Performance significantly better than any previous predictor using adaptive training has been achieved, satisfying even the requirements of the next generation of devices. The adaptive approach to the training has also provided unique information about the evolution of the operational space. The fact that the developed tools give the probability of disruption improves the interpretability of the results, provides an estimate of the predictor quality and gives new insights into the physics. Moreover, the probabilistic treatment permits to insert more easily these classifiers into general decision support and control systems.

  5. Generative Phonotactics

    ERIC Educational Resources Information Center

    Gorman, Kyle

    2013-01-01

    This dissertation outlines a program for the theory of phonotactics--the theory of speakers' knowledge of possible and impossible (or likely and unlikely) words--and argues that the alternative view of phonotactics as stochastic, and of phonotactic learning as probabilistic inference, is not capable of accounting for the facts of this domain.…

  6. Statistical Knowledge and Learning in Phonology

    ERIC Educational Resources Information Center

    Dunbar, Ewan Michael

    2013-01-01

    This dissertation deals with the theory of the phonetic component of grammar in a formal probabilistic inference framework: (1) it has been recognized since the beginning of generative phonology that some language-specific phonetic implementation is actually context-dependent, and thus it can be said that there are gradient "phonetic…

  7. Theory Learning as Stochastic Search in the Language of Thought

    ERIC Educational Resources Information Center

    Ullman, Tomer D.; Goodman, Noah D.; Tenenbaum, Joshua B.

    2012-01-01

    We present an algorithmic model for the development of children's intuitive theories within a hierarchical Bayesian framework, where theories are described as sets of logical laws generated by a probabilistic context-free grammar. We contrast our approach with connectionist and other emergentist approaches to modeling cognitive development. While…

  8. INTEGRATED PROBABILISTIC AND DETERMINISTIC MODELING TECHNIQUES IN ESTIMATING EXPOSURE TO WATER-BORNE CONTAMINANTS: PART 2 PHARMACOKINETIC MODELING

    EPA Science Inventory

    The Total Exposure Model (TEM) uses deterministic and stochastic methods to estimate the exposure of a person performing daily activities of eating, drinking, showering, and bathing. There were 250 time histories generated, by subject with activities, for the three exposure ro...

  9. Simulations of Probabilities for Quantum Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, B

    This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.

  11. Monte Carlo Approach for Reliability Estimations in Generalizability Studies.

    ERIC Educational Resources Information Center

    Dimitrov, Dimiter M.

    A Monte Carlo approach is proposed, using the Statistical Analysis System (SAS) programming language, for estimating reliability coefficients in generalizability theory studies. Test scores are generated by a probabilistic model that considers the probability for a person with a given ability score to answer an item with a given difficulty…

  12. Seismically induced landslides: current research by the US Geological Survey.

    USGS Publications Warehouse

    Harp, E.L.; Wilson, R.C.; Keefer, D.K.; Wieczorek, G.F.

    1986-01-01

    We have produced a regional seismic slope-stability map and a probabilistic prediction of landslide distribution from a postulated earthquake. For liquefaction-induced landslides, in situ measurements of seismically induced pore-water pressures have been used to establish an elastic model of pore pressure generation. -from Authors

  13. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  14. Unbiased, scalable sampling of protein loop conformations from probabilistic priors.

    PubMed

    Zhang, Yajia; Hauser, Kris

    2013-01-01

    Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.

  15. Unbiased, scalable sampling of protein loop conformations from probabilistic priors

    PubMed Central

    2013-01-01

    Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175

  16. Addressing the Hard Factors for Command File Errors by Probabilistic Reasoning

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Bryant, Larry

    2014-01-01

    Command File Errors (CFE) are managed using standard risk management approaches at the Jet Propulsion Laboratory. Over the last few years, more emphasis has been made on the collection, organization, and analysis of these errors for the purpose of reducing the CFE rates. More recently, probabilistic modeling techniques have been used for more in depth analysis of the perceived error rates of the DAWN mission and for managing the soft factors in the upcoming phases of the mission. We broadly classify the factors that can lead to CFE's as soft factors, which relate to the cognition of the operators and hard factors which relate to the Mission System which is composed of the hardware, software and procedures used for the generation, verification & validation and execution of commands. The focus of this paper is to use probabilistic models that represent multiple missions at JPL to determine the root cause and sensitivities of the various components of the mission system and develop recommendations and techniques for addressing them. The customization of these multi-mission models to a sample interplanetary spacecraft is done for this purpose.

  17. Compiling probabilistic, bio-inspired circuits on a field programmable analog array

    PubMed Central

    Marr, Bo; Hasler, Jennifer

    2014-01-01

    A field programmable analog array (FPAA) is presented as an energy and computational efficiency engine: a mixed mode processor for which functions can be compiled at significantly less energy costs using probabilistic computing circuits. More specifically, it will be shown that the core computation of any dynamical system can be computed on the FPAA at significantly less energy per operation than a digital implementation. A stochastic system that is dynamically controllable via voltage controlled amplifier and comparator thresholds is implemented, which computes Bernoulli random variables. From Bernoulli variables it is shown exponentially distributed random variables, and random variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated to show the utility of this system by calculating the trajectory of a biological system computed stochastically with this probabilistic hardware where over a 127X performance improvement over current software approaches is shown. The relevance of this approach is extended to any dynamical system. The initial circuits and ideas for this work were generated at the 2008 Telluride Neuromorphic Workshop. PMID:24847199

  18. Variational Bayesian Inversion of Quasi-Localized Seismic Attributes for the Spatial Distribution of Geological Facies

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad Atif; Curtis, Andrew

    2018-04-01

    We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.

  19. Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)

    NASA Astrophysics Data System (ADS)

    Peters, Christina; Malz, Alex; Hlozek, Renée

    2018-01-01

    The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.

  20. Nonvolatile reconfigurable sequential logic in a HfO2 resistive random access memory array.

    PubMed

    Zhou, Ya-Xiong; Li, Yi; Su, Yu-Ting; Wang, Zhuo-Rui; Shih, Ling-Yi; Chang, Ting-Chang; Chang, Kuan-Chang; Long, Shi-Bing; Sze, Simon M; Miao, Xiang-Shui

    2017-05-25

    Resistive random access memory (RRAM) based reconfigurable logic provides a temporal programmable dimension to realize Boolean logic functions and is regarded as a promising route to build non-von Neumann computing architecture. In this work, a reconfigurable operation method is proposed to perform nonvolatile sequential logic in a HfO 2 -based RRAM array. Eight kinds of Boolean logic functions can be implemented within the same hardware fabrics. During the logic computing processes, the RRAM devices in an array are flexibly configured in a bipolar or complementary structure. The validity was demonstrated by experimentally implemented NAND and XOR logic functions and a theoretically designed 1-bit full adder. With the trade-off between temporal and spatial computing complexity, our method makes better use of limited computing resources, thus provides an attractive scheme for the construction of logic-in-memory systems.

  1. Interconnect-free parallel logic circuits in a single mechanical resonator

    PubMed Central

    Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2011-01-01

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator. PMID:21326230

  2. Interconnect-free parallel logic circuits in a single mechanical resonator.

    PubMed

    Mahboob, I; Flurin, E; Nishiguchi, K; Fujiwara, A; Yamaguchi, H

    2011-02-15

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.

  3. Calculating the bidirectional reflectance of natural vegetation covers using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Li, Xiao-Wen; Jupp, David L. B.

    1991-01-01

    The bidirectional radiance or reflectance of a forest or woodland can be modeled using principles of geometric optics and Boolean models for random sets in a three dimensional space. This model may be defined at two levels, the scene includes four components; sunlight and shadowed canopy, and sunlit and shadowed background. The reflectance of the scene is modeled as the sum of the reflectances of the individual components as weighted by their areal proportions in the field of view. At the leaf level, the canopy envelope is an assemblage of leaves, and thus the reflectance is a function of the areal proportions of sunlit and shadowed leaf, and sunlit and shadowed background. Because the proportions of scene components are dependent upon the directions of irradiance and exitance, the model accounts for the hotspot that is well known in leaf and tree canopies.

  4. Simultaneous G-Quadruplex DNA Logic.

    PubMed

    Bader, Antoine; Cockroft, Scott L

    2018-04-03

    A fundamental principle of digital computer operation is Boolean logic, where inputs and outputs are described by binary integer voltages. Similarly, inputs and outputs may be processed on the molecular level as exemplified by synthetic circuits that exploit the programmability of DNA base-pairing. Unlike modern computers, which execute large numbers of logic gates in parallel, most implementations of molecular logic have been limited to single computing tasks, or sensing applications. This work reports three G-quadruplex-based logic gates that operate simultaneously in a single reaction vessel. The gates respond to unique Boolean DNA inputs by undergoing topological conversion from duplex to G-quadruplex states that were resolved using a thioflavin T dye and gel electrophoresis. The modular, addressable, and label-free approach could be incorporated into DNA-based sensors, or used for resolving and debugging parallel processes in DNA computing applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Satisfiability of logic programming based on radial basis function neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged

    2014-07-10

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We appliedmore » the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.« less

  6. Some Applications Of Semigroups And Computer Algebra In Discrete Structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2009-11-01

    An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.

  7. Altered Micro-RNA Degradation Promotes Tumor Heterogeneity: A Result from Boolean Network Modeling.

    PubMed

    Wu, Yunyi; Krueger, Gerhard R F; Wang, Guanyu

    2016-02-01

    Cancer heterogeneity may reflect differential dynamical outcomes of the regulatory network encompassing biomolecules at both transcriptional and post-transcriptional levels. In other words, differential gene-expression profiles may correspond to different stable steady states of a mathematical model for simulation of biomolecular networks. To test this hypothesis, we simplified a regulatory network that is important for soft-tissue sarcoma metastasis and heterogeneity, comprising of transcription factors, micro-RNAs, and signaling components of the NOTCH pathway. We then used a Boolean network model to simulate the dynamics of this network, and particularly investigated the consequences of differential miRNA degradation modes. We found that efficient miRNA degradation is crucial for sustaining a homogenous and healthy phenotype, while defective miRNA degradation may lead to multiple stable steady states and ultimately to carcinogenesis and heterogeneity. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Lattice Theory, Measures and Probability

    NASA Astrophysics Data System (ADS)

    Knuth, Kevin H.

    2007-11-01

    In this tutorial, I will discuss the concepts behind generalizing ordering to measuring and apply these ideas to the derivation of probability theory. The fundamental concept is that anything that can be ordered can be measured. Since we are in the business of making statements about the world around us, we focus on ordering logical statements according to implication. This results in a Boolean lattice, which is related to the fact that the corresponding logical operations form a Boolean algebra. The concept of logical implication can be generalized to degrees of implication by generalizing the zeta function of the lattice. The rules of probability theory arise naturally as a set of constraint equations. Through this construction we are able to neatly connect the concepts of order, structure, algebra, and calculus. The meaning of probability is inherited from the meaning of the ordering relation, implication, rather than being imposed in an ad hoc manner at the start.

  9. A solution to the surface intersection problem. [Boolean functions in geometric modeling

    NASA Technical Reports Server (NTRS)

    Timer, H. G.

    1977-01-01

    An application-independent geometric model within a data base framework should support the use of Boolean operators which allow the user to construct a complex model by appropriately combining a series of simple models. The use of these operators leads to the concept of implicitly and explicitly defined surfaces. With an explicitly defined model, the surface area may be computed by simply summing the surface areas of the bounding surfaces. For an implicitly defined model, the surface area computation must deal with active and inactive regions. Because the surface intersection problem involves four unknowns and its solution is a space curve, the parametric coordinates of each surface must be determined as a function of the arc length. Various subproblems involved in the general intersection problem are discussed, and the mathematical basis for their solution is presented along with a program written in FORTRAN IV for implementation on the IBM 370 TSO system.

  10. Graphene-based non-Boolean logic circuits

    NASA Astrophysics Data System (ADS)

    Liu, Guanxiong; Ahsan, Sonia; Khitun, Alexander G.; Lake, Roger K.; Balandin, Alexander A.

    2013-10-01

    Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of "conventional" design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.

  11. Fast probabilistic file fingerprinting for big data

    PubMed Central

    2013-01-01

    Background Biological data acquisition is raising new challenges, both in data analysis and handling. Not only is it proving hard to analyze the data at the rate it is generated today, but simply reading and transferring data files can be prohibitively slow due to their size. This primarily concerns logistics within and between data centers, but is also important for workstation users in the analysis phase. Common usage patterns, such as comparing and transferring files, are proving computationally expensive and are tying down shared resources. Results We present an efficient method for calculating file uniqueness for large scientific data files, that takes less computational effort than existing techniques. This method, called Probabilistic Fast File Fingerprinting (PFFF), exploits the variation present in biological data and computes file fingerprints by sampling randomly from the file instead of reading it in full. Consequently, it has a flat performance characteristic, correlated with data variation rather than file size. We demonstrate that probabilistic fingerprinting can be as reliable as existing hashing techniques, with provably negligible risk of collisions. We measure the performance of the algorithm on a number of data storage and access technologies, identifying its strengths as well as limitations. Conclusions Probabilistic fingerprinting may significantly reduce the use of computational resources when comparing very large files. Utilisation of probabilistic fingerprinting techniques can increase the speed of common file-related workflows, both in the data center and for workbench analysis. The implementation of the algorithm is available as an open-source tool named pfff, as a command-line tool as well as a C library. The tool can be downloaded from http://biit.cs.ut.ee/pfff. PMID:23445565

  12. Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets.

    PubMed

    Chen, Jonathan H; Goldstein, Mary K; Asch, Steven M; Mackey, Lester; Altman, Russ B

    2017-05-01

    Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% ( P  < 10 -20 ) by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics yield natural clinical interpretations (e.g., "critical care," "pneumonia," "neurologic evaluation"). Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  13. Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets

    PubMed Central

    Goldstein, Mary K; Asch, Steven M; Mackey, Lester; Altman, Russ B

    2017-01-01

    Objective: Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. Materials and Methods: The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. Results: Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% (P < 10−20) by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics yield natural clinical interpretations (e.g., “critical care,” “pneumonia,” “neurologic evaluation”). Discussion: Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. Conclusion: Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support. PMID:27655861

  14. A Probabilistic Model of Illegal Drug Trafficking Operations in the Eastern Pacific and Caribbean Sea

    DTIC Science & Technology

    2013-09-01

    partner agencies and nations, detects, tracks, and interdicts illegal drug-trafficking in this region. In this thesis, we develop a probability model based...trafficking in this region. In this thesis, we develop a probability model based on intelligence inputs to generate a spatial temporal heat map specifying the...complement and vet such complicated simulation by developing more analytically tractable models. We develop probability models to generate a heat map

  15. Automation on the generation of genome-scale metabolic models.

    PubMed

    Reyes, R; Gamermann, D; Montagud, A; Fuente, D; Triana, J; Urchueguía, J F; de Córdoba, P Fernández

    2012-12-01

    Nowadays, the reconstruction of genome-scale metabolic models is a nonautomatized and interactive process based on decision making. This lengthy process usually requires a full year of one person's work in order to satisfactory collect, analyze, and validate the list of all metabolic reactions present in a specific organism. In order to write this list, one manually has to go through a huge amount of genomic, metabolomic, and physiological information. Currently, there is no optimal algorithm that allows one to automatically go through all this information and generate the models taking into account probabilistic criteria of unicity and completeness that a biologist would consider. This work presents the automation of a methodology for the reconstruction of genome-scale metabolic models for any organism. The methodology that follows is the automatized version of the steps implemented manually for the reconstruction of the genome-scale metabolic model of a photosynthetic organism, Synechocystis sp. PCC6803. The steps for the reconstruction are implemented in a computational platform (COPABI) that generates the models from the probabilistic algorithms that have been developed. For validation of the developed algorithm robustness, the metabolic models of several organisms generated by the platform have been studied together with published models that have been manually curated. Network properties of the models, like connectivity and average shortest mean path of the different models, have been compared and analyzed.

  16. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, E.; Milligan, M.

    2014-04-01

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprintmore » under different variable generation penetrations.« less

  17. Factors associated with sustained remission in patients with rheumatoid arthritis.

    PubMed

    Martire, María Victoria; Marino Claverie, Lucila; Duarte, Vanesa; Secco, Anastasia; Mammani, Marta

    2015-01-01

    To find out the factors that are associated with sustained remission measured by DAS28 and boolean ACR EULAR 2011 criteria at the time of diagnosis of rheumatoid arthritis. Medical records of patients with rheumatoid arthritis in sustained remission according to DAS28 were reviewed. They were compared with patients who did not achieved values of DAS28<2.6 in any visit during the first 3 years after diagnosis. We also evaluated if patients achieved the boolean ACR/EULAR criteria. Variables analyzed: sex, age, smoking, comorbidities, rheumatoid factor, anti-CCP, ESR, CRP, erosions, HAQ, DAS28, extra-articular manifestations, time to initiation of treatment, involvement of large joints, number of tender joints, number of swollen joints, pharmacological treatment. Forty five patients that achieved sustained remission were compared with 44 controls. The variables present at diagnosis that significantly were associated with remission by DAS28 were: lower values of DAS28, HAQ, ESR, NTJ, NSJ, negative CRP, absence of erosions, male sex and absence of involvement of large joints. Only 24.71% achieved the boolean criteria. The variables associated with sustained remission by these criteria were: lower values of DAS28, HAQ, ESR, number of tender joints and number of swollen joints, negative CRP and absence of erosions. The factors associated with sustained remission were the lower baseline disease activity, the low degree of functional disability and lower joint involvement. We consider it important to recognize these factors to optimize treatment. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  18. Jimena: efficient computing and system state identification for genetic regulatory networks.

    PubMed

    Karl, Stefan; Dandekar, Thomas

    2013-10-11

    Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.

  19. Computing smallest intervention strategies for multiple metabolic networks in a boolean model.

    PubMed

    Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya

    2015-02-01

    This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small networks do not have many alternative pathways, making it difficult to satisfy the MKMN condition, whereas in large networks the number of candidate solutions explodes. Our developed software minFvskO is available online.

  20. Bibliographic Instruction in the 21st Century.

    ERIC Educational Resources Information Center

    Poirier, Gayle

    2000-01-01

    Discusses bibliographic instruction in libraries. Topics include a history of bibliographic instruction; the Internet and electronic searching; librarians' use of technology; defining information needs; locating and accessing information, including classification systems and Boolean searching; evaluating information; using and communication…

  1. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1993-01-01

    Strategies and tools for the testing, risk assessment and risk control of dependable software-based systems were developed. Part of this project consists of studies to enable the transfer of technology to industry, for example the risk management techniques for safety-concious systems. Theoretical investigations of Boolean and Relational Operator (BRO) testing strategy were conducted for condition-based testing. The Basic Graph Generation and Analysis tool (BGG) was extended to fully incorporate several variants of the BRO metric. Single- and multi-phase risk, coverage and time-based models are being developed to provide additional theoretical and empirical basis for estimation of the reliability and availability of large, highly dependable software. A model for software process and risk management was developed. The use of cause-effect graphing for software specification and validation was investigated. Lastly, advanced software fault-tolerance models were studied to provide alternatives and improvements in situations where simple software fault-tolerance strategies break down.

  2. Biosensors with Built-In Biomolecular Logic Gates for Practical Applications

    PubMed Central

    Lai, Yu-Hsuan; Sun, Sin-Cih; Chuang, Min-Chieh

    2014-01-01

    Molecular logic gates, designs constructed with biological and chemical molecules, have emerged as an alternative computing approach to silicon-based logic operations. These molecular computers are capable of receiving and integrating multiple stimuli of biochemical significance to generate a definitive output, opening a new research avenue to advanced diagnostics and therapeutics which demand handling of complex factors and precise control. In molecularly gated devices, Boolean logic computations can be activated by specific inputs and accurately processed via bio-recognition, bio-catalysis, and selective chemical reactions. In this review, we survey recent advances of the molecular logic approaches to practical applications of biosensors, including designs constructed with proteins, enzymes, nucleic acids, nanomaterials, and organic compounds, as well as the research avenues for future development of digitally operating “sense and act” schemes that logically process biochemical signals through networked circuits to implement intelligent control systems. PMID:25587423

  3. On Emulation of Flueric Devices in Excitable Chemical Medium

    PubMed Central

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561

  4. Using Volunteer Computing to Study Some Features of Diagonal Latin Squares

    NASA Astrophysics Data System (ADS)

    Vatutin, Eduard; Zaikin, Oleg; Kochemazov, Stepan; Valyaev, Sergey

    2017-12-01

    In this research, the study concerns around several features of diagonal Latin squares (DLSs) of small order. Authors of the study suggest an algorithm for computing minimal and maximal numbers of transversals of DLSs. According to this algorithm, all DLSs of a particular order are generated, and for each square all its transversals and diagonal transversals are constructed. The algorithm was implemented and applied to DLSs of order at most 7 on a personal computer. The experiment for order 8 was performed in the volunteer computing project Gerasim@home. In addition, the problem of finding pairs of orthogonal DLSs of order 10 was considered and reduced to Boolean satisfiability problem. The obtained problem turned out to be very hard, therefore it was decomposed into a family of subproblems. In order to solve the problem, the volunteer computing project SAT@home was used. As a result, several dozen pairs of described kind were found.

  5. On Emulation of Flueric Devices in Excitable Chemical Medium.

    PubMed

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  6. An algorithmic approach to solving polynomial equations associated with quantum circuits

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Zinin, M. V.

    2009-12-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.

  7. Data Auditor: Analyzing Data Quality Using Pattern Tableaux

    NASA Astrophysics Data System (ADS)

    Srivastava, Divesh

    Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.

  8. Earthquake mechanism and seafloor deformation for tsunami generation

    USGS Publications Warehouse

    Geist, Eric L.; Oglesby, David D.; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Tsunamis are generated in the ocean by rapidly displacing the entire water column over a significant area. The potential energy resulting from this disturbance is balanced with the kinetic energy of the waves during propagation. Only a handful of submarine geologic phenomena can generate tsunamis: large-magnitude earthquakes, large landslides, and volcanic processes. Asteroid and subaerial landslide impacts can generate tsunami waves from above the water. Earthquakes are by far the most common generator of tsunamis. Generally, earthquakes greater than magnitude (M) 6.5–7 can generate tsunamis if they occur beneath an ocean and if they result in predominantly vertical displacement. One of the greatest uncertainties in both deterministic and probabilistic hazard assessments of tsunamis is computing seafloor deformation for earthquakes of a given magnitude.

  9. Evaluating the uncertainty of predicting future climate time series at the hourly time scale

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2011-12-01

    A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.

  10. Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI.

    PubMed

    Elliott, Colm; Arnold, Douglas L; Collins, D Louis; Arbel, Tal

    2013-08-01

    Detection of new Multiple Sclerosis (MS) lesions on magnetic resonance imaging (MRI) is important as a marker of disease activity and as a potential surrogate for relapses. We propose an approach where sequential scans are jointly segmented, to provide a temporally consistent tissue segmentation while remaining sensitive to newly appearing lesions. The method uses a two-stage classification process: 1) a Bayesian classifier provides a probabilistic brain tissue classification at each voxel of reference and follow-up scans, and 2) a random-forest based lesion-level classification provides a final identification of new lesions. Generative models are learned based on 364 scans from 95 subjects from a multi-center clinical trial. The method is evaluated on sequential brain MRI of 160 subjects from a separate multi-center clinical trial, and is compared to 1) semi-automatically generated ground truth segmentations and 2) fully manual identification of new lesions generated independently by nine expert raters on a subset of 60 subjects. For new lesions greater than 0.15 cc in size, the classifier has near perfect performance (99% sensitivity, 2% false detection rate), as compared to ground truth. The proposed method was also shown to exceed the performance of any one of the nine expert manual identifications.

  11. Minimizing Expected Maximum Risk from Cyber-Attacks with Probabilistic Attack Success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuiyan, Tanveer H.; Nandi, Apurba; Medal, Hugh

    The goal of our work is to enhance network security by generating partial cut-sets, which are a subset of edges that remove paths from initially vulnerable nodes (initial security conditions) to goal nodes (critical assets), on an attack graph given costs for cutting an edge and a limited overall budget.

  12. Making Heads or Tails of Probability: An Experiment with Random Generators

    ERIC Educational Resources Information Center

    Morsanyi, Kinga; Handley, Simon J.; Serpell, Sylvie

    2013-01-01

    Background: The equiprobability bias is a tendency for individuals to think of probabilistic events as "equiprobable" by nature, and to judge outcomes that occur with different probabilities as equally likely. The equiprobability bias has been repeatedly found to be related to formal education in statistics, and it is claimed to be based…

  13. The Monty Hall Problem as a Class Activity Using Clickers

    ERIC Educational Resources Information Center

    Irons, Stephen H.

    2012-01-01

    Demonstrating probabilistic outcomes using real-time data is especially well-suited to larger lecture classes where one can generate large data sets easily. The difficulty comes in quickly collecting, analyzing, and displaying the information. With the advent of wireless polling technology (clickers), this difficulty is removed. In this paper we…

  14. Professional Development of Mathematics Teachers Implementing Probabilistic Simulations in Elementary School Classrooms

    ERIC Educational Resources Information Center

    de Oliveira Souza, Leandro; Lopes, Celi Espasandin; de Oliveira Mendonça, Luzinete

    2014-01-01

    The inclusion of statistics and probability in the mathematics curriculum has always generated challenges to mathematics teachers of elementary schools. This article discusses activities that promote the professional development of such teachers. We present part of a doctoral research study of 16 teachers in which we discuss two case studies of…

  15. The Generation and Resemblance Heuristics in Face Recognition: Cooperation and Competition

    ERIC Educational Resources Information Center

    Kleider, Heather M.; Goldinger, Stephen D.

    2006-01-01

    Like all probabilistic decisions, recognition memory judgments are based on inferences about the strength and quality of stimulus familiarity. In recent articles, B. W. A. Whittlesea and J. Leboe (2000; J. Leboe & B. W. A. Whittlesea, 2002) proposed that such memory decisions entail various heuristics, similar to well-known heuristics in overt…

  16. Source processes for the probabilistic assessment of tsunami hazards

    USGS Publications Warehouse

    Geist, Eric L.; Lynett, Patrick J.

    2014-01-01

    The importance of tsunami hazard assessment has increased in recent years as a result of catastrophic consequences from events such as the 2004 Indian Ocean and 2011 Japan tsunamis. In particular, probabilistic tsunami hazard assessment (PTHA) methods have been emphasized to include all possible ways a tsunami could be generated. Owing to the scarcity of tsunami observations, a computational approach is used to define the hazard. This approach includes all relevant sources that may cause a tsunami to impact a site and all quantifiable uncertainty. Although only earthquakes were initially considered for PTHA, recent efforts have also attempted to include landslide tsunami sources. Including these sources into PTHA is considerably more difficult because of a general lack of information on relating landslide area and volume to mean return period. The large variety of failure types and rheologies associated with submarine landslides translates to considerable uncertainty in determining the efficiency of tsunami generation. Resolution of these and several other outstanding problems are described that will further advance PTHA methodologies leading to a more accurate understanding of tsunami hazard.

  17. Managing flowback and produced water from hydraulic fracturing under stochastic environment

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Sun, A. Y.; Duncan, I. J.; Vesselinov, V. V.

    2017-12-01

    A large volume of wastewater is being generated from hydraulic fracturing in shale gas plays, including flowback and produced water. The produced wastewater in terms of its quantity and quality has become one of the main environmental problems facing shale gas industries worldwide. Cost-effective planning and management of flowback and produced water is highly desirable. Careful choice of treatment, disposal, and reuse options can lower costs and reduce potential environmental impacts. To handle the recourse issue in decision-making, a two-stage stochastic management model is developed to provide optimal alternatives for fracturing wastewater management. The proposed model is capable of prompting corrective actions to allow decision makers to adjust the pre-defined management strategies. By using this two-stage model, potential penalties arising from decision infeasibility can be minimized. The applicability of the proposed model is demonstrated using a representative synthetic example, in which tradeoffs between economic and environmental goals are quantified. This approach can generate informed defensible decisions for shale gas wastewater management. In addition, probabilistic and non-probabilistic uncertainties are effectively addressed.

  18. A probabilistic approach to photovoltaic generator performance prediction

    NASA Astrophysics Data System (ADS)

    Khallat, M. A.; Rahman, S.

    1986-09-01

    A method for predicting the performance of a photovoltaic (PV) generator based on long term climatological data and expected cell performance is described. The equations for cell model formulation are provided. Use of the statistical model for characterizing the insolation level is discussed. The insolation data is fitted to appropriate probability distribution functions (Weibull, beta, normal). The probability distribution functions are utilized to evaluate the capacity factors of PV panels or arrays. An example is presented revealing the applicability of the procedure.

  19. Probabilistic Description of Fatigue Crack Growth Under Constant-and Variable-Amplitude Loading

    DTIC Science & Technology

    1989-03-01

    plane, see figure 14. The length of the defected crack component and its angle, b and q, respectively, in Figure 15 were found to depend on the crack...length at which the defection occurs; as the crack length increases, b increases while q decreases. Due to the orientation of the deflected component...Breakpoint Voltage to Fun. Generator Output Setpoint Voltage Take Function Generator Gate High Start Test LNext page 153 Q! ~From last ag lastr DMAe 70

  20. Probabilistic Learning in Junior High School: Investigation of Student Probabilistic Thinking Levels

    NASA Astrophysics Data System (ADS)

    Kurniasih, R.; Sujadi, I.

    2017-09-01

    This paper was to investigate level on students’ probabilistic thinking. Probabilistic thinking level is level of probabilistic thinking. Probabilistic thinking is thinking about probabilistic or uncertainty matter in probability material. The research’s subject was students in grade 8th Junior High School students. The main instrument is a researcher and a supporting instrument is probabilistic thinking skills test and interview guidelines. Data was analyzed using triangulation method. The results showed that the level of students probabilistic thinking before obtaining a teaching opportunity at the level of subjective and transitional. After the students’ learning level probabilistic thinking is changing. Based on the results of research there are some students who have in 8th grade level probabilistic thinking numerically highest of levels. Level of students’ probabilistic thinking can be used as a reference to make a learning material and strategy.

  1. Stochastic Controls on Nitrate Transport and Cycling

    NASA Astrophysics Data System (ADS)

    Botter, G.; Settin, T.; Alessi Celegon, E.; Marani, M.; Rinaldo, A.

    2005-12-01

    In this paper, the impact of nutrient inputs on basin-scale nitrates losses is investigated in a probabilistic framework by means of a continuous, geomorphologically based, Montecarlo approach, which explicitly tackles the random character of the processes controlling nitrates generation, transformation and transport in river basins. This is obtained by coupling the stochastic generation of climatic and rainfall series with simplified hydrologic and biogeochemical models operating at the hillslope scale. Special attention is devoted to the spatial and temporal variability of nitrogen sources of agricultural origin and to the effect of temporally distributed rainfall fields on the ensuing nitrates leaching. The influence of random climatic variables on bio-geochemical processes affecting the nitrogen cycle in the soil-water system (e.g. plant uptake, nitrification and denitrification, mineralization), is also considered. The approach developed has been applied to a catchment located in North-Eastern Italy and is used to provide probabilistic estimates of the NO_3 load transferred downstream, which is received and accumulated in the Venice lagoon. We found that the nitrogen load introduced by fertilizations significantly affects the pdf of the nitrates content in the soil moisture, leading to prolonged risks of increased nitrates leaching from soil. The model allowed the estimation of the impact of different practices on the probabilistic structure of the basin-scale hydrologic and chemical response. As a result, the return period of the water volumes and of the nitrates loads released into the Venice lagoon has been linked directly to the ongoing climatic, pluviometric and agricultural regimes, with relevant implications for environmental planning activities aimed at achieving sustainable management practices.

  2. The analysis of probability task completion; Taxonomy of probabilistic thinking-based across gender in elementary school students

    NASA Astrophysics Data System (ADS)

    Sari, Dwi Ivayana; Budayasa, I. Ketut; Juniati, Dwi

    2017-08-01

    Formulation of mathematical learning goals now is not only oriented on cognitive product, but also leads to cognitive process, which is probabilistic thinking. Probabilistic thinking is needed by students to make a decision. Elementary school students are required to develop probabilistic thinking as foundation to learn probability at higher level. A framework of probabilistic thinking of students had been developed by using SOLO taxonomy, which consists of prestructural probabilistic thinking, unistructural probabilistic thinking, multistructural probabilistic thinking and relational probabilistic thinking. This study aimed to analyze of probability task completion based on taxonomy of probabilistic thinking. The subjects were two students of fifth grade; boy and girl. Subjects were selected by giving test of mathematical ability and then based on high math ability. Subjects were given probability tasks consisting of sample space, probability of an event and probability comparison. The data analysis consisted of categorization, reduction, interpretation and conclusion. Credibility of data used time triangulation. The results was level of boy's probabilistic thinking in completing probability tasks indicated multistructural probabilistic thinking, while level of girl's probabilistic thinking in completing probability tasks indicated unistructural probabilistic thinking. The results indicated that level of boy's probabilistic thinking was higher than level of girl's probabilistic thinking. The results could contribute to curriculum developer in developing probability learning goals for elementary school students. Indeed, teachers could teach probability with regarding gender difference.

  3. Intervention in gene regulatory networks with maximal phenotype alteration.

    PubMed

    Yousefi, Mohammadmahdi R; Dougherty, Edward R

    2013-07-15

    A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior. We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN. Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b. edward@ece.tamu.edu Supplementary data are available at Bioinformatics online.

  4. Superior model for fault tolerance computation in designing nano-sized circuit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com; Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalizationmore » of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.« less

  5. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    NASA Astrophysics Data System (ADS)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a random sample of the predictand, and has an acceptable sampling error-which makes it suitable for rational decision making under uncertainty.

  6. Verification of recursive probabilistic integration (RPI) method for fatigue life management using non-destructive inspections

    NASA Astrophysics Data System (ADS)

    Chen, Tzikang J.; Shiao, Michael

    2016-04-01

    This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.

  7. Role of the first and second person perspective for control of behaviour: Understanding other people's facial expressions.

    PubMed

    Potthoff, Denise; Seitz, Rüdiger J

    2015-12-01

    Humans typically make probabilistic inferences about another person's affective state based on her/his bodily movements such as emotional facial expressions, emblematic gestures and whole body movements. Furthermore, humans deduce tentative predictions about the other person's intentions. Thus, the first person perspective of a subject is supplemented by the second person perspective involving theory of mind and empathy. Neuroimaging investigations have shown that the medial and lateral frontal cortex are critical nodes in the circuits underlying theory of mind, empathy, as well as intention of action. It is suggested that personal perspective taking in social interactions is paradigmatic for the capability of humans to generate probabilistic accounts of the outside world that underlie a person's control of behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Wlan-Based Indoor Localization Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Saleem, Fasiha; Wyne, Shurjeel

    2016-07-01

    Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.

  9. Applications of 4-state nanomagnetic logic using multiferroic nanomagnets possessing biaxial magnetocrystalline anisotropy and experiments on 2-state multiferroic nanomagnetic logic

    NASA Astrophysics Data System (ADS)

    D'Souza, Noel Michael

    Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, "straintronics", involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (˜0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain-based switching in 2-state single-domain ellipsoidal magnetostrictive nanomagnets of lateral dimensions ˜200 nm fabricated on a piezoelectric substrate (PMN-PT) and studied using Magnetic Force Microscopy (MFM). A nanomagnetic Boolean NOT gate and unidirectional bit information propagation through a finite chain of dipole-coupled nanomagnets are also shown through strain-based "clocking". This is the first experimental demonstration of strain-based switching in nanomagnets and clocking of nanomagnetic logic (Boolean NOT gate), as well as logic propagation in an array of nanomagnets.

  10. Development of optimization-based probabilistic earthquake scenarios for the city of Tehran

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M. R.; Peyghaleh, E.

    2016-01-01

    This paper presents the methodology and practical example for the application of optimization process to select earthquake scenarios which best represent probabilistic earthquake hazard in a given region. The method is based on simulation of a large dataset of potential earthquakes, representing the long-term seismotectonic characteristics in a given region. The simulation process uses Monte-Carlo simulation and regional seismogenic source parameters to generate a synthetic earthquake catalogue consisting of a large number of earthquakes, each characterized with magnitude, location, focal depth and fault characteristics. Such catalogue provides full distributions of events in time, space and size; however, demands large computation power when is used for risk assessment, particularly when other sources of uncertainties are involved in the process. To reduce the number of selected earthquake scenarios, a mixed-integer linear program formulation is developed in this study. This approach results in reduced set of optimization-based probabilistic earthquake scenario, while maintaining shape of hazard curves and full probabilistic picture by minimizing the error between hazard curves driven by full and reduced sets of synthetic earthquake scenarios. To test the model, the regional seismotectonic and seismogenic characteristics of northern Iran are used to simulate a set of 10,000-year worth of events consisting of some 84,000 earthquakes. The optimization model is then performed multiple times with various input data, taking into account probabilistic seismic hazard for Tehran city as the main constrains. The sensitivity of the selected scenarios to the user-specified site/return period error-weight is also assessed. The methodology could enhance run time process for full probabilistic earthquake studies like seismic hazard and risk assessment. The reduced set is the representative of the contributions of all possible earthquakes; however, it requires far less computation power. The authors have used this approach for risk assessment towards identification of effectiveness-profitability of risk mitigation measures, using optimization model for resource allocation. Based on the error-computation trade-off, 62-earthquake scenarios are chosen to be used for this purpose.

  11. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    EPA Science Inventory

    With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate t...

  12. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  13. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression (S)

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  14. Digital Equipment Corporation's CRDOM Software and Database Publications.

    ERIC Educational Resources Information Center

    Adams, Michael Q.

    1986-01-01

    Acquaints information professionals with Digital Equipment Corporation's compact optical disk read-only-memory (CDROM) search and retrieval software and growing library of CDROM database publications (COMPENDEX, Chemical Abstracts Services). Highlights include MicroBASIS, boolean operators, range operators, word and phrase searching, proximity…

  15. Topics for Mathematics Clubs.

    ERIC Educational Resources Information Center

    Dalton, LeRoy C., Ed.; Snyder, Henry D., Ed.

    The ten chapters in this booklet cover topics not ordinarily discussed in the classroom: Fibonacci sequences, projective geometry, groups, infinity and transfinite numbers, Pascal's Triangle, topology, experiments with natural numbers, non-Euclidean geometries, Boolean algebras, and the imaginary and the infinite in geometry. Each chapter is…

  16. Multi-agent simulation of generation expansion in electricity markets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botterud, A; Mahalik, M. R.; Veselka, T. D.

    2007-06-01

    We present a new multi-agent model of generation expansion in electricity markets. The model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitors actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We test the model using real data for the Korea power system under different assumptions about market design, market concentration, and GenCo'smore » assumed expectations about their competitors investment decisions.« less

  17. Discriminate the response of Acute Myeloid Leukemia patients to treatment by using proteomics data and Answer Set Programming.

    PubMed

    Chebouba, Lokmane; Miannay, Bertrand; Boughaci, Dalila; Guziolowski, Carito

    2018-03-08

    During the last years, several approaches were applied on biomedical data to detect disease specific proteins and genes in order to better target drugs. It was shown that statistical and machine learning based methods use mainly clinical data and improve later their results by adding omics data. This work proposes a new method to discriminate the response of Acute Myeloid Leukemia (AML) patients to treatment. The proposed approach uses proteomics data and prior regulatory knowledge in the form of networks to predict cancer treatment outcomes by finding out the different Boolean networks specific to each type of response to drugs. To show its effectiveness we evaluate our method on a dataset from the DREAM 9 challenge. The results are encouraging and demonstrate the benefit of our approach to distinguish patient groups with different response to treatment. In particular each treatment response group is characterized by a predictive model in the form of a signaling Boolean network. This model describes regulatory mechanisms which are specific to each response group. The proteins in this model were selected from the complete dataset by imposing optimization constraints that maximize the difference in the logical response of the Boolean network associated to each group of patients given the omic dataset. This mechanistic and predictive model also allow us to classify new patients data into the two different patient response groups. We propose a new method to detect the most relevant proteins for understanding different patient responses upon treatments in order to better target drugs using a Prior Knowledge Network and proteomics data. The results are interesting and show the effectiveness of our method.

  18. ASP-G: an ASP-based method for finding attractors in genetic regulatory networks

    PubMed Central

    Mushthofa, Mushthofa; Torres, Gustavo; Van de Peer, Yves; Marchal, Kathleen; De Cock, Martine

    2014-01-01

    Motivation: Boolean network models are suitable to simulate GRNs in the absence of detailed kinetic information. However, reducing the biological reality implies making assumptions on how genes interact (interaction rules) and how their state is updated during the simulation (update scheme). The exact choice of the assumptions largely determines the outcome of the simulations. In most cases, however, the biologically correct assumptions are unknown. An ideal simulation thus implies testing different rules and schemes to determine those that best capture an observed biological phenomenon. This is not trivial because most current methods to simulate Boolean network models of GRNs and to compute their attractors impose specific assumptions that cannot be easily altered, as they are built into the system. Results: To allow for a more flexible simulation framework, we developed ASP-G. We show the correctness of ASP-G in simulating Boolean network models and obtaining attractors under different assumptions by successfully recapitulating the detection of attractors of previously published studies. We also provide an example of how performing simulation of network models under different settings help determine the assumptions under which a certain conclusion holds. The main added value of ASP-G is in its modularity and declarativity, making it more flexible and less error-prone than traditional approaches. The declarative nature of ASP-G comes at the expense of being slower than the more dedicated systems but still achieves a good efficiency with respect to computational time. Availability and implementation: The source code of ASP-G is available at http://bioinformatics.intec.ugent.be/kmarchal/Supplementary_Information_Musthofa_2014/asp-g.zip. Contact: Kathleen.Marchal@UGent.be or Martine.DeCock@UGent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25028722

  19. Intelligent Machines in the 21st Century: Automating the Processes of Inference and Inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    The last century saw the application of Boolean algebra toward the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines. in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. However, modern intelligent machines work by inferring knowledge using only their pre-programmed prior knowledge and the data provided. They lack the ability to ask questions, or request data that would aid their inferences. Recent advances in understanding the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we identified the algebra of questions as the free distributive algebra, which now allows us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper we describe this logic of inference and inquiry using the mathematics of partially ordered sets and the scaffolding of lattice theory, discuss the far-reaching implications of the methodology, and demonstrate its application with current examples in machine learning. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them to not only make inferences from data, but also decide which question to ask, experiment to perform, or measurement to take given what they have learned and what they are designed to understand.

  20. Computing Smallest Intervention Strategies for Multiple Metabolic Networks in a Boolean Model

    PubMed Central

    Lu, Wei; Song, Jiangning; Akutsu, Tatsuya

    2015-01-01

    Abstract This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small networks do not have many alternative pathways, making it difficult to satisfy the MKMN condition, whereas in large networks the number of candidate solutions explodes. Our developed software minFvskO is available online. PMID:25684199

Top