Sample records for generating station unit

  1. 75 FR 8149 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3... Verde Nuclear Generating Station (PVNGS, the facility), Units 1, 2, and 3, respectively, located in... for the Palo Verde Nuclear Generating Station, Units 1, 2, and 3, NUREG- 0841, dated February 1982...

  2. 78 FR 47800 - License Renewal Application for Byron Station, Units 1 and 2; Exelon Generation Company, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Application for Byron Station, Units 1 and 2; Exelon Generation Company, LLC AGENCY: Nuclear Regulatory..., Units 1 and 2 (Byron). Byron Station is located in Byron, Illinois. The current operating license for Byron Station, Unit 1, expires on October 31, 2024, and Unit 2, expires on November 6, 2026. DATES: The...

  3. 75 FR 6223 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311 and 50-354; NRC-2010-0043] PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an Exemption, pursuant...

  4. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311, 50-354; NRC-2009-0390 and NRC-2009-0391] PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2; Notice of Availability of the Final Supplement 45 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants Notice is...

  5. 75 FR 52045 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental Assessment and Finding of No.... NPF-74, issued to Arizona Public Service Company (APS, the licensee), for operation of Palo Verde... Statement for the Palo Verde Nuclear Generating Station, NUREG-0841, dated February 1982. Agencies and...

  6. 75 FR 58445 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 AND 50-278; NRC-2010-0303] Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental Assessment and Finding of... Bottom Atomic Power Station (PBAPS), Unit Nos. 2 and 3, located in York and Lancaster Counties...

  7. 76 FR 25378 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 and 50-278; NRC-2011-0101] Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Units 2 and 3; Notice of Withdrawal of... for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located in York and Lancaster...

  8. 75 FR 6071 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-277 and 50-278; NRC-2010-0042] Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station Units 2 and 3; Notice of Withdrawal of... and DPR-56 for the Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, located in York and...

  9. 75 FR 36700 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ...; Three Mile Island Nuclear Station, Unit 1; Environmental Assessment and Finding of No Significant Impact... Company, LLC (the licensee), for operation of Three Mile Island Nuclear Station, Unit 1 (TMI-1), located... Three Mile Island Nuclear Station, Units 1 and 2, NUREG-0552, dated December 1972, and Generic...

  10. 18. VIEW OF TURBINEGENERATOR UNIT NO. 19, MANUFACTURED BY GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF TURBINE-GENERATOR UNIT NO. 19, MANUFACTURED BY GENERAL ELECTRIC IN 1959 AND RATED AT 342 MEGAWATTS; IT REMAINS IN OPERATION. THIS VIEW IS INSIDE THE GENERATING STATION OF 1959. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  11. 76 FR 29277 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3; Environmental Assessment and Finding of..., LLC (Exelon, the licensee) for operation of the Peach Bottom Atomic Power Station, Units 2 and 3...) in the Peach Bottom Atomic Power Station (PBAPS) LLRW Storage Facility. Considering the nature of the...

  12. Station blackout transient at the Browns Ferry Unit 1 Plant: a severe accident sequence analysis (SASA) program study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, R.R.

    1982-01-01

    Operating plant transients are of great interest for many reasons, not the least of which is the potential for a mild transient to degenerate to a severe transient yielding core damage. Using the Browns Ferry (BF) Unit-1 plant as a basis of study, the station blackout sequence was investigated by the Severe Accident Sequence Analysis (SASA) Program in support of the Nuclear Regulatory Commission's Unresolved Safety Issue A-44: Station Blackout. A station blackout transient occurs when the plant's AC power from a comemrcial power grid is lost and cannot be restored by the diesel generators. Under normal operating conditions, fmore » a loss of offsite power (LOSP) occurs (i.e., a complete severance of the BF plants from the Tennessee Valley Authority (TVA) power grid), the eight diesel generators at the three BF units would quickly start and power the emergency AC buses. Of the eight diesel generators, only six are needed to safely shut down all three units. Examination of BF-specific data show that LOSP frequency is low at Unit 1. The station blackout frequency is even lower (5.7 x 10/sup -4/ events per year) and hinges on whether the diesel generators start. The frequency of diesel generator failure is dictated in large measure by the emergency equipment cooling water (EECW) system that cools the diesel generators.« less

  13. 78 FR 46379 - Exelon Generation Company, LLC, License Renewal Application for Braidwood Station, Units 1 and 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ...On May 29, 2013, Exelon Generation Company, LLC (Exelon) submitted an application to the U.S. Nuclear Regulatory Commission (NRC) for renewal of Facility Operating Licenses (NPF-72 and NPF-77) for an additional 20 years of operation for Braidwood Station, Units 1 and 2. Braidwood Station is located in Will County, Illinois. The current operating licenses for Braidwood Station, Units 1 and 2, expire on October 17, 2026 and December 18, 2027, respectively. This notice advises the public that the NRC intends to gather information to prepare an EIS on the proposed license renewal.

  14. 78 FR 50455 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Changes to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Changes to the Chemical Volume Control System AGENCY: Nuclear Regulatory Commission. ACTION: Exemption and combined license amendment; issuance... Nuclear Operating Company, Inc., and Georgia Power Company, Oglethorpe Power Corporation, Municipal...

  15. 78 FR 45989 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to the Primary Sampling System.... The amendment requests to modify the Primary Sampling System (PSS) design, including changes to Tier 1....13-1 ``Primary Sampling System,'' and Subsection 2.3.13, ``Primary Sampling System'' of the Updated...

  16. 78 FR 45987 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to the Primary Sampling System.... The amendment requests to modify the Primary Sampling System (PSS) design, including changes to Tier 1....13-1 ``Primary Sampling System,'' and Subsection 2.3.13, ``Primary Sampling System'' of the Updated...

  17. 75 FR 13801 - Exelon Generation Company, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Extending the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2008-0285; Docket Nos. 50-295 and 50-304; License Nos. DPR-39 and DPR-48] Exelon Generation Company, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Extending the Effectiveness of the Approval of the Transfer of License and Conforming Amendment I Exelon...

  18. 75 FR 13606 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. STN 50-528, STN 50-529, and STN 50-530; NRC-2010-0114] Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Environmental...-74, issued to Arizona Public Service Company (APS, the licensee), for operation of the Palo Verde...

  19. Gas-turbine expander power generating systems for internal needs of compressor stations of gas-main pipelines

    NASA Astrophysics Data System (ADS)

    Shimanov, A. A.; Biryuk, V. V.; Sheludko, L. P.; Shabanov, K. Yu.

    2017-08-01

    In the framework of this paper, there have been analyzed power station building methods to construct a power station for utilities for gas-main pipelines compressor stations. The application efficiency of turbo expanders in them to expand the power gas of compressor stations' gas compressor units has been shown. New schemes for gas-turbine expander power generating systems have been proposed.

  20. Concentrating Solar Power Projects - Solar Electric Generating Station IX |

    Science.gov Websites

    Station IX (SEGS IX) Country: United States Location: Harper Dry Lake, California (Mojave Desert) Owner(s : Parabolic trough Status: Operational Country: United States City: Harper Dry Lake State: California County

  1. 76 FR 11522 - Nuclear Innovation North America LLC; Notice of Availability of the Final Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Regulatory Commission (NRC) and the U.S. Army Corps of Engineers as a cooperating agency have published a... Licenses (COLs) at the South Texas Project Electric Generating Station Units 3 and 4: Final Report'' for the South Texas Project Electric Generating Station Units 3 and 4 COL application. The draft EIS was...

  2. Wood River recovery project -- speed and cooperation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franczak, D.F.; Santschi, M.F.; Sander, S.

    1998-12-31

    A unit trip is a situation avoided by power generators because it affects their bottom line. The ability to recover from the trip quickly, and restore MW generation is the desired goal. However, what do you do if you lose your unit to a disastrous fire? How do you recover from this situation? This will be the subject of this paper describing such an event which affected the Illinois Power Company`s (IPC) operation. IPC`s Wood River Power Station suffered a disastrous fire which knocked out the Station`s only two operable units--4 and 5. The fire was the result of amore » coal mill explosion and damaged beyond repair, the units control systems and operating capabilities. A total of 488 MW in generating capacity was lost at a time when the IPC system required all available generation now, and in the foreseeable future. This paper will describe the event, the immediate mobilization efforts, and the challenges of recovering both units in the most expedient time frame possible. The keys to the success of the recovery project will be described in detail.« less

  3. 77 FR 23161 - Onsite Emergency Response Capabilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... entire facility. The emergency diesel generators started at all six units, providing alternating current... known as station blackout (SBO). One diesel generator remained functional on Unit 6. Despite the actions...

  4. 76 FR 187 - Programmatic Environmental Assessment and Final Finding of No Significant Impact for Exemptions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... proposed action may include issuing exemptions to nuclear power plant licensees for up to 40 nuclear power.... Fitzpatrick Nuclear Power Plant Joseph M. Farley Nuclear Plant, Units 1 and 2 Millstone Power Station, Unit... Palisades Nuclear Plant Palo Verde Nuclear Generating Station, Units 1, 2, and 3 Perry Nuclear Power Plant...

  5. 77 FR 66484 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Generating Station, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI) report, NEI 06-11, Revision 1... exclusion, set forth in 10 CFR 51.22(c)(25). Pursuant to 10 CFR 51.22(b), no environmental impact statement...

  6. Study on Operation Optimization of Pumping Station's 24 Hours Operation under Influences of Tides and Peak-Valley Electricity Prices

    NASA Astrophysics Data System (ADS)

    Yi, Gong; Jilin, Cheng; Lihua, Zhang; Rentian, Zhang

    2010-06-01

    According to different processes of tides and peak-valley electricity prices, this paper determines the optimal start up time in pumping station's 24 hours operation between the rating state and adjusting blade angle state respectively based on the optimization objective function and optimization model for single-unit pump's 24 hours operation taking JiangDu No.4 Pumping Station for example. In the meantime, this paper proposes the following regularities between optimal start up time of pumping station and the process of tides and peak-valley electricity prices each day within a month: (1) In the rating and adjusting blade angle state, the optimal start up time in pumping station's 24 hours operation which depends on the tide generation at the same day varies with the process of tides. There are mainly two kinds of optimal start up time which include the time at tide generation and 12 hours after it. (2) In the rating state, the optimal start up time on each day in a month exhibits a rule of symmetry from 29 to 28 of next month in the lunar calendar. The time of tide generation usually exists in the period of peak electricity price or the valley one. The higher electricity price corresponds to the higher minimum cost of water pumping at unit, which means that the minimum cost of water pumping at unit depends on the peak-valley electricity price at the time of tide generation on the same day. (3) In the adjusting blade angle state, the minimum cost of water pumping at unit in pumping station's 24 hour operation depends on the process of peak-valley electricity prices. And in the adjusting blade angle state, 4.85%˜5.37% of the minimum cost of water pumping at unit will be saved than that of in the rating state.

  7. 7 CFR 1794.21 - Categorically excluded proposals without an ER.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... five percent or less; (18) Construction of a battery energy storage system at an existing generating... uprating of an existing unit(s) at a fossil-fueled generating station in order to improve the efficiency or...

  8. 7 CFR 1794.21 - Categorically excluded proposals without an ER.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... five percent or less; (18) Construction of a battery energy storage system at an existing generating... uprating of an existing unit(s) at a fossil-fueled generating station in order to improve the efficiency or...

  9. 7 CFR 1794.21 - Categorically excluded proposals without an ER.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... five percent or less; (18) Construction of a battery energy storage system at an existing generating... uprating of an existing unit(s) at a fossil-fueled generating station in order to improve the efficiency or...

  10. 77 FR 15142 - Sunshine Federal Register Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    .... Luminant Generation Company LLC (Comanche Peak Nuclear Power Plant, Units 3 and 4); Energy Northwest (Columbia Generating Station); Southern Nuclear Operating Co. (Vogtle Electric Generating Plant, Units 3 and... subscribers. If you no longer wish to receive it, or would like to be added to the distribution, please...

  11. 77 FR 41814 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... Unit 1 result primarily from periodic testing of diesel generators and fire water pump diesel engines... rural. GGNS Unit 1 is a General Electric Mark 3 boiling-water reactor. Identification of the Proposed... following: replacing the reactor feed pump turbine rotors; replacing the main generator current transformers...

  12. Antenna unit and radio base station therewith

    DOEpatents

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  13. 75 FR 6736 - FirstEnergy Nuclear Operating Company, FirstEnergy Nuclear Generation Corp., Ohio Edison Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ..., Beaver Valley Power Station, Unit Nos. 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption, pursuant to... Operating Company (licensee), for operation of the Beaver Valley Power Station, Unit Nos. 1 and 2 (BVPS-1...

  14. 75 FR 13600 - Nine Mile Point Nuclear Station, LLC, Nine Mile Point Nuclear Station, Unit No. 2; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... shielding design and the ALARA program would continue in its current form. Offsite Doses at EPU Conditions..., such as fossil fuel or alternative fuel power generation, to provide electric generation capacity to offset future demand. Construction and operation of such a fossil-fueled or alternative-fueled plant may...

  15. 75 FR 9956 - PSEG Nuclear LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... letter number LR-N09- 0248 and the second enclosure is an environmental impact statement. Based on a... November 3, and November 20, 2009, submittals, with the exception of the environmental impact statement... M. S. Fertel, Nuclear Energy Institute, ADAMS Accession No. ML091410309). The licensee's request for...

  16. 75 FR 43579 - Exelon Generation Company, LLC; Victoria County Station, Units 1 and 2; Notice of Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-031 and 52-032; NRC-2008-0542] Exelon Generation... in 10 CFR part 52, ``Licenses, Certifications and Approvals for Nuclear Power Plants.'' Exelon... CFR part 52. The docket numbers established for this application are 52-031 (Unit 1) and 52-032 (Unit...

  17. 77 FR 66641 - In the Matter of Entergy Nuclear Operations, Inc.; Entergy Nuclear Indian Point 2, LLC; Entergy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Unit 1 structure. However, neither the diesel generator fire zone nor any OMAs related to the Unit 2 station blackout diesel generator were included in the licensee's request for exemptions. As a result, the... ``However, neither the diesel generator fire [DELETED (area)] zone * * *'' Response Fire zones are subsets...

  18. On the possibility of generation of cold and additional electric energy at thermal power stations

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Borisova, P. N.

    2017-06-01

    A layout of a cogeneration plant for centralized supply of the users with electricity and cold (ECCG plant) is presented. The basic components of the plant are an expander-generator unit (EGU) and a vapor-compression thermotransformer (VCTT). At the natural-gas-pressure-reducing stations, viz., gas-distribution stations and gas-control units, the plant is connected in parallel to a throttler and replaces the latter completely or partially. The plant operates using only the energy of the natural gas flow without burning the gas; therefore, it can be classified as a fuelless installation. The authors compare the thermodynamic efficiencies of a centralized cold supply system based on the proposed plant integrated into the thermal power station scheme and a decentralized cold supply system in which the cold is generated by electrically driven vapor-compression thermotransformers installed on the user's premises. To perform comparative analysis, the exergy efficiency was taken as the criterion since in one of the systems under investigation the electricity and the cold are generated, which are energies of different kinds. It is shown that the thermodynamic efficiency of the power supply using the proposed plant proves to be higher within the entire range of the parameters under consideration. The article presents the results of investigating the impact of the gas heating temperature upstream from the expander on the electric power of the plant, its total cooling capacity, and the cooling capacities of the heat exchangers installed downstream from the EGU and the evaporator of the VCTT. The results of calculations are discussed that show that the cold generated at the gas-control unit of a powerful thermal power station can be used for the centralized supply of the cold to the ventilation and conditioning systems of both the buildings of the power station and the neighboring dwelling houses, schools, and public facilities during the summer season.

  19. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2017-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  20. Tethered Vehicle Control and Tracking System

    NASA Technical Reports Server (NTRS)

    North, David D. (Inventor); Aull, Mark J. (Inventor)

    2014-01-01

    A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.

  1. 14. INTERIOR OF 1903 POWERHOUSE SHOWING TURBINEGENERATOR UNIT NO. 18, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF 1903 POWERHOUSE SHOWING TURBINE-GENERATOR UNIT NO. 18, MANUFACTURED BY GENERAL ELECTRIC IN 1949 AND RATED AT 150 MEGAWATTS. IT WAS RETIRED FROM SERVICE SEVERAL YEARS AGO. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  2. Towards marine seismological Network: real time small aperture seismic array

    NASA Astrophysics Data System (ADS)

    Ilinskiy, Dmitry

    2017-04-01

    Most powerful and dangerous seismic events are generated in underwater subduction zones. Existing seismological networks are based on land seismological stations. Increased demands for accuracy of location, magnitude, rupture process of coming earthquakes and at the same time reduction of data processing time require information from seabed seismic stations located near the earthquake generation area. Marine stations provide important contribution for clarification of the tectonic settings in most active subduction zones of the world. Early warning system for subduction zone area is based on marine seabed array which located near the area of most hazardous seismic zone in the region. Fast track processing for location of the earthquake hypocenter and energy takes place in buoy surface unit. Information about detected and located earthquake reaches the onshore seismological center earlier than the first break waves from the same earthquake will reach the nearest onshore seismological station. Implementation of small aperture array is based on existed and shown a good proven performance and costs effective solutions such as weather moored buoy and self-pop up autonomous seabed seismic nodes. Permanent seabed system for real-time operation has to be installed in deep sea waters far from the coast. Seabed array consists of several self-popup seismological stations which continuously acquire the data, detect the events of certain energy class and send detected event parameters to the surface buoy via acoustic link. Surface buoy unit determine the earthquake location by receiving the event parameters from seabed units and send such information in semi-real time to the onshore seismological center via narrow band satellite link. Upon the request from the cost the system could send wave form of events of certain energy class, bottom seismic station battery status and other environmental parameters. When the battery life of particular seabed unit is close to became empty, the seabed unit is switching into sleep mode and send that information to surface buoy and father to the onshore data center. Then seabed unit can wait for the vessel of opportunity for recovery of seabed unit to sea surface and replacing seabed station to another one with fresh batteries. All collected permanent seismic data by seabed unit could than downloaded for father processing and analysis. In our presentation we will demonstrate the several working prototypes of proposed system such as real time cable broad band seismological station and real time buoy seabed seismological station.

  3. Experience with 850-MW fossil-fired units in peaking service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B.G.

    1978-01-01

    Experience with the peaking operation of two 850-MW gross generation units at the Martins Creek Steam Electric Station in Pennsylvania is described. The design, operation, and performance of these oil-fueled units are discussed. (LCL)

  4. KSC-98pc150

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved through Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  5. KSC-98pc154

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lowered into its workstand at Kennedy Space Center’s Space Station Processing Facility (SSPF), where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  6. 78 FR 41425 - In the Matter of Duke Energy Carolinas, LLC; (Oconee Nuclear Station, Units 1, 2, and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... SSF diesel generator during a fire for which the SSF is credited. This modification along with... SSF equipment in the event of a failure of the SSF diesel generator during a fire for which the SSF is... provide water to the steam generators of all three units sufficient to remove decay heat following...

  7. Alternative strategies for space station financing

    NASA Technical Reports Server (NTRS)

    Walklet, D. C.; Heenan, A. T.

    1983-01-01

    The attributes of the proposed space station program are oriented toward research activities and technologies which generate long term benefits for mankind. Unless such technologies are deemed of national interest and thus are government funded, they must stand on their own in the market place. Therefore, the objectives of a United States space station should be based on commercial criteria; otherwise, such a project attracts no long term funding. There is encouraging evidence that some potential space station activities should generate revenues from shuttle related projects within the decade. Materials processing concepts as well as remote sensing indicate substantial potential. Futhermore, the economics and thus the commercial feasibility of such projects will be improved by the operating efficiencies available with an ongoing space station program.

  8. ALARA Council: Sharing our resources and experiences to reduce doses at Commonwealth Edison Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rescek, F.

    1995-03-01

    Commonwealth Edison Company is an investor-owned utility company supplying electricity to over three million customers (eight million people) in Chicago and northern Illinois, USA. The company operates 16 generating stations which have the capacity to produce 22,522 megawatts of electricity. Six of these generating stations, containing 12 nuclear units, supply 51% of this capacity. The 12 nuclear units are comprised of four General Electric boiling water (BWR-3) reactors, two General Electric BWR-5 reactors, and six Westinghouse four-loop pressurized water reactors (PWR). In August 1993, Commonwealth Edison created an ALARA Council with the responsibility to provide leadership and guidance that resultsmore » in an effective ALARA Culture within the Nuclear Operations Division. Unlike its predecessor, the Corporate ALARA Committee, the ALARA Council is designed to bring together senior managers from the six nuclear stations and corporate to create a collaborative effort to reduce occupational doses at Commonwealth Edison`s stations.« less

  9. KSC-98pc155

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is lifted from its container in Kennedy Space Center’s Space Station Processing Facility (SSPF) before it is moved into its workstand, where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  10. KSC-98pc153

    NASA Image and Video Library

    1998-01-14

    Workers in Kennedy Space Center’s Space Station Processing Facility (SSPF) observe the Photovoltaic Module 1 Integrated Equipment Assembly (IEA) as it moves past them on its way to its workstand, where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  11. KSC-98pc151

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past a Pressurized Mating Adapter in Kennedy Space Center’s Space Station Processing Facility (SSPF) toward the workstand where it will be processed for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the International Space Station. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  12. Fault tolerant data management system

    NASA Technical Reports Server (NTRS)

    Gustin, W. M.; Smither, M. A.

    1972-01-01

    Described in detail are: (1) results obtained in modifying the onboard data management system software to a multiprocessor fault tolerant system; (2) a functional description of the prototype buffer I/O units; (3) description of modification to the ACADC and stimuli generating unit of the DTS; and (4) summaries and conclusions on techniques implemented in the rack and prototype buffers. Also documented is the work done in investigating techniques of high speed (5 Mbps) digital data transmission in the data bus environment. The application considered is a multiport data bus operating with the following constraints: no preferred stations; random bus access by all stations; all stations equally likely to source or sink data; no limit to the number of stations along the bus; no branching of the bus; and no restriction on station placement along the bus.

  13. 76 FR 12957 - City of Tacoma, Washington; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... a total installed capacity of 500 kilowatts (kW); and (2) a station transformer at the powerhouse to... station transformer at the powerhouse to connect the turbine output to a 13.8-kV distribution line owned... turbine/generating units with a total installed capacity of 1,200 kW; and (2) a station transformer at the...

  14. Acquisition of a Leica ScanStation II LIDAR unit

    DOT National Transportation Integrated Search

    2008-04-01

    The funding will be used to purchase a LiDAR (Light Detection and Ranging) unit to generate external funding in many diverse areas. The investigators will initially seek funding from NSF, transportation agencies, and emergency management agencies for...

  15. KSC-98pc152

    NASA Image and Video Library

    1998-01-14

    The Photovoltaic Module 1 Integrated Equipment Assembly (IEA) is moved past Node 1, seen at left, of the International Space Station (ISS) in Kennedy Space Center’s Space Station Processing Facility (SSPF). The IEA will be processed at the SSPF for flight on STS-97, scheduled for launch in April 1999. The IEA is one of four integral units designed to generate, distribute, and store power for the ISS. It will carry solar arrays, power storage batteries, power control units, and a thermal control system. The 16-foot-long, 16,850-pound unit is now undergoing preflight preparations in the SSPF

  16. A resampling procedure for generating conditioned daily weather sequences

    USGS Publications Warehouse

    Clark, Martyn P.; Gangopadhyay, Subhrendu; Brandon, David; Werner, Kevin; Hay, Lauren E.; Rajagopalan, Balaji; Yates, David

    2004-01-01

    A method is introduced to generate conditioned daily precipitation and temperature time series at multiple stations. The method resamples data from the historical record “nens” times for the period of interest (nens = number of ensemble members) and reorders the ensemble members to reconstruct the observed spatial (intersite) and temporal correlation statistics. The weather generator model is applied to 2307 stations in the contiguous United States and is shown to reproduce the observed spatial correlation between neighboring stations, the observed correlation between variables (e.g., between precipitation and temperature), and the observed temporal correlation between subsequent days in the generated weather sequence. The weather generator model is extended to produce sequences of weather that are conditioned on climate indices (in this case the Niño 3.4 index). Example illustrations of conditioned weather sequences are provided for a station in Arizona (Petrified Forest, 34.8°N, 109.9°W), where El Niño and La Niña conditions have a strong effect on winter precipitation. The conditioned weather sequences generated using the methods described in this paper are appropriate for use as input to hydrologic models to produce multiseason forecasts of streamflow.

  17. Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2007-05-02

    A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  18. The thermal circuit of a nuclear power station's unit built around a supercritical-pressure water-cooled reactor

    NASA Astrophysics Data System (ADS)

    Silin, V. A.; Zorin, V. M.; Tagirov, A. M.; Tregubova, O. I.; Belov, I. V.; Povarov, P. V.

    2010-12-01

    Main results obtained from calculations of the steam generator and thermal circuit of the steam turbine unit for a nuclear power unit with supercritical-pressure water coolant and integral layout are presented. The obtained characteristics point to the advisability of carrying out further developments of this promising nuclear power technology.

  19. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiringmore » in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.« less

  20. Electrostatic precipitator rapping with sonic horns at Atlantic Electric`s B.L. England Generating Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziarz, M.; Gallo, F.

    1995-12-31

    B.L. England Generating Station (BLE) is located in Beesleys Point, NJ. Beesleys Point is on Great Egg Bay, which is 20 minutes south of Atlantic City and one hour east of Philadelphia. BLE has three generating units: No. 1 is a 120 Megawatt (MW) B&W cyclone boiler; No. 2 is a 160 MW B&W cyclone boiler; & No. 3 is a tangential fired Combustion Engineering boiler. Units 1 & 2 burn medium sulfur eastern bituminous coal. Unit 3 burns No. 6 oil. Units 1&2 are equipped with precipitators (ESPs). The two ESPs were manufactured by Environmental Elements Corp. (EEC) andmore » were placed in service in 1980. Units are dual chamber with each having four mechanical fields and eight electrical fields. Each field has two Transformer/Rectifier (T/R) sets for a total of sixteen per ESP. The ESPs are rigid frame design (Rigitrode by EEC) with hammer & anvil rapping. Ash reinjection systems permit direct or cross reinjection of fly ash. Both ESPs have perforated plates for inlet & outlet gas flow distribution. There are three inlet plates and one outlet plate. The first inlet plates and the outlets are cleaned via electric reciprocating vibrators. There was no means of cleaning the remaining plates provided.« less

  1. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  2. 76 FR 6836 - Entergy Operations, Inc.; Notice of Withdrawal of Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    .... NPF-38 for the Waterford Steam Electric Station, Unit 3, located in St. Charles Parish, Louisiana. In view of the originally planned steam generator (SG) replacement during the spring 2011 refueling outage... to TS 6.5.9, ``Steam Generator (SG) Program,'' and TS 6.9.1.5, ``Steam Generator Tube Inspection...

  3. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  4. 75 FR 71152 - Southern California Edison; San Onofre Nuclear Generating Station, Unit 2 and Unit 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... nuclear power plants, but noted that the Commission's regulations provide mechanisms for individual.... Borchardt (NRC) to M. S. Fertel (Nuclear Energy Institute) dated June 4, 2009. The licensee's request for an... effect. The facility consists of two pressurized-water reactors located in San Diego County, California...

  5. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-08

    Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.

  6. Information technology as a key enabler in preparing for competition: ComEd`s Kincaid Generating Station, a work in progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borth, F.C. III; Thompson, J.W.; Mishaga, J.M.

    1996-11-01

    Through ComEd Fossil (Generating) Division`s Competitive Action Plan (CAP) evaluation changes have been identified which are necessary to improve generating station performance. These changes are intended to improve both station reliability and financial margins, and are essential for stations to be successful in a competitive marketplace. Plant upgrades, advanced equipment stewardship, and personnel reductions have been identified as necessary steps in achieving industry leadership and competitive advantage. To deal effectively with plant systems and contend in the competitive marketplace Information Technology (IT) solutions to business problems are being developed. Data acquisition, storage, and retrieval are being automated through use ofmore » state-of-the-art Data Historians. Total plant, high resolution, long term process information will be accessed through Local/Wide Area Networks (LAN/WAN) connections from desktop PC`s. Generating unit Thermal Performance Monitors accessing the Data Historian will analyze plant and system performance enabling reductions in operating costs, and improvements in process control. As inputs to proactive maintenance toolsets this data allows anticipation of equipment service needs, advanced service scheduling, and cost/benefit analysis. The ultimate goal is to optimize repair needs with revenue generation. Advanced applications building upon these foundations will bring knowledge of the costs associated with all the products a generating station offers its customer(s). An overall design philosophy along with preliminary results is presented; these results include shortfalls, lessons learned, and future options.« less

  7. Recent Stirling Conversion Technology Developments and Operational Measurements

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Schifer, Nicholas

    2009-01-01

    Under contract to the Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC) has been developing the Advanced Stirling Radioisotope Generator (ASRG). The use of Stirling technology introduces a four-fold increase in conversion efficiency over Radioisotope Thermoelectric Generators (RTGs), and thus the ASRG in an attractive power system option for future science missions. In August of 2008, the ASRG engineering unit (EU) was delivered to NASA Glenn Research Center (GRC). The engineering unit design resembles that of a flight unit, with the exception of electrical heating in place of a radioisotope source. Prior to delivery, GRC personnel prepared a test station continuous, unattended operation of the engineering unit. This test station is capable of autonomously monitoring the unit's safe operation and recording. , .. , .... performance data. Generator parameters recorded include temperatures, electrical power output, and thelmal power input. Convertor specific parameters are also recorded such as alternator voltage, current, piston amplitude, and frequency. Since November 2008, the ASRG EU has accumulated over 4,000 hours of operation. Initial operation was conducted using the AC bus control method in lieu of the LMSSC active power factor connecting controller. Operation on the LMSSC controller began in February 2009. This paper discusses the entirety of ASRG EU operation thus far, as well as baseline performance data at GRC and LMSSC, and comparison of performance using each control method.

  8. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    NASA Astrophysics Data System (ADS)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  9. International Space Station United States Oxygen Generator Development Testing

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Mason, Richard K.

    2000-01-01

    A life test of a liquid anode feed oxygen generator assembly (OGA) using SPE(R) (United Technologies Corporation, Hamilton Sundstrand Division) membrane technology was terminated in June of 1999. In the total 15,658 hours of operation at MSFC since delivery in 1995, the OGA has produced 2,103 kilograms (kg) (4,632 pounds mass (lbm)) of oxygen, and 263 kg (579 lbm) of hydrogen. Evaluation of cell stack characteristics and oxygen and hydrogen hydrophilic/hydrophobic membrane separators will be discussed.

  10. Krikalev during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05513 (5 May 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, poses beside the disconnected Liquid Unit #5 (BZh-5) and the O2 end-filter (BD, secondary purification unit) from the BZh5 he removed while making repairs to the Elektron oxygen generator in the Zvezda Service Module of the international space station.

  11. 78 FR 63506 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station, Units 2 and 3; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Environs PBAPS consists of Units 1, 2, and 3 located on approximately 620 acres of land in Peach Bottom... proposed EPU are summarized below. Non-Radiological Impacts Land Use and Aesthetic Impacts Potential land... plant modifications. Therefore, land use conditions and visual aesthetics would not change significantly...

  12. 75 FR 14211 - Southern California Edison, San Onofre Nuclear Generating Station, Unit 2 and Unit 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... nuclear power plants, but noted that the Commission's regulations provide mechanisms for individual.... Borchardt, (NRC), to M. S. Fertel, (Nuclear Energy Institute) dated June 4, 2009. The licensee's request for... granting of this exemption will not have a significant effect on the quality of the human environment (75...

  13. Padalka performs maintenance on the BZh-5 Fluid Unit for the Elektron Oxygen Generator during Expedition 9

    NASA Image and Video Library

    2004-09-08

    ISS009-E-21791 (8 September 2004) --- Cosmonaut Gennady I. Padalka, Expedition 9 commander representing Russia's Federal Space Agency, performs maintenance on a spare version of a part connected to the Russian Elektron oxygen generation system in the Zvezda Service Module of the International Space Station (ISS).

  14. International Space Station United States Orbital Segment Oxygen Generation System On-Orbit Operational Experience

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Howe, John, Jr.; Kulp, Galen W.; VanKeuren, Steven P.

    2008-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) was originally intended to be installed in ISS Node 3. The OGS rack delivery was accelerated, and it was launched to ISS in July of 2006 and installed in the US Laboratory Module. Various modification kits were installed to provide its interfaces, and the OGS was first activated in July of 2007 for 15 hours, In October of 2007 it was again activated for 76 hours with varied production rates and day/night cycling. Operational time in each instance was limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Feedwater will be provided by PWR bag until the USOS Water Recovery System (WRS) is delivered to SS in fall of 2008. This paper will discuss operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfmeyer, J.C.; Jowers, C.; Weinstein, R.E.

    As the power industry moves toward increased competition, low operating costs become increasingly important for continued profitability. This paper provides an overview of the plant concept evaluation of using an emerging coal-fired technology for repowering one of Duke Energy steam generating stations. The paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes the preliminary results. It shows the prospects for APFBC repowering, and discusses how this mightmore » be an attractive option for a wide range of existing power plants, when added baseload coal-fired generation is needed. This paper presents an APFBC concept under development by DOE and equipment manufacturers. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, Jr. steam plant Unit 4. This paper's concept evaluation is for a larger implementation. A Westinghouse W501F combustion turbine modified for APFBC operation is considered for use to produce a 300+MWe class APFBC combined cycle. At this size, APFBC has a wide application for repowering many existing units in America, Here, APFBC would repower an existing generation station, the Duke Energy Company's Dan River steam station. Repowering concepts are presented for APFBC repowering of Unit 3. The existing coal-fired Unit 3 has an output of about 150 MWe. When repowered with APFBC, this unit is boosted to about 280 MWe output, with high-energy efficiency.« less

  16. STS-88 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.

  17. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2007-06-20

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  18. Krikalev with failed Elektron Liquid Unit #6 (BZh-6)

    NASA Image and Video Library

    2005-06-09

    ISS011-E-08465 (9 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, works on the Elektron oxygen-generation system in the Zvezda Service Module on the International Space Station (ISS).

  19. 75 FR 69136 - Southern California Edison Company, San Onofre Nuclear Generating Station, Units 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... radiation exposures to plant workers and members of the public. Therefore, no radiological impacts are..., socioeconomic conditions, and minority- and low-income populations in the vicinity of SONGS 2 and 3 would also...

  20. 75 FR 12580 - Southern California Edison Company, San Onofre Nuclear Generating Station, Units 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... exposures to plant workers and members of the public. Therefore, no changes or different types of.... There are no impacts to historical and cultural resources. There would be no impact to socioeconomic...

  1. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer

    Yoder, M.; Andreas, A.

    2008-05-30

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  2. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2006-03-27

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  3. Promises of advanced technology realized at Martin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanekamp, R.

    1996-09-01

    The 2,488-MW Martin station is a gas/oil-fired facility that embodies today`s demand for flexible operations, technological advances, and reduced production costs. Martin station first rose up from the Everglades in the early 1980s, with the construction of two 814-MW oil-fired steam plants, Units 1 and 2. Natural-gas-firing capability was added to the balanced-draft, natural-circulation boilers in 1986, increasing the station`s fuel flexibility. Martin then leaped into the headlines in the early 1990s when it added combined-cycle (CC) Units 3 and 4. With this 860-MW expansion, FP and L boldly became the fleet leader for the advanced, 2350F-class 7FA gas turbines.more » Further pushing he technology envelope, the CC includes a three-pressure reheat steam system that raises net plant efficiency for Units 3 and 4 to 54%, on a lower-heating-value (LHV) basis. Incorporating the reheat cycle required significant redesign of the gas-turbine/heat-recovery steam generator (HRSG) train, in order to maintain a rapid startup capability without exceeding metallurgical limits. Perhaps even more important than the technological achievements, Martin stands out from the crowd for its people power, which ensured that the promises of advanced technology actually came to fruition. This station`s aggressive, empowered O and M team shows that you can pioneer technology, reduce operating costs, and deliver high availability--all at the same time.« less

  4. 75 FR 64751 - Braidwood Station, Units 1 and 2 and Byron Station, Unit Nos. 1 and 2; Notice of Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ...- 2010-0329] Braidwood Station, Units 1 and 2 and Byron Station, Unit Nos. 1 and 2; Notice of Withdrawal... NPF-77 for Braidwood Station, Units 1 and 2, respectively, located in Will County, Illinois, and to Facility Operating License Nos. NPF-37 and NPF-66 for Byron Station, Unit Nos. 1 and 2, respectively...

  5. 22. DETAIL TO NORTHWEST OF LUBRICATING OIL TANKS AND FILTERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL TO NORTHWEST OF LUBRICATING OIL TANKS AND FILTERS FOR UNITS 1-4 (CENTER), AND UNIT 3 GOVERNOR (RIGHT CENTER FOREGROUND) AND GATE VALVE (RIGHT CENTER BACKGROUND) CONTROLS, OLD POWERHOUSE GENERATOR FLOOR - Trenton Falls Hydroelectric Station, Powerhouse & Substation, On west bank of West Canada Creek, along Trenton Falls Road, 1.25 miles north of New York Route 28, Trenton Falls, Oneida County, NY

  6. OGS Maintenance

    NASA Image and Video Library

    2010-07-21

    ISS024-E-009246 (21 July 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, is pictured during troubleshooting operations of the Oxygen Generator System (OGS) hardware and replacement of an H2 (hydrogen) Dome Orbit Replaceable Unit (ORU) in the Destiny laboratory of the International Space Station.

  7. 76 FR 19476 - Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... licensee stated that the floor-based combustibles include health physics cleaning supplies, such as mops... undue risk to public health or safety, and are consistent with the common defense and security; and (2...

  8. 78 FR 46617 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ...-92, issued to the licensee. The exemption is required by Paragraph A.4 of Section VIII, ``Processes... reduction in standardization caused by the exemption; and F. The exemption will not result in a significant...

  9. N2O FIELD STUDY

    EPA Science Inventory

    The report gives results of measurements of nitrous oxide (N2O) emissions from coal-fired utility boilers at three electric power generating stations. Six units were tested, two at each site, including sizes ranging from 165 to 700 MW. Several manufacturers and boiler firing type...

  10. DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans Beacon House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    United Way of Long Island’s Housing Development Corporation built this 3,719-ft2 two–story, 5-bedroom home in Huntington Station, New York, to the rigorous performance requirements of the U.S. Department of Energy’s Zero Energy Ready Home Program. The home is packed with high-performance features like LED lighting and ENERGY STAR appliances. The asymmetrical, optimally angled roof provides plenty of space for roof-mounted solar panels for electric generation and hot water.

  11. Cygnus Orbital ATK OA-6 Liftoff

    NASA Image and Video Library

    2016-03-22

    At Cape Canaveral Air Force Station's Space Launch Complex 41, a United Launch Alliance Atlas V rocket with a single-engine Centaur upper stage stands ready to boost an Orbital ATK Cygnus spacecraft on a resupply mission to the International Space Station. Science payloads include the second generation of a portable onboard printer to demonstrate three-dimensional printing, an instrument for first space-based observations of the chemical composition of meteors entering Earth’s atmosphere and an experiment to study how fires burn in microgravity.

  12. Cygnus Orbital ATK OA-6 Rollout

    NASA Image and Video Library

    2016-03-21

    At Cape Canaveral Air Force Station's Space Launch Complex 41, a United Launch Alliance Atlas V rocket with a single-engine Centaur upper stage stands ready to boost an Orbital ATK Cygnus spacecraft on a resupply mission to the International Space Station. Science payloads include the second generation of a portable onboard printer to demonstrate three-dimensional printing, an instrument for first space-based observations of the chemical composition of meteors entering Earth’s atmosphere and an experiment to study how fires burn in microgravity.

  13. Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  14. 40 CFR 52.2039 - Interstate transport.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Portland shall comply with the following requirements: (1) Perform air modeling to demonstrate that... the effective date of the section 126 finding, submit to the EPA a modeling protocol that is... that includes all units at the Portland Generating Station in the modeling. (ii) Within 15 business...

  15. 40 CFR 52.2039 - Interstate transport.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Portland shall comply with the following requirements: (1) Perform air modeling to demonstrate that... the effective date of the section 126 finding, submit to the EPA a modeling protocol that is... that includes all units at the Portland Generating Station in the modeling. (ii) Within 15 business...

  16. 40 CFR 52.2039 - Interstate transport.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Portland shall comply with the following requirements: (1) Perform air modeling to demonstrate that... the effective date of the section 126 finding, submit to the EPA a modeling protocol that is... that includes all units at the Portland Generating Station in the modeling. (ii) Within 15 business...

  17. SFOG (Solid Fuel Oxygen Generator) candles in the RS (Russian Segment)

    NASA Image and Video Library

    2009-08-16

    ISS020-E-031138 (16 Aug. 2009) --- Cosmonaut Gennady Padalka, Expedition 20 commander, performs a check on the Russian POTOK-150MK (150 micron) air filter unit of the Zvezda Service Module’s SOGS air revitalization subsystem on the International Space Station.

  18. SFOG (Solid Fuel Oxygen Generator) candles in the RS (Russian Segment)

    NASA Image and Video Library

    2009-08-16

    ISS020-E-031128 (16 Aug. 2009) --- Cosmonaut Gennady Padalka, Expedition 20 commander, performs a check on the Russian POTOK-150MK (150 micron) air filter unit of the Zvezda Service Module’s SOGS air revitalization subsystem on the International Space Station.

  19. KSC-97pc655

    NASA Image and Video Library

    1997-04-16

    An oxygen generator destined to replace a malfunctioning unit on the Russian Mir Space Station is the object of much curiosity during preflight preparations in the SPACEHAB Payload Processing Facility. A SPACEHAB Double Module on the Space Shuttle Atlantis will carry the oxygen generator to Mir during STS-84, the sixth Shuttle-Mir docking. The nearly 300-pound generator, manufactured by RSC Energia in Russia, will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff

  20. STS-84 oxygen generator for Mir on display at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An oxygen generator destined to replace a malfunctioning unit on the Russian Mir Space Station is the object of much curiosity during preflight preparations in the SPACEHAB Payload Processing Facility. A SPACEHAB Double Module on the Space Shuttle Atlantis will carry the oxygen generator to Mir during STS-84, the sixth Shuttle-Mir docking. The nearly 300-pound generator, manufactured by RSC Energia in Russia, will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff.

  1. Condensate polisher prefiltration study for Laguna Verde Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A.; Oyen, L.C.; Nelson, R.A.

    1995-05-01

    This paper describes an analysis of the iron and copper in the condensate and the technical and economic assessment of the installation of condensate polisher prefilters in Comision Federal de Electricidad`s Laguna Verde Nuclear Generating Station (LVNGS) north of Veracruz, Mexico. LVNGS is a 654 MWe General Electric BWR plant; Unit 1 has been in commercial operation since July, 1990, and Unit 2 is scheduled to become operational in June, 1995. The primary purpose of this study was to (1) analyze the high iron and copper concentrations in the condensate and feedwater, (2) identify, assess, and evaluate techniques to reducemore » the iron and copper concentrations, and (3) perform a cost-benefit analysis of the installation of implementing the appropriate techniques.« less

  2. 75 FR 61479 - Western Passage OCGenTM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12680-004] Western Passage...' express permission. The proposed project would consist of: (1) 2 OCGen\\TM\\ hydrokinetic tidal devices each... turbine-generating units of each device to a shore station; (5) a 2,800-foot-long, 34.5-kilovolt...

  3. Burning--Gravitational, Chemical, and Nuclear.

    ERIC Educational Resources Information Center

    Jones, Goronwy Tudor

    1991-01-01

    Energy problems that incorporate power generation in hydroelectric, fossil-fuel burning, and nuclear power stations are presented. The burning process and the energy released are discussed. Practice problems and solutions, a summary of various energy units and conversion factors, and lists of thought-provoking energies and powers are included. (KR)

  4. 78 FR 32278 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Paragraph A.4 of Section VIII, ``Processes for Changes and Departures,'' Appendix D to 10 CFR part 52 to... standardization caused by the exemption; and F. the exemption will not result in a significant decrease in the...

  5. 75 FR 54145 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... to Construct a Concentrated Solar Thermal Power Plant Facility, Nye County, NV, Comment Period Ends..., GENERIC--License Renewal of Nuclear Plants for Kewaunee Power Station, Supplement 40 to NUREG-1437... EIS, NRC, GA, Vogtle Electric Generating Plant Units 3 and 4, Construction and Operation, Application...

  6. 75 FR 13600 - Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...- 2010-0116] Virginia Electric and Power Company, North Anna Power Station, Unit Nos. 1 and 2, Surry Power Station, Unit Nos. 1 and 2; Environmental Assessment and Finding of No Significant Impact The U.S... Anna Power Station, Unit Nos. 1 and 2 (NAPS), and Surry Power Station, Unit Nos. 1 and 2 (SPS), located...

  7. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ...- 2010-0373] Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos... and DPR-25 for Dresden Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power...

  8. A Single Chip VLSI Implementation of a QPSK/SQPSK Demodulator for a VSAT Receiver Station

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; King, Brent

    1995-01-01

    This thesis presents a VLSI implementation of a QPSK/SQPSK demodulator. It is designed to be employed in a VSAT earth station that utilizes the FDMA/TDM link. A single chip architecture is used to enable this chip to be easily employed in the VSAT system. This demodulator contains lowpass filters, integrate and dump units, unique word detectors, a timing recovery unit, a phase recovery unit and a down conversion unit. The design stages start with a functional representation of the system by using the C programming language. Then it progresses into a register based representation using the VHDL language. The layout components are designed based on these VHDL models and simulated. Component generators are developed for the adder, multiplier, read-only memory and serial access memory in order to shorten the design time. These sub-components are then block routed to form the main components of the system. The main components are block routed to form the final demodulator.

  9. Advancing automation and robotics technology for the space station and the US economy

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  10. Road network - land use interaction model: Malang City in Indonesian case

    NASA Astrophysics Data System (ADS)

    Waloejo, B. S.

    2017-06-01

    Urban population in Indonesia is significantly increasing from 44% of total population in 2002 to approximately 60% in 2015. Rapid population growth has resulted in rapid urban land use changes. The problems became more complicated since the changes created mixed use development along the main urban corridors that resulted in higher trip generation and attraction while urban land very limited that made road widening and creation of new road less possible. This led to an accumulation of movement, worse road’s level of service and congestion in the main urban corridor. The aims of the research are to analyse trip generation/attraction of the mixed- land uses of the main corridors Malang City; and to formulate road network - land use interaction model in the case of Malang (a nearly 1 million population city in 2015). The selected corridors in Malang City a main road in the west district of Malang City - Indonesia. Correlational method (Pearson Product Moment) and regression method (stepwise, anova for land use’s trip generation/attraction), and analysis of road’s level of service (LOS), using Indonesian Road Capacity Manual, are employed in this research. The research formulated the interaction model as: \\begin{eqnarray}\\begin{array}{lll}{V}{total} & = & \\displaystyle \\sum {V}{internal}+\\displaystyle \\sum {V}{external} {Where}\\ \\displaystyle \\sum {V}{internal} & = & {e}{residential}{Y}{residential}+{e}{schools}{Y}{schools}+{e}{unis}{Y}{unis}+{e}{offices}{Y}{offices}+{e}{hospital}{Y}{hospital}+{e}{chemists}{Y}{chemists}+{e}{commercial}{Y}{commercial}+{e}{market}{Y}{market}+{e}{fuel {station}}{Y}{fuel {station}}+{e}{bus {station}}{Y}{bus {station}} {and}\\ \\displaystyle \\sum {V}{external} & = & \\displaystyle \\sum {V}{local {roads}}+{V}{continous {traffic} {flow}}\\end{array}\\end{eqnarray} The research showed that V_total=23,033 car unit/day (internal) + 32,746 car unit/day (external) = 55,779 car unit/day. The trip higher than the road’s capacity (C) which 40.695 car unit/day. The levels of services of road’s segments dominantly F (congested). The simulation of the model showed that traffic engineering can be used to increase road’s capacity while land use changes (reduction of the variety of mixed land uses), particularly mix land uses at frontage area, can improve level of services (from F to C).

  11. Islanding detection and over voltage mitigation using wireless sensor networks and electric vehicle charging stations.

    DOT National Transportation Integrated Search

    2016-06-01

    An islanding condition occurs when a distributed generation (DG) unit continues to energize a : part of the grid while said part has been isolated from the main electrical utility. In this event, if : the power of the DG exceeds the load, a transient...

  12. 75 FR 12312 - South Carolina Electric and Gas Company; Virgil C. Summer Nuclear Station, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Evaluation Models,'' requires, among other items, that the rate of energy release, hydrogen generation, and... Accession No. ML073130562) illustrate that oxide thickness (and associated hydrogen pickup) for Optimized... Argonne National Laboratory, which has identified a strong correlation between cladding hydrogen content...

  13. Registration of maize inbred line GT603

    USDA-ARS?s Scientific Manuscript database

    GT603 (Reg. No. xxxx, PI xxxxxx) is a yellow dent maize (Zea mays L.) inbred line developed and released by the USDA-ARS Crop Protection and Management Research Unit in cooperation with the University of Georgia Coastal Plain Experiment Station in 2010. GT603 was developed through seven generations ...

  14. Near-Range Receiver Unit of Next Generation PollyXT Used with Koldeway Aerosol Raman Lidar in Arctic

    NASA Astrophysics Data System (ADS)

    Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Ritter, Christoph; Neuber, Roland; Heese, Birgit; Engelmann, Ronny; Linne, Holger

    2016-06-01

    The Near-range Aerosol Raman lidar (NARLa) receiver unit, that was designed to enhance the detection range of the NeXT generation PollyXT Aerosol-Depolarization-Raman (ADR) lidar of the University of Warsaw, was employed next the Koldeway Aerosol Raman Lidar (KARL) at the AWI-IPEV German-French station in Arctic during Spring 2015. Here we introduce shortly design of both lidars, the scheme of their installation next to each other, and preliminary results of observations aiming at arctic haze investigation by the lidars and the iCAP a set of particle counter and aethalometer installed under a tethered balloon.

  15. Low-level radwaste storage facility at Hope Creek and Salem Generating Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyen, L.C.; Lee, K.; Bravo, R.

    Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less

  16. 76 FR 40754 - Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0100; Docket Nos. 50-413 and 50-414; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, And 50-287] Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3; Notice of Withdrawal of Application for Amendment...

  17. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  18. Valve health monitoring system utilizing smart instrumentation

    NASA Astrophysics Data System (ADS)

    Jensen, Scott L.; Drouant, George J.

    2006-05-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are: cryogenic cycles, total cycles, inlet temperature, outlet temperature, body temperature, torsional strain, linear bonnet strain, preload position, total travel, and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commissions requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates related data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 Enclosures are used to house the base-station.

  19. German-Korean cooperation for erection and test of industrialized solar technologies

    NASA Astrophysics Data System (ADS)

    Pfeiffer, H.

    1986-01-01

    A combined small solar-wind power station and a solar-thermal experimental plant were built. The plants are designed to demonstrate the effective exploitation of solar energy and wind energy and enhanced availability achievable through combination of these two energy sources. A 14 kW wind energy converter and a 2.5 kW solar-cell generator were operated in parallel. The biaxial tracking system used on the solar generator leads to increased and constant generation of electricity throughout the day. A consumer control system switches the energy generators and the consumers in autonomous mode according to changing supply and demand. The solar powered air conditioning unit operates with an absorption type refrigerating unit, high-output flat collectors and an automatic control system. All design values are achieved on start-up of the plant.

  20. Experience with wear-resistant materials at the Homer City Coal Cleaning Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.R.

    1984-10-01

    The Homer City Coal Cleaning Plant is a multistream, dual-circuit facility with a total capacity of 1.22 x 10/sup 6/ Kg/hr (1200 TPH) raw feed and serves the three generating units of the Pennsylvania Electric Company's Homer City Generating Station. The complicated multi-cleaning circuit design requires considerably more power and piping (10.6 km/35,000 ft of plus 5 cm/2 in. process piping) than a more conventional plant of the same capacity. Coupled with the maintenance intensive aspects of the plant is the requirement to have a high availability due to the mine mouth-to-cleaning plant-to-generating station philosophy under which it operates. Thesemore » factors required a dedicated effort to improve equipment wear characteristics. Experiences in the use of a variety of wear and corrosion resistant materials at the Homer City Coal Cleaning Plant are described.« less

  1. KSC-97pc674

    NASA Image and Video Library

    1997-04-19

    KENNEDY SPACE CENTER, FLA. -- McDonnell Douglas-SPACEHAB technicians look over a Russian-made oxygen generator which has just been placed on the floor of a SPACEHAB Double Module being prepared for flight on Space Shuttle Mission STS-84. The module is being processed in the SPACEHAB Payload Processing Facility just outside of Gate 1 on Cape Canaveral Air Station. The Space Shuttle Atlantis will transport the oxygen generator to the Russian Space Station Mir to replace one of two Mir units that have been malfunctioning recently. The nearly 300-pound generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet long with a diameter of 1.4 feet. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 launch. It will be the sixth Shuttle-Mir docking

  2. KSC-97pc676

    NASA Image and Video Library

    1997-04-19

    KENNEDY SPACE CENTER, FLA. -- McDonnell Douglas-SPACEHAB technicians prepare to place a Russian-made oxygen generator into position for transport in a SPACEHAB Double Module being processed for flight on Space Shuttle Mission STS-84. The module is undergoing preflight preparations in the SPACEHAB Payload Processing Facility just outside of Gate 1 on Cape Canaveral Air Station. The Space Shuttle Atlantis will carry the oxygen generator to the Russian Space Station Mir to replace one of two Mir units that have been malfunctioning recently. The nearly 300-pound generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet long with a diameter of 1.4 feet. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 launch. It will be the sixth Shuttle-Mir docking

  3. Shift manager workload assessment - A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berntson, K.; Kozak, A.; Malcolm, J. S.

    2006-07-01

    In early 2003, Bruce Power restarted two of its previously laid up units in the Bruce A generating station, Units 3 and 4. However, due to challenges relating to the availability of personnel with active Shift Manager licenses, an alternate shift structure was proposed to ensure the safe operation of the station. This alternate structure resulted in a redistribution of responsibility, and a need to assess the resulting changes in workload. Atomic Energy of Canada Limited was contracted to perform a workload assessment based on the new shift structure, and to provide recommendations, if necessary, to ensure Shift Managers hadmore » sufficient resources available to perform their required duties. This paper discusses the performance of that assessment, and lessons learned as a result of the work performed during the Restart project. (authors)« less

  4. Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less

  5. Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  6. Manatee lays groundwork for commercial use of Orimulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makansi, J.

    1994-09-01

    This article describes the conversion of an oil fired plant to Orimulsion described as a fourth fossil fuel, Orimulsion will replace oil at FP and L's Manatee station. The project involves unique business arrangements as well as important combustion, emissions control, and fuel handling system modifications. Florida Power and Light Co (FP and L) spent several years investigating the use of Orimulsion, including a full-scale five-months demonstration at its Sanford Station Unit 4. Now, the utility has taken the next giant leap; it has committed to convert the Manatee station for full-scale use of this unique fuel. The resulting projectmore » breaks new ground in the electric-generating business in several ways, including these: It represents the first long-term commercial contract for use of Orimulsion in the US, and the largest commitment world-wide. It involves unique business arrangements--not the least of which is the second major contract at an electric-utility station for a third-party-owned and operated flue-gas desulfurization (FGD) system. It indicates risk-taking on the part of utilities--with two 800-MW units, Manatee embodies a substantial amount of FP and L's total and incremental capacity base.« less

  7. 77 FR 76302 - Notice Lodging of Proposed Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-27

    ... Utilities Company for violations of state and federal opacity, New Source Review, and Title V regulations at the company's electric generating station in Ghent, Kentucky. The proposed consent decree requires... Utilities Company, Civil Action No. 3:12-cv-00076-CFVT. The United States filed this lawsuit under the Clean...

  8. 76 FR 52357 - Exelon Generation Company, LLC; PSEG Nuclear, LLC; Peach Bottom Atomic Power Station, Unit 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Amendment to Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity for a Hearing and Order Imposing Procedures for Document Access to Sensitive Unclassified Non... on the NRC Web site and on the Federal rulemaking Web site, http://www.regulations.gov . Because your...

  9. 77 FR 52765 - Dominion Nuclear Connecticut, Inc. Millstone Power Station, Unit 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... energy release, hydrogen generation, and cladding oxidation from the metal/water reaction to be calculated using the Baker-Just equation (Baker, L., Just, L.C., ``Studies of Metal Water Reactions at High Temperatures, III. Experimental and Theoretical Studies of the Zirconium-Water Reaction,'' ANL-6548, page 7...

  10. 75 FR 67784 - STP Nuclear Operating Company South Texas Project Electric Generating Station, Units 3 and 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    .... Mitigation measures, such as operational controls and practices, worker training, use of personal protective... equipment emissions, and fugitive dust caused by earth-moving activities. As stated in the ER for the COL... fugitive dust and vehicle and equipment emissions, including water suppression, covering truck loads and...

  11. 76 FR 9379 - Exelon Generation Company, LLC; Lasalle County Station, Units 1 and 2; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...-38, ``Storage of Low-Level Radioactive Wastes at Power Reactor Sites'' and to meet the radiation protection standards in 10 CFR Part 20, ``Standards for Protection Against Radiation,'' and 40 CFR Part 190, ``Environmental Radiation Protection Standards for Nuclear Power Operations.'' Environmental Impacts of the...

  12. 78 FR 77726 - Exelon Generation Company, LLC Three Mile Island Nuclear Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    [email protected] . NRC's Agencywide Documents Access and Management System (ADAMS): You may access publicly... safety during any condition of normal operation, including anticipated operational occurrences and system... for exemption is based on the use of the 1997 and 2002, editions of American Society for Testing and...

  13. Electrical Power Generated from Tidal Currents and Delivered to USCG Station Eastport, ME

    DTIC Science & Technology

    2011-01-21

    35 Theory of Operation The ORPC Pre-Commercial Beta Turbine Generator Unit (“Beta TGU”) uses a hydrokinetic cross flow turbine based on Darrieus ...development in the wind turbine industry. The power coefficient (a measure of energy extraction effectiveness) is defined as follows: 31 2 turbine ...stream area of the device. Axial flow wind turbines have demonstrated power coefficients to an estimated 48% which approaches the theoretical “Betz

  14. 77 FR 63342 - Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ...] Virginia Electric and Power Company, Surry Power Station Units 1 and 2 and North Anna Power Station Units 1... Operating License Nos. DPR-32 and DPR-37, NPF-4 and NPF-7 for Surry Power Station, Units 1 and 2, Surry County, [[Page 63343

  15. Operational recovery of turbine No. 3 at Potomac Edison`s Dam No. 4 hydrogenerating facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelczar, R.S.

    1995-12-31

    The Potomac Edison Dam No. 4 hydroelectric generating station is a historic, turn of the century facility located on the Potomac River near Shepherdstown, West Virginia. The station, originally constructed in 1909, employed twin horizontal Francis hydroturbine generating systems. The systems are unique in that the turbines and generators are offset 37 feet, interconnected by rope and sheaves. In May 1989 a third vertical open flume turbine generating system was added to make use of available site capacity. Both the turbine and speed increaser were the largest products developed by their respective manufacturers for a hydro turbine-generator application. This papermore » will review the subsequent operational experience which led to the original speed increaser failure on unit No. 3 and replacement of the drive system including special design considerations to the replacement speed increaser and its support structure. Specific design challenges included: (1) Designing and implementing a reliable configuration. (2) Reducing operational sound levels. (3) Minimizing harmful structure-borne vibrations which were affecting the internal rotating elements. (4) Incorporating a system brake for emergency and service purposes.« less

  16. VALIDATION OF MERCURY CEMS WHEN COFIRING BIOMASS AT MADISON ELECTRIC'S BLOUNT STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis L. Laudal; Jeffrey S. Thompson

    2000-09-30

    The state of Wisconsin has been concerned about mercury deposition into its lakes and streams and has been evaluating strategies to reduce mercury emissions. As part of this effort, the Blount Station, owned and operated by Madison Gas and Electric Company (MGE), has undergone a project to evaluate the effects and potential mercury emissions reduction of cofiring preconsumer waste. MGE owns and operates the Blount Generating Station located in central Madison, Wisconsin. At present, Blount operates with nine boilers and six turbine generators. The two largest boilers at Blount produce 400,000 pounds of steam per hour at 950 F andmore » 1250 psi. These larger boilers, MGE's Boiler Nos. 8 and 9, have the capability of cofiring both paper and plastic. MGE's Blount Generating Station was one of the first electric generating stations in the United States to retrofit its existing steam boilers to successfully burn refuse-derived fuel and other alternate fuels including waste paper and wood. It is the No. 9 boiler that was the focus of this project to determine the effect of cofiring PDF (plastic- and paper-derived fuel) on speciated mercury emissions. The project was laid out to compare four different fuel combinations: (1) coal feed only, (2) coal with plastic, (3) coal with paper, and (4) coal with paper and plastic. The design was to run the boiler for 2 days at each condition, thus allowing four samples to be taken at each condition. This plan was aimed at getting at least three representative samples at each condition and allowed for difficulties in sampling and boiler operation. The following objectives were accomplished as part of the project to determine the effects of cofiring PDF on mercury emissions and speciation at MGE Blount Station: Successfully completed all of the mercury sampling for each of the four boiler/PDF conditions using the Ontario Hydro (OH) mercury speciation method; Determined mercury concentrations at the stack location using mercury continuous emission monitors (CEMs) for each of the four boiler/PDF conditions; Calculated the overall mercury mass balance for each of the runs; Determined chlorine concentrations at the stack location using EPA Method 26A for each of the four boiler/PDF conditions; and Calculated speciated mercury flow to determine removal and/or transformations before its exiting the unit at the stack for each of the four boiler/PDF conditions.« less

  17. 76 FR 24538 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-413 and 50-414; NRC-2011-0100; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, and 50-287] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3; Notice of Withdrawal of Application for Amendmen...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnemacher, G.C.; Killen, D.C.; Weinstein, R.E.

    This paper reports on the results of an US Department of Energy (DOE) conceptual design evaluation. This is for an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). Here, APFBC would repower an existing generation station, the Carolina Power and Light Company's (CP and L) L.V. Sutton steam station. Repowering concepts are presented for APFBC repowering of Unit 2 (226 MWe) and both Units 1 and 2 in combination (340 MWe total). This evaluation found that it is more economical to repower the existing coal-fired generation unit with APFBC than to build newmore » pulverized coal capacity of equivalent output. The paper provides a review of the DOE study and summarizes the design and costs associated with the APFBC concept. A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, JR. steam plant Unit 4. This all-coal technology is under development by DOE and equipment manufacturers. This paper's concept evaluation is for a larger implementation than the Lakeland McIntosh CCT project. The repowering of L.V. Sutton Unit 2 is projected to boost the energy efficiency of the existing unit from its present 32.0% HHV level to an APFBC-repowered energy efficiency of 42.2% HHV (44.1% LHV). A large frame Westinghouse W501F combustion turbine is modified for APFBC use. This produces a 225+ MWe class APFBC. At this size, APFBC has a wide application for repowering many existing units in America. The paper focuses on the design issues, shows how the APFBC power block integrates with the existing site, and gives a brief summary of the resulting system performance and costs.« less

  19. 78 FR 35646 - Byron Nuclear Station, Units 1 and 2, and Braidwood Nuclear Station, Units 1 and 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 50-454, 50-455, 50-456, 50-457; NRC-2013-0126] Byron Nuclear Station, Units 1 and 2, and Braidwood Nuclear Station, Units 1 and 2 AGENCY: Nuclear Regulatory.... Nuclear Regulatory Commission (NRC) has received an application, dated May 29, 2013, from Exelon...

  20. Electric motorcycle charging station powered by solar energy

    NASA Astrophysics Data System (ADS)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  1. 47 CFR 90.305 - Location of stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stations. (a) The transmitter site(s) for base station(s), including mobile relay stations, shall be.... (b) Mobile units shall be operated within 48 km. (30 mi.) of their associated base station or...). (c) Control stations must be located within the area of operation of the mobile units. (d) Base and...

  2. Technology. Part 2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session WP3, the discussion focuses on the following topics: Monitoring Physiological Variables With Membrane Probes; Real Time Confocal Laser Scanning Microscopy, Potential Applications in Space Medicine and Cell Biology; Optimum Versus Universal Planetary and Interplanetary Habitats; Application of Remote Sensing and Geographic Information System Technologies to the Prevention of Diarrheal Diseases in Nigeria; A Small G Loading Human Centrifuge for Space Station ERA; Use of the Bicycle Ergometer on the International Space Station and Its Influence On The Microgravity Environment; Munich Space Chair (MSC) - A Next Generation Body Restraint System for Astronauts; and Thermoelectric Human-Body Cooling Units Used By NASA Space Shuttle Astronauts.

  3. Concept Development and Analysis of the Environmental Control, Chemical Protection, and Power Generation Systems for the Battalion Aid Station and Division Clearing Station

    DTIC Science & Technology

    1986-03-31

    requirements necessary to optimize BAS/DCS operation in worst case environments . 4) Identify the qualitative and quantitative values of equipment which... Defibrillator 2.3 2.3 265 1.0 265 2 Sink unit, surgici1 17.0 34.0 3910 0.1 390 1 Resuscitator - inhaler 0.9 0.9 104 0.5 52 2 Sterilizer, surgical 10.1...transferred, the driving force for transfer is the difference in dry bulb temperatures. During heat transfer between unsaturated air and a wetted

  4. Case study of fly ash brick manufacturing units at Kota in Rajasthan

    NASA Astrophysics Data System (ADS)

    Sharma, Y.; Saxena, B. K.; Rao, K. V. S.

    2018-03-01

    Kota Super Thermal Power Station of 1240 MW is located at Kota in Rajasthan, India. The quantity of fly ash generated by it is about 1.64 to 2.03 million tonnes per year. This fly ash is being utilized for making bricks, tiles, portland pozzolana cement, construction of highways, and other purposes. 1.79 million tonnes of fly ash was utilized for different applications in one year duration from April 01st, 2015 to March 31st, 2016. Out of this total utilization, 0.6439 million tonnes (36.06 %) of fly ash was used for making bricks, blocks, and tiles. In this paper, a case study of two fly ash brick manufacturing units using fly ash produced from Kota Super Thermal Power Station is described. These units produce about 15,000 and 20,000 bricks respectively by employing 10 and 16 workers each and are making a profit of about Rs. 6,000 and Rs. 8,000 per day in one shift.

  5. Investigation into the High Voltage Shutdown of the Oxygen Generator System in the International Space Station

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.; Gentry, Gregory J.; Diderich, Greg S.; Roy, Robert J.; Golden, John L.; VanKeuren, Steve; Steele, John W.; Rector, Tony J.; Varsik, Jerome D.; Montefusco, Daniel J.; hide

    2012-01-01

    The Oxygen Generation System (OGS) Hydrogen Dome Assembly Orbital Replacement Unit (ORU) serial number 00001 suffered a cell stack high-voltage shutdown on July 5, 2010. The Hydrogen Dome Assembly ORU was removed and replaced with the on-board spare ORU serial number 00002 to maintain OGS operation. The Hydrogen Dome Assembly ORU was returned from ISS on STS-133/ULF-5 in March 2011 with test, teardown and evaluation (TT&E) and failure analysis to follow.

  6. Robotics and local fusion

    NASA Astrophysics Data System (ADS)

    Emmerman, Philip J.

    2005-05-01

    Teams of robots or mixed teams of warfighters and robots on reconnaissance and other missions can benefit greatly from a local fusion station. A local fusion station is defined here as a small mobile processor with interfaces to enable the ingestion of multiple heterogeneous sensor data and information streams, including blue force tracking data. These data streams are fused and integrated with contextual information (terrain features, weather, maps, dynamic background features, etc.), and displayed or processed to provide real time situational awareness to the robot controller or to the robots themselves. These blue and red force fusion applications remove redundancies, lessen ambiguities, correlate, aggregate, and integrate sensor information with context such as high resolution terrain. Applications such as safety, team behavior, asset control, training, pattern analysis, etc. can be generated or enhanced by these fusion stations. This local fusion station should also enable the interaction between these local units and a global information world.

  7. EFFECTS OF SPATIAL EXTENT ON LANDSCAPE STRUCTURE AND SEDIMENT METAL CONCENTRATION RELATIONSHIPS IN SMALL ESTUARINE SYSTEMS OF THE US MID-ATLANTIC COAST

    EPA Science Inventory

    Prior studies exploring the quantitative relationship between landscape structure metrics and the ecological condition of receiving waters have used a variety of sampling units (e.g. a watershed, or a buffer around a sampling station) at a variety of spatial scales to generate la...

  8. 78 FR 49551 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... design and layout of the turbine building. As part of this request, the licensee needed to change the... information related to the design and layout of the Turbine Building detailed in the amendment request. These... Structures and Layout AGENCY: Nuclear Regulatory Commission. ACTION: Exemption and combined license amendment...

  9. 75 FR 53985 - Arizona Public Service Company, et al., Palo Verde Nuclear Generating Station, Unit 3; Temporary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... are authorized by law, will not present an undue risk to public health or safety, and are consistent... Public Health and Safety The underlying purpose of 10 CFR 50.46 is to establish acceptance criteria for... (LOCA) and non-LOCA criteria, mechanical design, thermal hydraulics, seismic, core physics, and...

  10. 75 FR 38845 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... ignition sources, hot work activities (activities such as welding or grinding), in situ and transient... is \\1/4\\- inch outside diameter tubing used for testing reactor building pressure switches. This... testing on the MU-V-20 backup air supply demonstrated that MU-V- 20 would only stay open for approximately...

  11. 76 FR 24064 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Decision Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC, the Commission) has... notice also serves as the record of decision for Renewed Facility Operating License Nos. NPF-41, NPF-51... Decision--General.'' NUREG-1437, ``Generic Environmental Impact Statement for License Renewal of Nuclear...

  12. GOES-R Rollout from VIF to Pad 41

    NASA Image and Video Library

    2016-11-18

    A United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will send the Geostationary Operational Environmental Satellite (GOES-R) to a geostationary position over the U.S. GOES-R is the first satellite in a series of next-generation NOAA GOES satellites.

  13. 77 FR 49463 - Southern California Edison, San Onofre Nuclear Generating Station, Units 2 and 3; Application and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... restrictions or flexibility. These changes are supported in aggregate by a single generic no significant... restrictions or reduced flexibility. These changes are supported in aggregate by a single generic NSHC... supported in aggregate by a single generic NSHC. Removed detail changes (LA)--Changes to the CTS that...

  14. Concentrating Solar Power Projects in the United States | Concentrating

    Science.gov Websites

    States are listed belowâ€"alphabetical by state, then by project name. You can browse a project profile by clicking on the project name. Arizona Maricopa Solar Project (Maricopa) Saguaro Power Plant Solana Generating Station (Solana) California Genesis Solar Energy Project Ivanpah Solar Electric

  15. 75 FR 15745 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... rule's compliance date for all operating nuclear power plants, but noted that the Commission's... compliance date as documented in a letter from R.W. Borchardt, (NRC), to M.S. Fertel, (Nuclear Energy... Commission (NRC, or the Commission) now or hereafter in effect. The facility consists of three pressurized...

  16. 75 FR 53984 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...- 2010-0283] Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power Station, Unit Nos. 1 and 2 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... applications for North Anna Power Station, Unit Nos. 1 and 2 (NAPS), for Renewed Facility Operating License Nos...

  17. Naval Station Guantanamo Bay: History and Legal Issues Regarding Its Lease Agreements

    DTIC Science & Technology

    2016-11-17

    parcels of land to the United States for use as naval or coaling stations. Naval Station Guantanamo Bay, Cuba, was the sole installation established...protected harbor, coaling station, and eventually a convoy staging area and airfield. Because the station is a facility of the United States Navy...Cuba will sell or lease to the United States lands necessary for coaling or naval stations at certain specified points, to be agreed upon with the

  18. Station Blackout at Browns Ferry Unit One - accident sequence analysis. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.H.; Harrington, R.M.; Greene, S.R.

    1981-11-01

    This study describes the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to Station Blackout, defined as a loss of offsite power combined with failure of all onsite emergency diesel-generators to start and load. Every effort has been made to employ the most realistic assumptions during the process of defining the sequence of events for this hypothetical accident. DC power is assumed to remain available from the unit batteries during the initial phase and the operator actions and corresponding events during this period are described using results provided by an analysis code developed specifically for this purpose.more » The Station Blackout is assumed to persist beyond the point of battery exhaustion and the events during this second phase of the accident in which dc power would be unavailable were determined through use of the MARCH code. Without dc power, cooling water could no longer be injected into the reactor vessel and the events of the second phase include core meltdown and subsequent containment failure. An estimate of the magnitude and timing of the concomitant release of the noble gas, cesium, and iodine-based fission products to the environment is provided in Volume 2 of this report. 58 refs., 75 figs., 8 tabs.« less

  19. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  20. Seismic anisotropy of northeastern Algeria from shear-wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Radi, Zohir; Yelles-Chaouche, Abdelkrim; Bokelmann, Götz

    2015-11-01

    There are few studies of internal deformation under northern Africa; here we present such a study. We analyze teleseismic shear-wave splitting for northeast Algeria, to improve our knowledge of lithospheric and asthenospheric deformation mechanisms in this region. We study waveform data generated by tens of teleseismic events recorded at five recently installed broadband (BB) stations in Algeria. These stations cover an area 2° across, extending from the Tellian geological units in the North to the Saharan Atlas units in the South. Analysis of SKS-wave splitting results insignificant spatial variations in fast polarization orientation, over a scale length of at most 100 km. The seismic anisotropy shows three clear spatial patterns. A general ENE-WSW orientation is observed under the stations in the north. This polarization orientation follows the direction of the Tell Atlas mountain chain, which is perpendicular to the convergence direction between Africa and Eurasia. Delay times vary significantly across the region, between 0.6 and 2.0 s. At several stations there is an indication of a WNW-ESE polarization orientation, which is apparently related to a later geodynamic evolutionary phase in this region. A third pattern of seismic anisotropy emerges in the South, with an orientation of roughly N-S. We discuss these observations in light of geodynamic models and present-day geodetic motion.

  1. Circulating water traveling screen modifications to improve impinged fish survival and debris handling at Salem Generating Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronafalvy, J.P.; Cheesman, R.R.; Matejek, W.M.

    This paper summarizes modifications made to the Salem Generating Station`s (Salem) Circulating Water Traveling Screens (CWTS) as required by Salem`s New Jersey Pollutant Discharge Elimination System Permit (NJPDES Permit). The modifications incorporated newly designed CWTS baskets with hydrodynamically improved fish buckets (greatly reduced turbulence in the bucket); smooth woven mesh screens with 0.250 x 0.500 inch rectangular mesh openings (formerly 0.375 inch square mesh openings); lighter composite basket frame material allowing increased screen rotation speed; improved low and high pressure spray wash patterns; improved screen to sluice trough flap seal design and miscellaneous reliability improvements. In order to address themore » overall effects of the CWTS modifications on fish losses, the effect of both entrainment and impingement by fish size was addressed in a comparison study between modified and unmodified units. The results of the assessment indicate a 51% reduction in overall weakfish (Cynoscion regales) losses (expressed as equivalent adults, larger than 187 mm total length individuals). These modifications also enhanced debris removal capability of the CWTSs. 5 refs., 5 figs.« less

  2. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed inmore » generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.« less

  4. Agricultural Experiment Stations and Branch Stations in the United States

    ERIC Educational Resources Information Center

    Pearson, Calvin H.; Atucha, Amaya

    2015-01-01

    In 1887, Congress passed the Hatch Act, which formally established and provided a funding mechanism for agricultural experiment stations in each state and territory in the United States. The main purpose of agricultural experiment stations is to conduct agricultural research to meet the needs of the citizens of the United States. The objective of…

  5. Use of mock-up training to reduce personnel exposure at the North Anna Unit 1 Steam Generator Replacement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, H.G.; Reilly, B.P.

    1995-03-01

    The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supplymore » system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.« less

  6. 1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, LOOKING SOUTH; IN THE CENTER, BEHIND THE STACK IS THE GENERATING STATION BUILT IN 1959; THE TALL METAL-CLAD BUILDING CONTAINS A COAL BUNKER, COAL PULVERIZER, FURNACE, BOILER, SUPER-HEATER, STEAM PIPES, AND HOT-AIR DUCTS. TO THE RIGHT OF THIS 1959 GENERATING STATION IS THE ORIGINAL POWERHOUSE. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  7. 75 FR 9623 - Arizona Public Service Company, et al.; Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... pressurized-water reactors located in Maricopa County, Arizona. 2.0 Request/Action Title 10 of the Code of... in CE NPSD-683-A, Revision 6, for the calculation of flaw stress intensity factors due to membrane stress from pressure loading (K IM ), an exemption was required, since the methodology for the...

  8. 40 CFR 52.1920 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from combined wood fuel and fossil fuel fired steam generating units 6/1/2000 12/29/2008, 73 FR 79400... 05/26/1994 02/29/1996 61 FR 7709 Subsection (o) only. 595:20-3-42 Responsibility for signs, forms... Rejection receipt—Form VID 44 05/26/1994 02/29/1996 61 FR 7709 595:20-7-4 Station monthly report—Form VID 21...

  9. 40 CFR 52.1920 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from combined wood fuel and fossil fuel fired steam generating units 6/1/2000 12/29/2008, 73 FR 79400... 05/26/1994 02/29/1996 61 FR 7709 Subsection (o) only. 595:20-3-42 Responsibility for signs, forms... Rejection receipt—Form VID 44 05/26/1994 02/29/1996 61 FR 7709 595:20-7-4 Station monthly report—Form VID 21...

  10. 40 CFR 52.1920 - Identification of plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from combined wood fuel and fossil fuel fired steam generating units 6/1/2000 12/29/2008, 73 FR 79400... 05/26/1994 02/29/1996 61 FR 7709 Subsection (o) only. 595:20-3-42 Responsibility for signs, forms... Rejection receipt—Form VID 44 05/26/1994 02/29/1996 61 FR 7709 595:20-7-4 Station monthly report—Form VID 21...

  11. 78 FR 27260 - Southern California Edison, San Onofre Nuclear Generating Station, Units 2 and 3 Request for Action

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... regarding this document. You may access information related to this document, which the NRC possesses and is... and Management System (ADAMS): You may access publicly available documents online in the NRC Library... available in ADAMS) is provided the first time that a document is referenced. NRC's PDR: You may examine and...

  12. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage is lifted up for transfer into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  13. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is lifted for mounting atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  14. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians encapsulate the Tracking and Data Relay Satellite, or TDRS-L, spacecraft in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  16. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, United Launch Alliance engineers and technicians ensure precision as the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  17. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  18. Next-Generation Intensity-Duration-Frequency Curves for Hydrologic Design in Snow-Dominated Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Sun, Ning; Wigmosta, Mark

    Precipitation-based intensity-duration-frequency (PREC-IDF) curves are a standard tool used to derive design floods for hydraulic infrastructure worldwide. In snow-dominated regions where a large percentage of flood events are caused by snowmelt and rain-on-snow events, the PREC-IDF design approach can lead to substantial underestimation/overestimation of design floods and associated infrastructure. In this study, next-generation IDF (NG-IDF) curves, which characterize the actual water reaching the land surface, are introduced into the design process to improve hydrologic design. The authors compared peak design flood estimates from the National Resource Conservation Service TR-55 hydrologic model driven by NG-IDF and PREC-IDF curves at 399 Snowpackmore » Telemetry (SNOTEL) stations across the western United States, all of which had at least 30 years of high-quality records. They found that about 72% of the stations in the western United States showed the potential for underdesign, for which the PREC-IDF curves underestimated peak design floods by as much as 324%. These results demonstrated the need to update the use of PREC-IDF curves to the use of NG-IDF curves for hydrologic design in snow-dominated regions.« less

  19. Next-Generation Intensity‐Duration‐Frequency Curves for Hydrologic Design in Snow-Dominated Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Sun, Ning; Wigmosta, Mark S.

    Precipitation-based intensity-duration-frequency (PREC-IDF) curves are a standard tool used to derive design floods for hydraulic infrastructure worldwide. In snow-dominated regions where a large percentage of flood events are caused by snowmelt and rain-on-snow events, the PREC-IDF design approach can lead to substantial underestimation/overestimation of design floods and associated infrastructure. In this study, next-generation IDF (NG-IDF) curves, which characterize the actual water reaching the land surface, are introduced into the design process to improve hydrologic design. The authors compared peak design flood estimates from the National Resource Conservation Service TR-55 hydrologic model driven by NG-IDF and PREC-IDF curves at 399 Snowpackmore » Telemetry (SNOTEL) stations across the western United States, all of which had at least 30 years of high-quality records. They found that about 72% of the stations in the western United States showed the potential for underdesign, for which the PREC-IDF curves underestimated peak design floods by as much as 324%. These results demonstrated the need to update the use of PREC-IDF curves to the use of NG-IDF curves for hydrologic design in snow-dominated regions.« less

  20. Flooding and Atmospheric Rivers across the Western United States

    NASA Astrophysics Data System (ADS)

    Villarini, G.; Barth, N. A.; White, K. D.

    2017-12-01

    Flood frequency analysis across the western United States is complicated by annual peak flow records that frequently contain flows generated from distinctly different flood generating mechanisms. Among the different flood agents, atmospheric rivers (ARs) are responsible for large, regional scale floods. USGS streamgaging stations in the central Columbia River Basin in the Pacific Northwest, the Sierra Nevada, the central and southern California coast, and central Arizona show a mixture of 30-70% AR-generated flood peaks among the complete period of record. Bulletin17B and its proposed update (Draft Bulletin 17C) continue to recognize difficulties in determining flood frequency estimates among streamflow records that contain flood peaks coming from different flood-generating mechanisms, as is the case in the western United States. They recommend developing separate frequency curves when the hydrometeorologic mechanisms that generated the annual peak flows can be separated into distinct subpopulations. Yet challenges arise when trying to consistently quantify the physical (hydrometeorologic) processes that generated the observed flows, and even more when trying to account for them in flood frequency estimation. This study provides a general statistical framework to perform a process-driven flood frequency analysis using a weighted mixed population approach, highlighting the role that ARs play on the flood peak distribution.

  1. Development of the Second Generation International Space Station (ISS) Total Organic Carbon Analyzer (TOCA)

    NASA Technical Reports Server (NTRS)

    Clements, Anna L.; Stinson, Richard G.; VanWie, Michael; Warren, Eric

    2009-01-01

    The second generation International Space Station (ISS) Total Organic Carbon Analyzer s (TOCA) function is to monitor concentrations of Total Organic Carbon (TOC) in ISS water samples. TOC is one measurement that provides a general indication of overall water quality by indicating the potential presence of hazardous chemicals. The data generated from the TOCA is used as a hazard control to assess the quality of the reclaimed and stored water supplies on-orbit and their suitability for crew consumption. This paper details the unique ISS Program requirements, the design of the ISS TOCA, and a brief description of the on-orbit concept-of-operations. The TOCA schematic will be discussed in detail along with specific information regarding key components. The ISS TOCA was designed as a non-toxic TOC analyzer that could be deployed in a flight ready package. This basic concept was developed through laboratory component level testing, two moderate fidelity integrated system breadboard prototypes, a flight-like full scale prototype, as well as lessons learned from the inadequacies of the first unit. The result: a new TOCA unit that is robust in design and includes special considerations to microgravity and the on-orbit ISS environment. TOCA meets the accuracy needs of the ISS Program with a 1,000 to 25,000 g/L range, accurate to within +/-25%.

  2. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  3. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  4. 75 FR 13322 - PPL Susquehanna, LLC.: Susquehanna Steam Electric Station, Units 1 and 2 Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ....: Susquehanna Steam Electric Station, Units 1 and 2 Environmental Assessment and Finding of No Significant... the licensee), for operation of the Susquehanna Steam Electric Station (SSES), Units 1 and 2..., support structures, water, or land at the SSES Units 1 and 2 site. The proposed action is in accordance...

  5. 76 FR 39134 - ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ...; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor which... previously applicable to the nuclear power units and associated systems, structures, and components (SSC) are...

  6. sts088-s-001

    NASA Image and Video Library

    1998-09-01

    STS088-S-001 (September 1998) --- Designed by the crew members, this STS-88 patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task is to assemble the cornerstone of the space station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the space shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, "These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future." The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  7. Milliwatt radioisotope power supply for the PASCAL Mars surface stations

    NASA Astrophysics Data System (ADS)

    Allen, Daniel T.; Murbach, Marcus S.

    2001-02-01

    A milliwatt power supply is being developed based on the 1 watt Light-Weight Radioisotope Heater Unit (RHU), which has already been used to provide heating alone on numerous spacecraft. In the past year the power supply has been integrated into the design of the proposed PASCAL Mars Network Mission, which is intended to place 24 surface climate monitoring stations on Mars. The PASCAL Mars mission calls for the individual surface stations to be transported together in one spacecraft on a trajectory direct from launch to orbit around Mars. From orbit around Mars each surface station will be deployed on a SCRAMP (slotted compression ramp) probe and, after aerodynamic and parachute deceleration, land at a preselected location on the planet. During descent sounding data and still images will be accumulated, and, once on the surface, the station will take measurements of pressure, temperature and overhead atmospheric optical depth for a period of 10 Mars years (18.8 Earth years). Power for periodic data acquisition and transmission to orbital then to Earth relay will come from a bank of ultracapacitors which will be continuously recharged by the radioisotope power supply. This electronic system has been designed and a breadboard built. In the ultimate design the electronics will be arrayed on the exterior surface of the radioisotope power supply in order to take advantage of the reject heat. This assembly in turn is packaged within the SCRAMP, and that assembly comprises the surface station. An electrically heated but otherwise prototypical power supply was operated in combination with the surface station breadboard system, which included the ultracapacitors. Other issues addressed in this work have been the capability of the generator to withstand the mechanical shock of the landing on Mars and the effectiveness of the generator's multi-foil vacuum thermal insulation. .

  8. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  9. Recognition of units in coarse, unconsolidated braided-stream deposits from geophysical log data with principal components analysis

    USGS Publications Warehouse

    Morin, R.H.

    1997-01-01

    Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.

  10. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  11. 22. Blow Down Valve for Unit 1, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Blow Down Valve for Unit 1, view to the southwest. This valve allows the water in the draft chest to be lowered (i.e., 'blown down') so that the unit can be motored (i.e., run like an electric motor rather than an electric power generator). The valve is operated by pressure from the instrument air system (part of which is visible in photograph MT-105-A-17 above), but the unit draws on the station air system (see photograph MT-105-A-24 below) to lower the water in the draft chest. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  12. Recent improvements in earthquake and tsunami monitoring in the Caribbean

    NASA Astrophysics Data System (ADS)

    Gee, L.; Green, D.; McNamara, D.; Whitmore, P.; Weaver, J.; Huang, P.; Benz, H.

    2007-12-01

    Following the catastrophic loss of life from the December 26, 2004, Sumatra-Andaman Islands earthquake and tsunami, the U.S. Government appropriated funds to improve monitoring along a major portion of vulnerable coastal regions in the Caribbean Sea, the Gulf of Mexico, and the Atlantic Ocean. Partners in this project include the United States Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the Puerto Rico Seismic Network (PRSN), the Seismic Research Unit of the University of the West Indies, and other collaborating institutions in the Caribbean region. As part of this effort, the USGS is coordinating with Caribbean host nations to design and deploy nine new broadband and strong-motion seismic stations. The instrumentation consists of an STS-2 seismometer, an Episensor accelerometer, and a Q330 high resolution digitizer. Six stations are currently transmitting data to the USGS National Earthquake Information Center, where the data are redistributed to the NOAA's Tsunami Warning Centers, regional monitoring partners, and the IRIS Data Management Center. Operating stations include: Isla Barro Colorado, Panama; Gun Hill Barbados; Grenville, Grenada; Guantanamo Bay, Cuba; Sabaneta Dam, Dominican Republic; and Tegucigalpa, Honduras. Three additional stations in Barbuda, Grand Turks, and Jamaica will be completed during the fall of 2007. These nine stations are affiliates of the Global Seismographic Network (GSN) and complement existing GSN stations as well as regional stations. The new seismic stations improve azimuthal coverage, increase network density, and provide on-scale recording throughout the region. Complementary to this network, NOAA has placed Deep-ocean Assessment and Reporting of Tsunami (DART) stations at sites in regions with a history of generating destructive tsunamis. Recently, NOAA completed deployment of 7 DART stations off the coasts of Montauk Pt, NY; Charleston, SC; Miami, FL; San Juan, Puerto Rico; New Orleans, LA; and Bermuda as part of the U.S. tsunami warning system expansion. DART systems consist of an anchored seafloor pressure recorder (BPR) and a companion moored surface buoy for real-time communications. The new stations are a second-generation design (DART II) equipped with two- way satellite communications that allow NOAA's Tsunami Warning Centers to set stations in event mode in anticipation of possible tsunamis or retrieve the high-resolution (15-s intervals) data in one-hour blocks for detailed analysis. Combined with development of sophisticated wave propagation and site-specific inundation models, the DART data are being used to forecast wave heights for at-risk coastal communities. NOAA expects to deploy a total of 39 DART II buoy stations by 2008 (32 in the Pacific and 7 in the Atlantic, Caribbean and Gulf regions). The seismic and DART networks are two components in a comprehensive and fully-operational global observing system to detect and warn the public of earthquake and tsunami threats. NOAA and USGS are working together to make important strides in enhancing communication networks so residents and visitors can receive earthquake and tsunami watches and warnings around the clock.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, R.E.; Goldstein, H.N.; White, J.S.

    It is often more economical to keep existing generation capacity in operation than to build new capacity. Repowering is considered at a number of sites because of the need for added capacity, the poor condition of plant equipment (particularly the boiler), the need for improved environmental performance, the need for shorter licensing period, and other reasons. This paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes themore » preliminary results. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland`s C.D. McIntosh, Jr. steam plant Unit 4. This paper`s concept evaluation is for a larger implementation. A modern large frame combustion turbine is used to produce a 300 + MWe class APFBC. At this size, APFBC has a wide application for repowering many existing units in America. Here, APFBC would repower an existing generation station, the Carolina Power and Light Company`s (CP and L) L.V. Suttong steam station. Repowering concepts are presented for APFBC repowering of Unit 2 (252 MWe) and of both Units 1 and 2 in combination (360 MWe total).« less

  14. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  15. Space Station-Baseline Configuration With Callouts

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  16. Space Station

    NASA Image and Video Library

    1989-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  17. First non-OEM steam-generator replacement in US a success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendsbee, P.M.; Lees, M.D.; Smith, J.C.

    1994-04-01

    In selecting replacements for major powerplant components, a fresh approach can be advantageous--even when complex nuclear components are involved. This was the experience at Unit 2 of Millstone nuclear station, which features an 870-MW pressurized-water reactor (PWR) with two nuclear recirculating steam generators. The unit began operation in 1975. In the early 1980s, pitting problems surfaced in the steam generator tubing; by the mid eighties, tube corrosion had reached an unacceptable level. Virtually all of the 17,000 tubes in the two units were deteriorating, with 2500 plugged and 5000 sleeved. Several new problems also were identified, including secondary-side circumferential crackingmore » of the Alloy 600 tubing near the tubesheet face, and deterioration of the carbon steel egg-crate tube supports. Despite improvements to primary and secondary steam-generator water chemistry, including almost complete copper removal from the condensate and feedwater loops, Northeast Utilities (NU) was unable to completely control degradation of the tube bundles. The utility decided in 1987 that full replacement was the most viable alternative. NU made a bold move, selecting a supplier other than the original equipment manufacturer (OEM).« less

  18. Tube structural integrity evaluation of Palo Verde Unit 1 steam generators for axial upper-bundle cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodman, B.W.; Begley, J.A.; Brown, S.D.

    1995-12-01

    The analysis of the issue of upper bundle axial ODSCC as it apples to steam generator tube structural integrity in Unit 1 at the Palo Verde Nuclear generating Station is presented in this study. Based on past inspection results for Units 2 and 3 at Palo Verde, the detection of secondary side stress corrosion cracks in the upper bundle region of Unit 1 may occur at some future date. The following discussion provides a description and analysis of the probability of axial ODSCC in Unit 1 leading to the exceedance of Regulatory Guide 1.121 structural limits. The probabilities of structuralmore » limit exceedance are estimated as function of run time using a conservative approach. The chosen approach models the historical development of cracks, crack growth, detection of cracks and subsequent removal from service and the initiation and growth of new cracks during a given cycle of operation. Past performance of all Palo Verde Units as well as the historical performance of other steam generators was considered in the development of cracking statistics for application to Unit 1. Data in the literature and Unit 2 pulled tube examination results were used to construct probability of detection curves for the detection of axial IGSCC/IGA using an MRPC (multi-frequency rotating panake coil) eddy current probe. Crack growth rates were estimated from Unit 2 eddy current inspection data combined with pulled tube examination results and data in the literature. A Monte-Carlo probabilistic model is developed to provide an overall assessment of the risk of Regulatory Guide exceedance during plant operation.« less

  19. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is mated to the United Launch Alliance Atlas V Centaur upper stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  20. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A crane begins to lift the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  1. 76 FR 40944 - PSEG Nuclear, LLC, Salem Nuclear Generating Station, Units 1 and 2; Notice of Issuance of Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... no-action alternative. The factors considered in the record of decision can be found in the... serves as the record of decision for the renewal of Facility Operating License Nos. DPR-70 and DPR-75, consistent with Title 10 of the Code of Federal Regulations (10 CFR) 51.103, ``Record of Decision--General...

  2. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    Operations are underway to stack the United Launch Alliance Atlas V Centaur second stage onto the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  3. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    A close-up view of the United Launch Alliance Atlas V Centaur second stage as it travels to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  4. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage has been lifted up and transferred into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  5. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    United Launch Alliance team members assist as operation begin to lift the Atlas V Centaur second stage into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  6. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage is lifted up by crane for transfer into Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  7. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage has been mated to the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  8. Celebrating 10 Years of Delivering EarthScope USArray Transportable Array Data from the Array Network Facility (ANF)

    NASA Astrophysics Data System (ADS)

    Eakins, J. A.; Vernon, F.; Astiz, L.; Davis, G. A.; Reyes, J. C.; Martynov, V. G.; Tytell, J.; Cox, T. A.; Meyer, J.

    2013-12-01

    Since 2004, the Array Network Facility (ANF) has been responsible for generation and delivery of the metadata as well as collection and initial quality control and the transmission of the seismic, and more recently infrasound and meteorological data, for the Earthscope USArray Transportable Array. As of August 2013, we have managed data from over 1600 stations. Personnel at the ANF provide immediate eyes on the data to improve quality control as well as interact with the individual stations via calibrations, mass recentering, baler data retrieval and event analysis. Web-based tools have been developed, and rewritten over the years, to serve the needs of both station engineers and the public. Many lessons on the needs for scalability have been learned. Analysts continue to review all seismic events recorded on 7 or more TA stations making associations against externally available bulletins and/or generating ANF authored locations which are available at both the ANF and IRIS-DMC. The US Array pressure data have several unique characteristics that are allowing us to conduct a rigorous analysis of the spatio-temporal variations in the pressure field on time scales of less than an hour across the eastern United States. With the installation of the infrasound and atmospheric pressure sensors, starting in 2010, observations of gust fronts, near misses of tornados at individual stations, and of the mesoscale gravity waves showing the value and utility of the US Array pressure data will be presented.

  9. 75 FR 13798 - Entergy Operations, Inc.; Waterford Steam Electric Station, Unit 3 Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0110; 50-382] Entergy Operations, Inc.; Waterford Steam Electric Station, Unit 3 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... the Waterford Steam Electric Station, Unit 3 (Waterford 3), located in St. Charles Parish, Louisiana...

  10. Observations of Earth space by self-powered stations in Antarctica.

    PubMed

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power control system with variable resistor shunts to regulate the power and dissipate the excess energy and at the same time provide heat for a temperature controlled environment for the instrument electronics and data system. We deployed such systems and demonstrated a high degree of reliability in several years of operation in spite of the relative unpredictability of the Antarctic environment. Sample data are shown to demonstrate that the AGOs provide key measurements, which would be impossible without the special technology developed for this type of observing platform.

  11. Observations of Earth space by self-powered stations in Antarctica

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Rachelson, W.; Sterling, R.; Frey, H. U.; Harris, S. E.; McBride, S.; Rosenberg, T. J.; Detrick, D.; Doolittle, J. L.; Engebretson, M.; Inan, U.; Labelle, J. W.; Lanzerotti, L. J.; Weatherwax, A. T.

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power control system with variable resistor shunts to regulate the power and dissipate the excess energy and at the same time provide heat for a temperature controlled environment for the instrument electronics and data system. We deployed such systems and demonstrated a high degree of reliability in several years of operation in spite of the relative unpredictability of the Antarctic environment. Sample data are shown to demonstrate that the AGOs provide key measurements, which would be impossible without the special technology developed for this type of observing platform.

  12. Station blackout at Browns Ferry Unit One: iodine and noble-gas distribution and release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Weber, C.F.; Lorenz, R.A.

    1982-08-01

    This is the second volume of a report describing the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to a postulated Station Blackout, defined as a loss of offsite power combined with failure of all onsite emergency diesel-generators to start and load. The Station Blackout is assumed to persist beyond the point of battery exhaustion and the completely powerless state leads to core uncovery, meltdown, reactor vessel failure, and failure of the primary containment by overtemperature-induced degradation of the electrical penetration assembly seals. The sequence of events is described in Volume 1; the material in this volumemore » deals with the analysis of fission product noble gas and iodine transport during the accident. Factors which affect the fission product movements through the series of containment design barriers are reviewed. For a reactive material such as iodine, proper assessment of the rate of movement requires determination of the chemical changes along the pathway which alter the physical properties such as vapor pressure and solubility and thereby affect the transport rate. A methodology for accomplishing this is demonstrated in this report.« less

  13. Temporalization of Electric Generation Emissions for Improved Representation of Peak Air Quality Episodes

    NASA Astrophysics Data System (ADS)

    Farkas, C. M.; Moeller, M.; Carlton, A. G.

    2013-12-01

    Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.

  14. INLAND BIOLOGICAL FIELD STATIONS OF THE UNITED STATES.

    ERIC Educational Resources Information Center

    ARVEY, M. DALE; RIEMER, WILLIAM J.

    INFORMATION ABOUT 42 INLAND BIOLOGY FIELD STATIONS IN THE UNITED STATES IS PRESENTED. DATA WERE OBTAINED THROUGH VISITS BY REPRESENTATIVES OF THE NATIONAL SCIENCE FOUNDATION. IN AN INTRODUCTORY SECTION THE CHARACTERISTICS, FUNCTIONS, AND PROBLEMS GENERALLY ASSOCIATED WITH FIELD STATIONS ARE REVIEWED. INDIVIDUAL STATIONS ARE LISTED ALPHABETICALLY,…

  15. 20. MANUAL JACKING STATION UNIT 23 GORGE POWERHOUSE. JACKING FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. MANUAL JACKING STATION UNIT 23 GORGE POWERHOUSE. JACKING FOR UNITS 23, 22, AND 21 HAS BEEN AUTOMATED FOR MANY YEARS BUT THE MANUAL JACKING STATIONS REMAIN IN PLACE AND FUNCTIONAL, 1989. - Skagit Power Development, Gorge Powerhouse, On Skagit River, 0.4 mile upstream from Newhalem, Newhalem, Whatcom County, WA

  16. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  17. An updated global grid point surface air temperature anomaly data set: 1851--1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed inmore » generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.« less

  18. Successful multi-technology NO{sub x} reduction project experience at New England Power Company - Salem Harbor station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fynan, G.A.; Sload, A.; Adamson, E.J.

    This paper presents the successes and lessons learned during recent low NOx burner and SNCR projects on generating units at New England Power`s Salem Harbor Generating Station. The principals involved in the project were New England Power Company, New England Power Service Company, Stone and Webster Engineering Corp. and Deutsche-Babcock Riley Inc. One unit was retrofitted with 16 Riley CCV burners with an OFA system, the other with 12 low NOx burners only. In addition to the burners, a SNCR system was also installed on three units. Since each of the burner systems are interdependent (SNCR was treated separately duringmore » design phases and optimized along with the burner systems), close cooperation during the design stages was essential to ensuring a successful installation, startup and optimization. This paper will present the coordinated effort put forth by each company toward this goal with the hope of assisting others who may be planning a similar effort. A summary of the operating results will also be presented. The up front teamwork and advance planning that went into the design stages of the project resulted in a number of successful outcomes e.g. scanner reliability, properly operating oil supply system, compatibility of burners and burner front oil system with new Burner Management System (BMS), reliable first attempt burner ignition and more. Advance planning facilitated pre-outage work and factored into keeping schedules and budgets on track.« less

  19. Applicability of the site fundamental frequency as a VS30 proxy for Central and Eastern North America

    NASA Astrophysics Data System (ADS)

    Hassani, B.; Atkinson, G. M.

    2015-12-01

    One of the most important issues in developing accurate ground-motion prediction equations (GMPEs) is the effective use of limited regional site information in developing a site effects model. In modern empirical GMPE models site effects are usually characterized by simplified parameters that describe the overall near-surface effects on input ground-motion shaking. The most common site effects parameter is the time-averaged shear-wave velocity in the upper 30 m (VS30), which has been used in the Next Generation Attenuation-West (NGA-West) and NGA-East GMPEs, and is widely used in building code applications. For the NGA-East GMPE database, only 6% of the stations have measured VS30 values, while the rest have proxy-based VS30 values. Proxy-based VS30 values are derived from a weighted average of different proxies' estimates such as topographic slope and surface geology proxies. For the proxy-based approaches, the uncertainty in the estimation of Vs30 is significantly higher (~0.25, log10 units) than that for stations with measured VS30(0.04, log10 units); this translates into error in site amplification and hence increased ground motion variability. We introduce a new VS30 proxy as a function of the site fundamental frequency (fpeak) using the NGA-East database, and show that fpeak is a particularly effective proxy for sites in central and eastern North America We first use horizontal to vertical spectra ratios (H/V) of 5%-damped pseudo spectral acceleration (PSA) to find the fpeak values for the recording stations. We develop an fpeak-based VS30 proxy by correlating the measured VS30 values with the corresponding fpeak value. The uncertainty of the VS30 estimate using the fpeak-based model is much lower (0.14, log10 units) than that for the proxy-based methods used in the NGA-East database (0.25 log10 units). The results of this study can be used to recalculate the VS30 values more accurately for stations with known fpeak values (23% of the stations), and potentially reduce the overall variability of the developed NGA-East GMPE models.

  20. Long-range, full-duplex, modulated-reflector cell phone for voice/data transmission

    DOEpatents

    Neagley, Daniel L.; Briles, Scott D.; Coates, Don M.; Freund, Samuel M.

    2002-01-01

    A long-range communications apparatus utilizing modulated-reflector technology is described. The apparatus includes an energy-transmitting base station and remote units that do not emit radiation in order to communicate with the base station since modulated-reflector technology is used whereby information is attached to an RF carrier wave originating from the base station which is reflected by the remote unit back to the base station. Since the remote unit does not emit radiation, only a low-power power source is required for its operation. Information from the base station is transmitted to the remote unit using a transmitter and receiver, respectively. The range of such a communications system is determined by the properties of a modulated-reflector half-duplex link.

  1. Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.; Erpyleva, S. F.

    2017-05-01

    Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.

  2. Study on safety operation for large hydroelectric generator unit

    NASA Astrophysics Data System (ADS)

    Yan, Z. G.; Cui, T.; Zhou, L. J.; Zhi, F. L.; Wang, Z. W.

    2012-11-01

    Hydroelectric generator unit is a complex mechanical system which is composed of hydraulic turbine and electric generator. Rotary system is supported by the bearing bracket and the reinforced concrete structures, and vibration problem can't be avoided in the process of operating. Many large-scale hydroelectric units have been damaged because of the vibration problem in recent years. As the increase of the hydraulic turbine unit capacity and water head, the safe operation of hydraulic turbine has become a focus research in many countries. The operating characteristics of the hydraulic turbine have obvious differences at different working conditions. Based on the combination of field measurement and theoretical calculation, this paper shows a deep research on the safe operation of a large-scale Francis turbine unit. Firstly, the measurements of vibration, swing, pressure fluctuation and noise were carried out at 4 different heads. And also the relationships between vibrations and pressure fluctuations at different heads and working conditions were analysed deeply. Then the scientific prediction of safe operation for the unit at high head were done based on the CFD numerical calculation. Finally, this paper shows the division of the operating zone for the hydroelectric unit. According to the experimental results (vibrations, swings, pressure fluctuations and noise) as well as the theoretical results, the operating zone of the unit has been divided into three sections: prohibited operating zone, transition operating zone and safe operating zone. After this research was applied in the hydropower station, the security and economic efficiency of unit increased greatly, and enormous economic benefits and social benefits have been obtained.

  3. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  4. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is being mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  5. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor is lifted on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  6. OGS Hydrogen Sensor ORU R&R

    NASA Image and Video Library

    2012-04-18

    ISS030-E-236919 (18 April 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, works with the Oxygen Generator System (OGS) rack in the Tranquility node of the International Space Station. Burbank unpowered the OGS, purged the hydrogen sensor Orbital Replacement Unit (ORU) with the Hydrogen Sensor ORU Purge Adapter (HOPA) for return to Earth, and replaced the hydrogen sensor with a new spare, then cleaned the rack Avionics Air Assembly (AAA).

  7. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A crane is used to lift the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  8. GOES-R Rollout from VIF to Pad 41

    NASA Image and Video Library

    2016-11-18

    A United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. In view is the upper stage and payload fairing containing the Geostationary Operational Environmental Satellite (GOES-R). The launch vehicle will send GOES-R to a geostationary position over the U.S. GOES-R is the first satellite in a series of next-generation NOAA GOES satellites.

  9. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is lifted into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch aboard the rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  10. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    Preparations are underway to lift NOAA's Geostationary Operational Environmental Satellite (GOES-R), enclosed in its payload fairing at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  11. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A crane has been attached to the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  12. 77 FR 12885 - Millstone Power Station, Units 1, 2 and 3, Dominion Nuclear Connecticut, Inc.; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... high wind conditions pass, wind damage to the plant and surrounding area might preclude a sufficient... Power Station, Units 1, 2 and 3, Dominion Nuclear Connecticut, Inc.; Exemption 1.0 Background Dominion..., DPR-65 and NPF-49, which authorize operation of the Millstone Power Station, Unit Nos. 1, 2 and 3...

  13. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor... activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee...

  14. [Russian oxygen generation system "Elektron-VM": hydrogen content in electrolytically produced oxygen for breathing by International Space Station crews].

    PubMed

    Proshkin, V Yu; Kurmazenko, E A

    2014-01-01

    The article presents the particulars of hydrogen content in electrolysis oxygen produced aboard the ISS Russian segment by oxygen generator "Elektron-VM" (SGK) for crew breathing. Hydrogen content was estimated as in the course of SGK operation in the ISS RS, so during the ground life tests. According to the investigation of hydrogen sources, the primary path of H2 appearance in oxygen is its diffusion through the porous diaphragm separating the electrolytic-cell cathode and anode chambers. Effectiveness of hydrogen oxidation in the SGK reheating unit was evaluated.

  15. System for a displaying at a remote station data generated at a central station and for powering the remote station from the central station

    NASA Technical Reports Server (NTRS)

    Perry, J. C. (Inventor)

    1980-01-01

    A system for displaying at a remote station data generated at a central station and for powering the remote station from the central station is presented. A power signal is generated at the central station and time multiplexed with the data and then transmitted to the remote station. An energy storage device at the remote station is responsive to the transmitted power signal to provide energizing power for the circuits at the remote station during the time interval data is being transmitted to the remote station. Energizing power for the circuits at the remote station is provided by the power signal itself during the time this signal is transmitted. Preferably the energy storage device is a capacitor which is charged by the power signal during the time the power is transmitted and is slightly discharged during the time the data is transmitted to energize the circuits at the remote station.

  16. Feasibility of flywheel energy storage systems for applications in future space missions

    NASA Technical Reports Server (NTRS)

    Santo, G. Espiritu; Gill, S. P.; Kotas, J. F.; Paschall, R.

    1995-01-01

    The objective of this study was to examine the overall feasibility of deploying electromechanical flywheel systems in space used for excess energy storage. Results of previous Rocketdyne studies have shown that the flywheel concept has a number of advantages over the NiH2 battery, including higher specific energy, longer life and high roundtrip efficiency. Based on this prior work, this current study was broken into four subtasks. The first subtask investigated the feasibility of replacing the NiH2 battery orbital replacement unit (ORU) on the international space station (ISSA) with a flywheel ORU. In addition, a conceptual design of a generic flywheel demonstrator experiment implemented on the ISSA was completed. An assessment of the life cycle cost benefits of replacing the station battery energy storage ORU's with flywheel ORU's was performed. A fourth task generated a top-level development plan for critical flywheel technologies, the flywheel demonstrator experiments and its evolution into the production unit flywheel replacement ORU.

  17. Photovoltaic central station step and touch potential considerations in grounding system design

    NASA Technical Reports Server (NTRS)

    Engmann, G.

    1983-01-01

    The probability of hazardous step and touch potentials is an important consideration in central station grounding system design. Steam turbine generating station grounding system design is based on accepted industry practices and there is extensive in-service experience with these grounding systems. A photovoltaic (PV) central station is a relatively new concept and there is limited experience with PV station grounding systems. The operation and physical configuration of a PV central station is very different from a steam electric station. A PV station bears some similarity to a substation and the PV station step and touch potentials might be addressed as they are in substation design. However, the PV central station is a generating station and it is appropriate to examine the effect that the differences and similarities of the two types of generating stations have on step and touch potential considerations.

  18. The Influence of Geography and Geology on Seismic Background Noise Levels Across the United States as Revealed by the Transportable Array

    NASA Astrophysics Data System (ADS)

    Anthony, R. E.; Ringler, A. T.; Holland, A. A.; Wilson, D. C.

    2017-12-01

    The EarthScope USArray Transportable Array (TA) has now covered the US with 3-component broadband seismometers at approximately 70 km station spacing and deployment durations of approximately 2 years. This unprecedented coverage, combined with high-quality and near homogenous installation techniques, offers a novel dataset in which to characterize spatially varying levels of background seismic noise across the United States. We present background noise maps in period bands of interest to earthquake and imaging seismology across the US (lower 48 states and Alaska). Early results from the contiguous 48 states demonstrate that ambient noise levels within the body wave period band (1-5 s) vary by > 20 dB (rel. 1 (m/s2)2/Hz) with the highest noise levels occurring at stations located within sedimentary basins and lowest within the mountain ranges of the Western US. Additionally, stations around the Great Lakes observe heightened noise levels in this band beyond the aforementioned basin amplification. We attribute this observation to local swell activity in the Great Lakes generating short-period microseism signals. This suggests that lake-generated microseisms may be a significant source of noise for Alaskan deployments situated in close proximity to lakes to facilitate float plane access. We further investigate how basin amplification and short-period lake microseism signals may noticeably impact detection and signal-to-noise of teleseismic body wave signals during certain time periods. At longer-periods (> 20 s), we generally observe larger noise levels on the horizontal components of stations situated in basins or on soft sediment, likely caused by locally induced tilt of the sensor. We will present similar analysis from the initial Alaska TA dataset to quantitatively assess how utilization of posthole sensors affects signal-to-noise for the long-period horizontal wavefield.

  19. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  20. 77 FR 21593 - V. C. Summer Nuclear Station, Units 2 and 3 Combined Licenses and Record of Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 052-00027 and 052-00028; NRC-2008-0441] V. C. Summer... Licenses for Virgil C. Summer Nuclear Station, Units 2 and 3'' ML11098A044 NUREG-1939, Vol 1, ``Final Environmental Impact Statement for Combined Licenses for Virgil C. Summer Nuclear Station, Units 2 and 3...

  1. 76 FR 58844 - Virginia Electric and Power Company, Surry Power Station, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... hours. After the high wind conditions pass, wind damage to the plant and surrounding area might preclude... Power Company, Surry Power Station, Units 1 and 2; Exemption 1.0 Background Virginia Electric and Power... authorize operation of the Surry Power Station, Units 1 and 2 (Surry 1 and 2) respectively. The license...

  2. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  3. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  4. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check components of the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  5. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environment Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  6. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the control panel on hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  7. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 4 of 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Sam; Kurtz, Jennifer; Ainscough, Chris

    This publication includes 86 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2016. These CDPs include data from retail stations only.

  8. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 2 of 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Samuel; Kurtz, Jennifer M.; Ainscough, Christopher D.

    2017-12-05

    This publication includes 92 composite data products (CDPs) produced for next generation hydrogen stations, with data through the second quarter of 2017. These CDPs include data from retail stations only.

  9. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 4 of 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Samuel; Kurtz, Jennifer M; Saur, Genevieve

    This publication includes 98 composite data products (CDPs) produced for next generation hydrogen stations, with data through the fourth quarter of 2017. These CDPs include data from retail stations only.

  10. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data through Quarter 2 of 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Samuel; Kurtz, Jennifer M; Ainscough, Christopher D.

    This publication includes 92 composite data products (CDPs) produced for next generation hydrogen stations, with data through the second quarter of 2017. These CDPs include data from retail stations only.

  11. 78 FR 77508 - Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ..., LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined Licenses Application Review... Environmental Impact Statement [EIS] for Combined Licenses (COLs) for William States Lee III Nuclear Station... be accessed online at the NRC's William States Lee III Nuclear Station--specific Web page at: www.nrc...

  12. 75 FR 33656 - Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Oyster Creek Nuclear Generating Station Environmental Assessment and Finding of No Significant Impact The... Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. Therefore, as required by 10 CFR Section 51.21, the NRC performed an...

  13. 75 FR 33366 - Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...; Oyster Creek Nuclear Generating Station; Notice of Withdrawal of Application for Amendment to Facility... Operating License No. DPR-16 for the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. The proposed amendment would have revised the Technical Specifications to...

  14. Payload Planning for the International Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, Tameka J.

    1995-01-01

    A review of the evolution of the International Space Station (ISS) was performed for the purpose of understanding the project objectives. It was requested than an analysis of the current Office of Space Access and Technology (OSAT) Partnership Utilization Plan (PUP) traffic model be completed to monitor the process through which the scientific experiments called payloads are manifested for flight to the ISS. A viewing analysis of the ISS was also proposed to identify the capability to observe the United States Laboratory (US LAB) during the assembly sequence. Observations of the Drop-Tower experiment and nondestructive testing procedures were also performed to maximize the intern's technical experience. Contributions were made to the meeting in which the 1996 OSAT or Code X PUP traffic model was generated using the software tool, Filemaker Pro. The current OSAT traffic model satisfies the requirement for manifesting and delivering the proposed payloads to station. The current viewing capability of station provides the ability to view the US LAB during station assembly sequence. The Drop Tower experiment successfully simulates the effect of microgravity and conveniently documents the results for later use. The non-destructive test proved effective in determining stress in various components tested.

  15. 78 FR 24700 - Approval and Promulgation of Implementation Plans; North Dakota; Regional Haze State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... (NO X ) for Milton R. Young Station Units 1 and 2 and Leland Olds Station Unit 2, which are coal-fired... approval of North Dakota's BART emission limits for NO X for Milton R. Young Station Units 1 and 2 and... appropriate. The limitation is to ensure that everyone who wants to make comments has the opportunity to do so...

  16. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear... Statement for Combined Licenses (COL) for William States Lee III Nuclear Station Units 1 and 2 [Lee Nuclear... draft EIS can be accessed online at the NRC's William States Lee III Nuclear Site Web page at http://www...

  17. Next Generation Hydrogen Station Composite Data Products: Retail Stations, Data Through Quarter 3 of 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Sam; Kurtz, Jennifer; Ainscough, Chris

    This publication includes 80 composite data products (CDPs) produced in Spring 2016 for next generation hydrogen stations, with data through the third quarter of 2016. These CDPs include data from retail stations only.

  18. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position and moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida for mating to the United Launch Alliance Atlas V rocket. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  19. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Preparations are underway to lift the solid rocket motor up from its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  20. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  1. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Technicians with United Launch Alliance (ULA) assist as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  2. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Technicians with United Launch Alliance (ULA) monitor the progress as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  3. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A view from high up inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A crane lifts the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) for mating to the United Launch Alliance Atlas V Centaur upper stage. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  4. The two-way time synchronization system via a satellite voice channel

    NASA Technical Reports Server (NTRS)

    Heng-Qiu, Zheng; Ren-Huan, Zhang; Yong-Hui, HU

    1994-01-01

    A newly developed two-way time synchronization system is described in this paper. The system uses one voice channel at a SCPC satellite digital communication earth station, whose bandwidth is only 45 kHz, thus saving satellite resources greatly. The system is composed of one master station and one or several, up to sixty-two, secondary stations. The master and secondary stations are equipped with the same equipment, including a set of timing equipment, a synthetic data terminal for time synchronizing, and a interface unit between the data terminal and the satellite earth station. The synthetic data terminal for time synchronization also has an IRIG-B code generator and a translator. The data terminal of master station is the key part of whole system. The system synchronization process is full automatic, which is controlled by the master station. Employing an autoscanning technique and conversational mode, the system accomplishes the following tasks: linking up liaison with each secondary station in turn, establishing a coarse time synchronization, calibrating date (years, months, days) and time of day (hours, minutes, seconds), precisely measuring the time difference between local station and the opposite station, exchanging measurement data, statistically processing the data, rejecting error terms, printing the data, calculating the clock difference and correcting the phase, thus realizing real-time synchronization from one point to multiple points. We also designed an adaptive phase circuit to eliminate the phase ambiguity of the PSK demodulator. The experiments have shown that the time synchronization accuracy is better than 2 mu S. The system has been put into regular operation.

  5. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, LED plant growth lights are being checked out on the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  6. High Pressure Coolant Injection system risk-based inspection guide for Hatch Nuclear Power Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiBiasio, A.M.

    1993-05-01

    A review of the operating experience for the High Pressure Coolant Injection (HPCI) system at the Hatch Nuclear Power Station, Units 1 and 2, is described in this report. The information for this review was obtained from Hatch Licensee Event Reports (LERs) that were generated between 1980 and 1992. These LERs have been categorized into 23 failure modes that have been prioritized based on probabilistic risk assessment considerations. In addition, the results of the Hatch operating experience review have been compared with the results of a similar, industry wide operating, experience review. This comparison provides an indication of areas inmore » the Hatch HPCI system that should be given increased attention in the prioritization of inspection resources.« less

  7. Electromagnetic fields and the public: EMF standards and estimation of risk

    NASA Astrophysics Data System (ADS)

    Grigoriev, Yury

    2010-04-01

    Mobile communications are a relatively new and additional source of electromagnetic exposure for the population. Standard daily mobile-phone use is known to increase RF-EMF (radiofrequency electromagnetic field) exposure to the brains of users of all ages, whilst mobile-phone base stations, and base station units for cordless phones, can regularly increase the exposures of large numbers of the population to RF-EMF radiation in everyday life. The need to determine appropriate standards stipulating the maximum acceptable short-term and long-term RF-EMF levels encountered by the public, and set such levels as general guidelines, is of great importance in order to help preserve the general public's health and that of the next generation of humanity.

  8. International Space Station Lithium-Ion Battery Start-Up

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; North, Tim; Bowens, Ebony; Balcer, Sonia

    2017-01-01

    International Space Station Lithium-Ion Battery Start-Up.The International Space Station (ISS) primary Electric Power System (EPS) was originally designed to use Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. As the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. The first set of 6 Li-ion battery replacements were launched in December 2016 and deployed in January 2017. This paper will discuss the Li-ion battery on-orbit start-up and the status of the Li-Ion cell and ORU life cycle testing.

  9. STS-84 oxygen generator for Mir installation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the SPACEHAB Payload Processing Facility, McDonnell Douglas- SPACEHAB technicians prepare a Russian-made oxygen generator for flight in a SPACEHAB Double Module. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  10. STS-84 oxygen generator for Mir installation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    McDonnell Douglas-SPACEHAB technicians oversee the move of a Russian-made oxygen generator to a SPACEHAB Double Module, at rear, in the SPACEHAB Payload Processing Facility. In foreground, from left, are Marc Tuttle, Dan Porter and Mike Vawter. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff.

  11. GT200 getting better than 34% efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, R.

    1980-01-01

    Design features are described for the GT200, a 50-Hz machine blend of high temperature advanced aircraft rotating components and heavy frame industrial gas turbine structure. It includes a twin spool as generator with a two-stage power turbine giving nominal performance of 85,000 kW ISO peak output with a 10,120 Btu per kW-h heat rate on LHV distillate. It is desgined for base, intermediate, or peak load operation simple or combined cycle. Stal-Laval in Sweden developed it and sold the first unit to the Swedish State Power Board in July 1977. The unit was installed at the Stallbocka Station.

  12. Enclosed versus open nursing stations in adult acute care psychiatric settings: does the design affect the therapeutic milieu?

    PubMed

    Southard, Kelly; Jarrell, Ashley; Shattell, Mona M; McCoy, Thomas P; Bartlett, Robin; Judge, Christine A

    2012-05-01

    Specific efforts by hospital accreditation organizations encourage renovation of nursing stations, so nurses can better see, attend, and care for their patients. The purpose of this study was to examine the effect of nursing station design on the therapeutic milieu in an adult acute care psychiatric unit. A repeated cross-sectional, pretest-posttest design was used. Data were collected from a convenience sample of 81 patients and 25 nursing staff members who completed the Ward Atmosphere Scale. Pretest data were collected when the unit had an enclosed nursing station, and posttest data were collected after renovations to the unit created an open nursing station. No statistically significant differences were found in patient or staff perceptions of the therapeutic milieu. No increase in aggression toward staff was found, given patients' ease of access to the nursing station. More research is needed about the impact of unit design in acute care psychiatric settings. Copyright 2012, SLACK Incorporated.

  13. 78 FR 66965 - In the Matter of Exelon Generation Company, LLC; Dresden Nuclear Power Station Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ...; NRC-2013-0245] In the Matter of Exelon Generation Company, LLC; Dresden Nuclear Power Station... licenses authorize the operation of the Dresden Nuclear Power Station (Dresden Station) in accordance with... actions described below will be taken at Dresden Nuclear Power Station and other nuclear plants in Exelon...

  14. STATION BUILDING. United Engineering Company Ltd., Alameda Shipyard, Ship Repair ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STATION BUILDING. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities. Plan, elevations, sections, details. Austin Willmott Earl, Consulting Engineer, 233 Sansome Street, San Francisco, California. Drawing no. 504. Various scales. January 20, 1945, no revisions. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76, amendments 4 & 5. blueprint - United Engineering Company Shipyard, Electrical Services & Switching Station, 2900 Main Street, Alameda, Alameda County, CA

  15. H2USA: Siting Refueling Stations in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc W; Muratori, Matteo; Zuboy, Jarett

    2017-11-01

    To achieve cost-effective deployment of both fuel cell electric vehicles (FCEVs) and hydrogen stations, the number of vehicles and public stations must grow together in areas of highest demand. This fact sheet introduces two advanced modeling tools and presents preliminary analysis of the hydrogen refueling station locations needed to support early consumer demand for FCEVs in the Northeast United States. United States.

  16. 26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  17. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period January 1, 2003--March 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with improvements to both the Willow Island and Albright Generating Station cofiring systems. These improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  18. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Islandmore » and Albright Generating Stations.« less

  19. Current training initiatives at Nuclear Electric plc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, C.D.

    1993-01-01

    Nuclear Electric, one of the three generating companies to emerge from the demise of the U.K.'s Central Electricity Generating Board (CEGB), owns and operates the commercial nuclear power stations in England and Wales. The U.K. government proscribed further construction beyond Sizewell B, the United Kingdom's first pressurized water reactor (PWR) station, pending the outcome of a review of the future of nuclear power to be held in 1994. The major challenges facing Nuclear Electric at its formation in 1990 were therefore to demonstrate that nuclear power is safe, economical, and environmentally acceptable and to complete the PWR station under constructionmore » on time and within budget. A significant number of activities were started that were designed to increase output, reduce costs, and ensure that the previous excellent safety standards were maintained. A major activity was to reduce the numbers of staff employed, with a recognition from the outset that this reduction could only be achieved with a significant human resource development program. Future company staff would have to be competent in more areas and more productive. This paper summarizes some of the initiatives currently being pursued throughout the company and the progress toward ensuring that staff with the required competences are available to commission and operate the Sizewell B program in 1994.« less

  20. Solar dynamic power system development for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The development of a solar dynamic electric power generation system as part of the Space Station Freedom Program is documented. The solar dynamic power system includes a solar concentrator, which collects sunlight; a receiver, which accepts and stores the concentrated solar energy and transfers this energy to a gas; a Brayton turbine, alternator, and compressor unit, which generates electric power; and a radiator, which rejects waste heat. Solar dynamic systems have greater efficiency and lower maintenance costs than photovoltaic systems and are being considered for future growth of Space Station Freedom. Solar dynamic development managed by the NASA Lewis Research Center from 1986 to Feb. 1991 is covered. It summarizes technology and hardware development, describes 'lessons learned', and, through an extensive bibliography, serves as a source list of documents that provide details of the design and analytic results achieved. It was prepared by the staff of the Solar Dynamic Power System Branch at the NASA Lewis Research Center in Cleveland, Ohio. The report includes results from the prime contractor as well as from in-house efforts, university grants, and other contracts. Also included are the writers' opinions on the best way to proceed technically and programmatically with solar dynamic efforts in the future, on the basis of their experiences in this program.

  1. Study on the stability of waterpower-speed control system for hydropower station with air cushion surge chamber

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Teng, Y.

    2014-03-01

    According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode.

  2. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  3. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 3 of 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Sam; Kurtz, Jennifer; Ainscough, Chris

    This publication includes 87 composite data products (CDPs) produced for next generation hydrogen stations with data through the third quarter of 2016. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  4. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 4 of 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Sam; Kurtz, Jennifer; Ainscough, Chris

    This publication includes 90 composite data products (CDPs) produced for next generation hydrogen stations with data through the fourth quarter of 2016. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  5. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 2 of 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Samuel; Kurtz, Jennifer M; Ainscough, Christopher D

    This publication includes 95 composite data products (CDPs) produced for next generation hydrogen stations with data through the second quarter of 2017. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  6. Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through Quarter 4 of 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprik, Samuel; Kurtz, Jennifer M; Saur, Genevieve

    This publication includes 97 composite data products (CDPs) produced for next generation hydrogen stations with data through the fourth quarter of 2017. These CDPs include data for all stations in NREL's evaluation (retail and non-retail combined).

  7. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  8. GOES-S Liftoff

    NASA Image and Video Library

    2018-03-01

    A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying the NOAA Geostationary Operational Environmental Satellite, or GOES-S. Liftoff was at 5:02 p.m. EST. GOES-S is the second satellite in a series of next-generation weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting.

  9. Sun Spot One (SS1): San Luis Valley, Colorado (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2008-06-10

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  10. University of Nevada (UNLV): Las Vegas, Nevada (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    2006-03-18

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  11. Accounting for Atmospheric Rivers in the Flood Frequency Estimation in the Western United States

    NASA Astrophysics Data System (ADS)

    Barth, N. A.; Villarini, G.; White, K. D.

    2016-12-01

    The Bulletin 17B framework assumes that the observed annual peak flow data included in a flood frequency analysis are a "representative time sample of random homogeneous events." However, flood frequency analysis over the western United States is complicated by annual peak flow records that frequently contain flows generated from distinctly different flood generating mechanisms. Among the different flood generating mechanisms, atmospheric rivers (ARs) are responsible for large, regional scale floods. USGS streamgaging stations in the central Columbia River Basin in the Pacific Northwest, the Sierra Nevada, the central and southern California coast, and central Arizona show a mixture of 30-70% AR-generated flood peaks among the complete period of record. It is relatively common for the annual peaks fitted to the log-Pearson Type III distribution in these regions to show sharp breaks in the slope or a curve that reverses direction, pointing to the presence of different flood generating mechanisms. Following the recommendation by B17B to develop separate frequency curves when different flood agents can be identified, we will perform flood frequency analyses accounting for the role played by ARs. We will compare and contrast the results obtained by treating all annual maximum discharge values as generated from a single population against those from a mixed population analyses.

  12. 76 FR 1197 - Arizona Public Service Company, Palo Verde Nuclear Generating Station; Notice of Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-528, 50-529, 50-530; NRC-2009-0012] Arizona Public Service Company, Palo Verde Nuclear Generating Station; Notice of Availability of the Final Supplement 43... of operation for the Palo Verde Nuclear Generating Station (PVNGS). Possible alternatives to the...

  13. IMPACT OF AIR POLLUTION ON VEGETATION NEAR THE COLUMBIA GENERATING STATION - WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    The impact of air pollution from the coal-fired Columbia Generating Station upon vegetation was investigated. Air monitoring of 03 and 02 documented levels that occurred before and with operation of the generating station. Field sampling of alfalfa, lichens, and white pines was u...

  14. KSC-97pc672

    NASA Image and Video Library

    1997-04-19

    McDonnell Douglas-SPACEHAB technicians oversee the move of a Russian-made oxygen generator to a SPACEHAB Double Module, at rear, in the SPACEHAB Payload Processing Facility. In foreground, from left, are Marc Tuttle, Dan Porter and Mike Vawter. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttle’s scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff

  15. Experiments Conducted Aboard the International Space Station: The Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI): A Current Study of Results

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C> ; Hua, F.; Anilkumar, A. V.

    2006-01-01

    Experiments in support of the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI) were conducted aboard the International Space Station (ISS) with the goal of promoting our fundamental understanding of melting dynamics , solidification phenomena, and defect generation during materials processing in a microgravity environment. Through the course of many experiments a number of observations, expected and unexpected, have been directly made. These include gradient-driven bubble migration, thermocapillary flow, and novel microstructural development. The experimental results are presented and found to be in good agreement with models pertinent to a microgravity environment. Based on the space station results, and noting the futility of duplicating them in Earth s unit-gravity environment, attention is drawn to the role ISS experimentslhardware can play to provide insight to potential materials processing techniques and/or repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  16. Notice of release for Eagle Germplasm western yarrow (selected germplasm, natural track)

    Treesearch

    Scott M. Lambert; Stephen B. Monsen; Nancy Shaw

    2011-01-01

    The United States Department of Agriculture, Forest Service, Rocky Mountain Research Station; United States Department of the Interior, Bureau of Land Management, Idaho State Office; Utah State University, Agricultural Experiment Station; and University of Idaho, Agricultural Experiment Station, announce the release of a selected germplasm (natural track) of western...

  17. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Power Station, Unit 1; Exemption From Certain Security Requirements 1.0 Background Exelon Nuclear is the licensee and holder of Facility Operating License No. DPR-2 issued for Dresden Nuclear Power Station (DNPS... protection of licensed activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1...

  18. Lunar base thermoelectric power station study

    NASA Technical Reports Server (NTRS)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology needs in all areas to support the development, deployment, operation and disposal of the unit.

  19. Long-Term Daily and Monthly Climate Records from Stations Across the Contiguous United States (U.S.Historical Climatology Network) (NDP-019)

    DOE Data Explorer

    Menne, M. J. [National Climatic Data Center, National Oceanic and Atmospheric Administration; Williams, Jr., C. N. [National Climatic Data Center, National Oceanic and Atmospheric Administration; Vose, R. S. [National Climatic Data Center, National Oceanic and Atmospheric Administration

    2016-01-01

    The United States Historical Climatology Network (USHCN) is a high-quality data set of daily and monthly records of basic meteorological variables from 1218 observing stations across the 48 contiguous United States. Daily data include observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth; monthly data consist of monthly-averaged maximum, minimum, and mean temperature and total monthly precipitation. Most of these stations are U.S. Cooperative Observing Network stations located generally in rural locations, while some are National Weather Service First-Order stations that are often located in more urbanized environments. The USHCN has been developed over the years at the National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) to assist in the detection of regional climate change. Furthermore, it has been widely used in analyzing U.S. climte. The period of record varies for each station. USHCN stations were chosen using a number of criteria including length of record, percent of missing data, number of station moves and other station changes that may affect data homogeneity, and resulting network spatial coverage. Collaboration between NCDC and CDIAC on the USHCN project dates to the 1980s (Quinlan et al. 1987). At that time, in response to the need for an accurate, unbiased, modern historical climate record for the United States, the Global Change Research Program of the U.S. Department of Energy and NCDC chose a network of 1219 stations in the contiguous United States that would become a key baseline data set for monitoring U.S. climate. This initial USHCN data set contained monthly data and was made available free of charge from CDIAC. Since then it has been comprehensively updated several times [e.g., Karl et al. (1990) and Easterling et al. (1996)]. The initial USHCN daily data set was made available through CDIAC via Hughes et al. (1992) and contained a 138-station subset of the USHCN. This product was updated by Easterling et al. (1999) and expanded to include 1062 stations. In 2009 the daily USHCN dataset was expanded to include all 1218 stations in the USHCN.

  20. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  1. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  2. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  3. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  4. 33 CFR 165.552 - Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Oyster Creek Generation Station, Forked River, Ocean County, New Jersey. 165.552 Section 165.552 Navigation and Navigable... Coast Guard District § 165.552 Security Zone; Oyster Creek Generation Station, Forked River, Ocean...

  5. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by a...

  6. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by a...

  7. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by a...

  8. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by a...

  9. 33 CFR 165.554 - Security Zone; Three Mile Island Generating Station, Susquehanna River, Dauphin County...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Three Mile Island... Areas Fifth Coast Guard District § 165.554 Security Zone; Three Mile Island Generating Station... waters of the Susquehanna River in the vicinity of the Three Mile Island Generating Station bounded by a...

  10. KSC-2013-4396

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  11. KSC-2013-4394

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  12. KSC-2013-4428

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is positioned atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  13. KSC-2013-3790

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  14. KSC-2013-4395

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  15. KSC-2013-3792

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  16. KSC-2013-4429

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is positioned atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  17. 12. VIEW OF OPERATING ROOMRCA COMMUNICATION REC STATION (THIS ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF OPERATING ROOM-RCA COMMUNICATION REC STATION (THIS ROOM WAS ORIGINALLY A MOTOR GENERATOR FACILITY AND SUPPLIED DC POWER TO AN EARLIER GENERATION OF POINT-TO-POINT RECEIVERS ON SECOND FLOOR). VIEW SHOWS TRANSMITTER CONTROL STATION AND AUDIO CONTROL STATION (LEFT, WATKINS-JOHNSON WJ-8718-23. HP RECEIVERS AND KENWOOD R-5000 COMMUNICATIONS RECEIVERS (220 DEGREES). - Marconi Radio Sites, Receiving, Point Reyes Station, Marin County, CA

  18. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.« less

  19. Space vehicle field unit and ground station system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  20. Space vehicle field unit and ground station system

    DOEpatents

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2016-10-25

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  1. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    NASA Astrophysics Data System (ADS)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic assessment review and then on to the stakeholder cost benefit analysis (if model qualifications are met) leading to a final plant retirement decision. This application via the model and guide, in turn, will lead electric utilities to explore system upgrade import opportunities and mitigation measures versus building new replacement generation facilities. United States nuclear reactors are licensed for 40 years with a 20 year extension available prior to the expiration date (EIA, 2013). Since late 2012, electric power companies have announced the early retirement of four uneconomical nuclear power plants while other studies have indicated that as many as 70 percent of United States nuclear power plants are potentially at risk for early retirement (Crooks, 2014 and Cooper, 2013). A high percentage of these aforementioned nuclear plants have operating licenses that will not expire until 2030 and beyond. Thus, for the most part, replacement power contingency planning has not been initiated for these plants or is still in preliminary stages. The recent nuclear plant retirements are the first since 1998 (EIA, 2013). Decisions to retire the plants involved concerns over maintenance and repair costs as well as declining profitability (EIA, 2013). In addition, the Energy Information Administration (2010-2012) released data that demonstrated that the worst 25 percent of United States nuclear plants are far more expensive to operate and generate electricity than new gas plants. It is equally important to understand and explain the economic and power replacement implications to both ratepayers and end-users. A SONGS case study analysis will review the economic, operational and political challenges that SCE faced leading to the retirement decision of SONGS. As preface to the case study, replacement steam generators (RSGs) were installed in Unit 2 in 2009 and in Unit 3 in 2010. In January 2012, while Unit 2 was down for routine maintenance, a small leak was discovered inside a steam generator in Unit 3. Because of the situation, both units remained shut down to evaluate the cause of the leakage and to make repairs. SCE submitted plans to the Nuclear Regulatory Commission (NRC) to re-start Unit 2 at reduced power. However, concerns over the length of the review process and the high costs associated with steam generator repairs led SCE to retire both reactors (SCE SONGS Fact Sheets, 2012-2013). Finally, collaborative resource power replacement planning is needed more than ever as nuclear facilities in the United States are now being retired for economic related reasons (Crooks, 2014). This collaborative power replacement process and implementation must encompass all relevant stakeholders including state grid operators, ratepayers, shareholders and the electric utility company.

  2. Comparison of fuel-cell and diesel integrated energy systems and a conventional system for a 500-unit apartment

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1978-01-01

    The electrical and thermal energy utilization efficiencies of a 500 unit apartment complex are analyzed and compared for each of three energy supply systems. Two on-site integrated energy systems, one powered by diesel engines and the other by phosphoric-acid fuel cells were compared with a conventional system which uses purchased electricity and on-site boilers for heating. All fuels consumed on-site are clean, synthetic fuels (distillate fuel oil or pipeline quality gas) derived from coal. Purchased electricity was generated from coal at a central station utility. The relative energy consumption and economics of the three systems are analyzed and compared.

  3. 78 FR 55072 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... Project Transco proposes to add a new compressor unit to its existing Compressor Station 85 in Choctaw County, Alabama and up-rate an existing compressor unit at its existing Compressor Station 83 in Mobile... 225,000 dekatherms per day (dth/d) from Compressor Station 85 Receipt Points southward to the...

  4. Pattern Generator for Bench Test of Digital Boards

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.; Chu, Anhua J.

    2012-01-01

    All efforts to develop electronic equipment reach a stage where they need a board test station for each board. The SMAP digital system consists of three board types that interact with each other using interfaces with critical timing. Each board needs to be tested individually before combining into the integrated digital electronics system. Each board needs critical timing signals from the others to be able to operate. A bench test system was developed to support test of each board. The test system produces all the outputs of the control and timing unit, and is delivered much earlier than the timing unit. Timing signals are treated as data. A large file is generated containing the state of every timing signal at any instant. This file is streamed out to an IO card, which is wired directly to the device-under-test (DUT) input pins. This provides a flexible test environment that can be adapted to any of the boards required to test in a standalone configuration. The problem of generating the critical timing signals is then transferred from a hardware problem to a software problem where it is more easily dealt with.

  5. PSD and NSPS Applicability PEPCO Dickerson Generating Station Unit #4

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  6. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    A United Launch Alliance (ULA) technician inspects the solid rocket motor for the ULA Atlas V rocket on its transporter near the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The solid rocket motor will be lifted and mated to the rocket in preparation for the launch of NOAA's Geostationary Operational Environmental Satellite (GOES-R) this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  7. Improving the Investment Potential of the Evenkiiskaya HPP When Working Jointly with HPPS of the Volga – Kama Cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrovskii, A. Yu., E-mail: ayaleksand@mail.ru; Soldatkin, A. Yu.; Volkov, D. M.

    The capability is studied of improving the investment potential of the Evenkiiskaya HPP by using the power it generates in the United Power System of the European part of Russia by transitioning to a compensated electrical regime of water reservoir resource usage. A quantitative assessment of Evenkiiskaya HPP usage is presented using daily load demand. Increasing the guaranteed HPP power is proposed as an alternative to new nuclear power stations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olthoff, Edward

    The Municipal Electric Utility of the City of Cedar Falls (dba Cedar Fals Utilities or CFU) received a congressionally directed grant funded through DOE-EERE to run three short (4 hour) duration test burns and one long (10 days) duration test burn to test the viability of renewable fuels in Streeter Station Boiler #6, a stoker coal fired electric generation unit. The long test burn was intended to test supply chain assumptions, optimize boiler combustion and assess the effects of a longer duration burn of biomass on the boiler.

  9. KSC-20180301-VP-CDC01_0001-GOES_S_Launch_Commentary-3182524

    NASA Image and Video Library

    2018-03-01

    A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying the NOAA Geostationary Operational Environmental Satellite, or GOES-S. Liftoff was at 5:02 p.m. EST. GOES-S is the second satellite in a series of next-generation weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting.

  10. Sacramento Municipal Utility District (SMUD): Rotating Shadowband Radiometer (RSR); Anatolia - Rancho Cordova, California (Data)

    DOE Data Explorer

    Maxey, C.; Andreas, A.

    2009-02-03

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  11. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer

    Olson, K.; Andreas, A.

    2012-11-01

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  12. Evaluation of Gas Chromatography/Mini-IMS to Detect VOCs

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Reese, Eric; Peters, Randy; James, John T.; Billica, Roger (Technical Monitor)

    1999-01-01

    The Toxicology Laboratory at Johnson Space Center (JSC) has pioneered the use of gas chromatography-ion mobility spectrometry (GC/IMS) for measuring target volatile organic compounds (VOCs) aboard spacecraft. Graseby Dynamics, under contract to NASA/Wyle, has built several volatile organic analyzers (VOA) based on GC/IMS. Foremost among these have been the volatile organic analyzer-risk mitigation unit and the two flight VOA units for International Space Station (ISS). The development and evaluation of these instruments has been chronicled through presentations at the International Conference on Ion Mobility Spectrometry over the past three years. As the flight VOA from Graseby is prepared for operation on ISS at JSC, it is time to begin evaluations of technologies for the next generation VOA, Although the desired instrument characteristics for the next generation unit are the same as the current unit, the requirements are much more stringent. As NASA looks toward future missions beyond Earth environs, a premium will be placed upon small, light, reliable, autonomous hardware. It is with these visions in mind that the JSC Toxicology Laboratory began a search for the next generation VOA. One technology that is a candidate for the next generation VOA is GC/IMS. The recent miniaturization of IMS technology permits it to compete with other, inherently small, technologies such as chip-sized sensor arrays. This paper will discuss the lessons learned from the VOA experience and how that has shaped the design of a potential second generation VOA based upon GC/IMS technology. Data will be presented from preliminary evaluations of GC technology and the mini-IMS when exposed to VOCs likely to be detected aboard spacecraft. Results from the evaluation of an integrated GC/mini-IMS system will be shown if available.

  13. 78 FR 75376 - Entergy Operations, Inc.; Combined License Application for River Bend Unit 3, Exemption From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ....; Combined License Application for River Bend Unit 3, Exemption From the Requirements To Update a Final... Feliciana Parish. The NRC accepted for docketing the River Bend Station Unit 3 (RBS3) COL application on... the requirements of 10 CFR 50.71(e)(3)(iii) pertaining to the River Bend Station Unit 3 COL...

  14. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from the water table to the Yorktown confining unit and, where the confining unit is absent, to the Yorktown-Eastover aquifer. The velocities of advective-driven contaminants would decrease considerably when entering the Yorktown confining unit because the hydraulic conductivity of the confining unit is small compared to that of the aquifers. Any contaminants that moved with advective ground-water flow near the groundwater divide of the Lackey Plain would move relatively slowly because the hydraulic gradients are small there. The direction in which the contaminants would move, however, would be determined by precisely where the contaminants entered the water table. The model was not designed to accurately simulate ground-water flow paths through local karst features. Beneath Croaker Flat, ground water flows downward through the Columbia aquifer and the Yorktown confining unit into the Yorktown-Eastover aquifer. Analyses of the movement of simulated particles from two adjacent sites at Croaker Flat indicated that ground-water flow paths were similar at first but diverged and discharged to different tributaries of Indian Field Creek or to the York River. These simulations indicate that complex and possibly divergent flow paths and traveltimes are possible at the Station. Although the Station-area model is not detailed enough to simulate ground-water flow at the scales commonly used to track and remediate contaminants at specific sites, general concepts about possible contaminant migration at the Station can be inferred from the simulations.

  15. Design and operation experience of 230 MWe CFB boilers at Turow power plant in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, W.; Bis, Z.; Laskawiec, J.

    The Power Station Turow is located in Bogatynia, Poland, and has operated 10 pulverized coal units each of 200 MW. The plant provided 2000 MW at the lowest cost per kWh in Poland. The Turow units have approached and in some cases already gone beyond their 25--30 year's design life. To meet Poland's new environmental standards, which are now compatible with the EU, Turow decided to replace and upgrade six units (No. 1 to 6) from 200 MW to 230 MW units and remove one unit No. 7. Units No. 8, 9 and 10 were equipped with dry sorbent desulfurizationmore » technology. Units No. 1 and 2 have been replaced with new clean coal circulating fluidized bed technology. The Power Station Turow with six CFB units is to be the largest in the world power station based on fluidized bed technology.« less

  16. Centralized vs. Decentralized Nursing Stations: An Evaluation of the Implications of Communication Technologies in Healthcare.

    PubMed

    Bayramzadeh, Sara; Alkazemi, Mariam F

    2014-01-01

    This study aims to explore the relationship between the nursing station design and use of communication technologies by comparing centralized and decentralized nursing stations. The rapid changes in communication technologies in healthcare are inevitable. Communication methods can change the way occupants use a space. In the meantime, decentralized nursing stations are emerging as a replacement for the traditional centralized nursing stations; however, not much research has been done on how the design of nursing stations can impact the use of communication technologies. A cross sectional study was conducted using an Internet-based survey among registered nurses in a Southeastern hospital in the United States. Two units with centralized nursing stations and two units with decentralized nursing stations were compared in terms of the application of communication technologies. A total of 70 registered nurses completed the survey in a 2-week period. The results revealed no significant differences between centralized and decentralized nursing stations in terms of frequency of communication technologies used. However, a difference was found between perception of nurses toward communication technologies and perceptions of the use of communication technologies in decentralized nursing stations. Although the study was limited to one hospital, the results indicate that nurses hold positive attitudes toward communication technologies. The results also reveal the strengths and weaknesses of each nursing station design with regard to communication technologies. Hospital, interdisciplinary, nursing, technology, work environment.

  17. 47 CFR 80.503 - Cooperative use of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... station or marine utility station on shore may install ship radio stations on board United States... verifying that the ship station licensee has the sole right of control of the ship stations, that the vessel operators must use the ship stations subject to the orders and instructions of the coast station or marine...

  18. 47 CFR 25.172 - Requirements for reporting space station control arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... case of a non-U.S.-licensed space station, prior to commencing operation with U.S. earth stations. (1... earth station(s) communicating with the space station from any site in the United States. (3) The location, by city and country, of any telemetry, tracking, and command earth station that communicates with...

  19. A proxy for high-resolution regional reanalysis for the Southeast United States: assessment of precipitation variability in dynamically downscaled reanalyses

    USGS Publications Warehouse

    Stefanova, Lydia; Misra, Vasubandhu; Chan, Steven; Griffin, Melissa; O'Brien, James J.; Smith, Thomas J.

    2012-01-01

    We present an analysis of the seasonal, subseasonal, and diurnal variability of rainfall from COAPS Land- Atmosphere Regional Reanalysis for the Southeast at 10-km resolution (CLARReS10). Most of our assessment focuses on the representation of summertime subseasonal and diurnal variability.Summer precipitation in the Southeast United States is a particularly challenging modeling problem because of the variety of regional-scale phenomena, such as sea breeze, thunderstorms and squall lines, which are not adequately resolved in coarse atmospheric reanalyses but contribute significantly to the hydrological budget over the region. We find that the dynamically downscaled reanalyses are in good agreement with station and gridded observations in terms of both the relative seasonal distribution and the diurnal structure of precipitation, although total precipitation amounts tend to be systematically overestimated. The diurnal cycle of summer precipitation in the downscaled reanalyses is in very good agreement with station observations and a clear improvement both over their "parent" reanalyses and over newer-generation reanalyses. The seasonal cycle of precipitation is particularly well simulated in the Florida; this we attribute to the ability of the regional model to provide a more accurate representation of the spatial and temporal structure of finer-scale phenomena such as fronts and sea breezes. Over the northern portion of the domain summer precipitation in the downscaled reanalyses remains, as in the "parent" reanalyses, overestimated. Given the degree of success that dynamical downscaling of reanalyses demonstrates in the simulation of the characteristics of regional precipitation, its favorable comparison to conventional newer-generation reanalyses and its cost-effectiveness, we conclude that for the Southeast United states such downscaling is a viable proxy for high-resolution conventional reanalysis.

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Puneet; Casey, Dan

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion enginemore » shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).« less

  1. Monitoring Method and Apparatus Using Asynchronous, One-Way Transmission from Sensor to Base Station

    NASA Technical Reports Server (NTRS)

    Drouant, George J. (Inventor); Jensen, Scott L. (Inventor)

    2013-01-01

    A monitoring system is disclosed, which includes a base station and at least one sensor unit that is separate from the base station. The at least one sensor unit resides in a dormant state until it is awakened by the triggering of a vibration-sensitive switch. Once awakened, the sensor may take a measurement, and then transmit to the base station the measurement. Once data is transmitted from the sensor to the base station, the sensor may return to its dormant state. There may be various sensors for each base station and the various sensors may optionally measure different quantities, such as current, voltage, single-axis and/or three-axis magnetic fields.

  2. Space station: A step into the future

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1989-01-01

    The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

  3. Impact and utilization studies of a PACS display station in an ICU setting

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Storto, Maria L.; Gamsu, Gordon; Huang, H. K.

    1996-05-01

    An assessment of changes in health-care professional behavior as a result of the introduction of a PACS (picture archiving and communication system) display station to an adult medical- surgical intensive care unit (ICU) is investigated via pre- and post-PACs evaluations. ICU display station utilization and the impact on clinical operations are also examined. Parameters measured both pre- and post-PACS ICU display station placement include the number of films per patient day, the number of clinician reviews of a patient's images per day and the percentage of images on which the unit interacts with a radiologist. The elapsed times from the time of exposure to the time of: review by the referring physician, radiologist-unit interaction and clinical action based on image information are also measured. The results of this investigation suggest that the introduction of a PaCS display station in the ICU may reduce the number of exams per patient day, decrease the elapsed time from the time of exposure to the time of review by the unit clinician, and improve the time to clinical action. Note, however, that it does not appear to change the percentage of total images on which the unit interacts with a radiologist.

  4. STS-84 oxygen generator for Mir installation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    McDonnell Douglas-SPACEHAB technicians strap in place a Russian- made oxygen generator on the floor of a SPACEHAB Double Module, being prepared for flight in the SPACEHAB Payload Processing Facility. From left, are Mark Halavin and Marc Tuttle. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  5. STS-84 oxygen generator for Mir installation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    McDonnell Douglas-SPACEHAB technicians oversee the move of a Russian-made oxygen generator to a SPACEHAB Double Module, at rear, in the SPACEHAB Payload Processing Facility. With faces visible in center foreground, from left, are Mark Halavin and Marc Tuttle; Mike Vawter is at far right. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttles scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  6. STS-84 oxygen generator for Mir on display at SPACEHAB

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Representatives of RSC Energia in Russia and other onlookers in the SPACEHAB Payload Processing Facility examine an oxygen generator which the Space Shuttle Atlantis will carry to the Russian Mir Space Station on Mission STS-84. Sergei Romanov, second from right in the white shirt, is the spokesperson for generator manufacturer RSC Energia. The nearly 300-pound generator will be strapped down on the inside surface of a SPACEHAB Double Module for the trip to Mir. It will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking.

  7. Reliability and sensitivity analysis of a system with multiple unreliable service stations and standby switching failures

    NASA Astrophysics Data System (ADS)

    Ke, Jyh-Bin; Lee, Wen-Chiung; Wang, Kuo-Hsiung

    2007-07-01

    This paper presents the reliability and sensitivity analysis of a system with M primary units, W warm standby units, and R unreliable service stations where warm standby units switching to the primary state might fail. Failure times of primary and warm standby units are assumed to have exponential distributions, and service times of the failed units are exponentially distributed. In addition, breakdown times and repair times of the service stations also follow exponential distributions. Expressions for system reliability, RY(t), and mean time to system failure, MTTF are derived. Sensitivity analysis, relative sensitivity analysis of the system reliability and the mean time to failure, with respect to system parameters are also investigated.

  8. Hydroelectric System Response to Part Load Vortex Rope Excitation

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Nicolet, C.; Bégum, A.; Landry, C.; Gomes, J.; Avellan, F.

    2016-11-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope on the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of v = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed to analyse potential interactions between hydraulic excitation sources and electrical components.

  9. 47 CFR 101.209 - Operation of stations at temporary fixed locations for communication between the United States...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... locations for communication between the United States and Canada or Mexico. 101.209 Section 101.209... communication between the United States and Canada or Mexico. Stations authorized to operate at temporary fixed... Mexico, without prior specific notification to, and authorization from, the Commission. Notification of...

  10. NASA's Next Generation Space Geodesy Program

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Frey, H. V.; Gross, R. S.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Merkowitz, S. M.; Noll, C. E.; Pavilis, E. C.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard s Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA s contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.

  11. NASA's Next Generation Space Geodesy Program

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA's contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.

  12. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be...: (1) Voice in the English language; or (2) International Morse code telegraphy. (e) A station need not...

  13. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gasmore » emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less

  14. An AI Approach to Ground Station Autonomy for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve

    1998-01-01

    This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).

  15. Alcohol advertising at Boston subway stations: an assessment of exposure by race and socioeconomic status.

    PubMed

    Gentry, Elisabeth; Poirier, Katie; Wilkinson, Tiana; Nhean, Siphannay; Nyborn, Justin; Siegel, Michael

    2011-10-01

    We investigated the frequency of alcohol ads at all 113 subway and streetcar stations in Boston and the patterns of community exposure stratified by race, socioeconomic status, and age. We assessed the extent of alcohol advertising at each station in May 2009. We measured gross impressions and gross rating points (GRPs) for the entire Greater Boston population and for Boston public school student commuters. We compared the frequency of alcohol advertising between neighborhoods with differing demographics. For the Greater Boston population, alcohol advertising at subway stations generated 109 GRPs on a typical day. For Boston public school students in grades 5 to 12, alcohol advertising at stations generated 134 GRPs. Advertising at stations in low-poverty neighborhoods generated 14.1 GRPs and at stations in high-poverty areas, 63.6 GRPs. Alcohol ads reach the equivalent of every adult in the Greater Boston region and the equivalent of every 5th- to 12th-grade public school student each day. More alcohol ads were displayed in stations in neighborhoods with high poverty rates than in stations in neighborhoods with low poverty rates.

  16. KSC-97PC1761

    NASA Image and Video Library

    1997-12-10

    United States Senator Bob Graham of Florida visits the Space Station Processing Facility at Kennedy Space Center (KSC) and is briefed on hardware processing for the International Space Station by Jon Cowart, Flight 2A Manager, NASA Space Station Hardware Integration Office. In the foreground, from left to right, are Howard DeCastro, Program Manager for the Space Flight Operations Contract, United Space Alliance; Senator Bob Graham; and Jon Cowart

  17. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2010-10-01 2010-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  18. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2012-10-01 2012-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  19. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2011-10-01 2011-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  20. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2014-10-01 2014-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  1. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2013-10-01 2013-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  2. Enhanced methods for operating refueling station tube-trailers to reduce refueling cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Reddi, Krishna

    A method and apparatus are provided for operating a refueling station including source tube-trailers and at least one compressor to reduce refueling cost. The refueling station includes a gaseous fuel supply source including a plurality of tanks on a tube trailer coupled to a first control unit, and high pressure buffer storage having predefined capacity coupled to a second control unit and the first tanks by a pressure control valve and the first control unit, and at least one compressor. The refueling station is operated at different modes depending on a state of the refueling station at the beginning ofmore » each operational mode. The refueling system is assessed at the end of each operational mode to identify the state of the system and select a next mode of operation. The operational modes include consolidating hydrogen, or any gaseous fuel, within the tubes mounted on the trailer.« less

  3. KSC-2013-4406

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  4. KSC-2013-4431

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a United Launch Alliance Atlas V rocket, with its Centaur second stage atop, stands in the Vertical Integration Facility as preparations continue for lift off of the Tracking and Data Relay Satellite, or TDRS-L. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  5. KSC-2013-4407

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  6. KSC-2013-4415

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  7. KSC-2013-4418

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  8. KSC-2013-4421

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a technician supports preparations for lifting the Centaur second stage of the United Launch Alliance rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  9. KSC-2013-4427

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is lifted for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  10. KSC-2013-3791

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  11. KSC-2013-4410

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  12. KSC-2013-4398

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  13. KSC-2013-4400

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  14. KSC-2013-4389

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  15. KSC-2013-3793

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  16. KSC-2013-4423

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  17. KSC-2013-4417

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  18. KSC-2013-4411

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  19. KSC-2013-4425

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  20. KSC-2013-3789

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  1. KSC-2013-3794

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  2. KSC-2013-4393

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  3. KSC-2013-4408

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician supports lifting of a United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  4. KSC-2013-4403

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  5. KSC-2013-4416

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  6. KSC-2013-3784

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  7. KSC-2013-4405

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  8. KSC-2013-4422

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support preparations for lifting the Centaur second stage of the United Launch Alliance rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  9. KSC-2013-4430

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians inspect a Centaur second stage that was just stacked atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  10. KSC-2013-4392

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  11. KSC-2013-4401

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  12. KSC-2013-3788

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  13. KSC-2013-4414

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  14. KSC-2013-4424

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  15. KSC-2013-4419

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  16. KSC-2013-3787

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  17. KSC-2013-4390

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being prepared for transport from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  18. KSC-2013-4399

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  19. KSC-2013-4409

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  20. KSC-2013-4426

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is lifted for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  1. KSC-2013-3785

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  2. KSC-2013-4391

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  3. KSC-2013-4397

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  4. Military simulation - Pushing the visual technology

    NASA Astrophysics Data System (ADS)

    Boyle, D.

    1984-02-01

    A full mission flight simulator has been developed for the U.S. Air Force's B-52 bomber crews which requires more computational capacity than is used aboard the Space Shuttle, employing a total of 14 computers capable of over 5 million operations/sec. The system encompasses a flight deck, in which the pilots train, an offensive station simulator, which is operated by the navigator and weaponry officer, and a defensive station simulator, operated by the electronic warfare (EW) officer and communications officer. Instructors control the computer-generated images simulating the external environment from three consoles corresponding to the three simulator units. In each simulated mission, the crews release bombs and air-launched cruise missiles, and fire short range attack missiles and the B-52 tail guns. The threats simulated include hostile aircraft, surface-to-air missiles, and antiaircraft artillery, together with EW activity.

  5. Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit

    NASA Technical Reports Server (NTRS)

    Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira

    1991-01-01

    The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.

  6. KSC-2012-6381

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. -- Workers inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida position the orbital replacement unit for the space station's main bus switching unit as they prepare to pack the unit in a shipping container. The unit, which was processed at Kennedy, will be shipped to Japan at the beginning of the year for the HTV-4 launch, which is currently scheduled for 2013. Photo credit: NASA/Charisse Nahser

  7. KSC-2012-6380

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. -- Workers inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida lift the orbital replacement unit for the space station's main bus switching unit as they prepare to pack the unit in a shipping container. The unit, which was processed at Kennedy, will be shipped to Japan at the beginning of the year for the HTV-4 launch, which is currently scheduled for 2013. Photo credit: NASA/Charisse Nahser

  8. The widespread influence of Great Lakes microseisms across the United States revealed by the 2014 polar vortex

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    During the winter of 2014, a weak polar vortex brought record cold temperatures to the north‐central (“Midwest”) United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind‐driven wave action within the lakes (termed “lake microseisms”), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from ~0.5–5‐s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

  9. The Widespread Influence of Great Lakes Microseisms Across the Midwestern United States Revealed by the 2014 Polar Vortex

    NASA Astrophysics Data System (ADS)

    Anthony, R. E.; Ringler, A. T.; Wilson, D. C.

    2018-04-01

    During the winter of 2014, a weak polar vortex brought record cold temperatures to the north-central ("Midwest") United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind-driven wave action within the lakes (termed "lake microseisms"), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from 0.5-5-s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

  10. Acquisition of wood fuel at the Joseph C. McNeil Generating Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropelin, W.

    1993-12-31

    The Joseph C. McNeil Generating Station is the world`s largest single boiler, municipally-owned, wood-fired electrical generating plant. The 50 megawatt McNeil Station is located in Burlington, Vermont and is owned by several Vermont public and private electric utilities. The operator and majority owner is the City of Burlington Electric Department (BED). Wood fuel procurement for the McNeil Station has been conducted in an environmentally sensitive way. Harvesting is carried out in conformance with a comprehensive wood chip harvesting policy and monitored by professional foresters. Unpredictable levels of Station operation require rigid adherence to a wood storage plan that minimizes themore » risk of over heating and spontaneous combustion of stockpiled fuel.« less

  11. Analysis of Direct Solar Illumination on the Backside of Space Station Solar Cells

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Kerslake, Thomas W.; Scheiman, David A.

    1999-01-01

    The International Space Station (ISS) is a complex spacecraft that will take several years to assemble in orbit. During many of the assembly and maintenance procedures, the space station's large solar arrays must he locked, which can significantly reduce power generation. To date, power generation analyses have not included power generation from the backside of the solar cells in a desire to produce a conservative analysis. This paper describes the testing of ISS solar cell backside power generation, analytical modeling and analysis results on an ISS assembly mission.

  12. Salvaging of the Final SSMIS Flight Unit for a Future Flight-of-Opportunity

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Boucher, D. J., Jr.; Park, E. S.; Swadley, S. D.; Poe, G.

    2017-12-01

    The final Special Sensor Microwave Imager/Sounder (SSMIS) that was originally manifested aboard the DMSP F-20 platform became available when that mission was deactivated. The U.S. Naval Research Laboratory and The Aerospace Corporation have secured the de-manifested SSMIS for potential flight on a future mission-of-opportunity. A number of mission options are under consideration, including installation aboard the International Space Station. The intent is for any such deployment to provide a measure of continuity between SSMIS units currently operating aboard DMSP F-16, F-17, and F-18 and whatever equivalent sensor may be selected for the next-generation DoD Weather Satellite Follow-on program. We will describe the current status of SSMIS preparations for flight.

  13. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided in...

  14. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided in...

  15. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided in...

  16. 47 CFR 95.119 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station identification is the call sign assigned to the GMRS station or system. (c) A unit number may be... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 95.119 Section 95.119... SERVICES General Mobile Radio Service (GMRS) § 95.119 Station identification. (a) Except as provided in...

  17. 47 CFR 95.23 - Mobile station description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Mobile station description. 95.23 Section 95.23... SERVICES General Mobile Radio Service (GMRS) § 95.23 Mobile station description. (a) A mobile station is... mobile station unit may transmit from any point within or over any areas where radio services are...

  18. KSC-97pc654

    NASA Image and Video Library

    1997-04-16

    Representatives of RSC Energia in Russia and other onlookers in the SPACEHAB Payload Processing Facility examine an oxygen generator which the Space Shuttle Atlantis will carry to the Russian Mir Space Station on Mission STS-84. Sergei Romanov, second from right in the white shirt, is the spokesperson for generator manufacturer RSC Energia. The nearly 300-pound generator will be strapped down on the inside surface of a SPACEHAB Double Module for the trip to Mir. It will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking

  19. KSC-97pc675

    NASA Image and Video Library

    1997-04-19

    KENNEDY SPACE CENTER, FLA. -- McDonnell Douglas-SPACEHAB technicians strap in place a Russian-made oxygen generator on the floor of a SPACEHAB Double Module, being prepared for flight in the SPACEHAB Payload Processing Facility. From left, are Mark Halavin and Marc Tuttle. The oxygen generator, manufactured in Russia by RSC Energia, will be carried aboard the Space Shuttle Atlantis on Mission STS-84 for the Shuttle’s scheduled docking with the Russian Space Station Mir next month. The nearly 300-pound generator will replace one of two Mir units that have been malfunctioning recently. The generator functions by electrolysis, which separates water into its oxygen and hydrogen components. The hydrogen is vented and the oxygen is used for breathing by the Mir crew. The generator is 4.2 feet in length and 1.4 feet in diameter. STS-84, which is planned to include a Mir crew exchange of astronaut C. Michael Foale for Jerry M. Linenger, is targeted for a May 15 liftoff. It will be the sixth Shuttle-Mir docking

  20. A miniaturized digital telemetry system for physiological data transmission

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; Stotts, L. J.

    1978-01-01

    A physiological date telemetry system, consisting basically of a portable unit and a ground base station was designed, built, and tested. The portable unit to be worn by the subject is composed of a single crystal controlled transmitter with AM transmission of digital data and narrowband FM transmission of voice; a crystal controlled FM receiver; thirteen input channels follwed by a PCM encoder (three of these channels are designed for ECG data); a calibration unit; and a transponder control system. The ground base station consists of a standard telemetry reciever, a decoder, and an FM transmitter for transmission of voice and transponder signals to the portable unit. The ground base station has complete control of power to all subsystems in the portable unit. The phase-locked loop circuit which is used to decode the data, remains in operation even when the signal from the portable unit is interrupted.

  1. International Space Station Lithium-Ion Battery

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  2. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  3. Alcohol Advertising at Boston Subway Stations: An Assessment of Exposure by Race and Socioeconomic Status

    PubMed Central

    Poirier, Katie; Wilkinson, Tiana; Nhean, Siphannay; Nyborn, Justin; Siegel, Michael

    2011-01-01

    Objectives. We investigated the frequency of alcohol ads at all 113 subway and streetcar stations in Boston and the patterns of community exposure stratified by race, socioeconomic status, and age. Methods. We assessed the extent of alcohol advertising at each station in May 2009. We measured gross impressions and gross rating points (GRPs) for the entire Greater Boston population and for Boston public school student commuters. We compared the frequency of alcohol advertising between neighborhoods with differing demographics. Results. For the Greater Boston population, alcohol advertising at subway stations generated 109 GRPs on a typical day. For Boston public school students in grades 5 to 12, alcohol advertising at stations generated 134 GRPs. Advertising at stations in low-poverty neighborhoods generated 14.1 GRPs and at stations in high-poverty areas, 63.6 GRPs. Conclusions. Alcohol ads reach the equivalent of every adult in the Greater Boston region and the equivalent of every 5th- to 12th-grade public school student each day. More alcohol ads were displayed in stations in neighborhoods with high poverty rates than in stations in neighborhoods with low poverty rates. PMID:21852632

  4. Title V Operating Permit: XTO Energy, Inc. - Little Canyon Unit Compressor Station

    EPA Pesticide Factsheets

    Initial Title V Operating Permit (Permit Number: V-UO-000016-2006.00), Response to Public Comments and the Administrative Permit Record for the XTO Energy, Inc., Little Canyon Unit Compressor Station, located on the Uintah and Ouray Indian Reservation.

  5. Evaluation of High-Performance Rooftop HVAC Unit Naval Air Station Key West, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howett, Daniel H.; Desjarlais, Andre Omer; Cox, Daryl

    This report documents performance of a high performance rooftop HVAC unit (RTU) at Naval Air Station Key West, FL. This report was sponsored by the Federal Energy Management Program as part of the "High Performance RTU Campaign".

  6. Improved waste water vapor compression distillation technology. [for Spacelab

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  7. Long-term continuous monitor demonstration program: Columbus and Southern Ohio Electric Company, Conesville Unit 6. Final report Dec 79-Mar 83

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peduto, E.F. Jr.; Porter, T.J.; Midgley, D.P.

    1984-03-01

    The report gives results of a continuous monitoring demonstration at the Columbus and Southern Ohio Electric Company's Conesville Generating Station. The purpose of the demonstration was to determine the feasibility of the requirements for monitoring and control of SO2 emissions as specified in 40 CFR, Part 60, Subpart Da, which promulgates new source performance standards (NSPS) for new utility steam generators. A secondary objective was to adhere to the draft quality assurance requirements scheduled for promulgation as Appendix F. The report describes program activities and results of the field portion, during which data were collected for about 12 months ofmore » a 16-month period.« less

  8. Interactive chemistry management system (ICMS); Field demonstration results at United Illuminating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noto, F.A.; Farrell, D.M.; Lombard, E.V.

    1988-01-01

    The authors report on a field demonstration of the interactive chemistry management system (ICMS) performed in the late summer of 1987 at the New Haven Harbor Station of United Illuminating Co. This demonstration was the first installation of the ICMS at an actual plant site. The ICMS is a computer-based system designed to monitor, diagnose, and provide optional automatic control of water and steam chemistry throughout the steam generator cycle. It is one of the diagnostic modules that comprises CE-TOPS (combustion engineering total on-line performance system), which continuously monitors operating conditions and suggests priority actions to increase operation efficiency, extendmore » the performance life of boiler components and reduce maintenance costs. By reducing the number of forced outages through early identification of potentially detrimental conditions, diagnosis of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result.« less

  9. Initial Evaluation of Signal-Based Bayesian Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Russell, S.

    2016-12-01

    We present SIGVISA (Signal-based Vertically Integrated Seismic Analysis), a next-generation system for global seismic monitoring through Bayesian inference on seismic signals. Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a network of stations. We report results from an evaluation of SIGVISA monitoring the western United States for a two-week period following the magnitude 6.0 event in Wells, NV in February 2008. During this period, SIGVISA detects more than twice as many events as NETVISA, and three times as many as SEL3, while operating at the same precision; at lower precisions it detects up to five times as many events as SEL3. At the same time, signal-based monitoring reduces mean location errors by a factor of four relative to detection-based systems. We provide evidence that, given only IMS data, SIGVISA detects events that are missed by regional monitoring networks, indicating that our evaluations may even underestimate its performance. Finally, SIGVISA matches or exceeds the detection rates of existing systems for de novo events - events with no nearby historical seismicity - and detects through automated processing a number of such events missed even by the human analysts generating the LEB.

  10. Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project willmore » focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.« less

  11. The Swiss Seismological Service in Greenland: Network Building and Research Initiatives

    NASA Astrophysics Data System (ADS)

    Husen, S.; Clinton, J. F.; Olivieri, M.; Giardini, D.

    2010-12-01

    In recent years the Swiss Seismological Service (SED) at the ETH Zürich has begun active work in NW Greenland. As part of the GreenLand Ice Sheet monitoring Network (GLISN), a new international, broadband seismic capability for Greenland, the SED has installed 3 observation quality stations, recording in realtime, with data freely open to the community. Each site is located at a village - two are within 60km of productive calving glacier fronts (Rink and Jakobshavn); the other station is 30km from inland ice calving directly into the ocean. This paper presents the stations and discusses the data quality. The capability of broadband seismic sensors at local distances to record a wide spectrum of ground motion induced by large calving events is becoming clear. Associated with a major calving event, we observe energy at 1. high frequencies (1-5Hz) due to ice fracture; 2. at mid periods (40-60s - visible at teleseismic distances) likely due to large, rapid displacement of the calved ice across the fjord floor; and 3. at longer periods (100-1000s) measuring fjord seiche generated by the calved iceberg. We are developing an automated detector for events using the GLISN dataset, with focus on the Swiss stations. Additionally, the SED, with the ETH Glaciology unit, intend to operate a broadband / short period seismic network on the ice near SwissCamp in summer 2011. The goal is to improve understanding of how sub-glacial water affects glacial bed coupling. We aim to generate an icequake catalogue with characterized sources, and to model transient changes in ice structure than may be indicative of water flow. We present a summary of the proposed work and installation plans.

  12. KSC-08pd1650

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – Auxiliary power unit 3, or APU3, is ready for installation in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  13. Software Requirements for the A-7E Aircraft.

    DTIC Science & Technology

    1992-08-31

    DIWI(a) 14 ASCU SSU-20 (1,2) READ 8 DIWI(a) 15 BITE FAIL SAFE (2) READ 2 DIW3(a) 0 TACAN PARITY VALID (3) READ 2 DIW3(a) 10-14 AGE TEST EQUIPMENT (2...69 2.1.5: Arm am ent Station Control Unit ( ASCU ...times. 69 I Chapter 2 ALSPAUGH, FAULK. BRITTON, PARKER. PARNAS, AND SHORE 3 2.1.5. Armament Station Control Unit ( ASCU ) The Armament Station Control

  14. 33 CFR 5.43 - Public vessels, aircraft, and radio stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... radio stations. 5.43 Section 5.43 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL COAST GUARD AUXILIARY § 5.43 Public vessels, aircraft, and radio stations. While assigned... U.S.C. 1301). (c) Any radio station shall be deemed to be a radio station of the United States Coast...

  15. Revised Report: A Summary of ETV Station Information.

    ERIC Educational Resources Information Center

    National Association of Educational Broadcasters, Washington, DC.

    A summary of 186 educational television stations in the United States is presented. Stations are listed in order of State by call letters, and information concerning height of antenna (as related to commercial stations), color facilities, and operation below or at authorized power is included for each station. A summary of this information is…

  16. Broadcasting Stations of the World; Part III. Frequency Modulation Broadcasting Stations.

    ERIC Educational Resources Information Center

    Foreign Broadcast Information Service, Washington, DC.

    This third part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers frequency modulation broadcasting stations. It contains two sections: one indexed alphabetically by country and city, and the…

  17. Regional and seasonal estimates of fractional storm coverage based on station precipitation observations

    NASA Technical Reports Server (NTRS)

    Gong, Gavin; Entekhabi, Dara; Salvucci, Guido D.

    1994-01-01

    Simulated climates using numerical atmospheric general circulation models (GCMs) have been shown to be highly sensitive to the fraction of GCM grid area assumed to be wetted during rain events. The model hydrologic cycle and land-surface water and energy balance are influenced by the parameter bar-kappa, which is the dimensionless fractional wetted area for GCM grids. Hourly precipitation records for over 1700 precipitation stations within the contiguous United States are used to obtain observation-based estimates of fractional wetting that exhibit regional and seasonal variations. The spatial parameter bar-kappa is estimated from the temporal raingauge data using conditional probability relations. Monthly bar-kappa values are estimated for rectangular grid areas over the contiguous United States as defined by the Goddard Institute for Space Studies 4 deg x 5 deg GCM. A bias in the estimates is evident due to the unavoidably sparse raingauge network density, which causes some storms to go undetected by the network. This bias is corrected by deriving the probability of a storm escaping detection by the network. A Monte Carlo simulation study is also conducted that consists of synthetically generated storm arrivals over an artificial grid area. It is used to confirm the bar-kappa estimation procedure and to test the nature of the bias and its correction. These monthly fractional wetting estimates, based on the analysis of station precipitation data, provide an observational basis for assigning the influential parameter bar-kappa in GCM land-surface hydrology parameterizations.

  18. Wind Advisory System

    NASA Technical Reports Server (NTRS)

    Curto, Paul A. (Inventor); Brown, Gerald E. (Inventor); Zysko, Jan A. (Inventor)

    2001-01-01

    The present invention is a two-part wind advisory system comprising a ground station at an airfield and an airborne unit placed inside an aircraft. The ground station monitors wind conditions (wind speed, wind direction, and wind gust) at the airfield and transmits the wind conditions and an airfield ID to the airborne unit. The airborne unit identifies the airfield by comparing the received airfield ID with airfield IDs stored in a database. The airborne unit also calculates the headwind and crosswind for each runway in both directions at the airfield using the received wind conditions and runway information stored in the database. The airborne unit then determines a recommended runway for takeoff and landing operations of the aircraft based on th runway having the greatest headwind value and displays the airfield ID, wind conditions, and recommended runway to the pilot. Another embodiment of the present invention includes a wireless internet based airborne unit in which the airborne unit can receive the wind conditions from the ground station over the internet.

  19. Attraction of subterranean termites (Isoptera) to carbon dioxide.

    PubMed

    Bernklau, Elisa Jo; Fromm, Erich A; Judd, Timothy M; Bjostad, Louis B

    2005-04-01

    Subterranean termites, Reticulitermes spp., were attracted to carbon dioxide (CO2) in laboratory and field tests. In behavioral bioassays, Reticulitermes flavipes (Kollar), Reticulitermes tibialis Banks, and Reticulitermes virginicus Banks were attracted to CO2 concentrations between 5 and 50 mmol/mol. In further bioassays, R. tibialis and R. virginicus were attracted to the headspace from polyisocyanurate construction foam that contained 10-12 mmol/mol CO2. In soil bioassays in the laboratory, more termites foraged in chambers containing CO2-generating formulations than in unbaited control chambers. In field tests, stations containing CO2-generating baits attracted R. tibialis away from wooden fence posts at rangeland sites in Colorado. For all of the CO2 formulations tested, termites foraged in significantly more bait stations at treatment fenceposts than in bait stations at the control fenceposts. By the end of the 8-wk study, the number of bait stations located by termites at treatment fenceposts ranged from 40 to 90%. At control fenceposts, termites foraged in only a single station and the one positive station was not located by termites until week 5 of the study. At treatment fenceposts, termites foraged equally in active stations (containing a CO2-generating bait) and passive stations (with no CO2-generating bait), indicating that bait stations may benefit passively from a proximal CO2 source in the soil. CO2 used as an attractant in current baiting systems could improve their effectiveness by allowing earlier exposure of termites to an insecticide.

  20. Intake-to-delivered-energy ratios for central station and distributed electricity generation in California

    NASA Astrophysics Data System (ADS)

    Heath, Garvin A.; Nazaroff, William W.

    In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants—PM 2.5, NO x and formaldehyde—directly emitted by five DG technologies—natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric energy delivered to the place of use. We find that the central tendency of IDER is much greater for almost every DG technology evaluated than for existing CS facilities in California.

  1. The Global Seismographic Network

    NASA Astrophysics Data System (ADS)

    Berger, J.; Anderson, K. R.; Butler, R.; Davis, P. B.; Derr, J.; Gee, L. S.; Song, X.

    2009-12-01

    Twenty-five years ago the IRIS Consortium was formed to advance the seismological interests of the US academic community. One of its core programs was the Global Seismographic Network (GSN).The GSN built upon the successes of its predecessors, the World-Wide Standardized Seismograph Network and the Global Digital Seismograph Network operated by the United States Geological Survey (USGS), and Project IDA operated by the University of California San Diego (UCSD), but with a far-reaching vision of more than 100 global stations with broadband seismometers, real-time data telemetry, and free and open data access. Based upon a partnership with USGS Albuquerque Seismological Laboratory and the UCSD IDA group, and with funding from the National Science Foundation, IRIS established its first stations in 1986. Today the GSN comprises 153 stations operated in cooperation with over 100 host organizations in 69 countries. With the goal of recording the entire seismic spectrum, the GSN stations include very-broadband seismometers installed in vaults and in 100m boreholes, strong-motion sensors to insure on-scale recordings of nearby or very large earthquakes, and high-frequency sensors to extend the frequency band for nuclear treaty monitoring interests. Using the GSN logistics, communications, and infrastructure for broader science interests, many GSN stations have been expanded as geophysical observatories to include microbarographs, GPS receivers, along with numerous co-located gravimeters, geomagnetic sensors, and meteorological sensors. In the early days of the GSN data were recorded at the stations on magnetic tape and then sent to the IRIS Data Center via mail. Gradually near real-time data collection progressed to telephone dial-up access, via private VSAT satellite access, and finally through the public Internet. Now over 95% of the GSN stations have real-time data flow openly accessible from IRIS, and from USGS and IDA data collection centers. In the years prior to the 1996 Comprehensive Nuclear Test Ban Treaty the GSN received significant additional funding to support expansion of the GSN in the former Soviet Union, and to collaborate in the upgrade of the Chinese Digital Seismic Network to GSN standards. Over 50 GSN sites are designated as part of the CTBT International Monitoring System. The Mw 9.2 Sumatra-Andaman earthquake of 2004 and subsequent tsunami was the first operational test of the GSN design goals for a truly great earthquake. The GSN captured this event with full fidelity with over 88% of the network operational and with 88 of these stations provided data in real-time for tsunami warning. IRIS,IDA, and the USGS remain committed to maintaining a state-of-the-art facility, which will continue to serve as a foremost resource for seismological research and for training and educating the next generation of earth scientists while providing data for earthquake response, tsunami warning, and international nuclear treaty monitoring. To meet this commitment, the GSN is progressing rapidly in upgrading all of its stations with a new generation of data acquisition systems and the latest generation of standardized sensors.

  2. KSC-2012-6382

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. -- Inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers have prepared the orbital replacement unit for the space station's main bus switching unit to be placed in a shipping container. The unit, which was processed at Kennedy, will be shipped to Japan at the beginning of the year for the HTV-4 launch, which is currently scheduled for 2013. Photo credit: NASA/Charisse Nahser

  3. KSC-2012-6378

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. -- Workers inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida prepare to pack the orbital replacement unit for the space station's main bus switching unit in a shipping container. The unit, which was processed at Kennedy, will be shipped to Japan at the beginning of the year for the HTV-4 launch, which is currently scheduled for 2013. Photo credit: NASA/Charisse Nahser

  4. KSC-2012-6379

    NASA Image and Video Library

    2012-12-04

    CAPE CANAVERAL, Fla. -- Workers inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida prepare to pack the orbital replacement unit for the space station's main bus switching unit in a shipping container. The unit, which was processed at Kennedy, will be shipped to Japan at the beginning of the year for the HTV-4 launch, which is currently scheduled for 2013. Photo credit: NASA/Charisse Nahser

  5. 75 FR 13318 - Virginia Electric and Power Company; Surry Power Station, Unit Nos. 1 and 2 (Surry 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... notice. SUMMARY: This document corrects a notice appearing in the Federal Register on March 3, 2010 (75... Power Company; Surry Power Station, Unit Nos. 1 and 2 (Surry 1 and 2); Correction to Environmental... Surry 1 and 2, respectively.'' This action is necessary to add an implementation date for Surry Unit 2...

  6. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  7. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  8. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  9. KSC-2013-3786

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle, left, and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  10. TDRS-L Spacecraft is Lifted Onto Transporter

    NASA Image and Video Library

    2014-01-10

    TITUSVILLE, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being mounted on a transporter for its trip from the Astrotech payload processing facility in Titusville to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Kim Shiflett

  11. KSC-2013-4402

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  12. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    TITUSVILLE, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft begins it trip from the Astrotech payload processing facility in Titusville to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2013-4413

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  14. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. KSC-2013-4420

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. It will be lifted and mounted atop the Atlas V first stage already in position inside the Vertical Integration Facility. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  16. KSC-2013-4412

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  17. KSC-2013-3782

    NASA Image and Video Library

    2013-11-01

    PORT CANAVERAL, Fla. – Following arrival at Port Canaveral, Fla., the United Launch Alliance Atlas V first stage and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to Cape Canaveral Air Force Station's Atlas Spaceflight Operations Center for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Kim Shiflett

  18. TDRS-L Spacecraft is Lifted Onto Transporter

    NASA Image and Video Library

    2014-01-10

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Kim Shiflett

  19. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  20. KSC-2013-4404

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  1. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is transported along the Saturn Causeway at the Kennedy Space Center on its way to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  2. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  3. KSC-2013-3781

    NASA Image and Video Library

    2013-11-01

    PORT CANAVERAL, Fla. – Following arrival at Port Canaveral, Fla., the United Launch Alliance Atlas V first stage and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to Cape Canaveral Air Force Station's Atlas Spaceflight Operations Center for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Kim Shiflett

  4. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  5. How DRB-XCL burners and air heater upgrade reduced NO sub x and improved efficiency at a western utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, W.; Stalcup, T.; Schild, V.

    1992-01-01

    The Neil Simpson Unit is a 220,000 lb/hr pulverized coal boiler that was designed to fire a local Wyoming subbituminous coal. During the late 1980s, the Wyoming Department of Air Quality imposed emission limits on the Black Hills Power and Light Co., Neil Simpson Station. The new limits required Black Hills power to control not only particulate and sulfur dioxide (SO{sub 2}) emissions, but also nitrogen oxide (NO{sub x}) emissions. At the same time, Black Hills Power initiated an efficiency improvement study at Neil Simpson Station to investigate methods for reducing net electrical generation costs. This paper addresses the plantmore » efficiency and emissions studies, startup activities, the operating problems and successful operating solutions for NO{sub x} control when firing a Wyoming subbituminous coal. Also included is a summary of the post-0retrofit boiler performance data.« less

  6. Microfabricated fuel heating value monitoring device

    DOEpatents

    Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  7. United States Historical Climatology Network (US HCN) monthly temperature and precipitation data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, R.C.; Boden, T.A.; Easterling, D.R.

    1996-01-11

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have beenmore » used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.« less

  8. 47 CFR 73.601 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... broadcast stations and, where indicated, low power TV and TV translator stations in the United States, its Territories and possessions. TV broadcast, low power TV, and TV translator stations are assigned channels 6...

  9. 78 FR 75579 - License Renewal Application for Grand Gulf Nuclear Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-416; NRC-2011-0262] License Renewal Application for Grand Gulf Nuclear Station, Unit 1 AGENCY: Nuclear Regulatory Commission. ACTION: Draft supplemental....S. Nuclear Regulatory Commission (NRC) is issuing for public comment a draft, plant-specific...

  10. Are precipitation-based intensity-duration-frequency curves appropriate for cost effective and resilient infrastructure design in snow-dominated regions? Next-generation curves with inclusion of rain-on-snow events

    NASA Astrophysics Data System (ADS)

    Yan, H.; Sun, N.; Wigmosta, M. S.; Hou, Z.

    2017-12-01

    There is a renewed focus on the design of infrastructure resilient to extreme hydrometeorological events. While precipitation-based intensity-duration-frequency (IDF) curves are commonly used as part of infrastructure design, a large percentage of peak runoff events in the snow-dominated regions are caused by snowmelt, particularly during rain-on-snow (ROS) events. In this study, we examined next-generation IDF (NG-IDF) curves with inclusion of snowmelt and ROS events to improve infrastructure design in snow-dominated regions. We compared NG-IDF curves to standard precipitation-based IDF curves for estimates of extreme events at 377 Snowpack Telemetry (SNOTEL) stations across the western United States with at least 30 years of high quality record. We found 38% of the stations were subject to under-design, many with significant underestimation of 100-year extreme events, where the precipitation-based IDF curves can underestimate water potentially available for runoff by as much as 121% due to snowmelt and ROS events. The regions with the greatest potential for under-design were in the Pacific Northwest, the Sierra Nevada, and the Middle and Southern Rockies. We also found the potential for over-design at 27% of the stations, primarily in the Middle Rockies and Arizona mountains. These results demonstrate the need to consider snow processes in development of IDF curves for engineering design procedures in snow-dominated regions.

  11. Navajo Generating Station and Federal Resource Planning; Volume 1: Sectoral, Technical, and Economic Trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurlbut, David; Haase, Scott; Barrows, Clayton

    This study for the U.S. Bureau of Reclamation examines conditions in the electricity sector that are likely to affect federal decisions with respect to Navajo Generating Station (NGS), the largest coal-fired power plant operating in the western United States. The federal government owns 24.3% of the 2.25-gigawatt plant, which amounts to 547 megawatts (MW) of capacity. By focusing on the unique public interests that depend on the federal share of NGS, this baseline study can help the federal government develop a road map for meeting all of its goals with respect to water delivery, clean energy, emission reduction, and economicmore » development. There is no recommendation for action in this report. Rather, its aim is to provide a credible, thorough description of baseline conditions that might affect federal decisions regarding NGS. It describes facts and trends embedded in current data, but there are no conclusions about how Reclamation or DOI should respond to the trends. The interdependencies among the many sectoral trends and federal goals are complex, and the aim of this study is to provide a foundation from which options can be tested in a deliberate manner.« less

  12. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosey, G.; Heimiller, D.; Dahle, D.

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  13. Gaussian entanglement distribution via satellite

    NASA Astrophysics Data System (ADS)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-02-01

    In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.

  14. Summary of 2006 to 2010 FPMU Measurements of International Space Station Frame Potential Variations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Wright, Kenneth H., Jr.; Chandler, Michael O.; Coffey, Victoria N.; Craven, Paul D.; Schneider, Todd A.; Parker, Linda N.; Ferguson, Dale C.; Koontz, Steve L.; Alred, John W.

    2010-01-01

    Electric potential variations on the International Space Station (ISS) structure in low Earth orbit are dominated by contributions from interactions of the United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment and inductive potentials generated by motion of the large vehicle across the Earth?s magnetic field. The Floating Potential Measurement Unit (FPMU) instrument suite comprising two Langmuir probes, a plasma impedance probe, and a floating potential probe was deployed in August 2006 for use in characterizing variations in ISS potential, the state of the ionosphere along the ISS orbit and its effect on ISS charging, evaluating effects of payloads and visiting vehicles, and for supporting ISS plasma hazard assessments. This presentation summarizes observations of ISS frame potential variations obtained from the FPMU from deployment in 2006 through the current time. We first describe ISS potential variations due to current collection by solar arrays in the day time sector of the orbit including eclipse exit and entry charging events, potential variations due to plasma environment variations in the equatorial anomaly, and visiting vehicles docked to the ISS structure. Next, we discuss potential variations due to inductive electric fields generated by motion of the vehicle across the geomagnetic field and the effects of external electric fields in the ionosphere. Examples of night time potential variations at high latitudes and their possible relationship to auroral charging are described and, finally, we demonstrate effects on the ISS potential due to European Space Agency and US plasma contactor devices.

  15. 77 FR 26543 - UGI Storage Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... approximately 3,450 horsepower (hp) of gas fired compression at its existing Palmer Station in Tioga County... compressor units and one 690 hp unit at the Palmer Station located at the downstream terminus of the TL-94...-3-12; 8:45 am] BILLING CODE 6717-01-P ...

  16. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Science.gov Websites

    or ZIP code or along a route in the United States. Loading alternative fueling station locator Fleet Rightsizing System Efficiency Locate Stations Search by Location Map a Route Laws & Incentives

  17. Itegrated Test and Evaluation of a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removtal System (CDRA), Mechanical Compressor Engineering Development Unit (EDU), and Sabitier Engineering Development Unit (EDU)

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank

    2005-01-01

    Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.

  18. 47 CFR 80.53 - Application for a portable ship station license.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Application for a portable ship station license... a portable ship station license. The Commission may grant a license permitting operation of a portable ship station aboard different vessels of the United States. [63 FR 68956, Dec. 14, 1998] ...

  19. 47 CFR 80.53 - Application for a portable ship station license.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Application for a portable ship station license... a portable ship station license. The Commission may grant a license permitting operation of a portable ship station aboard different vessels of the United States. [63 FR 68956, Dec. 14, 1998] ...

  20. 47 CFR 80.53 - Application for a portable ship station license.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Application for a portable ship station license... a portable ship station license. The Commission may grant a license permitting operation of a portable ship station aboard different vessels of the United States. [63 FR 68956, Dec. 14, 1998] ...

  1. 47 CFR 80.53 - Application for a portable ship station license.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Application for a portable ship station license... a portable ship station license. The Commission may grant a license permitting operation of a portable ship station aboard different vessels of the United States. [63 FR 68956, Dec. 14, 1998] ...

  2. 47 CFR 80.53 - Application for a portable ship station license.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Application for a portable ship station license... a portable ship station license. The Commission may grant a license permitting operation of a portable ship station aboard different vessels of the United States. [63 FR 68956, Dec. 14, 1998] ...

  3. Advanced Plant Habitat Test Harvest

    NASA Image and Video Library

    2017-08-24

    Arabidopsis thaliana plants are seen inside the growth chamber of the Advanced Plant Habitat (APH) Flight Unit No. 1 prior to harvest of half the plants. The harvest is part of an ongoing verification test of the APH unit, which is located inside the International Space Station Environmental Simulator in NASA Kennedy Space Center's Space Station Processing Facility. The APH undergoing testing at Kennedy is identical to one on the station and uses red, green and broad-spectrum white LED lights to grow plants in an environmentally controlled chamber. The seeds grown during the verification test will be grown on the station to help scientists understand how these plants adapt to spaceflight.

  4. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. Duringmore » this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.« less

  5. Development of a thermal scheme for a cogeneration combined-cycle unit with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Krasheninnikov, S. M.

    2017-02-01

    At present, the prospects for development of district heating that can increase the effectiveness of nuclear power stations (NPS), cut down their payback period, and improve protection of the environment against harmful emissions are being examined in the nuclear power industry of Russia. It is noted that the efficiency of nuclear cogeneration power stations (NCPS) is drastically affected by the expenses for heat networks and heat losses during transportation of a heat carrier through them, since NPSs are usually located far away from urban area boundaries as required for radiation safety of the population. The prospects for using cogeneration power units with small or medium power reactors at NPSs, including combined-cycle units and their performance indices, are described. The developed thermal scheme of a cogeneration combined-cycle unit (CCU) with an SBVR-100 nuclear reactor (NCCU) is presented. This NCCU should use a GE 6FA gasturbine unit (GTU) and a steam-turbine unit (STU) with a two-stage district heating plant. Saturated steam from the nuclear reactor is superheated in a heat-recovery steam generator (HRSG) to 560-580°C so that a separator-superheater can be excluded from the thermal cycle of the turbine unit. In addition, supplemental fuel firing in HRSG is examined. NCCU effectiveness indices are given as a function of the ambient air temperature. Results of calculations of the thermal cycle performance under condensing operating conditions indicate that the gross electric efficiency η el NCCU gr of = 48% and N el NCCU gr = 345 MW can be achieved. This efficiency is at maximum for NCCU with an SVBR-100 reactor. The conclusion is made that the cost of NCCU installed kW should be estimated, and the issue associated with NCCUs siting with reference to urban area boundaries must be solved.

  6. Historical Analysis and Charaterization of Ground Level Ozone for Canada and United State

    NASA Astrophysics Data System (ADS)

    Lin, H.; Li, H.; Auld, H.

    2003-12-01

    Ground-level ozone has long been recognized as an important health and ecosystem-related air quality concern in Canada and the United States. In this work we seek to understand the characteristics of ground level ozone conditions for Canada and United States to support the Ozone Annex under the Canada-U.S. Air Quality Agreement. Our analyses are based upon the data collected by Canadian National Air Pollution Surveillance (NAPS, the NAPS database has also been expanded to include U.S. EPA ground level ozone data) network. Historical ozone data from 1974 to 2002 at a total of 538 stations (253 Canadian stations and 285 U.S. stations) were statistically analyzed using several methodologies including the Canada Wide Standard (CWS). A more detailed analysis including hourly, daily, monthly, seasonally and yearly ozone concentration distributions and trends was undertaken for 54 stations.

  7. 76 FR 79541 - Revisions to Final Response to Petition From New Jersey Regarding SO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... Revisions to Final Response to Petition From New Jersey Regarding SO2 Emissions From the Portland Generating... Jersey Regarding SO2 Emissions From the Portland Generating Station (Portland) published November 7, 2011... Final Response to Petition From New Jersey Regarding SO2 Emissions From the Portland Generating Station...

  8. 76 FR 75876 - Record of Decision for the Modification of the Groton Generation Station Interconnection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ...) received a request from Basin Electric Power Cooperative (Basin Electric) to modify its Large Generator Interconnection Agreement (LGIA) with Basin Electric for the Groton Generation Station to eliminate current... considered the environmental impacts and has decided to modify its LGIA with Basin Electric for the Groton...

  9. 47 CFR 25.216 - Limits on emissions from mobile earth stations for protection of aeronautical radionavigation...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-1587.42 MHz. The e.i.r.p. of discrete emissions of less than 700 Hz bandwidth generated by such....i.r.p. of discrete emissions of less than 700 Hz bandwidth generated by such stations shall not... discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed −80 dBW, averaged over...

  10. Laser Ranging to the Lunar Reconnaissance Orbiter: improved timing and orbits

    NASA Astrophysics Data System (ADS)

    Mao, D.; Mcgarry, J.; Sun, X.; Torrence, M. H.; Skillman, D.; Hoffman, E.; Mazarico, E.; Rowlands, D. D.; Golder, J.; Barker, M. K.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2013-12-01

    The Laser ranging (LR) experiment to the Lunar Reconnaissance Orbiter (LRO) has been under operation for more than 4 years, since the launch of the spacecraft in June 2009. Led by NASA's Next Generation Satellite Laser Ranging(NGSLR) station at Greenbelt, Maryland, ten laser ranging stations over the world have been participating in the experiment and have collected over 3,200 hours of ranging data. These range measurements are used to monitor the behavior of the LRO clock and to generate orbital solutions for LRO. To achieve high-quality results in range, ground stations like NGSLR are using H-maser clocks to obtain a stable and continuous time baseline for the orbit solutions. An All-View GPS receiver was included at NGSLR since January 2013 which monitors the H-maser time against the master clock at the United State Naval Observatory (USNO) via the GPS satellites. NGSLR has successfully established nano-second level epoch time accuracy and 10-15 clock stability since then. Time transfer experiments using LRO as a common receiver have been verified in ground testing between NGSLR and MOBLAS7 via a ground terminal with a Lunar Orbiter Laser Altimeter (LOLA)-like receiver at Greenbelt, Maryland. Two hour-long ground tests using a LOLA-like detector and two different ground targets yielded results consistent with each other, and those from the previous 10-minute test completed one year ago. Time transfer tests between NGSLR and MOBLAS7 via LRO are ongoing. More time transfer tests are being planned from NGSLR to McDonald Laser Ranging Station (MLRS) in Texas and later from NGSLR to European satellite laser ranging (SLR) stations. Upon the completion of these time transfer experiments, nanosecond-level epoch time accuracy will be brought to stations besides NGSLR, and such high precision of the ground time can contribute to the LRO precision orbit determination (POD) process. Presently, by using the high-resolution GRAIL gravity models, the LRO orbits determined from LR data alone have a total position error of 10 meters in average, and show the same quality as those generated using conventional radiometric tracking data. In these LR orbital solutions, a bias was adjusted to compensate both the ground and spacecraft clock characteristics. By taking advantage of the knowledge we have gained through LR of the long-term stability of the LRO clock, the spacecraft clock behavior is separated from the ground station clocks and modeled over a 10-month time span in our current POD process. Here we present the results from this new approach, and further improvements in the quality of the orbital reconstruction.

  11. Downscale climate change scenarios over the Western Himalayan region of India using multi-generation CMIP experiments

    NASA Astrophysics Data System (ADS)

    Das, Lalu; Meher, Jitendra K.; Akhter, Javed

    2017-04-01

    Assessing climate change information over the Western Himalayan Region (WHR) of India is crucial but challenging task due to its limited numbers of station data containing huge missing values. The issues of missing values of station data were replaced the Multiple Imputation Chained Equation (MICE) technique. Finally 22 numbers of rain gauge stations having continuous data during 1901-2005 and 16 numbers stations having continuous temperature data during 1969-2009 were considered as " reference stations for assessing rainfall and temperature trends in addition to evaluation of the GCMs available in the Coupled Model Intercomparison Project, Phase 3 (CMIP3) and phase 5 (CMIP5) over WRH. Station data indicates that the winter warming is higher and rapid (1.05oC) than other seasons and less warming in the post monsoon season in the last 41 years. Area averaged using 22 station data indicates that monsoon and winter rainfall has decreased by -5 mm and -320 mm during 1901-2000 while pre-monsoon and post monsoon showed an increasing trends of 21 mm and 13 mm respectively. Present study is constructed the downscaled climate change information at station locations (22 and 16 stations for rainfall and temperature respectively) over the WHR from the GCMs commonly available in the IPCC's different generations assessment reports namely 2nd, 3rd, 4th and 5th thereafter known as SAR, TAR, AR4 and AR5 respectively. Once the downscaled results are obtained for each generation model outputs, then a comparison of studies is carried out from the results of each generation. Finally an overall model improvement index (OMII) is developed using the downscaling results which is used to investigate the model improvement across generations as well as the improvement of downscaling results obtained from the empirical statistical downscaling (ESD) methods. In general, the results indicate that there is a gradual improvement of GCMs simulations as well as downscaling results across generation. Key words: MICE Techniques, CMIP3, CMIP5, ESD and OMII

  12. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  13. NPDES Permit for NRG Energy (Formerly GenOn Potomac River Generating Station)

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number DC0022004, NRG Energy (Formerly GenOn Potomac River Generating Station) is authorized to discharge from a facility into receiving waters named Potomac River.

  14. NPDES Permit for Potomac Electric Power Company (PEPCO) Benning Generating Station

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number DC0000094, the Potomac Electric Power Company (PEPCO) Benning Generating Station is authorized to discharge from from a facility to receiving waters named Anacostia River.

  15. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Payette; D. Tillman

    During the period October 1, 2002--December 31, 2002, Allegheny Energy Supply Co., LLC (Allegheny) completed the first year of testing at the Willow Island cofiring project. This included data acquisition and analysis associated with certain operating parameters and environmental results. Over 2000 hours of cofiring operation were logged at Willow Island, and about 4,000 tons of sawdust were burned along with slightly more tire-derived fuel (TDF). The results were generally favorable. During this period, also, a new grinder was ordered for the Albright Generating Station to handle oversized material rejected by the disc screen. This report summarizes the activities associatedmore » with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the test results at Willow Island and summarizes the grinder program at Albright.« less

  16. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankinemore » Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.« less

  17. Evaluation of an Atmosphere Revitalization Subsystem for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Conrad, Ruth E.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Knox, James C.; Newton, Robert L.; Parrish, Keith J.; Takada, Kevin C.; hide

    2015-01-01

    An Atmosphere Revitalization Subsystem (ARS) suitable for deployment aboard deep space exploration mission vehicles has been developed and functionally demonstrated. This modified ARS process design architecture was derived from the International Space Station's (ISS) basic ARS. Primary functions considered in the architecture include trace contaminant control, carbon dioxide removal, carbon dioxide reduction, and oxygen generation. Candidate environmental monitoring instruments were also evaluated. The process architecture rearranges unit operations and employs equipment operational changes to reduce mass, simplify, and improve the functional performance for trace contaminant control, carbon dioxide removal, and oxygen generation. Results from integrated functional demonstration are summarized and compared to the performance observed during previous testing conducted on an ISS-like subsystem architecture and a similarly evolved process architecture. Considerations for further subsystem architecture and process technology development are discussed.

  18. Hydrogen Fueling Infrastructure Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    (retail and non-retail combined) Retail stations only Publications The following publications provide more Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined), Data through ) Next Generation Hydrogen Station Composite Data Products: All Stations (Retail and Non-Retail Combined

  19. 35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Wollack, Edward J.; Wright, Kenneth H.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; hide

    2014-01-01

    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update.

Top