Science.gov

Sample records for generation cephalosporin antibiotic

  1. Transport of cefodizime, a novel third generation cephalosporin antibiotic, in isolated rat choroid plexus

    SciTech Connect

    Nohjoh, T.; Suzuki, H.; Sawada, Y.; Sugiyama, Y.; Iga, T.; Hanano, M.

    1989-07-01

    To characterize the transport system by which cephalosporin antibiotics are accumulated by the choroid plexus, kinetic analysis of cefodizime transport was performed. Accumulation of cefodizime was against an electrochemical potential gradient via a saturable process (Km = 470 microM, Vmax = 174 nmol/ml of tissue per min) that was inhibited by metabolic inhibitors (KCN and 2,4-dinitrophenol), hypothermia, a sulfhydryl reagent (p-hydroxymer-curibenzoic acid) and anion transport inhibitors (probenecid and 4,4'-diisothiocyanostilbene -2,2'-disulfonic acid). Accumulation of cefodizime was inhibited competitively by benzylpenicillin with an inhibition constant of aproximately 100 microM. Cefodizime inhibited competitively the accumulation of benzylpenicillin with an inhibition constant of approximately 500 microM. Kinetic analysis using 16 kinds of beta-lactam antibiotics also supported the view (1) that the transport system of cefodizime is shared by benzylpenicillin and (2) that these beta-lactam antibiotics are transported via a common transport system. These findings indicate that the major transport system of cephalosporin antibiotics in the rat choroid plexus is via a carrier-mediated active anion transport process. The affinity of beta-lactam antibiotics for this transport system in the choroid plexus may be a major factor in determining their pharmacokinetics in the cerebrospinal fluid.

  2. Metagenomic Analysis of Antibiotic Resistance Genes in Dairy Cow Feces following Therapeutic Administration of Third Generation Cephalosporin.

    PubMed

    Chambers, Lindsey; Yang, Ying; Littier, Heather; Ray, Partha; Zhang, Tong; Pruden, Amy; Strickland, Michael; Knowlton, Katharine

    2015-01-01

    Although dairy manure is widely applied to land, it is relatively understudied compared to other livestock as a potential source of antibiotic resistance genes (ARGs) to the environment and ultimately to human pathogens. Ceftiofur, the most widely used antibiotic used in U.S. dairy cows, is a 3rd generation cephalosporin, a critically important class of antibiotics to human health. The objective of this study was to evaluate the effect of typical ceftiofur antibiotic treatment on the prevalence of ARGs in the fecal microbiome of dairy cows using a metagenomics approach. β-lactam ARGs were found to be elevated in feces from Holstein cows administered ceftiofur (n = 3) relative to control cows (n = 3). However, total numbers of ARGs across all classes were not measurably affected by ceftiofur treatment, likely because of dominance of unaffected tetracycline ARGs in the metagenomics libraries. Functional analysis via MG-RAST further revealed that ceftiofur treatment resulted in increases in gene sequences associated with "phages, prophages, transposable elements, and plasmids", suggesting that this treatment also enriched the ability to horizontally transfer ARGs. Additional functional shifts were noted with ceftiofur treatment (e.g., increase in genes associated with stress, chemotaxis, and resistance to toxic compounds; decrease in genes associated with metabolism of aromatic compounds and cell division and cell cycle), along with measureable taxonomic shifts (increase in Bacterioidia and decrease in Actinobacteria). This study demonstrates that ceftiofur has a broad, measureable and immediate effect on the cow fecal metagenome. Given the importance of 3rd generation cephalospirins to human medicine, their continued use in dairy cattle should be carefully considered and waste treatment strategies to slow ARG dissemination from dairy cattle manure should be explored.

  3. Third generation cephalosporin use in a tertiary hospital in Port of Spain, Trinidad: need for an antibiotic policy

    PubMed Central

    Pinto Pereira, Lexley M; Phillips, Marjorie; Ramlal, Hema; Teemul, Karen; Prabhakar, P

    2004-01-01

    Background Tertiary care hospitals are a potential source for development and spread of bacterial resistance being in the loop to receive outpatients and referrals from community nursing homes and hospitals. The liberal use of third-generation cephalosporins (3GCs) in these hospitals has been associated with the emergence of extended-spectrum beta- lactamases (ESBLs) presenting concerns for bacterial resistance in therapeutics. We studied the 3GC utilization in a tertiary care teaching hospital, in warded patients (medical, surgical, gynaecology, orthopedic) prescribed these drugs. Methods Clinical data of patients (≥ 13 years) admitted to the General Hospital, Port of Spain (POSGH) from January to June 2000, and who had received 3GCs based on the Pharmacy records were studied. The Sanford Antibiotic Guide 2000, was used to determine appropriateness of therapy. The agency which procures drugs for the Ministry of Health supplied the cost of drugs. Results The prevalence rate of use of 3GCs was 9.5 per 1000 admissions and was higher in surgical and gynecological admissions (21/1000) compared with medical and orthopedic (8 /1000) services (p < 0.05). Ceftriaxone was the most frequently used 3GC. Sixty-nine (36%) patients without clinical evidence of infection received 3Gcs and prescribing was based on therapeutic recommendations in 4% of patients. At least 62% of all prescriptions were inappropriate with significant associations for patients from gynaecology (p < 0.003), empirical prescribing (p < 0.48), patients with undetermined infection sites (p < 0.007), and for single drug use compared with multiple antibiotics (p < 0.001). Treatment was twice as costly when prescribing was inappropriate Conclusions There is extensive inappropriate 3GC utilization in tertiary care in Trinidad. We recommend hospital laboratories undertake continuous surveillance of antibiotic resistance patterns so that appropriate changes in prescribing guidelines can be developed and

  4. Antibiotic Prophylaxis Using Third Generation Cephalosporins Can Reduce the Risk of Early Rebleeding in the First Acute Gastroesophageal Variceal Hemorrhage: A Prospective Randomized Study

    PubMed Central

    Jun, Chung-Hwan; Park, Chang-Hwan; Lee, Wan-Sik; Joo, Young-Eun; Kim, Hyun-Soo; Choi, Sung-Kyu; Rew, Jong-Sun; Kim, Sei-Jong

    2006-01-01

    Bacterial infection may be a critical trigger for variceal bleeding. Antibiotic prophylaxis can prevent rebleeding in patients with acute gastroesophageal variceal bleeding (GEVB). The aim of the study was to compare prophylactic third generation cephalosporins with on-demand antibiotics for the prevention of gastroesophageal variceal rebleeding. In a prospective trial, patients with the first acute GEVB were randomly assigned to receive prophylactic antibiotics (intravenous cefotaxime 2 g q 8 hr for 7 days, prophylactic antibiotics group) or to receive the same antibiotics only when infection became evident (on-demand group). Sixty-two patients in the prophylactic group and 58 patients in the on-demand group were included for analysis. Antibiotic prophylaxis decreased infection (3.2% vs. 15.5%, p=0.026). The actuarial rebleeding rate in the prophylactic group was significantly lower than that in the ondemand group (33.9% vs. 62.1%, p=0.004). The difference of rebleeding rate was mostly due to early rebleeding within 6 weeks (4.8% vs. 20.7%, p=0.012). On multivariate analysis, antibiotic prophylaxis (relative hazard: 0.248, 95% confidence interval (CI): 0.067-0.919, p=0.037) and bacterial infection (relative hazard: 3.901, 95% CI: 1.053-14.448, p=0.042) were two independent determinants of early rebleeding. In conclusion, antibiotic prophylaxis using third generation cephalosporins can prevent bacterial infection and early rebleeding in patients with the first acute GEVB. PMID:17043424

  5. [Antibiotic prophylaxis with cephalosporins in heart surgery].

    PubMed

    Reichart, B; Klinner, W; Adam, D

    1981-08-13

    60 minutes after i.v. injection tissue levels of 7 different cephalosporins were obtained using biological assay. The following concentrations were measured: cephalothn 1.4 micrograms/g; cepharin 4.7 micrograms/g; cephacetrile 11.2 micrograms/g; cephradine 15.4 micrograms/g; cefazedone 26.9 micrograms/g; cefamandole 40.3 micrograms/g, and finally cefoxitin 43 micrograms/g. The high tissue levels of cefamandole and cefoxitin are especially remarkable as i.v. doses of both antibiotics had been 50 mg/kg body weight ( doses of all other cephalosporins 100 mg/kg body weight). Except cephalothin, all cephalosporins tested were suitable for antibiotic prophylaxis in cardiac surgery.

  6. History of antibiotics. From salvarsan to cephalosporins.

    PubMed

    Zaffiri, Lorenzo; Gardner, Jared; Toledo-Pereyra, Luis H

    2012-04-01

    Infections have represented for a long time the leading cause of death in humans. During the 19th century, pneumonia, tuberculosis, diarrhea and diphtheria were considered the main causes of death in children and adults. Only in the late 19th century did it become possible to correlate the existence of microscopic pathogens with the development of various diseases. Within a few years the introduction of antiseptic procedures had begun to reduce mortality due to postsurgical infections. Sanitation and hygiene played a significant role in the reduction of the mortality due to several infectious diseases. The introduction of the first compounds with antimicrobial activity succeeded in conquering many diseases. In this review we analyzed, from a historical perspective, the development of antibiotics and the circumstances that led to their discovery. The first compound with antimicrobial activity was introduced in 1911 by Erlich. He focused his research activity on the discovery of a "magic bullet" to treat syphilis. Afterwards, Foley and colleagues brought penicillin to the forefront. Streptomycin represents the first drug discovered for the treatment of tuberculosis, and its development included the first use of clinical trials. Finally, with the development of cephalosporins, the introduction of new antimicrobial compounds with broad activity against gram-positive and also some gram-negative bacteria began.

  7. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment.

    PubMed

    Jiang, Muxian; Wang, Lianhong; Ji, Rong

    2010-09-01

    Cephalosporins are widely used veterinary and human antibiotics, but their environmental fate and impacts are still unclear. We studied degradation of four cephalosporins (cefradine, cefuroxime, ceftriaxone, and cefepime) from each generation in the surface water and sediment of Lake Xuanwu, China. The four cephalosporins degraded abiotically in the surface water in the dark with half-lives of 2.7-18.7d, which were almost the same as that in sterilized surface water. Under exposure to simulated sunlight, the half-lives of the cephalosporins decreased significantly to 2.2-5.0d, with the maximal decrease for ceftriaxone from 18.7d in the dark to 4.1d under the light exposure. Effects of dissolved organic matter (DOM) and nitrate on photodegradation of the cephalosporins were compound-specific. While DOM (5 mg L(-1)) stimulated the photodegradation of only cefradine (by 9%) and cefepime (by 34%), nitrate (10 microM) had effects only on cefepime (stimulation by 13%). Elimination rates of the cephalosporins in oxic sediment (half-lives of 0.8-3.1d) were higher than in anoxic sediment (half-lives of 1.1-4.1d), mainly attributed to biodegradation. The data indicate that abiotic hydrolysis (for cefradine, cefuroxime, and cefepime) and direct photolysis (for ceftriaxone) were the primary processes for elimination of the cephalosporins in the surface water of the lake, whereas biodegradation was responsible for the elimination of the cephalosporins in the sediment. Further studies are needed on chemical structure, toxicity, and persistence of transformation products of the cephalosporins in the environment.

  8. Susceptibility to penicillin derivatives among third-generation cephalosporin-resistant Enterobacteriaceae recovered on hospital admission.

    PubMed

    Mischnik, Alexander; Baumert, Philipp; Hamprecht, Axel; Rohde, Anna; Peter, Silke; Feihl, Susanne; Knobloch, Johannes; Gölz, Hanna; Kola, Axel; Obermann, Birgit; Querbach, Christiane; Willmann, Matthias; Gebhardt, Friedemann; Tacconelli, Evelina; Gastmeier, Petra; Seifert, Harald; Kern, Winfried V

    2017-01-01

    As part of the multicenter Antibiotic Therapy Optimisation Study-the largest study on the prevalence of third-generation cephalosporin-resistant Enterobacteriaceae carriage upon hospital admission-minimum inhibitory concentration values were generated for ampicillin/sulbactam, amoxicillin/clavulanic acid, piperacillin/tazobactam, mecillinam, mecillinam/clavulanic acid, and temocillin against third-generation cephalosporin-resistant Escherichia coli, Klebsiella species and Enterobacter species.

  9. Cefuroxime, a New Cephalosporin Antibiotic: Activity In Vitro

    PubMed Central

    O'Callaghan, Cynthia H.; Sykes, R. B.; Griffiths, A.; Thornton, J. E.

    1976-01-01

    Cefuroxime is a new broad-spectrum cephalosporin antibiotic with increased stability to β-lactamases. This stability, although no absolute in all cases, has the effect of widening the antibacterial spectrum of the compound so that many organisms resistant to the established cephalosporins are susceptible to cefuroxime. It is active against gram-positive organisms, including penicillinase-producing staphylococci, but it is less active against methicillin-resistant strains. In addition to its high activity against non-β-lactamase-producing gram-negative bacteria, cefuroxime effectively inhibits the growth of many β-lactamase-producing strains, including Enterobacter, Klebsiella, and indole-positive Proteus spp. It is highly active against Neisseria gonorrhoeae, Neisseria meningitidis, and also Haemophilus influenzae, including ampicillin-resistant strains. Cefuroxime is rapidly bactericidal and induces the formation and subsequent lysis of filamentous forms over a small concentration range. PMID:1259407

  10. Increasing use of third-generation cephalosporins for pneumonia in the emergency department: may some prescriptions be avoided?

    PubMed

    Goffinet, N; Lecadet, N; Cousin, M; Peron, C; Hardouin, J-B; Batard, E; Montassier, E

    2014-07-01

    Third-generation cephalosporins are used to treat inpatients with community-acquired pneumonia. Some of these prescriptions may be avoided, i.e. replaced by agents less likely to promote ESBL-mediated resistance. Our objectives were to assess the recent trend of third-generation cephalosporins use for pneumonia in the emergency department, and the proportion of avoidable prescriptions. This was a retrospective study of patients treated for community-acquired pneumonia in an emergency department, and subsequently hospitalized in non ICU wards. Third-generation cephalosporin prescriptions were presumed unavoidable if they met both criteria: (i) age ≥ 65 yr or comorbid condition, and (ii) allergy or intolerance to penicillin, or failure of penicillin first-line therapy, or treatment with penicillin in three previous months. Prescriptions were otherwise deemed avoidable. The proportion of patients treated with a third generation cephalosporin increased significantly from 13.9 % (6.9-24.1 %) in 2002 to 29.5 % (18.5-42.6 %) in 2012 (OR = 1.07 [1.01-1.14] , P = 0.02). This increase was independent from other factors associated with the prescription of a third-generation cephalosporin (immunocompromising condition, antibacterial therapy in three previous months, fluid resuscitation and REA-ICU class). Treatment with third-generation cephalosporin was avoidable in 118 out of 147 patients (80.3 % [72.7-86.2 %]). On day 7 after admission in the ED, treatment with third-generation cephalosporins was stopped or de-escalated in, respectively, 17 % and 32 % of patients. Antibiotic stewardship programs should be implemented to restrict the third-generation cephalosporins use for pneumonia in the emergency department.

  11. Determination of acid dissociation constants (pKa) of cephalosporin antibiotics: Computational and experimental approaches.

    PubMed

    Ribeiro, Alyson R; Schmidt, Torsten C

    2017-02-01

    Cefapirin (CEPA) and ceftiofur (CEF) are two examples of widely used veterinarian cephalosporins presenting multiple ionization centers. However, the acid dissociation constants (pKa) of CEF are missing and experimental data about CEPA are rare. The same is true for many cephalosporins, where available data are either incomplete or even wrong. Environmentally relevant biotic and abiotic processes depend primordially on the antibiotic pH-dependent speciation. Consequently, this physicochemical parameter should be reliable, including the correct ionization center identification. In this direction, two experimental techniques, potentiometry and spectrophotometry, along with two well-known pKa predictors, Marvin and ACD/Percepta, were used to study the macro dissociation constants of CEPA and CEF. Additionally, the experimental dissociation constants of 14 cephalosporins available in the literature were revised, compiled and compared with data obtained in silico. Only one value was determined experimentally for CEF (2.68 ± 0.05), which was associated to the carboxylic acid group deprotonation. For CEPA two values were obtained experimentally: 2.74 ± 0.01 for the carboxylic acid deprotonation and 5.13 ± 0.01 for the pyridinium ring deprotonation. In general, experimentally obtained values agree with the in silico predicted data (ACD/Percepta RMSE: 0.552 and Marvin RMSE: 0.706, n = 88). However, for cephalosporins having imine and aminothiazole groups structurally close, Marvin presented problems in pKa predictions. For the biological and environmental fate and effect discussion, it is important to recognize that CEPA and CEF, as well as many other cephalosporins, are present as anionic species in the biologic and environmentally relevant pH values of 6-7.5.

  12. PBP 4 Mediates High-Level Resistance to New-Generation Cephalosporins in Staphylococcus aureus

    PubMed Central

    Chan, Liana C.; Gilbert, Aubre; Basuino, Li; da Costa, Thaina M.; Hamilton, Stephanie M.; dos Santos, Katia R.; Chambers, Henry F.

    2016-01-01

    Staphylococcus aureus is an important cause of both hospital- and community-associated methicillin-resistant S. aureus (MRSA) infections worldwide. β-Lactam antibiotics are the drugs of choice to treat S. aureus infections, but resistance to these and other antibiotics make treatment problematic. High-level β-lactam resistance of S. aureus has always been attributed to the horizontally acquired penicillin binding protein 2a (PBP 2a) encoded by the mecA gene. Here, we show that S. aureus can also express high-level resistance to β-lactams, including new-generation broad-spectrum cephalosporins that are active against methicillin-resistant strains, through an uncanonical core genome-encoded penicillin binding protein, PBP 4, a nonessential enzyme previously considered not to be important for staphylococcal β-lactam resistance. Our results show that PBP 4 can mediate high-level resistance to β-lactams. PMID:27067335

  13. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity.

    PubMed

    Wang, Xiao-Huan; Lin, Angela Yu-Chen

    2012-11-20

    Photodegradation may be the most important elimination process for cephalosporin antibiotics in surface water. Cefazolin (CFZ) and cephapirin (CFP) underwent mainly direct photolysis (t(1/2) = 0.7, 3.9 h), while cephalexin (CFX) and cephradine (CFD) were mainly transformed by indirect photolysis, which during the process a bicarbonate-enhanced nitrate system contributed most to the loss rate of CFX, CFD, and cefotaxime (CTX) (t(1/2) = 4.5, 5.3, and 1.3 h, respectively). Laboratory data suggested that bicarbonate enhanced the phototransformation of CFD and CFX in natural water environments. When used together, NO(3)(-), HCO(3)(-), and DOM closely simulated the photolysis behavior in the Jingmei River and were the strongest determinants in the fate of cephalosporins. TOC and byproducts were investigated and identified. Direct photolysis led to decarboxylation of CFD, CFX, and CFP. Transformation only (no mineralization) of all cephalosporins was observed through direct photolysis; byproducts were found to be even less photolabile and more toxic (via the Microtox test). CFZ exhibited the strongest acute toxicity after just a few hours, which may be largely attributed to its 5-methyl-1,3,4-thiadiazole-2-thiol moiety. Many pharmaceuticals were previously known to undergo direct sunlight photolysis and transformation in surface waters; however, the synergistic increase in toxicity caused by this cocktail (via pharmaceutical photobyproducts) cannot be ignored and warrants future research attention.

  14. [Piperacillin/tazobactam--Tazocin. A penicillin-based alternative to 3rd generation cephalosporins and carbapenems].

    PubMed

    Schønning, Kristian; Tvede, Michael

    2002-05-13

    The antibiotic piperacillin/tazobactam has recently been licensed for use in Denmark. Piperacillin/tazobactam combines a well known beta-lactam antibiotitic, piperacillin, and an inhibitor of bacterial beta-lactamase, tazobactam. The combination of piperacillin and tazobactam compared to piperacillin alone has an expanded antimicrobial spectrum, which includes Klebsiellae, Escherichia coli, and Proteus vulgaris resistant to ampicillin, as well as beta-lactamase-producing Staphylococcus aureus. As piperacillin in itself possesses antimicrobial activity against streptococci, enterococci, and Pseudomonas aeruginosa, the antimicrobial activity of piperacillin/tazobactam indicates that the combination may constitute an alternative to third generation cephalosporins and carbapenems in the treatment of complicated intra-abdominal infections infections in critically ill patients and for the empirical treatment of acute neutropenic febrile patients, as indicated by clinical studies.

  15. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae.

    PubMed

    Guo, Wan-Qian; Zheng, He-Shan; Li, Shuo; Du, Juan-Shan; Feng, Xiao-Chi; Yin, Ren-Li; Wu, Qing-Lian; Ren, Nan-Qi; Chang, Jo-Shu

    2016-12-01

    The aim of this study is to evaluate the feasibility of using lipid-accumulating microalgae to remove cephalosporin antibiotics 7-amino cephalosporanic acid (7-ACA) from wastewater with the additional benefit of biofuels production. Three isolated microalgal strains (namely, Chlorella sp. Cha-01, Chlamydomonas sp. Tai-03 and Mychonastes sp. YL-02) were cultivated under 7-ACA stress and their biomass productivity, lipid production and N-NO3(-) consumption were monitored. It was found that 7-ACA had slight inhibition effects on the microalgal growth at the ratio of 12.0% (Cha-01), 9.6% (YL-02), 11.7% (Tai-03). However, lipid accumulation in the three microalgae was not influenced by the presence of 7-ACA. The investigation on the 7-ACA removal mechanisms during microalgal growth shows that 7-ACA was mainly removed by microalgae adsorption as well as hydrolysis and photolysis reactions. This study demonstrates that using microalgae to treat antibiotic-containing wastewater is promising due to the potential of simultaneous antibiotic removal and biofuel production.

  16. Third generation cephalosporins in the parenteral to oral switch.

    PubMed

    Rimmer, D

    1994-01-01

    In the present economic climate, it is increasingly necessary to ensure the cost-effectiveness of all aspects of healthcare. The expenditure on medications in a hospital is largely determined by the workload and throughput, but efforts to rationalise the use of medications will result in benefits both in patient care and overall costs. The purpose of this report is to discuss the advantages of switching from parenteral to oral cephalosporin therapy after the initial stage of infection treatment, the potential of presently available oral cephalosporins for use in a parenteral-to-oral switch regimen, and the outcome of a parenteral-to-oral switch programme, which used parenteral cefotaxime and oral cefixime, implemented at Hillingdon Hospital.

  17. [Solid-state stability and preformulation study of a new parenteral cephalosporin antibiotics (E1040)].

    PubMed

    Ashizawa, K; Uchikawa, K; Hattori, T; Ishibashi, Y; Miyake, Y; Sato, T

    1990-03-01

    In designing the dosage form, one major factor controlling their physicochemical properties is solid forms of the drug powder. The method for improving the physicochemical stability of unstable beta-lactam antibiotics is very important. E1040 is a novel parenteral 3-betaine type cephalosporin which has a broad antibacterial spectrum and potent activities against Citrobacter, freundii, Enterobacter cloacase, and glucose-non-fermentative bacteria, including P. aeruginosa. The present study was intended to provide the solid-state chemical stability of perenteral steril dry dosage form of E1040. The chemical stability differences among the various solid forms, dry amorphous, additive freeze dried amorphous solid and crystalline powder, were evaluated as a function of temperature by thermo stress tests. Freeze dried anhydrous amorphous form was the first steril dry dosage form investigated during the preformulation study. However, this compound is chemically unstable, in the titer of them, reduction are observed in the freeze dried amorphous solid. In order to select the most suitable solid form of E1040, two methods were used. One was crystalline solid and the other was NaCl additive freeze-dried formulation. Through our experiments, the solid-state chemical stabilization can be achieved by these two methods (effect of crystal structure and effect of NaCl additive).

  18. Kirby-Bauer disc approximation to detect inducible third-generation cephalosporin resistance in Enterobacteriaceae.

    PubMed

    Qin, Xuan; Weissman, Scott J; Chesnut, Mary Frances; Zhang, Bei; Shen, Lisong

    2004-07-15

    Resistance to beta-lactam antibiotics in enteric Gram-negative bacilli may be difficult to detect using standard methods of either Kirby-Bauer disc diffusion (KBDD) or broth dilution for minimal inhibitory concentration (MIC). This difficulty is due to genetic differences in resistance determinants, differences in levels of gene expression, and variation in spectra of enzymatic activity against the substrate beta-lactams used for susceptibility testing. We have examined 95 clinical isolates reportedly susceptible to ceftazidime and ceftriaxone, as originally determined by either KBDD or MIC methods. The organisms studied here were isolated in 2002 from two pediatric hospital centers (Seattle, USA and Shanghai, China). They belong to the inducible beta-lactamase producing Gram-negative bacilli, such as Enterobacter spp., Citrobacter spp., Serratia spp., Morganella spp., Providencia spp., and Proteus vulgaris. A Kirby-Bauer disc approximation (KBDA) method identified inducible phenotypes of third-generation cephalosporin resistance in 76% of isolates, which would otherwise be considered susceptible by standard KBDD methods.

  19. Long-term outbreak of Klebsiella pneumoniae & third generation cephalosporin use in a neonatal intensive care unit in north India

    PubMed Central

    Banerjee, Tuhina; Bhattacharjee, Amitabha; Upadhyay, Supriya; Mishra, Shweta; Tiwari, Karuna; Anupurba, Shampa; Sen, Malay Ranjan; Basu, Sriparna; Kumar, Ashok

    2016-01-01

    Background & objectives: The indiscriminate use of third generation cephalosporin has contributed to the emergence and widespread dissemination of extended spectrum β lactamases (ESBL) genes in Klebsiella pneumoniae. This study was undertaken to elaborate the genetic behaviour of ESBL - producing K. pneumoniae isolates in the neonatal intensive care unit (NICU) of a tertiary care hospital in north India causing successive outbreaks in context with empirical third generation cephalosporin use. Methods: Isolates of K. pneumoniae (43 from blood, 3 from pus and endotracheal tube, 4 from environment) causing successive outbreaks in the NICU of a tertiary care university hospital were studied for two years. Antimicrobial susceptibility testing was done by disc diffusion and minimum inhibitory concentration (MIC) determination by agar dilution methods. ESBL production was determined by phenotypic and genotypic methods. Clonal relatedness among the isolates was studied by enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). Genetic environment of these isolates was assessed by the presence of integrons and gene cassettes. Transformation experiments were done, and plasmids of these isolates were characterized by stability testing and incompatibility testing. Subsequently, a change in the ongoing antibiotic policy was adopted, and corresponding changes in the behaviour of these isolates studied. Results: During the period from August 2011 to January 2013, 46 isolates of monoclonal ESBL K. pneumoniae were obtained from different neonates and four similar environmental isolates were studied. Multidrug-resistant ESBL isolates harboured both blaCTXM-15 and blaSHV-5. The dfr and aac-6’ resistant genes were found in gene cassettes. A 50 kb plasmid belonging to IncFIIA group was detected in all the isolates which was transferable and stable. The emergence and regression of the outbreaks coincided with antibiotic usage in the NICU, with widespread

  20. Biosynthesis of Cephalosporin C

    PubMed Central

    Ott, J. L.; Godzeski, C. W.; Pavey, D.; Farran, J. D.; Horton, D. R.

    1962-01-01

    A series of complex and synthetic media have been developed that are suitable for the production of cephalosporin C and cephalosporin N by a mutant strain of Cephalosporium (C.M.I. 49,137). dl-Methionine increased the yield of both antibiotics, with more effect on cephalosporin N. l-Cystine had a greater enhancing effect on formation of cephalosporin C than on formation of cephalosporin N in synthetic media; serine increased yields of cephalosporin C under certain conditions. Disaccharides or polysaccharides appeared to be the best source for carbohydrates. No evidence was found for precursor action such as is found in penicillin fermentations. The ability of resting cells to produce antibiotic was demonstrated. PMID:16349624

  1. Voltammetric analysis of Cu (II), Cd (II) and Zn (II) complexes and their cyclic voltammetry with several cephalosporin antibiotics.

    PubMed

    Abo El-Maali, N; Osman, A H; Aly, A A M; Al-Hazmi, G A A

    2005-02-01

    Both osteryoung square wave voltammetry and cyclic voltammetry have been utilized to elucidate and confirm the possible complexation reaction that occur between the various cephalosporin antibiotics and either the toxic, non-essential metal ion, viz. Cd (II), or the essential but toxic (when their concentration exceeds certain level in serum) metal ions, viz. Cu (II) and Zn (II). Voltammetric measurements indicated the existence of 1:1 metal-to-ligand ratio (as in cephalexin and cephapirin complexes), 1:2 ratio (such as in cefamandole, cefuroxime and cefotaxime complexes) and 2:1 ratio in case of ceftazidime complexes. Adsorption behavior was evidenced for Cu (II)-cefuroxime or ceftazidime complexes as well as for those for Zn (II)-cephalexin or cephapirin. This phenomenon could be used for the determination of either the antibiotic or the metal ion using adsorptive stripping voltammetry. Detection limits down to 7x10(-10) M have been easily achieved.

  2. A recent evaluation of empirical cephalosporin treatment and antibiotic resistance of changing bacterial profiles in spontaneous bacterial peritonitis.

    PubMed

    Yakar, Tolga; Güçlü, Mustafa; Serin, Ender; Alişkan, Hikmet; Husamettin, Erdamar

    2010-04-01

    The aim of this research is to evaluate the recent changes in microorganisms causing spontaneous bacterial peritonitis in cirrhotic patients, antibiotic resistance, and response to empirical cephalosporin therapy. A total of 218 patients with ascites secondary to cirrhosis were enrolled. Parenteral cefotaxime or cefepime was given to patients who had a neutrophil count of 250/mm(3) or more or a positive bacterial culture of ascitic fluid. Antibiotic failure was defined by an absence of clinical improvement and an insufficient decrease in neutrophil count of ascites (<25% of initial value) by the third day of therapy. Of all the patients, 44.6% had culture-negative neutrocytic ascites, 24.8% had spontaneous bacterial peritonitis, and 10.1% had monomicrobial nonneutrocytic bacterascites. Growth in culture was observed in 76 patients (34.9%). The two most common isolated bacteria were Escherichia coli (33.8%) and coagulase-negative Staphylococcus (CoNS; 19.7%). The two cephalosporins were effective against E. coli (82%) and but not against CoNS (44%), while levofloxacin showed reasonable activity against both E. coli (71%) and CoNS (90%) in vitro. We confirmed a recent increased incidence of spontaneous bacterial peritonitis caused by Gram-positive bacteria. Levofloxacin seems to be a good alternative treatment for patients with uncomplicated spontaneous ascites infections.

  3. ESBL Detection: Comparison of a Commercially Available Chromogenic Test for Third Generation Cephalosporine Resistance and Automated Susceptibility Testing in Enterobactericeae

    PubMed Central

    El-Jade, Mohamed Ramadan; Parcina, Marijo; Schmithausen, Ricarda Maria; Stein, Christoph; Meilaender, Alina; Hoerauf, Achim; Molitor, Ernst

    2016-01-01

    Rapid detection and reporting of third generation cephalosporine resistance (3GC-R) and of extended spectrum betalactamases in Enterobacteriaceae (ESBL-E) is a diagnostic and therapeutic priority to avoid inefficacy of the initial antibiotic regimen. In this study we evaluated a commercially available chromogenic screen for 3GC-R as a predictive and/or confirmatory test for ESBL and AmpC activity in clinical and veterinary Enterobacteriaceae isolates. The test was highly reliable in the prediction of cefotaxime and cefpodoxime resistance, but there was no correlation with ceftazidime and piperacillin/tazobactam minimal inhibitory concentrations. All human and porcine ESBL-E tested were detected with exception of one genetically positive but phenotypically negative isolate. By contrast, AmpC detection rates lay below 30%. Notably, exclusion of piperacillin/tazobactam resistant, 3GC susceptible K1+ Klebsiella isolates increased the sensitivity and specificity of the test for ESBL detection. Our data further imply that in regions with low prevalence of AmpC and K1 positive E. coli strains chromogenic testing for 3GC-R can substitute for more time consuming ESBL confirmative testing in E. coli isolates tested positive by Phoenix or VITEK2 ESBL screen. We, therefore, suggest a diagnostic algorithm that distinguishes 3GC-R screening from primary culture and species-dependent confirmatory ESBL testing by βLACTATM and discuss the implications of MIC distribution results on the choice of antibiotic regimen. PMID:27494134

  4. ESBL Detection: Comparison of a Commercially Available Chromogenic Test for Third Generation Cephalosporine Resistance and Automated Susceptibility Testing in Enterobactericeae.

    PubMed

    El-Jade, Mohamed Ramadan; Parcina, Marijo; Schmithausen, Ricarda Maria; Stein, Christoph; Meilaender, Alina; Hoerauf, Achim; Molitor, Ernst; Bekeredjian-Ding, Isabelle

    2016-01-01

    Rapid detection and reporting of third generation cephalosporine resistance (3GC-R) and of extended spectrum betalactamases in Enterobacteriaceae (ESBL-E) is a diagnostic and therapeutic priority to avoid inefficacy of the initial antibiotic regimen. In this study we evaluated a commercially available chromogenic screen for 3GC-R as a predictive and/or confirmatory test for ESBL and AmpC activity in clinical and veterinary Enterobacteriaceae isolates. The test was highly reliable in the prediction of cefotaxime and cefpodoxime resistance, but there was no correlation with ceftazidime and piperacillin/tazobactam minimal inhibitory concentrations. All human and porcine ESBL-E tested were detected with exception of one genetically positive but phenotypically negative isolate. By contrast, AmpC detection rates lay below 30%. Notably, exclusion of piperacillin/tazobactam resistant, 3GC susceptible K1+ Klebsiella isolates increased the sensitivity and specificity of the test for ESBL detection. Our data further imply that in regions with low prevalence of AmpC and K1 positive E. coli strains chromogenic testing for 3GC-R can substitute for more time consuming ESBL confirmative testing in E. coli isolates tested positive by Phoenix or VITEK2 ESBL screen. We, therefore, suggest a diagnostic algorithm that distinguishes 3GC-R screening from primary culture and species-dependent confirmatory ESBL testing by βLACTATM and discuss the implications of MIC distribution results on the choice of antibiotic regimen.

  5. Infective endocarditis due to Enterobacter cloacae resistant to third- and fourth-generation cephalosporins.

    PubMed

    Yoshino, Yusuke; Okugawa, Shu; Kimura, Satoshi; Makita, Eiko; Seo, Kazunori; Koga, Ichiro; Matsunaga, Naohisa; Kitazawa, Takatoshi; Ota, Yasuo

    2015-04-01

    We report the case of using a long-term combination of meropenem and amikacin to treat infective endocarditis caused by Enterobacter cloacae resistant to third- and fourth-generation cephalosporins. Multi-drug resistant Gram-negative bacilli, such as the E. cloacae in our study, may become possible pathogens of infective endocarditis. Our experience with this case indicates that long-term use of a combination of β-lactam and aminoglycosides might represent a suitable management option for future infective endocarditis cases due to non-Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, Kingella spp. (HACEK group) Gram-negative bacilli such as ours.

  6. Increased structural flexibility at the active site of a fluorophore-conjugated beta-lactamase distinctively impacts its binding toward diverse cephalosporin antibiotics.

    PubMed

    Wong, Wai-Ting; Chan, Kwok-Chu; So, Pui-Kin; Yap, Hong-Kin; Chung, Wai-Hong; Leung, Yun-Chung; Wong, Kwok-Yin; Zhao, Yanxiang

    2011-09-09

    The Ω-loop at the active site of β-lactamases exerts significant impact on the kinetics and substrate profile of these enzymes by forming part of the substrate binding site and posing as steric hindrance toward bulky substrates. Mutating certain residues on the Ω-loop has been a general strategy for molecular evolution of β-lactamases to expand their hydrolytic activity toward extended-spectrum antibiotics through a mechanism believed to involve enhanced structural flexibility of the Ω-loop. Yet no structural information is available that demonstrates such flexibility or its relation to substrate profile and enzyme kinetics. Here we report an engineered β-lactamase that contains an environment-sensitive fluorophore conjugated near its active site to probe the structural dynamics of the Ω-loop and to detect the binding of diverse substrates. Our results show that this engineered β-lactamase has improved binding kinetics and positive fluorescence signal toward oxyimino-cephalosporins, but shows little such effect to non-oxyimino-cephalosporins. Structural studies reveal that the Ω-loop adopts a less stabilized structure, and readily undergoes conformational change to accommodate the binding of bulky oxyimino-cephalosporins while no such change is observed for non-oxyimino-cephalosporins. Mutational studies further confirm that this substrate-induced structural change is directly responsible for the positive fluorescence signal specific to oxyimino-cephalosporins. Our data provide mechanistic evidence to support the long-standing model that the evolutionary strategy of mutating the Ω-loop leads to increased structural flexibility of this region, which in turn facilitates the binding of extended spectrum β-lactam antibiotics. The oxyimino-cephalosporin-specific fluorescence profile of our engineered β-lactamase also demonstrates the possibility of designing substrate-selective biosensing systems.

  7. Diagnosis and management of immediate hypersensitivity reactions to cephalosporins.

    PubMed

    Dickson, Scott D; Salazar, Kimberly C

    2013-08-01

    Cephalosporins are one of the most commonly prescribed classes of antibiotics. Immediate IgE-mediated hypersensitivity reactions have been reported with use of a specific cephalosporin, as a cross-reaction between different cephalosporins or as a cross-reaction to other β-lactam antibiotics, namely, penicillin. Historically, frequent reports of anaphylaxis following administration of first- and second-generation cephalosporins to patients with a history of penicillin allergy led to the belief of a high degree of allergic cross-reactivity. More recent evidence reveals a significantly lower risk of cross-reactivity between penicillins and the newer-generation cephalosporins. The current thought is that a shared side chain, rather than the β-lactam ring structure, is the determining factor in immunologic cross-reactivity. Understanding the chemical structure of these agents has allowed us to identify the allergenic determinants for penicillin; however, the exact allergenic determinants of cephalosporins are less well understood. For this reason, standardized diagnostic skin testing is not available for cephalosporins as it is for penicillin. Nevertheless, skin testing to the cephalosporin in question, using a nonirritating concentration, provides additional information, which can further guide the work-up of a patient suspected of having an allergy to that drug. Together, the history and the skin test results can assist the allergist in the decision to recommend continued drug avoidance or to perform a graded challenge versus an induction of tolerance procedure.

  8. Role of cephalosporins in the era of Clostridium difficile infection

    PubMed Central

    Wilcox, Mark H.; Chalmers, James D.; Nord, Carl E.; Freeman, Jane; Bouza, Emilio

    2017-01-01

    The incidence of Clostridium difficile infection (CDI) in Europe has increased markedly since 2000. Previous meta-analyses have suggested a strong association between cephalosporin use and CDI, and many national programmes on CDI control have focused on reducing cephalosporin usage. Despite reductions in cephalosporin use, however, rates of CDI have continued to rise. This review examines the potential association of CDI with cephalosporins, and considers other factors that influence CDI risk. EUCLID (the EUropean, multicentre, prospective biannual point prevalence study of CLostridium difficile Infection in hospitalized patients with Diarrhoea) reported an increase in the annual incidence of CDI from 6.6 to 7.3 cases per 10 000 patient bed-days from 2011–12 to 2012–13, respectively. While CDI incidence and cephalosporin usage varied widely across countries studied, there was no clear association between overall cephalosporin prescribing (or the use of any particular cephalosporin) and CDI incidence. Moreover, variations in the pharmacokinetic and pharmacodynamic properties of cephalosporins of the same generation make categorization by generation insufficient for predicting impact on gut microbiota. A multitude of additional factors can affect the risk of CDI. Antibiotic choice is an important consideration; however, CDI risk is associated with a range of antibiotic classes. Prescription of multiple antibiotics and a long duration of treatment are key risk factors for CDI, and risk also differs across patient populations. We propose that all of these are factors that should be taken into account when selecting an antibiotic, rather than focusing on the exclusion of individual drug classes. PMID:27659735

  9. Role of cephalosporins in the era of Clostridium difficile infection.

    PubMed

    Wilcox, Mark H; Chalmers, James D; Nord, Carl E; Freeman, Jane; Bouza, Emilio

    2017-01-01

    The incidence of Clostridium difficile infection (CDI) in Europe has increased markedly since 2000. Previous meta-analyses have suggested a strong association between cephalosporin use and CDI, and many national programmes on CDI control have focused on reducing cephalosporin usage. Despite reductions in cephalosporin use, however, rates of CDI have continued to rise. This review examines the potential association of CDI with cephalosporins, and considers other factors that influence CDI risk. EUCLID (the EUropean, multicentre, prospective biannual point prevalence study of CLostridium difficile Infection in hospitalized patients with Diarrhoea) reported an increase in the annual incidence of CDI from 6.6 to 7.3 cases per 10 000 patient bed-days from 2011-12 to 2012-13, respectively. While CDI incidence and cephalosporin usage varied widely across countries studied, there was no clear association between overall cephalosporin prescribing (or the use of any particular cephalosporin) and CDI incidence. Moreover, variations in the pharmacokinetic and pharmacodynamic properties of cephalosporins of the same generation make categorization by generation insufficient for predicting impact on gut microbiota. A multitude of additional factors can affect the risk of CDI. Antibiotic choice is an important consideration; however, CDI risk is associated with a range of antibiotic classes. Prescription of multiple antibiotics and a long duration of treatment are key risk factors for CDI, and risk also differs across patient populations. We propose that all of these are factors that should be taken into account when selecting an antibiotic, rather than focusing on the exclusion of individual drug classes.

  10. Cefotetan: a second-generation cephalosporin active against anaerobic bacteria. Committee on Antimicrobial Agents, Canadian Infectious Disease Society.

    PubMed Central

    Gribble, M J

    1994-01-01

    OBJECTIVE: To offer guidelines for the use of cefotetan, a cephamycin antibiotic, in order to minimize its overprescription. OPTIONS: Clinical practice options considered were treatment of infections with the use of second- and third-generation cephalosporins, carbapenems such as imipenem as well as combination regimens of agents active against anaerobic bacteria, such as metronidazole or clindamycin with an aminoglycoside. OUTCOMES: In order of importance: efficacy, side effects and cost. EVIDENCE: A MEDLINE search of articles published between January 1982 and December 1993. In-vitro and pharmacokinetic studies published in recognized peer-reviewed journals that used recognized standard methods with appropriate controls were reviewed. For results of clinical trials, the reviewers emphasized randomized double-blind trials with appropriate controls. VALUES: The Antimicrobial Agents Committee of the Canadian Infectious Disease Society (CIDS) and a recognized expert (M.J.G.) recommended use of cefotetan to prevent and treat infections against which it has proved effective in randomized controlled trials. BENEFITS, HARMS AND COSTS: These guidelines should lead to less inappropriate prescribing of cefotetan, with its attendant costs and risk of development of resistant bacteria. RECOMMENDATIONS: Cefotetan could be considered an alternative single agent for prophylaxis of infection in patients undergoing elective bowel surgery. It may be used to treat patients with acute pelvic inflammatory disease and endometritis. VALIDATION: This article was prepared, reviewed and revised by the Committee on Antimicrobial Agents of the CIDS. It was then reviewed by the Council of the CIDS, and any further necessary revisions were made by the chairman of the committee. PMID:8069799

  11. Association of veterinary third-generation cephalosporin use with the risk of emergence of extended-spectrum-cephalosporin resistance in Escherichia coli from dairy cattle in Japan.

    PubMed

    Sato, Toyotaka; Okubo, Torahiko; Usui, Masaru; Yokota, Shin-Ichi; Izumiyama, Satoshi; Tamura, Yutaka

    2014-01-01

    The use of extended-spectrum cephalosporins in food animals has been suggested to increase the risk of spread of Enterobacteriaceae carrying extended-spectrum β-lactamases to humans. However, evidence that selection of extended-spectrum cephalosporin-resistant bacteria owing to the actual veterinary use of these drugs according to criteria established in cattle has not been demonstrated. In this study, we investigated the natural occurrence of cephalosporin-resistant Escherichia coli in dairy cattle following clinical application of ceftiofur. E. coli isolates were obtained from rectal samples of treated and untreated cattle (n = 20/group) cultured on deoxycholate-hydrogen sulfide-lactose agar in the presence or absence of ceftiofur. Eleven cefazoline-resistant isolates were obtained from two of the ceftiofur-treated cattle; no cefazoline-resistant isolates were found in untreated cattle. The cefazoline-resistant isolates had mutations in the chromosomal ampC promoter region and remained susceptible to ceftiofur. Eighteen extended-spectrum cephalosporin-resistant isolates from two ceftiofur-treated cows were obtained on ceftiofur-supplemented agar; no extended-spectrum cephalosporin-resistant isolates were obtained from untreated cattle. These extended-spectrum cephalosporin-resistant isolates possessed plasmid-mediated β-lactamase genes, including bla(CTX-M-2) (9 isolates), bla(CTX-M-14) (8 isolates), or bla(CMY-2) (1 isolate); isolates possessing bla(CTX-M-2) and bla(CTX-M-14) were clonally related. These genes were located on self-transmissible plasmids. Our results suggest that appropriate veterinary use of ceftiofur did not trigger growth extended-spectrum cephalosporin-resistant E. coli in the bovine rectal flora; however, ceftiofur selection in vitro suggested that additional ceftiofur exposure enhanced selection for specific extended-spectrum cephalosporin-resistant β-lactamase-expressing E. coli clones.

  12. Assessment of human exposure to 3rd generation cephalosporin resistant E. coli (CREC) through consumption of broiler meat in Belgium.

    PubMed

    Depoorter, P; Persoons, D; Uyttendaele, M; Butaye, P; De Zutter, L; Dierick, K; Herman, L; Imberechts, H; Van Huffel, X; Dewulf, J

    2012-09-17

    Acquired resistance of Escherichia coli to 3rd generation cephalosporin antimicrobials is a relevant issue in intensive broiler farming. In Belgium, about 35% of the E. coli strains isolated from live broilers are resistant to 3rd generation cephalosporins while over 60% of the broilers are found to be carrier of these 3rd generation cephalosporin resistant E. coli (CREC) after selective isolation. A model aimed at estimating the exposure of the consumer to CREC by consumption of broiler meat was elaborated. This model consists of different modules that simulate the farm to fork chain starting from primary production, over slaughter, processing and distribution to storage, preparation and consumption of broiler meat. Input data were obtained from the Belgian Food Safety agencies' annual monitoring plan and results from dedicated research programs or surveys. The outcome of the model using the available baseline data estimates that the probability of exposure to 1000 colony forming units (cfu) of CREC or more during consumption of a meal containing chicken meat is ca. 1.5%, the majority of exposure being caused by cross contamination in the kitchen. The proportion of CREC (within the total number of E. coli) at primary production and the overall contamination of broiler carcasses or broiler parts with E. coli are dominant factors in the consumer exposure to CREC. The risk of this exposure for human health cannot be estimated at this stage given a lack of understanding of the factors influencing the transfer of cephalosporin antimicrobial resistance genes from these E. coli to the human intestinal bacteria and data on the further consequences of the presence of CREC on human health.

  13. Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.

    PubMed

    Baeza, A N; Urraca, J L; Chamorro, R; Orellana, G; Castellari, M; Moreno-Bondi, M C

    2016-11-25

    This work reports the preparation of molecularly imprinted polymers (MIPs) selective to cephalosporin (CF) antibiotics, and their application as molecularly imprinted solid-phase extraction (MISPE) sorbents for the determination of these antimicrobials in milk samples. Several functional monomers and cross-linkers have been screened to select the best combination that provides high selectivity for the simultaneous multiresidue extraction of cefthiofur (THIO), cefazolin (AZO), cefquinome (QUI), cephapirin (API), cephalexin (ALE) and cephalonium (ALO) from the samples. The novel MIPs were prepared by a non-covalent imprinting approach in the form of spherical microparticles using the synthetic surrogate molecule sodium 7-(2-biphenylylcarboxamido)-3-methyl-3-cepheme-4-carboxylate, N-3,5-bis(trifluoromethyl)phenyl-N'-4-vinylphenyl urea (VPU) as functional monomer, and divinylbenzene (DVB) as crosslinking agent in a 1:2:20 molar ratio. The optimized MISPE method allowed the extraction of the target antimicrobials from raw cow milk samples using a selective washing with 5mL methanol/2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) buffer (0.1M, pH 7.5) (2:98, v/v) to remove the non-specifically retained compounds, followed by elution with 1mL of trifluoroacetic acid (TFA) in methanol (0.1:99.9, v/v). The extracts have been analysed by UHPLC-MS/MS and the analytical method has been validated according to EU guideline 2002/657/EC. The limits of quantification (S/N=10) were in the 1.7-12.5μgkg(-1) range, well below the maximum residue limits (MRLs) currently established for the quantified cephalosporins in milk samples. The developed MIP allows mutiresidual determination of the six cephalosporin antibiotics mentioned above, significantly broadening the application to food analysis of MISPE methods.

  14. Selection of broad-spectrum cephalosporin-resistant Escherichia coli in the feces of healthy dogs after administration of first-generation cephalosporins.

    PubMed

    Kimura, Ayako; Yossapol, Montira; Shibata, Sanae; Asai, Tetsuo

    2017-01-01

    Although antimicrobial products are essential for treating diseases caused by bacteria, antimicrobial treatment selects for antimicrobial-resistant (AMR) bacteria. The aim of this study was to determine the effects of administration of first-generation cephalosporins on development of resistant Escherichia coli in dog feces. The proportions of cephalexin (LEX)-resistant E. coli in fecal samples of three healthy dogs treated i.v. with cefazolin before castration and then orally with LEX for 3 days post-operation (PO) were examined using DHL agar with or without LEX (50 µg/mL). LEX-resistant E. coli were found within 3 days PO, accounted for 100% of all identified E. coli 3-5 days PO in all dogs, and were predominantly found until 12 days PO. LEX-resistant E. coli isolates on DHL agar containing LEX were subjected to antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE) genotyping, β-lactamase typing and plasmid profiling. All isolates tested exhibited cefotaxime (CTX) resistance (CTX minimal inhibitory concentration ≥4 µg/mL). Seven PFGE profiles were classified into five groups and three β-lactamase combinations (blaCMY-4 -blaTEM-1 , blaTEM-1 -blaCTX-M-15 and blaTEM-1 -blaCTX-M-15 -blaCMY-4 ). All isolates exhibited identical PFGE profiles in all dogs on four days PO and subsequently showed divergent PFGE profiles. Our results indicate there are two selection periods for AMR bacteria resulting from the use of antimicrobials. Thus, continuing hygiene practices are necessary to prevent AMR bacteria transfer via dog feces after antimicrobial administration.

  15. Extended Spectrum Beta Lactamase producing Cephalosporin resistant Salmonella Typhi, reported from Rawalpindi, Pakistan.

    PubMed

    Munir, Tehmina; Lodhi, Munir; Ansari, Jawad Khaliq; Andleeb, Saadia; Ahmed, Mushtaq

    2016-08-01

    Typhoid is endemic in many parts of southeast Asia. Due to the resistance of the organism to first line of antibiotics (ampicillin, chloramphenicol, cotrimoxazole) as well as to fluoroquinolones, third generation cephalosporins have been in use for the empiric treatment of typhoid for years. However an increasing incidence of Salmonella Typhi is being reported sporadically from various regions. We report a case of typhoid due to Salmonella Typhi which was non-responsive to treatment with a cephalosporin, was found to be multidrug resistant and resistant to ciprofloxacin and third generation cephalosporin as well. The patient was finally treated successfully with intravenous administration of a carbapenem.

  16. Evaluation of the βLacta test, a rapid test detecting resistance to third-generation cephalosporins in clinical strains of Enterobacteriaceae.

    PubMed

    Renvoisé, Aurélie; Decré, Dominique; Amarsy-Guerle, Rishma; Huang, Te-Din; Jost, Christelle; Podglajen, Isabelle; Raskine, Laurent; Genel, Nathalie; Bogaerts, Pierre; Jarlier, Vincent; Arlet, Guillaume

    2013-12-01

    For decades, third-generation cephalosporins (3GC) have been major drugs used to treat infections due to Enterobacteriaceae; growing resistance to these antibiotics makes the rapid detection of such resistance important. The βLacta test is a chromogenic test developed for detecting 3GC-resistant isolates from cultures on solid media within 15 min. A multicenter prospective study conducted in 5 French and Belgian hospitals evaluated the performance of this test on clinical isolates. Based on antibiotic susceptibility testing, strains resistant or intermediate to cefotaxime or ceftazidime were classified as 3GC resistant, and molecular characterization of this resistance was performed. The rates of 3GC resistance were 13.9% (332/2,387) globally, 9.4% in Escherichia coli (132/1,403), 25.6% in Klebsiella pneumoniae (84/328), 30.3% in species naturally producing inducible AmpC beta-lactamases (109/360), and 5.6% in Klebsiella oxytoca and Citrobacter koseri (7/124). The sensitivities and specificities of the βLacta test were, respectively, 87.7% and 99.6% overall, 96% and 100% for E. coli and K. pneumoniae, and 67.4% and 99.6% for species naturally producing inducible AmpC beta-lactamase. False-negative results were mainly related to 3GC-resistant strains producing AmpC beta-lactamase. Interestingly, the test was positive for all 3GC-resistant extended-spectrum beta-lactamase-producing isolates (n = 241). The positive predictive value was 97% and remained at ≥96% for prevalences of 3GC resistance ranging between 10 and 30%. The negative predictive values were 99% for E. coli and K. pneumoniae and 89% for the species producing inducible AmpC beta-lactamase. In conclusion, the βLacta test was found to be easy to use and efficient for the prediction of resistance to third-generation cephalosporins, particularly in extended-spectrum beta-lactamase-producing strains.

  17. Characterization and activity of cephalosporin metal complexes.

    PubMed

    Auda, S H; Mrestani, Y; Fetouh, M I; Neubert, R H H

    2008-08-01

    Semi-synthetic cephalosporin antibiotics have structures similar to that of penicillins, and both groups of compounds are characterized by similar properties and determined by the same methods. Most antibiotics, including cephalosporins and their decomposition products, contain electron donor groups that can bind naturally occurring metal ions in vivo. Cephalosporin antibiotics exhibit a change in their toxicological properties and biological performance when they were tested as metal complexes. The proposed reason for such a behavior is the capability of chelate binding of the cephalosporins to the metals. In an attempt to understand the coordination mode of metals with cephalosporins, different spectroscopic techniques such as IR, UV-visible, NMR spectroscopy and voltammetric measurements were carried out to elucidate the structure of the metal-cephalosporin complexes. Synthesis, characterization and biological screening of the cephalosporins and of the cephalosporin-metal complexes are discussed in this review. However, little information is available on the influence of the metal ions on the pharmacokinetics of the cephalosporin derivatives.

  18. Fluoroquinolone and Third-Generation-Cephalosporin Resistance among Hospitalized Patients with Urinary Tract Infections Due to Escherichia coli: Do Rates Vary by Hospital Characteristics and Geographic Region?

    PubMed Central

    Bidell, Monique R.; Palchak, Melissa; Mohr, John

    2016-01-01

    This analysis of nearly 10,000 hospital-associated urinary tract infection (UTI) episodes due to Escherichia coli showed that fluoroquinolone and third-generation-cephalosporin resistance rates were 34.5% and 8.6%, respectively; the rate of concurrent resistance to both agents was 7.3%. Fluoroquinolone resistance rates exceeded 25% regardless of geographic location or hospital characteristics. The findings suggest that fluoroquinolones should be reserved and third-generation cephalosporins be used with caution as empirical agents for hospitalized patients with UTIs due to E. coli. PMID:26926640

  19. Radiosterilization of fluoroquinolones and cephalosporins: assessment of radiation damage on antibiotics by changes in optical property and colorimetric parameters.

    PubMed

    Singh, Babita; Parwate, D V; Shukla, S K

    2009-01-01

    A most common problem encountered in radiosterilization of solid drugs is discoloration or yellowing. By pharmacopoeia method, discoloration can be assessed by measuring absorbance of solutions of irradiated solid samples at 450 nm. We propose to evaluate discoloration of solid samples directly by recording their diffuse reflectance spectra. Further, the reflectance spectrum is used to compute various color parameters: CIE XYZ tristimulus value, CIE Lab, DeltaE*(ab) (color difference), yellowness index (YI), dominant wavelength, and excitation purity by CIE method. The investigation of difference reflectance spectra and color parameters revealed that for fluoroquinolones, e-beam was more damaging than gamma radiation, whereas for cephalosporins, trend was reversed. The quantum of discoloration with gamma radiation and e-beam is found to be nearly equal when assessed by pharmacopeia method, and it is therefore inadequate to assess small color differences. The color parameters DeltaE*(ab) and DeltaYI are found to be reliable indicators of discoloration. The tolerance limits proposed in terms of DeltaE*(ab) and DeltaYI are +/-2 and +/-10 U, respectively. The dominant wavelength for all compounds has shifted to higher values indicating change in hue but defining color tolerance limit with this parameter requires adjunct excitation purity value.

  20. Comparison of resistance to third-generation cephalosporins in Shigella between Europe-America and Asia-Africa from 1998 to 2012.

    PubMed

    Gu, B; Zhou, M; Ke, X; Pan, S; Cao, Y; Huang, Y; Zhuang, L; Liu, G; Tong, M

    2015-10-01

    We conducted a systematic review to compare resistance to third-generation cephalosporins (TGCs) in Shigella strains between Europe-America and Asia-Africa from 1998 to 2012 based on a literature search of computerized databases. In Asia-Africa, the prevalence of resistance of total and different subtypes to ceftriaxone, cefotaxime and ceftazidime increased markedly, with a total prevalence of resistance up to 14·2% [95% confidence interval (CI) 3·9-29·4], 22·6% (95% CI 4·8-48·6) and 6·2% (95% CI 3·8-9·1) during 2010-2012, respectively. By contrast, resistance rates to these TGCs in Europe-America remained relatively low--less than 1·0% during the 15 years. A noticeable finding was that certain countries both in Europe-America and Asia-Africa, had a rapid rising trend in the prevalence of resistance of S. sonnei, which even outnumbered S. flexneri in some periods. Moreover, comparison between countries showed that currently the most serious problem concerning resistance to these TGCs appeared in Vietnam, especially for ceftriaxone, China, especially for cefotaxime and Iran, especially for ceftazidime. These data suggest that monitoring of the drug resistance of Shigella strains should be strengthened and that rational use of antibiotics is required.

  1. Influence of penicillin/amoxicillin non-susceptibility on the activity of third-generation cephalosporins against Streptococcus pneumoniae.

    PubMed

    Fenoll, A; Giménez, M J; Robledo, O; Aguilar, L; Tarragó, D; Granizo, J J; Martín-Herrero, J E

    2008-01-01

    To study the influence of penicillin/amoxicillin non-susceptibility on the activity of third-generation cephalosporins, 430 consecutive penicillin non-susceptible Streptococcus pneumoniae 2007 isolates received in the Spanish Reference Pneumococcal Laboratory were tested. For comparative purposes, 625 penicillin-susceptible 2007 isolates were also tested. Susceptibility was determined by agar dilution using Mueller-Hinton agar supplemented with 5% sheep blood. Penicillin-susceptible strains were susceptible to amoxicillin, cefotaxime and ceftriaxone, 99.8% to cefpodoxime and 99.5% to cefdinir, and were inhibited by 0.12 microg/ml of cefditoren and 4 microg/ml of cefixime. Penicillin-intermediate strains were susceptible to cefotaxime and ceftriaxone, with <50% susceptibility to cefdinir and cefpodoxime. The MIC(50) and MIC(90) values of cefditoren were 0.25 microg/ml and 0.5 microg/ml, respectively, whereas cefixime exhibited only marginal activity (MIC(90)=16 microg/ml). Penicillin-resistant strains were resistant to cefdinir and cefpodoxime, with 74.8% and 94.1% susceptibility to cefotaxime and ceftriaxone, respectively. Cefditoren MIC(50)/MIC(90) (0.5/1 microg/ml) were lower than cefotaxime and ceftriaxone. Among amoxicillin non-susceptible strains, susceptibility to cefdinir and cefpodoxime was <10%, and susceptibility to cefotaxime decreased from 87.9% in the intermediate category to 63.0% in the resistant group. Cefditoren MIC(50)/MIC(90) (0.5/1 microg/ml) were lower than cefotaxime. In conclusion, the activity of cefixime, cefdinir and cefpodoxime was highly affected by penicillin/amoxicillin non-susceptibility, while parenteral third-generation cephalosporins exhibited higher intrinsic activity (MIC(90)=1 microg/ml for penicillin-resistant and 2 microg/ml for amoxicillin-resistant strains). Cefditoren exhibited one-dilution lower MIC(90) values for these strains, even against those of the most troublesome serotypes.

  2. Prevalence of lactose fermenting coliforms resistant to third generation cephalosporins in cattle feedlot throughout a production cycle and molecular characterization of resistant isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Increases in incidence of human infections caused by Enterobacteriaceae resistant to 3rd generation cephalosporins (3GC) have become a public health concern. The 3GC ceftiofur is commonly used for the therapeutic treatment of feedlot cattle but the impact this practice has on public h...

  3. Population Distribution of Beta-Lactamase Conferring Resistance to Third-Generation Cephalosporins in Human Clinical Enterobacteriaceae in The Netherlands

    PubMed Central

    Voets, Guido M.; Platteel, Tamara N.; Fluit, Ad C.; Scharringa, Jelle; Schapendonk, Claudia M.; Stuart, James Cohen; Bonten, Marc J. M.; Hall, Maurine A. L.

    2012-01-01

    There is a global increase in infections caused by Enterobacteriaceae with plasmid-borne β-lactamases that confer resistance to third-generation cephalosporins. The epidemiology of these bacteria is not well understood, and was, therefore, investigated in a selection of 636 clinical Enterobacteriaceae with a minimal inhibitory concentration >1 mg/L for ceftazidime/ceftriaxone from a national survey (75% E. coli, 11% E. cloacae, 11% K. pneumoniae, 2% K. oxytoca, 2% P. mirabilis). Isolates were investigated for extended-spectrum β-lactamases (ESBLs) and ampC genes using microarray, PCR, gene sequencing and molecular straintyping (Diversilab and multi-locus sequence typing (MLST)). ESBL genes were demonstrated in 512 isolates (81%); of which 446 (87%) belonged to the CTX-M family. Among 314 randomly selected and sequenced isolates, blaCTX-M-15 was most prevalent (n = 124, 39%), followed by blaCTX-M-1 (n = 47, 15%), blaCTX-M-14 (n = 15, 5%), blaSHV-12 (n = 24, 8%) and blaTEM-52 (n = 13, 4%). Among 181 isolates with MIC ≥16 mg/L for cefoxitin plasmid encoded AmpCs were detected in 32 and 27 were of the CMY-2 group. Among 102 E. coli isolates with MIC ≥16 mg/L for cefoxitin ampC promoter mutations were identified in 29 (28%). Based on Diversilab genotyping of 608 isolates (similarity cut-off >98%) discriminatory indices of bacteria with ESBL and/or ampC genes were 0.994, 0.985 and 0.994 for E. coli, K. pneumoniae and E. cloacae, respectively. Based on similarity cut-off >95% two large clusters of E. coli were apparent (of 43 and 30 isolates) and 21 of 21 that were typed by belonged to ST131 of which 13 contained blaCTX-M-15. Our findings demonstrate that blaCTX-M-15 is the most prevalent ESBL and we report a larger than previously reported prevalence of ampC genes among Enterobacteriaceae responsible for resistance to third-generation cephalosporins. PMID:23284886

  4. Population distribution of Beta-lactamase conferring resistance to third-generation cephalosporins in human clinical Enterobacteriaceae in the Netherlands.

    PubMed

    Voets, Guido M; Platteel, Tamara N; Fluit, Ad C; Scharringa, Jelle; Schapendonk, Claudia M; Stuart, James Cohen; Bonten, Marc J M; Leverstein-van Hall, Maurine A; Hall, Maurine A L

    2012-01-01

    There is a global increase in infections caused by Enterobacteriaceae with plasmid-borne β-lactamases that confer resistance to third-generation cephalosporins. The epidemiology of these bacteria is not well understood, and was, therefore, investigated in a selection of 636 clinical Enterobacteriaceae with a minimal inhibitory concentration >1 mg/L for ceftazidime/ceftriaxone from a national survey (75% E. coli, 11% E. cloacae, 11% K. pneumoniae, 2% K. oxytoca, 2% P. mirabilis). Isolates were investigated for extended-spectrum β-lactamases (ESBLs) and ampC genes using microarray, PCR, gene sequencing and molecular straintyping (Diversilab and multi-locus sequence typing (MLST)). ESBL genes were demonstrated in 512 isolates (81%); of which 446 (87%) belonged to the CTX-M family. Among 314 randomly selected and sequenced isolates, bla(CTX-M-15) was most prevalent (n = 124, 39%), followed by bla(CTX-M-1) (n = 47, 15%), bla(CTX-M-14) (n = 15, 5%), bla(SHV-12) (n = 24, 8%) and bla(TEM-52) (n = 13, 4%). Among 181 isolates with MIC ≥16 mg/L for cefoxitin plasmid encoded AmpCs were detected in 32 and 27 were of the CMY-2 group. Among 102 E. coli isolates with MIC ≥16 mg/L for cefoxitin ampC promoter mutations were identified in 29 (28%). Based on Diversilab genotyping of 608 isolates (similarity cut-off >98%) discriminatory indices of bacteria with ESBL and/or ampC genes were 0.994, 0.985 and 0.994 for E. coli, K. pneumoniae and E. cloacae, respectively. Based on similarity cut-off >95% two large clusters of E. coli were apparent (of 43 and 30 isolates) and 21 of 21 that were typed by belonged to ST131 of which 13 contained bla(CTX-M-15). Our findings demonstrate that bla(CTX-M-15) is the most prevalent ESBL and we report a larger than previously reported prevalence of ampC genes among Enterobacteriaceae responsible for resistance to third-generation cephalosporins.

  5. Antimicrobial resistance of Neisseria gonorrhoeae isolates in south-west Germany, 2004 to 2015: increasing minimal inhibitory concentrations of tetracycline but no resistance to third-generation cephalosporins

    PubMed Central

    Regnath, Thomas; Mertes, Thomas; Ignatius, Ralf

    2016-01-01

    Increasing antimicrobial resistance of Neisseria gonorrhoeae, particularly to third-generation cephalosporins, has been reported in many countries. We examined the susceptibility (determined by Etest and evaluated using the breakpoints of the European Committee on Antimicrobial Susceptibility Testing) of 434 N. gonorrhoeae isolates collected from 107 female and 327 male patients in Stuttgart, south-west Germany, between 2004 and 2015. During the study period, high proportions of isolates were resistant to ciprofloxacin (70.3%), tetracycline (48.4%; increasing from 27.5% in 2004/2005 to 57.7% in 2014/2015; p = 0.0002) and penicillin (25.6%). The proportion of isolates resistant to azithromycin was low (5.5%) but tended to increase (p = 0.08). No resistance and stable minimum inhibitory concentrations were found for cefixime, ceftriaxone, and spectinomycin. High-level resistance was found for ciprofloxacin (39.6%) and tetracycline (20.0%) but not for azithromycin; 16.3% of the isolates produced betalactamase. Thus, cephalosporins can still be used for the treatment of gonorrhoea in the study area. To avoid further increasing resistance to azithromycin, its usage should be limited to patients allergic to cephalosporins, or (in combination with cephalosporins) to patients for whom no susceptibility testing could be performed or those co-infected with chlamydiae. PMID:27632642

  6. Nonconvulsive status epilepticus during cephalosporin therapy.

    PubMed

    Primavera, Alberto; Cocito, Leonardo; Audenino, Daniela

    2004-01-01

    Cephalosporins may induce nonconvulsive status epilepticus (NCSE), a potentially reversible condition. Despite the wide use of these antibiotics, there are only few reported cases, because this condition is probably underestimated. We report two new cases of NCSE occurring during treatment with cefepime and ceftazidime, and emphasize the utility of emergent electroencephalogram in patients with an acute altered state of consciousness while receiving treatment with cephalosporins, particularly when there is evidence of impaired renal function.

  7. Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Gram-positive bacteria, in a neutropenic murine thigh model.

    PubMed

    Hegde, Sharath S; Okusanya, Olanrewaju O; Skinner, Robert; Shaw, Jeng-Pyng; Obedencio, Glenmar; Ambrose, Paul G; Blais, Johanne; Bhavnani, Sujata M

    2012-03-01

    TD-1792 is a novel glycopeptide-cephalosporin heterodimer investigational antibiotic that displays potent bactericidal effects against clinically relevant Gram-positive organisms in vitro. The present studies evaluated the in vivo pharmacokinetics (PK) and pharmacodynamics (PD) of TD-1792 in the neutropenic murine thigh infection animal model. TD-1792, dosed subcutaneously (SC), produced dose-dependent reduction in the thigh bacterial burden of several organisms, including methicillin-susceptible and -resistant strains of Staphylococcus aureus and Staphylococcus epidermidis (MSSA, MRSA, MSSE, MRSE, respectively), penicillin-susceptible strains of Streptococcus pneumoniae (PSSP), Streptococcus pyogenes, and vancomycin-intermediate-susceptible Staphylococcus aureus (VISA). In single-dose efficacy studies, the 1-log(10) CFU kill effective dose (ED(1-log kill)) estimates for TD-1792 ranged from 0.049 to 2.55 mg/kg of body weight administered SC, and the bacterial burden was reduced by up to 3 log(10) CFU/g from pretreatment values. Against S. aureus ATCC 33591 (MRSA), the total 24-h log(10) stasis dose (ED(stasis)) and ED(1-logkill) doses for TD-1792 were 0.53 and 1.11 mg/kg/24 h, respectively, compared to 23.4 and 54.6 mg/kg/24 h for vancomycin, indicating that TD-1762 is 44- to 49-fold more potent than vancomycin. PK-PD analysis of data from single-dose and dose-fractionation studies for MRSA (ATCC 33591) demonstrated that the total-drug 24-h area under the concentration-time curve-to-MIC ratio (AUC/MIC ratio) was the best predictor of efficacy (r(2) = 0.826) compared to total-drug maximum plasma concentration of drug-to-MIC ratio (Cmax/MIC ratio; r(2) = 0.715) and percent time that the total-drug plasma drug concentration remains above the MIC (%Time>MIC; r(2) = 0.749). The magnitudes of the total-drug AUC/MIC ratios associated with net bacterial stasis, a 1-log(10) CFU reduction from baseline and near maximal effect, were 21.1, 37.2, and 51.8, respectively. PK

  8. Longitudinal metagenomic profiling of bovine milk to assess the impact of intramammary treatment using a third-generation cephalosporin

    PubMed Central

    Ganda, Erika K.; Bisinotto, Rafael S.; Lima, Svetlana F.; Kronauer, Kristina; Decter, Dean H.; Oikonomou, Georgios; Schukken, Ynte H.; Bicalho, Rodrigo C.

    2016-01-01

    Antimicrobial usage in food animals has a direct impact on human health, and approximately 80% of the antibiotics prescribed in the dairy industry are used to treat bovine mastitis. Here we provide a longitudinal description of the changes in the microbiome of milk that are associated with mastitis and antimicrobial therapy. Next-generation sequencing, 16 S rRNA gene quantitative real-time PCR, and aerobic culturing were applied to assess the effect of disease and antibiotic therapy on the milk microbiome. Cows diagnosed with clinical mastitis associated with Gram-negative pathogens or negative aerobic culture were randomly allocated into 5 days of Ceftiofur intramammary treatment or remained as untreated controls. Serial milk samples were collected from the affected quarter and the ipsilateral healthy quarter of the same animal. Milk from the mastitic quarter had a higher bacterial load and reduced microbial diversity compared to healthy milk. Resolution of the disease was accompanied by increases in diversity indexes and a decrease in pathogen relative abundance. Escherichia coli-associated mastitic milk samples had a remarkably distinct bacterial profile, dominated by Enterobacteriaceae, when compared to healthy milk. However, no differences were observed in culture-negative mastitis samples when compared to healthy milk. Antimicrobial treatment had no significant effect on clinical cure, bacteriological cure, pathogen clearance rate or bacterial load. PMID:27874095

  9. Repurposing clinically approved cephalosporins for tuberculosis therapy

    PubMed Central

    Ramón-García, Santiago; González del Río, Rubén; Villarejo, Angel Santos; Sweet, Gaye D.; Cunningham, Fraser; Barros, David; Ballell, Lluís; Mendoza-Losana, Alfonso; Ferrer-Bazaga, Santiago; Thompson, Charles J.

    2016-01-01

    While modern cephalosporins developed for broad spectrum antibacterial activities have never been pursued for tuberculosis (TB) therapy, we identified first generation cephalosporins having clinically relevant inhibitory concentrations, both alone and in synergistic drug combinations. Common chemical patterns required for activity against Mycobacterium tuberculosis were identified using structure-activity relationships (SAR) studies. Numerous cephalosporins were synergistic with rifampicin, the cornerstone drug for TB therapy, and ethambutol, a first-line anti-TB drug. Synergy was observed even under intracellular growth conditions where beta-lactams typically have limited activities. Cephalosporins and rifampicin were 4- to 64-fold more active in combination than either drug alone; however, limited synergy was observed with rifapentine or rifabutin. Clavulanate was a key synergistic partner in triple combinations. Cephalosporins (and other beta-lactams) together with clavulanate rescued the activity of rifampicin against a rifampicin resistant strain. Synergy was not due exclusively to increased rifampicin accumulation within the mycobacterial cells. Cephalosporins were also synergistic with new anti-TB drugs such as bedaquiline and delamanid. Studies will be needed to validate their in vivo activities. However, the fact that cephalosporins are orally bioavailable with good safety profiles, together with their anti-mycobacterial activities reported here, suggest that they could be repurposed within new combinatorial TB therapies. PMID:27678056

  10. Characterization of a P1-like bacteriophage carrying CTX-M-27 in Salmonella spp. resistant to third generation cephalosporins isolated from pork in China

    PubMed Central

    Yang, Ling; Li, Wan; Jiang, Gui-Ze; Zhang, Wen-Hui; Ding, Huan-Zhong; Liu, Ya-Hong; Zeng, Zhen-Ling; Jiang, Hong-Xia

    2017-01-01

    The aim of this study was to elucidate the epidemiology of third generation cephalosporin resistant Samonella isolates from pork of a slaughterhouse in China and the features of transferable elements carrying blaCTX-M genes. One hundred and twenty-six (7.3%) Salmonella isolates were identified; S. Derby and S. Rissen were the most two prevalent serotypes. Among these isolates 20 (15.8%) were resistant to third generation cephalosporins and nine of them carried blaCTX-M-27. S1-PFGE and replicon typing of blaCTX-M-27-carrying plasmids showed that seven were untypeable plasmids of about 104 Kb and two were IncP plasmids of about 300 Kb. Complete sequence analysis of one PBRT-untypeable plasmid showed it was a P1-like bateriophage, named SJ46, which contained a non-phage-associated region with several mobile elements, including Tn1721, ISEcp1B and IS903D. The other six 104 Kb PBRT-untypeable blaCTX-M-27-carrying plasmids also harboured the same phage-insertion region of SJ46 suggesting that they were the same P1-like bacteriophage. PFGE profiles of the parental strains revealed both potential vertical and horizontal spread of this P1-like blaCTX-M-27-containing element. Additionally, the representative gene of the P1 family bacteriophage, repL, was detected in 19.0% (24/126) of the isolates. This study indicated a potential role of P1-family bacteriophage in capture and spread of antimicrobial resistance in pathogens. PMID:28098241

  11. Analysis of Salmonella enterica with reduced susceptibility to the 3rd generation cephalosporin, ceftriaxone, isolated from US cattle during 2000-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past decade enteric bacteria in Europe, Africa and Asia have become increasingly resistant to cephalosporin antimicrobials. This is largely due to the spread of genes encoding extended-spectrum ß-lactamase (ESBL) enzymes which can inactivate many cephalosporins. Recently these resistance me...

  12. Sir Edward Abraham's contribution to the development of the cephalosporins: a reassessment.

    PubMed

    Hamilton-Miller, J M

    2000-08-01

    This paper is based on an invited lecture given at the 21st International Congress of Chemotherapy in July 1999, as part of a Symposium entitled '50 years of cephalosporins: their use the next 50 years', (Hamilton-Miller JMT, Cephalosporins: from mould to drug. Sardinia to Oxford and beyond, J Antimicr Chemother 1999;44(A):26). Celebration of this Golden Anniversary was made more poignant by the death of the last major participant, Sir Edward Abraham, in May 1999. This history has been told before, but mainly by Sir Edward, who being a very modest man (to which his obituaries graphically attest) consistently underplayed the role that he and Newton had in the discovery of cephalosporin C, that led to all the cephalosporins now in use. I had the privilege of working at the Dunn School from 1967 to 1970, with Abraham and Newton, where I met Brotzu, Florey and Dorothy Hodgkin, all of whom had important roles in this story. Other workers at the Dunn School at that time, e.g. Heatley, Sanders and Jennings (who became Lady Florey), helped develop penicillin. Such a galaxy of stars of the antibiotic firmament will never again be assembled. "Let us now praise famous men... these were honoured in their generation, and were the glory of their times" - Ecclesiasticus XLIV. vv 1.7.

  13. Cefepime, a fourth-generation cephalosporin, in complex with manganese, inhibits proteasome activity and induces the apoptosis of human breast cancer cells.

    PubMed

    Zhang, Zhen; Bi, Caifeng; Fan, Yuhua; Wang, Huannan; Bao, Yan

    2015-10-01

    Cefepime (FEP), which is a member of the fourth-generation cephalosporin class, has been extensively studied as a biochemical and antimicrobial reagent in recent years. Manganese (Mn) is important in the biochemical and physiological processes of many living organisms, and it is also high expressed in some tumor tissues. In the present study, we aimed to investigate the proteasome-inhibitory and anti-proliferative properties of 8 metal complexes (FEP‑Cu, FEP-Zn, FEP-Co, FEP-Ni, FEP-Cd, FEP-Cr, FEP-Fe, FEP-Mn) in MDA-MB‑231 human breast cancer cells. The FEP-Mn complex was found to be more potent in its ability to inhibit cell proliferation and proteasome activity than the other compounds tested. Moreover, the FEP-Mn complex inhibited proteasomal chymotrypsin-like (CT-like) activity and induced the apoptosis of breast cancer cells in a dose-and time-dependent manner. Furthermore, the MCF-10A cells were much less sensitive to the FEP complexes compared with the MDA-MB-231 breast cancer cells. These results demonstrated that the FEP-Mn(II) complex has the potential to act as a proteasome inhibitor and apoptosis inducer and therefore has possible future applications in cancer chemotherapy.

  14. Antibiotics

    MedlinePlus

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  15. An azido-oxazolidinone antibiotic for live bacterial cell imaging and generation of antibiotic variants

    PubMed Central

    Phetsang, Wanida; Blaskovich, Mark A.T.; Butler, Mark S.; Huang, Johnny X.; Zuegg, Johannes; Mamidyala, Sreeman K.; Ramu, Soumya; Kavanagh, Angela M.; Cooper, Matthew A.

    2014-01-01

    An azide-functionalised analogue of the oxazolidinone antibiotic linezolid was synthesised and shown to retain antimicrobial activity. Using facile ‘click’ chemistry, this versatile intermediate can be further functionalised to explore antimicrobial structure–activity relationships or conjugated to fluorophores to generate fluorescent probes. Such probes can report bacteria and their location in a sample in real time. Modelling of the structures bound to the cognate 50S ribosome target demonstrates binding to the same site as linezolid is possible. The fluorescent probes were successfully used to image Gram-positive bacteria using confocal microscopy. PMID:25023540

  16. Antibiotic use in neonatal sepsis.

    PubMed

    Yurdakök, M

    1998-01-01

    some centers, third-generation cephalosporins in combinations with penicillin or ampicillin have been used in the initial therapy of early-onset and late-onset neonatal sepsis. Third-generation cephalosporin may also be combined with an aminoglycoside in places where aminoglycoside-resistance to this antibiotic is high. However, third-generation cephalosporins should not be used in the initial therapy of suspected sepsis, because 1) extensive use of cephalosporins for initial therapy of neonatal sepsis may lead to the emergence of drug-resistant microorganisms (this has occurred more rapidly as compared with the aminoglycosides), 2) Antagonistic interactions have been demonstrated when the other beta-lactam antibiotics (e.g. penicillins) were combined with cephalosporins. Infections due to gram-negative bacilli can be treated with the combination of a penicillin-derivative (ampicillin or extended-spectrum penicillins) and an aminoglycoside. Third-generation cephalosporins in combination with an aminoglycoside or an extended-spectrum penicillin have been used in the treatment of sepsis due to these organisms. Piperacillin and azlocillin are the most active of extended-spectrum penicillins against Pseudomonas aeruginosa. Among the third-generation cephalosporins, cefoperazone and ceftazidime possess anti-Pseudomonas activity. Ceftazidime was found to be more active in vitro against Pseudomonas than cefoperazone or piperacillin. New antibiotics for gram-negative bacteria resistant to other agents are carbapenems, aztreonam, quinolones and isepamicin. Enterococci can be treated with a cell wall-active agent (e.g. penicillin, ampicillin, or vancomycin) and an aminoglycoside. Staphylococci are susceptible to penicillinase-resistant penicillins (e.g. oxacillin, nafcillin and methicillin). Resistant strains are uniformly sensitive to vancomycin. A penicillin or vancomycin and an aminoglycoside combination result in a more rapid bacteriocidal effect than is produced by either

  17. Dual-Action Cephalosporin Utilizing a Novel Therapeutic Principle

    PubMed Central

    Greenwood, D.; O'Grady, F.

    1976-01-01

    A new cephalosporin is described that overcomes, in a novel way, the general susceptibility of this group of agents to enterobacterial β-lactamases. The new compound carries a substituent that is released on cleavage of the β-lactam ring and then exhibits antibacterial activity in its own right. The possible therapeutic benefits of such an antibiotic are discussed. PMID:791095

  18. Genetic characterization of the mechanisms of resistance to amoxicillin/clavulanate and third-generation cephalosporins in Salmonella enterica from three Spanish hospitals.

    PubMed

    de Toro, María; Sáenz, Yolanda; Cercenado, Emilia; Rojo-Bezares, Beatriz; García-Campello, Marta; Undabeitia, Esther; Torres, Carmen

    2011-09-01

    The mechanisms of antimicrobial resistance were characterized in 90 Salmonella enterica isolates either resistant or with intermediate resistance to amoxicillin/clavulanate (AMC(R/I)) or resistant to third-generation cephalosporins (C3G(R)). These isolates were recovered in three Spanish hospitals during 2007-2009. The C3G(R) phenotype was expressed by three isolates that carried the following extended-spectrum β-lactamase genes: phage-associated bla(CTX M-10) in S. Virchow, bla(CTX-M-14a) surrounded by ISEcp1 and IS903 in S. Enteritidis, and bla(CTX-M-15) linked to ISEcp1 and orf477 in S. Gnesta (first description in this serotype). The AMC(R/I) phenotype was found in 87 isolates (79 S. Typhimurim, 7 S. Enteritidis, and one S. Thompson). The bla(PSE-1) gene, followed by bla(OXA-1) was mostly found among S. Typhimurim, and the bla(TEM-1) gene among S. Enteritidis. Three different gene combinations [bla(PSE-1) +floR+aadA2+sul+tet(G); bla(OXA-1) +catA+aadA1/strA-strB+sul+tet(B) and bla(TEM-1) + cmlA1+aadA/strA-strB+sul+tet(A)/tet(B) genes] were associated with the ampicillin-chloramphenicol-streptomycin-sulfonamides-tetracycline phenotype in 68 AMC(R/I) S. enterica isolates. Class 1 integrons were observed in 79% of the isolates and in most of them (45 isolates) two integrons including the aadA2 and bla(PSE-1) gene cassettes, respectively, were detected. The bla(OXA-1) +aadA1 arrangement was detected in 23 isolates, and the aac(6')-Ib-cr+bla(OXA-1) +catB3+arr3 in another one. Non-classic class 1 integrons were found in three isolates: dfrA12+orfF+aadA2+cmlA1+aadA1 (1 isolate), dfrA12+orfF+aadA2+ cmlA1+aadA1+qacH+IS440+sul3 (1 isolate) and dfrA12+orfF+aadA2+cmlA1+aadA1+qacH+IS440+ sul3+orf1+mef(B)Δ-IS26 (1 isolate). Taken together, these results underline the need for clinical concern regarding β-lactam resistance in Salmonella and thus for continuous monitoring.

  19. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure

    PubMed Central

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-01-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97–67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach. PMID:27341657

  20. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure.

    PubMed

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-06-24

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97-67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach.

  1. Biogas generation in anaerobic wastewater treatment under tetracycline antibiotic pressure

    NASA Astrophysics Data System (ADS)

    Lu, Meiqing; Niu, Xiaojun; Liu, Wei; Zhang, Jun; Wang, Jie; Yang, Jia; Wang, Wenqi; Yang, Zhiquan

    2016-06-01

    The effect of tetracycline (TC) antibiotic on biogas generation in anaerobic wastewater treatment was studied. A lab-scale Anaerobic Baffled Reactor (ABR) with three compartments was used. The reactor was operated with synthetic wastewater in the absence of TC and in the presence of 250 μg/L TC for 90 days, respectively. The removal rate of TC, volatile fatty acids (VFAs), biogas compositions (hydrogen (H2), methane (CH4), carbon dioxide (CO2)), and total biogas production in each compartment were monitored in the two operational conditions. Results showed that the removal rate of TC was 14.97–67.97% in the reactor. The presence of TC had a large negative effect on CH4 and CO2 generation, but appeared to have a positive effect on H2 production and VFAs accumulation. This response indicated that the methanogenesis process was sensitive to TC presence, but the acidogenesis process was insensitive. This suggested that the presence of TC had less influence on the degradation of organic matter but had a strong influence on biogas generation. Additionally, the decrease of CH4 and CO2 generation and the increase of H2 and VFAs accumulation suggest a promising strategy to help alleviate global warming and improve resource recovery in an environmentally friendly approach.

  2. Thymidylate Limitation Potentiates Cephalosporin Activity toward Enterococci via an Exopolysaccharide-Based Mechanism.

    PubMed

    Hoff, Jessica S; Kristich, Christopher J

    2016-06-17

    Multidrug resistant enterococci are major causes of nosocomial infections. Prior therapy with cephalosporins increases the risk of developing an enterococcal infection due to the intrinsic resistance of enterococci to these antibiotics. While progress has been made toward understanding the genetic and biochemical mechanisms of cephalosporin resistance, available data indicate that as-yet-unidentified resistance factors must exist. Here, we describe results of a screen to identify small molecules capable of sensitizing enterococci to broad-spectrum cephalosporins. We found that both Enterococcus faecalis and Enterococcus faecium were sensitized to broad and expanded-spectrum cephalosporins when thymidylate production was impaired, whether by direct inhibition of thymidylate synthase, or by limiting production of cofactors required for its activity. Cephalosporin potentiation is the result of altered exopolysaccharide production due to reduced dTDP-glucose synthesis. Hence, exopolysaccharide production is a previously undescribed contributor to the intrinsic cephalosporin resistance of enterococci and serves as a new target for antienterococcal therapeutics.

  3. [Enteropathogens and antibiotics].

    PubMed

    González-Torralba, Ana; García-Esteban, Coral; Alós, Juan-Ignacio

    2015-08-12

    Infectious gastroenteritis remains a public health problem. The most severe cases are of bacterial origin. In Spain, Campylobacter and Salmonella are the most prevalent bacterial genus, while Yersinia and Shigella are much less frequent. Most cases are usually self-limiting and antibiotic therapy is not generally indicated, unless patients have risk factors for severe infection and shigellosis. Ciprofloxacin, third generation cephalosporins, azithromycin, ampicillin, cotrimoxazole and doxycycline are the most recommended drugs. The susceptibility pattern of the different bacteria determines the choice of the most appropriate treatment. The aim of this review is to analyse the current situation, developments, and evolution of resistance and multidrug resistance in these 4 enteric pathogens.

  4. Third-Generation-Cephalosporin-Resistant Klebsiella pneumoniae Isolates from Humans and Companion Animals in Switzerland: Spread of a DHA-Producing Sequence Type 11 Clone in a Veterinary Setting

    PubMed Central

    Wohlwend, Nadia; Francey, Thierry

    2015-01-01

    Characterization of third-generation-cephalosporin-resistant Klebsiella pneumoniae isolates originating mainly from one human hospital (n = 22) and one companion animal hospital (n = 25) in Bern (Switzerland) revealed the absence of epidemiological links between human and animal isolates. Human infections were not associated with the spread of any specific clone, while the majority of animal infections were due to K. pneumoniae sequence type 11 isolates producing plasmidic DHA AmpC. This clonal dissemination within the veterinary hospital emphasizes the need for effective infection control practices. PMID:25733505

  5. Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

    PubMed Central

    de Toro, María; Scharringa, Jelle; Dohmen, Wietske; Du, Yu; Hu, Juan; Lei, Ying; Li, Ning; Tooming-Klunderud, Ave; Heederik, Dick J. J.; Fluit, Ad C.; Bonten, Marc J. M.; Willems, Rob J. L.; de la Cruz, Fernando; van Schaik, Willem

    2014-01-01

    Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E

  6. [New antibiotics - standstill or progress].

    PubMed

    Rademacher, J; Welte, T

    2017-04-01

    The development of resistance to antibiotics has been ignored for a long time. But nowadays, increasing resistance is an important topic. For a decade no new antibiotics had been developed and it is not possible to quickly close this gap of new resistance and no new drugs. This work presents six new antibiotics (ceftaroline, ceftobiprole, solithromycin, tedizolid, ceftolozane/tazobactam, ceftazidime/avibactam). In part, only expert opinions are given due to lack of study results.The two 5th generation cephalosporins ceftaroline and ceftobiprole have beside their equivalent efficacy to ceftriaxone (ceftaroline) and cefipim (ceftobiprole) high activity against MRSA. The fluoroketolide solithromycin should help against macrolide-resistant pathogens and has been shown to be noninferior to the fluorochinolones. The oxazolidinone tedizolid is effective against linezolid-resistant MRSA. The two cephalosporins ceftolozane/tazobactam and ceftazidime/avibactam are not only effective against gram-negative pathogens, but they have a very broad spectrum. Due to the efficacy against extended-spectrum β‑lactamases, they can relieve the selection pressure of the carbapenems. We benefit from all new antibiotics which can take the selection pressure from other often used antibiotics. The increasing number of resistant gram-negative pathogens worldwide is alarming. Thus, focusing on the development of new drugs is extremely important.

  7. Degradation kinetics and mechanism of antibiotic ceftiofur in recycled water derived from beef farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ceftiofur is a third-generation cephalosporin antibiotic that has been widely used to treat bacterial infections in concentrated animal feeding operations (CAFOs). Land application of CAFO waste may lead to the loading of ceftiofur residues and its metabolites to the environment. To mitigate the pot...

  8. Cephalosporin Induced Disulfiram-Like Reaction: A Retrospective Review of 78 Cases

    PubMed Central

    Ren, Shiyan; Cao, Yuxia; Zhang, Xiuwei; Jiao, Shichen; Qian, Songyi; Liu, Peng

    2014-01-01

    Concomitant ingestion of alcohol and cephalosporin may cause a disulfiram-like reaction; however its fatal outcomes are not commonly known. We retrospectively reviewed 78 patients who had cephalosporin induced disulfiram-like reaction (CIDLR). The patients who had a negative skin test to cephalosporin prior to intravenous antibiotics were included, and those who were allergic to either alcohol or antibiotics were excluded. The average age of 78 patients was 37.8±12.2 (21–60) years. Of the 78 patients, 93.58% of the patients were males, 70.51% of the patients consumed alcohol after use of antibiotics, and 29.49% patients consumed alcohol initially, followed by intravenous antibiotics; however, no significant difference of morbidity was observed in these two groups. All patients were administered antibiotics intravenously. Five of 78 patients (6.41%) developed severe CIDLR too urgently to be rescued successfully. In conclusion, it is important for clinicians to educate patients that no alcohol should be used if one is taking cephalosporin. Also, clinicians should keep in mind that cephalosporin should not be prescribed for any alcoholics. PMID:24670024

  9. [Side effects of antibiotics].

    PubMed

    Hoigné, R

    1975-03-01

    The clinically severe and newer forms of antibiotic side effects are reviewed. The study covers the following antibiotics: penicillins, cephalosporins, aminoglycosides and polymyxins, tetracyclines, chloramphenicol and thiamphenicol, macrolides and lincomycin, rifamycins and sulfonamides. Special reference is made to (1) hematologic side effects, and (2) general evaluation of drug reactions. The relationship between reaction time and clinical symptoms is of particular practical significance.

  10. [Probiotics for the prevention of antibiotic-induced diarrhea].

    PubMed

    Eser, A; Thalhammer, F; Burghuber, F; Högenauer, C; Stockenhuber, F; Wenisch, C; Widhalm, K; Reinisch, W

    2012-10-01

    Between 5 and 49% of patients treated with antibiotics suffer from diarrhoea. Principally all microbial agents can cause diarrhoea, especially oral agents like cephalosporines, clindamycin, broad-spectrum penicillins, and quinolones of the 3  rd and 4th generation. Manifestations of antibiotic-associated diarrhoea range from mild self-limiting forms to severe life-threatening courses. The potentially most severe form of antibiotic-associated diarrhoea is caused by Clostridium diffcile accounting for approx. 25  % of antibiotic-associated diarrhoea. In the past two decades a broad spectrum of different probiotic strains has been evaluated for the primary prevention of antibiotic-associated diarrhoea in children and adults. Based on their efficacy and clinical data, different levels of evidence and recommendations are emerging on the preventive use of probiotics in antibiotic-associated diarrhoea.

  11. [Initial antibiotic therapy in maternal-fetal infections which include ampicillin even in countries where listeriosis is an incidental disease].

    PubMed

    Boukadida, J; Taher, N Bel Hadj; Seket, B; Monastiri, K; Salem, N; Snoussi, N

    2002-06-01

    Neonatal listeriosis is an exceptional disease in Northern Africa. Hence, protocols for maternal-fetal infection treatment include only a third generation cephalosporin and an aminoside. This protocol does not take into account the possibility of Listeria monocytogenes infection. We report a fatal case of neonatal listeriosis in Tunisia. The use of first antibiotics in maternal-foetal infection must be reconsidered when lacking sufficient bacteriological data and include systematically ampicillin in presumptive antibiotic protocols.

  12. Recombinant Acremonium chrysogenum strains for the industrial production of cephalosporin.

    PubMed

    Díez, B; Mellado, E; Fouces, R; Rodríguez, M; Barredo, J L

    1996-09-01

    Conventional strain improvement programs based on random mutagenesis and rational screening have meant valuable results to the antibiotic producing companies. The development of recombinant DNA techniques and their applications to the industrially-used cephalosporin-producing fungus Acremonium chrysogenum has provided a new tool, complementary to classical mutation, promoting the design of alternative biosynthetic pathways making it possible to obtain new antibiotics and to improve cephalosporin production. Yield increases have been achieved by increasing the dosage of the biosynthetic genes cefEF (deacetoxycephalosporin C expandase/hydroxylase) and cefG (deacetylcephalosporin C acetyltransferase) or enhancing the oxygen uptake by expressing a bacterial oxygen-binding heme protein (Vitreoscilla hemoglobin). New biosynthetic capacities such as the production of 7-aminocephalosporanic acid (7-ACA) or penicillin G have been achieved through the expression of the foreign genes dao (D-amino acid oxidase) coupled with cephalosporin acylase or penDE(acyl-CoA:6-APA acyltransferase) respectively. Confined manipulation of the above-mentioned recombinant strains must be performed according to standing rules.

  13. [Ceftaroline, a new broad-spectrum cephalosporin in the era of multiresistance].

    PubMed

    Horcajada, Juan Pablo; Cantón, Rafael

    2014-03-01

    Antimicrobial resistance has increased during the last few years, representing a public health concern. Among Gram-positive organisms, methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae are paradigms of resistance and of the dispersion of multiresistant clones. Ceftaroline, a broad-spectrum cephalosporin that includes MRSA and penicillin-resistant S. pneumoniae, is the first β-lactam antibiotic useful in infections due to MRSA. Phase-III clinical trials have demonstrated its efficacy in the treatment of community-acquired pneumonia and in skin and soft tissue infections, which are the current indications for ceftaroline. Due to its microbiological and pharmacological (PK/PD) profiles, these indications could be expanded to include bacteremia, endocarditis, and even osteoarticular infections. Another notable feature is the activity of this drug against Gram-negative bacilli susceptible to third generation cephalosporins, indicating that ceftaroline could be useful when these organisms are suspected or demonstrated in polymicrobial infections. Clinical follow-up of ceftaroline use will more clearly define future ceftaroline indications.

  14. Use of cephalosporins in patients with immediate penicillin hypersensitivity: cross-reactivity revisited.

    PubMed

    Lee, Q U

    2014-10-01

    A 10% cross-reactivity rate is commonly cited between penicillins and cephalosporins. However, this figure originated from studies in the 1960s and 1970s which included first-generation cephalosporins with similar side-chains to penicillins. Cephalosporins were frequently contaminated by trace amount of penicillins at that time. The side-chain hypothesis for beta-lactam hypersensitivity is supported by abundant scientific evidence. Newer generations of cephalosporins possess side-chains that are dissimilar to those of penicillins, leading to low cross-reactivity. In the assessment of cross-reactivity between penicillins and cephalosporins, one has to take into account the background beta-lactam hypersensitivity, which occurs in up to 10% of patients. Cross-reactivity based on skin testing or in-vitro test occurs in up to 50% and 69% of cases, respectively. Clinical reactivity and drug challenge test suggest an average cross-reactivity rate of only 4.3%. For third- and fourth-generation cephalosporins, the rate is probably less than 1%. Recent international guidelines are in keeping with a low cross-reactivity rate. Despite that, the medical community in Hong Kong remains unnecessarily skeptical. Use of cephalosporins in patients with penicillin hypersensitivity begins with detailed history and physical examination. Clinicians can choose a cephalosporin with a different side-chain. Skin test for penicillin is not predictive of cephalosporin hypersensitivity, while cephalosporin skin test is not sensitive. Drug provocation test by experienced personnel remains the best way to exclude or confirm the diagnosis of drug hypersensitivity and to find a safe alternative for future use. A personalised approach to cross-reactivity is advocated.

  15. New Dimensions of Research on Actinomycetes: Quest for Next Generation Antibiotics

    PubMed Central

    Jose, Polpass Arul; Jha, Bhavanath

    2016-01-01

    Starting with the discovery of streptomycin, the promise of natural products research on actinomycetes has been captivating researchers and offered an array of life-saving antibiotics. However, most of the actinomycetes have received a little attention of researchers beyond isolation and activity screening. Noticeable gaps in genomic information and associated biosynthetic potential of actinomycetes are mainly the reasons for this situation, which has led to a decline in the discovery rate of novel antibiotics. Recent insights gained from genome mining have revealed a massive existence of previously unrecognized biosynthetic potential in actinomycetes. Successive developments in next-generation sequencing, genome editing, analytical separation and high-resolution spectroscopic methods have reinvigorated interest on such actinomycetes and opened new avenues for the discovery of natural and natural-inspired antibiotics. This article describes the new dimensions that have driven the ongoing resurgence of research on actinomycetes with historical background since the commencement in 1940, for the attention of worldwide researchers. Coupled with increasing advancement in molecular and analytical tools and techniques, the discovery of next-generation antibiotics could be possible by revisiting the untapped potential of actinomycetes from different natural sources. PMID:27594853

  16. Impact of the administration of a third-generation cephalosporin (3GC) to one-day-old chicks on the persistence of 3GC-resistant Escherichia coli in intestinal flora: An in vivo experiment.

    PubMed

    Baron, Sandrine; Jouy, Eric; Touzain, Fabrice; Bougeard, Stéphanie; Larvor, Emeline; de Boisseson, Claire; Amelot, Michel; Keita, Alassane; Kempf, Isabelle

    2016-03-15

    The aim of the experiment was to evaluate under controlled conditions the impact on the excretion of 3GC-resistant Escherichia coli of the injection of one-day-old chicks with ceftiofur, a third-generation cephalosporin (3GC). Three isolators containing specific-pathogen-free chicks were used. In the first one, 20 birds were injected with ceftiofur then ten of them were orally inoculated with a weak inoculum of a 3GC-resistant E. coli field isolate containing an IncI1/ST3 plasmid encoding a blaCTX-M-1 beta-lactamase. The other chicks were kept as contact birds. None of the 20 birds in the second isolator were injected with ceftiofur, but ten of them were similarly inoculated with the 3GC-resistant strain and the others kept as contact birds. A third isolator contained ten non-injected, non-inoculated chicks. Fecal samples were collected regularly over one month and the E. coli isolated on non-supplemented media were characterized by antimicrobial agar dilution, detection of selected resistance genes and determination of phylogenetic group by PCR. The titers of 3GC-resistant E. coli in individual fecal samples were evaluated by culturing on 3GC-supplemented media. Results showed that the inoculated strain rapidly and abundantly colonized the inoculated and contact birds. The ceftiofur injection resulted in significantly higher percentages of 3GC-resistant E. coli isolates among the analyzed E. coli. No transfer of the 3GC-encoding plasmid to other isolates could be evidenced. In conclusion, these results highlight the dramatic capacity of 3GC-resistant E. coli to colonize and persist in chicks, and the selecting pressure imposed by the off-label use of ceftiofur.

  17. Impact of revised CLSI breakpoints for susceptibility to third-generation cephalosporins and carbapenems among Enterobacteriaceae isolates in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2002-2010.

    PubMed

    Huang, Chi-Chang; Chen, Yao-Shen; Toh, Han-Siong; Lee, Yu-Lin; Liu, Yuag-Meng; Ho, Cheng-Mao; Lu, Po-Liang; Liu, Chun-Eng; Chen, Yen-Hsu; Wang, Jen-Hsien; Tang, Hung-Jen; Yu, Kwok-Woon; Liu, Yung-Ching; Chuang, Yin-Ching; Xu, Yingchun; Ni, Yuxing; Ko, Wen-Chien; Hsueh, Po-Ren

    2012-06-01

    This study examined the rates of susceptibility to third-generation cephalosporins and carbapenems among Enterobacteriaceae isolates that had been obtained from patients with intraabdominal infections in the Asia-Pacific region as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART). Susceptibility profiles obtained using 2009 Clinical and Laboratory Standards Institute (CLSI) breakpoints were compared with those obtained using the 2011 CLSI breakpoints. From 2002 to 2010, Escherichia coli and Klebsiella pneumoniae together accounted for more than 60% of the 13714 Enterobacteriaceae isolates analyzed during the study period. Extended-spectrum β-lactamase (ESBL) producers comprised 28.2% of E. coli isolates and 22.1% of K. pneumoniae isolates in the Asia-Pacific region, with China (55.6% and 33.7%, respectively) and Thailand (43.1% and 40.7%, respectively) having the highest proportions of ESBL producers. Based on the 2011 CLSI criteria, 77.2% of the Enterobacteriaceae isolates, 40.4% of ESBL-producing E. coli, and 25.2% of ESBL-producing K. pneumoniae isolates were susceptible to ceftazidime. Carbapenems showed in vitro activity against >90% of Enterobacteriaceae isolates in all participating countries, except for ertapenem in South Korea (susceptibility rate 82.2%). Marked differences (>5%) in susceptibility of ESBL-producing E. coli and K. pneumoniae isolates to carbapenems were noted between the profiles obtained using the 2009 CLSI criteria and those using the 2011 CLSI criteria. Continuous monitoring of antimicrobial resistance is necessary in the Asia-Pacific region.

  18. Effectiveness of Cephalosporins in the Sputum of Patients with Nosocomial Bronchopneumonia

    PubMed Central

    Klekner, Almos; Bagyi, Kinga; Bognar, Laszlo; Gaspar, Attila; Andrasi, Melinda; Szabo, Judit

    2006-01-01

    Nosocomial bronchopneumonia is a frequent complication in patients with chronic intratracheal intubation. Despite targeted antibiotic treatment, production of abundant bronchial secretion containing pathogen bacteria often tends to be chronic, and so mortality drastically increases. This problem led to an investigation of the penetration of five cephalosporin antibiotics into the sputum. Serum and sputum were collected from 24 chronically intubated patients having purulent nosocomial bronchopneumonia treated in an intensive care unit (ICU). Patients received the following doses intravenously every 24 h: five received 70 mg/kg of body weight cefuroxime, four received 110 mg/kg cefamandole, six received 80 mg/kg ceftriaxone, four received 80 mg/kg ceftazidime, and five received 80 mg/kg cefepime. Antibiotic concentrations in the serum and sputum were evaluated by capillary electrophoresis. MICs were determined for bacteria isolated from the purulent bronchial secretions. The mean levels of the cephalosporins in the sputum did not reach the MICs for the bacteria isolated from the same samples. Ceftriaxone was the only one of the investigated five cephalosporins that had a measurable concentration in the sputum (1.4 ± 1.2 mg/liter). The low concentration of antibiotics in the purulent tracheobronchial secretion can be one of the many reasons for ineffective therapy of nosocomial bronchopneumonia in intubated patients in the ICUs. In the case of intubated or mechanically ventilated patients having chronic bronchopneumonia, determination of drug concentration in the bronchial secretion might be considered when selecting an antibiotic for treatment. PMID:16954290

  19. Understanding the patterns of antibiotic susceptibility of bacteria causing urinary tract infection in West Bengal, India

    PubMed Central

    Saha, Sunayana; Nayak, Sridhara; Bhattacharyya, Indrani; Saha, Suman; Mandal, Amit K.; Chakraborty, Subhanil; Bhattacharyya, Rabindranath; Chakraborty, Ranadhir; Franco, Octavio L.; Mandal, Santi M.; Basak, Amit

    2014-01-01

    Urinary tract infection (UTI) is one of the most common infectious diseases at the community level. In order to assess the adequacy of empirical therapy, the susceptibility of antibiotics and resistance pattern of bacteria responsible for UTI in West Bengal, India, were evaluated throughout the period of 2008–2013. The infection reports belonging to all age groups and both sexes were considered. Escherichia coli was the most abundant uropathogen with a prevalence rate of 67.1%, followed by Klebsiella spp. (22%) and Pseudomonas spp. (6%). Penicillin was least effective against UTI-causing E. coli and maximum susceptibility was recorded for the drugs belonging to fourth generation cephalosporins. Other abundant uropathogens, Klebsiella spp., were maximally resistant to broad-spectrum penicillin, followed by aminoglycosides and third generation cephalosporin. The antibiotic resistance pattern of two principal UTI pathogens, E. coli and Klebsiella spp. in West Bengal, appears in general to be similar to that found in other parts of the Globe. Higher than 50% resistance were observed for broad-spectrum penicillin. Fourth generation cephalosporin and macrolides seems to be the choice of drug in treating UTIs in Eastern India. Furthermore, improved maintenance of infection incident logs is needed in Eastern Indian hospitals in order to facilitate regular surveillance of the occurrence of antibiotic resistance patterns, since such levels continue to change. PMID:25278932

  20. Understanding the patterns of antibiotic susceptibility of bacteria causing urinary tract infection in West Bengal, India.

    PubMed

    Saha, Sunayana; Nayak, Sridhara; Bhattacharyya, Indrani; Saha, Suman; Mandal, Amit K; Chakraborty, Subhanil; Bhattacharyya, Rabindranath; Chakraborty, Ranadhir; Franco, Octavio L; Mandal, Santi M; Basak, Amit

    2014-01-01

    Urinary tract infection (UTI) is one of the most common infectious diseases at the community level. In order to assess the adequacy of empirical therapy, the susceptibility of antibiotics and resistance pattern of bacteria responsible for UTI in West Bengal, India, were evaluated throughout the period of 2008-2013. The infection reports belonging to all age groups and both sexes were considered. Escherichia coli was the most abundant uropathogen with a prevalence rate of 67.1%, followed by Klebsiella spp. (22%) and Pseudomonas spp. (6%). Penicillin was least effective against UTI-causing E. coli and maximum susceptibility was recorded for the drugs belonging to fourth generation cephalosporins. Other abundant uropathogens, Klebsiella spp., were maximally resistant to broad-spectrum penicillin, followed by aminoglycosides and third generation cephalosporin. The antibiotic resistance pattern of two principal UTI pathogens, E. coli and Klebsiella spp. in West Bengal, appears in general to be similar to that found in other parts of the Globe. Higher than 50% resistance were observed for broad-spectrum penicillin. Fourth generation cephalosporin and macrolides seems to be the choice of drug in treating UTIs in Eastern India. Furthermore, improved maintenance of infection incident logs is needed in Eastern Indian hospitals in order to facilitate regular surveillance of the occurrence of antibiotic resistance patterns, since such levels continue to change.

  1. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins.

    PubMed

    Feng, Han; Ding, Jingjin; Zhu, Deyu; Liu, Xuehui; Xu, Xueyong; Zhang, Ying; Zang, Shanshan; Wang, Da-Cheng; Liu, Wei

    2014-10-22

    Cephalosporins constitute a large class of β-lactam antibiotics clinically used as antimicrobial drugs. New Dehli metallo-β-lactamase (NDM-1) poses a global threat to human health as it confers on bacterial pathogen resistance to almost all β-lactams, including penicillins, cephalosporins, and carbapenems. Here we report the first crystal structures of NDM-1 in complex with cefuroxime and cephalexin, as well as NMR spectra monitoring cefuroxime and cefixime hydrolysis catalyzed by NDM-1. Surprisingly, cephalosporoate intermediates were captured in both crystal structures determined at 1.3 and 2.0 Å. These results provide detailed information concerning the mechanism and pathways of cephalosporin hydrolysis. We also present the crystal structure and enzyme assays of a D124N mutant, which reveals that D124 most likely plays a more structural than catalytic role.

  2. MurAA Is Required for Intrinsic Cephalosporin Resistance of Enterococcus faecalis

    PubMed Central

    Vesić, Dušanka

    2012-01-01

    Enterococcus faecalis is a low-GC Gram-positive bacterium that is intrinsically resistant to cephalosporins, antibiotics that target cell wall biosynthesis. To probe the mechanistic basis for intrinsic resistance, a library of transposon mutants was screened to identify E. faecalis strains that are highly susceptible to ceftriaxone, revealing a transposon mutant with a disruption in murAA. murAA is predicted to encode a UDP-N-acetylglucosamine 1-carboxyvinyl transferase that catalyzes the first committed step in peptidoglycan synthesis: phosphoenolpyruvate (PEP)-dependent conversion of UDP-N-acetylglucosamine to UDP-N-acetylglucosamine-enolpyruvate. In-frame deletion of murAA, but not its homolog in the E. faecalis genome (murAB), led to increased susceptibility of E. faecalis to cephalosporins. Furthermore, expression of murAA enhanced cephalosporin resistance in an E. faecalis mutant lacking IreK (formerly PrkC), a key kinase required for cephalosporin resistance. Further genetic analysis revealed that MurAA catalytic activity is necessary but not sufficient for this role. Collectively, our data indicate that MurAA and MurAB have distinct roles in E. faecalis physiology and suggest that MurAA possesses a unique property or activity that enables it to enhance intrinsic resistance of E. faecalis to cephalosporins. PMID:22290954

  3. Kinetic Spectrophotometric Determination of Certain Cephalosporins in Pharmaceutical Formulations

    PubMed Central

    Omar, Mahmoud A.; Abdelmageed, Osama H.; Attia, Tamer Z.

    2009-01-01

    A simple, reliable, and sensitive kinetic spectrophotometric method was developed for determination of eight cephalosporin antibiotics, namely, Cefotaxime sodium, Cephapirin sodium, Cephradine dihydrate, Cephalexin monohydrate, Ceftazidime pentahydrate, Cefazoline sodium, Ceftriaxone sodium, and Cefuroxime sodium. The method depends on oxidation of each of studied drugs with alkaline potassium permanganate. The reaction is followed spectrophotometrically by measuring the rate of change of absorbance at 610 nm. The initial rate and fixed time (at 3 minutes) methods are utilized for construction of calibration graphs to determine the concentration of the studied drugs. The calibration graphs are linear in the concentration ranges 5–15 μg mL−1 and 5–25 μg mL−1 using the initial rate and fixed time methods, respectively. The results are validated statistically and checked through recovery studies. The method has been successfully applied for the determination of the studied cephalosporins in commercial dosage forms. Statistical comparisons of the results with the reference methods show the excellent agreement and indicate no significant difference in accuracy and precision. PMID:20140078

  4. Response of ampicillin resistant Escherichia coli to cephalosporins in an in vitro model simulating conditions of bacterial growth in the urinary bladder.

    PubMed Central

    Greenwood, D.; O'Grady, F.

    1975-01-01

    Five ampicillin resistant strains of Escherichia coli were exposed to cephalosporins in an in vitro model which simulates the hydrokinetic features of the urinary bladder. Although the strains showed substantial zones of inhibition when tested against cephalosporins by the disc diffusion method, the results in the bladder model suggest that, in conditions where the antibiotic concentration is being reduced by dilution and micturition as well as enzymic hydrolysis by the organism, activity of this group of agents may be insufficient to eradicate infection. It is suggested that the results warrant a closer investigation into the efficacy of cephalosporins against ampicillin resistant Gram negative bacilli in vivo. PMID:1106751

  5. [Perioperative antibiotic prophylaxis in cancer surgery].

    PubMed

    Vilar-Compte, Diana; García-Pasquel, María José

    2011-01-01

    The effectiveness of perioperative antibiotic prophylaxis in reducing surgical site infections has been demonstrated. Its utility is recognized for clean-contaminated procedures and some clean surgeries. Prophylactic antibiotics are used as intended to cover the most common germs in the surgical site; first and second generation cephalosporins are the most used. For optimal prophylaxis, an antibiotic with a targeted spectrum should be administered at sufficiently high concentrations in serum, tissue, and the surgical wound during the time that the incision is open and risk of bacterial contamination. The infusion of the first dose of antimicrobial should begin within 60 min before surgical incision and should be discontinued within 24 h after the end of surgery The prolonged use of antibiotic prophylaxis leads to emergence of bacterial resistance and high costs. The principles of antimicrobial prophylaxis in cancer surgery are the same as those described for general surgery; it is recommended to follow and comply with the standard criteria. In mastectomies and clean head and neck surgery there are specific recommendations that differ from non-cancer surgery. In the case of very extensive surgeries, such as pelvic surgery or bone surgery with reconstruction, extension of antibiotics for 48-72 h should be considered.

  6. Nephrotoxicity of cefepime: A new cephalosporin antibiotic in rats

    PubMed Central

    Elsayed, Mossad Gamaleddin Ahmed; Elkomy, Ashraf Abdelhakim Ahmed; Gaballah, Mahmoud Salem; Elbadawy, Mohamed

    2014-01-01

    Objectives: To investigate the nephrotoxic effect and biochemical alterations induced by cefepime in rats. Materials and Methods: Cefepime was administered intramuscularly at doses of 45, 90 and 180 mg/kg b.wt. once daily for 5 consecutive days. The serum and urine samples were used for quantitative determination of urea, creatinine, glucose, total protein, calcium, sodium and potassium. The histopathological examination of kidney tissues was performed 1, 4 and 8 days after the last dose of cefepime administration. Results: Cefepime induced a significant increase in the total amount of urine per day, urea and creatinine concentration in the serum and urine and significant decrease in their clearance. Cefepime also caused a significant gluocosuria and proteinuria and significant decrease in their serum concentrations. The effect of cefepime on serum and urine concentrations of calcium, sodium and potassium were also determined. Cefepime injection in the three tested doses caused renal tubular, glomerular and vascular changes. The severity of these changes was dose dependent. In conclusion, these results suggest a possible contribution of cefepime in the nephrotoxicity and biochemical alterations, especially at high doses. Therefore, the renal functions should be monitored during the cefepime therapy. PMID:24554908

  7. Antibiotic Susceptibility Patterns of Bacterial Isolates from Pus Samples in a Tertiary Care Hospital of Punjab, India

    PubMed Central

    Trojan, Rugira; Razdan, Lovely

    2016-01-01

    We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. E. coli was the most prevalent pathogen (51.2%) followed by Staphylococcus aureus (21%), Klebsiella pneumoniae (11.6%), Pseudomonas aeruginosa (5.8%), Citrobacter spp. (3.5%), Acinetobacter baumannii (2.3%), Proteus mirabilis (2.3%), and Streptococcus spp. (2.3%). E. coli, K. pneumoniae, A. baumannii, and Citrobacter isolates were resistant to multiple antibiotics including higher generation cephalosporins. S. aureus and Streptococcus isolates were sensitive to cloxacillin and vancomycin. However, P. aeruginosa, P. mirabilis, and Streptococcus isolates were found to be less resistant to the spectrum of antibiotics tested. Overall, our findings indicate the prevalence of resistance to different classes of antibiotics in bacterial isolates from pus infections and hence highlight the need for effective surveillance, regulator reporting, and antibiogram-guided antibiotic prescription. PMID:27872643

  8. National Practice in Antibiotic Prophylaxis in Breast Cancer Surgery

    PubMed Central

    Eroglu, Aydan; Karasoy, Durdu; Kurt, Halil; Baskan, Semih

    2014-01-01

    Background Although breast cancer surgery is regarded as a “clean” surgery, surgical site infection (SSI) rates are higher than expected. There is no consensus regarding the use of antibiotic prophylaxis in elective breast surgery. The nationwide survey was conducted to determine the trend of antibiotic prophylaxis in breast cancer among Turkish surgeons. Methods The survey was sent to surgeons who are member of Turkish Surgical Association (TSA) via e-mail from TSA web address. A 15 item web-based survey consisted of surgeon demographics and the use of prophylactic antibiotic in patients with risk factors related to SSI. Results The number of completed questionnaires was 245. The most common antibiotic used was first generation of cephalosporins. A majority of respondents indicated that prophylaxis was preferred in patients with high risk of SSI including preoperative chemotherapy or radiotherapy, older age, diabetes mellitus, immunodeficiency, immediate reconstruction (P < 0.05). However, the use of drain did not significantly influence antibiotic prophylaxis (P = 0.091). Conclusions The use of prophylactic antibiotic was strongly dependent on the presence of some risk factors; however, the variation in current practice regarding antibiotic prophylaxis demonstrated a lack of its effect on preventing SSI after breast cancer surgery. PMID:24400029

  9. Cephalosporins inhibit human metallo β-lactamase fold DNA repair nucleases SNM1A and SNM1B/apollo.

    PubMed

    Lee, Sook Y; Brem, Jürgen; Pettinati, Ilaria; Claridge, Timothy D W; Gileadi, Opher; Schofield, Christopher J; McHugh, Peter J

    2016-05-10

    Bacterial metallo-β-lactamases (MBLs) are involved in resistance to β-lactam antibiotics including cephalosporins. Human SNM1A and SNM1B are MBL superfamily exonucleases that play a key role in the repair of DNA interstrand cross-links, which are induced by antitumour chemotherapeutics, and are therefore targets for cancer chemosensitization. We report that cephalosporins are competitive inhibitors of SNM1A and SNM1B exonuclease activity; both the intact β-lactam and their hydrolysed products are active. This discovery provides a lead for the development of potent and selective SNM1A and SNM1B inhibitors.

  10. Trends of Antibiotic Consumption in Korea According to National Reimbursement Data (2008-2012): A Population-Based Epidemiologic Study.

    PubMed

    Yoon, Young Kyung; Park, Gi Chan; An, Hyonggin; Chun, Byung Chul; Sohn, Jang Wook; Kim, Min Ja

    2015-11-01

    This study determined the trends in the quantities and patterns of nationwide antibiotic consumption in the Republic of Korea (ROK).This nationwide descriptive epidemiological study was conducted in the ROK between 2008 and 2012. The quantities and patterns of total systemic antibiotic prescriptions were analyzed using National Health Insurance claims data collected through the Health Insurance Review and Assessment service. Data concerning systemic antibiotics were collected using measurement units of the defined daily dose (DDD) per 1000 people per day according to the Anatomical Therapeutic Chemical classification.Over the 5-year study period, the annual consumption of systemic antibiotics ranged from 21.68 to 23.12 DDD per 1000 people per day. Outpatient antibiotic use accounted for 80.9% of total consumption. A regression model with autoregressive errors showed significant increased consumption of major antibiotic subgroups, including 3rd-generation cephalosporins, carbapenems, and glycopeptides (P < 0.001). However, the antibiotic use of 1st- (P = 0.003), 2nd- (P = 0.004), and 3rd-generation (P = 0.018) cephalosporins among patients who underwent surgery under monitoring by the antimicrobial stewardship programs for perioperative prescription was significantly lower than in those who underwent surgery without monitoring programs. In time-series analysis, total antibiotic consumption demonstrated significant seasonality (P < 0.001).The consumption of broad-spectrum antibiotics was noted to have increased in the ROK from 2008 to 2012, providing a possible explanation for the changing epidemiology of multidrug resistance. Larger prospective studies are needed to investigate the impact on public health of monitoring programs of perioperative antibiotic usage.

  11. PHARMACOKINETICS OF CEFTIOFUR CRYSTALLINE FREE ACID, A LONG-ACTING CEPHALOSPORIN, IN AMERICAN FLAMINGOS (PHOENICOPTERUS RUBER).

    PubMed

    Kilburn, Jennifer J; Cox, Sherry K; Backues, Kay A

    2016-06-01

    Antibiotic usage is a vital component of veterinary medicine but the unique anatomy of some species can make administration difficult. The objective of this study was to determine the pharmacokinetic parameters of ceftiofur crystalline free acid (CCFA), a long-acting cephalosporin antibiotic, after parenteral administration in American flamingos ( Phoenicopterus ruber ). A dose of 10 mg/kg of CCFA was administered intramuscularly to 11 birds and blood was collected at various time points from 0 to 192 hr. Pharmacokinetic parameters for ceftiofur equivalents were determined and reached levels above minimum inhibitory concentrations of various bacterial organisms in other avian species through 96 hr in 9/11 birds. Based on these findings and comparison to other avian studies, ceftiofur crystalline free acid appears to be a long-acting antibiotic option for American flamingos. Administration of this antibiotic should be utilized in conjunction with culture and sensitivity of suspected pathogens.

  12. Study of the Electrophoretic Behavior of Cephalosporins by Capillary Zone Electrophoresis

    PubMed Central

    Hancu, Gabriel; Sasebeşi, Adina; Rusu, Aura; Kelemen, Hajnal; Ciurba, Adriana

    2015-01-01

    Purpose: The aim of the study was the characterization of the electrophoretic behavior of cephalosporins from different generation having different structural characteristics in order to develop a rapid, simple and efficient capillary electrophoretic method for their identification and simultaneous separation from complex mixtures. Methods: Ten cephalosporin derivatives (cefaclor, cefadroxil, cefalexin, cefazolin, cefoxitin, cefuroxime, cefoperazone, cefotaxime, ceftazidime, ceftriaxone) were analyzed by capillary zone electrophoresis using different background electrolyte solutions at different pH values. Electrophoretic mobilities of the analytes were calculated, the influence of the electrophoretic parameteres on the separation was established and the analytical conditions were optimized. Results: Taking into consideration their structural and chemical properties cephalosporins can be detected over a pH range between 6 and 10. The best results were obtained using a buffer solution containing 25 mM disodium hydrogenophosphate - 25 mM sodium dihydrogenophosphate, at a pH – 7.00, + 25 kV voltage at a temperature of 25 °C, UV detection at 210 nm. Using the optimized analytical conditions we achieved the simultaneous baseline separation for seven cephalosporins in less then 10 minutes. Conclusion: Using the described optimized electrophoretic procedures, capillary electrophoresis can be used for the identification and determination of cephalosporins in formulated pharmaceutical products and for their separation from complex mixtures. PMID:26236661

  13. Antibiotic Susceptibilities of Bacteria Isolated within the Oral Flora of Florida Blacktip Sharks: Guidance for Empiric Antibiotic Therapy

    PubMed Central

    Unger, Nathan R.; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O.

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001) more common than gram-positive bacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline. PMID:25110948

  14. Antibiotic susceptibilities of bacteria isolated within the oral flora of Florida blacktip sharks: guidance for empiric antibiotic therapy.

    PubMed

    Unger, Nathan R; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001) more common than gram-positive bacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline.

  15. Choice of antibiotic in nonelective cesarean section.

    PubMed Central

    Hager, W D; Rapp, R P; Billeter, M; Bradley, B B

    1991-01-01

    The use of antibiotics for prophylaxis against infection among women undergoing nonelective cesarean section has become the standard of care in the United States. Many different antibiotics have been used successfully. Single-dose regimens administered after the cord is clamped have proven just as effective as multiple-dose regimens. Although the most frequently used class of antibiotics is the cephalosporin family, the single best agent has not been determined. This study was a double-blind, randomized trial in which we compared a narrow-spectrum cephalosporin (cefazolin; n = 63) with an expanded-spectrum cephamycin (cefoxitin; n = 66) and with a broad-spectrum cephalosporin (cefotaxime; n = 60) used as a single-dose prophylaxis in patients undergoing a nonelective cesarean section. Of the 194 patients enrolled in the study, 189 were evaluable. There was no significant difference between the groups in mean age, gravidity, parity, duration of labor, duration of ruptured membranes, number of vaginal examinations, or socioeconomic status (socioeconomic status was defined by third-party coverage). There was no significant difference among the antibiotics in the incidence of immediate or delayed postoperative infections. These data indicate that a less expensive, narrow-spectrum cephalosporin is as effective as more expensive, broader-spectrum cephamycins and cephalosporins as prophylaxis for patients undergoing nonelective cesarean section. PMID:1952848

  16. Cephalosporin C production by immobilized Cephalosporium acremonium cells in a repeated batch tower bioreactor.

    PubMed

    Cruz, Antonio J G; Pan, Tai; Giordano, Roberto C; Araujo, Maria Lucia G C; Hokka, Carlos O

    2004-01-05

    The industrial production of antibiotics with filamentous fungi is usually carried out in conventional aerated and agitated tank fermentors. Highly viscous non-Newtonian broths are produced and a compromise must be found between convenient shear stress and adequate oxygen transfer. In this work, cephalosporin C production by bioparticles of immobilized cells of Cephalosporium acremonium ATCC 48272 was studied in a repeated batch tower bioreactor as an alternative to the conventional process. Also, gas-liquid oxygen transfer volumetric coefficients, k(L)a, were determined at various air flow-rates and alumina contents in the bioparticle. The bioparticles were composed of calcium alginate (2.0% w/w), alumina ( < 44 micra), cells, and water. A model describing the cell growth, cephalosporin C production, oxygen, glucose, and sucrose consumption was proposed. To describe the radial variation of oxygen concentration within the pellet, the reaction-diffusion model forecasting a dead core bioparticle was adopted. The k(L)a measurements with gel beads prepared with 0.0, 1.0, 1.5, and 2.0% alumina showed that a higher k(L)a value is attained with 1.5 and 2.0%. An expression relating this coefficient to particle density, liquid density, and air velocity was obtained and further utilized in the simulation of the proposed model. Batch, followed by repeated batch experiments, were accomplished by draining the spent medium, washing with saline solution, and pouring fresh medium into the bioreactor. Results showed that glucose is consumed very quickly, within 24 h, followed by sucrose consumption and cephalosporin C production. Higher productivities were attained during the second batch, as cell concentration was already high, resulting in rapid glucose consumption and an early derepression of cephalosporin C synthesizing enzymes. The model incorporated this improvement predicting higher cephalosporin C productivity.

  17. The initial state of the human gut microbiome determines its reshaping by antibiotics.

    PubMed

    Raymond, Frédéric; Ouameur, Amin A; Déraspe, Maxime; Iqbal, Naeem; Gingras, Hélène; Dridi, Bédis; Leprohon, Philippe; Plante, Pier-Luc; Giroux, Richard; Bérubé, Ève; Frenette, Johanne; Boudreau, Dominique K; Simard, Jean-Luc; Chabot, Isabelle; Domingo, Marc-Christian; Trottier, Sylvie; Boissinot, Maurice; Huletsky, Ann; Roy, Paul H; Ouellette, Marc; Bergeron, Michel G; Corbeil, Jacques

    2016-03-01

    Microbiome studies have demonstrated the high inter-individual diversity of the gut microbiota. However, how the initial composition of the microbiome affects the impact of antibiotics on microbial communities is relatively unexplored. To specifically address this question, we administered a second-generation cephalosporin, cefprozil, to healthy volunteers. Stool samples gathered before antibiotic exposure, at the end of the treatment and 3 months later were analysed using shotgun metagenomic sequencing. On average, 15 billion nucleotides were sequenced for each sample. We show that standard antibiotic treatment can alter the gut microbiome in a specific, reproducible and predictable manner. The most consistent effect of the antibiotic was the increase of Lachnoclostridium bolteae in 16 out of the 18 cefprozil-exposed participants. Strikingly, we identified a subgroup of participants who were enriched in the opportunistic pathogen Enterobacter cloacae after exposure to the antibiotic, an effect linked to lower initial microbiome diversity and to a Bacteroides enterotype. Although the resistance gene content of participants' microbiomes was altered by the antibiotic, the impact of cefprozil remained specific to individual participants. Resistance genes that were not detectable prior to treatment were observed after a 7-day course of antibiotic administration. Specifically, point mutations in beta-lactamase blaCfxA-6 were enriched after antibiotic treatment in several participants. This suggests that monitoring the initial composition of the microbiome before treatment could assist in the prevention of some of the adverse effects associated with antibiotics or other treatments.

  18. The initial state of the human gut microbiome determines its reshaping by antibiotics

    PubMed Central

    Raymond, Frédéric; Ouameur, Amin A; Déraspe, Maxime; Iqbal, Naeem; Gingras, Hélène; Dridi, Bédis; Leprohon, Philippe; Plante, Pier-Luc; Giroux, Richard; Bérubé, Ève; Frenette, Johanne; Boudreau, Dominique K; Simard, Jean-Luc; Chabot, Isabelle; Domingo, Marc-Christian; Trottier, Sylvie; Boissinot, Maurice; Huletsky, Ann; Roy, Paul H; Ouellette, Marc; Bergeron, Michel G; Corbeil, Jacques

    2016-01-01

    Microbiome studies have demonstrated the high inter-individual diversity of the gut microbiota. However, how the initial composition of the microbiome affects the impact of antibiotics on microbial communities is relatively unexplored. To specifically address this question, we administered a second-generation cephalosporin, cefprozil, to healthy volunteers. Stool samples gathered before antibiotic exposure, at the end of the treatment and 3 months later were analysed using shotgun metagenomic sequencing. On average, 15 billion nucleotides were sequenced for each sample. We show that standard antibiotic treatment can alter the gut microbiome in a specific, reproducible and predictable manner. The most consistent effect of the antibiotic was the increase of Lachnoclostridium bolteae in 16 out of the 18 cefprozil-exposed participants. Strikingly, we identified a subgroup of participants who were enriched in the opportunistic pathogen Enterobacter cloacae after exposure to the antibiotic, an effect linked to lower initial microbiome diversity and to a Bacteroides enterotype. Although the resistance gene content of participants' microbiomes was altered by the antibiotic, the impact of cefprozil remained specific to individual participants. Resistance genes that were not detectable prior to treatment were observed after a 7-day course of antibiotic administration. Specifically, point mutations in beta-lactamase blaCfxA-6 were enriched after antibiotic treatment in several participants. This suggests that monitoring the initial composition of the microbiome before treatment could assist in the prevention of some of the adverse effects associated with antibiotics or other treatments. PMID:26359913

  19. [Epidemiological overview of antibiotic resistance in France and worldwide].

    PubMed

    Arlet, Guillaume

    2012-09-01

    Antibiotic resistance appeared early after the introduction of these molecules in therapeutic. But, this resistance has long been confined to care facilities. Twenty years ago, resistance emerged in community with the methicillin resistance in Staphylococcus aureus and also with the reduced susceptibility to penicillin in pneumococci, which are good examples. Fortunately, for these two species, in France, the situation appears to be controlled. The most worrying now is the emergence of resistance to major antimicrobial agents in Escherichia coli both in community and in hospitals. The third-generation cephalosporins and the fluoroquinolones are concerned. This situation is currently not well controlled here and worldwide. The only recourse remaining carbapenems, antibiotics reserved for hospital use. Unfortunately, new mechanisms of resistance to these molecules are emerging.

  20. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action

    PubMed Central

    2012-01-01

    Resistance to antibiotics has increased dramatically over the past few years and has now reached a level that places future patients in real danger. Microorganisms such as Escherichia coli and Klebsiella pneumoniae, which are commensals and pathogens for humans and animals, have become increasingly resistant to third-generation cephalosporins. Moreover, in certain countries, they are also resistant to carbapenems and therefore susceptible only to tigecycline and colistin. Resistance is primarily attributed to the production of beta-lactamase genes located on mobile genetic elements, which facilitate their transfer between different species. In some rare cases, Gram-negative rods are resistant to virtually all known antibiotics. The causes are numerous, but the role of the overuse of antibiotics in both humans and animals is essential, as well as the transmission of these bacteria in both the hospital and the community, notably via the food chain, contaminated hands, and between animals and humans. In addition, there are very few new antibiotics in the pipeline, particularly for Gram-negative bacilli. The situation is slightly better for Gram-positive cocci as some potent and novel antibiotics have been made available in recent years. A strong and coordinated international programme is urgently needed. To meet this challenge, 70 internationally recognized experts met for a two-day meeting in June 2011 in Annecy (France) and endorsed a global call to action ("The Pensières Antibiotic Resistance Call to Action"). Bundles of measures that must be implemented simultaneously and worldwide are presented in this document. In particular, antibiotics, which represent a treasure for humanity, must be protected and considered as a special class of drugs. PMID:22958833

  1. Potential Cross-Reactivity Between Penicillin Derivatives and Cephalosporins.

    PubMed

    Putland, Stacey J; Soulsby, Natalie R; Ward, Sue M; Alderman, Christopher P

    2015-12-01

    Allergic reactions to both penicillins and cephalosporins are relatively common. Patients who have had a previous allergic reaction to a penicillin derivative may also be prone to a further reaction if treated with cephalosporins. This case illustrates several important points about potential cross-reactivity between penicillin derivatives and cephalosporins, as well as the benefits of an extended-hours pharmacy service in a longterm care facility.

  2. New beta-lactam antibiotics in granulocytopenic patients. New options and new questions.

    PubMed

    Pizzo, P A; Thaler, M; Hathorn, J; Hiemenz, J; Skelton, J; McKnight, J; Rubin, M; Browne, M; Longo, D; Cotton, D

    1985-08-09

    Infectious complications are a frequent cause of morbidity and, at many centers, the major cause of death in patients with cancer. The increased risk and severity of infectious sequelae result from profound alterations in normal host defenses that occur secondary to the underlying malignancy and the treatment thereof. During the last decade, early empiric antibiotic therapy has become standard practice in the initial management of febrile granulocytopenic patients and has contributed significantly to the improved outcome among patients undergoing cancer therapy. Although early death due to unsuspected or inadequately treated bacterial infection has been largely overcome, new problems--also with life-threatening implications--have emerged. As the use of cancer chemotherapy continues to increase, new populations of patients are being placed at increased risk of infection. Defining the host and environmental factors that contribute to this risk assumes central importance for delineating those patients who require the most intense surveillance. Changing medical practices (e.g., increased use of indwelling catheters) have contributed to the emergence of new pathogens. Recent drug developments (e.g., the third-generation cephalosporins and extended-spectrum penicillins) offer new treatment options, as well as generate controversy and confusion. For example, authorities disagree on the optimal duration and modifications in treatment that are required by cancer patients who remain granulocytopenic and who thus are at continued risk of multiple infectious episodes or superinfections. A question of current interest is whether combination therapy with synergistic agents is important in light of the development of the third-generation cephalosporins and extended-spectrum penicillins. Several of these new antibiotics have an exceedingly broad spectrum of activity that includes Pseudomonas aeruginosa, as well as Enterobacteriaceae, Serratia, Citrobacter, indole-positive Proteus

  3. A Point Prevalence Survey of Antibiotic Use in 18 Hospitals in Egypt

    PubMed Central

    Talaat, Maha; Saied, Tamer; Kandeel, Amr; Abo El-Ata, Gehad A.; El-Kholy, Amani; Hafez, Soad; Osman, Ashraf; Abdel Razik, Mohamed; Ismail, Ghada; El-Masry, Sherine; Galal, Rami; Yehia, Mohamad; Amer, Amira; Calfee, David P.

    2014-01-01

    Inappropriate antibiotic use leads to increased risk of antibiotic resistance and other adverse outcomes. The objectives of the study were to determine the prevalence and characteristics of antibiotic use in Egyptian hospitals to identify opportunities for quality improvement. A point prevalence survey was conducted in 18 hospitals in March 2011. A total of 3408 patients were included and 59% received at least one antibiotic, with the most significant use among persons <12 years and intensive care unit patients (p < 0.05). Third generation cephalosporin were the most commonly prescribed antibiotics (28.7% of prescriptions). Reasons for antibiotic use included treatment of community—(27%) and healthcare-associated infections (11%) and surgical (39%) and medical (23%) prophylaxis. Among surgical prophylaxis recipients, only 28% of evaluable cases received the first dose within two hours before incision and only 25% of cases received surgical prophylaxis for <24 h. The prevalence of antibiotic use in Egyptian hospitals was high with obvious targets for antimicrobial stewardship activities including provision of antibiotic prescription guidelines and optimization of surgical and medical prophylaxis practices. PMID:27025755

  4. High-Efficiency Generation of Antibiotic-Resistant Strains of Streptococcus pneumoniae by PCR and Transformation

    PubMed Central

    Martín-Galiano, Antonio J.; de la Campa, Adela G.

    2003-01-01

    We designed a method by which to generate antibiotic-resistant strains of Streptococcus pneumoniae at frequencies 4 orders of magnitude greater than the spontaneous mutation rate. The method is based on the natural ability of this organism to be genetically transformed with PCR products carrying sequences homologous to its chromosome. The genes encoding the targets of ciprofloxacin (parC, encoding the ParC subunit of DNA topoisomerase IV), rifampin (rpoB, encoding the β subunit of RNA polymerase), and streptomycin (rpsL, encoding the S12 ribosomal protein) from susceptible laboratory strain R6 were amplified by PCR and used to transform the same strain. Resistant mutants were obtained with a frequency of 10−4 to 10−5, depending on the fidelity of the DNA polymerase used for PCR amplifications. Ciprofloxacin-resistant mutants, for which the MICs were four-to eightfold higher than that for R6, carried a single mutation of a residue in the quinolone resistance-determining region: S79 (change to A, F, or Y) or D83 (change to N or V). Rifampin-resistant strains, for which the MICs were at least 133-fold higher than that for R6, contained a single mutation within cluster I of rpoB: S482 (change to P), Q486 (change to L), D489 (change to V), or H499 (change to L or Y). Streptomycin-resistant mutants, for which the MICs were at least 64-fold higher than that for R6, carried a mutation at either K56 (change to I, R, or T) or K101 (change to E). PCR products obtained from the mutants were able to transform R6 to resistance with high efficiency (>104). This method could be used to efficiently obtain resistant mutants for any drug whose target is known. PMID:12654655

  5. Use of Hypoprothrombinemia-Inducing Cephalosporins and the Risk of Hemorrhagic Events: A Nationwide Nested Case-Control Study

    PubMed Central

    Shen, Li-Jiuan; Wu, Fe-Lin Lin; Tsay, Woei; Hung, Chien-Ching; Lin, Shu-Wen

    2016-01-01

    Objective Existing data regarding the risk of hemorrhagic events associated with exposure to hypoprothrombinemia-inducing cephalosporins are limited by the small sample size. This population-based study aimed to examine the association between exposure to hypoprothrombinemia-inducing cephalosporins and hemorrhagic events using National Health Insurance Research Database in Taiwan. Design A nationwide nested case-control study. Setting National Health Insurance Research database. Participants We conducted a nested case-control study within a cohort of 6191 patients who received hypoprothrombinemia-inducing cephalosporins and other antibiotics for more than 48 hours. Multivariable conditional logistic regressions were used to calculate the adjusted odds ratio (aOR) and 95% confidence interval (CI) for hemorrhagic events associated with exposure to hypoprothrombinemia-inducing cephalosporins (overall, cumulative dose measured as defined daily dose (DDD), and individual cephalosporins). Results Within the cohort, we identified 704 patients with hemorrhagic events and 2816 matched controls. Use of hypoprothrombinemia-inducing cephalosporins was associated with increased risk of hemorrhagic events (aOR, 1.71; 95% CI, 1.42–2.06), which increased with higher cumulative doses (<3 DDDs, aOR 1.62; 3–5 DDDs, aOR 1.78; and >5 DDDs, aOR 1.89). The aOR for individual cephalosporin was 2.88 (95% CI, 2.08–4.00), 1.35 (1.09–1.67) and 4.57 (2.63–7.95) for cefmetazole, flomoxef, and cefoperazone, respectively. Other risk factors included use of anticoagulants (aOR 2.08 [95% CI, 1.64–2.63]), liver failure (aOR 1.69 [1.30–2.18]), poor nutritional status (aOR 1.41 [1.15–1.73]), and history of hemorrhagic events (aOR 2.57 [1.94–3.41]) 6 months prior to the index date. Conclusions Use of hypoprothrombinemia-inducing cephalosporins increases risk of hemorrhagic events. Close watch for hemorrhagic events is recommended when prescribing these cephalosporins, especially in

  6. Pattern of antibiotic prescription and resistance profile of common bacterial isolates in the internal medicine wards of a tertiary referral centre in Nigeria.

    PubMed

    Iliyasu, Garba; Dayyab, Farouq M; Bolaji, Tiamiyu A; Habib, Zaiyad G; Takwashe, Isa M; Habib, Abdulrazaq G

    2015-06-01

    Indiscriminate and excessive use of antibiotics is the major driver to the development of bacterial resistance, which is now a global challenge. Information regarding antibiotic use in Nigerian hospitals is lacking. This study examined the pattern of antibiotic prescription in a tertiary hospital in Nigeria. In a retrospective survey, case records of patients who were admitted into the medical wards over a 6-month period were reviewed. A pre-formed questionnaire was administered that sought information such as sociodemographic data, drug data, basis of prescription and other relevant information on all patients who received antibiotics. Data were analysed using SPSS for Windows v.16. Of 412 patients admitted into the internal medicine ward during the study period, 202 (49.0%) received antibiotics, of whom 125 (61.9%) received more than one antibiotic. Overall there were 334 antibiotic prescriptions. Community-acquired pneumonia (67/202; 33.2%) was the leading cause of antibiotic prescription, and ceftriaxone (132/334; 39.5%) was the most commonly prescribed antibiotic. The parenteral route was the commonest route of administration (270/334; 80.8%) and most of the prescriptions were empirical (323/334; 96.7%). Antimicrobial resistance among common bacterial isolates was noted. Inappropriate antibiotic prescription is common. There was frequent use of third-generation cephalosporins as empirical therapy, with de-escalation in only a handful of cases. This highlights the need for introduction of antibiotic guidelines.

  7. Magnetic separation of antibiotics by electrochemical magnetic seeding

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Toyoda, K.; Beneragama, N.; Umetsu, K.

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  8. Prophylactic Antibiotic Management of Surgical Patients Noted as "Allergic" to Penicillin at Two Academic Hospitals.

    PubMed

    Epstein, Richard H; Jacques, Paul St; Wanderer, Jonathan P; Bombulie, Mark R; Agarwalla, Niraj

    2016-05-01

    We studied prophylactic antibiotics administered at 2 academic medical centers during a 6-year period where a cephalosporin was indicated but an "allergy" to penicillin was noted. Another drug (typically vancomycin or clindamycin) was substituted approximately 80% of the time; this occurred frequently even when symptoms unrelated to acute hypersensitivity were listed. In >50% of cases, the reaction was either omitted or vague (e.g., simply "rash"). Given the estimated 1% cross-reactivity between penicillins and cephalosporins with similar R1 side chains, many of these patients could have received either the prescribed cephalosporin or another cephalosporin with a different R1 side chain.

  9. Cephalosporin-NO-donor prodrug PYRRO-C3D shows β-lactam-mediated activity against Streptococcus pneumoniae biofilms.

    PubMed

    Allan, Raymond N; Kelso, Michael J; Rineh, Ardeshir; Yepuri, Nageshwar R; Feelisch, Martin; Soren, Odel; Brito-Mutunayagam, Sanjita; Salib, Rami J; Stoodley, Paul; Clarke, Stuart C; Webb, Jeremy S; Hall-Stoodley, Luanne; Faust, Saul N

    2017-05-01

    Bacterial biofilms show high tolerance towards antibiotics and are a significant problem in clinical settings where they are a primary cause of chronic infections. Novel therapeutic strategies are needed to improve anti-biofilm efficacy and support reduction in antibiotic use. Treatment with exogenous nitric oxide (NO) has been shown to modulate bacterial signaling and metabolic processes that render biofilms more susceptible to antibiotics. We previously reported on cephalosporin-3'-diazeniumdiolates (C3Ds) as NO-donor prodrugs designed to selectively deliver NO to bacterial infection sites following reaction with β-lactamases. With structures based on cephalosporins, C3Ds could, in principal, also be triggered to release NO following β-lactam cleavage mediated by transpeptidases/penicillin-binding proteins (PBPs), the antibacterial target of cephalosporin antibiotics. Transpeptidase-reactive C3Ds could potentially show both NO-mediated anti-biofilm properties and intrinsic (β-lactam-mediated) antibacterial effects. This dual-activity concept was explored using Streptococcus pneumoniae, a species that lacks β-lactamases but relies on transpeptidases for cell-wall synthesis. Treatment with PYRRO-C3D (a representative C3D containing the diazeniumdiolate NO donor PYRRO-NO) was found to significantly reduce viability of planktonic and biofilm pneumococci, demonstrating that C3Ds can elicit direct, cephalosporin-like antibacterial activity in the absence of β-lactamases. While NO release from PYRRO-C3D in the presence of pneumococci was confirmed, the anti-pneumococcal action of the compound was shown to arise exclusively from the β-lactam component and not through NO-mediated effects. The compound showed similar potency to amoxicillin against S. pneumoniae biofilms and greater efficacy than azithromycin, highlighting the potential of C3Ds as new agents for treating pneumococcal infections.

  10. Paediatric antibiotic prescriptions in primary care in the Alpes-Maritimes area of southeastern France between 2008 and 2013.

    PubMed

    Touboul-Lundgren, P; Bruno, P; Bailly, L; Dunais, B; Pradier, C

    2017-03-01

    France has remained among the top five European countries for ambulatory antibiotic consumption since such monitoring began in 1998. Young children are major antibiotic consumers, in spite of the viral origin of most infections in this population. Recommendations were updated in 2011 to limit prescriptions. In order to assess their impact, diagnoses and prescriptions were compared in a population of children attending daycare centres in southeastern France in 2008 and 2012. Trends in the reimbursement of paediatric antibiotic prescriptions by the national health insurance (NHI) for the whole area were also studied. Distribution of diagnoses accounting for antibiotic treatment and type of antibiotic prescribed over the previous 3 months to children below 4 years of age attending daycare centres in the Alpes-Maritimes area in southeastern France were compared between 2008 and 2012 prior to and following the availability of these new recommendations. Trends in reimbursed ambulatory antibiotic prescriptions by general practitioners and paediatricians in the area were studied for this age group from 2008 to 2012 and in 2013. The majority of recorded diagnoses concerned upper respiratory tract infections (URTI). Inappropriate antibiotic prescription persisted for colds and bronchitis in similar proportions during both surveys. Improvement in the choice of antibiotic with fewer prescriptions for third-generation cephalosporins was observed both in daycare centres and according to NHI data; however, this was mainly recorded among paediatricians. The management of paediatric URTI still needs improvement, pointing to the need to investigate and adequately address the reasons for inappropriate antibiotic prescription.

  11. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics.

    PubMed

    Krawczyk-Balska, A; Markiewicz, Z

    2016-02-01

    Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures.

  12. A broadly applicable approach to prepare monoclonal anti-cephalosporin antibodies for immunochemical residue determination in milk.

    PubMed

    Bremus, Anna; Dietrich, Richard; Dettmar, Lars; Usleber, Ewald; Märtlbauer, Erwin

    2012-04-01

    A simple, efficient and rapid method for the synthesis of cephalosporin-protein conjugates was established. These conjugates were used as immunogens to produce monoclonal antibodies (mAbs) and as solid phase antigens in competitive indirect enzyme immunoassays (EIAs). With this generic approach, a novel set of monoclonal antibodies for cephalosporins was prepared, including ceftiofur and cephalexin as well as, reported here for the first time, cefoperazone, cefquinome and cephapirin. All 5 EIAs were highly sensitive, with standard curve IC(50) values of 0.7 (ceftiofur), 1.1 (cefquinome), 5.2 (cephalexin), 13.8 (cefoperazone) and 40.3 ng mL(-1) (cephapirin). Detection limits (IC(30)) ranged from 0.3 (ceftiofur mAb 1D7) to 17.2 ng mL(-1) (cephapirin mAb 2F10). Specificity studies revealed that cephalosporin-antibody binding was strongly determined by the side chain residues of the cephem nucleus. Therefore all mAbs, to some extent, recognized other beta-lactam antibiotics with similar side chain residues. Within the group of cephalosporins approved for use in veterinary medicine, however, the final EIAs were highly selective for their respective antigen, except for the ceftiofur EIA which showed cross-reactions with cefquinome. The applicability of the five assays for drug residue testing in milk was demonstrated. In each EIA the target drug could be determined in milk with high accuracy and precision at concentrations far below the European Union maximum residue limits.

  13. Cefadroxil, a New Broad-Spectrum Cephalosporin

    PubMed Central

    Buck, R. E.; Price, K. E.

    1977-01-01

    Cefadroxil is a new semisynthetic cephalosporin with a broad antibacterial spectrum and a high chemotherapeutic potential when administered orally. The inhibitory activity of this compound was similar to that of cephalexin and cephradine when tested against 602 clinical isolates on Mueller-Hinton medium. In the oral treatment of experimental infections of mice, cefadroxil was more effective than cephalexin against Streptococcus pyogenes, and comparably effective against Streptococcus pneumoniae, Staphylococcus aureus, and several gram-negative species. Administered orally to mice, at doses ranging from 25 to 100 mg/kg, cefadroxil attained peak concentrations in the blood similar to those of cephalexin. At a dose of 200 mg/kg, however, higher peak levels were noted with cefadroxil than with cephalexin. In regard to other properties which were investigated, the behavior of cefadroxil compared favorably to that of cephalexin. PMID:848939

  14. Modeling and simulation of cephalosporin C production in a fed-batch tower-type bioreactor.

    PubMed

    Almeida, R M; Cruz, A J; Araujo, M L; Giordano, R C; Hokka, C O

    2001-01-01

    Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta-lactam antibiotics, such as a cephalosporin C fed-batch process in an aerated stirred-tankbioreactor with free cells of Cephalosporium acremonium, or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch process. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations. For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, cell concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data, and based on the

  15. Synergism between aminoglycosides and cephalosporins with antipseudomonal activity: interaction index and killing curve method.

    PubMed Central

    Hallander, H O; Dornbusch, K; Gezelius, L; Jacobson, K; Karlsson, I

    1982-01-01

    Combinations of gentamicin with cefotaxime, moxalactam, and ceftazidime were tested against 43 bacterial strains, most of them blood isolates. With an interaction index of less than or equal to 0.5 as borderline, synergism was demonstrated against 30 to 40% of the strains by the fractional inhibitory concentration index and against 50 to 70% by the fractional bactericidal concentration index. The reproducibility of the index was within +/- 0.2 for two-thirds of 40 repetitive assays and within +/- 0.4 to 0.5 for all of these assays. Similar results were obtained when netilmicin was substituted for gentamicin. The killing curve system for studying antibiotic synergism was standardized to give results comparable to those obtained with the interaction index. This was achieved when one-half of a previously determined minimum bactericidal concentration was used for single drugs and the amount of antibiotic was at least halved again when drugs were used in combination. An initial bacterial concentration of 10(5) to 10(6) colony-forming units per ml is recommended. Given these conditions, synergism could be defined as a 2-log 10 or more decrease in viable count given by both drugs together, as compared with the more active of the pair after 24 h. Prediction of killing curve results could then be obtained with the fractional bactericidal concentration index. When cephalosporins and gentamicin were combined from the start, the beta-lactam antibiotics were less susceptible to inactivation, as demonstrated in time-killing assays. If one of the antibiotics were added after 24 h, synergism was not demonstrable. The results indicate that the new cephalosporins may be advantageously combined with aminoglycosides. PMID:7181485

  16. Novel Cephalosporins Selectively Active on Nonreplicating Mycobacterium tuberculosis

    PubMed Central

    2016-01-01

    We report two series of novel cephalosporins that are bactericidal to Mycobacterium tuberculosis alone of the pathogens tested, which only kill M. tuberculosis when its replication is halted by conditions resembling those believed to pertain in the host, and whose bactericidal activity is not dependent upon or enhanced by clavulanate, a β-lactamase inhibitor. The two classes of cephalosporins bear an ester or alternatively an oxadiazole isostere at C-2 of the cephalosporin ring system, a position that is almost exclusively a carboxylic acid in clinically used agents in the class. Representatives of the series kill M. tuberculosis within macrophages without toxicity to the macrophages or other mammalian cells. PMID:27144688

  17. Antibiotic Prescriptions and Prophylaxis in Italian Children. Is It Time to Change? Data from the ARPEC Project

    PubMed Central

    Montagnani, Carlotta; Lo Vecchio, Andrea; Romanengo, Marta; Tagliabue, Claudia; Centenari, Chiara; D’Argenio, Patrizia; Lundin, Rebecca; Giaquinto, Carlo; Galli, Luisa; Guarino, Alfredo; Esposito, Susanna; Sharland, Mike; Versporten, Ann; Goossens, Herman; Nicolini, Giangiacomo

    2016-01-01

    Background Antimicrobials are the most commonly prescribed drugs. Many studies have evaluated antibiotic prescriptions in the paediatric outpatient but few studies describing the real antibiotic consumption in Italian children’s hospitals have been published. Point-prevalence survey (PPS) has been shown to be a simple, feasible and reliable standardized method for antimicrobials surveillance in children and neonates admitted to the hospital. In this paper, we presented data from a PPS on antimicrobial prescriptions carried out in 7 large Italian paediatric institutions. Methods A 1-day PPS on antibiotic use in hospitalized neonates and children was performed in Italy between October and December 2012 as part of the Antibiotic Resistance and Prescribing in European Children project (ARPEC). Seven institutions in seven Italian cities were involved. The survey included all admitted patients less than 18 years of age present in the ward at 8:00 am on the day of the survey, who had at least one on-going antibiotic prescription. For all patients data about age, weight, underlying disease, antimicrobial agent, dose and indication for treatment were collected. Results The PPS was performed in 61 wards within 7 Italian institutions. A total of 899 patients were eligible and 349 (38.9%) had an on-going prescription for one or more antibiotics, with variable rates among the hospitals (25.7% - 53.8%). We describe antibiotic prescriptions separately in neonates (<30 days old) and children (> = 30 days to <18 years old). In the neonatal cohort, 62.8% received antibiotics for prophylaxis and only 37.2% on those on antibiotics were treated for infection. Penicillins and aminoglycosides were the most prescribed antibiotic classes. In the paediatric cohort, 64.4% of patients were receiving antibiotics for treatment of infections and 35.5% for prophylaxis. Third generation cephalosporins and penicillin plus inhibitors were the top two antibiotic classes. The main reason for

  18. De novo generation of histamine in sputum and the effect of antibiotics.

    PubMed

    Sheinman, B D; Devalia, J L; Crook, S J; Davies, R J

    1986-03-01

    We have performed experiments to test the hypothesis that bacteria may contribute to the presence of histamine in sputum. Sputum samples obtained from 7 patients with exacerbations of chronic bronchitis and 7 patients with cystic fibrosis were incubated at 37 degrees C for 72 hours. Serial sputum histamine estimations, performed by a recently-developed HPLC technique, showed large, progressive increases in both groups of samples. Both the pre-heating of samples at 100 degrees C prior to incubation and the addition of antibiotics to the incubates substantially reduced these increases. These findings strongly suggest that bacteria may contribute to sputum histamine in infective lung disease.

  19. Ceftazidime/avibactam: a novel cephalosporin/nonbeta-lactam beta-lactamase inhibitor for the treatment of complicated urinary tract infections and complicated intra-abdominal infections

    PubMed Central

    Hidalgo, Jose A; Vinluan, Celeste M; Antony, Nishaal

    2016-01-01

    There has been greater interest in developing additional antimicrobial agents due to the increasing health care costs and resistance resulting from bacterial pathogens to currently available treatment options. Gram-negative organisms including Enterobacteriaceae and Pseudomonas aeruginosa are some of the most concerning threats due to their resistance mechanisms: extended-spectrum beta-lactamase production and Klebsiella pneumoniae carbapenemase enzymes. Ceftazidime is a third-generation broad-spectrum cephalosporin with activity against P. aeruginosa and avibactam is a novel nonbeta-lactam beta-lactamase inhibitor. Avycaz®, the trade name for this new combination antibiotic, restores the activity of ceftazidime against some of the previously resistant pathogens. Avycaz was approved in 2015 for the treatment of complicated urinary tract infections, including pyelonephritis, and complicated intra-abdominal infections with the addition of metronidazole in patients with little to no other treatment options. This review article assesses the clinical trials and data that led to the approval of this antibiotic, in addition to its spectrum of activity and limitations. PMID:27528799

  20. Cephalosporin-induced alteration in hepatic glutathione redox state. A potential mechanism for inhibition of hepatic reduction of vitamin K1,2,3-epoxide in the rat.

    PubMed Central

    Mitchell, M C; Mallat, A; Lipsky, J J

    1990-01-01

    Hypoprothrombinemia is a serious adverse effect of antimicrobial therapy that occurs after administration of some second- and third-generation cephalosporins which contain the methyltetrazole-thiol (MTT) group. Previous studies have shown that in vitro MTT directly inhibits microsomal gamma-carboxylation of a synthetic pentapeptide. Since MTT is a thiocarbamide, a type of compound that can increase oxidation of glutathione, the present studies were carried out to determine whether alterations in hepatic glutathione redox state might interfere with vitamin K metabolism. Dose-related increases in biliary efflux and hepatic concentration of oxidized glutathione (GSSG) occurred after intravenous administration of MTT or MTT-containing antibiotics to rats. This finding suggested that these compounds could alter the hepatic glutathione redox state in vivo. Microsomal reduction of vitamin K epoxide occurred in the presence of 100 microM dithiothreitol (DTT), but was inhibited by preincubation with GSSG at concentrations as low as 10 microM. At higher concentrations of DTT (1.0 mM) inhibition by GSSG persisted, but higher concentrations were required, suggesting that the thiol/disulfide ratio, rather than the absolute concentration of GSSG was important. By contrast, GSSG did not effect microsomal gamma-carboxylation of a pentapeptide, using either vitamin K1 or its hydroquinone as a cofactor. These findings suggest a novel mechanism for the hypoprothrombinemia occurring after administration of MTT-containing antibiotics. PMID:1978724

  1. Antibiotic consumption and resistance: data from Europe and Germany.

    PubMed

    Meyer, Elisabeth; Gastmeier, Petra; Deja, Maria; Schwab, Frank

    2013-08-01

    The use of antibiotics - including the over- and misuse - in human and veterinary practices selected for resistant pathogens and led to their emergence and dissemination along with the transmission of resistant bacteria. The aim of this article is to prescribe the prerequisites for the surveillance of antibiotic use and bacterial resistance, to explain advantage and disadvantage of surveillance parameters used, to present new data from a surveillance network of intensive care units focusing on antibiotic use and resistance and to discuss the impact of antibiotic use on resistance. The Surveillance System of Antibiotic Use and Bacterial Resistance in Intensive Care Units (SARI) is an on-going project that collects data from its network of intensive care units (ICU) in Germany. Antimicrobial use was expressed as daily defined doses (DDD) and normalized per 1000 patient-days (pd). ICU decided either to provide monthly data on antibiotic and resistant pathogens or they decided to provide only yearly data on antibiotic use without resistance data. 85% of all antibiotics used in Germany are administered in animals; 85% of the antibiotics used in humans are prescribed in the outpatient setting and 85% of the antibiotics used in hospitals are prescribed on non-ICUs wards. The mostly widely used parameter for the surveillance of resistance is the percentage of resistant pathogens which is important to guide empirical therapy but does not measure the burden of resistance which is of interest to the public health perspective. The burden of MRSA did not increase over the last 11 years in ICUs and was 4.2MRSA/1000pd in 2011. The burden of 3rd generation resistant E. coli and K. pneumoniae more than quintupled (up to 2.6 and 1.2 respectively) and was followed by a three times increased use of carbapenems and correlated with quinolone and 3rd generation cephalosporin use. The burden VRE faecium also increased dramatically from 0.1 to 0.8 within 11 years; VRE faecium showed no

  2. Penicillin and cephalosporin drug allergies: a paradigm shift.

    PubMed

    Smith, Robert G

    2008-01-01

    Medication hypersensitivity is a constant variable that podiatric physicians face during their professional day. To avoid potential patient harm, an understanding of penicillin and cephalosporin hypersensitivities as it pertains to podiatric medicine needs to be achieved. To accomplish this, a narrative describing the signs, symptoms, and immunologic mechanisms for the basis of penicillin and cephalosporin drug hypersensitivities is presented. Second, specific medical literature serving as clinical-based evidence to support the prescribing of cephalosporins in patients with documented penicillin allergy is presented. Finally, a review of the medical and legal literature describing health-care provider liability regarding subsequent drug hypersensitivity is presented. The information contained in this review allows for the evolving paradigm that permits the prescribing of selective cephalosporins to patients with a history of penicillin allergy as long as the allergic symptoms were not serious or life-threatening.

  3. Review of the spectrum and potency of orally administered cephalosporins and amoxicillin/clavulanate.

    PubMed

    Sader, Helio S; Jacobs, Michael R; Fritsche, Thomas R

    2007-03-01

    The antimicrobial spectrum and in vitro potency of the most frequently prescribed orally administered cephalosporins (cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime axetil, cephalexin) and amoxicillin/clavulanate are reviewed. These beta-lactam agents have been widely used in the outpatient arena for the treatment of community-acquired respiratory tract and other mild-to-moderate infections. The data presented here were obtained from critical review articles on each of these compounds. Cephalexin and cefaclor were among the least potent and had the narrowest antimicrobial spectrums against the pathogens evaluated. In contrast, cefdinir, cefpodoxime, cefprozil, and cefuroxime were highly active against penicillin-susceptible Streptococcus pneumoniae and retained some activity against penicillin-intermediate strains, whereas amoxicillin/clavulanate was the most active against S. pneumoniae, including most penicillin nonsusceptible strains. Amoxicillin/clavulanate and cefdinir were the most potent compounds against methicillin (oxacillin)-susceptible Staphylococcus aureus, whereas cefpodoxime was the most potent compound against Haemophilus influenzae. Amoxicillin/clavulanate, cefdinir, and cefpodoxime were also active against Moraxella catarrhalis, including beta-lactamase-producing strains. In summary, orally administered "3rd-generation" or extended spectrum cephalosporins exhibited more balanced spectrums of activity against the principal bacterial pathogens responsible for outpatient respiratory tract and other infections when compared with other widely used oral cephalosporins of earlier generations or amoxicillin alone.

  4. Antibiotic combinations for controlling colistin-resistant Enterobacter cloacae.

    PubMed

    Lima, Thais Bergamin; Silva, Osmar Nascimento; de Almeida, Keyla Caroline; Ribeiro, Suzana Meira; Motta, Dielle de Oliveira; Maria-Neto, Simone; Lara, Michelle Brizolla; Filho, Carlos Roberto Souza; Ombredane, Alicia Simalie; de Faria Junior, Celio; Parachin, Nadia Skorupa; Magalhães, Beatriz Simas; Franco, Octávio Luiz

    2017-02-01

    Enterobacter cloacae is a Gram-negative bacterium associated with high morbidity and mortality in intensive care patients due to its resistance to multiple antibiotics. Currently, therapy against multi-resistant bacteria consists of using colistin, in spite of its toxic effects at higher concentrations. In this context, colistin-resistant E. cloacae strains were challenged with lower levels of colistin combined with other antibiotics to reduce colistin-associated side effects. Colistin-resistant E. cloacae (ATCC 49141) strains were generated by serial propagation in subinhibitory colistin concentrations. After this, three colistin-resistant and three nonresistant replicates were isolated. The identity of all the strains was confirmed by MALDI-TOF MS, VITEK 2 and MicroScan analysis. Furthermore, cross-resistance to other antibiotics was checked by disk diffusion and automated systems. The synergistic effects of the combined use of colistin and chloramphenicol were observed via the broth microdilution checkerboard method. First, data here reported showed that all strains presented intrinsic resistance to penicillin, cephalosporin (except fourth generation), monobactam, and some associations of penicillin and β-lactamase inhibitors. Moreover, a chloramphenicol and colistin combination was capable of inhibiting the induced colistin-resistant strains as well as two colistin-resistant clinical strains. Furthermore, no cytotoxic effect was observed by using such concentrations. In summary, the data reported here showed for the first time the possible therapeutic use of colistin-chloramphenicol for infections caused by colistin-resistant E. cloacae.

  5. [Antibiotic susceptibility and identification of clinical Pseudomonas fulva isolates].

    PubMed

    Sivolodsky, E P; Gorelova, G V; Bogoslovskaya, S P; Zueva, E V

    2014-01-01

    The earliest eight clinical strains of Pseudomonas fulva were identified in the culture collection of pseudomonads isolated in St. Petersburg in 1995-2005, that confirmed the medical importance of the species. A high level of the species identification of all the strains of P. fulva by MALDI-TOF mass-spectrometry with the use of Microflex device with database MALDI Biotyper (Bruker Daltonics Inc.) was shown. Tests for routine studies providing identification of P. fulva without the use of genetic methods were approved. The profile of the antibiotic susceptibility of the clinical strains of P. fulva was described. Acquired resistance of two P. fulva isolates to the 3rd generation cephalosporins and chloramphenicol was detected.

  6. HP 0.35, a cephalosporin degradation product is a specific inhibitor of lentiviral RNAses H.

    PubMed Central

    Hafkemeyer, P; Neftel, K; Hobi, R; Pfaltz, A; Lutz, H; Lüthi, K; Focher, F; Spadari, S; Hübscher, U

    1991-01-01

    Penicillins, cephalosporins and other betalactam antibiotics are widely used antibacterial drugs. Recently it was found that some of them also have effects on proliferating eukaryotic cells (Neftel, K.A. and Hübscher, U. (1987) Antimicrob. Agents Chemother. 31, 1657-1661), and one such effect was shown to be the inhibition of DNA polymerase alpha (Huynh Do,U., Neftel, K.A., Spadari, S. and Hübscher, U. (1987) Nucl. Acids Res. 15, 10495-10506). The data suggested that degradation products of betalactam antibiotics were responsible for the inhibitory effect on DNA polymerase alpha. There is some confirmation at the structural level, since we found that penicillin binding proteins, the natural target of the cephalosporins, share amino-acid homologies to DNA polymerases and also to reverse transcriptase from HIV1 (Hafkemeyer, P., Neftel, K.A. and Hübscher, U. Meth. Find. Exp. Clin. Pharmacol. 12, 43-46, 1990). We have purified and determined the structure of one product from the cephalosporin Ceftazidim and found one molecule (HP 0.35) that did not interfere with eukaryotic cell proliferation but rather had a specific inhibitory effect on the RNase H activity of human immunodeficiency virus 1 (HIV1) and feline immunodeficiency virus (FIV) reverse transcriptases, while the DNA polymerising activity of these enzymes was not affected. RNases H from HeLa cells, calf thymus and Escherichia coli on the other hand were much less affected by HP 0.35. The inhibitory concentration of 50% (IC50) was more than 10 times lower compared to those of all cellular RNases H. We therefore tested the effect of HP 0.35 on in vitro lentivirus infection as exemplified by FIV-infection of CD(4+)-cat lymphocytes in cell culture. Under conditions where cell proliferation was absolutely unaffected, HP 0.35 was able to inhibit FIV-infection in CD(4+)-cat lymphocytes. Moreover, preincubation of these lymphocytes with HP 0.35 rendered the cells completely unsusceptible to FIV-infection. These

  7. Changing patterns and widening of antibiotic resistance in Shigella spp. over a decade (2000-2011), Andaman Islands, India.

    PubMed

    Bhattacharya, D; Bhattacharya, H; Sayi, D S; Bharadwaj, A P; Singhania, M; Sugunan, A P; Roy, S

    2015-02-01

    This study is a part of the surveillance study on childhood diarrhoea in the Andaman and Nicobar Islands; here we report the drug resistance pattern of recent isolates of Shigella spp. (2006-2011) obtained as part of that study and compare it with that of Shigella isolates obtained earlier during 2000-2005. During 2006-2011, stool samples from paediatric diarrhoea patients were collected and processed for isolation and identification of Shigella spp. Susceptibility to 22 antimicrobial drugs was tested and minimum inhibitory concentrations were determined for third-generation cephalosporins, quinolones, amoxicillin-clavulanic acid combinations and gentamicin. A wide spectrum of antibiotic resistance was observed in the Shigella strains obtained during 2006-2011. The proportions of resistant strains showed an increase from 2000-2005 to 2006-2011 in 20/22 antibiotics tested. The number of drug resistance patterns increased from 13 in 2000-2005 to 43 in 2006-2011. Resistance to newer generation fluoroquinolones, third-generation cephalosporins and augmentin, which was not observed during 2000-2005, appeared during 2006-2011. The frequency of resistance in Shigella isolates has increased substantially between 2000-2006 and 2006-2011, with a wide spectrum of resistance. At present, the option for antimicrobial therapy in shigellosis in Andaman is limited to a small number of drugs.

  8. Antibiotics Quiz

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  9. Clinical and economic outcomes of empiric parenteral antibiotic therapy for pneumonia: a retrospective study of 1,032 hospitalized patients.

    PubMed

    Bassi, O; Zuccarelli, S; Amalfitano, M E

    1998-10-01

    The spiraling increase in pharmaceutical costs in hospitals means that the economic aspects of pharmacological therapy can no longer be ignored. The aim of the present study was to evaluate care and cost outcomes following initial therapy with parenteral antibiotics in a hospital setting for the treatment of lower respiratory tract infection (pneumonia and pleurisy with or without complications). From January to December 1996, a total of 1,032 patients were reviewed. The mean age of the patients was 71.9 years (range, 16-100 years). Piperacillin was most frequently prescribed (n=369), followed by ceftriaxone (n=324) and ceftazidime (n=161), among other antibiotics. The clinical success ranged from a maximum of 85.0% and 85.4% for piperacillin and ceftriaxone, respectively, to a minimum of 72.7% and 75.2% for cefodizime and ciprofloxacin, respectively. Differences between the antibiotic regimens emerged for mean prescribed daily doses, therefore the daily cost per administered dose was much lower for antibiotics such as piperacillin or ceftriaxone than for cefotaxime or ceftazidime. Ceftriaxone, at just over 177,840 Italian liras per success, was more cost-effective than other third-generation cephalosporins such as ceftazidime and cefotaxime, whose cost-effectiveness ratios were 420,590 and 272,030 Italian liras, respectively. A comparison of cost ratios for the seven antibiotic regimens evaluated indicates that using ceftriaxone led to a 57.72% cost savings per clinical success compared to using other third generation cephalosporins such as ceftazidime, and a 69.45% savings compared to therapy with ciprofloxacin.

  10. Modified Deacetylcephalosporin C Synthase for the Biotransformation of Semisynthetic Cephalosporins

    PubMed Central

    Balakrishnan, Nataraj; Ganesan, Sadhasivam; Rajasekaran, Padma; Rajendran, Lingeshwaran; Teddu, Sivaprasad

    2016-01-01

    ABSTRACT Deacetylcephalosporin C synthase (DACS), a 2-oxoglutarate-dependent oxygenase synthesized by Streptomyces clavuligerus, transforms an inert methyl group of deacetoxycephalosporin C (DAOC) into an active hydroxyl group of deacetylcephalosporin C (DAC) during the biosynthesis of cephalosporin. It is a step which is chemically difficult to accomplish, but its development by use of an enzymatic method with DACS can facilitate a cost-effective technology for the manufacture of semisynthetic cephalosporin intermediates such as 7-amino-cephalosporanic acid (7ACA) and hydroxymethyl-7-amino-cephalosporanic acid (HACA) from cephalosporin G. As the native enzyme showed negligible activity toward cephalosporin G, an unnatural and less expensive substrate analogue, directed-evolution strategies such as random, semirational, rational, and computational methods were used for systematic engineering of DACS for improved activity. In comparison to the native enzyme, several variants with improved catalytic efficiency were found. The enzyme was stable for several days and is expressed in soluble form at high levels with significantly higher kcat/Km values. The efficacy and industrial scalability of one of the selected variants, CefFGOS, were demonstrated in a process showing complete bioconversion of 18 g/liter of cephalosporin G into deacetylcephalosporin G (DAG) in about 80 min and showed reproducible results at higher substrate concentrations as well. DAG could be converted completely into HACA in about 30 min by a subsequent reaction, thus facilitating scalability toward commercialization. The experimental findings with several mutants were also used to rationalize the functional conformation deduced from homology modeling, and this led to the disclosure of critical regions involved in the catalysis of DACS. IMPORTANCE 7ACA and HACA serve as core intermediates for the manufacture of several semisynthetic cephalosporins. As they are expensive, a cost-effective enzyme

  11. Antibiotic Resistance

    MedlinePlus

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  12. Enhancing the Antibiotic Antibacterial Effect by Sub Lethal Tellurite Concentrations: Tellurite and Cefotaxime Act Synergistically in Escherichia coli

    PubMed Central

    Molina-Quiroz, Roberto C.; Muñoz-Villagrán, Claudia M.; de la Torre, Erick; Tantaleán, Juan C.; Vásquez, Claudio C.; Pérez-Donoso, José M.

    2012-01-01

    The emergence of antibiotic-resistant pathogenic bacteria during the last decades has become a public health concern worldwide. Aiming to explore new alternatives to treat antibiotic-resistant bacteria and given that the tellurium oxyanion tellurite is highly toxic for most microorganisms, we evaluated the ability of sub lethal tellurite concentrations to strengthen the effect of several antibiotics. Tellurite, at nM or µM concentrations, increased importantly the toxicity of defined antibacterials. This was observed with both Gram negative and Gram positive bacteria, irrespective of the antibiotic or tellurite tolerance of the particular microorganism. The tellurite-mediated antibiotic-potentiating effect occurs in laboratory and clinical, uropathogenic Escherichia coli, especially with antibiotics disturbing the cell wall (ampicillin, cefotaxime) or protein synthesis (tetracycline, chloramphenicol, gentamicin). In particular, the effect of tellurite on the activity of the clinically-relevant, third-generation cephalosporin (cefotaxime), was evaluated. Cell viability assays showed that tellurite and cefotaxime act synergistically against E. coli. In conclusion, using tellurite like an adjuvant could be of great help to cope with several multi-resistant pathogens. PMID:22536386

  13. Surveillance and Control of Antibiotic Resistance in the Mediterranean Region

    PubMed Central

    Ricciardi, Walter; Giubbini, Gabriele; Laurenti, Patrizia

    2016-01-01

    Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant microorganisms in healthcare settings is a worrisome threat, raising length to stay (LOS), morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance of antibiotic resistance in the countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015) show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe. It is of particular concern the phenomenon of resistance carried out by some gram-negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and aminoglycosides. Is particularly high the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included). The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus) continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant microbes does support

  14. Structural analysis and investigation of molecular properties of Cefpodoxime acid, a third generation antibiotic

    NASA Astrophysics Data System (ADS)

    Suganthi, S.; Balu, P.; Sathyanarayanamoorthi, V.; Kannappan, V.; Kamil, M. G. Mohamed; Kumar, R.

    2016-03-01

    Extensive quantum mechanical studies are carried out on Cefpodoxime acid (CA), a new generation drug by Hartree-Fock (HF) and B3LYP methods to understand the structural and spectral characteristics of the molecule. The most stable geometry of the molecule was optimized and the bond parameters were reported. The spectroscopic properties of this pharmaceutically important compound were investigated by FT-IR, FT-Raman, UV and 1H NMR techniques. The scaled vibrational frequencies of CA in the ground state are calculated by HF and B3LYP methods with 6-311++G (d, p) basis set and compared with the observed FT-IR and FT-Raman spectra. The vibrational spectral analysis indicates the presence of two intra molecular hydrogen bonds in the molecule which is supported by theoretical study. 1H NMR chemical shifts (δ) were calculated for the CA molecule and compared with the experimental values. The theoretical electronic absorption spectral data in water and ethanol solvents were computed by TD-DFT method. UV-Vis absorption spectra of CA are recorded in these two solvents and compared with theoretical spectra. The spectral data and natural bond orbital (NBO) analysis confirm the occurrence of intra molecular interactions in CA. The electronic distribution, in conjunction with electrophilicity index of CA was used to establish the active site and type of interaction between CA and beta lactamases. Mulliken population analysis on atomic charges is also carried out and thermodynamic properties of the title compound are calculated.

  15. Resistance of uropathogenic bacteria to first-line antibiotics in mexico city: A multicenter susceptibility analysis

    PubMed Central

    Arredondo-García, José Luis; Soriano-Becerril, Diana; Solórzano-Santos, Fortino; Arbo-Sosa, Antonio; Coria-Jiménez, Rafael; Arzate-Barbosa, Patricia

    2007-01-01

    Abstract Background Growing antibiotic resistance demands the constant reassessment of antimicrobial efficacy, particularly in countries with wide antibiotic abuse, where higher resistance prevalence is often found. Knowledge of resistance trends is particularly important when prescribing antibiotics empirically, as is usually the case for urinary tract infections (UTIs). Currently, in Mexico City, ampicillin, cotrimoxazole (trimethoprim/sulfamethoxazole), and ciprofloxacin are used as “first-line” antibiotic treatment for UTI. Objective The aim of this study was to analyze the resistance of bacterial isolates to antibiotics, with a focus on first-line antibiotics, in Mexican pediatric patients and sexually active or pregnant female outpatients. Methods In this multicenter susceptibility analysis, bacterial isolates from urine samples collected from pediatric patients and sexually-active or pregnant female outpatients presenting with acute, uncomplicated UTIs in Mexico City from January 2006 through June 2006, were included in the study. Samples were tested for susceptibility to 10 antibiotics by the disk-diffusion method. Results Four-hundred and seventeen bacterial isolates were derived from sexually active or pregnant female outpatients (324 Escherichia coli) and pediatric patients (93 Klebsiella pneumoniae). We found a high prevalence of resistance towards the drugs used as “first-line” when treating UTIs: ampicillin, cotrimoxazole, and ciprofloxacin (79%, 60%, and 24% resistance, respectively). Ninety-eight percent of K pneumoniae isolates were resistant to ampicillin, whereas 66% of the E coli isolates were resistant to cotrimoxazole. Resistance towards third-generation cephalosporins was also high (6%–8% of E coli and 10%–28% of K pneumoniae). This was possibly caused by chromosomal β-lactamases, as 30% of all isolates were also resistant to amoxicillin/clavulanate. In contrast, 98% of the E coli isolates and 84% of the K pneumoniae strains (96

  16. Expedient antibiotics production: Final report

    SciTech Connect

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    1988-05-01

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented. This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.

  17. Comparative susceptibilities of clinical isolates of Serratia marcescens to newer cephalosporins, alone and in combination with various aminoglycosides.

    PubMed Central

    Markowitz, S M; Sibilla, D J

    1980-01-01

    We examined 100 clinically significant isolates of Serratia marcescens for susceptibility to newer cephalosporin and cephamycin antibiotics, alone and in combination with various aminoglycosides. Moxalactam and cefotaxime were the most effective agents; all isolates were inhibited by 25 and 50 micrograms/ml, respectively. All strains were susceptible to amikacin at concentrations safely achievable in serum, whereas gentamicin, netilmicin, and tobramycin inhibited 63, 63, and 16% of the isolates, respectively. Moxalactam, cefotaxime, and amikacin were active against gentamicin-susceptible and gentamicin-resistant strains. Studies of synergy revealed that moxalactam and cefotaxime, in combination with netilmicin or amikacin, were often synergistic and infrequently antagonistic against cephalothin- and gentamicin-resistant strains. These results suggest that moxalactam and cefotaxime, alone or in combination, may be efficacious in treating infections due to multiply antibiotic-resistant S. marcescens. PMID:7004344

  18. Impact of changes in antibiotic policy on Clostridium difficile-associated diarrhoea (CDAD) over a five-year period in a district general hospital.

    PubMed

    Khan, R; Cheesbrough, J

    2003-06-01

    The impact of changes in antibiotic policy on Clostridium difficile-associated diarrhoea (CDAD), over a five-year period between 1995 and 2000, were studied in the Preston Acute Hospitals Trust. In 1996 the policy was changed in the Preston Acute Hospitals Trust from cefotaxime to ceftriaxone for initial treatment of severe sepsis or pneumonia in medical patients. Over the next nine months the average number of patients with C. difficile toxin-positive stools per quarter increased from 16 to 39. The predicted use of ceftriaxone exceeded by 65% an estimate based on prior use of cefotaxime. A policy of restricted duration of ceftriaxone was introduced, and although this reduced usage by over 50%, CDAD continued at an average of 9.2 cases per month, despite withdrawal of oral cephalosporins in December 1998. In August 1999 levofloxacin was substituted for ceftriaxone in the policy. The incidence of CDAD fell progressively to five cases per month by 2000. It would appear that a short (typically three dose) course of third-generation cephalosporin poses a similar risk for CDAD as a more prolonged course. The six-month delay in the decline of CDAD after virtual withdrawal of cephalosporins may reflect a slowly diminishing environmental reservoir.

  19. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity

    PubMed Central

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  20. Antibiotic Resistance

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More sharing ... these products really help. To Learn More about Antibiotic Resistance Get Smart About Antibiotics (Video) Fact Sheets ...

  1. Susceptibility to cephalosporins of bacteria causing intramammary infections in dairy cows with a high somatic cell count in Germany.

    PubMed

    Wente, N; Zoche-Golob, V; Behr, M; Krömker, V

    2016-09-01

    The objective of this cross-sectional study was to determine the minimal inhibitory concentrations of cephalosporins of the first (cefalonium and cefapirin) and fourth generation (cefquinome) against bacteria isolated from intramammary infections in dairy cows with elevated somatic cell counts in Germany. Additionally, possible regional differences of the minimal inhibitory concentrations within Germany should be evaluated. In total, 6936 quarter milk samples from cows with a somatic cell count >200,000cells/ml were taken in 43 herds. The concentrations of the first generation cephalosporins inhibiting at least 90% of the isolates of a pathogen (MIC90) were ≥64μg/ml against Gram-negative bacteria and enterococci whereas the respective MIC90 against the other Gram-positive bacteria were ≤4μg/ml. The MIC90 of cefquinome were ≥16μg/ml against Gram-negative bacteria, bacilli and enterococci, and ≤2μg/ml against the other Gram-positive bacteria. Only the minimal inhibitory concentrations against coagulase-negative staphylococci differed significantly between regions in parametric survival models with shared frailties for the herds. However, the minimal inhibitory concentrations of cefquinome against staphylococci were higher than the minimal inhibitory concentrations of the tested cephalosporins of the first generation. Therefore, cefquinome should not be the first choice to treat staphylococcal mastitis in dairy cows.

  2. Prevalence of antibiotic susceptibility and resistance of Escherichia coli in acute uncomplicated cystitis in Korea

    PubMed Central

    Kim, Jae Heon; Sun, Hwa Yeon; Kim, Tae Hyong; Shim, Sung Ryul; Doo, Seung Whan; Yang, Won Jae; Lee, Eun Jung; Song, Yun Seob

    2016-01-01

    Abstract Background: The aim of this study is to determine the prevalence of antibiotic susceptibility and resistance of Escherichia coli Escherichia coli (E coli) in female uncomplicated cystitis in Korea using meta-analysis. Methods: A cross-search of the literature was performed with MEDLINE for all relevant data published before October 2015 and EMBASE from 1980 to 2015, the Cochrane Library, KoreaMed, RISS, KISS, and DBPia were also searched. Observational or prospective studies that reported the prevalence of antimicrobial susceptibility and resistance of E coli were selected for inclusion. No language or time restrictions were applied. We performed a meta-analysis using a random effects model to quantify the prevalence of antimicrobial susceptibility and resistance of E coli. Results: Ten studies were eligible for the meta-analysis, which together included a total of 2305 women with uncomplicated cystitis. The overall resistance rate to antibiotics was 0.28 (95% confidence interval [CI]: 0.25, 0.32). The pooled resistance rates were 0.08 (95% CI: 0.06, 0.11) for cephalosporin, 0.22 (95% CI: 0.18, 0.25) for fluoroquinolone (FQ), and 0.43 (95% CI: 0.35, 0.51) for trimethoprim/sulfamethoxazole (TMP/SMX). Regression analysis showed that resistance to FQ is increasing (P = 0.014) and resistance to TMP/SMX is decreasing (P = 0.043) by year. The generation of cephalosporin was not a significant moderator of differences in resistance rate. Conclusion: The resistance rate of FQ in Korea is over 20% and is gradually increasing. Although the resistance rate of TMP/SMX is over 40%, its tendency is in decreasing state. Antibiotic strategies used for the treatment of uncomplicated cystitis in Korea have to be modified. PMID:27603359

  3. Empiric Antibiotic Therapy of Nosocomial Bacterial Infections.

    PubMed

    Reddy, Pramod

    2016-01-01

    Broad-spectrum antibiotics are commonly used by physicians to treat various infections. The source of infection and causative organisms are not always apparent during the initial evaluation of the patient, and antibiotics are often given empirically to patients with suspected sepsis. Fear of attempting cephalosporins and carbapenems in penicillin-allergic septic patients may result in significant decrease in the spectrum of antimicrobial coverage. Empiric antibiotic therapy should sufficiently cover all the suspected pathogens, guided by the bacteriologic susceptibilities of the medical center. It is important to understand the major pharmacokinetic properties of antibacterial agents for proper use and to minimize the development of resistance. In several septic patients, negative cultures do not exclude active infection and positive cultures may not represent the actual infection. This article will review the important differences in the spectrum of commonly used antibiotics for nosocomial bacterial infections with a particular emphasis on culture-negative sepsis and colonization.

  4. New antibiotics for bad bugs: where are we?

    PubMed Central

    2013-01-01

    Bacterial resistance to antibiotics is growing up day by day in both community and hospital setting, with a significant impact on the mortality and morbidity rates and the financial burden that is associated. In the last two decades multi drug resistant microorganisms (both hospital- and community-acquired) challenged the scientific groups into developing new antimicrobial compounds that can provide safety in use according to the new regulation, good efficacy patterns, and low resistance profile. In this review we made an evaluation of present data regarding the new classes and the new molecules from already existing classes of antibiotics and the ongoing trends in antimicrobial development. Infectious Diseases Society of America (IDSA) supported a proGram, called “the ′10 × ´20′ initiative”, to develop ten new systemic antibacterial drugs within 2020. The microorganisms mainly involved in the resistance process, so called the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and enterobacteriaceae) were the main targets. In the era of antimicrobial resistance the new antimicrobial agents like fifth generation cephalosporins, carbapenems, monobactams, β-lactamases inhibitors, aminoglycosides, quinolones, oxazolidones, glycopeptides, and tetracyclines active against Gram-positive pathogens, like vancomycin-resistant S. aureus (VRSA) and MRSA, penicillin-resistant streptococci, and vancomycin resistant Enterococcus (VRE) but also against highly resistant Gram-negative organisms are more than welcome. Of these compounds some are already approved by official agencies, some are still in study, but the need of new antibiotics still does not cover the increasing prevalence of antibiotic-resistant bacterial infections. Therefore the management of antimicrobial resistance should also include fostering coordinated actions by all stakeholders, creating policy guidance, support

  5. Improving the quality of antibiotic prescribing in the NHS by developing a new Antimicrobial Stewardship Programme: Start Smart--Then Focus.

    PubMed

    Ashiru-Oredope, Diane; Sharland, Mike; Charani, Esmita; McNulty, Cliodna; Cooke, Jonathan

    2012-07-01

    There has been dramatic change in antibiotic use in English hospitals. Data from 2004 and 2009 show that the focus on reducing fluoroquinolone and second- and third-generation cephalosporin use seems to have been heeded in NHS secondary care, and has been associated with a substantial decline in hospital Clostridium difficile rates. However, there has been a substantial increase in use of co-amoxiclav, carbapenems and piperacillin/tazobactam. In primary care, antibiotic prescribing fell markedly from 1995 to 2000, but has since risen steadily to levels seen in the early 1990s. There remains a 2-fold variation in antimicrobial prescribing among English General Practices. In 2010, the NHS Atlas of Variation documented a 3-fold variation in the prescription of quinolones and an 18-fold variation in cephalosporins by Primary Care Trusts across England. There is a clear need to improve antimicrobial prescribing. This paper describes the development of new antimicrobial stewardship programmes for primary care and hospitals by the Department of Health's Advisory Committee on Antimicrobial Resistance and Healthcare Associated Infection: Antimicrobial Stewardship in Primary Care Initiative. The secondary care programme promotes the rapid prescription of the right antibiotic at the right dose at the right time, followed by active review for all patients still on antibiotics 48 h after admission. The five options available are to stop, switch to oral, continue and review again, change (if possible to a narrower spectrum) or move to outpatient parenteral antibiotic therapy. A range of audit and outcome tools has been developed, but to maintain optimal antimicrobial usage, monitoring of local and national quantitative and qualitative data on prescribing and consumption is required, linked to the development of key performance indicators in primary, secondary and tertiary care.

  6. Interleukin-1 production by antibiotic-treated human monocytes.

    PubMed

    Roche, Y; Fay, M; Gougerot-Pocidalo, M A

    1988-05-01

    The effects of penicillin, macrolides (spiramycin and erythromycin), cephalosporins (cefaclor and cefadroxil), tetracycline (doxycycline) and quinolones (pefloxacin, ciprofloxacin and ofloxacin) on extracellular and cell-associated interleukin 1 (IL-1) activity from human adherent mononuclear leucocyte cells were investigated in vitro. When cells were treated with an antibiotic concentration of 10 mg/l, no apparent effect could be detected for penicillin, erythromycin, cephalosporins or quinolones, while a slight increase of extracellular IL-1 activity associated with a decrease of intracellular IL-1 activity was observed with spiramycin and doxycycline. When high antibiotic concentration were used, extracellular IL-1 activity was increased by macrolides and tetracycline, while both cell-associated and class II human monocyte antigen expression were decreased. A toxic effect may have been exerted by these antimicrobial agents, since cell viability was altered when they were used at high concentrations. In contrast, extracellular IL-1 activity was found to be decreased by quinolones and cephalosporins. Intracellular IL-1 activity was also decreased by cephalosporins, while quinolones did not modify either cell-associated IL-1 activity or class II human monocyte antigen expression. The effect induced by quinolones and cephalosporins occurred without modification of cell viability. IL-1 activity was shown to be affected by antibiotics over the same range of concentrations which are known to inhibit mononuclear leucocyte proliferation. Our data may help in defining the mechanism by which the mitogen-induced mononuclear proliferative response is suppressed by antimicrobial agents since this appears to involve the inhibition of IL-1 production or of its release.

  7. An Audit-Based, Infectious Disease Specialist-Guided Antimicrobial Stewardship Program Profoundly Reduced Antibiotic Use Without Negatively Affecting Patient Outcomes

    PubMed Central

    Nilholm, Hannah; Holmstrand, Linnea; Ahl, Jonas; Månsson, Fredrik; Odenholt, Inga; Tham, Johan; Melander, Eva; Resman, Fredrik

    2015-01-01

    Background. Antimicrobial stewardship programs are increasingly implemented in hospital care. They aim to simultaneously optimize outcomes for individual patients with infections and reduce financial and health-associated costs of overuse of antibiotics. Few studies have examined the effects of antimicrobial stewardship programs in settings with low proportions of antimicrobial resistance, such as in Sweden. Methods. An antimicrobial stewardship program was introduced during 5 months of 2013 in a department of internal medicine in southern Sweden. The intervention consisted of audits twice weekly on all patients given antibiotic treatment. The intervention period was compared with a historical control consisting of patients treated with antibiotics in the same wards in 2012. Studied outcome variables included 28-day mortality and readmission, length of hospital stay, and use of antibiotics. Results. A reduction of 27% in total antibiotic use (2387 days of any antibiotic) was observed in the intervention period compared with the control period. The reduction was due to fewer patients started on antibiotics as well as to significantly shorter durations of antibiotic courses (P < .001). An earlier switch to oral therapy and a specific reduction in use of third-generation cephalosporins and fluoroquinolones was also evident. Mortality, total readmissions, and lengths of stay in hospital were unchanged compared with the control period, whereas readmissions due to a nonresolved infection were fewer during the intervention of 2013. Conclusions. This study demonstrates that an infectious disease specialist-guided antimicrobial stewardship program can profoundly reduce antibiotic use in a low-resistance setting with no negative effect on patient outcome. PMID:26380341

  8. Antibiotic Therapy of Staphylococcal Infections

    PubMed Central

    Hawks, Gordon H.

    1965-01-01

    The antibiotic treatment of staphylococcal infections remains a problem. Isolation of the organism and sensitivity testing are necessary in the choice of antibiotic. Penicillin G is the most effective penicillin against non-penicillinase-producing staphy-lococci; for the penicillinase producers there is very little to choose between the semisynthetic penicillins, methicillin, cloxacillin, nafcillin and oxacillin. For patients who are hypersensitive to penicillin, the bacteriostatic drugs (erythromycin, novobiocin, tetracycline, chloramphenicol, oleandomycin) are useful for mild infections, while for more severe illness the bactericidal drugs (vancomycin, ristocetin, kanamycin, bacitracin, neomycin) have been used successfully. Acute staphylococcal enterocolitis is probably best treated by a semisynthetic penicillin. Other antibiotics which have been found useful, with clinical trials, for staphylococcal infections are cephalosporin, fucidin, cephaloridine and lincomycin. The latter drug has been reported of value in the treatment of osteomyelitis. There is little justification for the prophylactic use of antibiotics to prevent staphylococcal infection. Surgical drainage is still an important adjunct in the treatment of many staphylococcal infections. PMID:5318575

  9. Class C β-Lactamases Operate at the Diffusion Limit for Turnover of Their Preferred Cephalosporin Substrates

    PubMed Central

    Bulychev, Alexey; Mobashery, Shahriar

    1999-01-01

    It has been suggested that class C β-lactamases have evolved to carry out a metabolic reaction other than hydrolysis of β-lactam antibiotics. It is demonstrated in the present study that the class C β-lactamase from Enterobacter cloacae P99 has reached the diffusion limit in its ability to hydrolyze its preferred cephalosporin substrates. The increase in the solution viscosity by addition of a microviscogen (sucrose) caused the decline in the parameter kcat/Km for hydrolysis of cephaloridine and cephalosporin C (approximately 2.5-fold at a relative viscosity of 2.9). A similar increase in viscosity has no effect on the turnover rate of the poorer substrates cefepime and penicillin G. Addition of a macroviscogen (polyethylene glycol) to the reaction mixture did not change the rate of turnover for any of the substrates tested because in this case the viscogen would not interfere with the motion of small molecules, as was expected. Therefore, it would appear that the driving force behind the evolution of this class C β-lactamase and, in principle, other enzymes of this class is indeed the functional reaction of this enzyme as a drug resistance factor. PMID:10390233

  10. 77 FR 735 - New Animal Drugs; Cephalosporin Drugs; Extralabel Animal Drug Use; Order of Prohibition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ..., and diabetic foot infections. Approved indications for newer cephalosporins include the treatment of... interdigital necrobacillosis (foot rot) and acute bovine metritis; (3) the control of bovine...

  11. Antibiotic Safety

    MedlinePlus

    ... resistance develops, the antibiotic is not able to kill the germs causing the infection. Your infection may ... to vaginal yeast infections. This happens because antibiotics kill the normal bacteria in the vagina and this ...

  12. Effects of β-Lactam Antibiotics and Fluoroquinolones on Human Gut Microbiota in Relation to Clostridium difficile Associated Diarrhea

    PubMed Central

    Heinsen, Femke Anouska; Knecht, Carolin; Schilhabel, Anke; Schmitz, Ruth A.; Zimmermann, Alexandra; dos Santos, Vitor Martins; Ferrer, Manuel; Rosenstiel, Philip C.; Schreiber, Stefan; Friedrichs, Anette K.; Ott, Stephan J.

    2014-01-01

    Clostridium difficile infections are an emerging health problem in the modern hospital environment. Severe alterations of the gut microbiome with loss of resistance to colonization against C. difficile are thought to be the major trigger, but there is no clear concept of how C. difficile infection evolves and which microbiological factors are involved. We sequenced 16S rRNA amplicons generated from DNA and RNA/cDNA of fecal samples from three groups of individuals by FLX technology: (i) healthy controls (no antibiotic therapy); (ii) individuals receiving antibiotic therapy (Ampicillin/Sulbactam, cephalosporins, and fluoroquinolones with subsequent development of C. difficile infection or (iii) individuals receiving antibiotic therapy without C. difficile infection. We compared the effects of the three different antibiotic classes on the intestinal microbiome and the effects of alterations of the gut microbiome on C. difficile infection at the DNA (total microbiota) and rRNA (potentially active) levels. A comparison of antibiotic classes showed significant differences at DNA level, but not at RNA level. Among individuals that developed or did not develop a C. difficile infection under antibiotics we found no significant differences. We identified single species that were up- or down regulated in individuals receiving antibiotics who developed the infection compared to non-infected individuals. We found no significant differences in the global composition of the transcriptionally active gut microbiome associated with C. difficile infections. We suggest that up- and down regulation of specific bacterial species may be involved in colonization resistance against C. difficile providing a potential therapeutic approach through specific manipulation of the intestinal microbiome. PMID:24586762

  13. Resistance of Shigella strains to extended-spectrum cephalosporins in Isfahan province

    PubMed Central

    Mostafavi, Nasser; Bighamian, Moein; Mobasherizade, Sina; Kelishadi, Roya

    2016-01-01

    Background: The aim of this study was to determine the serotypes and antimicrobial susceptibility of Shigella spp. in Isfahan, (Iran) from 2010 to 2015. Methods: This retrospective study was conducted on Shigella isolates in four tertiary care hospitals. The process of bacterial isolation and determination of susceptibility was performed by standard microbiological guidelines. The patients were categorized into three age groups of under 5, 5-15 and over 15 years. Results: Among 45 isolates, S. sonnei (63.6%) was the predominant species, followed by S. flexneri (34.1%), and S. dysenteriae (2.3%). Substantial resistance to ampicillin, trimethoprim- sulfamethoxazole, ceftriaxone, cefotaxime, and cefixime was observed. Over 94% of the isolates were sensitive to ciprofloxacin. Susceptibility of isolates was similar between all age groups. Conclusion: Significant resistance to third generation cephalosporins precludes the use of these agents for empirical treatment of shigellosis in our population. Ciprofloxacin is an appropriate option; however, susceptibility tests should be performed before prescription. PMID:28210593

  14. Enhanced Enzymatic Synthesis of a Cephalosporin, Cefadroclor, in the Presence of Organic Co-solvents.

    PubMed

    Liu, Kun; Li, Sha; Pang, Xiao; Xu, Zheng; Li, Dengchao; Xu, Hong

    2016-11-05

    In this study, we investigated the enzymatic synthesis of a semi-synthetic cephalosporin, cefadroclor, from 7-aminodesacetoxymethyl-3-chlorocephalosporanic acid (7-ACCA) and p-OH-phenylglycine methyl ester (D-HPGM) using immobilized penicillin G acylase (IPA) in organic co-solvents. Ethylene glycol (EG) was employed as a component of the reaction mixture to improve the yield of cefadroclor. EG was found to increase the yield of cefadroclor by 15-45%. An investigation of altered reaction parameters including type and concentration of organic solvents, pH of reaction media, reaction temperature, molar ratio of substrates, enzyme loading, and IPA recycling was carried out in the buffer mixture. The best result was a 76.5% conversion of 7-ACCA, which was obtained from the reaction containing 20% EG (v/v), D-HPGM to 7-ACCA molar ratio of 4:1 and pH 6.2, catalyzed by 16 IU mL(-1) IPA at 20 °C for 10 h. Under the optimum conditions, no significant loss of IPA activity was found after seven repeated reaction cycles. In addition, cefadroclor exhibited strong inhibitory activity against yeast, Bacillus subtilis NX-2, and Escherichia coli and weaker activity against Staphylococcus aureus and Pseudomonas aeruginosa. Cefadroclor is a potential antibiotic with activity against common pathogenic microorganisms.

  15. Assessing the Contributions of the LiaS Histidine Kinase to the Innate Resistance of Listeria monocytogenes to Nisin, Cephalosporins, and Disinfectants

    PubMed Central

    Collins, Barry; Guinane, Caitriona M.; Ross, R. Paul

    2012-01-01

    The Listeria monocytogenes LiaSR two-component system (2CS) encoded by lmo1021 and lmo1022 plays an important role in resistance to the food preservative nisin. A nonpolar deletion in the histidine kinase-encoding component (ΔliaS) resulted in a 4-fold increase in nisin resistance. In contrast, the ΔliaS strain exhibited increased sensitivity to a number of cephalosporin antibiotics (and was also altered with respect to its response to a variety of other antimicrobials, including the active agents of a number of disinfectants). This pattern of increased nisin resistance and reduced cephalosporin resistance in L. monocytogenes has previously been associated with mutation of a second histidine kinase, LisK, which is a predicted regulator of liaS and a penicillin binding protein encoded by lmo2229. We noted that lmo2229 transcription is increased in the ΔliaS mutant and in a ΔliaS ΔlisK double mutant and that disruption of lmo2229 in the ΔliaS ΔlisK mutant resulted in a dramatic sensitization to nisin but had a relatively minor impact on cephalosporin resistance. We anticipate that further efforts to unravel the complex mechanisms by which LiaSR impacts on the antimicrobial resistance of L. monocytogenes could facilitate the development of strategies to increase the susceptibility of the pathogen to these agents. PMID:22327581

  16. Characteristics of ciprofloxacin and cephalosporin resistant Escherichia coli isolated from turkeys in Great Britain.

    PubMed

    Randall, L P; Mueller-Doblies, D; Lemma, F L; Horton, R A; Teale, C J; Davies, R H

    2013-01-01

    1. A field study was performed to investigate the presence and characteristics of ciprofloxacin-resistant, extended spectrum β-lactamase (ESBL) and AmpC Escherichia coli from turkeys in Great Britain. E. coli were isolated from ~9000 boot swab samples from 27 different farms owned by four different companies. Between 1 and 14 visits were made to each farm (mean 3) at between 0 and 15 m intervals (mean ~5 m). 2. CHROMagar ECC with and without ciprofloxacin or cephalosporin antibiotics was used as selective isolation media. Representative isolates with different phenotypes were tested for mutations in gyrA and for: qnrA, B, S, qepA and aac(6')-Ib genes, for ESBL phenotype, the presence of bla genes and plasmid type, and for ampC genes Representative ciprofloxacin-resistant and CTX-M isolates were further tested for serotype and PFGE type. On ciprofloxacin selective media 55% of samples yielded ciprofloxacin resistant E. coli and of those further analysed, most had ciprofloxacin MICs >4 mg/l and mutations in gyrA. 3. For the different companies, the mean number of samples per farm with cefoxitin- or cefotaxime-resistant isolates ranged from 1·0% to 61·9% and 4·7% to 31·7% respectively. Cefotaxime-resistance was most commonly associated with an ESBL phenotype, a CTX-M-1 or CTX-M-14 sequence type and an I1-γ or K plasmid inc type. The mechanism of cefoxitin resistance was not determined for most isolates, but where determined it was bla . 4. PFGE and serotyping showed clonally-related isolates persisting over multiple visits suggesting both more prudent use of antibiotics and improved farm hygiene are needed to address the issue of antimicrobial resistance in isolates from turkeys.

  17. Ten years of antibiotic consumption in ambulatory care: Trends in prescribing practice and antibiotic resistance in Austria

    PubMed Central

    2009-01-01

    Background The primary aims of this study were (i) to determine the quantity and pattern of antibiotic use in Austria between 1998 and 2007 and (ii) to analyze antibiotic resistance rates in relation to antibiotic consumption in important clinical situations in order to provide data for empirical therapeutic regimens for key indications. Methods Consumption data and resistance data were obtained via the Austrian surveillance networks European Antimicrobial Resistance Surveillance System (EARSS) and European Surveillance on Antimicrobial Consumption (ESAC). The EARSS collects data on isolates from blood and cerebrospinal fluid obtained predominantly in the hospital setting. The Anatomical Therapeutic Chemical (ATC) classification and the Defined Daily Dose (DDD) measurement units were assigned to the data. The number of DDDs and packages per 1,000 inhabitants (PID) were used to calculate the level of antibiotic consumption. Antibiotic resistance was expressed in resistance rates, i.e., the percentage of resistant isolates compared to all isolates of one bacterial species. Results The overall antibiotic consumption measured in DIDs increased by 10% between 1998 and 2007, whereas PIDs decreased by 3%. The consumption of substances within the drug utilization 90% segment (measured in PID) increased for ciprofloxacin (+118.9), clindamycin (+76.3), amoxicillin/clavulanic acid (+61.9%), cefpodoxime (+31.6), azithromycin (+24.7); and decreased for erythromycin (-79.5%), trimethoprim (-56,1%), norfloxacin (-48.8%), doxycycline (-44.6), cefaclor (-35.1%), penicillin (-34.0%), amoxicillin (-22.5), minocycline (-21.9%) and clarithromycin (-9.9%). Starting in 2001, an increase in the percentage of invasive E. coli isolates resistant to aminopenicillins (from 35% to 53%), fluoroquinolones (from 7% to 25.5%) and third-generation cephalosporins (from 0% to 8.8%) was observed. The percentage of nonsusceptible or intermediate penicillin-resistant pneumococcal isolates remained

  18. [Antibiotic Stewardship].

    PubMed

    Lanckohr, Christian; Ellger, Björn

    2016-02-01

    The adequate management of infections is an important task in critical care medicine which has an effect on patient outcome. As a result, the prevalence of antiinfective therapy is high in intensive care units. In the face of an unsettling development of worldwide microbial resistance, an optimization and reduction of antiinfective therapy is necessary. Antibiotic stewardship tries to improve antiinfective therapy with an interdisciplinary approach. One overall objective of antibiotic stewardship is the reduction of resistance induction in order to preserve the therapeutic efficiency of antibiotics. Intensive care units are important fields of action for antibiotic stewardship interventions. This article reviews available evidence and some practical aspects for antibiotic stewardship.

  19. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic

  20. Cephamycins, a New Family of β-Lactam Antibiotics I. Production by Actinomycetes, Including Streptomyces lactamdurans sp. n1

    PubMed Central

    Stapley, E. O.; Jackson, M.; Hernandez, S.; Zimmerman, S. B.; Currie, S. A.; Mochales, S.; Mata, J. M.; Woodruff, H. B.; Hendlin, D.

    1972-01-01

    A number of actinomycetes isolated from soil were found to produce one or more members of a new family of antibiotics, the cephamycins, which are structurally related to cephalosporin C. The cephamycins were produced in submerged fermentation in a wide variety of media by one or more of eight different species of Streptomyces, including a newly described species, S. lactamdurans. These antibiotics exhibit antibacterial activity against a broad spectrum of bacteria which includes many that are resistant to the cephalosporins and penicillins. PMID:4790552

  1. The effect of antibiotic exposure on eicosanoid generation from arachidonic acid and gene expression in a primitive chordate, Branchiostoma belcheri

    PubMed Central

    Yuan, Dongjuan; Pan, Minming; Zou, Qiuqiong; Chen, Chengyong; Chen, Shangwu; Xu, Anlong

    2015-01-01

    Chloramphenicol (Chl) is an effective antimicrobial agent widely used in veterinary medicine and commonly used in fish. Its use is restricted in the clinic because of adverse effects on the immune system and oxidative stress in mammals. However, the effects of Chl treatment on invertebrates remain unclear. Amphioxus, a basal chordate, is an ideal model to study the origin and evolution of the vertebrate immune system as it has a primary vertebrate-like arachidonic acid (AA) metabolic system. Here, we combined transcriptomic and lipidomic approaches to investigate the immune system and observe the oxygenated metabolites of AA to address the antibiotic effects on amphioxus. Tissue necrosis of the gill slits occurred in the Chl-treated amphioxus, but fewer epithelial cells were lost when treated with both Chl and ampicillin (Amp). The immune related pathways were dysregulated in both of the antibiotic treatment groups. The Chl alone treatment resulted in immunosuppression with down-regulation of the innate immune genes. In contrast, the Chl + Amp treatment resulted in immunostimulation to some extent, as shown by KEGG clustering. Furthermore, Chl induced a 3-fold reduction in the level of the eicosanoids, while the Chl + Amp treatment resulted in 1.7-fold increase of eicosanoid level. Thus in amphioxus, Amp might relieve the effects of the Chl-induced immune suppression and increase the level of eicosanoids from AA. Finally, the oxygenated metabolites from AA might be crucial to evaluate the effects of Chl treatment in animals. PMID:26288743

  2. Enhancing effect of serum ultrafiltrate on the activity of cephalosporins against gram-negative bacilli.

    PubMed Central

    Leggett, J E; Craig, W A

    1989-01-01

    A few studies have suggested that the inhibitory effect of serum on activity of broad-spectrum cephalosporins is less than that predicted by the degree of protein binding. Microdilution MICs of ceftriaxone, cefoperazone, moxalactam, and ceftizoxime were therefore determined against ATCC and clinical strains of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus in Mueller-Hinton broth containing either human albumin (as 0, 2.5, or 5% solution) or heat-inactivated human serum (as 0, 25, 50, or 95% solution). Arithmetic linear dilutions were used to improve accuracy. For standard bacterial strains, MICs in the presence of 5% albumin were higher than in broth alone by multiples of 10.9 to 21 for ceftriaxone, 5.5 to 16.4 for cefoperazone, 1.9 to 3.7 for moxalactam, and 1.1 to 1.4 for ceftizoxime, as expected by their protein binding. MICs in the presence of 95% serum were similar to those in 5% albumin for all four drugs against S. aureus and P. aeruginosa but were 2.2- to 4.8-fold lower (P less than 0.001) against E. coli and K. pneumoniae. Similar findings were observed at lower protein concentrations and with clinical isolates, except that for some strains of P. aeruginosa MICs were lower in serum than in albumin. Individual sera from five subjects gave comparable results. The addition of serum ultrafiltrate to albumin-containing solutions reduced MICs of ceftriaxone and cefoperazone 1.6- to 7.4-fold against E. coli and K. pneumoniae (P less than 0.01) but did not alter the MICs for S. aureus. Serum may contain an ultrafiltrable component(s) that enhances the activity of third-generation cephalosporins against many gram-negative bacilli. PMID:2496656

  3. Two-Year Surveillance of Antibiotic Resistance in Streptococcus pneumoniae in Four African Cities

    PubMed Central

    Benbachir, Mohamed; Benredjeb, Saida; Boye, Cheick Saadbouh; Dosso, Mireille; Belabbes, Houria; Kamoun, Aouatef; Kaire, Omar; Elmdaghri, Naima

    2001-01-01

    Worldwide spread of antibiotic resistance in Streptococcus pneumoniae is a major problem. However, data from West and North African countries are scarce. To study the level of resistance and compare the situations in different cities, a prospective study was conducted in Abidjan (Ivory Coast), Casablanca (Morocco), Dakar (Senegal), and Tunis (Tunisia), from 1996 to 1997. The resistances to eight antibiotics of 375 isolates were studied by E test, and the results were interpreted using the breakpoints recommended by the National Committee for Clinical Laboratory Standards. Overall, 30.4% of the isolates were nonsusceptible to penicillin G (25.6% were intermediate and 4.8% were resistant). Amoxicillin (96.3% were susceptible) and parenteral third-generation cephalosporins (92.7%) were highly active. Resistance to chloramphenicol was detected in 8.6% of the isolates. High levels of resistance were noted for erythromycin (28%), tetracycline (38.3%), and cotrimoxazole (36.4%). Resistance to rifampin was rare (2.1%). There were significant differences in resistance rates between individual countries. Multiple resistance was more frequent in penicillin-nonsusceptible isolates than in penicillin-susceptible isolates. Recommendations for treatment could be generated from these results in each participating country. PMID:11158769

  4. Total Synthesis of the Antitumor Antibiotic (±)-Streptonigrin: First- and Second-Generation Routes for de Novo Pyridine Formation Using Ring-Closing Metathesis

    PubMed Central

    2013-01-01

    The total synthesis of (±)-streptonigrin, a potent tetracyclic aminoquinoline-5,8-dione antitumor antibiotic that reached phase II clinical trials in the 1970s, is described. Two routes to construct a key pentasubstituted pyridine fragment are depicted, both relying on ring-closing metathesis but differing in the substitution and complexity of the precursor to cyclization. Both routes are short and high yielding, with the second-generation approach ultimately furnishing (±)-streptonigrin in 14 linear steps and 11% overall yield from inexpensive ethyl glyoxalate. This synthesis will allow for the design and creation of druglike late-stage natural product analogues to address pharmacological limitations. Furthermore, assessment of a number of chiral ligands in a challenging asymmetric Suzuki–Miyaura cross-coupling reaction has enabled enantioenriched (up to 42% ee) synthetic streptonigrin intermediates to be prepared for the first time. PMID:24328139

  5. Bio-inspired synthesis yields a tricyclic indoline that selectively resensitizes methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics

    PubMed Central

    Podoll, Jessica D.; Liu, Yongxiang; Chang, Le; Walls, Shane; Wang, Wei; Wang, Xiang

    2013-01-01

    The continuous emergence of resistant bacteria has become a major worldwide health threat. The current development of new antibacterials has lagged far behind. To discover reagents to fight against resistant bacteria, we initiated a chemical approach by synthesizing and screening a small molecule library, reminiscent of the polycyclic indole alkaloids. Indole alkaloids are a class of structurally diverse natural products, many of which were isolated from plants that have been used as traditional medicine for millennia. Specifically, we adapted an evolutionarily conserved biosynthetic strategy and developed a concise and unified diversity synthesis pathway. Using this pathway, we synthesized 120 polycyclic indolines that contain 26 distinct skeletons and a wide variety of functional groups. A tricyclic indoline, Of1, was discovered to selectively potentiate the activity of β-lactam antibiotics in multidrug-resistant methicillin-resistant Staphylococcus aureus (MRSA), but not in methicillin-sensitive S. aureus. In addition, we found that Of1 itself does not have antiproliferative activity but can resensitize several MRSA strains to the β-lactam antibiotics that are widely used in the clinic, such as an extended-spectrum β-lactam antibiotic amoxicillin/clavulanic acid and a first-generation cephalosporin cefazolin. These data suggest that Of1 is a unique selective resistance-modifying agent for β-lactam antibiotics, and it may be further developed to fight against resistant bacteria in the clinic. PMID:24019472

  6. Soil-borne reservoirs of antibiotic-resistant bacteria are established following therapeutic treatment of dairy calves.

    PubMed

    Liu, Jinxin; Zhao, Zhe; Orfe, Lisa; Subbiah, Murugan; Call, Douglas R

    2016-02-01

    We determined if antibiotics residues that are excreted from treated animals can contribute to persistence of resistant bacteria in agricultural environments. Administration of ceftiofur, a third-generation cephalosporin, resulted in a ∼ 3 log increase in ceftiofur-resistant Escherichia coli found in the faeces and pen soils by day 10 (P = 0.005). This resistant population quickly subsided in faeces, but was sustained in the pen soil (∼ 4.5 log bacteria g(-1)) throughout the trial (1 month). Florfenicol treatment resulted in a similar pattern although the loss of florfenicol-resistant E. coli was slower for faeces and remained stable at ∼ 6 log bacteria g(-1) in the soil. Calves were treated in pens where eGFP-labelled E. coli were present in the bedding (∼ 2 log g(-1)) resulting in amplification of the eGFP E. coli population ∼ 2.1 log more than eGFP E. coli populations in pens with untreated calves (day 4; P < 0.005). Excreted residues accounted for > 10-fold greater contribution to the bedding reservoir compared with shedding of resistant bacteria in faeces. Treatment with therapeutic doses of ceftiofur or florfenicol resulted in 2-3 log g(-1) more bacteria than the estimated ID50 (2.83 CFU g(-1)), consistent with a soil-borne reservoir emerging after antibiotic treatment that can contribute to the long-term persistence of antibiotic resistance in animal agriculture.

  7. Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus.

    PubMed

    Pöggeler, Stefanie; Hoff, Birgit; Kück, Ulrich

    2008-10-01

    Acremonium chrysogenum, the fungal producer of the pharmaceutically relevant beta-lactam antibiotic cephalosporin C, is classified as asexual because no direct observation of mating or meiosis has yet been reported. To assess the potential of A. chrysogenum for sexual reproduction, we screened an expressed sequence tag library from A. chrysogenum for the expression of mating type (MAT) genes, which are the key regulators of sexual reproduction. We identified two putative mating type genes that are homologues of the alpha-box domain gene, MAT1-1-1 and MAT1-1-2, encoding an HPG domain protein defined by the presence of the three invariant amino acids histidine, proline, and glycine. In addition, cDNAs encoding a putative pheromone receptor and pheromone-processing enzymes, as well as components of a pheromone response pathway, were found. Moreover, the entire A. chrysogenum MAT1-1 (AcMAT1-1) gene and regions flanking the MAT region were obtained from a genomic cosmid library, and sequence analysis revealed that in addition to AcMAT1-1-1 and AcMAT1-1-2, the AcMAT1-1 locus comprises a third mating type gene, AcMAT1-1-3, encoding a high-mobility-group domain protein. The alpha-box domain sequence of AcMAT1-1-1 was used to determine the phylogenetic relationships of A. chrysogenum to other ascomycetes. To determine the functionality of the AcMAT1-1 locus, the entire MAT locus was transferred into a MAT deletion strain of the heterothallic ascomycete Podospora anserina (the PaDeltaMAT strain). After fertilization with a P. anserina MAT1-2 (MAT(+)) strain, the corresponding transformants developed fruiting bodies with mature ascospores. Thus, the results of our functional analysis of the AcMAT1-1 locus provide strong evidence to hypothesize a sexual cycle in A. chrysogenum.

  8. Feasibility study of recycling cephalosporin C fermentation dregs using co-composting process with activated sludge as co-substrate.

    PubMed

    Chen, Zhiqiang; Wang, Yao; Wen, Qinxue; Zhang, Shihua; Yang, Lian

    2016-09-01

    Composting is a potential alternative for cephalosporin C fermentation dregs (CCFDs) compared with incineration process or landfill because of its advantage of recovering nutrients. In this research, CCFDs and activated sludge (AS) were co-composted to analyze the feasibility of recycling the nutrients in CCFDs. A pilot-scale aerobic composting system with an auto-control system was used in this research, and the maturity and security of the compost product were evaluated. The temperature of the composting mixtures was maintained above 55°C for more than 3 days during the composting, indicating that co-composting of CCFDs and AS could reach the compost maturity standard, and the seeds germination index (GI) increased from 17.61% to 68.93% by the end of the composting process (28 days). However, the degradation rate of cephalosporin C (CPC) was only 6.58% during the composting process. Monitoring the quality of antibiotic resistance genes (ARGs) in the composts showed that the log copy of blaTEM in the composts increased from 2.15 in the initial phase to 6.37 after 28 days. Long-term investigation of CPC degradation and ARGs variation was conducted for the composts; CPC could still be detected after the maturity phases. A removal efficiency of 49.10% could be achieved in 110 days, while the log copy of ARGs increased to 7.93. Although a higher GI value (>80.00%) was observed, the risk of recycling the CCFDs compost product into land is still high.

  9. Antibiotic resistant bacterial profiles of anaerobic swine lagoon effluent.

    PubMed

    Brooks, J P; McLaughlin, M R

    2009-01-01

    Although land application of swine (Sus scrofa) manure lagoon effluent is a common and effective method of disposal, the presence of antibiotic-resistant bacteria, both pathogenic and commensal can complicate already understood issues associated with its safe disposal. The aim of this study was to assess antibiotic resistance in swine lagoon bacteria from sow, nursery, and finisher farms in the southeastern United States. Effluents from 37 lagoons were assayed for the presence of Escherichia coli, Campylobacter, Listeria, and Salmonella. Antibiotic resistance profiles were determined by the Kirby-Bauer swab method for 12 antibiotics comprising eight classes. Statistical analyses indicated that farm type influenced the amount and type of resistance, with nurseries and sow farms ranking as most influential, perhaps due to use of more antibiotic treatments. Finisher farms tended to have the least amount of antibiotic class resistance, signaling an overall healthier market pig, and less therapeutic or prophylactic antibiotic use. Many bacterial isolates were resistant to penicillin, cephalosporin, and tetracycline class antibiotics, while nearly all were susceptible to quinolone antibiotics. It appeared that swine farm type had a significant association with the amount of resistance associated with bacterial genera sampled from the lagoons; nurseries contributed the largest amount of bacterial resistance.

  10. Antibiotic treatment for acute haematogenous osteomyelitis of childhood: moving towards shorter courses and oral administration.

    PubMed

    Pääkkönen, M; Peltola, H

    2011-10-01

    Acute haematogenous osteomyelitis (AHOM) of childhood usually affects the long bones of the lower limbs. Although almost any agent may cause AHOM, Staphylococcus aureus is the most common bacterium, followed by Streptococcus pneumoniae and, in some countries, Salmonella spp. and Kingella kingae. Magnetic resonance imaging (MRI) has improved the diagnostic accuracy of traditional radiography and scintigraphy. Except for the pre-treatment diagnostic sample from bone before the institution of antibiotic therapy, no other surgery is usually required. Traditionally, non-neonatal AHOM has been treated with a 1-3-month course of antibiotics, including an intravenous (i.v.) phase for the first weeks, but recent prospective randomised studies challenge this approach. For most uncomplicated cases, a course of 20 days including an i.v. period of 2-4 days suffices, provided large enough doses of a well-absorbed agent (clindamycin or a first-generation cephalosporin, local resistance permitting) are used, administration is four times daily and most symptoms and signs subside within a few days. Serum C-reactive protein (CRP) is a good guide in monitoring the course of illness, and the antimicrobial can usually be discontinued if CRP has decreased to <20 mg/L. Newer and costly agents, such as linezolid, should be reserved for cases due to resistant S. aureus strains. AHOM in neonates and immunocompromised patients probably requires a different approach. Because sequelae may develop slowly, follow-up for at least 1 year post hospitalisation is recommended.

  11. Assessment of copper and zinc salts as selectors of antibiotic resistance in Gram-negative bacteria.

    PubMed

    Becerra-Castro, Cristina; Machado, Rita A; Vaz-Moreira, Ivone; Manaia, Célia M

    2015-10-15

    Some metals are nowadays considered environmental pollutants. Although some, like Cu and Zn, are essential for microorganisms, at high concentrations they can be toxic or exert selective pressures on bacteria. This study aimed to assess the potential of Cu or Zn as selectors of specific bacterial populations thriving in wastewater. Populations of Escherichia coli recovered on metal-free and metal-supplemented culture medium were compared based on antibiotic resistance phenotype and other traits. In addition, the bacterial groups enriched after successive transfers in metal-supplemented culture medium were identified. At a concentration of 1mM, Zn produced a stronger inhibitory effect than Cu on the culturability of Enterobacteriaceae. It was suggested that Zn selected populations with increased resistance prevalence to sulfamethoxazole or ciprofloxacin. In non-selective culture media, Zn or Cu selected for mono-species populations of ubiquitous Betaproteobacteria and Flavobacteriia, such as Ralstonia pickettii or Elizabethkingia anophelis, yielding multidrug resistance profiles including resistance against carbapenems and third generation cephalosporins, confirming the potential of Cu or Zn as selectors of antibiotic resistant bacteria.

  12. [Cross allergy between penicillins and other beta lactam antibiotics--the risk is much less than previously thought].

    PubMed

    Tängden, Thomas; Furebring, Mia; Löwdin, Elisabeth; Werner, Sonja

    2015-02-03

    Severe IgE-mediated allergic reactions to penicillins are rare but might be fatal. Because some studies demonstrated a high risk of cross-sensitivity to cephalosporins and carbapenems it has been recommended to avoid these antibiotics in patients with suspected hypersensitivity to penicillins. However, recent studies and analyses conclude that the risk of cross-reactivity was overestimated in the earlier studies and that it is in fact very low for parenteral cephalosporins and perhaps even negligible for carbapenems. The new knowledge has implications for the choice of therapy for bacterial infections in patients with a history of penicillin hypersensitivity, because alternative antibiotic regimens are often inferior to beta-lactam antibiotics. The aim of the present review is to present existing knowledge on cross-sensitivity between beta-lactams, as well as to discuss the management of patients with suspected allergic reactions to these antibiotics.

  13. [Antibiotic stewardship].

    PubMed

    Kerwat, Klaus; Wulf, Hinnerk

    2014-09-01

    Resistance against antibiotics is continuously increasing throughout the world and has become a very serious problem. For just this reason "Antibiotic Stewardship Programs" have been developed. These programs are intended to lead to a sustained improvement in the situation and to assure a rational practice for the prescription of anti-infective agents in medical facilities. The aim is to prescribe the correct antibiotic therapy to the right patient at the most appropriate point in time. An AWMF S3 guideline on this topic published by the German Society for Infectiology (S3-Leitlinie StrategienzurSicherungrationalerAntibiotika-AnwendungimKrankenhaus.AWMF-Registernummer 092/001 - S3 Guideline on Strategies for the Rational Use of Antibiotics in Hospitals. AWMF - Registry Number 092/001) has been available since the end of 2013. An essential aspect therein is the expert interdisciplinary cooperation of a team comprising a clinically experienced infectiologist, a hospital pharmacist and a consultant for microbiology.

  14. [Antibiotic prophylaxis in colorectal surgery].

    PubMed

    Dellamonica, P; Bernard, E

    1994-01-01

    In elective colorectal surgery, the benefit of preoperative antibiotic prophylaxis is well established, with a reduction in wound infection rate to less than 10%. The antimicrobial agent used has to be active against aerobic and anaerobic pathogens such as Escheria coli and Bacteriodes fragilis. The efficacy of three schemes of administration: oral and/or parenteral prophylaxis associated with a mechanical preparation, has been demonstrated. Oral antibiotic administration is current practice in USA; the most widely used oral regimen is the combination of erythromycin and neomycin given the day before surgery. Parenteral prophylaxis with a cephalosporin active against Bacteriodes fragilis such as cefoxitin and cefotetan, is preferred in Europe. The issue of whether a systemic prophylaxis should be added to the oral regimen or not has not yet been resolved. However it seems that the association should be proposed in various situations: patients with a high risk factors score (rectal resection and operations lasting more than three hours), patients with incomplete mechanical preparation, delay of the onset of surgery after the last oral dose.

  15. Quantifying the associations between antibiotic exposure and resistance - a step towards personalised antibiograms.

    PubMed

    Sanden, L; Paul, M; Leibovici, L; Andreassen, S

    2016-12-01

    Empirical antibiotic treatment is selected to target causative bacteria with antibiotics to which they are not resistant. We analysed the increase in bacterial resistance among individual patients associated with antibiotic exposure in the month prior to infection onset, compared to unexposed patients. From a series of prospective cohort studies in the period 2002-2011 at Beilinson Hospital, Israel, 4232 consecutive patients suspected of infection were included. We analysed resistance to antibiotics in bacterial isolates from patients with clinically significant and microbiologically documented infections, starting antibiotics after obtaining cultures (n = 775). In Gram-negative bacteria, significantly higher rates of resistance was associated with exposure to antibiotics, while no significant associations were found for Gram-positive bacteria. Significant odds ratios (ORs) for increased resistance to classes of antibiotics ranged from 2.1 to 3.3 in Gram-negative bacteria from patients exposed to any antibiotic(s), with quinolones having the highest OR, followed by aminoglycosides, penicillins with β-lactamase inhibitor and cephalosporins. The majority of significant associations also had significant ORs after exposure to another class of antibiotics, indicating a substantial effect of cross-resistance. In conclusion, increased resistance was observed following exposure to antibiotics, both from the same class and from other classes. The results indicate a reason to adjust the expected coverage of empirical antibiotic treatments for patients recently exposed to antibiotics, with some antibiotics being more affected than others.

  16. The potential of using enzyme-linked immunospot to diagnose cephalosporin-induced maculopapular exanthems.

    PubMed

    Tanvarasethee, Boonthorn; Buranapraditkun, Supranee; Klaewsongkram, Jettanong

    2013-01-01

    There is no reliable test to diagnose cephalosporin-induced maculopapular exanthems (MPE). This study aimed to evaluate the role of enzyme-linked immunospot assay in the diagnosis of cephalosporin-induced MPE compared with skin testing. A total of 25 patients with a history of cephalosporin-induced MPE were skin tested and the frequencies of cephalosporin-specific interferon-γ-, interleukin-5-, and interleukin-10-releasing cells/10(6) peripheral blood mononuclear cells were measured after stimulating with the culprit drug, compared with 20 non-allergic controls. Values greater than means+2 standard deviations of the values in non-allergic controls were considered diagnostic. The study showed that the combination of interferon-γ and interleukin-5 enzyme-linked immunospot assays was more sensitive than skin testing to diagnose cephalosporin allergy (40% vs. 8%, p = 0.008) and sensitivity increased to 57.1% when the test was performed within 2 years of the drug reaction. Enzyme-linked immunospot assay is a promising tool for confirming the diagnosis of cephalosporin-induced MPE.

  17. Cephalothin is not a reliable surrogate marker for oral cephalosporins in susceptibility testing of Enterobacteriaceae causing urinary tract infection.

    PubMed

    López, Itziar Angulo; Montes, Jorge Calvo; Álvarez, Mar Justel; Mazarrasa, Carlos Fernández; Martínez-Martínez, Luis

    2016-12-01

    Vitek® 2 (bioMérieux) is a widely used commercial antimicrobial susceptibility test (AST) system. AST-N244 card includes cephalothin as first-generation cephalosporin. We compared the cephalothin susceptibility results obtained with Vitek® 2 AST-N244 to those obtained by broth microdilution (BMD) and disk diffusion (DD) for 212 urinary Enterobacteriaceae. We also evaluated the differences between cefazolin and cephalothin susceptibility results. The overall performance of Vitek® 2 for cephalothin testing was 74.5% and 76.4% category agreement compared to BMD and DD, respectively; 84.4% essential agreement; very major errors 15.2% and 11.1% compared to BMD and DD; major errors 0% compared to both methods; and minor errors 22.2% and 21.7% compared to BMD and DD. Regarding correlation between cephalothin and cefazolin, the differences observed were statistically significant (P<0.0001) for the 167 Escherichia coli included (39.5% cephalothin susceptible versus 92.2% cefazolin susceptible by BMD; 41.9% cephalothin susceptible versus 93.4% cefazolin susceptible by DD). Vitek® 2 should provide cefazolin instead of cephalothin as a surrogate marker for oral cephalosporins on the urinary AST-244 cards in order to follow the CLSI (2016) recommendations.

  18. Empiric antibiotic therapy for acute osteoarticular infections with suspected methicillin-resistant Staphylococcus aureus or Kingella.

    PubMed

    Saphyakhajon, Phisit; Joshi, Avni Y; Huskins, W Charles; Henry, Nancy K; Boyce, Thomas G

    2008-08-01

    The bacterial agents causing bone and joint infections have been changing. Currently, methicillin-resistant Staphylococcus aureus (MRSA) and Kingella kingae are emerging pathogens. For treatment of MRSA infections, clindamycin, vancomycin, and linezolid are commonly prescribed antibiotics. Kingella are sensitive to most penicillins and cephalosporins. Because MRSA osteoarticular infections tend to be severe, longer periods of antibiotic treatment with more frequent monitoring of inflammatory markers are sometimes required to obtain a complete cure with no residual complications. To assist management, we have included a clinical decision tree with antibiotic treatment protocols.

  19. Heterologous Production of the Marine Myxobacterial Antibiotic Haliangicin and Its Unnatural Analogues Generated by Engineering of the Biochemical Pathway

    PubMed Central

    Sun, Yuwei; Feng, Zhiyang; Tomura, Tomohiko; Suzuki, Akira; Miyano, Seishi; Tsuge, Takashi; Mori, Hitoshi; Suh, Joo-Won; Iizuka, Takashi; Fudou, Ryosuke; Ojika, Makoto

    2016-01-01

    Despite their fastidious nature, marine myxobacteria have considerable genetic potential to produce novel secondary metabolites. The marine myxobacterium Haliangium ochraceum SMP-2 produces the antifungal polyketide haliangicin (1), but its productivity is unsatisfactory. The biosynthetic gene cluster hli (47.8 kbp) associated with 1 was identified and heterologously expressed in Myxococcus xanthus to permit the production of 1 with high efficiency (tenfold greater amount and threefold faster in growth speed compared with the original producer), as well as the generation of bioactive unnatural analogues of 1 through gene manipulation. A unique acyl-CoA dehydrogenase was found to catalyse an unusual γ,δ-dehydrogenation of the diketide starter unit, leading to the formation of the terminal alkene moiety of 1. Biological evaluation of the analogues obtained through this study revealed that their bioactivities (anti-oomycete and cytotoxic activities) can be modified by manipulating the vinyl epoxide at the terminus opposite the β-methoxyacrylate pharmacophore. PMID:26915413

  20. β-Lactamases Responsible for Resistance to Expanded-Spectrum Cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis Isolates Recovered in South Africa

    PubMed Central

    Pitout, J. D. D.; Thomson, K. S.; Hanson, N. D.; Ehrhardt, A. F.; Moland, E. S.; Sanders, C. C.

    1998-01-01

    Although resistance to the expanded-spectrum cephalosporins among members of the family Enterobacteriaceae lacking inducible β-lactamases occurs virtually worldwide, little is known about this problem among isolates recovered in South Africa. Isolates of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis resistant to expanded-spectrum cephalosporins recovered from patients in various parts of South Africa over a 3-month period were investigated for extended-spectrum β-lactamase production. Antibiotic susceptibility was determined by standard disk diffusion and agar dilution procedures. Production of extended-spectrum β-lactamases was evaluated by using the double-disk test, and the β-lactamases were characterized by spectrophotometric hydrolysis assays and an isoelectric focusing overlay technique which simultaneously determined isoelectric points and general substrate or inhibitor characteristics. DNA amplification and sequencing were performed to confirm the identities of these enzymes. The P. mirabilis and E. coli isolates were found to produce TEM-26-type, SHV-2, and SHV-5 extended-spectrum β-lactamases. An AmpC-related enzyme which had a pI of 8.0 and which conferred resistance to cefoxitin as well as the expanded-spectrum cephalosporins was found in a strain of K. pneumoniae. This is the first study which has identified organisms producing different extended-spectrum β-lactamases from South Africa and the first report describing strains of P. mirabilis producing a TEM-26-type enzyme. The variety of extended-spectrum β-lactamases found among members of the family Enterobacteriaceae isolated from major medical centers in South Africa is troubling and adds to the growing list of countries where these enzymes pose a serious problem for antimicrobial therapy. PMID:9624474

  1. Generation of New Derivatives of the Antitumor Antibiotic Mithramycin by Altering the Glycosylation Pattern through Combinatorial Biosynthesis

    PubMed Central

    Pérez, María; Baig, Irfan; Braña, Alfredo F.; Salas, José A.; Rohr, Jürgen; Méndez, Carmen

    2008-01-01

    Mithramycin is an antitumor drug produced by Streptomyces argillaceus. It consists of a tricyclic aglycone and five deoxyhexoses that form a disaccharide and a trisaccharide chain, which are important for target interaction and therefore for the antitumor activity. Using a combinatorial biosynthesis approach, we have generated nine mithramycin derivatives, seven of which are new compounds, with alterations in the glycosylation pattern. The wild-type S. argillaceus strain and the mutant S. argillaceus M7U1, which has altered d-oliose biosynthesis, were used as hosts to express various “sugar plasmids”, each one directing the biosynthesis of a different deoxyhexose. The newly formed compounds were purified and characterized by MS and NMR. Compared to mithramycin, they contained different sugar substitutions in the second (d-olivose, d-mycarose, or d-boivinose instead of d-oliose) and third (d-digitoxose instead of d-mycarose) sugar units of the trisaccharide as well as in the first (d-amicetose instead of d-olivose) sugar unit of the disaccharide. All compounds showed antitumor activity against different tumor cell lines. Structure–activity relationships are discussed on the basis of the number and type of deoxyhexoses present in these mithramycin derivatives. PMID:18756551

  2. The Beta Lactam Antibiotics as an Empirical Therapy in a Developing Country: An Update on Their Current Status and Recommendations to Counter the Resistance against Them

    PubMed Central

    Thakuria, Bhaskar; Lahon, Kingshuk

    2013-01-01

    In a developing country like India, where the patients have to bear the cost of their healthcare, the microbiological culture and the sensitivity testing of each and every infection is not feasible. Moreover, there are lacunae in the data storage, management and the sharing of knowledge with respect to the microorganisms which are prevalent in the local geographical area and with respect to the antibiotics which are effective against them. Thus, an empirical therapy for treating infections is imperative in such a setting. The beta lactam antibiotics have been widely used for the empirical treatment of infections since the the discovery of penicillin. Many generations of beta lactams have been launched with, the claims of a higher sensitivity and less resistance, but their sensitivity has drastically decreased over time. Thus, the preference for beta lactams, especially the cephalosporins, as an empirical therapy, among the prescribers was justified initially, but the current sensitivity patterns do not support their empirical use in hospital and community acquired infections. There is a need for increasing the awareness and the attitudinal change among the prescribers, screening of the antibiotic prescriptions, the strict implementation of antibiotic policies in hospital settings, restricting the hospital supplies and avoiding the prescriptions of beta lactams, a regular census of the local sensitivity patterns to formulate and update the antibiotic policies, upgradation of the laboratory facilities for a better and faster detection of the isolates, proper collection, analyses and sharing of the data and the encouragement of the research and development of newer antibiotics with novel mechanisms of action. PMID:23905143

  3. Impact of treatment strategies on cephalosporin and tetracycline resistance gene quantities in the bovine fecal metagenome

    PubMed Central

    Kanwar, Neena; Scott, H. Morgan; Norby, Bo; Loneragan, Guy H.; Vinasco, Javier; Cottell, Jennifer L.; Chalmers, Gabhan; Chengappa, Muckatira M.; Bai, Jianfa; Boerlin, Patrick

    2014-01-01

    The study objective was to determine the effects of two treatment regimens on quantities of ceftiofur and tetracycline resistance genes in feedlot cattle. The two regimens were ceftiofur crystalline-free acid (CCFA) administered to either one or all steers within a pen and subsequent feeding/not feeding of therapeutic doses of chlortetracycline. A 26-day randomized controlled field trial was conducted on 176 steers. Real-time PCR was used to quantify blaCMY-2, blaCTX-M, tet(A), tet(B), and 16S rRNA gene copies/gram of feces from community DNA. A significant increase in ceftiofur resistance and a decrease in tetracycline resistance elements were observed among the treatment groups in which all steers received CCFA treatment, expressed as gene copies/gram of feces. Subsequent chlortetracycline administration led to rapid expansion of both ceftiofur and tetracycline resistance gene copies/gram of feces. Our data suggest that chlortetracycline is contraindicated when attempting to avoid expansion of resistance to critically important third-generation cephalosporins. PMID:24872333

  4. Risk factors and treatment outcomes of bloodstream infection caused by extended-spectrum cephalosporin-resistant Enterobacter species in adults with cancer.

    PubMed

    Huh, Kyungmin; Kang, Cheol-In; Kim, Jungok; Cho, Sun Young; Ha, Young Eun; Joo, Eun-Jeong; Chung, Doo Ryeon; Lee, Nam Yong; Peck, Kyong Ran; Song, Jae-Hoon

    2014-02-01

    Treatment of Enterobacter infection is complicated due to its intrinsic resistance to cephalosporins. Medical records of 192 adults with cancer who had Enterobacter bacteremia were analyzed retrospectively to evaluate the risk factors for and the treatment outcomes in extended-spectrum cephalosporin (ESC)-resistant Enterobacter bacteremia in adults with cancer. The main outcome measure was 30-day mortality. Of the 192 patients, 53 (27.6%) had bloodstream infections caused by ESC-resistant Enterobacter species. Recent use of a third-generation cephalosporin, older age, tumor progression at last evaluation, recent surgery, and nosocomial acquisition were associated with ESC-resistant Enterobacter bacteremia. The 30-day mortality rate was significantly higher in the resistant group. Multivariate analysis showed that respiratory tract infection, tumor progression, septic shock at presentation, Enterobacter aerogenes as the culprit pathogen, and diabetes mellitus were independent risk factors for mortality. ESC resistance was significantly associated with mortality in patients with E. aerogenes bacteremia, although not in the overall patient population.

  5. Curing bacteria of antibiotic resistance: reverse antibiotics, a novel class of antibiotics in nature.

    PubMed

    Hiramatsu, Keiichi; Igarashi, Masayuki; Morimoto, Yuh; Baba, Tadashi; Umekita, Maya; Akamatsu, Yuzuru

    2012-06-01

    By screening cultures of soil bacteria, we re-discovered an old antibiotic (nybomycin) as an antibiotic with a novel feature. Nybomycin is active against quinolone-resistant Staphylococcus aureus strains with mutated gyrA genes but not against those with intact gyrA genes against which quinolone antibiotics are effective. Nybomycin-resistant mutant strains were generated from a quinolone-resistant, nybomycin-susceptible, vancomycin-intermediate S. aureus (VISA) strain Mu 50. The mutants, occurring at an extremely low rate (<1 × 10(-11)/generation), were found to have their gyrA genes back-mutated and to have lost quinolone resistance. Here we describe nybomycin as the first member of a novel class of antibiotics designated 'reverse antibiotics'.

  6. Antibiotic / Antimicrobial Resistance Glossary

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  7. Facts about Antibiotic Resistance

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  8. Update on antibiotics in ocular infections.

    PubMed

    Leopold, I H

    1985-07-15

    Each year, new antimicrobials are found or synthesized in an effort to improve the chance of overcoming infections. In the early 1950s, the only antibiotic available for ocular use was penicillin. Today, ophthalmologists can make a choice from a large selection of antibiotics for ocular infections. The majority of antibiotics have been literally unearthed, since worldwide soil surveys may have been the means of their discovery. In addition, synthetic derivatives of penicillin, cephalosporins, aminoglycosides, and tetracyclines, as well as drugs against tuberculosis and fungi, have become available, and new names have been added to the already bewildering list of less frequently used sulfonamides. However, it takes several years to appreciate the impact of new agents and the continued contribution of older ones. Constant reevaluation is mandatory. The real benefits as well as the untoward effects of a new antimicrobial agent may not be known until several years after the clinical introduction. In addition to approaching infection from the viewpoint of the offending organism and a specific antibiotic to address this organism, one may also approach this problem from the host's immunity. Until now, we have relied largely on the corticosteroids, but one must also consider various nonsteroidal anti-inflammatory agents and, even more importantly, the development of drugs to enhance the host's natural immunity.

  9. Comparative study of the susceptibilities of major epidemic clones of methicillin-resistant Staphylococcus aureus to oxacillin and to the new broad-spectrum cephalosporin ceftobiprole.

    PubMed

    Chung, Marilyn; Antignac, Aude; Kim, Choonkeun; Tomasz, Alexander

    2008-08-01

    Multidrug-resistant strains of Staphylococcus aureus continue to increase in frequency worldwide, both in hospitals and in the community, raising serious problems for the chemotherapy of staphylococcal disease. Ceftobiprole (BPR; BAL9141), the active constituent of the prodrug ceftobiprole medocaril (BAL5788), is a new cephalosporin which was already shown to have powerful activity against a number of bacterial pathogens, including S. aureus. In an effort to test possible limits to the antibacterial spectrum and efficacy of BPR, we examined the susceptibilities of the relatively few pandemic methicillin-resistant S. aureus (MRSA) clones that are responsible for the great majority of cases of staphylococcal disease worldwide. We also included in the tests the highly oxacillin-resistant subpopulations that are present with low frequencies in the cultures of these clones. Such subpopulations may represent a natural reservoir from which MRSA strains with decreased susceptibility to BPR may emerge in the future. We also tested the efficacy of BPR against MRSA strains with reduced susceptibility to vancomycin and against MRSA strains carrying the enterococcal vancomycin resistance gene complex. BPR was shown to be uniformly effective against all these resistant MRSA strains, and the mechanism of superb antimicrobial activity correlated with the strikingly increased affinity of the cephalosporin against penicillin-binding protein 2A, the protein product of the antibiotic resistance determinant mecA.

  10. Seasonality and Physician-related Factors Associated with Antibiotic Prescribing: A Cross-sectional Study in Isfahan, Iran

    PubMed Central

    Safaeian, Leila; Mahdanian, Ali-Reza; Salami, Solmaz; Pakmehr, Farzaneh; Mansourian, Marjan

    2015-01-01

    Background: Irrational antibiotic prescribing as a global health problem has a major influence on medical care quality and healthcare expenditure. This study was aimed to determine the pattern of antibiotic use and to assess the seasonality and physician-related factors associated with variability in antibiotic prescribing in Isfahan province of Iran. Methods: This cross-sectional survey was conducted on all prescriptions issued by general physicians from rural and urban areas in 2011. Associations between season of prescribing and physician-related variables including gender, practice location and time since graduation with antibiotic prescriptions and also the pattern of antibiotic prescribing were assessed using Chi-square tests and multiple logistic regression models. Results: Of the 7439709 prescriptions issued by 3772 general practitioners, 51% contained at least one antibiotic. Penicillins were the most frequently prescribed antibiotics, followed by cephalosporins and macrolides. Over-prescription of penicillins was associated with female gender (odds ratio [OR], 2.61; 95% confidence interval [CI] 2.13–3.19) and with moderate duration of time in practice (10–20 years) (OR, 1.42; 95% CI 1.14–1.76). Higher rates of cephalosporins prescription were observed in urban areas than rural areas and by male physicians. Seasonal peak was detected for penicillins and cephalosporins prescriptions in autumn. Conclusions: These findings showed the widespread use of antibiotics by general practitioners that was associated with the physicians’ gender, time since graduation and practice location and also season of prescribing. More researches are needed on other factors related to the overprescribing of antibiotics and they could be used to project educational programs for improvement of antibiotic prescribing quality in our country. PMID:25789136

  11. Porin Involvement in Cephalosporin and Carbapenem Resistance of Burkholderia pseudomallei

    PubMed Central

    Aunkham, Anuwat; Schulte, Albert; Winterhalter, Mathias; Suginta, Wipa

    2014-01-01

    Background Burkholderia pseudomallei (Bps) is a Gram-negative bacterium that causes frequently lethal melioidosis, with a particularly high prevalence in the north and northeast of Thailand. Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins. Principal Findings Microbiological assays showed that the clinical Bps strain was resistant to most antimicrobial agents and sensitive only to ceftazidime and meropenem. An E. coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. Channel recordings of BpsOmp38 reconstituted in a planar black lipid membrane (BLM) suggested that the higher permeability of BpsOmp38Y119A was caused by widening of the pore interior through removal of the bulky side chain. In contrast, the lower permeability of BpsOmp38Y119F was caused by introduction of the hydrophobic side chain (Phe), increasing the ‘greasiness’ of the pore lumen. Significantly, liposome swelling assays showed no permeation through the BpsOmp38 channel by antimicrobial agents to which Bps is resistant (cefoxitin, cefepime, and doripenem). In contrast, high permeability to ceftazidime and meropenem was observed, these being agents to which Bps is sensitive. Conclusion/Significance Our results, from both in vivo and in vitro studies, demonstrate that membrane permeability associated with BpsOmp38 expression correlates well with the antimicrobial susceptibility of the virulent bacterium B. pseudomallei, especially to carbapenems and cephalosporins. In addition, substitution of the residue Tyr119 affects

  12. Antibiotic-Associated Diarrhea

    MedlinePlus

    Antibiotic-associated diarrhea Overview By Mayo Clinic Staff Antibiotic-associated diarrhea refers to passing loose, watery stools ... after taking medications used to treat bacterial infections (antibiotics). Most often, antibiotic-associated diarrhea is mild and ...

  13. Extended spectrum cephalosporin resistance among clinical isolates of Enterobacteriaceae in West Norway during 2006-2013; a prospective surveillance study.

    PubMed

    Mylvaganam, Haima; Kolstad, Helge; Breistein, Rebecca Irene; Lind, Grete; Skutlaberg, Dag Harald

    2017-01-01

    Routine surveillance of resistance to broad-spectrum cephalosporins in Enterobacteriaceae and phenotypic identification of underlying mechanisms using a simple strategy was commenced in 2006 at our laboratory, serving West Norway. This report focuses on the results until 2013. The classical plasmid-mediated extended spectrum beta-lactamase (ESBLA ) among clinically relevant Escherichia coli isolates showed an increase from 0.6% to 4.3% during the surveillance period, while prevalence for other mechanisms remained stable, below 0.7%. ESBLA in Klebsiella pneumoniae had similar prevalence in 2006 (0.6%) and 2013 (4.4%), but in between it peaked to 3.9% in 2008 and to 9.3% in 2011. Within the other species, the numbers of clinically relevant isolates and isolates-producing ESBLA were much lower. An increasing resistance due to hyperproduction of AmpC enzymes was seen in Enterobacter and Citrobacter, with prevalence increasing from 18% and 12.2% in 2006 to 27.5% and 26.1% in 2013, respectively. Hyperproduction of KOXY enzyme in Klebsiella oxytoca remained below 9.5% and did not show an increasing trend. The overall increase in the proportions of isolates-producing ESBLA in E. coli/K. pneumoniae and hyperproduction of AmpC in Enterobacter/Citrobacter necessitates measures to hinder the spread of resistant bacteria and vigilant antibiotic stewardship.

  14. Nosocomial infection and its molecular mechanisms of antibiotic resistance.

    PubMed

    Xia, Jufeng; Gao, Jianjun; Tang, Wei

    2016-02-01

    Nosocomial infection is a kind of infection, which is spread in various hospital environments, and leads to many serious diseases (e.g. pneumonia, urinary tract infection, gastroenteritis, and puerperal fever), and causes higher mortality than community-acquired infection. Bacteria are predominant among all the nosocomial infection-associated pathogens, thus a large number of antibiotics, such as aminoglycosides, penicillins, cephalosporins, and carbapenems, are adopted in clinical treatment. However, in recent years antibiotic resistance quickly spreads worldwide and causes a critical threat to public health. The predominant bacteria include Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii. In these bacteria, resistance emerged from antibiotic resistant genes and many of those can be exchanged between bacteria. With technical advances, molecular mechanisms of resistance have been gradually unveiled. In this review, recent advances in knowledge about mechanisms by which (i) bacteria hydrolyze antibiotics (e.g. extended spectrum β-lactamases, (ii) AmpC β-lactamases, carbapenemases), (iii) avoid antibiotic targeting (e.g. mutated vanA and mecA genes), (iv) prevent antibiotic permeation (e.g. porin deficiency), or (v) excrete intracellular antibiotics (e.g. active efflux pump) are summarized.

  15. Improving known classes of antibiotics: an optimistic approach for the future.

    PubMed

    Bush, Karen

    2012-10-01

    New antibiotic agents are desperately needed to treat the multidrug-resistant pathogens that continue to emerge at alarming rates. Many of the agents that have entered full clinical development since 1995 have been members of previously accepted classes of antibiotics. Among these are a new aminoglycoside (plazomicin), anti-MRSA cephalosporins (ceftobiprole and ceftaroline), a monocyclic β-lactam (BAL30072), the β-lactamase inhibitor combination of tazobactam with the anti-pseudomonal cephalosporin ceftolozane, β-lactam combinations with new non-β-lactam inhibitors (MK-7655 with imipenem, and avibactam with ceftazidime and ceftaroline), new macrolides (cethromycin and solithromycin), oxazolidinones (tedizolid phosphate and radezolid), and quinolones (delafloxacin, nemonoxacin and JNJ-Q2). Resistance and safety issues have been circumvented by some of these new agents that have well-established mechanisms of action and defined pathways leading toward regulatory approval.

  16. Hospital Acquired Pneumonia Due to Achromobacter spp. in a Geriatric Ward in China: Clinical Characteristic, Genome Variability, Biofilm Production, Antibiotic Resistance and Integron in Isolated Strains

    PubMed Central

    Liu, Chao; Pan, Fei; Guo, Jun; Yan, Weifeng; Jin, Yi; Liu, Changting; Qin, Long; Fang, Xiangqun

    2016-01-01

    Background: Hospital-acquired pneumonia (HAP) due to Achromobacter has become a substantial concern in recent years. However, HAP due to Achromobacter in the elderly is rare. Methods: A retrospective analysis was performed on 15 elderly patients with HAP due to Achromobacter spp., in which the sequence types (STs), integrons, biofilm production and antibiotic resistance of the Achromobacter spp. were examined. Results: The mean age of the 15 elderly patients was 88.8 ± 5.4 years. All patients had at least three underlying diseases and catheters. Clinical outcomes improved in 10 of the 15 patients after antibiotic and/or mechanical ventilation treatment, but three patients had chronic infections lasting more than 1 year. The mortality rate was 33.3% (5/15). All strains were resistant to aminoglycosides, aztreonam, nitrofurantoin, and third- and fourth-generation cephalosporins (except ceftazidime and cefoperazone). Six new STs were detected. The most frequent ST was ST306. ST5 was identified in two separate buildings of the hospital. ST313 showed higher MIC in cephalosporins, quinolones and carbapenems, which should be more closely considered in clinical practice. All strains produced biofilm and had integron I and blaOXA-114-like. The main type was blaOXA-114q. The variable region of integron I was different among strains, and the resistance gene of the aminoglycosides was most commonly inserted in integron I. Additionally, blaPSE-1 was first reported in this isolate. Conclusion: Achromobacter spp. infection often occurs in severely ill elders with underlying diseases. The variable region of integrons differs, suggesting that Achromobacter spp. is a reservoir of various resistance genes. PMID:27242678

  17. The use of cephalosporins for gonorrhea: an update on the rising problem of resistance

    PubMed Central

    Stoltey, Juliet E; Barry, Pennan M

    2014-01-01

    Introduction Over the last several years, Neisseria gonorrhoeae has developed decreased susceptibility to extended-spectrum cephalosporins worldwide. Areas covered Gonococcal antimicrobial surveillance programs in multiple regions have documented the rise in N. gonorrhoeae isolates’ minimum inhibitory concentrations to cephalosporins, and the first cases of ceftriaxone treatment failures have been reported. These developments have prompted the use of the term “superbug,” and concerns about the emergence of untreatable gonococcal infections. In response to this threat, a variety of treatment strategies have been proposed, including increasing the dose or providing multiple doses of cephalosporins, multidrug therapy, rotating therapeutic regimens, and individualized treatment based on susceptibility testing. Expert opinion A robust public health response is needed, and includes better diagnosis and treatment of pharyngeal gonorrhea, improved surveillance of antimicrobial resistance, informed treatment approaches, and reduction of the global burden of gonococcal infections. PMID:22646654

  18. Prevalence of antibiotic resistance among Acinetobacter baumannii isolates from Aleppo, Syria.

    PubMed

    Hamzeh, Abdul Rezzak; Al Najjar, Mona; Mahfoud, Maysa

    2012-10-01

    This study describes and analyzes Acinetobacter baumannii antibiotic susceptibly profile in Aleppo, Syria, thus providing vital information for guiding treatment of A baumannii infections. Two hundred sixty nonrepetitive A baumannii isolates were studied over 3.5 years. Resistance rates are at the higher end of globally reported levels. Newer cephalosporins and β-lactamase-resistant agents are becoming practically ineffective. Better activity is limited to carbapenems and colistin, which elicited the highest susceptibility levels.

  19. Natural antibiotic susceptibility of Providencia stuartii, P. rettgeri, P. alcalifaciens and P. rustigianii strains.

    PubMed

    Stock, I; Wiedemann, B

    1998-07-01

    The natural antibiotic susceptibility of 38 Providencia rettgeri, 35 P. stuartii, 23 P. alcalifaciens and 20 P. rustigianii strains was examined. MIC values were determined by a microdilution procedure and evaluated by a table calculation programme. P. stuartii was the least susceptible Providencia sp. and was naturally resistant to tetracyclines, some penicillins, older cephalosporins, sulphamethoxazole and fosfomycin and to antibiotics to which other species of Enterobacteriaceae are also resistant. It was naturally sensitive to modern penicillins and cephalosporins, carbapenems and aztreonam, but its susceptibility to aminoglycosides and quinolones was difficult to assess. P. alcalifaciens and P. rustigianii strains were the most susceptible Providencia spp. They were naturally sensitive or intermediate to tetracyclines and sensitive to aminoglycosides and quinolones. Susceptibility to sparfloxacin, biapenem and sulphamethoxazole permitted the discrimination of P. alcalifaciens and P. rustigianii strains. The natural antibiotic susceptibility of P. rettgeri strains was between that of P. stuartii and that of the other providenciae. P. rettgeri was resistant to tetracyclines and fosfomycin, but more susceptible to aminoglycosides, quinolones, fosfomycin and numerous beta-lactam antibiotics than P. stuartii. A database is described of the natural antibiotic susceptibilities of Providencia spp. It can be used for the validation of antibiotic susceptibility test results of these micro-organisms.

  20. Evaluation of Outpatient Antibiotic Use in Beijing General Hospitals in 2015

    PubMed Central

    Yang, Chuan; Cai, Wen-Qiang; Zhou, Zi-Jun

    2017-01-01

    Background: Medical misuse of antibiotics is associated with the acquisition and spread of antibiotic resistance, resulting in a lack of effective drugs and increased health-care cost. Nevertheless, inappropriate antibiotic use in China remains common and the situation requires urgent improvement. Here, we analyzed the prescriptions of antibiotics and evaluated the rationality of antibiotic use among outpatients in Beijing general hospitals during 2015. Methods: We collected basic medical insurance claim data from January 1, 2015 to December 31, 2015 in 507 general hospitals of Beijing. A descriptive analysis of outpatient antibiotic prescribing was performed. The Anatomical Therapeutic Chemical Classification/defined daily doses system was used to evaluate the rationality of antibiotic use. Results: Over the study, an estimated 721,930, 613,520, and 822,480 antibiotics were dispensed in primary, secondary, and tertiary general hospitals corresponding to 5.09%, 5.06%, and 2.53% of all prescriptions, respectively. Antibiotic combinations represented 2.95%, 7.74%, and 10.18% of the total antibiotic prescriptions, respectively. Expenditure for the top twenty antibiotics in primary, secondary, and tertiary general hospitals was RMB 42.92, 65.89, and 83.26 million Yuan, respectively. Cephalosporins were the most frequently prescribed class of antibiotic in clinical practice. The antibiotics used inappropriately included azithromycin enteric-coated capsules, compound cefaclor tablets and nifuratel nysfungin vaginal soft capsules in primary hospitals, amoxicillin and clavulanate potassium dispersible tablets (7:1) and cefonicid sodium for injection in secondary hospitals, cefminox sodium for injection and amoxicillin sodium and sulbactam sodium for injection in tertiary hospitals. Conclusions: Antibiotic use in Beijing general hospitals is generally low; however, inappropriate antibiotic use still exists. Inappropriately used antibiotics should be subject to rigorous

  1. Susceptibility of bacterial isolates from chronic canine otitis externa to twenty antibiotics.

    PubMed

    Guedeja-Marrón, J; Blanco, J L; Ruperez, C; Garcia, M E

    1998-10-01

    In this paper we present the results of studies on the susceptibility to antibiotics of bacteria isolated from chronic canine otitis externa. We tested 46 bacterial strains (S. aureus, coagulase-negative staphylococci, Corynebacterium spp., and gram-negative bacilli) with 20 different antibiotics. We observed increased resistance to antibiotics of bacteria isolated from canine otitis externa as compared to the resistance reported earlier. This may be due to the indiscriminate use of some antibiotics in the last years and indicates the importance of sensitivity testing for the effective treatment of chronic otitis externa, especially that caused by gram-negative bacilli. The clinician may initiate empiric treatment with antibiotics before obtaining the sensitivity test results; the best results may be expected from a topical application of Bacitracin or Chloramphenicol, and from a systemic therapy with Cephalosporines. Therapeutical scheme for treating various bacterial groups are presented in the paper.

  2. Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system.

    PubMed

    Snyder, Holly; Kellogg, Stephanie L; Skarda, Laura M; Little, Jaime L; Kristich, Christopher J

    2014-01-01

    Enterococci are ubiquitous inhabitants of the gastrointestinal (GI) tract. However, antibiotic-resistant enterococci are also major causes of hospital-acquired infections. Enterococci are intrinsically resistant to cephalosporins, enabling growth to abnormally high densities in the GI tract in patients during cephalosporin therapy, thereby promoting dissemination to other sites where they cause infection. Despite its importance, many questions about the underlying basis for cephalosporin resistance remain. A specific two-component signaling system, composed of the CroS sensor kinase and its cognate response regulator (CroR), is required for cephalosporin resistance in Enterococcus faecalis, but little is known about the factors that control this signaling system to modulate resistance. To explore the signaling network in which CroR participates to influence cephalosporin resistance, we employed a protein fragment complementation assay to detect protein-protein interactions in E. faecalis cells, revealing a previously unknown association of CroR with the HPr protein of the phosphotransferase system (PTS) responsible for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses indicate that association with HPr restricts the ability of CroR to promote cephalosporin resistance and gene expression in a nutrient-dependent manner. Mutational analysis suggests that the interface used by HPr to associate with CroR is distinct from the interface used to associate with other cellular partners. Our results define a physical and functional connection between a critical nutrient-responsive signaling system (the PTS) and a two-component signaling system that drives antibiotic resistance in E. faecalis, and they suggest a general strategy by which bacteria can integrate their nutritional status with diverse environmental stimuli.

  3. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth.

    PubMed

    Comeau, André M; Tétart, Françoise; Trojet, Sabrina N; Prère, Marie-Françoise; Krisch, H M

    2007-08-29

    Although the multiplication of bacteriophages (phages) has a substantial impact on the biosphere, comparatively little is known about how the external environment affects phage production. Here we report that sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacterial cell's production of some virulent phage. For example, a low dosage of cefotaxime, a cephalosporin, increased an uropathogenic Escherichia coli strain's production of the phage PhiMFP by more than 7-fold. We name this phenomenon Phage-Antibiotic Synergy (PAS). A related effect was observed in diverse host-phage systems, including the T4-like phages, with beta-lactam and quinolone antibiotics, as well as mitomycin C. A common characteristic of these antibiotics is that they inhibit bacterial cell division and trigger the SOS system. We therefore examined the PAS effect within the context of the bacterial SOS and filamentation responses. We found that the PAS effect appears SOS-independent and is primarily a consequence of cellular filamentation; it is mimicked by cells that constitutively filament. The fact that completely unrelated phages manifest this phenomenon suggests that it confers an important and general advantage to the phages.

  4. Non-Phenotypic Tests to Detect and Characterize Antibiotic Resistance Mechanisms in Enterobacteriaceae

    PubMed Central

    Lupo, Agnese; Papp-Wallace, Krisztina M.; Sendi, Parham; Bonomo, Robert A.; Endimiani, Andrea

    2014-01-01

    In the past two decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDITOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed. PMID:24091103

  5. beta-Lactamase hydrolysis of cephalosporin 3'-quinolone esters, carbamates, and tertiary amines.

    PubMed Central

    Georgopapadakou, N H; McCaffrey, C

    1994-01-01

    The beta-lactam hydrolysis of five cephalosporin 3'-quinolones (dual-action cephalosporins) by three gram-negative beta-lactamases was examined. The dual-action cephalosporins tested were the ester Ro 23-9424; the carbamates Ro 25-2016, Ro 25-4095, and Ro 25-4835; and the tertiary amine Ro 25-0534. Also tested were cephalosporins with similar side chains (cefotaxime, desacetylcefotaxime, cephalothin, cephacetrile, and Ro 09-1227 [SR 0124]) and standard beta-lactams (penicillin G, cephaloridine). The beta-lactamases used were the plasmid-mediated TEM-1 and TEM-3 enzymes and the chromosomal AmpC. The cephacetrile-related compounds Ro 25-4095 and Ro 25-4835 were hydrolyzed by all three beta-lactamases with catalytic efficiencies (relative to penicillin G) ranging from approximately 5 (TEM-1, AmpC) to approximately 25 (TEM-3). The cephalothin-related Ro 25-2016 was also hydrolyzed by all three beta-lactamases, particularly the AmpC enzyme (relative catalytic efficiency, 110). The cefotaxime-related compounds Ro 25-0534 and Ro 23-9424 were hydrolyzed to any significant extent only by the TEM-3 enzyme (relative catalytic efficiencies, 1.2 and 4.7, respectively. PMID:8067776

  6. Susceptibility of Respiratory Tract Anaerobes to Orally Administered Penicillins and Cephalosporins

    PubMed Central

    Busch, David F.; Kureshi, Lubna Afzal; Sutter, Vera L.; Finegold, Sydney M.

    1976-01-01

    Anaerobic bacteria recovered from airway-related infections were tested by agar dilution against selected penicillins and cephalosporins available for oral administration. Against 136 isolates, penicillins G and V showed comparable activity, particularly when pharmacological differences were considered. Although many isolates were exquisitely susceptible to the penicillins, only 55% of the Bacteroides species and 72% of all isolates were inhibited at 0.5 μg of penicillin G per ml. Results for penicillin V at 1 μg/ml were similar (59 and 73%). The two cephalosporins were more active at achievable levels, inhibiting 94 to 95% of Bacteroides and 95 to 96% of all isolates at 8 μg/ml. These levels represent approximately 50% of the reported peak serum levels after oral administration of 625 mg of the penicillins and 500 mg of the cephalosporins. Dicloxacillin and nafcillin were tested against 50 isolates. The two were comparably active on a weight basis; dicloxacillin was more active when pharmacological differences were considered, but did not match the other penicillins or the cephalosporins. PMID:984805

  7. Hemifacial Spasm From Lyme Disease: Antibiotic Treatment Points to the Cause.

    PubMed

    LeWitt, Tessa M

    A wide range of etiologies can cause hemifacial spasm (HFS), including infection. In this case report, a 44-year-old woman developed HFS and was explored surgically 7 years later. No abnormalities were found. Afterward, treatment of a surgical wound infection with an oral cephalosporin resulted in a temporary HFS remission that had never occurred previously. This antibiotic experience prompted further workup for an underlying infection, which ultimately led to diagnosis of Lyme disease. Presentation of HFS due to Lyme disease has not been reported. Because its diagnosis can be occult and antibiotic therapy can be both diagnostic and therapeutic, Lyme disease should be a consideration for cases of HFS.

  8. Antibiotic consumption in Turkish hospitals; a multi-centre point prevalence study.

    PubMed

    Guclu, Ertugrul; Ogutlu, Aziz; Karabay, Oguz; Demirdal, Tuna; Erayman, Ibrahim; Hosoglu, Salih; Turhan, Vedat; Erol, Serpil; Oztoprak, Nefise; Batirel, Ayse; Altay, Fatma Aybala; Kaya, Gulsum; Karahocagil, Mustafa; Sozen, Hamdi; Yildirim, Mustafa; Kocak, Funda; Teker, Bahri

    2017-02-01

    This multi-centre study aimed to determine the antibiotic consumption in Turkish hospitals by point prevalence. Antibiotic consumption of 14 centres was determined using the DDD method. Among hospitalized patients, 44.8% were using antibiotics and the total antibiotic consumption was 674.5 DDD/1000 patient-days (DPD). 189.6 (28%) DPD of the antibiotic consumption was restricted while 484.9 (72%) DPD was unrestricted. Carbapenems (24%) and beta lactam/beta lactamase inhibitors (ampicillin-sulbactam or amoxicillin-clavulanate; 22%) were the most commonly used restricted and unrestricted antibiotics. Antibiotics were most commonly used in intensive care units (1307.7 DPD). Almost half of the hospitalized patients in our hospitals were using at least one antibiotic. Moreover, among these antibiotics, the most commonly used ones were carbapenems, quinolones and cephalosporins, which are known to cause collateral damage. We think that antibiotic resistance, which is seen at considerably high rates in our hospitals, is associated with this level of consumption.

  9. Antibiotic resistance: An ethical challenge.

    PubMed

    Littmann, Jasper; Buyx, Alena; Cars, Otto

    2015-10-01

    In this paper, we argue that antibiotic resistance (ABR) raises a number of ethical problems that have not yet been sufficiently addressed. We outline four areas in which ethical issues that arise in relation to ABR are particularly pressing. First, the emergence of multidrug-resistant and extensively drug-resistant infections exacerbates traditional ethical challenges of infectious disease control, such as the restriction of individual liberty for the protection of the public's health. Second, ABR raises issues of global distributive justice, both with regard to the overuse and lack of access to antibiotics. Third, the use of antibiotics in veterinary medicine raises serious concerns for animal welfare and sustainable farming practices. Finally, the diminishing effectiveness of antibiotics leads to questions about intergenerational justice and our responsibility for the wellbeing of future generations. We suggest that current policy discussions should take ethical conflicts into account and engage openly with the challenges that we outline in this paper.

  10. Early exposure to antibiotics and infections and the incidence of atopic eczema: a population-based cohort study.

    PubMed

    Schmitt, Jochen; Schmitt, Natalie M; Kirch, Wilhelm; Meurer, Michael

    2010-03-01

    It has been suggested that infants exposed to antibiotics are at increased risk for atopic eczema (AE), whereas the early exposure to infections might be protective. This study describes the complex relationship between early exposure to infections, anti-infectious treatment with antibiotics, and incident AE. Using a German population-based administrative health-care and prescription database, we established a cohort of 370 children not diagnosed as having AE during their first year of life. For each individual child we identified all infections and prescriptions of antibiotics within the first year as well as incident AE within the second year of life. Crude analyses suggested that early infections and exposure to antibiotics are risk factors for AE. However, stratified analyses indicated that early infections were only associated with a higher rate of AE when treated with broad-spectrum antibiotics such as cephalosporines or macrolides. The risk ratio (RR) of children with early respiratory tract infections not treated with antibiotics was 0.69 [95% confidence interval (95% CI) 0.39 to 1.24], whereas respiratory tract infections treated with macrolides (RR: 2.15, 95% CI: 1.18-3.91) or cephalosporines (RR: 1.93, 95% CI: 1.07-3.49) significantly increased the risk for AE. The results for other common childhood infections tended to be similar. Antibiotic treatment appears to modify the association between early infections and subsequent AE. We found no evidence that infections per se significantly alter the likelihood for subsequent AE.

  11. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics

    PubMed Central

    Zmarlicka, Monika T; Nailor, Michael D; Nicolau, David P

    2015-01-01

    Since the first New Delhi metallo-beta-lactamase (NDM) report in 2009, NDM has spread globally causing various types of infections. NDM-positive organisms produce in vitro resistance phenotypes to carbapenems and many other antimicrobials. It is thus surprising that the literature examining clinical experiences with NDM does not report corresponding poor clinical outcomes. There are many instances where good clinical outcomes are described, despite a mismatch between administered antimicrobials and resistant in vitro susceptibilities. Available in vitro data for either monotherapy or combination therapy does not provide an explanation for these observations. However, animal studies do begin to shed more light on this phenomenon. They imply that the in vivo expression of NDM may not confer clinical resistance to all cephalosporin and carbapenem antibiotics as predicted by in vitro testing but other resistance mechanisms need to be present to generate a resistant phenotype. As such, previously abandoned therapies, particularly carbapenems and beta-lactamase inhibitor combinations, may retain utility against infections caused by NDM producers. PMID:26345624

  12. Four years of monitoring antibiotic resistance in microorganisms from bacteremic patients.

    PubMed

    Blahova, J; Kralikova, K; Krcmery, V; Babalova, M; Menkyna, R; Glosova, L; Knotkova, H; Liskova, A; Molokacova, M; Vaculikova, A; Bruckmayerova, D; Rovny, I

    2007-12-01

    From the second semester of 2002 to the end of the first semester of 2005, a total of 2544 bacterial strains were isolated from the blood stream of patients with clinical sepsis and bacteremia hospitalized in six University Hospitals in the Slovak Republic. Almost 30% of strains were coagulase-negative staphylococci (CONS), about 14% were Staphylococcus aureus and, of the Gram-negative bacteria, up to 9% were Klebsiella pneumoniae. All CONS, S. aureus and Enterococcus spp. strains were found to be still susceptible to vancomycin, but the resistance of CONS and/or S. aureus to macrolides and fluoroquinolones dramatically increased during the period of this study. Among Gram-negative bacteria, increasing levels of resistance to higher generation cephalosporins, to fluoroquinolones resistance in Pseudomonas aeruginosa and Acinetobacter spp. to meropenem was recorded, which is alarming. The results were periodically submitted to cooperating hospitals with proposals for rationalizing the prophylactic and general use of indicated antibiotics as well as for improving hospital hygiene measures and anti-epidemic practices.

  13. Microbiological effects of sublethal levels of antibiotics.

    PubMed

    Andersson, Dan I; Hughes, Diarmaid

    2014-07-01

    The widespread use of antibiotics results in the generation of antibiotic concentration gradients in humans, livestock and the environment. Thus, bacteria are frequently exposed to non-lethal (that is, subinhibitory) concentrations of drugs, and recent evidence suggests that this is likely to have an important role in the evolution of antibiotic resistance. In this Review, we discuss the ecology of antibiotics and the ability of subinhibitory concentrations to select for bacterial resistance. We also consider the effects of low-level drug exposure on bacterial physiology, including the generation of genetic and phenotypic variability, as well as the ability of antibiotics to function as signalling molecules. Together, these effects accelerate the emergence and spread of antibiotic-resistant bacteria among humans and animals.

  14. Relationship between structure and convulsant properties of some beta-lactam antibiotics following intracerebroventricular microinjection in rats.

    PubMed Central

    De Sarro, A; Ammendola, D; Zappala, M; Grasso, S; De Sarro, G B

    1995-01-01

    The epileptogenic activities of several beta-lactam antibiotics were compared following their intracerebroventricular administration in rats. Different convulsant potencies were observed among the various beta-lactam antibiotics tested, but the epileptogenic patterns were similar. The patterns consisted of an initial phase characterized by wet-dog shakes followed by head tremor, nodding, and clonic convulsions. After the largest doses of beta-lactam antibiotics injected, clonus of all four limbs and/or the trunk, rearing, jumping, falling down, escape response, transient tonic-clonic seizures, and sometimes generalized seizures were observed, followed by a postictal period with a fatal outcome. At a dose of 0.033 mumol per rat, cefazolin was the most powerful epileptogenic compound among the drugs tested. It was approximately three times more potent than benzylpenicillin in generating a response and much more potent than other cephalosporins, such as ceftriaxone, cefoperazone, and cefamandole. No epileptogenic signs were observed with equimolar doses of cefotaxime, cefonicid, cefixime, and ceftizoxime in this model. The more convulsant compounds (i.e., cefazolin and ceftezole) are both characterized by the presence of a tetrazole nucleus at position 7 and show a marked chemical similarity to pentylenetetrazole. Imipenem and meropenem, the two carbapenems tested, also showed epileptogenic properties, but imipenem was more potent than meropenem, with a convulsant potency similar to those of ceftezole and benzylpenicillin. In addition, the monobactam aztreonam possessed convulsant properties more potent than those of cefoperazone and cefamandole. This suggest that the beta-lactam ring is a possible determinant of production of epileptogenic activity, with likely contributory factors in the substitutions at the 7-aminocephalosporanic or 6-aminopenicillanic acid that may increase or reduce the epileptogenic properties of the beta-lactam antibiotics. While the structure

  15. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India

    PubMed Central

    Akram, Mohammed; Shahid, Mohammed; Khan, Asad U

    2007-01-01

    Background Urinary tract infections (UTIs) remain the common infections diagnosed in outpatients as well as hospitalized patients. Current knowledge on antimicrobial susceptibility pattern is essential for appropriate therapy. Extended-Spectrum beta-Lactamase (ESBL) producing bacteria may not be detected by routine disk diffusion susceptibility test, leading to inappropriate use of antibiotics and treatment failure. The aim of this study was to determine the distribution and antibiotic susceptibility patterns of bacterial strains isolated from patients with community acquired urinary tract infections (UTIs) at Aligarh hospital in India as well as identification of ESBL producers in the population of different uropathogens. Methods Urinary isolates from symptomatic UTI cases attending to the JN Medical College and hospital at Aligarh were identified by conventional methods. Antimicrobial susceptibility testing was performed by Kirby Bauer's disc diffusion method. Isolates resistant to third generation cephalosporin were tested for ESBL production by double disk synergy test method. Results Of the 920 tested sample 100 samples showed growth of pathogens among which the most prevalent were E. coli (61%) followed by Klebsiella spp (22%). The majority (66.66%) of the isolates were from female while the remaining were from male. Among the gram-negative enteric bacilli high prevalence of resistance was observed against ampicillin and co-trimoxazole. Most of the isolates were resistant to 4 or more number of antibiotics. Forty two percent of isolates were detected to produce ESBL among which 34.42 % were E. coli isolates. Conclusion This study revealed that E. coli was the predominant bacterial pathogen of community acquired UTIs in Aligarh, India. It also demonstrated an increasing resistance to Co-trimoxazole and production of extended spectrum β-lactamase among UTI pathogens in the community. This study is useful for clinician in order to improve the empiric treatment

  16. Impact of Antibiotic Use during Hospitalization on the Development of Gastrointestinal Colonization with Escherichia coli with Reduced Fluoroquinolone Susceptibility

    PubMed Central

    Han, Jennifer H.; Bilker, Warren B.; Nachamkin, Irving; Tolomeo, Pam; Mao, Xiangqun; Fishman, Neil O.; Lautenbach, Ebbing

    2014-01-01

    OBJECTIVE Infections due to fluoroquinolone-resistant Escherichia coli (FQREC) are associated with significant morbidity and mortality. Fluoroquinolone resistance likely arises at the level of gastrointestinal colonization. The objective of this study was to identify risk factors for the development of FQREC gastrointestinal tract colonization in hospitalized patients, including the impact of antibiotics prescribed during hospitalization. DESIGN A prospective cohort study was conducted from 2002 to 2004 within a university health system. METHODS Hospitalized patients initially colonized with fluoroquinolone-susceptible E. coli were followed up with serial fecal sampling for new FQREC colonization or until hospital discharge or death. A Cox proportional hazards regression model was developed to identify risk factors for new FQREC colonization, with antibiotic exposure modeled as time-varying covariates. RESULTS Of 395 subjects, 73 (18.5%) became newly colonized with FQREC. Length of stay before sampling (hazard ratio [HR], 1.02 [95% confidence interval (CI), 1.1–1.03]; P = .003) and malignancy (HR, 0.37 [95% CI, 0.21–0.67]; P = .001) were significantly associated with the development of FQREC colonization. In addition, receipt of a first-generation cephalosporin (HR, 1.19 [95% CI, 1.10–1.29]; P < .001) or cefepime (HR, 1.05 [95% CI, 1.00–1.10]; P = .048) during hospitalization increased the risk of new FQREC colonization. CONCLUSIONS The acquisition of FQREC in the hospital setting is complex, and antimicrobial stewardship programs should take into account patterns of antibiotic use in implementing strategies to reduce the development of new FQREC colonization. Future studies are needed to identify risk factors for infection in hospitalized patients newly colonized with FQREC. PMID:24018924

  17. Trend of antibiotic resistance in children with first acute pyelonephritis.

    PubMed

    Amira, Peco-Antic; Dusan, Paripovic; Brankica, Spasojevic-Dimitrijeva; Svetlana, Buljugic

    2011-10-01

    There have been many recent reports of increasing antimicrobial resistance among uropathogens. In this study, we reviewed medical records of children (<18 yr age) with first acute pyelonephritis admitted to our Institution between January 2005 to December 2009. 411 children (189 girls) were studied and increasing trend in bacterial resistance toward co-trimoxazole, 2nd and 3rd generation cephalosporins and gentamicin were observed.

  18. Antibiotic usage in 2013 on a dairy CAFO in NY State, USA

    PubMed Central

    Doane, Marie; Sarenbo, Sirkku

    2014-01-01

    Antimicrobial resistance is threatening humans and animals worldwide. Biosecurity and 1-year usage of antibiotics on a dairy concentrated animal feeding operation (CAFO) in NY State, USA, were mapped: how much antibiotics were used, for what purpose, and whether any decrease could be warranted. Approximately 493 kg antibiotics was used, of which 376 kg was ionophores (monensin and lasalocides), 79 kg penicillin, 16.5 kg lincosamides, 8.0 kg aminoglycosides, 7.7 kg sulfamides, 3.4 kg cephalosporin, 2 kg macrolides, 0.7 kg amphenicols, and 0.1 kg fluoroquinolones. Usage reduction by 84% was realistic without compromising the animal welfare. Further reduction could be possible by improving the biosecurity and by utilizing antibiotic sensitivity testing. PMID:24891936

  19. In Vitro Antibiotic Susceptibilities of Yersinia pestis Determined by Broth Microdilution following CLSI Methods

    PubMed Central

    Hershfield, Jeremy; Marchand, Charles; Miller, Lynda; Halasohoris, Stephanie; Purcell, Bret K.; Worsham, Patricia L.

    2015-01-01

    In vitro susceptibilities to 45 antibiotics were determined for 30 genetically and geographically diverse strains of Yersinia pestis by the broth microdilution method at two temperatures, 28°C and 35°C, following Clinical and Laboratory Standards Institute (CLSI) methods. The Y. pestis strains demonstrated susceptibility to aminoglycosides, quinolones, tetracyclines, β-lactams, cephalosporins, and carbapenems. Only a 1-well shift was observed for the majority of antibiotics between the two temperatures. Establishing and comparing antibiotic susceptibilities of a diverse but specific set of Y. pestis strains by standardized methods and establishing population ranges and MIC50 and MIC90 values provide reference information for assessing new antibiotic agents and also provide a baseline for use in monitoring any future emergence of resistance. PMID:25583720

  20. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria.

    PubMed

    Zhang, Jiuyang; Chen, Yung Pin; Miller, Kristen P; Ganewatta, Mitra S; Bam, Marpe; Yan, Yi; Nagarkatti, Mitzi; Decho, Alan W; Tang, Chuanbing

    2014-04-02

    Bacteria are now becoming more resistant to most conventional antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings by deactivating conventional β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems, through various mechanisms, resulting in increased mortality rates and hospitalization costs. Here we introduce a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of β-lactamase and effectively lysing bacterial cells. Various conventional β-lactam antibiotics, including penicillin-G, amoxicillin, ampicillin, and cefazolin, are protected from β-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties. These discoveries could provide a new pathway for designing macromolecular scaffolds to regenerate vitality of conventional antibiotics to kill multidrug-resistant bacteria and superbugs.

  1. Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum.

    PubMed

    Weber, Stefan S; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-02-01

    Industrial production of β-lactam antibiotics by the filamentous fungus Penicillium chrysogenum is based on successive classical strain improvement cycles. This review summarizes our current knowledge on the results of this classical strain improvement process, and discusses avenues to improve β-lactam biosynthesis and to exploit P. chrysogenum as an industrial host for the production of other antibiotics and peptide products. Genomic and transcriptional analysis of strain lineages has led to the identification of several important alterations in high-yielding strains, including the amplification of the penicillin biosynthetic gene cluster, elevated transcription of genes involved in biosynthesis of penicillin and amino acid precursors, and genes encoding microbody proliferation factors. In recent years, successful metabolic engineering and synthetic biology approaches have resulted in the redirection of the penicillin pathway towards the production of cephalosporins. This sets a new direction in industrial antibiotics productions towards more sustainable methods for the fermentative production of unnatural antibiotics and related compounds.

  2. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent.

    PubMed

    Ory, Jérôme; Bricheux, Geneviève; Togola, Anne; Bonnet, Jean Louis; Donnadieu-Bernard, Florence; Nakusi, Laurence; Forestier, Christiane; Traore, Ousmane

    2016-07-01

    Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model. During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6')-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins). In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains. Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater

  3. Ion-paired extraction of cephalosporins in acetone prior to their analysis by capillary liquid chromatography in environmental water and meat samples.

    PubMed

    Quesada-Molina, Carolina; García-Campaña, Ana M; del Olmo-Iruela, Monsalud

    2013-10-15

    Ion-pair extraction of cephalosporins from aqueous solution into acetone by the addition of ammonium sulfate to a 1:2 (v/v) acetone-water solvent was carried out followed by their determination using reversed-phase capillary liquid chromatography. The analytes included are cephoperazone, cefquinome, cephalexin, cephapirin, cephaloniun, cephamandole, cephazolin and cephadroxile. In order to form the ion-pair, hexadecyltrimethylammonium bromide (CTAB) was selected as cationic ion-pairing agent at a concentration of 0.9 mM using 10mM phosphate buffer at pH 8 as the optimum condition for the aqueous solution. The applied methodology, named salting-out assisted liquid/liquid extraction (SALLE) involves the use of 1.25 g of ammonium sulfate as salting-out agent. The separation of cephalosporins using a Luna C18 (150 mm × 0.3mm, 5 µm, 100 Å) column was achieved under the following conditions: a gradient program combining solvent A (0.1% formic acid in water, pH 4) and solvent B (acetonitrile-methanol (50:50, v/v)), at a flow rate of 20 µl min(-1), column temperature 35°C and injection volume 7 µl with UV detection at 250 nm. The limits of quantification for the studied compounds were between 4.3 and 22.7 μg/L for water samples and 4.1 and 73.3 μg/kg in the case of beef samples, lower than the maximum residue limits permitted by the EU for this kind of food. The developed methodology has demonstrated its suitability for the analysis of these widely applied antibiotics in environmental water and meat samples, including beef and pork muscle, with high sensitivity, precision and satisfactory recoveries.

  4. Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance.

    PubMed

    Zhao, Lei; Li, Hongru; Zhu, Ziwen; Wakefield, Mark R; Fang, Yujiang; Ye, Ying

    2017-02-09

    Acinetobacter baumannii has been becoming a great challenge to clinicians due to their resistance to almost all available antibiotics. In this study, we sequenced the genome from a multiple antibiotics resistant Acinetobacter baumannii stain which was named A. baumannii-1isolated from China by SMRT sequencing technology to explore its potential mechanisms to antibiotic resistance. We found that several mechanisms might contribute to the antibiotic resistance of Acinetobacter baumannii. Specifically, we found that SNP in genes associated with nucleotide excision repair and ABC transporter might contribute to its resistance to multiple antibiotics; we also found that specific genes associated with bacterial DNA integration and recombination, DNA-mediated transposition and response to antibiotics might contribute to its resistance to multiple antibiotics; Furthermore, specific genes associated with penicillin and cephalosporin biosynthetic pathway and specific genes associated with CHDL and MBL β-lactamase genes might contribute to its resistance to multiple antibiotics. Thus, the detailed mechanisms by which Acinetobacter baumannii show extensive resistance to multiple antibiotics are very complicated. Such a study might be helpful to develop new strategies to control Acinetobacter baumannii infection.

  5. Potentiality of yeast Candida sp. SMN04 for degradation of cefdinir, a cephalosporin antibiotic: kinetics, enzyme analysis and biodegradation pathway.

    PubMed

    Selvi, A; Das, Devlina; Das, Nilanjana

    2015-01-01

    A new yeast strain isolated from the pharmaceutical wastewater was capable of utilizing cefdinir as a sole carbon source for their growth in mineral medium. The yeast was identified and named as Candida sp. SMN04 based on morphology and 18S-ITS-D1/D2/D3 rRNA sequence analysis. The interaction between factors pH (3.0-9.0), inoculum dosage (1-7%), time (1-11 day) and cefdinir concentration (50-450 mg/L) was studied using a Box-Behnken design. The factors were studied as a result of their effect on cell dry weight (R1; g/L), extended spectrum β-lactamase (ESBL) assay (R2; mm), P450 activity (R3; U/mL) and degradation (R4; %). Maximum values of R1, R2, R3 and R4 were obtained at central values of all the parameters. The isolated yeast strain efficiently degraded 84% of 250 mg L⁻¹ of cefdinir within 6 days with a half-life of 2.97 days and degradation rate constant of 0.2335 per day. Pseudo-first-order model efficiently described the process. Among the various enzymes tested, the order of activity at the end of Day 4 was noted to be: cytochrome P450 (1.76 ± 0.03) > NADPH reductase (1.51 ± 0.20) > manganese peroxidase and amylase (0.66 ± 0.15; 0.66 ± 0.70). Intermediates were successfully characterized by liquid chromatography-mass spectrometry. The opening of the β-lactam ring involving ESBL activity was considered as one of the major steps in the cefdinir degradation process. Fourier transform-infrared spectroscopy analysis showed the absence of spectral vibrations between 1766 and 1519 cm⁻¹ confirming the complete removal of lactam ring during cefdinir degradation. The results of the present study are promising for the use of isolated yeast Candida sp. SMN04 as a potential bioremediation agent.

  6. Antibiotic susceptibility of Stenotrophomonas (Xanthomonas) maltophilia: comparative (NCCLS criteria) evaluation of antimicrobial drugs with the agar dilution and the agar disk diffusion (Bauer-Kirby) tests.

    PubMed

    Traub, W H; Leonhard, B; Bauer, D

    1998-01-01

    Ninety-six clinical isolates of Stenotrophomonas maltophilia were examined with the agar dilution method for susceptibility to 19 antimicrobial drugs. Doxycycline, cotrimoxazole, timentin, ofloxacin, fosfomycin, and piperacillin + tazobactam, in that order, inhibited the majority of strains. All isolates were resistant to nitrofurantoin. Concurrent disk susceptibility (Bauer-Kirby method) testing, using currently valid NCCLS interpretative criteria for Pseudomonas aeruginosa, uncovered a significant incidence of very major (category I), major (category II), and minor (categories III and IV) discrepancies for aminoglycosides, cephalosporins, chloramphenicol, and piperacillin + tazobactam and ticarcillin + clavulanic acid. Therefore, new interpretative criteria indicative of intermediate (I) susceptibility of S. maltophilia to these various antibiotics were proposed. In addition, new intermediate susceptibility criteria were proposed for the two beta-lactam-beta-lactamase inhibitor combinations. It was recommended to exclude ciprofloxacin from test batteries against this microorganism due to the wide scatter of minimal inhibitory concentration values and diameters of inhibition zones; the same was true for polymyxin B. It is hoped that the proposed modified, species-specific criteria will improve the clinical utility of laboratory-generated disk antibiograms with respect to the inherently multiple antibiotic-resistant, opportunistic pathogen S. maltophilia.

  7. [Distribution and changes of antibiotic susceptibility of genus Haemophilus (author's transl)].

    PubMed

    Kosakai, N; Oguri, T

    1976-02-01

    We studied on the distribution and changes of antibiotic susceptibility of H. influenzae, H. parainfluenzae and H. parahaemolyticus isolated from clinical materials, mainly from sputum and pharyngeal swabs. In this study we used 132 strains of H. influenzae, 89 strains of H. parainfluenzae and 43 strains of H. parahaemolyticus isolated during January and June of 1975, and estimated the susceptibility for the following eighteen antibiotics by the agar plate dilution method: ampicillin, amoxicillin, ciclacillin, sulbenicillin, carbenicillin, cephalothin, cefazolin, ceftezole, cephalexin, streptomycin, kanamycin, gentamicin, dibekacin, tetracycline, doxycycline, chloramphenicol, thiamphenicol and colistin. We compared these with previously reported results and observed the changes of antibiotic susceptibility. Ampicillin has the strongest antibiotic activity on three species of Haemophilus and the activity of four cephalosporins was weakest. Among three species H. parahaemolyticus was most susceptible and H. influenzae least susceptible to cephalosporins. Antibiotic activity of cyclacillin was rather weak. Other twelve antibiotics have good activity on Haemophilus. We could not find any ampicillin-resistant strain, but found five (3.8%) streptomycin-resistant, one (0.8%) kanamycin-resistant, eleven (8.3%) tetracycline-resistant, and seven (5.3%) chloramphenicol-resistant strains of H. influenzae. Six years ago we found five (9.6%) streptomycin-resistant and one (1.9%) tetracycline-resistant strains, but no resistant strain to other antibiotics. Tetracycline- and chloramphenicol-resistant strains are supposed to have a tendency to increase. There were very few strains which were resistant to more than two antibiotics among H. influenzae. We found a few strains resistant to tetracycline or chloramphenicol among H. parainfluenzae and H. parahaemolyticus, and one strain of H. parainfluenzae was less susceptible to ampicillin.

  8. Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer.

    PubMed

    Quesada-Molina, Carolina; Claude, Bérengère; García-Campaña, Ana M; del Olmo-Iruela, Monsalud; Morin, Philippe

    2012-11-15

    In this paper, a molecularly imprinted polymer (MIP) for cephalosporin molecules (cephalexin (CFL) and cephapirin (CFP)), was prepared by non covalent molecular imprinting approach and applied to solid phase extraction (SPE). For MIP synthesis, a tributylammonium cefadroxil salt (TBA-CFD) was used as template with methacrylic acid and ethylene glycol dimethacrylate as monomer and cross-linker, respectively, in acetone-methanol 92/8 (v/v) mixture. The selectivity of MIP versus non imprinted polymer (NIP) was confirmed for CFL, CFD and CFP in standard solutions as well as in milk samples. The efficiency of the synthesized MIP was evaluated by means of the application of the proposed MIP-SPE procedure to spiked milk samples previous to the HPLC method for the detection of cephalosporins. The MIP-SPE recoveries were higher than 60% for the three target analytes in spiked milk.

  9. A novel sensor for cephalosporins based on electrocatalytic oxidation by poly(o-anisidine)/SDS/Ni modified carbon paste electrode.

    PubMed

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zamani, Saeed

    2010-06-15

    In this work for first time, the electrocatalytic oxidations of some cephalosporins were carried out by poly(o-anisidine)/SDS/Ni modified carbon paste electrode using cyclic voltammetry, chronoamperometry and chronocoulometry methods. At first, poly(o-anisidine) was formed by cyclic voltammetry in monomer solution containing sodium dodesyl sulfate (SDS), on carbon paste electrode surface. Then, Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 0.1molL(-1) Ni(II) ion solution. A good redox behavior was observed for the Ni(OH)(2)/NiOOH couple on the surface of this electrode. Cephalosporins were successfully oxidized on the surface of this nickel ions dispersed poly(o-anisidine) modified carbon paste electrode. The electrocatalytic oxidation peak currents of cephalosporins were linearly dependent on their concentration. Electrode was successfully applied to determine cephalosporins in pharmaceutical preparations.

  10. Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis.

    PubMed

    Veiga, Tânia; Gombert, Andreas K; Landes, Nils; Verhoeven, Maarten D; Kiel, Jan A K W; Krikken, Arjen M; Nijland, Jeroen G; Touw, Hesselien; Luttik, Marijke A H; van der Toorn, John C; Driessen, Arnold J M; Bovenberg, Roel A L; van den Berg, Marco A; van der Klei, Ida J; Pronk, Jack T; Daran, Jean-Marc

    2012-07-01

    Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. chrysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via β-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of β-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of β-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis.

  11. Engineering the stereochemistry of cephalosporin for specific detection of pathogenic carbapenemase-expressing bacteria.

    PubMed

    Shi, Haibin; Cheng, Yunfeng; Lee, Kyung Hyun; Luo, Robert F; Banaei, Niaz; Rao, Jianghong

    2014-07-28

    Reported herein is the design of fluorogenic probes specific for carbapenem-resistant Enterobacteriaceae (CRE) and they were designed based on stereochemically modified cephalosporin having a 6,7-trans configuration. Through experiments using recombinant β-lactamase enzymes and live bacterial species, these probes demonstrate the potential for use in the specific detection of carbapenemases, including metallo-β-lactamases in active bacterial pathogens.

  12. Screening for cephalosporin-resistant Streptococcus pneumoniae with the Kirby-Bauer disk susceptibility test.

    PubMed

    Friedland, I R; Shelton, S; McCracken, G H

    1993-06-01

    Kirby-Bauer disk susceptibility tests with five standard cephalosporin disks were performed on 23 penicillin-resistant Streptococcus pneumoniae isolates for which ceftriaxone MICs were 0.125 to 4 micrograms/ml. Cefuroxime disk inhibition zone diameters distinguished clearly isolates for which ceftriaxone MICs were > or = 2 micrograms/ml from more susceptible strains, whereas cephalothin, ceftizoxime, cefotaxime, and ceftriaxone disks distinguished these isolates less clearly than the cefuroxime disk did.

  13. The prevalence of antibiotic skin test reactivity in a pediatric population.

    PubMed

    Kamboj, Sonia; Yousef, Ejaz; McGeady, Stephen; Hossain, Jobayer

    2011-01-01

    Although adverse drug reactions (ADRs) are not uncommon, true allergic (i.e., immunologic) reactions are infrequent. Estimates are that only 10% of reported "penicillin (PCN)-allergic" patients have true allergic drug reactions. Most studies of PCN-related ADR have been conducted in adult populations and suggest that the majority of adult patients presenting with PCN allergy history can safely receive the drug. The goal of this study was to examine the outcome of provocative drug challenges to antibiotics in a pediatric population and correlate outcomes with predictive factors. Through chart review, we identified 96 pediatric patients with history of an ADR to antibiotics who underwent skin testing (ST) and/or graded challenges to PCN (n = 52), cephalosporins (n = 7), azithromycin (AZT; n = 24), or clindamycin (n = 4). Of these children with an ADR, 87 (90.6%) tolerated provocative drug challenges and 9 (9.4%) were instructed to continue drug avoidance because of positive ST or failed challenge. Eight of the nine patients continued drug avoidance due to positive PCN ST (n = 4) or ADR during drug PCN challenge (n = 4). All AZT and cephalosporin challenges had negative outcomes, and only one patient did not proceed with the clindamycin challenge after a positive ST. True "antibiotic allergy" denoted by positive ST or failed challenge in patients with a history of ADR occurred in <10% of children included in this study, suggesting that without such testing nearly 90% might be treated with alternative antibiotics unnecessarily.

  14. Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals.

    PubMed

    Lalak, Anna; Wasyl, Dariusz; Zając, Magdalena; Skarżyńska, Magdalena; Hoszowski, Andrzej; Samcik, Ilona; Woźniakowski, Grzegorz; Szulowski, Krzysztof

    2016-10-15

    Resistance to β-lactams is considered one of the major global problems and recently it became the most frequently studied topic in the area of antimicrobial resistance. The study was focused on phenotypic and genetic characterisation of commensal Escherichia coli (E. coli), including those producing cephalosporinases, isolated from gut flora of healthy slaughter animals. E. coli were cultured simultaneously on MacConkey agar (MCA) and cefotaxime supplemented MCA. The isolates were confirmed with ONPG and indol tube tests as well as PCR targeting uspA gene. Microbroth dilution method was applied for determination of Minimal Inhibitory Concentrations and interpreted according to EUCAST epidemiological cut-off values. Cephalosporin resistance phenotypes were defined by E-tests (BioMerieux) and relevant gene amplicons from selected strains were sequenced. A total of 298 E. coli isolates with cephalosporin resistance (ESC) found in 99 ones, were obtained from 318 cloacal or rectal swabs deriving from broilers, layers, turkeys, pigs and cattle. Both extended spectrum β-lactamase (ESBL) and ampC-cephalosporinase resistance phenotypes were noted in all tested animal species but cattle. At least one of the analysed genes was identified in 90 out of 99 cephalosporin-resistant isolates: blaTEM (n=44), blaCMY (n=38), blaCTX-M (n=33) and blaSHV (n=12). None of the phenotypes was identified in nine isolates. Sequencing of PCR products showed occurrence of ESBL-genes: blaCTX-M-1/-61, blaSHV-12, blaTEM-1,-52/-92,-135 and ampC-gene blaCMY-2. They were located on numerous and diverse plasmids and resistance transferability was proved by electroporation of blaSHV-12 and blaCTX-M-1/-61 located on X1 plasmids. Detection of cephalosporin resistant E. coli confirms the existence of resistance genes reservoir in farm animals and their possible spread (i.e. via IncX1 plasmids) to other bacteria including human and animal pathogens. The identified genetic background indicates on

  15. [Sensitivity and resistance of aerobic bacteria isolated from patients with periodontitis towards antibiotics and bacteriophages (comparative analysis)].

    PubMed

    Nemsadze, T D; Mshvenieradze, D D; Apridonidze, K G

    2006-03-01

    In order to examine sensitivity and resistance of isolated aerobic bacteria from periodontitis materials towards antibiotics and bacteriophages, there has been studied exudations taken from 737 patients' periodontic pockets or the tissue taken from curettage. According to the rate of identified microorganisms, they have been arranged as follows: S. epidermidis 39,34+/-1,56%; S. pyogenes 18,84+/-1,25%; M. catarrhalis 17,09+/-1,2%; S. aureus 10,71+/-0,99%; E.coli-5,66+/-0,74%; Diphtheroids in 1,13+/-0,33%; S. Mucilaginosus 1,02+/-0,32%, proteus vulgaris - 0,72+/-0,27%; H. parainfluenzae - 0,72+/-0,27%; S. intermedium 0,61+/-0,24%; P. aeruginosa - 0,61+/-0,24%; H. influenzae - 0,51+/-0,22%, S. saprophiticus - 0,51+/-0,22%; S. viridans - 0,51+/-0,22%; S. pneumoniae - 0,41+/-0,2%; K. pneumoniae - 0,41+/-0,22%; S. haemoliticus - 0,41+/-0,2%; B. adolescentics - 0,3+/-0,17%; L. acidophilus -0,3+/-0,17%; S. salivarius-0,1+/-0,1%. It has been stated that percentage of polyresistant strains is growing. While having aerobic infections of periodontitis, kefzol, cephazolin, cephamezin, zinaceph, klaphoran, cephdazidim (cephalosporins I, II, II generation); tetracycline, doxycycline, (tetracyclines); 5-noks, cyprophloxacyne (chinolons I, II generation); ryphamphcyne (rymphamicynes); but standby medicines may be also considered: penicillin G, procaine penicillin (penicillines); streptomycin, kanamicin, gentamicin (aminoglycosides); lincomycin, clindamycin, (lincosamides); eritromycin, macropen (macrolides); chloramphenicol. Since the resistance of microbial strains was not developed towards bacteriophages during the treatment it is considerable to apply simultaneously the bacteriophages and standby antibiotics.

  16. A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate.

    PubMed

    Martínez-Martínez, Irene; Montoro-García, Silvia; Lozada-Ramírez, José Daniel; Sánchez-Ferrer, Alvaro; García-Carmona, Francisco

    2007-10-15

    A bromothymol blue-based colorimetric assay has been devised to screen for acetyl xylan esterase or cephalosporin C (CPC) deacetylase activities using 7-amino cephalosporanic acid (7-ACA), CPC, or acetylated xylan as substrate. These enzymes are not screened with their natural substrates because of the tedious procedures available previously. Acetyl xylan esterase from Bacillus pumilus CECT 5072 was cloned, expressed in Escherichia coli Rosetta (DE3), and characterized using this assay. Similar K(M) values for 7-ACA and CPC were obtained when compared with those described using HPLC methods. The assay is easy to perform and can be carried out in robotic high-throughput colorimetric devices normally used in directed evolution experiments. The assay allowed us to detect improvements in activity at a minimum of twofold with a very low coefficient of variance in 96-well plates. This method is significantly faster and more convenient to use than are known HPLC and pH-stat procedures.

  17. Antibiotic Resistance Questions and Answers

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  18. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia.

    PubMed

    Sánchez, María B

    2015-01-01

    Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins-antibiotics commonly used to treat S. maltophilia infections-have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.

  19. Antibiotics and Resistance: Glossary

    MedlinePlus

    ... induced by natural or human activity on the ecology and living organisms. Ecology The study of the relationships and interactions between ... antibiotics The Cost of Resistance Science of Resistance Ecology Antibiotics in Agriculture Antibacterial Agents Glossary References Web ...

  20. Efficacy evaluation of some antibiotics against syrian brucella spp isolates, in vitro

    PubMed Central

    Safi, Mazen; Al-Mariri, Ayman

    2012-01-01

    Brucellosis is an endemic zoonosis in Syria, affecting large numbers of animals and there are an increasing number of cases in humans. The aim of this study is to investigate the in vitro efficacy of various traditional and new antibiotics against 89 Brucella isolates (isolated from domestic animals) collected from different Syrian regions. Minimum inhibitory concentrations (MICs) of seventeen antibiotics were determined. Ciprofloxacin and ofloxacin were the most effective antibiotics, whereas sparfloxacin, levofloxacin, doxycycline and tetracycline had a moderate activity. In contrast, moxifloxacin and rifampicin had a low activity, while streptomycin, spiramycin and cephalosporines were ineffective. As a result, we come to the conclusion that a combination between one effective quinolone and doxycycline has a good efficacy against Brucella. Further in vivo studies are necessary to support this suggestion. PMID:24031952

  1. Antibiotic Susceptibility of Streptococcus Pyogenes Isolated from Respiratory Tract Infections in Dakar, Senegal

    PubMed Central

    Camara, Makhtar; Dieng, Assane; Boye, Cheikh Saad Bouh

    2013-01-01

    Group A Streptococcus (GAS) is one of the major causes of respiratory tract infections. The objectives of this study were to identify isolates of S. pyogenes obtained from respiratory tract infections, and to assess their susceptibility to several antibiotics. A total of 40 strains were isolated and their susceptibility to 17 antibiotics was tested using a standard disk diffusion method. The minimum inhibitory concentrations (MICs) were determined using the E-test. All isolates were sensitive to β-lactam antibiotics including penicillin, amoxicillin, and cephalosporins. Macrolides remain active with the exception of spiramycin, which showed reduced susceptibility. Out of the 40 isolates, 100% of the isolates were resistant to tetracycline. Interestingly, isolates were sensitive to chloramphenicol, teicoplanin, vancomycine, and levofloxacin, providing potential alternative choices of treatment against infections with S. pyogenes. PMID:24826076

  2. Screening and deciphering antibiotic resistance in Acinetobacter baumannii: a state of the art.

    PubMed

    Bonnin, Rémy A; Nordmann, Patrice; Poirel, Laurent

    2013-06-01

    Acinetobacter baumannii, recognized as a serious threat in healthcare facilities, has the ability to develop resistance to antibiotics quite easily. This resistance is related to either gene acquisition (horizontal gene transfer) or mutations in the genome, leading to gene disruption, over- or down-expression of genes. The clinically relevant antibiotic resistances in A. baumannii include resistance to aminoglycosides, broad-spectrum cephalosporins, carbapenems, tigecycline and colistin, which are the last resort antibiotics. The intrinsic and acquired resistance mechanisms of A. baumannii are presented here, with special focus on β-lactam resistance. The most up-to-date techniques for identification, including phenotypical and molecular tests, and screening of those emerging resistance traits are also highlighted. The implementation of early detection and identification of multidrug-resistant A. baumannii is crucial to control their spread.

  3. Occupational Asthma in Antibiotic Manufacturing Workers: Case Reports and Systematic Review

    PubMed Central

    Díaz Angulo, Sara; Szram, Joanna; Welch, Jenny; Cannon, Julie; Cullinan, Paul

    2011-01-01

    Background. The risks of occupational asthma (OA) from antibiotics are uncertain. We report 4 new cases and a systematic review of the literature. Methods. Cases were identified through a specialist clinic, each underwent specific provocation testing (SPT). We subsequently reviewed the published literature. Results. The patients were employed in the manufacture of antibiotics; penicillins were implicated in three cases, in the fourth erythromycin, not previously reported to cause OA. In two, there was evidence of specific IgE sensitisation. At SPT each developed a late asthmatic reaction and increased bronchial hyperresponsiveness. 36 case reports have been previously published, 26 (citing penicillins or cephalosporins). Seven cross-sectional workplace-based surveys found prevalences of 5–8%. Conclusions. OA in antibiotic manufacturers may be more common than is generally recognised. Its pathogenesis remains unclear; immunological tests are of uncertain value and potential cases require confirmation with SPT. Further study of its frequency, mechanisms, and diagnosis is required. PMID:21603168

  4. Emergence of high ampicillin-resistant Enterococcus faecium isolates in a kidney transplant ward: role of antibiotic pressure and cross transmission.

    PubMed

    Maillard, Olivier; Corvec, Stéphane; Dantal, Jacques; Reynaud, Alain; Lucet, Jean-Christophe; Bémer, Pascale; Lepelletier, Didier

    2010-06-01

    The epidemiology of patients associated with ampicillin-resistant Enterococcus faecium (ARE) was investigated by combining both clinical approach and molecular analysis in a kidney transplant patient's ward. A case-control study was performed to identify risk factors for ARE by matching each patient with ARE with two control patients without any isolated E. faecium strain. ARE isolates were characterized by pulsed-field gel electrophoresis. From June 2004 to May 2006, 18 cases with clinical ARE samples were detected and compared with 35 control patients. By univariate analysis, recurrent urinary tract infections (UTIs) (odds ratio [OR], 4.9; 95% confidence interval [CI], 1.0-25.6), mean number of hospitalization days in the last year (p < 0.003), pyelonephritis or UTI (OR, 9.6; 95% CI, 2.2-46.1), oral third-generation cephalosporin use (OR, 12.42; 95% CI, 2.04-109.1), and fluoroquinolone use (OR, 4.4; 95% CI, 1.1-18.2) were significantly associated with ARE urinary tract colonization. By conditional logistic regression, hospitalization >21 days within 1 year (adjusted OR [aOR], 6.9; 95% CI, 1.0-46.5), recent medical history of pyelonephritis or UTI (aOR, 8.6; 95% CI, 1.5-49.1), and prior oral third-generation cephalosporin use (aOR, 13.1; 95% CI, 1.2-142.6) were identified as independent factors associated with ARE urinary tract colonization. Genotyping revealed a heterogeneous epidemiological situation with two major clones in patients hospitalized in successive rooms and 10 different single pulsotypes. Emergence of highly resistant enterococcal strains is a collateral damage from antibiotic prescription and represents a potential source of patient-to-patient transmission. Combining epidemiological approach and molecular analysis is a powerful tool to delineate mechanisms of emerging resistance. Improving our knowledge on ARE emergence in high antibiotic pressure hospital wards is a key factor to better control these colonizations/infections and to prevent the

  5. Finding alternatives to antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of antibiotic-resistant pathogens requires new treatments. The availability of new antibiotics has severely declined, and so alternatives to antibiotics need to be considered in both animal agriculture and human medicine. Products for disease prevention are different than products for d...

  6. Antibiotic resistant in microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial agents are necessary for use in veterinary medicine including the production of food producing animals. Antibiotic use is indicated for the treatment of bacterial target organisms and/or disease for which the antibiotic was developed. However, an unintended consequence of antibiotic ...

  7. Genotypic-Phenotypic Discrepancies between Antibiotic Resistance Characteristics of Escherichia coli Isolates from Calves in Management Settings with High and Low Antibiotic Use ▿ †

    PubMed Central

    Davis, Margaret A.; Besser, Thomas E.; Orfe, Lisa H.; Baker, Katherine N. K.; Lanier, Amelia S.; Broschat, Shira L.; New, Daniel; Call, Douglas R.

    2011-01-01

    We hypothesized that bacterial populations growing in the absence of antibiotics will accumulate more resistance gene mutations than bacterial populations growing in the presence of antibiotics. If this is so, the prevalence of dysfunctional resistance genes (resistance pseudogenes) could provide a measure of the level of antibiotic exposure present in a given environment. As a proof-of-concept test, we assayed field strains of Escherichia coli for their resistance genotypes using a resistance gene microarray and further characterized isolates that had resistance phenotype-genotype discrepancies. We found a small but significant association between the prevalence of isolates with resistance pseudogenes and the lower antibiotic use environment of a beef cow-calf operation versus a higher antibiotic use dairy calf ranch (Fisher's exact test, P = 0.044). Other significant findings include a very strong association between the dairy calf ranch isolates and phenotypes unexplained by well-known resistance genes (Fisher's exact test, P < 0.0001). Two novel resistance genes were discovered in E. coli isolates from the dairy calf ranch, one associated with resistance to aminoglycosides and one associated with resistance to trimethoprim. In addition, isolates resistant to expanded-spectrum cephalosporins but negative for blaCMY-2 had mutations in the promoter regions of the chromosomal E. coli ampC gene consistent with reported overexpression of native AmpC beta-lactamase. Similar mutations in hospital E. coli isolates have been reported worldwide. Prevalence or rates of E. coli ampC promoter mutations may be used as a marker for high expanded-spectrum cephalosporin use environments. PMID:21421795

  8. Role of pleiotropy during adaptation of TEM-1 β-lactamase to two novel antibiotics

    PubMed Central

    Schenk, Martijn F; Witte, Sariette; Salverda, Merijn L M; Koopmanschap, Bertha; Krug, Joachim; de Visser, J Arjan G M

    2015-01-01

    Pleiotropy is a key feature of the genotype–phenotype map, and its form and extent have many evolutionary implications, including for the dynamics of adaptation and the evolution of specialization. Similarly, pleiotropic effects of antibiotic resistance mutations may affect the evolution of antibiotic resistance in the simultaneous or fluctuating presence of different antibiotics. Here, we study the role of pleiotropy during the in vitro adaptation of the enzyme TEM-1 β-lactamase to two novel antibiotics, cefotaxime (CTX) and ceftazidime (CAZ). We subject replicate lines for four rounds of evolution to selection with CTX and CAZ alone, and in their combined and fluctuating presence. Evolved alleles show positive correlated responses when selecting with single antibiotics. Nevertheless, pleiotropic constraints are apparent from the effects of single mutations and from selected alleles showing smaller correlated than direct responses and smaller responses after simultaneous and fluctuating selection with both than with single antibiotics. We speculate that these constraints result from structural changes in the oxyanion pocket surrounding the active site, where accommodation of CTX and the larger CAZ is balanced against their positioning with respect to the active site. Our findings suggest limited benefits from the combined or fluctuating application of these related cephalosporins for containing antibiotic resistance. PMID:25861383

  9. Antibiotic susceptibility profile of bacilli isolated from the skin of healthy humans.

    PubMed

    Tarale, Prashant; Gawande, Sonali; Jambhulkar, Vinay

    2015-01-01

    In the present work, twelve bacilli were isolated from four different regions of human skin from Bela population of Nagpur district, India. The isolated bacilli were identified by their morphological, cultural and biochemical characteristics. Seven isolates were Gram negative rods, out of which five were belong to genus Pseudomonas. Three among the five Gram positive isolates were identified as Dermabactor and the remaining two Bacillus. Their antimicrobial susceptibility profile was determined by Kirby-Bauer disc diffusion method. The isolates showed resistance to several currently used broad-spectrum antibiotics. The Dermabactor genus was resistant to vancomycin, although it was earlier reported to be susceptible. Imipenem was found to be the most effective antibiotic for Pseudomonas while nalidixic acid, ampicillin and tetracycline were ineffective. Isolates of Bacillus displayed resistance to the extended spectrum antibiotics cephalosporin and ceftazidime. Imipenem, carbenicillin and ticarcillin were found to be the most effective antibiotics as all the investigated isolates were susceptible to them. Antibiotic resistance may be due to the overuse or misuse of antibiotics during the treatment, or following constant exposure to antibiotic-containing cosmetic formulations.

  10. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium

    PubMed Central

    Desbonnet, Charlene; Tait-Kamradt, Amelia; Garcia-Solache, Monica; Dunman, Paul; Coleman, Jeffrey; Arthur, Michel

    2016-01-01

    ABSTRACT The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as “cephalosporins”) is reliant on the presence of class A penicillin-binding proteins (Pbps) PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2) of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP). Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA. Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system. PMID:27048803

  11. Impact of Revised Broad-Spectrum Cephalosporin Clinical and Laboratory Standards Institute Breakpoints on Susceptibility in Enterobacteriaceae Producing AmpC β-Lactamase

    PubMed Central

    Park, Ki-Ho; Chong, Yong Pil; Kim, Sung-Han; Lee, Sang-Oh; Lee, Mi Suk; Sung, Heungsup; Kim, Mi-Na; Kim, Yang Soo; Woo, Jun Hee

    2017-01-01

    We evaluated the impact of revised Clinical and Laboratory Standards Institute (CLSI) breakpoints for broad-spectrum cephalosporins (BSCs) on the susceptibilities of 1,742 isolates of Enterobacter species, Serratia marcescens, Citrobacter freundii, and Morganella morganii. The 2011 CLSI criteria for cefotaxime and ceftazidime reduced the rates of susceptibility by 2.9% and 5.9%, respectively. The 2014 CLSI criteria for cefepime reduced the rate of susceptibility by 13.9%, and categorized 11.8% isolates as susceptible-dose dependent (SDD) for cefepime. Among 183 isolates with extended-spectrum ß-lactamase (ESBL) phenotype, implementation of the new criteria reduced the rates of susceptibility to cefotaxime, ceftazidime, and cefepime by 2.8%, 14.8%, and 53.6%, respectively. The proportion of ESBL phenotype among BSC-susceptible isolates was low (0.9% for cefotaxime, 3.0% for ceftazidime, and 3.3% for cefepime). In summary, implementation of new CLSI criteria led to little change in susceptibility to cefotaxime and ceftazidime but a substantial change in susceptibility to cefepime. The recognition of revised CLSI criteria for BSC and SDD will help clinicians to select the optimal antibiotic and dosing regimen. PMID:28271652

  12. Achieving High Yield of Lactic Acid for Antimicrobial Characterization in Cephalosporin-Resistant Lactobacillus by the Co-Expression of the Phosphofructokinase and Glucokinase.

    PubMed

    Gong, Yahui; Li, Tiyuan; Li, Shiyu; Jiang, Zhenyou; Yang, Yan; Huang, Junli; Liu, Zhaobing; Sun, Hanxiao

    2016-06-28

    Lactobacilli are universally recognized as probiotics that are widely used in the adjuvant treatment of inflammatory diseases, such as vaginitis and enteritis. With the overuse of antibiotics in recent years, the lactobacilli in the human body are killed, which could disrupt the microecological balance in the human body and affect health adversely. In this work, cephalosporin-resistant Lactobacillus casei RL20 was obtained successfully from the feces of healthy volunteers, which possessed a stable genetic set. However, the shortage of lactic acid (72.0 g/l at 48 h) by fermentation did not meet the requirement for its use in medicine. To increase the production of lactic acid, the functional genes pfk and glk were introduced into the wild strain. A yield of 144.2 g/l lactic acid was obtained in the transgenic L. casei RL20-2 after fermentation for 48 h in 1 L of basic fermentation medium with an initial glucose concentration of 100 g/l and increasing antibacterial activity. These data suggested that L. casei RL20-2 that exhibited a high yield of lactic acid may be a potential probiotic to inhibit the spread of bacterial infectious diseases and may be used for vaginitis therapy.

  13. Antibiotics: a new hope.

    PubMed

    Wright, Gerard D

    2012-01-27

    Antibiotic resistance is one of the most significant challenges to the health care sector in the 21st century. A myriad of resistance mechanisms have emerged over the past decades and are widely disseminated worldwide through bacterial populations. At the same time there have been ever fewer new antibiotics brought to market, and the pharmaceutical industry increasingly sees antibiotics as a poor investment. Paradoxically, we are in a Golden Age of understanding how antibiotics work and where resistance comes from. This knowledge is fueling a renaissance of interest and innovation in antibiotic discovery, synthesis, and mechanism that is poised to inform drug discovery to address pressing clinical needs.

  14. Systemic antibiotics in periodontics.

    PubMed

    Slots, Jørgen

    2004-11-01

    This position paper addresses the role of systemic antibiotics in the treatment of periodontal disease. Topical antibiotic therapy is not discussed here. The paper was prepared by the Research, Science and Therapy Committee of the American Academy of Periodontology. The document consists of three sections: 1) concept of antibiotic periodontal therapy; 2) efficacy of antibiotic periodontal therapy; and 3) practical aspects of antibiotic periodontal therapy. The conclusions drawn in this paper represent the position of the American Academy of Periodontology and are intended for the information of the dental profession.

  15. Appropriate Antibiotic Therapy.

    PubMed

    Allison, Michael G; Heil, Emily L; Hayes, Bryan D

    2017-02-01

    Prescribing antibiotics is an essential component of initial therapy in sepsis. Early antibiotics are an important component of therapy, but speed of administration should not overshadow the patient-specific characteristics that determine the optimal breadth of antimicrobial therapy. Cultures should be drawn before antibiotic therapy if it does not significantly delay administration. Combination antibiotic therapy against gram-negative infections is not routinely required, and combination therapy involving vancomycin and piperacillin/tazobactam is associated with an increase in acute kidney injury. Emergency practitioners should be aware of special considerations in the administration and dosing of antibiotics in order to deliver optimal care to septic patients.

  16. Antibiotic resistance in Chlamydiae.

    PubMed

    Sandoz, Kelsi M; Rockey, Daniel D

    2010-09-01

    There are few documented reports of antibiotic resistance in Chlamydia and no examples of natural and stable antibiotic resistance in strains collected from humans. While there are several reports of clinical isolates exhibiting resistance to antibiotics, these strains either lost their resistance phenotype in vitro, or lost viability altogether. Differences in procedures for chlamydial culture in the laboratory, low recovery rates of clinical isolates and the unknown significance of heterotypic resistance observed in culture may interfere with the recognition and interpretation of antibiotic resistance. Although antibiotic resistance has not emerged in chlamydiae pathogenic to humans, several lines of evidence suggest they are capable of expressing significant resistant phenotypes. The adept ability of chlamydiae to evolve to antibiotic resistance in vitro is demonstrated by contemporary examples of mutagenesis, recombination and genetic transformation. The isolation of tetracycline-resistant Chlamydia suis strains from pigs also emphasizes their adaptive ability to acquire antibiotic resistance genes when exposed to significant selective pressure.

  17. In vitro antibacterial activity of TOC-50, a new parenteral cephalosporin against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis.

    PubMed

    Nomura, S; Hanaki, H; Unemi, N

    1996-01-01

    The in vitro activity of TOC-50, a new parenteral cephalosporin, was assessed against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE). TOC-50 showed excellent activity, which was stronger than that of methicillin, cloxacillin, the cephalosporins tested, imipenem, gentamycin, minocycline, ofloxacin and ciprofloxacin against MRSA and had a minimum inhibitory concentration (MIC) comparable to that of vancomycin (the MICs of TOC-50 and vancomycin for growth inhibition of 90% of the strains tested were 3.13 and 1.56 micrograms/ml, respectively). Against MRSE, TOC-50 exhibited excellent activity, which was stronger than that of methicillin, ampicillin, the cephalosporins tested and imipenem, and was twice as active as vancomycin. In terms of the bactericidal effect against MRSA, TOC-50 was superior to vancomycin.

  18. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum.

    PubMed

    Nijland, Jeroen G; Kovalchuk, Andriy; van den Berg, Marco A; Bovenberg, Roel A L; Driessen, Arnold J M

    2008-10-01

    By introduction of the cefEF genes of Acremonium chrysogenum and the cmcH gene of Streptomyces clavuligerus, Penicillium chrysogenum can be reprogrammed to form adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA), a carbamoylated derivate of adipoyl-7-aminodeacetoxy-cephalosporanic acid. The cefT gene of A. chrysogenum encodes a cephalosporin C transporter that belongs to the Major Facilitator Superfamily. Introduction of cefT into an ad7-ACCCA-producing P. chrysogenum strain results in an almost 2-fold increase in cephalosporin production with a concomitant decrease in penicillin by-product formation. These data suggest that cephalosporin production by recombinant P. chrysogenum strains is limited by the ability of the fungus to secrete these compounds.

  19. Ultrastructural Changes in Clinical and Microbiota Isolates of Klebsiella pneumoniae Carriers of Genes bla SHV, bla TEM, bla CTX-M, or bla KPC When Subject to β-Lactam Antibiotics.

    PubMed

    Veras, Dyana Leal; Lopes, Ana Catarina de Souza; da Silva, Grasielle Vaz; Gonçalves, Gabriel Gazzoni Araújo; de Freitas, Catarina Fernandes; de Lima, Fernanda Cristina Gomes; Maciel, Maria Amélia Vieira; Feitosa, Ana Paula Sampaio; Alves, Luiz Carlos; Brayner, Fábio André

    2015-01-01

    The aim of this study was to characterize the ultrastructural effects caused by β-lactam antibiotics in Klebsiella pneumoniae isolates. Three K. pneumoniae clinical isolates were selected for the study with resistance profiles for third-generation cephalosporins, aztreonam, and/or imipenem and with different resistance genes for extended-spectrum β-lactamases (ESBL) or Klebsiella pneumoniae carbapenemase (KPC). Two K. pneumoniae isolates obtained from the microbiota, which were both resistant to amoxicillin and ampicillin, were also analyzed. In accordance with the susceptibility profile, the clinical isolates were subjected to subminimum inhibitory concentrations (sub-MICs) of cefotaxime, ceftazidime, aztreonam, and imipenem and the isolates from the microbiota to ampicillin and amoxicillin, for analysis by means of scanning and transmission electron microscopy. The K. pneumoniae isolates showed different morphological and ultrastructural changes after subjection to β-lactams tested at different concentrations, such as cell filamentation, loss of cytoplasmic material, and deformation of dividing septa. Our results demonstrate that K. pneumoniae isolates harboring different genes that encode for β-lactamases show cell alterations when subjected to different β-lactam antibiotics, thus suggesting that they possess residual activity in vitro, despite the phenotypic resistance presented in the isolates analyzed.

  20. In vitro activity of U-63196E, a new cephalosporin, against clinical bacterial isolates.

    PubMed Central

    Eliopoulos, G M; Gardella, A; DeGirolami, P; Moellering, R C

    1984-01-01

    The in vitro activity of U-63196E, a new cephalosporin, was compared with those of other extended-spectrum cephalosporins and penicillins against clinical bacterial isolates. Against Pseudomonas aeruginosa, the activity of U-63196E was comparable to those of cefoperazone and piperacillin, each of which inhibited 90% of strains at concentrations of less than or equal to 16 micrograms/ml. The new drug also demonstrated activity against a variety of other bacterial species, but it was generally less active than cefotaxime, moxalactam, and cefoperazone against members of the family Enterobacteriaceae and staphylococci. The presence of any 1 of 10 plasmid-mediated beta-lactamases in a series of otherwise isogenic laboratory strains of P. aeruginosa resulted in a significant reduction in the activity of U-63196E in comparison with its activity against the parent strain, which lacks these enzymes. Combinations of U-63196E with tobramycin demonstrated bacteriostatic synergism against 11 of 20 clinical isolates of P. aeruginosa. PMID:6610385

  1. Novel Method for Detection of β-Lactamases by Using a Chromogenic Cephalosporin Substrate

    PubMed Central

    O'Callaghan, Cynthia H.; Morris, A.; Kirby, Susan M.; Shingler, A. H.

    1972-01-01

    A new cephalosporin with a highly reactive β-lactam ring was found to give an immediate color change in the presence of β-lactamases from many bacteria, including staphylococci, Bacillus species, Enterobacteriaceae, and Pseudomonas. The reaction is confined to organisms producing β-lactamases, but it is sufficiently sensitive to indicate the presence of this enzyme is small amounts in strains previously considered not to produce it. The compound has an unusual ultraviolet spectrum, and the color change can be followed quantitatively by measuring changes in absorption which occur in the 380- to 500-nm region, where cephalosporins normally have no absorption. The development of color is thought to be a consequence of the β-lactam ring being unusually highly conjugated with the 3-substituent. Although in the bacteria only β-lactamases produce this color change, it was found that serum and tissues from experimental animals also rapidly produced the colored breakdown product, which was then excreted in the urine. The mechanism of the mammalian breakdown was considered to be different from that found in bacteria. PMID:4208895

  2. Cloning and characterization of the genes for two distinct cephalosporin acylases from a Pseudomonas strain.

    PubMed Central

    Matsuda, A; Matsuyama, K; Yamamoto, K; Ichikawa, S; Komatsu, K

    1987-01-01

    Pseudomonas sp. strain SE83 converts cephalosporin C and 7 beta-(4-carboxybutanamido)cephalosporanic acid (GL-7ACA) to 7-aminocephalosporanic acid (7ACA). A DNA library of this strain was constructed in Escherichia coli and screened for the ability to deacylate GL-7ACA to 7ACA. Apparently, two distinct genes, designated acyI and acyII, were cloned on 4.8- and 6.0-kilobase-pair BglII fragments, respectively. The enzymes encoded by the two genes showed different substrate specificities, and the acyII-encoded enzyme was found to yield 7ACA from cephalosporin C by direct deacylation. Expression of the two genes in E. coli was strongly dependent on a promoter of the vector. The coding regions for acyI and acyII were localized on the 2.5- and 2.8-kilobase-pair fragments, respectively, by subcloning experiments, and high expression of both genes was obtained by placing them under the control of the lacUV5 promoter. The acyII-encoded enzyme was purified and shown to be composed of two nonidentical subunits with molecular weights of 26,000 and 57,000. Maxicell analysis revealed three acyII-specific polypeptides, two of which corresponded to the above subunits. The third polypeptide with a molecular weight of 83,000 was suggested to be the precursor of both subunits. Images PMID:2824449

  3. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  4. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  5. Antibiotic resistance in prevalent bacterial and protozoan sexually transmitted infections

    PubMed Central

    Krupp, Karl; Madhivanan, Purnima

    2015-01-01

    The emergence of multi-drug resistant sexually transmitted infections (STIs) is causing a treatment crisis across the globe. While cephalosporin-resistant gonorrhea is one of the most pressing issues, extensively antibiotic resistant Chlamydia trachomatis and Mycoplasma hominis are also becoming commonplace. Experts have suggested that the failure of current treatment regimens are “largely inevitable” and have called for entirely new classes of antimicrobial agents. With the exception of several new classes of drugs primarily targeting nosocomial infections, progress has been slow. While pharmaceutical companies continue to introduce new drugs, they are based on decade-old discoveries. While there is disagreement about what constitutes new classes of antibiotics, many experts suggest that the last truly new family of antimicrobials was discovered in 1987. This review summarizes the existing literature on antibiotic resistance in common bacterial and protozoal STIs. It also briefly discusses several of the most promising alternatives to current therapies, and further examines how advances in drug delivery, formulation, concentration, and timing are improving the efficacy of existing treatments. Finally, the paper discusses the current state of pharmaceutical development for multidrug-resistant STI. PMID:26392647

  6. [Mouth diseases and antibiotic therapy practices in Yaounde].

    PubMed

    Onana, J; Bengondo, M C; Bengono, G

    2006-03-01

    Based on 309 patients (171 women and 138 men), consulted by 15 dental surgeons of Yaounde during one year, the aim of this study was the evaluation of bringing into use an antibiotherapy in daily practice. A questionnaire on the subject was distributed to practitioners. We registered 10 most frequent mouth dental diseases that needed curative antibiotherapy, being 87% of prescriptions. A prophylactic antibiotherapy has been prescripted in three per cent of cases to patients carriers of general pathologies (cardiopathies, diabete...) or mandibular fractures. In 10% of cases, a covering antibiotherapy has been established during simple extractions of teeth without infections, from healthy patients. In 48% of cases the duration of antibiotherapy was short (less than eight days) and in 32% of cases, the quantities were infratherapeutic. There were three per cent of prescriptions concerning antibiotics (sulfonamides, phenicoles...) unsuited to usual germs of mouth cavity. Generics drugs have been prescribed in 12% of cases. The more prescribed antibiotics were amoxicillins, macrolides and cephalosporines. Only a best knowledge of antibiotics' families and their indications are able to avoid clumsiness. At last generic drugs prescription in our difficult economical environment should be common.

  7. Antibiotics and Breastfeeding.

    PubMed

    de Sá Del Fiol, Fernando; Barberato-Filho, Silvio; de Cássia Bergamaschi, Cristiane; Lopes, Luciane Cruz; Gauthier, Timothy P

    2016-01-01

    During the breastfeeding period, bacterial infections can occur in the nursing mother, requiring the use of antibiotics. A lack of accurate information may lead health care professionals and mothers to suspend breastfeeding, which may be unnecessary. This article provides information on the main antibiotics that are appropriate for clinical use and the interference of these antibiotics with the infant to support medical decisions regarding the discontinuation of breastfeeding. We aim to provide information on the pharmacokinetic factors that interfere with the passage of antibiotics into breast milk and the toxicological implications of absorption by the infant. Publications related to the 20 most frequently employed antibiotics and their transfer into breast milk were evaluated. The results demonstrate that most antibiotics in clinical use are considered suitable during breastfeeding; however, the pharmacokinetic profile of each drug must be observed to ensure the resolution of the maternal infection and the safety of the infant.

  8. Biotic acts of antibiotics

    PubMed Central

    Aminov, Rustam I.

    2013-01-01

    Biological functions of antibiotics are not limited to killing. The most likely function of antibiotics in natural microbial ecosystems is signaling. Does this signaling function of antibiotics also extend to the eukaryotic – in particular mammalian – cells? In this review, the host modulating properties of three classes of antibiotics (macrolides, tetracyclines, and β-lactams) will be briefly discussed. Antibiotics can be effective in treatment of a broad spectrum of diseases and pathological conditions other than those of infectious etiology and, in this capacity, may find widespread applications beyond the intended antimicrobial use. This use, however, should not compromise the primary function antibiotics are used for. The biological background for this inter-kingdom signaling is also discussed. PMID:23966991

  9. Platforms for antibiotic discovery.

    PubMed

    Lewis, Kim

    2013-05-01

    The spread of resistant bacteria, leading to untreatable infections, is a major public health threat but the pace of antibiotic discovery to combat these pathogens has slowed down. Most antibiotics were originally isolated by screening soil-derived actinomycetes during the golden era of antibiotic discovery in the 1940s to 1960s. However, diminishing returns from this discovery platform led to its collapse, and efforts to create a new platform based on target-focused screening of large libraries of synthetic compounds failed, in part owing to the lack of penetration of such compounds through the bacterial envelope. This article considers strategies to re-establish viable platforms for antibiotic discovery. These include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.

  10. Impact of the Use of β-Lactam Antimicrobials on the Emergence of Escherichia coli Isolates Resistant to Cephalosporins under Standard Pig-Rearing Conditions

    PubMed Central

    Cameron-Veas, Karla; Solà-Ginés, Marc; Moreno, Miguel A.; Fraile, Lorenzo

    2014-01-01

    The aim of this study was to evaluate if the treatments with ceftiofur and amoxicillin are risk factors for the emergence of cephalosporin resistant (CR) E. coli in a pig farm during the rearing period. One hundred 7-day-old piglets were divided into two groups, a control (n = 50) group and a group parenterally treated with ceftiofur (n = 50). During the fattening period, both groups were subdivided in two. A second treatment with amoxicillin was administered in feed to two of the four groups, as follows: group 1 (untreated, n = 20), group 2 (treated with amoxicillin, n = 26), group 3 (treated with ceftiofur, n = 20), and group 4 (treated with ceftiofur and amoxicillin, n = 26). During treatment with ceftiofur, fecal samples were collected before treatment (day 0) and at days 2, 7, 14, 21, and 42 posttreatment, whereas with amoxicillin, the sampling was extended 73 days posttreatment. CR E. coli bacteria were selected on MacConkey agar with ceftriaxone (1 mg/liter). Pulsed-field gel electrophoresis (PFGE), MICs of 14 antimicrobials, the presence of cephalosporin resistance genes, and replicon typing of plasmids were analyzed. Both treatments generated an increase in the prevalence of CR E. coli, which was statistically significant in the treated groups. Resistance diminished after treatment. A total of 47 CR E. coli isolates were recovered during the study period; of these, 15 contained blaCTX-M-1, 10 contained blaCTX-M-14, 4 contained blaCTX-M-9, 2 contained blaCTX-M-15, and 5 contained blaSHV-12. The treatment with ceftiofur and amoxicillin was associated with the emergence of CR E. coli during the course of the treatment. However, by the time of finishing, CR E. coli bacteria were not recovered from the animals. PMID:25548055

  11. Impact of the use of β-lactam antimicrobials on the emergence of Escherichia coli isolates resistant to cephalosporins under standard pig-rearing conditions.

    PubMed

    Cameron-Veas, Karla; Solà-Ginés, Marc; Moreno, Miguel A; Fraile, Lorenzo; Migura-Garcia, Lourdes

    2015-03-01

    The aim of this study was to evaluate if the treatments with ceftiofur and amoxicillin are risk factors for the emergence of cephalosporin resistant (CR) E. coli in a pig farm during the rearing period. One hundred 7-day-old piglets were divided into two groups, a control (n = 50) group and a group parenterally treated with ceftiofur (n = 50). During the fattening period, both groups were subdivided in two. A second treatment with amoxicillin was administered in feed to two of the four groups, as follows: group 1 (untreated, n = 20), group 2 (treated with amoxicillin, n = 26), group 3 (treated with ceftiofur, n = 20), and group 4 (treated with ceftiofur and amoxicillin, n = 26). During treatment with ceftiofur, fecal samples were collected before treatment (day 0) and at days 2, 7, 14, 21, and 42 posttreatment, whereas with amoxicillin, the sampling was extended 73 days posttreatment. CR E. coli bacteria were selected on MacConkey agar with ceftriaxone (1 mg/liter). Pulsed-field gel electrophoresis (PFGE), MICs of 14 antimicrobials, the presence of cephalosporin resistance genes, and replicon typing of plasmids were analyzed. Both treatments generated an increase in the prevalence of CR E. coli, which was statistically significant in the treated groups. Resistance diminished after treatment. A total of 47 CR E. coli isolates were recovered during the study period; of these, 15 contained blaCTX-M-1, 10 contained blaCTX-M-14, 4 contained blaCTX-M-9, 2 contained blaCTX-M-15, and 5 contained blaSHV-12. The treatment with ceftiofur and amoxicillin was associated with the emergence of CR E. coli during the course of the treatment. However, by the time of finishing, CR E. coli bacteria were not recovered from the animals.

  12. Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments.

    PubMed

    Chait, Remy; Palmer, Adam C; Yelin, Idan; Kishony, Roy

    2016-01-20

    Antibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if detectable, antibiotic concentrations. Except possibly around localized antibiotic sources, where resistance can provide a strong advantage, bacterial fitness is dominated by stresses unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions influence the selective advantage or disadvantage of antibiotic resistance? Here we find that sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance around localized sources of almost any toxin or stress. Furthermore, certain stresses generate alternating rings of selection for and against resistance around a localized source of the antibiotic. In these conditions, localized antibiotic sources, even at high strengths, can actually produce a net selection against resistance to the antibiotic. Our results show that interactions between the effects of an antibiotic and other stresses in inhomogeneous environments can generate pervasive, complex patterns of selection both for and against antibiotic resistance.

  13. Retrospective survey and evaluation of first-line antibiotics for chemotherapy-induced febrile neutropenia in patients with acute myeloid leukemia

    PubMed Central

    Mukoyama, Naoki; Nakashima, Marie; Miyamura, Koichi; Yoshimi, Akira; Noda, Yukihiro; Mori, Kazuhiro

    2017-01-01

    ABSTRACT Patients with acute leukemia are susceptible to chemotherapy-induced severe myelosuppression, and therefore are at a high risk for febrile neutropenia (FN). In such cases, the use of broad-spectrum antibiotics such as fourth-generation cephalosporins and carbapenems is recommended as first-line antimicrobial treatment; however, the effectiveness of these agents in patients with acute myeloid leukemia (AML) has not been investigated in detail. We retrospectively examined and evaluated the effectiveness of first-line antibiotic treatment regimens for chemotherapy-induced FN in patients with AML in Japanese Red Cross Nagoya Daiichi Hospital. The evaluated first-line treatment regimens were as follows: cefozopran (CZOP) + amikacin (AMK) in 38 cases, cefepime (CFPM) alone in 2 cases, CFPM + AMK in 2 cases, piperacillin (PIPC) + AMK in 2 cases, and CZOP alone in 1 case. Additionally, prophylactic antifungal agents were administered in all cases. Markedly effective, effective, moderately effective, and ineffective responses occurred in 31.1%, 8.9%, 8.9%, and 51.1%, respectively, of the treated cases. The response rate, defined as the combination of markedly effective and effective outcomes, was 40.0%. In 11 cases, impairment of renal functions were observed, and they were associated with combination treatments including AMK; nine of these were associated with a glycopeptide. The combination of CZOP with AMK (84.4%) was the most commonly used first-line treatment for FN in patients with AML; carbapenem or tazobactam/PIPC has never been used for treatment of such cases. Our findings demonstrate that fourth-generation cephems will be an effective first-line treatment for FN in patients with AML in our hospital. PMID:28303057

  14. Antibiotic susceptibility and molecular mechanisms of macrolide resistance in streptococci isolated from adult cystic fibrosis patients.

    PubMed

    Thornton, Christina S; Grinwis, Margot E; Sibley, Christopher D; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2015-11-01

    The cystic fibrosis (CF) airways are colonized by polymicrobial communities with high bacterial load and are influenced by frequent antibiotic exposures. This community includes diverse streptococci, some of which have been directly or indirectly associated with pulmonary exacerbations. As many streptococci are naturally competent, horizontal transfer of antibiotic-resistant determinants coupled with frequent and/or chronic antibiotic exposure may contribute to high resistance rates. In this study, we assessed antibiotic resistance in 413 streptococcal isolates from adult CF patients against nine antibiotics relevant in CF treatment. We observed very low rates of cephalosporin resistance [cefepime and ceftriaxone ( < 2%)], and higher rates of resistance to tetracycline (∼34%) and sulfamethoxazole/trimethoprim (∼45%). The highest rate of antibiotic resistance was to the macrolides [azithromycin (56.4%) and erythromycin (51.6%)]. We also investigated the molecular mechanisms of macrolide resistance and found that only half of our macrolide-resistant streptococci isolates contained the mef (efflux pump) or erm (methylation of 23S ribosomal target site) genes. The majority of isolates were, however, found to have point mutations at position 2058 or 2059 of the 23S ribosomal subunit - a molecular mechanism of resistance not commonly reported in the non-pyogenic and non-pneumococcal streptococci, and unique in comparison with previous studies. The high rates of resistance observed here may result in poor outcomes where specific streptococci are contributing to CF airway disease and serve as a reservoir of resistance genes within the CF airway microbiome.

  15. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  16. Trends in antibiotic resistance of respiratory pathogens: an analysis and commentary on a collaborative surveillance study.

    PubMed

    Baquero, F

    1996-07-01

    The evolution of antibiotic resistance was studied among common respiratory tract pathogens in five countries of the European Union and in the USA during 1992-1993. The data obtained from a collaborative surveillance study were submitted to population analysis, to detect possible shifts in antibiotic susceptibility and, therefore, associated mechanisms of resistance. Among the emerging haemophilus influenzae phenotypes were isolates that did not correspond to the beta-lactamase negative, amino-penicillin resistant (BLNAR) phenotype, but were beta-lactamase producers showing low level ceftriaxone resistance (early extended spectrum beta-lactamases?) amoxycillin susceptible strains with low level ceftriaxone resistance (PBP modification?) and isolates with high-level fluoroquinolone resistance. Moraxella catarrhalis resistance to ceftriaxone erythromycin or fluoroquinolones was noted. The quantitative evolution of antibiotic resistance may reach saturation in some countries with a very high proportion of resistant strains, for example, Spain and France. Qualitatively, resistant strains may be selected that have broader or more effective mechanisms of resistance, particularly under the recently introduced pressure of more active antibiotics of the same family. In countries with modest levels of antibiotic resistance (UK, Germany, Italy), attention should be paid to the misuse of antibiotics with a propensity to select low-level resistant strains. In this respect, the relative prescribing of aminopenicillins and oral cephalosporins in the UK (a high ratio and low prevalence of Streptococcus pneumoniae) and resistance to penicillin in the USA (a low ratio and high prevalence of resistance) is of potential importance.

  17. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics?

    PubMed

    Baietto, Lorena; Corcione, Silvia; Pacini, Giovanni; Perri, Giovanni Di; D'Avolio, Antonio; De Rosa, Francesco Giuseppe

    2014-01-01

    Drug bioavailability may vary greatly amongst individuals, affecting both efficacy and toxicity: in humans, genetic variations account for a relevant proportion of such variability. In the last decade the use of pharmacogenetics in clinical practice, as a tool to individualize treatment, has shown a different degree of diffusion in various clinical fields. In the field of infectious diseases, several studies identified a great number of associations between host genetic polymorphisms and responses to antiretroviral therapy. For example, in patients treated with abacavir the screening for HLA-B*5701 before starting treatment is routine clinical practice and standard of care for all patients; efavirenz plasma levels are influenced by single nucleotide polymorphism (SNP) CYP2B6-516G>T (rs3745274). Regarding antibiotics, many studies investigated drug transporters involved in antibiotic bioavailability, especially for fluoroquinolones, cephalosporins, and antituberculars. To date, few data are available about pharmacogenetics of recently developed antibiotics such as tigecycline, daptomycin or linezolid. Considering the effect of SNPs in gene coding for proteins involved in antibiotics bioavailability, few data have been published. Increasing knowledge in the field of antibiotic pharmacogenetics could be useful to explain the high drug inter-patients variability and to individualize therapy. In this paper we reported an overview of pharmacokinetics, pharmacodynamics, and pharmacogenetics of antibiotics to underline the importance of an integrated approach in choosing the right dosage in clinical practice.

  18. A 30-years Review on Pharmacokinetics of Antibiotics: Is the Right Time for Pharmacogenetics?

    PubMed Central

    Baietto, Lorena; Corcione, Silvia; Pacini, Giovanni; Di Perri, Giovanni; D’Avolio#†, Antonio; Giuseppe De Rosa†, Francesco

    2014-01-01

    Drug bioavailability may vary greatly amongst individuals, affecting both efficacy and toxicity: in humans, genetic variations account for a relevant proportion of such variability. In the last decade the use of pharmacogenetics in clinical practice, as a tool to individualize treatment, has shown a different degree of diffusion in various clinical fields. In the field of infectious diseases, several studies identified a great number of associations between host genetic polymor-phisms and responses to antiretroviral therapy. For example, in patients treated with abacavir the screening for HLA-B*5701 before starting treatment is routine clinical practice and standard of care for all patients; efavirenz plasma levels are influenced by single nucleotide polymorphism (SNP) CYP2B6-516G> T (rs3745274). Regarding antibiotics, many studies investigated drug transporters involved in antibiotic bioavailability, especially for fluoroquinolones, cephalosporins, and antituberculars. To date, few data are available about pharmacogenetics of recently developed antibiotics such as tigecycline, daptomycin or linezolid. Considering the effect of SNPs in gene coding for proteins involved in antibiotics bioavailability, few data have been published. Increasing knowledge in the field of antibiotic pharmacogenetics could be useful to explain the high drug inter-patients variability and to individualize therapy. In this paper we reported an overview of pharmacokinetics, pharmacodynamics, and pharmacogenetics of antibiotics to underline the importance of an integrated approach in choosing the right dosage in clinical practice. PMID:24909419

  19. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations.

    PubMed

    Smart, D R; Ferro, A; Ritchie, K; Bugbee, B G

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  20. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities.

    PubMed

    Wepking, Carl; Avera, Bethany; Badgley, Brian; Barrett, John E; Franklin, Josh; Knowlton, Katharine F; Ray, Partha P; Smitherman, Crystal; Strickland, Michael S

    2017-03-29

    Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function.

  1. Cephalosporin Resistance among Non-Typhi Salmonella from Humans, Retail Meats and Food Animals in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The National Antimicrobial Resistance Monitoring System (NARMS) is a collaboration among the Food and Drug Administration (FDA), U.S. Department of Agriculture (USDA), and the Centers for Disease Control and Prevention (CDC). Here we report on decreased susceptibility to cephalosporins ...

  2. Natural evolution of skin-test sensitivity in patients with IgE-mediated hypersensitivity to cephalosporins.

    PubMed

    Romano, A; Gaeta, F; Valluzzi, R L; Zaffiro, A; Caruso, C; Quaratino, D

    2014-06-01

    There are studies demonstrating that skin-test sensitivity to penicillins can decrease over time and that allergic patients may lose sensitivity if the responsible compounds are avoided. With regard to subjects with IgE-mediated hypersensitivity to cephalosporins, however, such studies are lacking. We evaluated prospectively in a 5-year follow-up 72 cephalosporin-allergic patients. After the first evaluation, patients were classified into two groups according to their patterns of allergologic-test positivity: to both penicillins and cephalosporins (group A), or only to cephalosporins (group B). Skin tests and serum-specific IgE assays were repeated 1 year later and, in case of persistent positivity, 3 and 5 years after the first allergologic examination. Seven (43.7%) of the 16 subjects of group A and 38 (67.8%) of the 56 patients of group B became negative; one was lost to follow-up. Patients of group B became negative sooner and more frequently than group A subjects.

  3. Persistence of antibiotic resistance in bacterial populations.

    PubMed

    Andersson, Dan I; Hughes, Diarmaid

    2011-09-01

    Unfortunately for mankind, it is very likely that the antibiotic resistance problem we have generated during the last 60 years due to the extensive use and misuse of antibiotics is here to stay for the foreseeable future. This view is based on theoretical arguments, mathematical modeling, experiments and clinical interventions, suggesting that even if we could reduce antibiotic use, resistant clones would remain persistent and only slowly (if at all) be outcompeted by their susceptible relatives. In this review, we discuss the multitude of mechanisms and processes that are involved in causing the persistence of chromosomal and plasmid-borne resistance determinants and how we might use them to our advantage to increase the likelihood of reversing the problem. Of particular interest is the recent demonstration that a very low antibiotic concentration can be enriching for resistant bacteria and the implication that antibiotic release into the environment could contribute to the selection for resistance. Several mechanisms are contributing to the stability of antibiotic resistance in bacterial populations and even if antibiotic use is reduced it is likely that most resistance mechanisms will persist for considerable times.

  4. The Comparative Performance of Beta-lactam Antibiotics against Ampicillin Sensitive Escherichia Coli in Conditions Simulating those of the Infected Urinary Bladder

    PubMed Central

    Greenwood, D.; O'Grady, F.

    1974-01-01

    The response of an ampicillin sensitive strain of Escherichia coli to 6 beta-lactam antibiotics was compared in a mechanical model which simulates the hydrokinetic features of the urinary bladder. The performance of the antibiotics was found to differ in a way that could not be predicted by more conventional in vitro techniques. For example, benzylpenicillin was found to be at least as effective as any cephalosporin. Possible reasons for these findings and the relevance of the results to therapeutic practice are discussed. PMID:4607731

  5. Determination of in vitro susceptibility of Mycobacterium tuberculosis to cephalosporins by radiometric and conventional methods.

    PubMed Central

    Heifets, L B; Iseman, M D; Cook, J L; Lindholm-Levy, P J; Drupa, I

    1985-01-01

    Among eight cephalosporins and cephamycins tested in preliminary in vitro screening against Mycobacterium tuberculosis, the most promising for further study was found to be ceforanide, followed by ceftizoxime, cephapirin, and cefotaxime. Moxalactam, cefoxitin, cefamandole, and cephalothin were found to be not active enough against M. tuberculosis to be considered for further in vitro studies. The antibacterial activity of various ceforanide concentrations was investigated by three methods: (i) the dynamics of radiometric readings (growth index) in 7H12 broth; (ii) the number of CFU in the same medium; and (iii) the proportion method on 7H11 agar plates. There was a good correlation among the results obtained with these methods. The MIC for most strains ranged from 6.0 to 25.0 micrograms/ml. The BACTEC radiometric method is a reliable, rapid, and convenient method for preliminary screening and determination of the level of antibacterial activity of drugs not commonly used against M. tuberculosis. PMID:3920957

  6. Inactivation of Mycobacterium tuberculosis l,d-Transpeptidase LdtMt1 by Carbapenems and Cephalosporins

    PubMed Central

    Dubée, Vincent; Triboulet, Sébastien; Mainardi, Jean-Luc; Ethève-Quelquejeu, Mélanie; Gutmann, Laurent; Marie, Arul; Dubost, Lionel

    2012-01-01

    The structure of Mycobacterium tuberculosis peptidoglycan is atypical since it contains a majority of 3→3 cross-links synthesized by l,d-transpeptidases that replace 4→3 cross-links formed by the d,d-transpeptidase activity of classical penicillin-binding proteins. Carbapenems inactivate these l,d-transpeptidases, and meropenem combined with clavulanic acid is bactericidal against extensively drug-resistant M. tuberculosis. Here, we used mass spectrometry and stopped-flow fluorimetry to investigate the kinetics and mechanisms of inactivation of the prototypic M. tuberculosis l,d-transpeptidase LdtMt1 by carbapenems (meropenem, doripenem, imipenem, and ertapenem) and cephalosporins (cefotaxime, cephalothin, and ceftriaxone). Inactivation proceeded through noncovalent drug binding and acylation of the catalytic Cys of LdtMt1, which was eventually followed by hydrolysis of the resulting acylenzyme. Meropenem rapidly inhibited LdtMt1, with a binding rate constant of 0.08 μM−1 min−1. The enzyme was unable to recover from this initial binding step since the dissociation rate constant of the noncovalent complex was low (<0.1 min−1) in comparison to the acylation rate constant (3.1 min−1). The covalent adduct resulting from enzyme acylation was stable, with a hydrolysis rate constant of 1.0 × 10−3 min−1. Variations in the carbapenem side chains affected both the binding and acylation steps, ertapenem being the most efficient LdtMt1 inactivator. Cephalosporins also formed covalent adducts with LdtMt1, although the acylation reaction was 7- to 1,000-fold slower and led to elimination of one of the drug side chains. Comparison of kinetic constants for drug binding, acylation, and acylenzyme hydrolysis indicates that carbapenems and cephems can both be tailored to optimize peptidoglycan synthesis inhibition in M. tuberculosis. PMID:22615283

  7. Molecular Assay for Detection of Genetic Markers Associated with Decreased Susceptibility to Cephalosporins in Neisseria gonorrhoeae

    PubMed Central

    Peterson, S. W.; Martin, I.; Demczuk, W.; Bharat, A.; Hoang, L.; Wylie, J.; Allen, V.; Lefebvre, B.; Tyrrell, G.; Horsman, G.; Haldane, D.; Garceau, R.; Wong, T.

    2015-01-01

    The incidence of antimicrobial-resistant Neisseria gonorrhoeae continues to rise in Canada; however, antimicrobial resistance data are lacking for approximately 70% of gonorrhea infections that are diagnosed directly from clinical specimens by nucleic acid amplification tests (NAATs). We developed a molecular assay for surveillance use to detect mutations in genes associated with decreased susceptibility to cephalosporins that can be applied to both culture isolates and clinical samples. Real-time PCR assays were developed to detect single nucleotide polymorphisms (SNPs) in ponA, mtrR, penA, porB, and one N. gonorrhoeae-specific marker (porA). We tested the real-time PCR assay with 252 gonococcal isolates, 50 nongonococcal isolates, 24 N. gonorrhoeae-negative NAAT specimens, and 34 N. gonorrhoeae-positive NAAT specimens. Twenty-four of the N. gonorrhoeae-positive NAAT specimens had matched culture isolates. Assay results were confirmed by comparison with whole-genome sequencing data. For 252 N. gonorrhoeae strains, the agreement between the DNA sequence and real-time PCR was 100% for porA, ponA, and penA, 99.6% for mtrR, and 95.2% for porB. The presence of ≥2 SNPs correlated with decreased susceptibility to ceftriaxone (sensitivities of >98%) and cefixime (sensitivities of >96%). Of 24 NAAT specimens with matched cultures, the agreement between the DNA sequence and real-time PCR was 100% for porB, 95.8% for ponA and mtrR, and 91.7% for penA. We demonstrated the utility of a real-time PCR assay for sensitive detection of known markers for the decreased susceptibility to cephalosporins in N. gonorrhoeae. Preliminary results with clinical NAAT specimens were also promising, as they correlated well with bacterial culture results. PMID:25878350

  8. In vitro activity of E-1040, a 3-substituted cephalosporin, against pathogens from cystic fibrosis sputum.

    PubMed

    Stutman, H R; Akaniro, J C; Vidaurre, C E; Marks, M I

    1990-07-01

    On the basis of preliminary in vitro data, we evaluated E-1040, a new cephalosporin, against 188 cystic fibrosis (CF) sputum isolates obtained from 26 CF centers in the United States. These isolates included mucoid and nonmucoid Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. In addition to MICs measured under standard conditions, selected isolates were tested at various pH values, inoculum sizes, and diluent (CF serum and sputum) conditions. E-1040 activities (MICs for 50 and 90% of the strains) against the isolates were as follows: P. aeruginosa (mucoid and nonmucoid), 1 and 4 micrograms/ml; P. cepacia, 4 and 16 micrograms/ml; S. aureus, 8 and 8 micrograms/ml; H. influenzae, 1 and 4 micrograms/ml; and E. coli, less than or equal to 0.12 and less than or equal to 0.12 microgram/ml. E-1040 activity against mucoid P. aeruginosa was 4-fold greater than that of aztreonam, 16-fold greater than that of ceftazidime, and 32-fold greater than that of piperacillin. E-1040 was similar to other broad-spectrum cephalosporins against S. aureus, H. influenzae, and E. coli. Bactericidal activity was less than or equal to 1 dilution of MIC for 88% of the strains, although kinetic studies with mucoid strains of P. aeruginosa demonstrated effective killing only at eight times the MIC. Variations in pH from 5 to 8, in inoculum size from 10(3) to 10(7) CFU/ml, and in diluent (CF serum or CF sputum) did not affect E-1040 activity.

  9. Inactivation of Mycobacterium tuberculosis l,d-transpeptidase LdtMt₁ by carbapenems and cephalosporins.

    PubMed

    Dubée, Vincent; Triboulet, Sébastien; Mainardi, Jean-Luc; Ethève-Quelquejeu, Mélanie; Gutmann, Laurent; Marie, Arul; Dubost, Lionel; Hugonnet, Jean-Emmanuel; Arthur, Michel

    2012-08-01

    The structure of Mycobacterium tuberculosis peptidoglycan is atypical since it contains a majority of 3→3 cross-links synthesized by l,d-transpeptidases that replace 4→3 cross-links formed by the d,d-transpeptidase activity of classical penicillin-binding proteins. Carbapenems inactivate these l,d-transpeptidases, and meropenem combined with clavulanic acid is bactericidal against extensively drug-resistant M. tuberculosis. Here, we used mass spectrometry and stopped-flow fluorimetry to investigate the kinetics and mechanisms of inactivation of the prototypic M. tuberculosis l,d-transpeptidase Ldt(Mt1) by carbapenems (meropenem, doripenem, imipenem, and ertapenem) and cephalosporins (cefotaxime, cephalothin, and ceftriaxone). Inactivation proceeded through noncovalent drug binding and acylation of the catalytic Cys of Ldt(Mt1), which was eventually followed by hydrolysis of the resulting acylenzyme. Meropenem rapidly inhibited Ldt(Mt1), with a binding rate constant of 0.08 μM(-1) min(-1). The enzyme was unable to recover from this initial binding step since the dissociation rate constant of the noncovalent complex was low (<0.1 min(-1)) in comparison to the acylation rate constant (3.1 min(-1)). The covalent adduct resulting from enzyme acylation was stable, with a hydrolysis rate constant of 1.0 × 10(-3) min(-1). Variations in the carbapenem side chains affected both the binding and acylation steps, ertapenem being the most efficient Ldt(Mt1) inactivator. Cephalosporins also formed covalent adducts with Ldt(Mt1), although the acylation reaction was 7- to 1,000-fold slower and led to elimination of one of the drug side chains. Comparison of kinetic constants for drug binding, acylation, and acylenzyme hydrolysis indicates that carbapenems and cephems can both be tailored to optimize peptidoglycan synthesis inhibition in M. tuberculosis.

  10. Local antibiotic delivery with bovine cancellous chips.

    PubMed

    Lewis, Christine S; Katz, Jordan; Baker, Maribel I; Supronowicz, Peter R; Gill, Elise; Cobb, Ronald R

    2011-11-01

    Infected bone defects and osteomyelitis are encountered frequently in trauma cases. Currently, the standard of care for osteomyelitis cases is prolonged systemic antibiotic therapy and implantation of antibiotic carrier beads. However, this method requires a secondary surgery to remove the beads after the infection has cleared. In the present study a common bone void filler was investigated for its ability to be infused with an antibiotic. This study demonstrates that the xenograft material tested can be loaded with gentamicin and release clinically relevant levels of the drug for at least 14 days in vitro allowing for the inhibition of bacterial growth on the graft. This study also demonstrates that the levels of gentamicin released did not have an adverse effect on primary osteoblast cell proliferation or ability to generate alkaline phosphatase. This bone void filler may represent a viable alternative to current methods of local antibiotic delivery in orthopedic applications.

  11. The antibiotics in the chemical space.

    PubMed

    Gualtieri, Maxime; Banéres-Roquet, Françoise; Villain-Guillot, Philippe; Pugnière, Martine; Leonetti, Jean-Paul

    2009-01-01

    Ensuring the availability of new antibiotics to eradicate resistant pathogens is a critical issue, but very few new antibacterials have been recently commercialized. In an effort to rationalize their discovery process, the industry has utilized chemical library and high-throughput approaches already applied in other therapeutical areas to generate new antibiotics. This strategy has turned out to be poorly adapted to the reality of antibacterial discovery. Commercial chemical libraries contain molecules with specific molecular properties, and unfortunately systemic antibacterials are more hydrophilic and have more complex structures. These factors are critical, since hydrophobic antibiotics are generally inactive in the presence of serum. Here, we review how the skewed distribution of systemic antibiotics in chemical space influences the discovery process.

  12. Secular trends in antibiotic consumption in the adult population in Emilia-Romagna, Italy, 2003-2009.

    PubMed

    Pan, A; Buttazzi, R; Marchi, M; Gagliotti, C; Resi, D; Moro, M L

    2011-11-01

    Antibiotic resistance is closely related to antibiotic use and Italy is a country with high levels of both antibiotic use and antimicrobial resistance. We analysed the trend in antibiotic use in the community among adults (≥15 years) and elderly, in the period 2003-2009, in Emilia-Romagna, Italy, a region with over 4 000 000 inhabitants. Data regarding antibiotic use were obtained from the regional public health system databases. Between 2003 and 2009 the antibiotic consumption increased from 15.4 to 18.7 defined daily doses/1000 inhabitants per day (DID) (+21.4%, p <0.0001). The prescription rate in 2009 was 2.19 prescriptions/1000 inhabitants per day, an increase of 13.8% compared with 2003. The highest increase in antibiotic use was observed among persons aged 20-59 years (+24.7%). The proportion of inhabitants receiving at least one antibiotic treatment was 36.4% in 2003 and 39.7% in 2009, and the proportions receiving at least three antibiotic treatments were 3.5% and 4.2%, respectively. The H1N1 pandemic was associated, in October and November 2009, with a 37-90% increase in antibiotic use among the 15-19-year and 20-59-year age groups compared with 2007 and 2008. No other difference was observed in any other age group. The analysis per antibiotic class showed increases for penicillin + beta-lactamase inhibitor (from 3.6 to 6.3 DID), quinolones (from 2.6 to 3.0 DID) and macrolides (from 3.1 to 3.7 DID), whereas cephalosporin use was stable (1.4 DID). A steady increase in antibiotic use in the adult population has been observed in the Emilia-Romagna: public health interventions are mandatory to counteract this trend.

  13. Replacement for antibiotics: Lysozyme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics have been fed at subtherapeutic levels to swine as growth promoters for more than 60 years, and the majority of swine produced in the U.S. receive antibiotics in their feed at some point in their production cycle. These compounds benefit the producers by minimizing production losses by ...

  14. Antibiotic-Resistant Bacteria.

    ERIC Educational Resources Information Center

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  15. Setamycin, a new antibiotic.

    PubMed

    Omura, S; Otoguro, K; Nishikiori, T; Oiwa, R; Iwai, Y

    1981-10-01

    A new antibiotic, setamycin, was extracted from the mycelia of a rare actinomycete strain KM-6054. The antibiotic, the molecular formula of which was found to be C42H61NO12 (tentative), is a yellow powder showing activity against some fungi, trichomonads and weakly against Gram-positive bacteria.

  16. Prescription antibiotics for outpatients in Bangladesh: a cross-sectional health survey conducted in three cities

    PubMed Central

    2014-01-01

    Background Antibiotics prescribing by physicians have gained due importance across the globe, mainly because of an increase in antibiotic usage, prevalence of infections and drug resistances. The present study is aimed to evaluate the physicians prescribing pattern of antibiotics, their usages by outpatients and disease conditions for which the antibiotics are prescribed in three cities of Bangladesh. Methods This cross sectional health survey was carried out with a self designed standard questionnaire by manual data collection over a three months period (20.03.2013 to 20.06.2013) at three adjacent cities Jessore Sadar, Monirampur and Keshabpur upazila respectively. The data were collected from the patient’s prescription and by directly interviewing the patients who were prescribed at least one antibiotic during the study period. WHO Anatomical Therapeutic Chemical (ATC) classifications for antibiotics was used and descriptive statistics were applied to the collected data and analyzed using Microsoft Excel software. Modified Wald method was applied to calculate 95% CI. Results A total of 900 prescriptions were analyzed during the study period. It was found that the prescriber prescribed antibiotics to the patients who were suffering mainly from cold and fever, infections, diarrhea and gonorrhea. The highest prescribed antibiotic groups were cephalosporins (31.78%), macrolides (27.33%), quinolones (16.33%), penicillins (7.11%), and metronidazoles (6.78%) respectively. Two or more antibiotics were prescribed in 25.44% of prescriptions. A total of 66.89% prescriptions had complete information on dosage form, 57% had complete direction for antibiotics use and 64.22% patients completed full course of antibiotics. Although 83% prescriptions have no clinical test for using antibiotics, even though the percentages of patients’ disease recovery were 61.78% and incompliance were 38.22%. Conclusion From this research, it is observed that physicians prescribed antibiotics

  17. History of Antibiotics Research.

    PubMed

    Mohr, Kathrin I

    2016-01-01

    For thousands of years people were delivered helplessly to various kinds of infections, which often reached epidemic proportions and have cost the lives of millions of people. This is precisely the age since mankind has been thinking of infectious diseases and the question of their causes. However, due to a lack of knowledge, the search for strategies to fight, heal, and prevent the spread of communicable diseases was unsuccessful for a long time. It was not until the discovery of the healing effects of (antibiotic producing) molds, the first microscopic observations of microorganisms in the seventeenth century, the refutation of the abiogenesis theory, and the dissolution of the question "What is the nature of infectious diseases?" that the first milestones within the history of antibiotics research were set. Then new discoveries accelerated rapidly: Bacteria could be isolated and cultured and were identified as possible agents of diseases as well as producers of bioactive metabolites. At the same time the first synthetic antibiotics were developed and shortly thereafter, thousands of synthetic substances as well as millions of soil borne bacteria and fungi were screened for bioactivity within numerous microbial laboratories of pharmaceutical companies. New antibiotic classes with different targets were discovered as on assembly line production. With the beginning of the twentieth century, many of the diseases which reached epidemic proportions at the time-e.g., cholera, syphilis, plague, tuberculosis, or typhoid fever, just to name a few, could be combatted with new discovered antibiotics. It should be considered that hundred years ago the market launch of new antibiotics was significantly faster and less complicated than today (where it takes 10-12 years in average between the discovery of a new antibiotic until the launch). After the first euphoria it was quickly realized that bacteria are able to develop, acquire, and spread numerous resistance mechanisms

  18. [Antibiotics and gait disorders].

    PubMed

    Gomez-Porro, P; Vinagre-Aragon, A; Zabala-Goiburu, J A

    2016-12-01

    The neurological toxicity of many antibiotics has been reported in a number of articles and clinical notes. In this review antibiotics are classified according to the physiopathogenic mechanism that can give rise to a gait disorder, taking both clinical and experimental data into account. An exhaustive search was conducted in Google Scholar and PubMed with the aim of finding reviews, articles and clinical cases dealing with gait disorders secondary to different antibiotics. The different antibiotics were separated according to the physiopathogenic mechanism that could cause them to trigger a gait disorder. They were classified into antibiotics capable of producing cerebellar ataxia, vestibular ataxia, sensitive ataxia or an extrapyramidal gait disorder. The main aim was to group all the drugs that can give rise to a gait disorder, in order to facilitate the clinical suspicion and, consequently, the management of patients.

  19. Reversing resistance: The next generation antibacterials

    PubMed Central

    Shah, Neel Jayesh

    2015-01-01

    Irrational antibiotic usage has led to vast spread resistance to available antibiotics, but we refuse to slide back to “preantibiotic era.” The threat is serious with the “Enterococcus, Staphylococcous, Klebsiella, Acinetobacter, Pseudomonas and Enterobacter” organisms causing nosocomial infections that are difficult to treat because of the production of extended spectrum β-lactamases, carbapenamases and metallo-β-lactamases. Facing us is a situation where soon multidrug resistance would have spread across the globe with no antibiotics to withstand it. The infectious disease society of America and Food and Drug Administration have taken initiatives like the 10 × ‘20 where they plan to develop 10 new antibiotics by the year 2020. Existing classes of antibiotics against resistant bacteria include the carbapenems, oxazolidinones, glycopeptides, monobactams, streptogramins and daptomycin. Newer drugs in existing classes of antibiotics such as cephalosporins, aminoglycosides, tetracyclines, glycopeptides and β-lactamase inhibitors continue to get synthesized. The situation demands newer targets against bacterial machinery. Some of them include the peptidoglycantransferase, outer membrane protein of Pseudomonas, tRNA synthase, fatty acid synthase and mycobacterial ATP synthase. To curb the irrational and excessive usage of presently available antibiotics should be a priority if they are still to be kept in usage for the future. PMID:26069360

  20. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli.

    PubMed

    Zhanel, George G; Chung, Phillip; Adam, Heather; Zelenitsky, Sheryl; Denisuik, Andrew; Schweizer, Frank; Lagacé-Wiens, Philippe R S; Rubinstein, Ethan; Gin, Alfred S; Walkty, Andrew; Hoban, Daryl J; Lynch, Joseph P; Karlowsky, James A

    2014-01-01

    plasma protein binding (20 %), is primarily eliminated via urinary excretion (≥92 %), and may require dose adjustments in patients with a creatinine clearance <50 mL/min. Time-kill experiments and animal infection models have demonstrated that the pharmacokinetic-pharmacodynamic index that is best correlated with ceftolozane's in vivo efficacy is the percentage of time in which free plasma drug concentrations exceed the minimum inhibitory concentration of a given pathogen (%fT >MIC), as expected of β-lactams. Two phase II clinical trials have been conducted to evaluate ceftolozane ± tazobactam in the settings of cUTIs and cIAIs. One trial compared ceftolozane 1,000 mg every 8 h (q8h) versus ceftazidime 1,000 mg q8h in the treatment of cUTI, including pyelonephritis, and demonstrated similar microbiologic and clinical outcomes, as well as a similar incidence of adverse effects after 7-10 days of treatment, respectively. A second trial has been conducted comparing ceftolozane/tazobactam 1,000/500 mg and metronidazole 500 mg q8h versus meropenem 1,000 mg q8h in the treatment of cIAI. A number of phase I and phase II studies have reported ceftolozane to possess a good safety and tolerability profile, one that is consistent with that of other cephalosporins. In conclusion, ceftolozane is a new cephalosporin with activity versus MDR organisms including P. aeruginosa. Tazobactam allows the broadening of the spectrum of ceftolozane versus β-lactamase-producing Gram-negative bacilli including ESBLs. Potential roles for ceftolozane/tazobactam include empiric therapy where infection by a resistant Gram-negative organism (e.g., ESBL) is suspected, or as part of combination therapy (e.g., with metronidazole) where a polymicrobial infection is suspected. In addition, ceftolozane/tazobactam may represent alternative therapy to the third-generation cephalosporins after treatment failure or for documented infections due to Gram-negative bacilli producing ESBLs

  1. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K.

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  2. [Resistance to "last resort" antibiotics in Gram-positive cocci: The post-vancomycin era].

    PubMed

    Rincón, Sandra; Panesso, Diana; Díaz, Lorena; Carvajal, Lina P; Reyes, Jinnethe; Munita, José M; Arias, César A

    2014-04-01

    New therapeutic alternatives have been developed in the last years for the treatment of multidrug-resistant Gram-positive infections. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are considered a therapeutic challenge due to failures and lack of reliable antimicrobial options. Despite concerns related to the use of vancomycin in the treatment of severe MRSA infections in specific clinical scenarios, there is a paucity of solid clinical evidence that support the use of alternative agents (when compared to vancomycin). Linezolid, daptomycin and tigecycline are antibiotics approved in the last decade and newer cephalosporins (such as ceftaroline and ceftobiprole) and novel glycopeptides (dalvavancin, telavancin and oritavancin) have reached clinical approval or are in the late stages of clinical development. This review focuses on discussing these newer antibiotics used in the "post-vancomycin" era with emphasis on relevant chemical characteristics, spectrum of antimicrobial activity, mechanisms of action and resistance, as well as their clinical utility.

  3. Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy

    SciTech Connect

    Peterson, Jonathan; Wang, Wei; Gu, Baohua

    2009-01-01

    Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bonds to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).

  4. Selectively guanidinylated aminoglycosides as antibiotics.

    PubMed

    Fair, Richard J; Hensler, Mary E; Thienphrapa, Wdee; Dam, Quang N; Nizet, Victor; Tor, Yitzhak

    2012-07-01

    The emergence of virulent, drug-resistant bacterial strains coupled with a minimal output of new pharmaceutical agents to combat them makes this a critical time for antibacterial research. Aminoglycosides are a well-studied, highly potent class of naturally occurring antibiotics with scaffolds amenable to modification, and therefore, they provide an excellent starting point for the development of semisynthetic, next-generation compounds. To explore the potential of this approach, we synthesized a small library of aminoglycoside derivatives selectively and minimally modified at one or two positions with a guanidine group replacing the corresponding amine or hydroxy functionality. Most guanidino-aminoglycosides showed increased affinity for the ribosomal decoding rRNA site, the cognate biological target of the natural products, when compared with their parent antibiotics, as measured by an in vitro fluorescence resonance energy transfer (FRET) A-site binding assay. Additionally, certain analogues showed improved minimum inhibitory concentration (MIC) values against resistant bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA). An amikacin derivative holds particular promise with activity greater than or equal to the parent antibiotic in the majority of bacterial strains tested.

  5. Antibiotic resistance in Burkholderia species.

    PubMed

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.

  6. Biosensors, antibiotics and food.

    PubMed

    Virolainen, Nina; Karp, Matti

    2014-01-01

    Antibiotics are medicine's leading asset for fighting microbial infection, which is one of the leading causes of death worldwide. However, the misuse of antibiotics has led to the rapid spread of antibiotic resistance among bacteria and the development of multiple resistant pathogens. Therefore, antibiotics are rapidly losing their antimicrobial value. The use of antibiotics in food production animals is strictly controlled by the European Union (EU). Veterinary use is regulated to prevent the spread of resistance. EU legislation establishes maximum residue limits for veterinary medicinal products in foodstuffs of animal origin and enforces the establishment and execution of national monitoring plans. Among samples selected for monitoring, suspected noncompliant samples are screened and then subjected to confirmatory analysis to establish the identity and concentration of the contaminant. Screening methods for antibiotic residues are typically based on microbiological growth inhibition, whereas physico-chemical methods are used for confirmatory analysis. This chapter discusses biosensors, especially whole-cell based biosensors, as emerging screening methods for antibiotic residues. Whole-cell biosensors can offer highly sensitive and specific detection of residues. Applications demonstrating quantitative analysis and specific analyte identification further improve their potential as screening methods.

  7. Sampling the antibiotic resistome.

    PubMed

    D'Costa, Vanessa M; McGrann, Katherine M; Hughes, Donald W; Wright, Gerard D

    2006-01-20

    Microbial resistance to antibiotics currently spans all known classes of natural and synthetic compounds. It has not only hindered our treatment of infections but also dramatically reshaped drug discovery, yet its origins have not been systematically studied. Soil-dwelling bacteria produce and encounter a myriad of antibiotics, evolving corresponding sensing and evading strategies. They are a reservoir of resistance determinants that can be mobilized into the microbial community. Study of this reservoir could provide an early warning system for future clinically relevant antibiotic resistance mechanisms.

  8. Selective Pharmacologic Inhibition of a PASTA Kinase Increases Listeria monocytogenes Susceptibility to β-Lactam Antibiotics

    PubMed Central

    Pensinger, Daniel A.; Aliota, Matthew T.; Schaenzer, Adam J.; Boldon, Kyle M.; Ansari, Israr-ul H.; Vincent, William J. B.; Knight, Benjamin; Reniere, Michelle L.; Striker, Rob

    2014-01-01

    While β-lactam antibiotics are a critical part of the antimicrobial arsenal, they are frequently compromised by various resistance mechanisms, including changes in penicillin binding proteins of the bacterial cell wall. Genetic deletion of the penicillin binding protein and serine/threonine kinase-associated protein (PASTA) kinase in methicillin-resistant Staphylococcus aureus (MRSA) has been shown to restore β-lactam susceptibility. However, the mechanism remains unclear, and whether pharmacologic inhibition would have the same effect is unknown. In this study, we found that deletion or pharmacologic inhibition of the PASTA kinase in Listeria monocytogenes by the nonselective kinase inhibitor staurosporine results in enhanced susceptibility to both aminopenicillin and cephalosporin antibiotics. Resistance to vancomycin, another class of cell wall synthesis inhibitors, or antibiotics that inhibit protein synthesis was unaffected by staurosporine treatment. Phosphorylation assays with purified kinases revealed that staurosporine selectively inhibited the PASTA kinase of L. monocytogenes (PrkA). Importantly, staurosporine did not inhibit a L. monocytogenes kinase without a PASTA domain (Lmo0618) or the PASTA kinase from MRSA (Stk1). Finally, inhibition of PrkA with a more selective kinase inhibitor, AZD5438, similarly led to sensitization of L. monocytogenes to β-lactam antibiotics. Overall, these results suggest that pharmacologic targeting of PASTA kinases can increase the efficacy of β-lactam antibiotics. PMID:24867981

  9. Prediction of hydrolysis pathways and kinetics for antibiotics under environmental pH conditions: a quantum chemical study on cephradine.

    PubMed

    Zhang, Haiqin; Xie, Hongbin; Chen, Jingwen; Zhang, Shushen

    2015-02-03

    Understanding hydrolysis pathways and kinetics of many antibiotics that have multiple hydrolyzable functional groups is important for their fate assessment. However, experimental determination of hydrolysis encounters difficulties due to time and cost restraint. We employed the density functional theory and transition state theory to predict the hydrolysis pathways and kinetics of cephradine, a model of cephalosporin with two hydrolyzable groups, two ionization states, two isomers and two nucleophilic attack directions. Results showed that the hydrolysis of cephradine at pH = 8.0 proceeds via opening of the β-lactam ring followed by intramolecular amidation. The predicted rate constants at different pH conditions are of the same order of magnitude as the experimental values, and the predicted products are confirmed by experiment. This study identified a catalytic role of the carboxyl group in the hydrolysis, and implies that the carboxyl group also plays a catalytic role in the hydrolysis of other cephalosporin and penicillin antibiotics. This is a first attempt to quantum chemically predict hydrolysis of an antibiotic with complex pathways, and indicates that to predict hydrolysis products under the environmental pH conditions, the variation of the rate constants for different pathways with pH should be evaluated.

  10. Biodegradable implants for potential use in bone infection. An in vitro study of antibiotic-loaded calcium sulphate.

    PubMed

    Mousset, B; Benoit, M A; Delloye, C; Bouillet, R; Gillard, J

    1995-01-01

    Local antibiotic therapy by diffusion from plaster of Paris beads has proved promising in bone surgery. Sustained local delivery depends on thermostability, so we tested the antibacterial activity of 11 antibiotic solutions after storage at 37 degrees C using a microbiological method. Cephalosporins and penicillins were unstable, but aminoglycosides remained fully stable with 100% activity after 2 weeks. About 60% of the initial bactericidal activity of quinolone, glycopeptides and sodium fusidate were still detectable after 2 weeks. Release of these antibiotics from plaster of Paris beads was evaluated in vitro. Even those in the same family differed in their release rate. Plaster beads with sodium fusidate were the most effective association. A therapeutic level of glycopeptides, aminoglycosides and amoxicillin was leached for about 3 weeks. Cephalosporins and sodium amoxicillin were released in 2 to 3 days, and quinolone beads were too brittle to be used. Plaster of Paris, which is cheap, biocompatible and biodegradable, is an excellent carrier for sodium fusidate, aminoglycosides and glycopeptides.

  11. From antiseptics to antibiotics – and back?

    PubMed Central

    Assadian, Ojan

    2007-01-01

    There is no straight line to trace the trajectory of antiseptics; rather, this has been manifested more as a fluctuating line, a backwards and forwards movement, seen in the wake of major discoveries but of colossal mistakes too. While today no one would allow their prophylactic policies to be guided by miasma or contagia, there continues to be some uncertainly about how to manage anti-infectives effectively even today. When in 1941 the first human being was successfully treated with penicillin, interest in antiseptics gradually waned. From that time onwards, everything was treated with antibiotics, unleashing a race for the discovery of novel antibiotics, as witnessed decades earlier in the case of antiseptics. The significance of antiseptics declined to such an extent that among physicians they were associated merely with cleaning agents or sanitary disinfection. Today, at the beginning of the 21st century we know that the euphoria generated by antibiotics was just another station along the pathway of discoveries. Bacterial infections and new, hitherto unknown infectious diseases continue to play a major role. Several viral infections continue to be refractory to successful treatment and bacterial antibiotic resistance has become a problem worldwide. The most effective countermeasures no longer entail only the development of new antibiotics but above all responsible management of antibiotics and strict observance of infection control measures in the hospital setting. Set against that background, interest in antiseptics has been rekindled. In that spirit we can look eagerly forward over the coming years to further developments in antisepsis. PMID:20200687

  12. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    PubMed

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  13. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection.

    PubMed

    Brown, Kevin A; Khanafer, Nagham; Daneman, Nick; Fisman, David N

    2013-05-01

    The rising incidence of Clostridium difficile infection (CDI) could be reduced by lowering exposure to high-risk antibiotics. The objective of this study was to determine the association between antibiotic class and the risk of CDI in the community setting. The EMBASE and PubMed databases were queried without restriction to time period or language. Comparative observational studies and randomized controlled trials (RCTs) considering the impact of exposure to antibiotics on CDI risk among nonhospitalized populations were considered. We estimated pooled odds ratios (OR) for antibiotic classes using random-effect meta-analysis. Our search criteria identified 465 articles, of which 7 met inclusion criteria; all were observational studies. Five studies considered antibiotic risk relative to no antibiotic exposure: clindamycin (OR = 16.80; 95% confidence interval [95% CI], 7.48 to 37.76), fluoroquinolones (OR = 5.50; 95% CI, 4.26 to 7.11), and cephalosporins, monobactams, and carbapenems (CMCs) (OR = 5.68; 95% CI, 2.12 to 15.23) had the largest effects, while macrolides (OR = 2.65; 95% CI, 1.92 to 3.64), sulfonamides and trimethoprim (OR = 1.81; 95% CI, 1.34 to 2.43), and penicillins (OR = 2.71; 95% CI, 1.75 to 4.21) had lower associations with CDI. We noted no effect of tetracyclines on CDI risk (OR = 0.92; 95% CI, 0.61 to 1.40). In the community setting, there is substantial variation in the risk of CDI associated with different antimicrobial classes. Avoidance of high-risk antibiotics (such as clindamycin, CMCs, and fluoroquinolones) in favor of lower-risk antibiotics (such as penicillins, macrolides, and tetracyclines) may help reduce the incidence of CDI.

  14. The role of drug donations on hospital use of antibiotics during the war and postwar period.

    PubMed

    Škrbić, R; Babić-Djurić, D; Stojisavljević-Šatara, S; Stojaković, N; Nežić, L

    2001-01-01

    Using ATC/DDD methodology, we analyzed antibiotic utilization in the Clinical Centre of Banja Luka, one of the largest clinical centres in Bosnia and Herzegovina, during the war and postwar period (1994-2000), as well as the role of drug donations on doctors' prescribing decisions. The retrospective analysis of antibiotic utilization (group J according to the Anatomical Therapeutical Chemical - ATC classification) was based upon the data provided from the hospital computer centre and calculated as the number of defined daily doses (DDD) per 100 bed days. The pharmacoepidemiological analysis showed that the total use of antibiotics changed markedly; in the war year of 1994, as well as in 1998, antibiotics were the second most frequently used group of drugs (19.7% and 14.1% of total drug utilization respectively), while in the following years antibiotics were considerably less used. These dynamics were significantly influenced by drug donations, the percentage of which in the overall antibiotic supply in 1996 was 91.5%, while in 1999 and in 2000 it decreased considerably to 46.8% and 45.6%, respectively. The most widely prescribed antibiotics were penicillins, aminoglycosides, sulphonamides and tetracyclines. Among these, the aminopenicillins, co-trimoxazole, gentamicin and tetracyclines were mainly (70-100%) supplied as a drug donations. However, macrolides, cephalosporins and quinolones were less used due to fact that they were considerably less often delivered through drug donations. It can be concluded that the drug donations had a significant impact on prescribing practice and the rational use of antibiotics in the Clinical Centre studied.

  15. Antibiotic treatment and mortality in patients with Listeria monocytogenes meningitis or bacteraemia.

    PubMed

    Thønnings, S; Knudsen, J D; Schønheyder, H C; Søgaard, M; Arpi, M; Gradel, K O; Østergaard, C

    2016-08-01

    Invasive Listeria monocytogenes infections carry a high mortality despite antibiotic treatment. The rareness of the infection makes it difficult to improve antibiotic treatment through randomized clinical trials. This observational study investigated clinical features and outcome of invasive L. monocytogenes infections including the efficacy of empiric and definitive antibiotic therapies. Demographic, clinical and biochemical findings, antibiotic treatment and 30-day mortality for all episodes of L. monocytogenes bacteraemia and/or meningitis were collected by retrospective medical record review in the North Denmark Region and the Capital Region of Denmark (17 hospitals) from 1997 to 2012. Risk factors for 30-day all-cause mortality were assessed by logistic regression. The study comprised 229 patients (median age: 71 years), 172 patients had bacteraemia, 24 patients had meningitis and 33 patients had both. Significant risk factors for 30-day mortality were septic shock (OR 3.0, 95% CI 1.4-6.4), altered mental state (OR 3.6, 95% CI 1.7-7.6) and inadequate empiric antibiotic therapy (OR 3.8, 95% CI 1.8-8.1). Cephalosporins accounted for 90% of inadequately treated cases. Adequate definitive antibiotic treatment was administered to 195 patients who survived the early period (benzylpenicillin 72, aminopenicillin 84, meropenem 28, sulfamethoxazole/trimethoprim 6, and piperacillin/tazobactam 5). Definitive antibiotic treatment with benzylpenicillin or aminopenicillin resulted in a lower 30-day mortality in an adjusted analysis compared with meropenem (OR 0.3; 95% CI 0.1-0.8). In conclusion, inadequate empiric antibiotic therapy and definitive therapy with meropenem were both associated with significantly higher 30-day mortality.

  16. Targeting Antibiotic Resistance

    PubMed Central

    Chellat, Mathieu F.; Raguž, Luka

    2016-01-01

    Abstract Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human‐pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last‐resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled “Combat drug resistance: no action today means no cure tomorrow” triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens. PMID:27000559

  17. Resistance-resistant antibiotics.

    PubMed

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  18. [Antibiotics in primary care].

    PubMed

    Steciwko, Andrzej; Lubieniecka, Małgorzata; Muszyńska, Agnieszka

    2011-05-01

    Discovered in the forties of the twentieth century antimicrobial agents have changed the world. Currently, due to their overuse, we are threatened by the increasing resistance of bacteria to antibiotics, and soon we may face a threat of inability to fight these pathogens. For that reason, the world, European and national organizations introduce antibiotics protection programs. In Poland since 2004, the National Program of Protection of Antibiotics is being held. The concept of rational antibiotic therapy is associated not only with the appropriate choice of therapy or antimicrobial dosage but also with a reduction in costs associated with a refund of medicines. Antibiotics are prescribed mostly by primary care physicians (GP), and about one fifth of visits to family doctor's office ends with prescribing antimicrobial drug. These trends are probably related to both the difficulty in applying the differential diagnosis of viral and bacterial infection in a primary care doctor's office, as well as patient's conviction about the effectiveness of antibiotic therapy in viral infections. However, although patients often want to influence the therapeutic decisions and ask their doctor for prescribing antimicrobial drug, the right conversation with a doctor alone is the critical component in satisfaction with medical care. Many countries have established standards to clarify the indications for use of antibiotics and thereby reduce their consumption. The next step is to monitor the prescribing and use of these drugs and to assess the rise of drug resistance in the area. In Poland, the recommendations regarding outpatient respiratory tract infections treatment were published and usage of antimicrobial agents monitoring has begun. However, lack of publications covering a broad analysis of antibiotic therapy and drug resistance on Polish territory is still a problem. Modem medicine has yet another tool in the fight against bacteria--they are bacteriophages. Phage therapy is

  19. Eight more ways to deal with antibiotic resistance.

    PubMed

    Metz, Matthew; Shlaes, David M

    2014-08-01

    The fight against antibiotic resistance must be strengthened. We propose actions that U.S. government agencies and private sector entities can take to build a more comprehensive effort. These actions can increase the viability of investing in new antibiotics, ensure the quality and stewardship of all antibiotics, and make responses to emerging resistance more informed. Success requires the thoughtful exercise of federal authority and a firm commitment to share data and reward developers for the value generated with new, life-saving antibiotics.

  20. Eight More Ways To Deal with Antibiotic Resistance

    PubMed Central

    Shlaes, David M.

    2014-01-01

    The fight against antibiotic resistance must be strengthened. We propose actions that U.S. government agencies and private sector entities can take to build a more comprehensive effort. These actions can increase the viability of investing in new antibiotics, ensure the quality and stewardship of all antibiotics, and make responses to emerging resistance more informed. Success requires the thoughtful exercise of federal authority and a firm commitment to share data and reward developers for the value generated with new, life-saving antibiotics. PMID:24867992

  1. Sublethal Concentrations of Antibiotics Cause Shift to Anaerobic Metabolism in Listeria monocytogenes and Induce Phenotypes Linked to Antibiotic Tolerance

    PubMed Central

    Knudsen, Gitte M.; Fromberg, Arvid; Ng, Yin; Gram, Lone

    2016-01-01

    The human pathogenic bacterium Listeria monocytogenes is exposed to antibiotics both during clinical treatment and in its saprophytic lifestyle. As one of the keys to successful treatment is continued antibiotic sensitivity, the purpose of this study was to determine if exposure to sublethal antibiotic concentrations would affect the bacterial physiology and induce antibiotic tolerance. Transcriptomic analyses demonstrated that each of the four antibiotics tested caused an antibiotic-specific gene expression pattern related to mode-of-action of the particular antibiotic. All four antibiotics caused the same changes in expression of several metabolic genes indicating a shift from aerobic to anaerobic metabolism and higher ethanol production. A mutant in the bifunctional acetaldehyde-CoA/alcohol dehydrogenase encoded by lmo1634 did not have altered antibiotic tolerance. However, a mutant in lmo1179 (eutE) encoding an aldehyde oxidoreductase where rerouting caused increased ethanol production was tolerant to three of four antibiotics tested. This shift in metabolism could be a survival strategy in response to antibiotics to avoid generation of ROS production from respiration by oxidation of NADH through ethanol production. The monocin locus encoding a cryptic prophage was induced by co-trimoxazole and repressed by ampicillin and gentamicin, and this correlated with an observed antibiotic-dependent biofilm formation. A monocin mutant (ΔlmaDCBA) had increased biofilm formation when exposed to increasing concentration of co-trimoxazole similar to the wild type, but was more tolerant to killing by co-trimoxazole and ampicillin. Thus, sublethal concentrations of antibiotics caused metabolic and physiological changes indicating that the organism is preparing to withstand lethal antibiotic concentrations. PMID:27462313

  2. Serratia marcescens: Biochemical, Serological, and Epidemiological Characteristics and Antibiotic Susceptibility of Strains Isolated at Boston City Hospital

    PubMed Central

    Wilfert, James N.; Barrett, Fred F.; Ewing, W. H.; Finland, Maxwell; Kass, Edward H.

    1970-01-01

    The biochemical, serological, and epidemiological characteristics of 95 strains of Serratia marcescens isolated at the Boston City Hospital were examined. Several strains were shown to be endemic, and the majority of isolates were cultured from urine or respiratory secretions. Serratia species were highly resistant to polymyxin B and the cephalosporins, and various proportions were also resistant to other antibiotics including kanamycin, but all of the isolates were sensitive to gentamicin. The appearance of resistance to kanamycin and nalidixic acid among endemic strains was demonstrated. The nosocomial nature of Serratia infections, particularly those involving the urinary tract, was confirmed. Many clinical bacteriology laboratories currently fail to identify the nonpigmented strains. PMID:4314379

  3. Relation of β-Lactamase Activity and Cellular Location to Resistance of Enterobacter to Penicillins and Cephalosporins

    PubMed Central

    Neu, Harold C.; Winshell, Elaine B.

    1972-01-01

    The Enterobacter species E. aerogenes, E. cloacae, and E. hafnia were examined for resistance to penicillin and cephalosporin derivatives. All were resistant to benzyl penicillin, ampicillin, 6 [d(−)α-amino-p-hydroxyphenylacetamido] penicillanic acid, cephaloridine, cephalothin, and cephalexin. A significant number were sensitive to carbenicillin and 6 [d(−)α-carboxy-3-thienylacetamido] penicillanic acid. No differences among the three species were noted. The β-lactamase activity was cell-bound, and was not released by osmotic shock, toluene treatment, or diphenylamine treatment. It was rarely released into the growth medium. The β-lactamase activity was primarily directed against cephalosporin derivatives. Synthesis of β-lactamase was chromosomally mediated. Resistance to ampicillin seemed to be partly related to entry of the molecule into the bacteria since exposure to ethylenediaminetetraacetate lowered the minimal inhibitory concentration. PMID:4218941

  4. [The history of antibiotics].

    PubMed

    Yazdankhah, Siamak; Lassen, Jørgen; Midtvedt, Tore; Solberg, Claus Ola

    2013-12-10

    The development of chemical compounds for the treatment of infectious diseases may be divided into three phases: a) the discovery in the 1600s in South America of alkaloid extracts from the bark of the cinchona tree and from the dried root of the ipecacuanha bush, which proved effective against, respectively, malaria (quinine) and amoebic dysentery (emetine); b) the development of synthetic drugs, which mostly took place in Germany, starting with Paul Ehrlich's (1854-1915) discovery of salvarsan (1909), and crowned with Gerhard Domagk's (1895-1964) discovery of the sulfonamides (1930s); and c) the discovery of antibiotics. The prime example of the latter is the development of penicillin in the late 1920s following a discovery by a solitary research scientist who never worked in a team and never as part of a research programme. It took another ten years or so before drug-quality penicillin was produced, with research now dependent on being conducted in large collaborative teams, frequently between universities and wealthy industrial companies. The search for new antibiotics began in earnest in the latter half of the 1940s and was mostly based on soil microorganisms. Many new antibiotics were discovered in this period, which may be termed «the golden age of antibiotics». Over the past three decades, the development of new antibiotics has largely stalled, while antibiotic resistance has increased. This situation may require new strategies for the treatment of infectious diseases.

  5. On the specificity of antibiotics targeting the large ribosomal subunit.

    PubMed

    Wilson, Daniel N

    2011-12-01

    The peptidyltransferase center of the large ribosomal subunit is responsible for catalyzing peptide bonds. This active site is the target of a variety of diverse antibiotics, many of which are used clinically. The past decade has seen a plethora of structures of antibiotics in complex with the large ribosomal subunit, providing unprecedented insight into the mechanism of action of these inhibitors. Ten distinct antibiotics (chloramphenicol, clindamycin, linezolid, tiamulin, sparsomycin, and five macrolides) have been crystallized in complex with four distinct ribosomal species, three bacterial, and one archaeal. This review aims to compare these structures in order to provide insight into the conserved and species-specific modes of interaction for particular members of each class of antibiotics. Coupled with the wealth of biochemical data, a picture is emerging defining the specific functional states of the ribosome that antibiotics preferentially target. Such mechanistic insight into antibiotic inhibition will be important for the development of the next generation of antimicrobial agents.

  6. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action.

    PubMed

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu; Yeh, Pamela; Miller, Jeffrey H

    2015-12-28

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network.

  7. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action

    PubMed Central

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu

    2015-01-01

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network. PMID:26711761

  8. The differential importance of mutations within AmpD in cephalosporin resistance of Enterobacter aerogenes and Enterobacter cloacae.

    PubMed

    Babouee Flury, Baharak; Ellington, Matthew J; Hopkins, Katie L; Turton, Jane F; Doumith, Michel; Woodford, Neil

    2016-11-01

    Mechanisms leading to carbapenem and cephalosporin resistance were sought in Enterobacter aerogenes isolates that were highly resistant to carbapenems but had no known carbapenemase. Results were compared with recent work examining carbapenem-resistant Enterobacter cloacae. Eighteen carbapenem-resistant E. aerogenes were screened for known β-lactamase and carbapenemase genes, and novel carbapenemases were sought in whole-genome sequencing (WGS) data of the three most resistant isolates. For all isolates, ampC, ampR, ampD and the porin genes omp35 and omp36 were investigated by Sanger sequencing or from available WGS data. Expression of ampC and porin genes was measured in comparison with cephalosporin- and carbapenem-susceptible control strains by reverse transcriptase PCR, with porin translation also detected by SDS-PAGE. Loss of Omp35, primarily due to decreased transcription (up to 250×), was observed in ertapenem-resistant isolates (MICs ≥ 2 mg/L), whereas meropenem resistance (MICs ≥ 4 mg/L) was observed in those isolates also showing decreased or no production of Omp36. Loss of Omp36 was due to combinations of premature translation termination or reduced transcription. In contrast to E. cloacae, cephalosporin resistance in E. aerogenes was not associated with lesions in AmpD. High-level cefepime resistance (MIC = 32 mg/L) was caused by a novel modification in the H-10 helix of AmpC in one isolate. The differential importance of AmpD lesions in cephalosporin resistance in E. cloacae and E. aerogenes underlines the differences between these contrasting members of the Enterobacter genus. Porin loss resulted in high-level carbapenem resistance with gradual loss of Omp36, which led to high-level meropenem resistance.

  9. Strategies to Minimize Antibiotic Resistance

    PubMed Central

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-01-01

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics. PMID:24036486

  10. Strategies to minimize antibiotic resistance.

    PubMed

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-09-12

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  11. Siderophore Cephalosporin Cefiderocol Utilizes Ferric Iron Transporter Systems for Antibacterial Activity against Pseudomonas aeruginosa

    PubMed Central

    Nishikawa, Toru; Yoshizawa, Hidenori; Sato, Takafumi; Nakamura, Rio; Tsuji, Masakatsu; Yamano, Yoshinori

    2016-01-01

    Cefiderocol (S-649266) is a novel parenteral siderophore cephalosporin conjugated with a catechol moiety at the third-position side chain. The in vitro activity of cefiderocol against Pseudomonas aeruginosa was enhanced under iron-depleted conditions, whereas that of ceftazidime was not affected. The monitoring of [thiazole-14C]cefiderocol revealed the increased intracellular accumulation of cefiderocol in P. aeruginosa cells incubated under iron-depleted conditions compared with those incubated under iron-sufficient conditions. Cefiderocol was shown to have potent chelating activity with ferric iron, and extracellular iron was efficiently transported into P. aeruginosa cells in the presence of cefiderocol as well as siderophores, while enhanced transport of extracellular ferric iron was not observed when one of the hydroxyl groups of the catechol moiety of cefiderocol was replaced with a methoxy group. We conclude that cefiderocol forms a chelating complex with iron, which is actively transported into P. aeruginosa cells via iron transporters, resulting in potent antibacterial activity of cefiderocol against P. aeruginosa. PMID:27736756

  12. Human Salmonella and Concurrent Decreased Susceptibility to Quinolones and Extended-Spectrum Cephalosporins

    PubMed Central

    Gay, Kathryn; Stevenson, Jennifer E.; Joyce, Kevin J.; Cooper, Kara L.; Omondi, Michael; Medalla, Felicita; Jacoby, George A.; Barrett, Timothy J.

    2007-01-01

    The National Antimicrobial Resistance Monitoring System monitors susceptibility among Enterobacteriaceae in humans in the United States. We studied isolates exhibiting decreased susceptibility to quinolones (nalidixic acid MIC >32 µg/mL or ciprofloxacin MIC >0.12 µg/mL) and extended-spectrum cephalosporins (ceftiofur or ceftriaxone MIC >2 µg/mL) during 1996–2004. Of non-Typhi Salmonella, 0.19% (27/14,043) met these criteria: 11 Senftenberg; 6 Typhimurium; 3 Newport; 2 Enteridis; and 1 each Agona, Haifa, Mbandaka, Saintpaul, and Uganda. Twenty-six isolates had gyrA mutations (11 at codon 83 only, 3 at codon 87 only, 12 at both). All Senftenberg isolates had parC mutations (S80I and T57S); 6 others had the T57S mutation. The Mbandaka isolate contained qnrB2. Eight isolates contained blaCMY-2; 1 Senftenberg contained blaCMY-23. One Senftenberg and 1Typhimurium isolate contained blaSHV-12; the Mbandaka isolate contained blaSHV-30. Nine Senftenberg isolates contained blaOXA-1; 1 contained blaOXA-9. Further studies should address patient outcomes, risk factors, and resistance dissemination prevention strategies. PMID:18217551

  13. Interpretive accuracy of the disk diffusion method for testing newer orally administered cephalosporins against Morganella morganii.

    PubMed Central

    Biedenbach, D J; Jones, R N; Erwin, M E

    1993-01-01

    Eight newer orally administered cephems (cefdinir, cefetamet, cefixime, cefpodoxime, cefprozil, ceftibuten, cefuroxime, and loracarbef) were tested against 100 clinical strains of Morganella morganii to determine the extent of serious interpretive very major (false-susceptible) errors when current criteria for the disk diffusion test are applied. Agar dilution MICs and disk diffusion tests were performed as recommended by the National Committee for Clinical Laboratory Standards (Villanova, Pa.) (NCCLS), and the methods were compared by regression analysis using the method of least squares and by error rate bounding. The following results are listed in the order of increasing error rates: cefdinir, loracarbef, and cefprozil, < or = 1% very major error; ceftibuten, 8% minor errors; cefuroxime, 21% minor errors; cefixime, cefpodoxime, and cefetamet, very major errors of 15, 24, and 36%, respectively. M. morganii produces unacceptable rates of test error with cefuroxime, cefixime, cefpodoxime, and cefetamet. The latter two cephalosporins currently have NCCLS table footnote warnings covering the problem observed with this organism. The inclusion of cefuroxime and cefixime in the NCCLS table footnote is strongly recommended. PMID:8253998

  14. In Vitro Activities of Cephalosporins and Quinolones against Escherichia coli Strains Isolated from Diarrheic Dairy Calves

    PubMed Central

    Orden, José Antonio; Ruiz-Santa-Quiteria, José Antonio; García, Silvia; Cid, Dolores; de la Fuente, Ricardo

    1999-01-01

    The in vitro activities of several cephalosporins and quinolones against 195 strains of Escherichia coli isolated from dairy calves affected by neonatal diarrhea were determined. One hundred thirty-seven of these strains produced one or more potential virulence factors (F5, F41, F17, cytotoxic necrotizing factor, verotoxin, and the eae gene), but the remaining 58 strains did not produce any of these factors. From 11 to 18% of the E. coli strains were resistant to cephalothin, nalidixic acid, enoxacin, and enrofloxacin. However, cefuroxime, cefotaxime, and cefquinome were highly effective against the E. coli isolates tested. Some significant differences (P < 0.05) in resistance to quinolones between the strains producing potential virulence factors and nonfimbriated, nontoxigenic, eae-negative strains were found. Thus, eae-positive, necrotoxigenic, and verotoxigenic (except for nalidixic acid) E. coli strains were significantly more sensitive to nalidixic acid, enoxacin, and enrofloxacin than nonfimbriated, nontoxigenic, eae-negative strains. Moreover, eae-positive strains were significantly more sensitive to enoxacin and enrofloxacin than F5-positive strains. Thus, the results of this study suggest that the bovine E. coli strains that produce some potential virulence factors are more sensitive to quinolones than those that do not express these factors. PMID:10049259

  15. Advanced treatment of cephalosporin pharmaceutical wastewater by nano-coated electrode and perforated electrode.

    PubMed

    Yang, Bo; Zuo, Jiane; Gan, Lili; Yu, Xin; Liu, Fenglin; Tang, Xinyao; Wang, Yajiao

    2014-09-19

    The objective of this study was to investigate the degradation of nonbiodegradable organic pollutants in biologically cephalosporin pharmaceutical wastewater using different electrodes such as non-nano-scale electrode (traditional coated), nano-scale (nano-coated) electrode, and perforated electrode after biotreatment. The traditional coated electrode plate, nano-coated electrode plate, and two different perforated titanium dioxide (TiO2) electrode plates with an average pore size of 10 μm and 20 μm were chosen as the anode. The results demonstrated that traditional coated electrode, nano-scale electrode, and perforated electrode could effectively remove nonbiodegradable organic pollutants from pharmaceutical wastewater. The perforated electrode with an average pore size of 10 μm exhibited the best degradation effect with a 90 % decrease in the chemical oxygen demand (COD) (COD content reduced from 320 mg L(-1) to 32 mg L(-1)). During catalytic degradation, the electrical conductivity of pharmaceutical wastewater increased and the pH increased and finally reached equilibrium. It was also found that the perforated TiO2 electrode produced relatively large amounts of dissolved oxygen during the catalytic oxidation process, reaching above 4 mg L(-1), whereas the nano-coated electrode produced little dissolved oxygen. The biotoxicities of all wastewater samples increased firstly then decreased slightly during the electrical catalytic oxidation, but the final biotoxicities were all higher than initial ones.

  16. Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid.

    PubMed

    Conlon, H D; Baqai, J; Baker, K; Shen, Y Q; Wong, B L; Noiles, R; Rausch, C W

    1995-06-20

    The first large-scale production of 7-aminocephalosporanic acid (7ACA) from cephalosporin C (CPC) using a wholly enzymatic synthesis method is reported here. We produced 7ACA from CPC in as high a molar yield as 85% using the immobilized enzymes D-amino acid oxidase (D-AOD) and glutaryl-7-ACA acylase (GL-acylase). In the first reactor, CPC is converted to keto-adipyl-7-aminocephalosporanic acid (keto-7ACA) using an immobilized D-AOD isolated from a yeast, Trigonopsis variabilis. The keto-7ACA is then spontaneously converted to glutaryl-7-aminocephalosporanic acid (GL-7ACA) via a chemical reaction with hydrogen peroxide. The hydrogen peroxide is also a product of the D-AOD reaction. Near quantitative conversion of the keto-7ACA to GL-7ACA was observed. The second reactor converts GL-7ACA to 7ACA using an immobilized GL-acylase, which was isolated from a recombinant Escherichia coli. The final 7ACA crystalline product is a high quality product. The reactions are conducted under very mild aqueous conditions: pH 8.0 and 20 degrees to 25 degrees C. The production of desacetyl side products is minimal. This process is currently being implemented on an industrial scale to produce 7ACA.

  17. Cephalosporin-resistant Escherichia coli among Summer Camp Attendees with Salmonellosis

    PubMed Central

    Mirelis, Beatriz; Miró, Elisenda; Navarro, Ferran; Llovet, Teresa; Johnson, James R.; Camps, Neus; Domínguez, Ángela; Salleras, Lluis

    2003-01-01

    Investigation of an acute gastroenteritis outbreak involving >100 persons at a summer camp in Girona, Spain, in June 2002 led to the detection of Salmonella and extended-spectrum cephalosporin-resistant Escherichia coli (ESCREC). Stool cultures were performed for 22 symptomatic campers, three asymptomatic food handlers, and 10 healthy household members. Of the 22 campers, 19 had Salmonella enterica, 9 had an ESCREC strain carrying an extended-spectrum β-lactamase, and 2 had a second ESCREC strain carrying a plasmidic cephamycinase. Related ESCREC were detected in two (salmonella-negative) asymptomatic food handlers and in none of the healthy household members. Fecal ESCREC and its β-lactamases and plasmids were extensively characterized. Three of the five ESCREC clones were recovered from multiple hosts. The apparent dissemination of ESCREC suggests a food or water vehicle. The observed distribution of resistance plasmids and β-lactamase genes in several clones indicates a high degree of horizontal transfer. Heightened vigilance and increased efforts must be made to discover the reservoirs and vehicles for community dissemination of ESCREC. PMID:14609463

  18. Cephalosporins. II. 7-(O-Aminomethyl-phnylacetamido) cephalosporanic acids with six membered heterocycles in the C-3 side chain.

    PubMed

    Naito, T; Okumura, J; Kasai K-I; Masuko, K; Hoshi, H

    1977-09-01

    7-(o-Aminomethylphenylacetamido)cephalosporanic acids with six-membered heterocycles in the C-3 side chain were prepared by nucleophillic substitution of 7-ACA at the C-3 acetoxy group followed by N-acylation of the 7-amino group. The 7-side chain acid, o-aminomethylphenylacetic acid (5), was prepared by two new convenient routes, which involved Schmidt reaction of indanone (2) followed by cleavage of the lactam ring or reduction of o-cyanophenylacetic acid (10) starting from o-nitrotoluene. The antibacterial activity of the cephalosporins in this series depends on the heterocycle in the C-3 side chain. In general pyridazines gave cephalosporin derivatives possessing better activity than those with a pyridine or pyrimidine ring. The most active member of the new cephalosporins was 7-(o-aminomethylphenylacetamido)-3-(6-hydroxypyridazin-3-ylthilmethyl)-3-cephem-4-carboxylic acid (BB-S 150) (1g) which has in vitro antibacterial activity superior to cephalothin and cefazolin against both gram-negative and gram-positive organisms. The in vitro activity of BB-S 150 determined in mice was superior to cephalothin and comparable to cefazolin.

  19. [Fuzzy cluster for analysis of the relationship between the structure of cephalosporins and immune cross-reaction].

    PubMed

    Hu, C Q; Jin, S H; Sun, X L; Ren, M D

    1990-09-01

    Six parameters (molecular negentropy, acidic group number, basic group number, proton donor group number, proton acceptor group number, and a ratio of C atomic group number to total atomic group number) for characterizing the structure of an antibody combining site in a R1 chain of cephalosporins were selected. Although 12 parameters characterized the site A and site B in a R1 chain were used in fuzzy cluster, Fischer weighting ratio (Fi) indicated that only 5 parameters, 4 of them characterized the structure of site A, play an important part in the cluster. Therefore it was speculated that the site A was the major combining site in the antigen-antibody interaction. According to the similarity of the R1 chains, cephalosporins could be clustered into 4 groups among which less cross-reaction took place. Using the "relative Hamming distance" of the R1 chains for description of their similarity, we found that the intensity of the cross-reaction assayed by immune tests had a close correlation with the "relative Hamming distance", so the distance was used for prediction of the intensity of the cross-reaction of cephalosporins.

  20. Impact of antibiotic exposure on occurrence of nosocomial carbapenem-resistant Acinetobacter baumannii infection: a case control study.

    PubMed

    Chusri, Sarunyou; Silpapojakul, Kachornsakdi; McNeil, Edward; Singkhamanan, Kamonnut; Chongsuvivatwong, Virasakdi

    2015-02-01

    Carbapenem-resistant Acinetobacter baumannii (CRAB) infection is one of the most important healthcare associated diseases worldwide. Although antibiotic use is recognized as a risk factor for CRAB infection, the impact of antibiotic class and length of use on CRAB infection is still unclear. A case-control study was conducted in adult intensive care units and general wards of Songklanagarind Hospital, a tertiary-care hospital in southern Thailand, to investigate the effect of different antibiotic exposure and the duration of use on the risk of developing CRAB infection. Cases were defined as patients with carbapenem-susceptible A. baumannii (CSAB) or CRAB infection. Controls were randomly selected from patients and matched 1:1 with cases using ward and date of admission. Multinomial logistic regression was used to compute relative risk ratios (RRR) and 95% confidence intervals (CI) for CRAB infection. Of 197 cases with A. baumannii infection, there were 139 with CRAB infection and 58 with CSAB infection. Compared to the control group, use of fluoroquinolones, broad-spectrum cephalosporins and carbapenems for more than three days increased the risk of CRAB infection with RRR (95% CI) of 81.2 (38.1-862.7), 31.3 (9.9-98.7) and 112.1 (7.1-1770.6), respectively. The RRR (95% CI) for one to three day treatment of fluoroquinolones, broad-spectrum cephalosporins and carbapenems were 5.4 (0.8-38.7), 6.2 (0.1-353.2) and 63.3 (15.6-256.9), respectively. Long-term use of certain antibiotics and even short term use of carbapenems increased the risk of CRAB infection. In this setting, use of these antibiotics, especially carbapenems, should be limited to reduce CRAB infection.

  1. Antibiotics after rattlesnake envenomation.

    PubMed

    LoVecchio, Frank; Klemens, Jane; Welch, Sharon; Rodriguez, Ron

    2002-11-01

    To record the outcome, with regard to infection rate, of patients with rattlesnake bites (RSBs) who do not receive prophylactic antibiotics, a prospective observational study was performed of patients with RSBs treated at our institution during a consecutive 18-month period. The inclusion criteria were RSBs <24 h old and completion of follow-up (telephone call, mail reply, medical toxicologist, or private physician examination) 7-10 days following envenomation. Fifty-six consecutive patients (Median age: 32.8 years [range 4-67 years]) were enrolled. One patient was excluded because of presentation 38 h after envenomation and two patients failed to complete the required follow-up. One patient received a dose of antibiotics before transfer. Antibiotics were discontinued upon arrival. Of the total 56 RSB patients, 34 (61%) RSBs involved the upper extremity and 22 (39%) involved the lower extremity. Six patients (11%) applied ice and two (4%) used a tourniquet before evaluation. The mean arrival time was 2.7 h (Range <1-24 h). Forty-three patients (81%) received antivenin. Fifty-three patients (100%) had extremity swelling and 38 patients (72%) had tender proximal lymph nodes. Of the 53 patients who completed the study, 3 (6%) received antibiotics from their primary care physicians at 7-10 day follow-up, with no cases (0%) of documented infection. Prophylactic antibiotics are not indicated in patients with rattlesnake bites.

  2. Antibiotic Prescriptions in Critically-Ill Patients: A Latin American Experience

    PubMed Central

    Curcio, D

    2013-01-01

    Background: It is widely acknowledged that the presence of infection is an important outcome determinant for intensive care unit (ICU) patients. In fact, antibiotics are one of the most common therapies administered in the ICU settings. Aim: To evaluate the current usage of antibiotics in Latin American ICUs. Subjects and Methods: A one-day p-oint prevalence study to investigate the patterns of antibiotic was undertaken in 72 Latin American (LA) ICUs. Data was analyzed using the Statistix 8 statistical software, version 2.0 (USA). Results were expressed as proportions. When applicable, two tailed hypothesis testing for difference in proportions was used (Proportion Test); a P value of <0.05 was considered significant. Results: Of 704 patients admitted, 359 received antibiotic treatment on the day of the study (51%), of which 167/359 cases (46.5%) were due to hospital-acquired infections. The most frequent infection reorted was nosocomial pneumonia (74/359, 21%). Only in 264/359 patients (73.5%), cultures before starting antibiotic treatment were performed. Thirty-eight percent of the isolated microorganisms were Enterobacteriaceae extended-spectrum β-lactamase-producing, 11% methicillin-resistant Staphylococcus aureus and 10% carbapenems-resistant non-fermentative Gram-negatives. The antibiotics most frequently prescribed were carbapenems (125/359, 35%), alone or in combination with vancomycin or other antibiotic. There were no significant differences in the “restricted” antibiotic prescription (carbapenems, vancomycin, piperacillin–tazobactam, broad-spectrum cephalosporins, fluoroquinolones, tigecycline and linezolid) between patients with APACHE II score at the beginning of the antibiotic treatment <15 [83/114 (72.5%)] and ≥15 [179/245 (73%)] (P = 0.96). Only 29% of the antibiotic treatments were cultured directed (104/359). Conclusion: Carbapenems (alone or in combination) were the most frequently prescribed antibiotics in LA ICUs. However, the problem

  3. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics.

    PubMed

    Alexandrino, Diogo A M; Mucha, Ana P; Almeida, C Marisa R; Gao, Wei; Jia, Zhongjun; Carvalho, Maria F

    2017-03-01

    Fluoroquinolones and cephalosporins are two classes of veterinary antibiotics arising as pollutants of emerging concern. In this work, the microbial degradation of two representative antibiotics of both these classes, enrofloxacin (ENR) and ceftiofur (CEF), is reported. Biodegradation of the target antibiotics was investigated by supplementing the culture medium with ENR and CEF, individually and in mixture. Microbial inocula were obtained from rhizosphere sediments of plants derived from experimental constructed wetlands designed for the treatment of livestock wastewaters contaminated with trace amounts of these antibiotics. Selected microbial inocula were acclimated during a period of 5months, where the antibiotics were supplemented every three weeks at the concentration of 1mgL(-1), using acetate as a co-substrate. After this period, the acclimated consortia were investigated for their capacity to biodegrade 2 and 3mgL(-1) of ENR and CEF. Complete removal of CEF from the inoculated culture medium was always observed within 21days, independently of its concentration or the concomitant presence of ENR. Biodegradation of ENR decreased with the increase in its concentration in the culture medium, with defluorination percentages decreasing from ca. 65 to 4%. Ciprofloxacin and norfloxacin were detected as biodegradation intermediates of ENR in the microbial cultures supplemented with this antibiotic, indicating that defluorination of at least part of ENR in these cultures is not an immediate catabolic step. Abiotic mechanisms showed high influence in the removal of CEF, affecting less ENR degradation. The acclimation process with the target antibiotics led to significant shifts in the structure and diversity of the microbial communities, predominantly selecting microorganisms belonging to the phyla Proteobacteria (e.g. Achromobacter, Variovorax and Stenotrophomonas genera) and Bacteroidetes (e.g. Dysgonomonas, Flavobacterium and Chryseobacterium genera). The results

  4. Antibiotics for acute otitis media in children.

    PubMed

    Nitsche, María Pía; Carreño, Monica

    2015-10-29

    Acute otitis media is one of the most common infectious diseases diagnosed in children. Antibiotic treatment use remains controversial. This summary aims to evaluate the effectiveness and safety of antibiotics in children with acute otitis media. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified six systematic reviews including 18 randomized trials. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded antibiotics reduce pain at 48-72 hours and reduce the risk of tympanic perforations in children with acute otitis media, but they do not reduce late recurrences and increase the risk of side effects (rash, vomiting and diarrhea).

  5. The multifaceted roles of antibiotics and antibiotic resistance in nature

    PubMed Central

    Sengupta, Saswati; Chattopadhyay, Madhab K.; Grossart, Hans-Peter

    2013-01-01

    Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic-resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic resistance in pathogens. In the natural milieu, antibiotics are often found to be present in sub-inhibitory concentrations acting as signaling molecules supporting the process of quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host–parasite interactions (e.g., phagocytosis, adherence to the target cell, and so on). The evolutionary and ecological aspects of antibiotics and antibiotic resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behavior of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and the genes that confer resistance to antibiotics

  6. Tetracycline Antibiotics and Resistance.

    PubMed

    Grossman, Trudy H

    2016-04-01

    Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.

  7. History and epidemiology of antibiotic susceptibilities of Neisseria gonorrhoeae.

    PubMed

    Shigemura, Katsumi; Fujisawa, Masato

    2015-01-01

    Neisseria gonorrhoeae is a common causative microorganism of male urethritis. The most important problem with this infectious disease is antibiotic resistance. For instance, in the 1980's-1990's, most studies showed almost 100% susceptibility of N. gonorrhoeae to the representative cephalosporins, cefixime and cefpodoxime. By the late 1990s, the reported susceptibility decreased to 93.3-100% and further decreased to 82.9-100% in the early 2000's. However, reported susceptibility was revived to 95.8-100% in the late 2000's to 2010's. The susceptibility of N. gonorrhoeae to penicillins varied in different countries and regions. A 2002 Japanese study showed a resistance ratio of about 30% and while Laos, China and Korea showed 80-100% resistance. Fluoroquinolones have shown a dramatic change in their effect on N. gonorrhoeae. In the early 1990's, 0.3-1.3% of N. gonorrhoeae showed low susceptibility or resistance to ciprofloxacin in the US but this figure jumped to 9.5% by 1999. In Asia, N. gonorrhoeae ciprofloxacin resistance or lower susceptibility was about 80-90% in the early 2000's and this trend continues to the present day. Azithromycin is currently the possible last weapon for N. gonorrhoeae treatment per oral administration. The susceptibility of N. gonorrhoeae to azithromycin was 100% in Indonesia in 2004 and the latest study from Germany showed 6% resistance in strains from 2010-2011. This review summarizes the history and epidemiology of N. gonorrhoeae antibiotic susceptibilities, for which the most frequently used antibiotics vary between countries or regions.

  8. Antibiotic bonding to polytetrafluoroethylene with tridodecylmethylammonium chloride

    SciTech Connect

    Harvey, R.A.; Alcid, D.V.; Greco, R.S.

    1982-09-01

    Polytetrafluoroethylene (PTFE) treated with the cationic surfactant, triodecylmethylammonium chloride (TDMAC), binds /sup 14/C-penicillin (1.5 to 2 mg antibiotic/cm graft), whereas untreated PTFE or PTFE treated with anionic detergents shows little binding of antibiotic. TDMAC-treated PTFE concomitantly binds penicillin and heparin, generating a surface that potentially can resist both infection and thrombosis. The retention of these biologically active molecules is not due to passive entrapment in the PTFE but reflects an ionic interaction between the anionic ligands and surface-bound TDMAC. Penicillin bound to PTFE is not removed by exhaustive washing in aqueous buffers but is slowly released in the presence of plasma or when the PTFE is placed in a muscle pouch in the rat. Muscle tissue adjacent to the treated PTFE shows elevated levels of antibiotic following implantation. PTFE treated with TDMAC and placed in a muscle pouch binds /sup 14/C-penicillin when it is locally irrigated with antibiotic or when penicillin is administered intravenously. Thus, the TDMAC surface treated either in vitro or in vivo with penicillin provides an effective in situ source for the timed release of antibiotic.

  9. Antibiotic prophylaxis in otolaryngologic surgery

    PubMed Central

    Ottoline, Ana Carolina Xavier; Tomita, Shiro; Marques, Marise da Penha Costa; Felix, Felippe; Ferraiolo, Priscila Novaes; Laurindo, Roberta Silveira Santos

    2013-01-01

    Summary Aim: Antibiotic prophylaxis aims to prevent infection of surgical sites before contamination or infection occurs. Prolonged antibiotic prophylaxis does not enhance the prevention of surgical infection and is associated with higher rates of antibiotic-resistant microorganisms. This review of the literature concerning antibiotic prophylaxis, with an emphasis on otolaryngologic surgery, aims to develop a guide for the use of antibiotic prophylaxis in otolaryngologic surgery in order to reduce the numbers of complications stemming from the indiscriminate use of antibiotics. PMID:25991999

  10. New classes of antibiotics.

    PubMed

    Moir, Donald T; Opperman, Timothy J; Butler, Michelle M; Bowlin, Terry L

    2012-10-01

    Several novel chemical classes of antibiotics are currently in human clinical studies. While most are narrow spectrum agents that inhibit unexploited targets, the susceptible pathogens are clinically important, including staphylococci, pseudomonads, and mycobacteria. Given the paucity of antibacterial agents consisting of novel chemical scaffolds that act on established targets, these new antibacterial scaffolds, which are active against new targets, represent an important advance in the battle against antibiotic resistance. Indeed, most of these compounds are unlikely to be subject to existing compound-based or target-based resistance mechanisms.

  11. Antibiotics in Animal Products

    NASA Astrophysics Data System (ADS)

    Falcão, Amílcar C.

    The administration of antibiotics to animals to prevent or treat diseases led us to be concerned about the impact of these antibiotics on human health. In fact, animal products could be a potential vehicle to transfer drugs to humans. Using appropri ated mathematical and statistical models, one can predict the kinetic profile of drugs and their metabolites and, consequently, develop preventive procedures regarding drug transmission (i.e., determination of appropriate withdrawal periods). Nevertheless, in the present chapter the mathematical and statistical concepts for data interpretation are strictly given to allow understanding of some basic pharma-cokinetic principles and to illustrate the determination of withdrawal periods

  12. Predicting antibiotic resistance.

    PubMed

    Martínez, José L; Baquero, Fernando; Andersson, Dan I

    2007-12-01

    The treatment of bacterial infections is increasingly complicated because microorganisms can develop resistance to antimicrobial agents. This article discusses the information that is required to predict when antibiotic resistance is likely to emerge in a bacterial population. Indeed, the development of the conceptual and methodological tools required for this type of prediction represents an important goal for microbiological research. To this end, we propose the establishment of methodological guidelines that will allow researchers to predict the emergence of resistance to a new antibiotic before its clinical introduction.

  13. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data

    PubMed Central

    2013-01-01

    Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763

  14. Emergence of decreased susceptibility and resistance to extended-spectrum cephalosporins in Neisseria gonorrhoeae in Korea

    PubMed Central

    Lee, Hyukmin; Unemo, Magnus; Kim, Hyo Jin; Seo, Younghee; Lee, Kyungwon; Chong, Yunsop

    2015-01-01

    Objectives Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major concern globally; however, no comprehensive AMR data for gonococcal isolates cultured after 2006 in Korea have been published internationally. We determined the susceptibility of N. gonorrhoeae isolates cultured in 2011–13, the mechanism of extended-spectrum cephalosporin (ESC) resistance and the molecular epidemiology of gonococcal strains in Korea. Methods In 2011–13, 210 gonococcal isolates were collected in Korea and their AMR profiles were examined by the agar dilution method. The penA, mtrR, penB, ponA and pilQ genes were sequenced in 25 isolates that were resistant to ESCs and 70 randomly selected isolates stratified by year. For molecular epidemiology, N. gonorrhoeae multiantigen sequence typing and MLST were performed. Results None of the N. gonorrhoeae isolates was susceptible to penicillin G and most were resistant to tetracycline (50%) and ciprofloxacin (97%). The rates of resistance to ceftriaxone, azithromycin, cefpodoxime and cefixime were 3%, 5%, 8% and 9%, respectively. However, all isolates were susceptible to spectinomycin. Twenty-one (84%) of the 25 ESC-resistant isolates contained the non-mosaic PBP2 XIII allele; however, the remaining 4 (16%) possessed the mosaic PBP2 X allele, which has been previously associated with ESC resistance including treatment failures. Conclusions In Korea, susceptibility to spectinomycin remains high. However, the recent emergence of ESC-resistant N. gonorrhoeae strains, including strains possessing the PBP2 mosaic X and non-mosaic XIII alleles, is a major concern and enhanced AMR surveillance is necessary to prevent transmission of these strains. PMID:26084303

  15. Antibiotics and antibiotic resistance in agroecosystems: State of the science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly su...

  16. Evolution of antibiotic resistance by human and bacterial niche construction.

    PubMed

    Boni, Maciej F; Feldman, Marcus W

    2005-03-01

    Antibiotic treatment by humans generates strong viability selection for antibiotic-resistant bacterial strains. The frequency of host antibiotic use often determines the strength of this selection, and changing patterns of antibiotic use can generate many types of behaviors in the population dynamics of resistant and sensitive bacterial populations. In this paper, we present a simple model of hosts dimorphic for their tendency to use/avoid antibiotics and bacterial pathogens dimorphic in their resistance/sensitivity to antibiotic treatment. When a constant fraction of hosts uses antibiotics, the two bacterial strain populations can coexist unless host use-frequency is above a critical value; this critical value is derived as the ratio of the fitness cost of resistance to the fitness cost of undergoing treatment. When strain frequencies can affect host behavior, the dynamics may be analyzed in the light of niche construction. We consider three models underlying changing host behavior: conformism, the avoidance of long infections, and adherence to the advice of public health officials. In the latter two, we find that the pathogen can have quite a strong effect on host behavior. In particular, if antibiotic use is discouraged when resistance levels are high, we observe a classic niche-construction phenomenon of maintaining strain polymorphism even in parameter regions where it would not be expected.

  17. [Spreading and mechanisms of antibiotic resistance of microorganisms, producing beta-lactamases. Molecular mechanisms of resistance to beta-lactams of Klebsiella spp. strains, isolated in cases of nosocomial infections].

    PubMed

    Ivanov, D V; Egorov, A M

    2008-01-01

    Antibiotic sensivity of nosocomial Klebsiella spp. strains (n = 212), isolated from patients treated in 30 medical centers of 15 various regions of Russia was investigated. The Klebsiella genus was represented by the following species: Klebsiella pneumoniae ss. pneumoniae--182 (85.8%), Klebsiella pneumoniae ss. ozaenae--1 (0.5%), Klebsiella oxytoca--29 (13.7%) isolates. The most active antibacterial agents against the investigated strains were carbapenems (imipenem and meropenem). Among 3rd generation cephalosporine the lowest MICs were observed for ceftazidime/clavulanic acid (MIC50--0.25 microg/ml, MIC90--64 microg/ml) and cefoperazone/sulbactam (MIC50--16 microg/ml, MIC90--64 microg/ml). Beta-lactamase genes (TEM, SHV, CTX) were detected in 42 Klebsiella pneumoniae ss. pneumoniae strains by PCR. Alone or in various combinations TEM type beta-lactamases have been found in 16 (38.1%) isolates, SHV--in 29 (69%), and CTX--in 27 (64.3%). Combinations of 2 different determinants were detected in 23.8% of the isolates, 3--in 26.2%. There were not isolates producing MBL class B among resistant to carbapenems nosocomial Klebsiella spp. strains.

  18. Return to Sender: the need to re-address patient antibiotic allergy labels in Australia and New Zealand

    PubMed Central

    Trubiano, JA; Worth, LJ; Urbancic, K; Brown, TM; Paterson, DL; Lucas, M; Phillips, E

    2016-01-01

    Background Antibiotic allergies are frequently reported and have significant impacts upon appropriate prescribing and clinical outcomes. We surveyed infectious diseases physicians, allergists, clinical immunologists and hospital pharmacists to evaluate antibiotic allergy knowledge and service delivery in Australia and New Zealand. Methods An online multi-choice questionnaire was developed and endorsed by representatives of the Australasian Society of Clinical Immunology and Allergy (ASCIA), Australasian Society of Infectious Diseases (ASID) and Society of Hospital Pharmacists Australia (SHPA). The 37-item survey was distributed in April 2015 to members of ASCIA, ASID, SHPA and Royal Australasian College of Physicians. Results Of 277 respondents, 94% currently use or would utilise antibiotic allergy testing (AAT) and reported seeing up to 10 patients/week labelled as antibiotic-allergic. Forty-two per cent were not aware of or did not have AAT available. Most felt that AAT would aid antibiotic selection, antibiotic appropriateness and antimicrobial stewardship (79%, 69% and 61%, respectively). Patients with histories of immediate hypersensitivity were more likely to be referred than those with delayed hypersensitivities (76% vs. 41%, p=0.0001). Lack of specialist physicians (20%) and personal experience (17%) were barriers to service delivery. A multidisciplinary approach was the preferred AAT model (53%). Knowledge gaps were identified, with the majority over-estimating rates of penicillin/cephalosporin (78%), penicillin/carbapenem (57%) and penicillin/monobactam (39%) cross-reactivity. Conclusions A high burden of antibiotic allergy labelling and demand for AAT is complicated by a relative lack availability or awareness of AAT services in Australia and New Zealand. Antibiotic allergy education and deployment of AAT, accessible to community and hospital-based clinicians, may improve clinical decisions and reduce antibiotic allergy impacts. A collaborative approach

  19. Resistance-Resistant Antibiotics

    PubMed Central

    Oldfield, Eric; Feng, Xinxin

    2014-01-01

    New antibiotics are needed because as drug resistance is increasing, the introduction of new antibiotics is decreasing. Here, we discuss six possible approaches to develop ‘resistance-resistant’ antibiotics. First, multi-target inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy due to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, re-purposing existing drugs can lead to combinations of multi-target therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and in some cases suggest that sensitivity to existing antibiotics may be restored, in otherwise drug resistant organisms. PMID:25458541

  20. Mechanisms of Antibiotic Resistance

    PubMed Central

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  1. Bacterial cheating limits antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  2. Antibiotic-Resistant Gonorrhea (ARG)

    MedlinePlus

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Basic Information Recommend on Facebook Tweet ... Page Surveillance Trends and Treatment Challenges Laboratory Issues Antibiotic resistance (AR) is the ability of bacteria to ...

  3. Mission Critical: Preventing Antibiotic Resistance

    MedlinePlus

    ... Button Past Emails CDC Features Mission Critical: Preventing Antibiotic Resistance Recommend on Facebook Tweet Share Compartir Can ... spp. So, what can we do to prevent antibiotic resistance in healthcare settings? Patients, healthcare providers, healthcare ...

  4. Antibiotics, pediatric dysbiosis, and disease.

    PubMed

    Vangay, Pajau; Ward, Tonya; Gerber, Jeffrey S; Knights, Dan

    2015-05-13

    Antibiotics are by far the most common medications prescribed for children. Recent epidemiological data suggests an association between early antibiotic use and disease phenotypes in adulthood. Antibiotic use during infancy induces imbalances in gut microbiota, called dysbiosis. The gut microbiome's responses to antibiotics and its potential link to disease development are especially complex to study in the changing infant gut. Here, we synthesize current knowledge linking antibiotics, dysbiosis, and disease and propose a framework for studying antibiotic-related dysbiosis in children. We recommend future studies into the microbiome-mediated effects of antibiotics focused on four types of dysbiosis: loss of keystone taxa, loss of diversity, shifts in metabolic capacity, and blooms of pathogens. Establishment of a large and diverse baseline cohort to define healthy infant microbiome development is essential to advancing diagnosis, interpretation, and eventual treatment of pediatric dysbiosis. This approach will also help provide evidence-based recommendations for antibiotic usage in infancy.

  5. Antibiotics and Pregnancy: What's Safe?

    MedlinePlus

    Healthy Lifestyle Pregnancy week by week Is it safe to take antibiotics during pregnancy? Answers from Roger W. Harms, M. ... 2014 Original article: http://www.mayoclinic.org/healthy-lifestyle/pregnancy-week-by-week/expert-answers/antibiotics-and-pregnancy/ ...

  6. Colicins, spermine and cephalosporins: a competitive interaction with the OmpF eyelet.

    PubMed Central

    Bredin, Jérôme; Simonet, Valérie; Iyer, Ramkumar; Delcour, Anne H; Pagès, Jean-Marie

    2003-01-01

    The L3 loop is an important feature of the OmpF porin structure, contributing to both channel size and electrostatic properties. Colicins A and N, spermine, and antibiotics that use OmpF to penetrate the cell, were used to investigate the structure-function relationships of L3. Spermine was found to protect efficiently cells expressing wild-type OmpF from colicin action. Among other solutes, sugars had minor effects on colicin A activity, whereas competitions between colicin A and antibiotic fluxes were observed. Among the antibiotics tested, cefepime appeared the most efficient. Escherichia coli cells expressing various OmpF proteins mutated in the eyelet were tested for their susceptibility to colicin A, and resistant strains were found only among L3 mutants. Mutations at residues 119 and 120 were the most effective at conferring resistance to colicin A, probably due to epitope structure alteration, as revealed by a specific antipeptide. More detailed information was obtained on mutants D113A and D121A, by focusing on the kinetics of colicin A and colicin N activities through measurements of potassium efflux. D113 appeared to play an essential role for colicin A activity, whereas colicin N activity was more dependent on D121 than on D113. PMID:12882645

  7. The double life of antibiotics.

    PubMed

    Yap, Mee-Ngan F

    2013-01-01

    Antibiotic resistance is a persistent health care problem worldwide. Evidence for the negative consequences of subtherapeutic feeding in livestock production has been mounting while the antibiotic pipeline is drying up. In recent years, there has been a paradigm shift in our perception of antibiotics. Apart from its roles in self-defense, antibiotics also serve as inter-microbial signaling molecules, regulators of gene expression, microbial food sources, and as mediators of host immune response.

  8. Emergence of resistance to beta-lactam and aminoglycoside antibiotics during moxalactam therapy of Pseudomonas aeruginosa infections.

    PubMed Central

    Preheim, L C; Penn, R G; Sanders, C C; Goering, R V; Giger, D K

    1982-01-01

    In four patients with Pseudomonas aeruginosa infections, the infecting strain developed resistance to moxalactam during therapy with this drug. In addition, P. aeruginosa isolates from two of these four patients showed increased resistance to aminoglycosides. Isolates from a third patient acquired cross-resistance to other antipseudomonal beta-lactams. In three of the cases, disk susceptibility tests failed to detect the resistance that was demonstrated in broth dilution assays. Isolate identities were confirmed by serotyping. No new plasmids were found by agarose gel electrophoresis. The mechanisms for this resistance did not involve enzymatic antibiotic degradation. These findings suggest that currently available expanded-spectrum cephalosporin derivatives should probably not be used alone for most serious infections due to P. aeruginosa. They also suggest that strains with multiple antibiotic resistance may become more prevalent in hospitals if these drugs are used extensively. PMID:6218778

  9. Investigating the Antibiotic Resistance Problem.

    ERIC Educational Resources Information Center

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  10. Antibiotic Prophylaxis in Orbital Fractures

    PubMed Central

    Reiss, Benjamin; Rajjoub, Lamise; Mansour, Tamer; Chen, Tony; Mumtaz, Aisha

    2017-01-01

    Purpose: To determine whether prophylactic antibiotic use in patients with orbital fracture prevent orbital infection. Design: Retrospective cohort study. Participants: All patients diagnosed with orbital fracture between January 1, 2008 and March 1, 2014 at The George Washington University Hospital and Clinics. Main Outcome Measures: Development of orbital infection. Results: One hundred seventy-two patients with orbital fracture met our inclusion and exclusion criteria. No orbital infections were documented. Twenty subjects (12%) received no prophylactic antibiotic, and two (1%) received only one dose of antibiotics pre-operatively for surgery. For primary antibiotic, 136 subjects (79%) received oral antibiotics, and 14 (8%) received intravenous (IV) antibiotics (excluding cefazolin). Cephalexin and amoxicillin-clavulanate were the most prescribed oral antibiotics that are equally effective. Five-to-seven day courses of antibiotics had no increased infections compared to ten-to-fourteen day courses. Calculated boundaries for effectiveness of prophylactic antibiotics ranged from a Number Needed to Treat (NNT) of 75 to a Number Needed to Harm (NNH) of 198. Conclusion: Antibiotics for prevention of orbital infection in patients with orbital fractures have become widely used. Coordination between trauma teams and specialists is needed to prevent patient overmedication and antibiotic resistance. Should antibiotics be used, shorter courses and avoidance of broad spectrum agents are recommended. Additional studies are needed.

  11. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance

    PubMed Central

    2014-01-01

    Background Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is substantially less than from hospitalized patients on whom guidelines are often based. We therefore chose to assess the relationship between the antibiotic resistance pattern of bacteria circulating in the community and the consumption of antibiotics in the community. Methods Both gray literature and published scientific literature in English and other European languages was examined. Multiple regression analysis was used to analyse whether studies found a positive relationship between antibiotic consumption and resistance. A subsequent meta-analysis and meta-regression was conducted for studies for which a common effect size measure (odds ratio) could be calculated. Results Electronic searches identified 974 studies but only 243 studies were considered eligible for inclusion by the two independent reviewers who extracted the data. A binomial test revealed a positive relationship between antibiotic consumption and resistance (p < .001) but multiple regression modelling did not produce any significant predictors of study outcome. The meta-analysis generated a significant pooled odds ratio of 2.3 (95% confidence interval 2.2 to 2.5) with a meta-regression producing several significant predictors (F(10,77) = 5.82, p < .01). Countries in southern Europe produced a stronger link between consumption and resistance than other regions. Conclusions Using a large set of studies we found that antibiotic consumption is associated with the development of antibiotic resistance. A subsequent meta-analysis, with a subsample of the studies, generated several significant predictors. Countries in southern Europe produced a stronger link between consumption and resistance than other

  12. Enterobacteriaceae resistant to third-generation cephalosporins and quinolones in fresh culinary herbs imported from Southeast Asia.

    PubMed

    Veldman, Kees; Kant, Arie; Dierikx, Cindy; van Essen-Zandbergen, Alieda; Wit, Ben; Mevius, Dik

    2014-05-02

    Since multidrug resistant bacteria are frequently reported from Southeast Asia, our study focused on the occurrence of ESBL-producing Enterobacteriaceae in fresh imported herbs from Thailand, Vietnam and Malaysia. Samples were collected from fresh culinary herbs imported from Southeast Asia in which ESBL-suspected isolates were obtained by selective culturing. Analysis included identification by MALDI-TOF mass spectrometry, susceptibility testing, XbaI-PFGE, microarray, PCR and sequencing of specific ESBL genes, PCR based replicon typing (PBRT) of plasmids and Southern blot hybridization. In addition, the quinolone resistance genotype was characterized by screening for plasmid mediated quinolone resistance (PMQR) genes and mutations in the quinolone resistance determining region (QRDR) of gyrA and parC. The study encompassed fifty samples of ten batches of culinary herbs (5 samples per batch) comprising nine different herb variants. The herbs originated from Thailand (Water morning glory, Acacia and Betel leaf), Vietnam (Parsley, Asian pennywort, Houttuynia leaf and Mint) and Malaysia (Holy basil and Parsley). By selective culturing 21 cefotaxime resistant Enterobacteriaceae were retrieved. Array analysis revealed 18 isolates with ESBL genes and one isolate with solely non-ESBL beta-lactamase genes. Mutations in the ampC promoter region were determined in two isolates with PCR and sequencing. The isolates were identified as Klebsiella pneumoniae (n=9), Escherichia coli (n=6), Enterobacter cloacae complex (n=5) and Enterobacter spp. (n=1). All isolates tested were multidrug resistant. Variants of CTX-M enzymes were predominantly found followed by SHV enzymes. PMQR genes (including aac(6')-1b-cr, qnrB and qnrS) were also frequently detected. In almost all cases ESBL and quinolone resistance genes were located on the same plasmid. Imported fresh culinary herbs from Southeast Asia are a potential source for contamination of food with multidrug resistant bacteria. Because these herbs are consumed without appropriate heating, transfer to human bacteria cannot be excluded.

  13. Danger of Antibiotic Overuse (For Parents)

    MedlinePlus

    ... 1- to 2-Year-Old The Danger of Antibiotic Overuse KidsHealth > For Parents > The Danger of Antibiotic ... by not reaching for the prescription pad. How Antibiotics Work Antibiotics, first used in the 1940s, are ...

  14. Antibiotic alternatives: the substitution of antibiotics in animal husbandry?

    PubMed Central

    Cheng, Guyue; Hao, Haihong; Xie, Shuyu; Wang, Xu; Dai, Menghong; Huang, Lingli; Yuan, Zonghui

    2014-01-01

    It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really replace antibiotics remains a controversial issue. This review summarizes recent development and perspectives of alternatives to antibiotics. The mechanism of actions, applications, and prospectives of the alternatives such as immunity modulating agents, bacteriophages and their lysins, antimicrobial peptides, pro-, pre-, and synbiotics, plant extracts, inhibitors targeting pathogenicity (bacterial quorum sensing, biofilm, and virulence), and feeding enzymes are thoroughly discussed. Lastly, the feasibility of alternatives to antibiotics is deeply analyzed. It is hard to conclude that the alternatives might substitute antibiotics in veterinary medicine in the foreseeable future. At the present time, prudent use of antibiotics and the establishment of scientific monitoring systems are the best and fastest way to limit the adverse effects of the abuse of antibiotics and to ensure the safety of animal-derived food and environment. PMID:24860564

  15. Selection of antibiotic resistance at very low antibiotic concentrations.

    PubMed

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  16. Paradoxical activity of beta-lactam antibiotics against Proteus vulgaris in experimental infection in mice.

    PubMed

    Ikeda, Y; Fukuoka, Y; Motomura, K; Yasuda, T; Nishino, T

    1990-01-01

    In previous papers (Y. Ikeda and T. Nishino, Antimicrob. Agents Chemother. 32:1073-1077, 1988; Y. Ikeda, T. Nishino, and T. Tanino, Antimicrob. Agents Chemother. 31:865-869, 1987), we reported that many of the 7-aminothiazolyl cephalosporins, such as cefmenoxime, showed paradoxically reduced activity against Proteus vulgaris at higher concentrations, whereas these paradoxical effects were not observed for other types of cephalosporins, such as cefbuperazone and cefoperazone. In this study, we compare the therapeutic effect of cefmenoxime with that of cefbuperazone and explore the in vivo paradoxical effect of cefmenoxime by using an experimental infection model in mice. In an intraperitoneal infection with P. vulgaris 11, the survival rate with cefmenoxime was increased to 43% at 3.13 mg/kg but was lower at higher doses. On the other hand, cefbuperazone did not show such a paradoxical therapeutic effect. In mice infected with P. vulgaris 11, cefmenoxime levels in both serum and peritoneal washings were rapidly reduced and beta-lactamase activities in the peritoneal cavity were increased at higher cefmenoxime doses. These findings suggested that high levels of cefmenoxime at the infection site induced increased production of beta-lactamase, which then rapidly inactivated the antibiotic. We conclude that the paradoxical therapeutic effect of cefmenoxime against P. vulgaris occurs by the same mechanisms as the in vitro effect and that the high beta-lactamase inducibility and low beta-lactamase stability may account for the paradoxical therapeutic effect of cefmenoxime against P. vulgaris.

  17. How to measure the impacts of antibiotic resistance and antibiotic development on empiric therapy: new composite indices

    PubMed Central

    Hughes, Josie S; Hurford, Amy; Finley, Rita L; Patrick, David M; Wu, Jianhong; Morris, Andrew M

    2016-01-01

    Objectives We aimed to construct widely useable summary measures of the net impact of antibiotic resistance on empiric therapy. Summary measures are needed to communicate the importance of resistance, plan and evaluate interventions, and direct policy and investment. Design, setting and participants As an example, we retrospectively summarised the 2011 cumulative antibiogram from a Toronto academic intensive care unit. Outcome measures We developed two complementary indices to summarise the clinical impact of antibiotic resistance and drug availability on empiric therapy. The Empiric Coverage Index (ECI) measures susceptibility of common bacterial infections to available empiric antibiotics as a percentage. The Empiric Options Index (EOI) varies from 0 to ‘the number of treatment options available’, and measures the empiric value of the current stock of antibiotics as a depletable resource. The indices account for drug availability and the relative clinical importance of pathogens. We demonstrate meaning and use by examining the potential impact of new drugs and threatening bacterial strains. Conclusions In our intensive care unit coverage of device-associated infections measured by the ECI remains high (98%), but 37–44% of treatment potential measured by the EOI has been lost. Without reserved drugs, the ECI is 86–88%. New cephalosporin/β-lactamase inhibitor combinations could increase the EOI, but no single drug can compensate for losses. Increasing methicillin-resistant Staphylococcus aureus (MRSA) prevalence would have little overall impact (ECI=98%, EOI=4.8–5.2) because many Gram-positives are already resistant to β-lactams. Aminoglycoside resistance, however, could have substantial clinical impact because they are among the few drugs that provide coverage of Gram-negative infections (ECI=97%, EOI=3.8–4.5). Our proposed indices summarise the local impact of antibiotic resistance on empiric coverage (ECI) and available empiric treatment options

  18. National Study of Antibiotic Use in Emergency Department Visits for Pneumonia, 1993 Through 2008

    PubMed Central

    Neuman, Mark I.; Ting, Sarah A.; Meydani, Ahou; Mansbach, Jonathan M.; Camargo, Carlos A.

    2012-01-01

    Objectives The Infectious Disease Society of America (IDSA) and American Thoracic Society (ATS) developed guidelines for the management of community-acquired pneumonia (CAP); however, there are sparse data on actual rates of antibiotic use in the emergency department (ED) setting. Methods Data were obtained from the National Hospital Ambulatory Medical Care Survey for ED visits during 1993 through 2008 for adults with a diagnosis of pneumonia. Results During the study period there were an estimated 23,252,000 pneumonia visits, representing 1.8% of all ED visits. The visit rate for pneumonia during this 15-year period may have increased (P trend = 0.055). Overall, 66% of adult patients with a primary diagnosis of pneumonia had documentation of an antibiotic administered while in the ED. There was an increase in antibiotic administration for adults with pneumonia from 1993 through 2008 (49% to 80%; P trend < 0.001). Specifically, there was an increase in use of macrolides from 1993 to 2006 (20% to 30%, P trend < 0.001) and a marked increase in use of quinolones from 0% to 39% from 1993 through 2008 (P trend < 0.001). Penicillin and cephalosporin use remained stable. Use of an antibiotic consistent with 2007 IDSA/ATS guidelines increased from 22% (95% CI = 16% to 27%) of cases in 1993–1994, to 68% (95% CI = 63% to 73%) of cases in 2007–2008 (P trend < 0.001). Conclusions ED visit rates for pneumonia increased slightly from 1993 through 2008. Although antibiotic administration in the ED has increased for adults with community-acquired pneumonia, guideline-concordant antibiotics may not be consistently administered. PMID:22594360

  19. Appraisal of potential environmental risks associated with human antibiotic consumption in Turkey.

    PubMed

    Turkdogan, F Ilter; Yetilmezsoy, Kaan

    2009-07-15

    A comprehensive analysis of Turkish antibiotic data was conducted to evaluate potential environmental risks associated with antibiotic consumption in Turkey for year 2007. Antibiotics were defined for systemic use or group J01 of the WHO Anatomical Therapeutic Chemical (ATC) classification system. Total emissions and prescriptions for each ATC group were classified separately into 17 different J01 categories and three forms of medication (capsule/tablets, injectables and suspensions). Capsules and tablets were found as the most emitted form of medication in year 2007, with a total emission rate of about 585.5 tons/year (76%). Total antibiotic emission rates including all forms of medications were determined to be about 664.2 tons/year (86%) and 110.1 tons/year (14%) for adult and pediatric patients, respectively. An environmental risk assessment of 8 human antibiotics was conducted according to the EU draft guidance (CEC/III/5504/94, draft 6, version 4) and the risk was indicated by the ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) for the aquatic environment. Available acute and chronic toxicity data were collected from the open peer-reviewed literature to derive PNEC. Risk quotients (PEC/PNEC) were then calculated for 8 pharmaceutical substances. PEC/PNEC ratio exceeded 1.0 for beta-lactams (cephalosporins and penicillins), fluoroquinolones, macrolides and aminoglycosides. The findings of this study concluded that the release of these compounds from wastewater treatment plants may potentially be of an important environmental concern based on today's use of antibiotics in Turkey.

  20. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters.

    PubMed

    Marx, Conrad; Günther, Norbert; Schubert, Sara; Oertel, Reinhard; Ahnert, Markus; Krebs, Peter; Kuehn, Volker

    2015-12-15

    Wastewater treatment plants (WWTPs) are not designed to purposefully eliminate antibiotics and therefore many previous investigations have been carried out to assess their fate in biological wastewater treatment processes. In order to consolidate previous findings regarding influencing factors like the solid and hydraulic retention time an intensive monitoring was carried out in a municipal WWTP in Germany. Over a period of 12months daily samples were taken from the in- and effluent as well as diverse sludge streams. The 14 selected antibiotics and one metabolite cover the following classes: cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamide, macrolides, penicillins, sulfonamides and tetracyclines. Out of the 15 investigated substances, the removal of only clindamycin and ciprofloxacin show significant correlations to SRT, temperature, HRT and nitrogen removal. The dependency of clindamycin's removal could be related to the significant negative removal (i.e. production) of clindamycin in the treatment process and was corrected using the human metabolite clindamycin-sulfoxide. The average elimination was adjusted from -225% to 3% which suggests that clindamycin can be considered as an inert substance during the wastewater treatment process. Based on the presented data, the mass flow analysis revealed that macrolides, clindamycin/clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Furthermore, levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. Nevertheless, the sludge concentrations are highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for

  1. Development of SYN-004, an oral beta-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection.

    PubMed

    Kaleko, Michael; Bristol, J Andrew; Hubert, Steven; Parsley, Todd; Widmer, Giovanni; Tzipori, Saul; Subramanian, Poorani; Hasan, Nur; Koski, Perrti; Kokai-Kun, John; Sliman, Joseph; Jones, Annie; Connelly, Sheila

    2016-10-01

    The gut microbiome, composed of the microflora that inhabit the gastrointestinal tract and their genomes, make up a complex ecosystem that can be disrupted by antibiotic use. The ensuing dysbiosis is conducive to the emergence of opportunistic pathogens such as Clostridium difficile. A novel approach to protect the microbiome from antibiotic-mediated dysbiosis is the use of beta-lactamase enzymes to degrade residual antibiotics in the gastrointestinal tract before the microflora are harmed. Here we present the preclinical development and early clinical studies of the beta-lactamase enzymes, P3A, currently referred to as SYN-004, and its precursor, P1A. Both P1A and SYN-004 were designed as orally-delivered, non-systemically available therapeutics for use with intravenous beta-lactam antibiotics. SYN-004 was engineered from P1A, a beta-lactamase isolated from Bacillus licheniformis, to broaden its antibiotic degradation profile. SYN-004 efficiently hydrolyses penicillins and cephalosporins, the most widely used IV beta-lactam antibiotics. In animal studies, SYN-004 degraded ceftriaxone in the GI tract of dogs and protected the microbiome of pigs from ceftriaxone-induced changes. Phase I clinical studies demonstrated SYN-004 safety and tolerability. Phase 2 studies are in progress to assess the utility of SYN-004 for the prevention of antibiotic-associated diarrhea and Clostridium difficile disease.

  2. Shigellosis in Bay of Bengal Islands, India: clinical and seasonal patterns, surveillance of antibiotic susceptibility patterns, and molecular characterization of multidrug-resistant Shigella strains isolated during a 6-year period from 2006 to 2011.

    PubMed

    Bhattacharya, D; Bhattacharya, H; Thamizhmani, R; Sayi, D S; Reesu, R; Anwesh, M; Kartick, C; Bharadwaj, A P; Singhania, M; Sugunan, A P; Roy, S

    2014-02-01

    This study aims to determine the clinical features and seasonal patterns associated with shigellosis, the antimicrobial resistance frequencies of the isolates obtained during the period 2006-2012 for 22 antibiotics, and the molecular characterization of multidrug-resistant strains isolated from endemic cases of shigellosis in the remote islands of India, with special reference to fluoroquinolone and third-generation cephalosporins resistance. During the period from January 2006 to December 2011, stool samples were obtained and processed to isolate Shigella spp. The isolates were evaluated with respect to their antibiotic resistance pattern and various multidrug resistance determinants, including resistance genes, quinolone resistance determinants, and extended-spectrum β-lactamase (ESBL) production. Morbidity for shigellosis was found to be 9.3 % among children in these islands. Cases of shigellosis occurred mainly during the rainy seasons and were found to be higher in the age group 2-5 years. A wide spectrum of resistance was observed among the Shigella strains, and more than 50 % of the isolates were multidrug-resistant. The development of multidrug-resistant strains was found to be associated with various drug-resistant genes, multiple mutations in the quinolone resistance-determining region (QRDR), and the presence of plasmid-mediated quinolone-resistant determinants and efflux pump mediators. This report represents the first presentation of the results of long-term surveillance and molecular characterization concerning antimicrobial resistances in clinical Shigella strains in these islands. Information gathered as part of the investigations will be instrumental in identifying emerging antimicrobial resistance, for developing treatment guidelines appropriate for that community, and to provide baseline data with which to compare outbreak strains in the future.

  3. The abundance of antibiotic resistance genes in human guts has correlation to the consumption of antibiotics in animal.

    PubMed

    Hu, Yongfei; Yang, Xi; Lu, Na; Zhu, Baoli

    2014-01-01

    Increasing evidence has accumulated to support that the human gut is a reservoir for antibiotic resistance genes. We previously identified more than 1000 genes displaying high similarity with known antibiotic resistance genes in the human gut gene set generated from the Chinese, Danish, and Spanish populations. Here, first, we add our new understanding of antibiotic resistance genes in the US and the Japanese populations; next, we describe the structure of a vancomycin-resistant operon in a Danish sample; and finally, we provide discussions on the correlation of the abundance of resistance genes in human gut with the antibiotic consumption in human medicine and in animal husbandry. These results, combined with those we published previously, provide comprehensive insights into the antibiotic resistance genes in the human gut microbiota at a population level.

  4. Molecular mechanisms of antibiotic resistance.

    PubMed

    Blair, Jessica M A; Webber, Mark A; Baylay, Alison J; Ogbolu, David O; Piddock, Laura J V

    2015-01-01

    Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.

  5. Multiresidue LC-MS/MS analysis of cephalosporins and quinolones in milk following ultrasound-assisted matrix solid-phase dispersive extraction combined with the quick, easy, cheap, effective, rugged, and safe methodology.

    PubMed

    Karageorgou, Eftichia; Myridakis, Antonis; Stephanou, Euripides G; Samanidou, Victoria

    2013-06-01

    A sensitive and selective confirmatory method for milk-residue analysis of ten quinolones and eight cephalosporins by LC-MS/MS has been developed herein. For the chromatographic separation of target analytes, a Perfectsil ODS-2 (250 × 4 mm, 5 μm) analytical column was used and gradient elution was applied, using a mobile phase of 0.1% w/w TFA in water and 0.1% w/w TFA in ACN. Ultrasound-assisted matrix solid-phase dispersion procedure was applied for the extraction and clean-up procedure of antimicrobials agents from milk matrix using a mixture of Bond Elut Plexa sorbent and QuEChERS. The method was validated meeting the European Legislation determining selectivity, linearity response, trueness, precision (repeatability and between-day reproducibility), decision limit, detection capability, and ruggedness following the Youden approach. Recoveries of all antibiotics ranged from 81.7 to 117.9%, while RSD values were lower than 13.7%. Limits of quantification for all examined compounds ranged from 2.4 to 15.0 μg/kg, substantially lower than the maximum residue limits established by the European Union (30-100 μg/kg).

  6. A Qualitative Review on the Pharmacokinetics of Antibiotics in Saliva: Implications on Clinical Pharmacokinetic Monitoring in Humans.

    PubMed

    Kiang, Tony K L; Ensom, Mary H H

    2016-03-01

    We conducted a systematic search to describe the current state of knowledge regarding the utility of saliva for clinical pharmacokinetic monitoring (CPM) of antibiotics. Although the majority of identified studies lacked sufficient pharmacokinetic data needed to assign an appropriate suitability classification, most aminoglycosides, fluoroquinolones, macrolides, penicillins/cephalosporins, and tetracyclines are likely not suitable for CPM in saliva. No clear pattern of correlation was observed between physiochemical properties that favor drug distribution into saliva and the likelihood of the antibiotic being classified as suitable for CPM in saliva (and vice versa). Insufficient data were available to determine if pathophysiological conditions affected salivary distribution of antibiotics. Additional confirmatory data are required for drugs (especially in patients) that are deemed likely suitable for CPM in saliva because only a few studies were available and many focused only on healthy subjects. All studies identified had relatively small sample sizes and exhibited large variability. Very few studies reported salivary collection parameters (e.g., salivary flow, pH) that could potentially have some impact on drug distribution into saliva. The available data are heavily weighted on healthy subjects, and insufficient data were available to determine if pathophysiology had effects on saliva drug distribution. Some studies also lacked assay sensitivity for detecting antibiotics in saliva. Overall, this review can be useful to clinicians who desire an overview on the suitability of saliva for conducting CPM of specific antibiotics, or for researchers who wish to fill the identified knowledge gaps to move the science of salivary CPM further.

  7. Reviving old antibiotics.

    PubMed

    Theuretzbacher, Ursula; Van Bambeke, Françoise; Cantón, Rafael; Giske, Christian G; Mouton, Johan W; Nation, Roger L; Paul, Mical; Turnidge, John D; Kahlmeter, Gunnar

    2015-08-01

    In the face of increasing antimicrobial resistance and the paucity of new antimicrobial agents it has become clear that new antimicrobial strategies are urgently needed. One of these is to revisit old antibiotics to ensure that they are used correctly and to their full potential, as well as to determine whether one or several of them can help alleviate the pressure on more recent agents. Strategies are urgently needed to 're-develop' these drugs using modern standards, integrating new knowledge into regulatory frameworks and communicating the knowledge from the research bench to the bedside. Without a systematic approach to re-developing these old drugs and rigorously testing them according to today's standards, there is a significant risk of doing harm to patients and further increasing multidrug resistance. This paper describes factors to be considered and outlines steps and actions needed to re-develop old antibiotics so that they can be used effectively for the treatment of infections.

  8. Antibiotics in microbial coculture.

    PubMed

    Ueda, Kenji; Beppu, Teruhiko

    2017-04-01

    Today, the frequency of discovery of new antibiotics in microbial culture is significantly decreasing. The evidence from whole-genome surveys suggests that many genes involved in the synthesis of unknown metabolites do exist but are not expressed under conventional cultivation conditions. Therefore, it is urgently necessary to study the conditions that make otherwise silent genes active in microbes. Here we overview the knowledge on the antibiotic production promoted by cocultivation of multiple microbial strains. Accumulating evidence indicates that cocultivation can be an effective way to stimulate the production of substances that are not formed during pure cultivation. Characterization of the promotive factors produced by stimulator strains is expected to give clues to the development of effective cultivation conditions for drug discovery.

  9. Antibiotics and oral contraceptives.

    PubMed

    DeRossi, Scott S; Hersh, Elliot V

    2002-10-01

    With the exception of rifampin-like drugs, there is a lack of scientific evidence supporting the ability of commonly prescribed antibiotics, including all those routinely employed in outpatient dentistry, to either reduce blood levels and/or the effectiveness of oral contraceptives. To date, all clinical trials studying the effects of concomitant antibiotic therapy (with the exception of rifampin and rifabutin) have failed to demonstrate an interaction. Like all drugs, oral contraceptives are not 100% effective with the failure rate in the typical United States population reported to be as high as 3%. It is thus possible that the case reports of unintended pregnancies during antibiotic therapy may simply represent the normal failure rate of these drugs. Considering that both drug classes are prescribed frequently to women of childbearing potential, one would expect a much higher rate of oral contraceptive failure in this group of patients if a true drug:drug interaction existed. On the other hand, if the interaction does exist but is a relatively rare event, occurring in, say, 1 in 5000 women, clinical studies such as those described in this article would not detect the interaction. The pharmacokinetic studies of simultaneous antibiotic and oral contraceptive ingestion, and the retrospective studies of pregnancy rates among oral contraceptive users exposed to antibiotics, all suffer from one potential common weakness, i.e., their relatively small sample size. Sample sizes in the pharmacokinetic trials ranged from 7 to 24 participants, whereas the largest retrospective study of pregnancy rates still evaluated less than 800 total contraceptive users. Still, the incidence of such a rare interaction would not differ from the accepted normal failure rate of oral contraceptive therapy. The medico-legal ramifications of what looks like at best a rare interaction remains somewhat "murky." On one hand, we have medico-legal experts advising the profession to exercise caution

  10. [Resistance to antibiotics].

    PubMed

    Sánchez, Jesús Silva

    2006-01-01

    Bacterial resistance to antibiotics is a major public health problem around the world causing high rates of morbi-mortality and economic problems in hospital settings. Major bacterial causing nosocomial infections are: extended-spectrum beta-lactameses (ESBL) producing enterobacteria, methicillin resistance Staphylococcus aureus, coagulase negative Staphylococcus, metallo fl-lactamases (MBL) producing Pseudomonas aeruginosa, Streptococcus pneumoniae, Enterococcus spp, Acinetobacter baumani. This last bacteria is not very often isolated in hospital settings yet, but it is multi-resistance pathogen causing high mortality. Helicobacter pylori, which is not a nosocomial pathogen but is associated to gastric diseases (from gastritis to gastric cancer). Infections prevention, to obtain an accuracy diagnostic and effective treatment, use antibiotic wisely and pathogen dissemination prevention (hand washing), are important steps to control the bacterial resistance.

  11. Pneumococcal resistance to antibiotics.

    PubMed Central

    Klugman, K P

    1990-01-01

    The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumococcus of serogroup 6, 19, or 23 or serotype 14, and exposure to antibiotics to which the strain is resistant. At present, the most useful drugs for the management of resistant pneumococcal infections are cefotaxime, ceftriaxone, vancomycin, and rifampin. If the strains are susceptible, chloramphenicol may be useful as an alternative, less expensive agent. Appropriate interventions for the control of resistant pneumococcal outbreaks include investigation of the prevalence of resistant strains, isolation of patients, possible treatment of carriers, and reduction of usage of antibiotics to which the strain is resistant. The molecular mechanisms of penicillin resistance are related to the structure and function of penicillin-binding proteins, and the mechanisms of resistance to other agents involved in multiple resistance are being elucidated. Recognition is increasing of the standard screening procedure for penicillin resistance, using a 1-microgram oxacillin disk. PMID:2187594

  12. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments

    PubMed Central

    Atterby, Clara; Ramey, Andrew M.; Hall, Gabriel Gustafsson; Järhult, Josef; Börjesson, Stefan; Bonnedahl, Jonas

    2016-01-01

    Background Antibiotic-resistant bacteria pose challenges to healthcare delivery systems globally; however, limited information is available regarding the prevalence and spread of such bacteria in the environment. The aim of this study was to compare the prevalence of antibiotic-resistant bacteria in large-bodied gulls (Larus spp.) at urban and remote locations in Southcentral Alaska to gain inference into the association between antibiotic resistance in wildlife and anthropogenically influenced habitats. Methods Escherichia coli was cultured (n=115 isolates) from fecal samples of gulls (n=160) collected from a remote location, Middleton Island, and a more urban setting on the Kenai Peninsula. Results Screening of E. coli from fecal samples collected from glaucous-winged gulls (Larus glaucescens) at Middleton Island revealed 8% of isolates were resistant to one or more antibiotics and 2% of the isolates were resistant to three or more antibiotics. In contrast, 55% of E. coli isolates derived from fecal samples collected from large-bodied gulls (i.e. glaucous, herring [Larus argentatus], and potentially hybrid gulls) on the Kenai Peninsula were resistant to one or more antibiotics and 22% were resistant to three or more antibiotics. In addition, total of 16% of the gull samples from locations on the Kenai Peninsula harbored extended-spectrum cephalosporin-resistant E. coli isolates (extended-spectrum beta-lactamases [ESBL] and plasmid-encoded AmpC [pAmpC]), in contrast to Middleton Island where no ESBL- or pAmpC-producing isolates were detected. Conclusion Our findings indicate that increased prevalence of antibiotic resistance is associated with urban environments in Southcentral Alaska and presumably influenced by anthropogenic impacts. Further investigation is warranted to assess how migratory birds may maintain and spread antimicrobial-resistant bacteria of relevance to human and animal health. PMID:27649798

  13. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in southcentral Alaska is associated with urban environments

    USGS Publications Warehouse

    Atterby, Clara; Ramey, Andrew M.; Gustafsson Hall, Gabriel; Jarhult, Josef; Borjesson, Stefan; Bonnedahl, Jonas

    2016-01-01

    BackgroundAntibiotic-resistant bacteria pose challenges to healthcare delivery systems globally; however, limited information is available regarding the prevalence and spread of such bacteria in the environment. The aim of this study was to compare the prevalence of antibiotic-resistant bacteria in large-bodied gulls (Larus spp.) at urban and remote locations in Southcentral Alaska to gain inference into the association between antibiotic resistance in wildlife and anthropogenically influenced habitats.MethodsEscherichia coli was cultured (n=115 isolates) from fecal samples of gulls (n=160) collected from a remote location, Middleton Island, and a more urban setting on the Kenai Peninsula.ResultsScreening of E. coli from fecal samples collected from glaucous-winged gulls (Larus glaucescens) at Middleton Island revealed 8% of isolates were resistant to one or more antibiotics and 2% of the isolates were resistant to three or more antibiotics. In contrast, 55% of E. coli isolates derived from fecal samples collected from large-bodied gulls (i.e. glaucous, herring [Larus argentatus], and potentially hybrid gulls) on the Kenai Peninsula were resistant to one or more antibiotics and 22% were resistant to three or more antibiotics. In addition, total of 16% of the gull samples from locations on the Kenai Peninsula harbored extended-spectrum cephalosporin-resistant E. coli isolates (extended-spectrum beta-lactamases [ESBL] and plasmid-encoded AmpC [pAmpC]), in contrast to Middleton Island where no ESBL- or pAmpC-producing isolates were detected.ConclusionOur findings indicate that increased prevalence of antibiotic resistance is associated with urban environments in Southcentral Alaska and presumably influenced by anthropogenic impacts. Further investigation is warranted to assess how migratory birds may maintain and spread antimicrobial-resistant bacteria of relevance to human and animal health.

  14. Diverse antibiotic resistance genes in dairy cow manure.

    PubMed

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-04-22

    Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected

  15. [Recombinant cephalosporin-acid synthesase: optimisation of expression in E.coli cells, immobilisation and application for biocatalytic cefazolin synthesis].

    PubMed

    Eldarov, M A; Sklyarenko, A V; Dumina, M V; Medvedeva, N V; Jgoun, A A; Satarova, J E; Sidorenko, A I; Emperian, A S; Yarotsky, S V

    2015-01-01

    Cephalosporin acid synthetase (CASA) is responsible for specific to synthesis of cephalosporin-acids, its expression in Escherichia coli cells is accompanied by accumulation of unprocessed insoluble precursor. In order to optimize conditions of recombinant CASA production we have studied the effects of several parameters of strain cultivation, including growth media composition, temperature, and inoculation dose. Also plasmids for production of CASA variants with the signal sequence of Erwinia carotovora L-asparaginase (ansCASA) and "leaderless" CASA were created in search of more efficient expression constructs. Removal of the N-terminal secretion signal sequence reduced the production of functionally active CASA more than 10-fold and inhibited strain growth. Insertion of the L-asparaginase signal sequence increased the specific enzyme activity in the resultant recombinant strain. The ansCASA producing strain was used to develop the method of immobilization of the recombinant enzyme on an epoxy-activated macroporous acrylic support. The resultant biocatalyst performed effective synthesis of cefazolin from 3-[(5-methyl-1,3,4-thiadiazol-2-il)-thiomethyl]-7- aminocephalosporanic acid (MMTD-7-ACA) and methyl ester of 1(H)-tetrazolilacetic acid (МETzAA), under mild conditions a transformation level of MMTD-7-ACA to cefazolin of 95% is reached.

  16. Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United States, 2000–2013

    PubMed Central

    Grad, Yonatan H.; Harris, Simon R.; Kirkcaldy, Robert D.; Green, Anna G.; Marks, Debora S.; Bentley, Stephen D.; Trees, David; Lipsitch, Marc

    2016-01-01

    Background. Treatment of Neisseria gonorrhoeae infection is empirical and based on population-wide susceptibilities. Increasing antimicrobial resistance underscores the potential importance of rapid diagnostic tests, including sequence-based tests, to guide therapy. However, the usefulness of sequence-based diagnostic tests depends on the prevalence and dynamics of the resistance mechanisms. Methods. We define the prevalence and dynamics of resistance markers to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in 1102 resistant and susceptible clinical N. gonorrhoeae isolates collected from 2000 to 2013 via the Centers for Disease Control and Prevention's Gonococcal Isolate Surveillance Project. Results. Reduced extended-spectrum cephalosporin susceptibility is predominantly clonal and associated with the mosaic penA XXXIV allele and derivatives (sensitivity 98% for cefixime and 91% for ceftriaxone), but alternative resistance mechanisms have sporadically emerged. Reduced azithromycin susceptibility has arisen through multiple mechanisms and shows limited clonal spread; the basis for resistance in 36% of isolates with reduced azithromycin susceptibility is unclear. Quinolone-resistant N. gonorrhoeae has arisen multiple times, with extensive clonal spread. Conclusions. Quinolone-resistant N. gonorrhoeae and reduced cefixime susceptibility appear amenable to development of sequence-based diagnostic tests, whereas the undefined mechanisms of resistance to ceftriaxone and azithromycin underscore the importance of phenotypic surveillance. The identification of multidrug-resistant isolates highlights the need for additional measures to respond to the threat of untreatable gonorrhea. PMID:27638945

  17. Carbapenem-resistant and cephalosporin-susceptible: a worrisome phenotype among Pseudomonas aeruginosa clinical isolates in Brazil.

    PubMed

    Campana, Eloiza Helena; Xavier, Danilo Elias; Petrolini, Fernanda Villas-Boas; Cordeiro-Moura, Jhonatha Rodrigo; Araujo, Maria Rita Elmor de; Gales, Ana Cristina

    The mechanisms involved in the uncommon resistance phenotype, carbapenem resistance and broad-spectrum cephalosporin susceptibility, were investigated in 25 Pseudomonas aeruginosa clinical isolates that exhibited this phenotype, which were recovered from three different hospitals located in São Paulo, Brazil. The antimicrobial susceptibility profile was determined by CLSI broth microdilution. β-lactamase-encoding genes were investigated by PCR followed by DNA sequencing. Carbapenem hydrolysis activity was investigated by spectrophotometer and MALDI-TOF assays. The mRNA transcription level of oprD was assessed by qRT-PCR and the outer membrane proteins profile was evaluated by SDS-PAGE. Genetic relationship among P. aeruginosa isolates was assessed by PFGE. Carbapenems hydrolysis was not detected by carbapenemase assay in the carbapenem-resistant and cephalosporin-susceptible P. aueruginosa clinical isolates. OprD decreased expression was observed in all P. aeruginosa isolates by qRT-PCR. The outer membrane protein profile by SDS-PAGE suggested a change in the expression of the 46kDa porin that could correspond to OprD porin. The isolates were clustered into 17 genotypes without predominance of a specific PFGE pattern. These results emphasize the involvement of multiple chromosomal mechanisms in carbapenem-resistance among clinical isolates of P. aeruginosa, alert for adaptation of P. aeruginosa clinical isolates under antimicrobial selective pressure and make aware of the emergence of an uncommon phenotype among P. aeruginosa clinical isolates.

  18. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism.

    PubMed Central

    Then, R L; Angehrn, P

    1982-01-01

    Resistance to cefotaxime (CTA) and ceftriaxone (CTR) in Enterobacter cloacae and Pseudomonas aeruginosa was investigated in several strains which are susceptible or resistant to these agents. All strains produced a chromosomally mediated cephalosporinase of the Richmond type 1. beta-Lactamases in susceptible strains were inducible, whereas resistant strains produced the enzymes constitutively. CTA and CTR were very poor substrates but potent inhibitors of all enzymes. Binding to, rather than hydrolysis by, beta-lactamases was assumed to be a major reason for resistance, and combination experiments supported this assumption. Dicloxacillin, which did not inhibit the growth and which was a poor inducer but a strong inhibitor of these beta-lactamases, exerted strong synergistic activity when combined with CTA or CTR in strains which produced large amounts of beta-lactamase constitutively. Cefoxitin, on the other hand, poorly active alone, but a good inducer, strongly antagonized CTA or CTR in susceptible strains producing inducible enzymes. In marked contrast to CTA and CTR were the findings with cefsulodin. Cefsulodin was active against CTA- and CTR-resistant Pseudomonas, and its activity was hardly influenced by dicloxacillin or cefoxitin. Since cefsulodin was found to have a very low affinity for all cephalosporinases, these findings corroborate the assumption that binding of nonhydrolyzable cephalosporins, rather than hydrolysis by cephalosporinases, may play an important role in resistance to these agents and other newer cephalosporins in Enterobacteriaceae, as well as in other gram-negative bacteria. PMID:6808912

  19. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens

    PubMed Central

    Pamer, Eric G.

    2016-01-01

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care–associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035

  20. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    PubMed

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria.

  1. Combination of cephalosporins with vancomycin or teicoplanin enhances antibacterial effect of glycopeptides against heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and VISA

    PubMed Central

    Lai, Chih-Cheng; Chen, Chi-Chung; Chuang, Yin-Ching; Tang, Hung-Jen

    2017-01-01

    Eight heterogeneous vancomycin-intermediate S. aureus (h-VISA) and seven VISA clinical isolates confirmed by the population analysis profile/area under the curve ratio (PAP/AUC) were collected. We further performed the PAP/AUC, time-killing methods and MIC tests using vancomycin/teicoplanin alone or combination with susceptible breakpoint concentrations of cefazolin, cefmetazole, cefotaxime, and cefepime for these isolates. The PAP/AUC MIC curve shifted left after addition of cephalosporins with vancomycin or teicoplanin for both h-VISA and VISA isolates. With the combination of different cephalosporins with vancomycin or teicoplanin, the AUC/Mu3 AUC ratio decreased to <0.9 for the standard Mu3 isolate which are compatible with the definition of vancomycin susceptible S. aureus. These decreases ranged between 1.81–2.02 and 2.37–2.85-fold for h-VISA treated with cephalosporins and vancomycin or teicoplanin, and 2.05–4.59, and 2.93–4,89-fold for VISA treated with cephalosporins with vancomycin or teicoplanin. As measured by time-killing assays, the combinations of different cephalosporins with vancomycin concentrations at 1/2 and 1/4 MIC, exhibited a bactericidal and bacteriostatic effect in VISA. The mean fold of MIC decline for vancomycin base combinations ranged from 1.81–3.83 and 2.71–9.33 for h-VISA and VISA, respectively. Overall, this study demonstrated the enhanced antibacterial activity of vancomycin/teicoplanin after adding cephalosporins against clinical h-VISA/VISA isolates. PMID:28139739

  2. Are prophylactic antibiotics useful in chronic obstructive pulmonary disease?

    PubMed

    Arenas, Alex; Rada, Gabriel

    2015-11-10

    Bacterial infections are one of the main causes of chronic obstructive pulmonary disease exacerbation, so the use of prophylactic antibiotics, especially macrolides, has been proposed in these patients. However, it is unclear whether antibiotics use is worth the risk and cost. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified five systematic reviews including eight randomized trials. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded prophylactic antibiotics probably decrease exacerbations in chronic obstructive pulmonary disease, but have no effect on hospitalizations or mortality.

  3. Outpatient antibiotic therapy for elderly patients. HIAT Study Group.

    PubMed

    Angel, J V

    1994-08-15

    The purpose of this study was to determine the safety and efficacy of outpatient intravenous (IV) therapy with a third-generation cephalosporin, cefotaxime, in patients > or = 60 years of age and to determine its effect on length of hospital stay. Subset analysis was performed with 62 patients with various infections who had been enrolled in a prospective, multicenter, open-label trial of IV cefotaxime delivered through a computerized ambulatory delivery system (ADS). Initial treatment was given in hospital if required, followed by home therapy. The overall clinical response rate among evaluable patients was 98%, and the overall bacteriologic response rate was 93%. The mean duration of inpatient therapy was 3.6 days less than the mean of 8.2 days allowed under diagnosis-related group (DRG) allotments. Outpatient therapy with cefotaxime via infusion pump is safe and effective and may reduce hospitalization requirements.

  4. [In vitro and in vivo activities of sulopenem compared with those of imipenem and cephalosporins].

    PubMed

    Nagashima, M; Goto, S; Yoshida, T; Matsunaga, T; Shimohira, H; Ogawa, M

    1996-04-01

    The in vitro and in vivo antibacterial activities of sulopenem (CP-70,429),a new parenteral penem antibiotic, were compared with those of imipenem (IPM), flomoxef, cefuzonam (CZON) and cefotaxime. Sulopenem possessed broad-spectrum activities against Gram-positive bacteria and Gram-negative bacteria. Antibacterial activities of sulopenem against methicillin-sensitive Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes and Streptococcus pneumoniae were equivalent to or somewhat superior to those of IPM. Against members of the family Enterobacteriaceae, sulopenem was 4- to 260-fold more active than reference antibiotics with broad-spectra. In a killing kinetics study for Haemophilus influenzae, sulopenem showed a 99.9% decrease of viable cells after 8 hours at a concentration of 0.20 micrograms/ml. This effect was obtained at a concentration 8-fold lower than that of IPM. The protective effects of sulopenem in murine experimental systemic infections were superior to those of imipenem/cilastatin. In murine experimental mixed infection with Escherichia coli and Bacteroides fragilis, sulopenem had lower ED50, in other words stronger antimicrobial activities than IPM. The therapeutic effect of sulopenem are related well with its MIC value. In guinea pigs experimental lung infection with Klebsiella pneumoniae, sulopenem was more effective than CZON or cefotiam.

  5. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions.

    PubMed

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-09-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized controlled trials or systematic reviews.

  6. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination.

    PubMed

    Zhanel, George G; Lawson, Christopher D; Adam, Heather; Schweizer, Frank; Zelenitsky, Sheryl; Lagacé-Wiens, Philippe R S; Denisuik, Andrew; Rubinstein, Ethan; Gin, Alfred S; Hoban, Daryl J; Lynch, Joseph P; Karlowsky, James A

    2013-02-01

    -lactamase-producing Gram-negative bacilli that are not inhibited by ceftazidime alone.Clinical trials to date have reported that ceftazidime-avibactam is as effective as standard carbapenem therapy in complicated intra-abdominal infection and complicated urinary tract infection, including infection caused by cephalosporin-resistant Gram-negative isolates. The safety and tolerability of ceftazidime-avibactam has been reported in three phase I pharmacokinetic studies and two phase II clinical studies. Ceftazidime-avibactam appears to be well tolerated in healthy subjects and hospitalized patients, with few serious drug-related treatment-emergent adverse events reported to date.In conclusion, avibactam serves to broaden the spectrum of ceftazidime versus ß-lactamase-producing Gram-negative bacilli. The exact roles for ceftazidime-avibactam will be defined by efficacy and safety data from further clinical trials. Potential future roles for ceftazidime-avibactam include the treatment of suspected or documented infections caused by resistant Gram-negative-bacilli producing extended-spectrum ß-lactamase (ESBL), Klebsiella pneumoniae carbapenemases (KPCs) and/or AmpC ß-lactamases. In addition, ceftazidime-avibactam may be used in combination (with metronidazole) for suspected polymicrobial infections. Finally, the increased activity of ceftazidime-avibactam versus P. aeruginosa may be of clinical benefit in patients with suspected or documented P. aeruginosa infections.

  7. Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production.

    PubMed

    Fazius, Felicitas; Zaehle, Christoph; Brock, Matthias

    2013-05-01

    Plants as well as pro- and eukaryotic microorganisms are able to synthesise lysine via de novo synthesis. While plants and bacteria, with some exceptions, rely on variations of the meso-diaminopimelate pathway for lysine biosynthesis, fungi exclusively use the α-aminoadipate pathway. Although bacteria and fungi are, in principle, both suitable as lysine producers, current industrial fermentations rely on the use of bacteria. In contrast, fungi are important producers of β-lactam antibiotics such as penicillins or cephalosporins. The synthesis of these antibiotics strictly depends on α-aminoadipate deriving from lysine biosynthesis. Interestingly, despite the resulting industrial importance of the fungal α-aminoadipate pathway, biochemical reactions leading to α-aminoadipate formation have only been studied on a limited number of fungal species. In this respect, just recently an essential isomerisation reaction required for the formation of α-aminoadipate has been elucidated in detail. This review summarises biochemical pathways leading to lysine production, discusses the suitability of interrupting lysine biosynthesis as target for new antibacterial and antifungal compounds and emphasises on biochemical reactions involved in the formation of α-aminoadipate in fungi as an essential intermediate for both, lysine and β-lactam antibiotics production.

  8. Rapid screening of multiple antibiotic residues in milk using disposable amperometric magnetosensors.

    PubMed

    Conzuelo, F; Ruiz-Valdepeñas Montiel, V; Campuzano, S; Gamella, M; Torrente-Rodríguez, R M; Reviejo, A J; Pingarrón, J M

    2014-04-11

    Disposable amperometric magnetosensors, involving a mixture of modified-magnetic beads (MBs), for the multiplex screening of cephalosporins (CPHs), sulfonamides (SAs) and tetracyclines (TCs) antibiotic residues in milk are reported for the first time in this work. The multiplexed detection relies on the use of a mixture of target specific modified magnetic beads (MBs) and application of direct competitive assays using horseradish peroxidase (HRP)-labeled tracers. The amperometric responses measured at -0.20 V vs. the Ag pseudo-reference electrode of screen-printed carbon electrodes (SPCE) upon the addition of H2O2 in the presence of hydroquinone (HQ) as redox mediator, were used to monitor the extent of the different affinity reactions. The developed methodology, involving a simple and short pretreatment, allowed discrimination between no contaminated UHT and raw milk samples and samples containing antibiotic residues at the maximum residue limits (MRLs). The usefulness of the multiplexed magnetosensor was demonstrated by analyzing spiked milk samples in only 5 min. The results demonstrated that a clear discrimination of milk samples contaminated with antibiotics at their MRL level or their mixtures, allowing the identification of milk not complying with current legislation. These features make the developed methodology a promising alternative in the development of user-friendly devices for on-site analysis to ensure quality control for dairy products.

  9. Determination of veterinary antibiotics in bovine urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Chiesa, Luca; Nobile, Maria; Arioli, Francesco; Britti, Domenico; Trutic, Natasa; Pavlovic, Radmila; Panseri, Sara

    2015-10-15

    A follow-up of antibiotics (tetracyclines, fluoroquinolones, cephalosporins, penicillins and amphenicols) in the bovine urine is important for two reasons: to understand if they are still present in organism, and whether their occurrence in urine might be considered as an environmental risk. A validated HPLC-MS/MS method (Decision 2002/657/EC) for antibiotics determination in bovine urine was developed. CCα and CCβ were in the range of 0.58-0.83 and 0.55-1.1 ng mL(-1), respectively. Recoveries were 92-108%, with inter-day repeatability below 12%. Analysis of bovine urine revealed frequent presence of tetracyclines, which was related with animal's age. The cause, most presumably, might be found in different therapeutic protocols applied for veal calves and young bulls enrolled in this study. Most abundant was oxytetracycline with highest level in veal calves (1718 ng mL(-1)) vs. young bulls (2.8 ng mL(-1)). Our results indicate the necessity of antibiotics monitoring in bovine urine before animals undergo further processing in the food industry.

  10. Prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in a farrowing farm: ST1121 clone harboring IncHI2 plasmid contributes to the dissemination of blaCMY-2

    PubMed Central

    Deng, Hui; Si, Hong-Bin; Zeng, Shu-Yi; Sun, Jian; Fang, Liang-Xing; Yang, Run-Shi; Liu, Ya-Hong; Liao, Xiao-Ping

    2015-01-01

    During a regular monitoring of antimicrobial resistance in a farrowing farm in Southern China, 117 Escherichia coli isolates were obtained from sows and piglets. Compared with the isolates from piglets, the isolates from sows exhibited higher resistance rates to the tested cephalosporins. Correspondingly, the total detection rate of the blaCMY-2/blaCTX-M genes in the sow isolates (34.2%) was also significantly higher than that of the piglet isolates (13.6%; p < 0.05). The blaCMY-2 gene had a relatively high prevalence (11.1%) in the E. coli isolates. MLST and PFGE analysis revealed the clonal spread of ST1121 E. coli in most (7/13) of the blaCMY-2-positive isolates. An indistinguishable IncHI2 plasmid harboring blaCMY-2 was also identified in each of the seven ST1121 E. coli isolates. Complete sequence analysis of this IncHI2 plasmid (pEC5207) revealed that pEC5207 may have originated through recombination of an IncHI2 plasmid with a blaCMY-2-carrying IncA/C plasmid like pCFSAN007427_01. In addition to blaCMY-2, pEC5207 also carried other resistance determinants for aminoglycosides (aacA7), sulfonamides (sul1), as well as heavy metals ions, such as Cu and Ag. The susceptibility testing showed that the pEC5207 can mediate both antibiotic and heavy metal resistance. This highlights the role of pEC5207 in co-selection of blaCMY-2-positive isolates under the selective pressure of heavy metals, cephalosporins, and other antimicrobials. In conclusion, clonal spread of an ST1121 type E. coli strain harboring an IncHI2 plasmid contributed to the dissemination of blaCMY-2 in a farrowing farm in Southern China. We also have determined the first complete sequence analysis of a blaCMY-2-carrying IncHI2 plasmid. PMID:26579110

  11. Patterns of antibiotic use and risk of hospital admission because of Clostridium difficile infection

    PubMed Central

    Dial, Sandra; Kezouh, Abbas; Dascal, Andre; Barkun, Alan; Suissa, Samy

    2008-01-01

    Background Previous observations have indicated that infection with Clostridium difficile occurs almost exclusively after exposure to antibiotics, but more recent observations have suggested that prior antibiotic exposure may be less frequent among cases of community-acquired disease. Methods We used 2 linked health databases to perform a matched, nested case–control study of elderly patients admitted to hospital with community-acquired C. difficile infection. For each of 836 cases among people 65 years of age or older, we selected 10 controls. We determined the proportion of cases that occurred without prior antibiotic exposure and estimated the risk related to exposure to different antibiotics and the duration of increased risk. Results Of the 836 cases, 442 (52.9%) had no exposure to antibiotics in the 45-day period before the index date, and 382 (45.7%) had no exposure in the 90-day period before the index date. Antibiotic exposure was associated with a rate ratio (RR) of 10.6 (95% confidence interval [CI] 8.9–12.8). Clindamycin (RR 31.8, 95% CI 17.6–57.6), cephalosporins (RR 14.9, 95% CI 10.9–20.3) and gatifloxacin (RR 16.7, 95% CI 8.3–33.6) were associated with the highest risk. The RR for C. difficile infection associated with antibiotic exposure declined from 15.4 (95% CI 12.2–19.3) by about 20 days after exposure to 3.2 (95% CI 2.0–5.0) after 45 days. Use of a proton pump inhibitor was associated with increased risk (RR 1.6, 95% CI 1.3–2.0), as were concurrent diagnoses of inflammatory bowel disease (RR 4.1, 95% CI 2.6–6.6), irritable bowel syndrome (RR 3.4, 95% CI 2.3–5.0) and renal failure (RR 1.7, 95% CI 1.2–2.2). Interpretation Community-acquired C. difficile infection occurred in a substantial proportion of individuals with no recent exposure to antibiotics. Among patients who had been exposed to antibiotics, the risk declined markedly by 45 days after discontinuation of use. PMID:18838451

  12. Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora.

    PubMed

    Vasseur, Maleck V; Laurentie, Michel; Rolland, Jean-Guy; Perrin-Guyomard, Agnès; Henri, Jérôme; Ferran, Aude A; Toutain, Pierre-Louis; Bousquet-Mélou, Alain

    2014-01-01

    The combination of efficacious treatment against bacterial infections and mitigation of antibiotic resistance amplification in gut microbiota is a major challenge for antimicrobial therapy in food-producing animals. In rats, we evaluated the impact of cefquinome, a fourth-generation cephalosporin, on both Klebsiella pneumoniae lung infection and intestinal flora harboring CTX-M-producing Enterobacteriaceae. Germfree rats received a fecal flora specimen from specific-pathogen-free pigs, to which a CTX-M-producing Escherichia coli strain had been added. K. pneumoniae cells were inoculated in the lungs of these gnotobiotic rats by using either a low (10(5) CFU) or a high (10(9) CFU) inoculum. Without treatment, all animals infected with the low or high K. pneumoniae inoculum developed pneumonia and died before 120 h postchallenge. In the treated groups, the low-inoculum rats received a 4-day treatment of 5 mg/kg of body weight cefquinome beginning at 24 h postchallenge (prepatent phase of the disease), and the high-inoculum rats received a 4-day treatment of 50 mg/kg cefquinome beginning when the animals expressed clinical signs of infection (patent phase of the disease). The dose of 50 mg/kg targeting the high K. pneumoniae inoculum cured all the treated rats and resulted in a massive amplification of CTX-M-producing Enterobacteriaceae. A dose of 5 mg/kg targeting the low K. pneumoniae inoculum cured all the rats and averted an outbreak of clinical disease, all without any amplification of CTX-M-producing Enterobacteriaceae. These findings might have implications for the development of new antimicrobial treatment strategies that ensure a cure for bacterial infections while avoiding the amplification of resistance genes of human concern in the gut microbiota of food-producing animals.

  13. Antibiotics from predatory bacteria

    PubMed Central

    Korp, Juliane; Vela Gurovic, María S

    2016-01-01

    Summary Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism. PMID:27340451

  14. Endless Resistance. Endless Antibiotics?

    PubMed Central

    Fisher, Jed F.; Mobashery, Shahriar

    2016-01-01

    The practice of medicine was profoundly transformed by the introduction of the antibiotics (compounds isolated from Nature) and the antibacterials (compounds prepared by synthesis) for the control of bacterial infection. As a result of the extraordinary success of these compounds over decades of time, a timeless biological activity for these compounds has been presumed. This presumption is no longer. The inexorable acquisition of resistance mechanisms by bacteria is retransforming medical practice. Credible answers to this dilemma are far better recognized than they are being implemented. In this perspective we examine (and in key respects, reiterate) the chemical and biological strategies being used to address the challenge of bacterial resistance. PMID:27746889

  15. Metabolic engineering of noviose: heterologous expression of novWUS and generation of a new hybrid antibiotic, noviosylated 10-deoxymethynolide/narbonolide, from Streptomyces venezuelae YJ003-OTBP1.

    PubMed

    Pageni, Binod Babu; Oh, Tae-Jin; Lee, Hei Chan; Sohng, Jae Kyung

    2008-09-01

    NovW, novU and novS genes have been characterized as dTDP-4-keto-6-deoxy-D-glucose 3-epimerase, C-5 methyltransferase and dTDP-glucose 4-ketoreductase, respectively involved in noviose biosynthetic pathway. We have cloned and expressed the Streptomyces spheroids novWUS genes in S. venezuelae YJ003-OTBP1. This established the function of novWUS and, at the same time, it also proved that the noviosyl derivative of 10-deoxymethynolide(2)/narbonolide(4) obtained from S. venezuelae YJ003-OTBP1 is a novel hybrid antibiotic.

  16. Combined administration of antibiotics and direct oral anticoagulants: a renewed indication for laboratory monitoring?

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J; Mattiuzzi, Camilla

    2014-10-01

    The recent development and marketing of novel direct oral anticoagulants (DOACs) represents a paradigm shift in the management of patients requiring long-term anticoagulation. The advantages of these compounds over traditional therapy with vitamin K antagonists include a reportedly lower risk of severe hemorrhages and the limited need for laboratory measurements. However, there are several scenarios in which testing should be applied. The potential for drug-to-drug interaction is one plausible but currently underrecognized indication for laboratory assessment of the anticoagulant effect of DOACs. In particular, substantial concern has been raised during Phase I studies regarding the potential interaction of these drugs with some antibiotics, especially those that interplay with permeability glycoprotein (P-gp) and cytochrome 3A4 (CYP3A4). A specific electronic search on clinical trials published so far confirms that clarithromycin and rifampicin significantly impair the bioavailability of dabigatran, whereas clarithromycin, erythromycin, fluconazole, and ketoconazole alter the metabolism of rivaroxaban in vivo. Because of their more recent development, no published data were found for apixaban and edoxaban, or for potential interactions of DOACs with other and widely used antibiotics. It is noteworthy, however, that an online resource based on Food and Drug Administration and social media information, reports several hemorrhagic and thrombotic events in patients simultaneously taking dabigatran and some commonly used antibiotics such as amoxicillin, cephalosporin, and metronidazole. According to these reports, the administration of antibiotics in patients undergoing therapy with DOACs would seem to require accurate evaluation as to whether dose adjustments (personalized or antibiotic class driven) of the anticoagulant drug may be advisable. This might be facilitated by direct laboratory assessments of their anticoagulant effect ex vivo.

  17. [Antibiotics: drug and food interactions].

    PubMed

    Hodel, M; Genné, D

    2009-10-07

    Antibiotics are widely prescribed in medical practice. Many of them induce or are subject to interactions that may diminish their anti-infectious efficiency or elicit toxic effects. Food intake can influence the effectiveness of an antibiotic. Certain antibiotics can lower the effectiveness of oral contraception. Oral anticoagulation can be influenced to a great extent by antibiotics and controls are necessary. Interactions are also possible via enzymatic induction or inhibition of cytochromes. The use of an interaction list with substrates of cytochromes enables to anticipate. Every new prescription should consider a possible drug or food interaction.

  18. A Response Regulator from a Soil Metagenome Enhances Resistance to the β-Lactam Antibiotic Carbenicillin in Escherichia coli

    PubMed Central

    Allen, Heather K.; An, Ran; Handelsman, Jo; Moe, Luke A.

    2015-01-01

    Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16) harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins), rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs) that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology. PMID:25782011

  19. [Review and categorization of quinolone antibiotics].

    PubMed

    Benes, Jirí

    2005-02-01

    No standard categorization of quinolone antibiotics into generations may be found in either Czech or world literature. The author recommends a categorization into four groups defined according to their spectrum of action and utilization: 1) preparations for the treatment of urinary tract infections; 2) systemically acting quinolones chiefly efficacious against Gram-negative bacteria; 3) so-called respiratory quinolones; and 4) quinolones with a very broad spectrum of action suitable for the treatment of very complicated infections. The author describes the chief characteristics of the most important quinolone antibiotics, including preparations either in their development stage or whose development has been prematurely interrupted because of adverse side-effects. The list includes all preparations that are or were temporarily registered in the Czech Republic.

  20. Antibiotic drug advertising in medical journals.

    PubMed

    Gilad, Jacob; Moran, Lia; Schlaeffer, Francisc; Borer, Abraham

    2005-01-01

    Advertising is a leading strategy for drug promotion. We analysed 779 advertisements in 24 medical journals, 25% of which featured antibiotics. Antibiotic advertisements showed differences compared to those of other drugs. None addressed the issue of antibiotic resistance. Efforts to prevent antibiotic resistance should take antibiotic advertising into consideration.

  1. Enzymatic oxidation of cephalosporin C using whole cells of the yeast Triginopsis variabilis within a "cross-flow filter-reactor".

    PubMed

    Vicenzi, J T; Hansen, G J

    1993-04-01

    An economical process for the enzymatic oxidation of cephalosporin C to glutaryl-7-ACA was developed at a pilot plant scale. The process utilized nonviable whole cells of the yeast Triginopsis variabilis containing high levels of D-amino acid oxidase. Prior to use, the whole cells were permeabilized with a 25% acetone/water solution which enhanced their apparent activity by 20- to 50-fold. After permeabilization, the whole cells were incubated at pH 11, which served to selectively deactivate catalase which was present in very large quantities. Deactivation of catalase was critical to achieving high reaction yields. The whole cells were utilized within a "cross-flow filter-reactor" which allowed easy and economical recycle of the cells for repeated use. The overall yield of glutaryl-7-ACA from cephalosporin C was 90-95%. The overall productivity of the yeast was 13 kg cephalosporin C oxidized per kilogram yeast (dry basis). The reaction was run at a concentration of 40 g cephalosporin CL-1 and the overall reactor productivity was 11 g glutaryl-7-ACA l-1 h-1. The process has been thoroughly demonstrated on a 35-l scale, and it should be directly scaleable to 10,000 l or more.

  2. Characterization of extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment and ceftriaxone, an extended-spectrum cephalosporin, is commonly used in both adults and child...

  3. Role of antibiotic stewardship in extending the age of modern medicine.

    PubMed

    Mendelson, M

    2015-04-10

    Antibiotic resistance is threatening modern medicine. Overuse and misuse of antibiotics is driving resistance to such an extent that we have entered the post-antibiotic era, where some multidrug- and pandrug-resistant bacterial infections are no longer treatable. If the situation is not reversed,10 million people will die annually of drug-resistant infections by 2050. More than just a question of mortality, such infections are causing the closure of wards, cancellation of operations, and interference with other common medical procedures that rely on antibiotics for their success. The response to this crisis requires co-ordinated international action with increased surveillance of bacterial resistance, infection prevention, and antibiotic stewardship, i.e. access to affordable, quality-assured antibiotics prescribed appropriately. This review describes antibiotic stewardship at the individual patient and programmatic level, which must be adopted by every prescriber if we are to preserve modern medicine for future generations.

  4. Cloning of a Streptomyces clavuligerus DNA fragment encoding the cephalosporin 7 alpha-hydroxylase and its expression in Streptomyces lividans.

    PubMed Central

    Xiao, X; Hintermann, G; Häusler, A; Barker, P J; Foor, F; Demain, A L; Piret, J

    1993-01-01

    A 26-mer DNA probe was designed from N-terminal sequence data for the cephalosporin 7 alpha-hydroxylase (CH) of Streptomyces clavuligerus NRRL 3585 and used to screen a DNA library from this organism. The library was constructed in the lambda GEM-11 phage system. After plaque purification and reprobing, positive recombinant phages were chosen for further analysis. Characterization of the cloned DNA by restriction mapping and Southern hybridization showed that a 1.5-kb SalI fragment hybridized to the probe. Polymerase chain reaction assays using this fragment as a template and the probe as a primer indicated that the fragment carries the entire putative CH gene (cmcI). This was confirmed through the expression of CH enzymatic activity when the fragment was introduced into Streptomyces lividans. A putative beta-lactamase activity was detected in S. lividans. Images PMID:8431021

  5. Expression of cefF significantly decreased deacetoxycephalosporin C formation during cephalosporin C production in Acremonium chrysogenum.

    PubMed

    An, Yang; Dong, Hailing; Liu, Gang

    2012-02-01

    Deacetoxycephalosporin C (DAOC) is not only the precursor but also one of the by-products during cephalosporin C (CPC) biosynthesis. One enzyme (DAOC/DAC synthase) is responsible for the two-step conversion of penicillin N into deacetylcephalosporin C (DAC) in Acremonium chrysogenum, while two enzymes (DAOC synthase and DAOC hydroxylase) were involved in this reaction in Streptomyces clavuligerus and Amycolatopsis lactamdurans (Nocardia lactamdurans). In this study, the DAOC hydroxylase gene cefF was cloned from Streptomyces clavuligerus and introduced into Acremonium chrysogenum through Agrobacterium tumefaciens-mediated transformation. When cefF was expressed under the promoter of pcbC, the ratio of DAOC/CPC in the fermentation broth significantly decreased. These results suggested that introduction of cefF could function quite well in Acremonium chrysogenum and successfully reduce the content of DAOC in the CPC fermentation broth. This work offered a practical way to improve the CPC purification and reduce its production cost.

  6. Cefuroxime, a New Parenteral Cephalosporin: Collaborative In Vitro Susceptibility Comparison with Cephalothin Against 5,887 Clinical Bacterial Isolates

    PubMed Central

    Jones, Ronald N.; Fuchs, Peter C.; Gavan, Thomas L.; Gerlach, E. Hugh; Barry, A. L.; Thornsberry, Clyde

    1977-01-01

    Cefuroxime, a new parenteral cephalosporin was compared with cephalothin by broth microdilution susceptibility testing against 5,887 routine clinical bacterial isolates in four large clinical laboratories. The minimal inhibitory concentrations (MICs) of cefuroxime against the Enterobacteriaceae were consistently lower than those of cephalothin. This was most striking among the Enterobacter species, which were generally susceptible to cefuroxime (MIC ≤ 8 μg/ml), but resistant to cephalothin. Similar results occurred with Haemophilus species, Acinetobacter anitratus, meningococci, and Aeromonas hydrophilia, but Pseudomonas species and enterococci were resistant to high concentrations of both drugs. Streptococci showed slightly greater susceptibility to cefuroxime than to cephalothin. By contrast, staphylococci were more susceptible to cephalothin. Bacteroides fragilis was resistant to cefuroxime, but other anaerobes were generally susceptible. PMID:883818

  7. Virulence Genes in Expanded-Spectrum-Cephalosporin-Resistant and -Susceptible Escherichia coli Isolates from Treated and Untreated Chickens.

    PubMed

    Baron, S; Delannoy, S; Bougeard, S; Larvor, E; Jouy, E; Balan, O; Fach, P; Kempf, I

    2015-12-14

    This study investigated antimicrobial resistance, screened for the presence of virulence genes involved in intestinal infections, and determined phylogenetic groups of Escherichia coli isolates from untreated poultry and poultry treated with ceftiofur, an expanded-spectrum cephalosporin. Results show that none of the 76 isolates appeared to be Shiga toxin-producing E. coli or enteropathogenic E. coli. All isolates were negative for the major virulence factors/toxins tested (ehxA, cdt, heat-stable enterotoxin [ST], and heat-labile enterotoxin [LT]). The few virulence genes harbored in isolates generally did not correlate with isolate antimicrobial resistance or treatment status. However, some of the virulence genes were significantly associated with certain phylogenetic groups.

  8. Transport of sulfonamide antibiotics in crop fields during monsoon season.

    PubMed

    Park, Jong Yol; Ruidisch, Marianne; Huwe, Bernd

    2016-11-01

    Previous studies have documented the occurrence of veterinary sulfonamide antibiotics in groundwater and rivers located far from pollution sources, although their transport and fate is relatively unknown. In mountainous agricultural fields, the transport behaviour can be influenced by climate, slope and physico-chemical properties of the sulfonamides. The objective of this research is to describe the transport behaviour of three sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in sloped agricultural fields located in the Haean catchment, South Korea. During dry and monsoon seasons, a solute transport experiment was conducted in two typical sandy loam agricultural fields after application of antibiotics and potassium bromide as conservative tracers. Field measurement and modelling revealed that frequency and amount of runoff generation indicate a relation between slope and rain intensity during monsoon season. Since the steepness of slope influenced partitioning of precipitation between runoff and subsurface flow, higher loss of sulfonamide antibiotics and bromide by runoff was observed at the steeper sloped field. Bromide on topsoil rapidly infiltrated at high infiltration rates. On the contrary, the sulfonamides were relatively retarded in the upper soil layer due to adsorption onto soil particles. Presence of furrows and ridges affected the distribution of sulfonamide antibiotics in the subsurface due to gradient from wetter furrows to drier ridges induced by topography. Modelling results with HydroGeoSphere matched with background studies that describe physico-chemical properties of the sulfonamides interaction between soil and the antibiotic group, solute transport through vadose zone and runoff generation by storm events.

  9. A septation related gene AcsepH in Acremonium chrysogenum is involved in the cellular differentiation and cephalosporin production.

    PubMed

    Long, Liang-Kun; Wang, Yanling; Yang, Jing; Xu, Xinxin; Liu, Gang

    2013-01-01

    T-DNA inserted mutants of Acremonium chrysogenum were constructed by Agrobacterium tumefaciens-mediated transformation (ATMT). One mutant 1223 which grew slowly was selected. TAIL-PCR and sequence analysis indicated that a putative septation protein encoding gene AcsepH was partially deleted in this mutant. AcsepH contains nine introns, and its deduced protein AcSEPH has a conserved serine/threonine protein kinase catalytic (S_TKc) domain at its N-terminal region. AcSEPH shows high similarity with septation H proteins from other filamentous fungi based on the phylogenetic analysis of S_TKc domains. In sporulation (LPE) medium, the conidia of AcsepH mutant was only about one-seventh of the wild-type, and more than 20% of conidia produced by the mutant contain multiple nuclei which were rare in the wild-type. During fermentation, the AcsepH disruption mutant grew slowly and its cephalosporin production was only about one quarter of the wild-type, and the transcription analysis showed that pcbC expression was delayed and the expressions of cefEF, cefD1 and cefD2 were significantly decreased. The vegetative hyphae of AcsepH mutant swelled abnormally and hardly formed the typical yeast-like cells. The amount of yeast-like cells was about one-tenth of the wild-type after fermentation for 5days. Comparison of hyphal viabilities revealed that the cells of AcsepH mutant died easily than the wild-type at the late stage of fermentation. Fluorescent stains revealed that the absence of AcsepH in A. chrysogenum led to reduction of septation and formation of multinucleate cells. These data indicates that AcsepH is required for the normal cellular septation and differentiation of A. chrysogenum, and its absence may change the cellular physiological status and causes the decline in cephalosporin production.

  10. Whole-Genome Phylogenomic Heterogeneity of Neisseria gonorrhoeae Isolates with Decreased Cephalosporin Susceptibility Collected in Canada between 1989 and 2013

    PubMed Central

    Lynch, Tarah; Martin, Irene; Van Domselaar, Gary; Graham, Morag; Bharat, Amrita; Allen, Vanessa; Hoang, Linda; Lefebvre, Brigitte; Tyrrell, Greg; Horsman, Greg; Haldane, David; Garceau, Richard; Wylie, John; Wong, Tom; Mulvey, Michael R.

    2014-01-01

    A large-scale, whole-genome comparison of Canadian Neisseria gonorrhoeae isolates with high-level cephalosporin MICs was used to demonstrate a genomic epidemiology approach to investigate strain relatedness and dynamics. Although current typing methods have been very successful in tracing short-chain transmission of gonorrheal disease, investigating the temporal evolutionary relationships and geographical dissemination of highly clonal lineages requires enhanced resolution only available through whole-genome sequencing (WGS). Phylogenomic cluster analysis grouped 169 Canadian strains into 12 distinct clades. While some N. gonorrhoeae multiantigen sequence types (NG-MAST) agreed with specific phylogenomic clades or subclades, other sequence types (ST) and closely related groups of ST were widely distributed among clades. Decreased susceptibility to extended-spectrum cephalosporins (ESC-DS) emerged among a group of diverse strains in Canada during the 1990s with a variety of nonmosaic penA alleles, followed in 2000/2001 with the penA mosaic X allele and then in 2007 with ST1407 strains with the penA mosaic XXXIV allele. Five genetically distinct ESC-DS lineages were associated with penA mosaic X, XXXV, and XXXIV alleles and nonmosaic XII and XIII alleles. ESC-DS with coresistance to azithromycin was observed in 5 strains with 23S rRNA C2599T or A2143G mutations. As the costs associated with WGS decline and analysis tools are streamlined, WGS can provide a more thorough understanding of strain dynamics, facilitate epidemiological studies to better resolve social networks, and improve surveillance to optimize treatment for gonorrheal infections. PMID:25378573

  11. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins

    PubMed Central

    Berrazeg, M.; Jeannot, K.; Ntsogo Enguéné, Véronique Yvette; Broutin, I.; Loeffert, S.; Fournier, D.

    2015-01-01

    Mutation-dependent overproduction of intrinsic β-lactamase AmpC is considered the main cause of resistance of clinical strains of Pseudomonas aeruginosa to antipseudomonal penicillins and cephalosporins. Analysis of 31 AmpC-overproducing clinical isolates exhibiting a greater resistance to ceftazidime than to piperacillin-tazobactam revealed the presence of 17 mutations in the β-lactamase, combined with various polymorphic amino acid substitutions. When overexpressed in AmpC-deficient P. aeruginosa 4098, the genes coding for 20/23 of these AmpC variants were found to confer a higher (2-fold to >64-fold) resistance to ceftazidime and ceftolozane-tazobactam than did the gene from reference strain PAO1. The mutations had variable effects on the MICs of ticarcillin, piperacillin-tazobactam, aztreonam, and cefepime. Depending on their location in the AmpC structure and their impact on β-lactam MICs, they could be assigned to 4 distinct groups. Most of the mutations affecting the omega loop, the R2 domain, and the C-terminal end of the protein were shared with extended-spectrum AmpCs (ESACs) from other Gram-negative species. Interestingly, two new mutations (F121L and P154L) were predicted to enlarge the substrate binding pocket by disrupting the stacking between residues F121 and P154. We also found that the reported ESACs emerged locally in a variety of clones, some of which are epidemic and did not require hypermutability. Taken together, our results show that P. aeruginosa is able to adapt to efficacious β-lactams, including the newer cephalosporin ceftolozane, through a variety of mutations affecting its intrinsic β-lactamase, AmpC. Data suggest that the rates of ESAC-producing mutants are ≥1.5% in the clinical setting. PMID:26248364

  12. Immobilization and stabilization of cephalosporin C acylase on aminated support by crosslinking with glutaraldehyde and further modifying with aminated macromolecules.

    PubMed

    He, Hua; Wei, Yanmei; Luo, Hui; Li, Xi; Wang, Xiaona; Liang, Chen; Chang, Yanhong; Yu, Huimin; Shen, Zhongyao

    2015-01-01

    In this work, cephalosporin C acylase (CA), a heterodimeric enzyme of industrial potential in direct hydrolysis of cephalosporin C (CPC) to 7-aminocephalosporanic acid (7-ACA), was covalently immobilized on the aminated support LX1000-HA (HA) with two different protocols. The stability of CA adsorbed onto the HA support followed by crosslinking with glutaraldehyde (HA-CA-glut) was better than that of the CA covalently immobilized on the glutaraldehyde preactivated HA support (HA-glut-CA). The thermostabilization factors (compared with the free enzyme) of these two immobilized enzymes were 11.2-fold and 2.2-fold, respectively. In order to improve the stability of HA-CA-glut, a novel strategy based on postimmobilization modifying with aminated molecules was developed to take advantage of the glutaraldehyde moieties left on the enzyme and support. The macromolecules, such as polyethyleneimine (PEI) and chitosan, had larger effects than small molecules on the thermal stability of the immobilized enzyme perhaps due to crosslinking of the enzymes and support with each other. The quaternary structure of the CA could be much stabilized by this novel approach including physical adsorption on aminated support, glutaraldehyde treatment, and macromolecule modification. The HA-CA-glut-PEI20000 (the HA-CA-glut postmodified with PEI Mw = 20,000) had a thermostabilization factor of 20-fold, and its substrate affinity (Km = 14.3 mM) was better than that of HA-CA-glut (Km = 33.4 mM). The half-life of the immobilized enzymes HA-CA-glut-PEI20000 under the CPC-catalyzing conditions could reach 28 cycles, a higher value than that of HA-CA-glut (21 cycles).

  13. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance

    PubMed Central

    Yap, Polly Soo Xi; Yiap, Beow Chin; Ping, Hu Cai; Lim, Swee Hua Erin

    2014-01-01

    For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent. PMID:24627729

  14. The Antibiotic Resistance Problem Revisited

    ERIC Educational Resources Information Center

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  15. Antibiotic use in livestock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotic usage is a useful and commonly implemented practice in livestock and production agriculture that has progressively gained attention in recent years from consumers of animal products due to concerns about human and environmental health. Sub-therapeutic usage of antibiotics has led to a con...

  16. Trends in Expanded-Spectrum Cephalosporin-Resistant Escherichia coli and Klebsiella pneumoniae among Dutch Clinical Isolates, from 2008 to 2012

    PubMed Central

    van der Steen, Matthijs; Leenstra, Tjalling; Kluytmans, Jan A. J. W.; van der Bij, Akke K.

    2015-01-01

    We investigated time trends in extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from different patient settings in The Netherlands from 2008–2012. E. coli and K. pneumoniae isolates from blood and urine samples of patients > = 18 years were selected from the Dutch Infectious Disease Surveillance System-Antimicrobial Resistance (ISIS-AR) database. We used multivariable Poisson regression to study the rate per year of blood stream infections by susceptible and resistant isolates, and generalized estimating equation (GEE) log-binomial regression for trends in the proportion of extended-spectrum cephalosporin-resistant isolates. Susceptibility data of 197,513 E. coli and 38,244 K. pneumoniae isolates were included. The proportion of extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae isolates from urine and blood samples increased in all patient settings, except for K. pneumoniae isolates from patients admitted to intensive care units. For K. pneumoniae, there was a different time trend between various patient groups (p<0.01), with a significantly higher increase in extended-spectrum cephalosporin-resistant isolates from patients attending a general practitioner than in isolates from hospitalized patients. For E. coli, the increasing time trends did not differ among different patient groups. This nationwide study shows a general increase in extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae isolates. However, differences in trends between E. coli en K. pneumoniae underline the importance of E. coli as a community-pathogen and its subsequent influence on hospital resistance level, while for K. pneumoniae the level of resistance within the hospital seems less influenced by the resistance trends in the community. PMID:26381746

  17. Trends in Expanded-Spectrum Cephalosporin-Resistant Escherichia coli and Klebsiella pneumoniae among Dutch Clinical Isolates, from 2008 to 2012.

    PubMed

    van der Steen, Matthijs; Leenstra, Tjalling; Kluytmans, Jan A J W; van der Bij, Akke K

    2015-01-01

    We investigated time trends in extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from different patient settings in The Netherlands from 2008-2012. E. coli and K. pneumoniae isolates from blood and urine samples of patients > = 18 years were selected from the Dutch Infectious Disease Surveillance System-Antimicrobial Resistance (ISIS-AR) database. We used multivariable Poisson regression to study the rate per year of blood stream infections by susceptible and resistant isolates, and generalized estimating equation (GEE) log-binomial regression for trends in the proportion of extended-spectrum cephalosporin-resistant isolates. Susceptibility data of 197,513 E. coli and 38,244 K. pneumoniae isolates were included. The proportion of extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae isolates from urine and blood samples increased in all patient settings, except for K. pneumoniae isolates from patients admitted to intensive care units. For K. pneumoniae, there was a different time trend between various patient groups (p<0.01), with a significantly higher increase in extended-spectrum cephalosporin-resistant isolates from patients attending a general practitioner than in isolates from hospitalized patients. For E. coli, the increasing time trends did not differ among different patient groups. This nationwide study shows a general increase in extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae isolates. However, differences in trends between E. coli en K. pneumoniae underline the importance of E. coli as a community-pathogen and its subsequent influence on hospital resistance level, while for K. pneumoniae the level of resistance within the hospital seems less influenced by the resistance trends in the community.

  18. Antibiotic-resistant bacteria: a challenge for the food industry.

    PubMed

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  19. Molecular mechanisms of antibiotic resistance.

    PubMed

    Wright, Gerard D

    2011-04-14

    Over the past decade, resistance to antibiotics has emerged as a crisis of global proportion. Microbes resistant to many and even all clinically approved antibiotics are increasingly common and easily spread across continents. At the same time there are fewer new antibiotic drugs coming to market. We are reaching a point where we are no longer able to confidently treat a growing number of bacterial infections. The molecular mechanisms of drug resistance provide the essential knowledge on new drug development and clinical use. These mechanisms include enzyme catalyzed antibiotic modifications, bypass of antibiotic targets and active efflux of drugs from the cell. Understanding the chemical rationale and underpinnings of resistance is an essential component of our response to this clinical challenge.

  20. New approaches to antibiotic discovery.

    PubMed

    Kealey, C; Creaven, C A; Murphy, C D; Brady, C B

    2017-03-08

    New antibiotics are urgently required by human medicine as pathogens emerge with developed resistance to almost all antibiotic classes. Pioneering approaches, methodologies and technologies have facilitated a new era in antimicrobial discovery. Innovative culturing techniques such as iChip and co-culturing methods which use 'helper' strains to produce bioactive molecules have had notable success. Exploiting antibiotic resistance to identify antibacterial producers performed in tandem with diagnostic PCR based identification approaches has identified novel candidates. Employing powerful metagenomic mining and metabolomic tools has identified the antibiotic'ome, highlighting new antibiotics from underexplored environments and silent gene clusters enabling researchers to mine for scaffolds with both a novel mechanism of action and also few clinically established resistance determinants. Modern biotechnological approaches are delivering but will require support from government initiatives together with changes in regulation to pave the way for valuable, efficacious, highly targeted, pathogen specific antimicrobial therapies.

  1. [Antibiotic resistance: A global crisis].

    PubMed

    Alós, Juan-Ignacio

    2015-12-01

    The introduction of antibiotics into clinical practice represented one of the most important interventions for the control of infectious diseases. Antibiotics have saved millions of lives and have also brought a revolution in medicine. However, an increasing threat has deteriorated the effectiveness of these drugs, that of bacterial resistance to antibiotics, which is defined here as the ability of bacteria to survive in antibiotic concentrations that inhibit/kill others of the same species. In this review some recent and important examples of resistance in pathogens of concern for mankind are mentioned. It is explained, according to present knowledge, the process that led to the current situation in a short time, evolutionarily speaking. It begins with the resistance genes, continues with clones and genetic elements involved in the maintenance and dissemination, and ends with other factors that contribute to its spread. Possible responses to the problem are also reviewed, with special reference to the development of new antibiotics.

  2. Antibiotic prophylaxis in otolaryngologic surgery.

    PubMed

    Obeso, Sergio; Rodrigo, Juan P; Sánchez, Rafael; López, Fernando; Díaz, Juan P; Suárez, Carlos

    2010-01-01

    Since the beginning of the 80s, numerous clinical trials have shown a significant reduction in the incidence of infections in clean-contaminated upper respiratory tract surgery, due to perioperative use of antibiotics; however, there is no consensus about the best antibiotic protocol. Moreover, there are no universally accepted guidelines about flap reconstructive procedures. In otological and rhinological surgery, tonsillectomy, cochlear implant and laryngo-pharyngeal laser surgery, the use of antibiotics frequently depends on institutional or personal preferences rather than the evidence available. We reviewed clinical trials on different otorhinolaryngological procedures, assessing choice of antibiotic, length of treatment and administration route. There are no clinical trials for laryngo-pharyngeal laser surgery. Nor are there clinical trials on implant cochlear surgery or neurosurgical clean-contaminated procedures, but in these circumstances, antibiotic prophylaxis is recommended.

  3. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    NASA Astrophysics Data System (ADS)

    Rădulescu, Dragoş; Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina; Grumezescu, Valentina; Holban, Alina Maria; Vasile, Bogdan Stefan; Surdu, Adrian Vasile; Grumezescu, Alexandru Mihai; Socol, Gabriel; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Balaure, Paul Cătălin; Rădulescu, Radu; Chifiriuc, Mariana Carmen

    2016-06-01

    In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  4. The electrocatalytic examination of cephalosporins at carbon paste electrode modified with CoSalophen.

    PubMed

    Jamasbi, E S; Rouhollahi, A; Shahrokhian, S; Haghgoo, S; Aghajani, S

    2007-03-15

    The electrocatalytic oxidation of cephalexin and cefazolin has been studied at a carbon paste electrode modified with cobalt salophen (CoSal) by cyclic voltammetry. The selectivity of the carbon paste modified with CoSal in detecting cephalexin and cefazolin was examined. To suggest the electrocatalytic mechanism for electro-oxidation of cefazolin, the electrochemical behavior of ceftriaxone was investigated which has a thiol group out of the beta lactam ring. The electrocatalytic oxidation of these antibiotics is shown to be irreversible at the CoSal modified electrode. Scan rate dependence of cefazolin, which is a sulfur-containing compound, has been examined. The results indicated that the electrocatalytic oxidation of the compounds is diffusion controlled. The responses of the modified electrode were compared with those of unmodified electrode and it has shown that the modified electrode has better sensitivity than unmodified electrode to the detection of cefazolin. The overall number of electrons contributed to the oxidation of cefazolin is obtained 1 by chronoamperometry; the number of electron involved in the rate-determining step was 1. The results of differential pulse voltammetry (DPV) using the modified electrode with high sensitivity were applied for the determination of cefazolin in human synthetic serum samples. The linear range was obtained from 1x10(-5) to 1x10(-3)M for DPV determination of cefazolin in buffered solutions (pH 3.0).

  5. The complex clinical picture of beta-lactam hypersensitivity: penicillins, cephalosporins, monobactams, carbapenems, and clavams.

    PubMed

    Torres, Maria J; Blanca, Miguel

    2010-07-01

    Beta-lactam antibiotics are the drugs most frequently involved in drug hypersensitivity reactions that are mediated by specific immunologic mechanisms. In addition to benzylpenicillin, several chemical structures belonging to 5 major subgroups can induce reactions. The most relevant structure is that of the amoxicillin molecule. Reactions belong to the 4 major mechanisms described by Coombs and Gell, whereby type IV reactions have recently been further subclassified. The most frequent reactions are type I, which are IgE mediated, and type IV, which are nonimmediate and T-cell dependent. IgE-specific antibodies may recognize the benzylpenicilloyl structure or another part of the molecule, such as the side chain, as antigenic determinants. Depending on specific recognition, subjects can be either cross-reactors or selective responders. A variety of entities exist in T-cell reactions, ranging from mild exanthema to life-threatening, severe reactions, such as Stevens-Johnson syndrome or toxic epidermal necrolysis. Diagnostic tests for IgE-mediated reactions can be done in vivo by testing skin with different penicillin determinants or in vitro by quantitating specific IgE antibodies. For nonimmediate reactions, there are also in vitro and in vivo tests, with variable degrees of sensitivity and specificity. The natural history of IgE-mediated reactions indicates that the count of specific IgE antibodies decreases over time and that results of diagnostic tests can become negative.

  6. Community fecal carriage of broad-spectrum cephalosporin-resistant Escherichia coli in Tunisian children.

    PubMed

    Ferjani, Sana; Saidani, Mabrouka; Hamzaoui, Zeineb; Alonso, Carla Andrea; Torres, Carmen; Maamar, Elaa; Slim, Amine Faouzi; Boutiba, Ben Boubaker Ilhem

    2017-02-01

    The spread of extended spectrum β-lactamases (ESBL) and plasmid mediated AmpC β-lactamases (pAmpC) was evaluated in Escherichia coli strains collected from the intestinal microbiota of healthy children in Tunisia. The carriage rate of CTX(R)E. coli was 6.6% (7 of 105 samples) and one strain/sample was further characterized (7 isolates). These isolates harbored blaCTX-M-1 (n = 4), blaCTX-M-15 (n = 2), and blaCMY-2 gene (n = 1), which were usually located on FIB replicon type and carried class 1 integrons. The acc(6')-Ib-cr variant was identified in one isolate that harbored blaCTX-M-15. CTX(R)E. coli isolates were genetically unrelated and belonged to B1 (n = 3/ST155/ST398/ST58), D (n = 2/ST117/ST493), B2 (n = 1/ST127), and A (n = 1/ST746) phylogroups. Strain virulence scores varied from 3 to 12, and frequently harbored the pathogenicity island PAI IV536. The intestinal tract of healthy children constitute an important reservoir of ESBL producing E. coli. Thus, improvement of hygiene measures mainly in the school environment and rational use of antibiotics would be of great help in preventing selection and diffusion of resistant strains from intestinal microbiota.

  7. Recent advances in the medicinal chemistry of novel erythromycin-derivatized antibiotics.

    PubMed

    Ying, Lu; Tang, Datong

    2010-01-01

    Development of novel erythromycin-based antibiotics has been one of the most studied topics in the past three decades. Such tremendous efforts have generated a number of beneficiary drugs such as clarithromycin, azithromycin and telithromycin. However, widespread application of antibiotics in clinical practice has triggered an increasing emergence of bacterial resistance. Therefore, discovery of novel macrolide antibiotics to suppress the resistance is urgent for human healthcare. This review focuses on advances in the area since 2004.

  8. Putrescine reduces antibiotic-induced oxidative stress as a mechanism of modulation of antibiotic resistance in Burkholderia cenocepacia.

    PubMed

    El-Halfawy, Omar M; Valvano, Miguel A

    2014-07-01

    Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic-resistant bacterium Burkholderia cenocepacia protects less-resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sublethal concentrations of PmB and other bactericidal antibiotics induces reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS, such as superoxide ion and hydrogen peroxide, was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild-type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sublethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine-synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study reveals BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.

  9. Mass spectrometry methods for predicting antibiotic resistance.

    PubMed

    Charretier, Yannick; Schrenzel, Jacques

    2016-10-01

    Developing elaborate techniques for clinical applications can be a complicated process. Whole-cell MALDI-TOF MS revolutionized reliable microorganism identification in clinical microbiology laboratories and is now replacing phenotypic microbial identification. This technique is a generic, accurate, rapid, and cost-effective growth-based method. Antibiotic resistance keeps emerging in environmental and clinical microorganisms, leading to clinical therapeutic challenges, especially for Gram-negative bacteria. Antimicrobial susceptibility testing is used to reliably predict antimicrobial success in treating infection, but it is inherently limited by the need to isolate and grow cultures, delaying the application of appropriate therapies. Antibiotic resistance prediction by growth-independent methods is expected to reduce the turnaround time. Recently, the potential of next-generation sequencing and microarrays in predicting microbial resistance has been demonstrated, and this review evaluates the potential of MS in this field. First, technological advances are described, and the possibility of predicting antibiotic resistance by MS is then illustrated for three prototypical human pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clearly, MS methods can identify antimicrobial resistance mediated by horizontal gene transfers or by mutations that affect the quantity of a gene product, whereas antimicrobial resistance mediated by target mutations remains difficult to detect.

  10. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    PubMed Central

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  11. Antibiotics that target protein synthesis.

    PubMed

    McCoy, Lisa S; Xie, Yun; Tor, Yitzhak

    2011-01-01

    The key role of the bacterial ribosome makes it an important target for antibacterial agents. Indeed, a large number of clinically useful antibiotics target this complex translational ribonucleoprotein machinery. The majority of these compounds, mostly of natural origin, bind to one of the three key ribosomal sites: the decoding (or A-site) on the 30S, the peptidyl transferase center (PTC) on the 50S, and the peptide exit tunnel on the 50S. Antibiotics that bind the A-site, such as the aminoglycosides, interfere with codon recognition and translocation. Peptide bond formation is inhibited when small molecules like oxazolidinones bind at the PTC. Finally, macrolides tend to block the growth of the amino acid chain at the peptide exit tunnel. In this article, the major classes of antibiotics that target the bacterial ribosome are discussed and classified according to their respective target. Notably, most antibiotics solely interact with the RNA components of the bacterial ribosome. The surge seen in the appearance of resistant bacteria has not been met by a parallel development of effective and broad-spectrum new antibiotics, as evident by the introduction of only two novel classes of antibiotics, the oxazolidinones and lipopeptides, in the past decades. Nevertheless, this significant health threat has revitalized the search for new antibacterial agents and novel targets. High resolution structural data of many ribosome-bound antibiotics provide unprecedented insight into their molecular contacts and mode of action and inspire the design and synthesis of new candidate drugs that target this fascinating molecular machine.

  12. Antibiotic consumption at 46 VINCat hospitals from 2007 to 2009, stratified by hospital size and clinical services.

    PubMed

    Grau, Santiago; Fondevilla, Esther; Mojal, Sergi; Palomar, Mercedes; Vallès, Jordi; Gudiol, Francesc

    2012-06-01

    The aim of the study was to assess the evolution of antibiotic consumption in acute care hospitals in Catalonia (population 7.5 million), according to hospital size and department, during the period 2007-2009. The methodology used for monitoring antibiotic consumption was the ATC/DDD system, and the unit of measurement was DDD/100 occupied bed-days (DDD/100 OBD). Hospitals were stratified according to size: I) large university hospitals (with more than 500 beds); II) medium-sized hospitals (between 200 and 500 beds); and III) small hospitals (fewer than 200 beds). The consumption was also analyzed and stratified according to department: medical, surgical and intensive care unit (ICU). Specific training in data management on antibiotic consumption was given to all participant hospitals before the implementation of the program. The mean antibiotic (J01) consumption, calculated in DDD/100 OBD, increased although without statistical significance (p=0.640): 74.68 (2007), 75.13 (2008) and 78.04 (2009). The values of the medians expressed in DDD/100 OBD in group I were 83.27 (in 2007), 82.16 (2008) and 86.93 (2009), in group II 72.60 (2007), 70.78 (2008) and 75.17 (2009) and in group III 65.66 (2007), 69.32 (2008) and 72.39 (2009). Antibiotic consumption was higher in large hospitals than in medium-sized or small hospitals. Catalan hospitals recorded an increase of 4.49% from 2007 to 2009, especially due to the rising use of carbapenems, cephalosporins, monobactams and the other antibiotic groups.

  13. Surveillance and correlation of antibiotic prescription and resistance of Gram-negative bacteria in Singaporean hospitals.

    PubMed

    Hsu, Li-Yang; Tan, Thean-Yen; Tam, Vincent H; Kwa, Andrea; Fisher, Dale Andrew; Koh, Tse-Hsien

    2010-03-01

    A surveillance study was performed in four Singapore public hospitals from 2006 to 2008 to determine the correlation between antibiotic prescription and Gram-negative bacterial antimicrobial resistance. Targeted organisms included ceftriaxone- and ciprofloxacin-resistant Escherichia coli and Klebsiella pneumoniae, as well as imipenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. Antibiotic prescription data were collated in the WHO anatomical therapeutic chemical (ATC)/defined daily dose (DDD) format, while antibiotic resistance was expressed as incidence density adjusted for total inpatient-days every quarter. Individual trends were determined by linear regression, while possible associations between antibiotic prescription and resistance were evaluated via cross-correlation analysis. Results over 3 years indicated significantly rising incidence densities of ceftriaxone- and ciprofloxacin-resistant E. coli and imipenem-resistant Acinetobacter spp. (blood isolates only). Antimicrobial-resistant Klebsiella pneumoniae rates declined. The prescription rates of piperacillin-tazobactam, ertapenem, meropenem, ciprofloxacin, and levofloxacin increased significantly, while imipenem and moxifloxacin prescription decreased. Cross-correlation analysis demonstrated possible associations between prescription of fluoroquinolones and ciprofloxacin-resistant E. coli (R(2) = 0.46), fluoroquinolones and ceftriaxone-resistant E. coli (R(2) = 0.47), and carbapenems and imipenem-resistant Acinetobacter spp. (R(2) = 0.48), all at zero time lag. Changes in meropenem prescription were associated with a similar trend in imipenem-resistant Acinetobacter blood isolates after a 3-month time lag. No correlation was found between cephalosporin use and resistance. In conclusion, our data demonstrated correlation between prescription of and Gram-negative bacterial resistance to several, but not all, key antimicrobial agents in Singapore hospitals. In areas where Gram-negative bacterial

  14. Systemic antibiotic therapy in periodontics

    PubMed Central

    Kapoor, Anoop; Malhotra, Ranjan; Grover, Vishakha; Grover, Deepak

    2012-01-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy. PMID:23559912

  15. Systemic antibiotic therapy in periodontics.

    PubMed

    Kapoor, Anoop; Malhotra, Ranjan; Grover, Vishakha; Grover, Deepak

    2012-09-01

    Systemic antibiotics in conjunction with scaling and root planing (SRP), can offer an additional benefit over SRP alone in the treatment of periodontitis, in terms of clinical attachment loss (CAL) and pocket depth change, and reduced risk of additional CAL loss. However, antibiotics are not innocuous drugs. Their use should be justified on the basis of a clearly established need and should not be substituted for adequate local treatment. The aim of this review is to discuss the rationale, proper selection, dosage and duration for antibiotic therapy so as to optimize the usefulness of drug therapy.

  16. [Strategies to avoid antibiotic resistance].

    PubMed

    Kees, M G

    2013-03-01

    Antibiotics are used very frequently in critically ill patients as a causal and often life-saving treatment; however, the high density of use of broad spectrum antibiotics contributes to a further deterioration in resistance trends, which makes a rational prescription behavior mandatory. This particularly includes measures which lead to the reduction of antibiotic use, i.e. rigorous indications, targeted de-escalation and limited duration. For optimal efficacy of a necessary treatment the integration of pharmacokinetic and pharmacodynamic principles can be helpful.

  17. Validation approach for a fast and simple targeted screening method for 75 antibiotics in meat and aquaculture products using LC-MS/MS.

    PubMed

    Dubreil, Estelle; Gautier, Sophie; Fourmond, Marie-Pierre; Bessiral, Mélaine; Gaugain, Murielle; Verdon, Eric; Pessel, Dominique

    2017-04-01

    An approach is described to validate a fast and simple targeted screening method for antibiotic analysis in meat and aquaculture products by LC-MS/MS. The strategy of validation was applied for a panel of 75 antibiotics belonging to different families, i.e., penicillins, cephalosporins, sulfonamides, macrolides, quinolones and phenicols. The samples were extracted once with acetonitrile, concentrated by evaporation and injected into the LC-MS/MS system. The approach chosen for the validation was based on the Community Reference Laboratory (CRL) guidelines for the validation of screening qualitative methods. The aim of the validation was to prove sufficient sensitivity of the method to detect all the targeted antibiotics at the level of interest, generally the maximum residue limit (MRL). A robustness study was also performed to test the influence of different factors. The validation showed that the method is valid to detect and identify 73 antibiotics of the 75 antibiotics studied in meat and aquaculture products at the validation levels.

  18. Antibiotic Resistance in an Indian Rural Community: A 'One-Health' Observational Study on Commensal Coliform from Humans, Animals, and Water.

    PubMed

    Purohit, Manju Raj; Chandran, Salesh; Shah, Harshada; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-04-06

    Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a 'one-health' approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1-3 years and their environment (animals, drinking water from children's households, common source- and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human (n = 127), animal (n = 21), waste- (n = 12), source- (n = 10), and household drinking water (n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes blaCTX-M-9 and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a 'one-health' approach.

  19. [Sensitivity to beta-lactam and aminoglycoside antibiotics of clinical Proteus strains as dependent upon on their species classification and the source of their isolation].

    PubMed

    Shvidenko, I G

    1987-11-01

    Sensitivity of 130 Proteus clinical strains was studied. Among beta-lactam antibiotics cefotaxime showed marked advantages with respect to various Proteus species. All the isolates of Proteus mirabilis were sensitive to cefuroxime. Cefamezin and cephapirin were inferior by their activity to cefotaxime and cefuroxime. They were characterized by close antibacterial activity and almost complete cross resistance. Ampicillin and carbenicillin proved to be the least efficient among the tested beta-lactam antibiotics. Isolates of Proteus vulgaris and Proteus penneri were more resistant to the penicillins and cephalosporins than the cultures of Proteus mirabilis. Sensitivity of separate Proteus species to gentamicin, tobramycin, sisomicin and amikacin was close. No cross resistance to the aminoglycosides was detected. Studies on the effect of different doses of the antibiotics revealed pronounced heterogeneity of Proteus by the feature of sensitivity to the tested antibiotics. The level of the heterogeneity was not the same for separate antibiotics. Cultures of Proteus mirabilis resistant to ampicillin, carbenicillin, cefamezin and cephapirin were more frequent in patients with urogenital infections as compared to patients with intestinal infections and suppurative-inflammatory processes of other localization.

  20. Public Knowledge, Attitudes, and Experience Regarding the Use of Antibiotics in Italy

    PubMed Central

    Napolitano, Francesco; Izzo, Maria Teresa; Di Giuseppe, Gabriella; Angelillo, Italo F.

    2013-01-01

    Background The objectives of the study were to investigate the level of knowledge, attitudes, and behaviors regarding antibiotics of the general population in Italy, and to assess the correlates of these outcomes of interest. Methods A cross-sectional survey was conducted on a random sample of 630 parents of students attending nine randomly selected public primary and secondary schools. A self-administered questionnaire included questions on demographic characteristics, knowledge about antibiotic use and resistance, attitudes and behaviors towards antibiotic use, and sources of information. Results A total of 419 parents participated. Only 9.8% knew the definition of antibiotic resistance and 21.2% knew when it was appropriate to use antibiotics. Respondents with higher education, employed, with a family member working in the health care sector, and with no need for additional information on antibiotics were more likely to know the definition of antibiotic resistance. One third (32.7%) self-classified them as users of self-medication with antibiotics and those with a lower self-rated health status, who did not use the physician as source of information on antibiotics, and who have attended a physician in the last year were more likely to use self-medication. One-fourth (22.7%) of those who had never been self-medicated would be willing to take an antibiotic without a prescription of a physician. Respondents were more likely to be willing to take antibiotics without a prescription if they were under 40 years of age, if they had a lower self-rated health status, if they did not know that antibiotics are not indicated for treating flu and sore throat, and if they knew that antibiotics are not indicated for treating colds. Conclusions The survey has generated information about knowledge, attitudes, and behaviors regarding antibiotics in the general population and effective public education initiative should provide practical and appropriate means to change their

  1. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  2. Influence of Therapeutic Ceftiofur Treatments of Feedlot Cattle on Fecal and Hide Prevalences of Commensal Escherichia coli Resistant to Expanded-Spectrum Cephalosporins, and Molecular Characterization of Resistant Isolates

    PubMed Central

    Griffin, Dee; Kuehn, Larry A.; Brichta-Harhay, Dayna M.

    2013-01-01

    In the United States, the blaCMY-2 gene contained within incompatibility type A/C (IncA/C) plasmids is frequently identified in extended-spectrum-cephalosporin-resistant (ESCr) Escherichia coli strains from both human and cattle sources. Concerns have been raised that therapeutic use of ceftiofur in cattle may increase the prevalence of ESCr E. coli. We report that herd ESCr E. coli fecal and hide prevalences throughout the residency of cattle at a feedlot, including during the period of greatest ceftiofur use at the feedlot, were either not significantly different (P ≥ 0.05) or significantly less (P < 0.05) than the respective prevalences at arrival. Longitudinal sampling of cattle treated with ceftiofur demonstrated that once the transient increase of ESCr E. coli shedding that follows ceftiofur injection abated, ceftiofur-injected cattle were no more likely than untreated members of the same herd to shed ESCr E. coli. Pulsed-field gel electrophoresis (PFGE) genotyping, antibiotic resistance phenotyping, screening for presence of the blaCMY-2 gene, and plasmid replicon typing were performed on 312 ESCr E. coli isolates obtained during six sampling periods spanning the 10-month residence of cattle at the feedlot. The identification of only 26 unique PFGE genotypes, 12 of which were isolated during multiple sampling periods, suggests that clonal expansion of feedlot-adapted blaCMY-2 E. coli strains contributed more to the persistence of blaCMY-2 than horizontal transfer of IncA/C plasmids between E. coli strains at this feedlot. We conclude that therapeutic use of ceftiofur at this cattle feedlot did not significantly increase the herd prevalence of ESCr E. coli. PMID:23354706

  3. Antibiotic Cycling and Antibiotic Mixing: Which One Best Mitigates Antibiotic Resistance?

    PubMed

    Beardmore, Robert Eric; Peña-Miller, Rafael; Gori, Fabio; Iredell, Jonathan

    2017-04-01

    Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are known as "antibiotic cycling" and "antibiotic mixing." However, the accumulated data from clinical trials, now approaching 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to "cycle" between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic.

  4. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotic resistance has developed into a worldwide health risk. The nature and extent of the contribution of animal agriculture to the evolution of antibiotic resistance in bacterial communities remains unclear. Using quantitative polymerase chain reaction (PCR) in tandem with next-generation sequ...

  5. Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India).

    PubMed

    Mutiyar, Pravin K; Mittal, Atul K

    2014-01-01

    Antibiotics consumption has increased worldwide, and their residues are frequently reported in aquatic environments. It is believed that antibiotics reach aquatic water bodies through sewage. Medicine consumed for healthcare practices are often released into sewage, and after sewage treatment plant, it reaches the receiving water bodies of lakes or rivers. In the present study, we determined the fate of some commonly used antibiotics in a sewage treatment plant (STP) located in Delhi and the environmental concentration of these antibiotics in the Yamuna River, which receives the sewage and industrial effluent of Delhi. There are many reports on antibiotics occurrences in STP and river water worldwide, but monitoring data from the Indian subcontinent is sparse. Samples were taken from a STP and from six sampling sites on the Yamuna River. Several antibiotics were tested for using offline solid-phase extraction followed by high-performance liquid chromatography equipped with photodiode array analysis. Recoveries varied from 25.5-108.8 %. Ampicillin had the maximum concentration in wastewater influents (104.2 ± 98.11 μg l(-1)) and effluents (12.68 ± 8.38 μg l(-1)). The fluoroquinolones and cephalosporins had the lower concentrations. Treatment efficiencies varied between 55 and 99 %. Significant amounts of antibiotics were discharged in effluents and were detected in the receiving water body. The concentration of antibiotics in the Yamuna River varied from not detected to 13.75 μg l(-1) (ampicillin) for the compounds investigated.

  6. The Double Life of Antibiotics

    PubMed Central

    Yap, Mee-Ngan F.

    2013-01-01

    Antibiotic resistance is a persistent health care problem worldwide. Evidence for the negative consequences of subtherapeutic feeding in livestock production has been mounting while the antibiotic pipeline is drying up. In recent years, there has been a paradigm shift in our perception of antibiotics. Apart from its roles in self-defense, antibiotics also serve as inter-microbial signaling molecules, regulators of gene expression, microbial food sources, and as mediators of host immune response. “The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily under-dose himself and by exposing his microbes to nonlethal quantities of the drug make them resistant.”~Alexander Fleming PMID:24003650

  7. Multiscale Models of Antibiotic Probiotics

    PubMed Central

    Kaznessis, Yiannis N.

    2014-01-01

    The discovery of antibiotics is one of the most important advances in the history of humankind. For eighty years human life expectancy and standards of living improved greatly thanks to antibiotics. But bacteria have been fighting back, developing resistance to our most potent molecules. New, alternative strategies must be explored as antibiotic therapies become obsolete because of bacterial resistance. Mathematical models and simulations guide the development of complex technologies, such as aircrafts, bridges, communication systems and transportation systems. Herein, models are discussed that guide the development of new antibiotic technologies. These models span multiple molecular and cellular scales, and facilitate the development of a technology that addresses a significant societal challenge. We argue that simulations can be a creative source of knowledge. PMID:25313349

  8. β-Lactam Antibiotics Renaissance

    PubMed Central

    Qin, Wenling; Panunzio, Mauro; Biondi, Stefano

    2014-01-01

    Since the 1940s β-lactam antibiotics have been used to treat bacterial infections. However, emergence and dissemination of β-lactam resistance has reached the point where many marketed β-lactams no longer are clinically effective. The increasing prevalence of multidrug-resistant bacteria and the progressive withdrawal of pharmaceutical companies from antibiotic research have evoked a strong reaction from health authorities, who have implemented initiatives to encourage the discovery of new antibacterials. Despite this gloomy scenario, several novel β-lactam antibiotics and β-lactamase inhibitors have recently progressed into clinical trials, and many more such compounds are being investigated. Here we seek to provide highlights of recent developments relating to the discovery of novel β-lactam antibiotics and β-lactamase inhibitors. PMID:27025744

  9. Community-Onset Escherichia coli Infection Resistant to Expanded-Spectrum Cephalosporins in Low-Prevalence Countries

    PubMed Central

    Ingram, Paul R.; Runnegar, Naomi; Pitman, Matthew C.; Freeman, Joshua T.; Athan, Eugene; Havers, Sally M.; Sidjabat, Hanna E.; Jones, Mark; Gunning, Earleen; De Almeida, Mary; Styles, Kaylene; Paterson, David L.

    2014-01-01

    By global standards, the prevalence of community-onset expanded-spectrum-cephalosporin-resistant (ESC-R) Escherichia coli remains low in Australia and New Zealand. Of concern, our countries are in a unique position, with high extramural resistance pressure from close population and trade links to Asia-Pacific neighbors with high ESC-R E. coli rates. We aimed to characterize the risks and dynamics of community-onset ESC-R E. coli infection in our low-prevalence region. A case-control methodology was used. Patients with ESC-R E. coli or ESC-susceptible E. coli isolated from blood or urine were recruited at six geographically dispersed tertiary care hospitals in Australia and New Zealand. Epidemiological data were prospectively collected, and bacteria were retained for analysis. In total, 182 patients (91 cases and 91 controls) were recruited. Multivariate logistic regression identified risk factors for ESC-R among E. coli strains, including birth on the Indian subcontinent (odds ratio [OR] = 11.13, 95% confidence interval [95% CI] = 2.17 to 56.98, P = 0.003), urinary tract infection in the past year (per-infection OR = 1.430, 95% CI = 1.13 to 1.82, P = 0.003), travel to southeast Asia, China, the Indian subcontinent, Africa, and the Middle East (OR = 3.089, 95% CI = 1.29 to 7.38, P = 0.011), prior exposure to trimethoprim with or without sulfamethoxazole and with or without an expanded-spectrum cephalosporin (OR = 3.665, 95% CI = 1.30 to 10.35, P = 0.014), and health care exposure in the previous 6 months (OR = 3.16, 95% CI = 1.54 to 6.46, P = 0.02). Among our ESC-R E. coli strains, the blaCTX-M ESBLs were dominant (83% of ESC-R E. coli strains), and the worldwide pandemic ST-131 clone was frequent (45% of ESC-R E. coli strains). In our low-prevalence setting, ESC-R among community-onset E. coli strains may be associated with both “export” from health care facilities into the community and direct “import” into the community from high-prevalence regions. PMID

  10. A Descriptive Study of Open Fractures Contaminated by Seawater: Infection, Pathogens, and Antibiotic Resistance

    PubMed Central

    Zhu, Hongyi

    2017-01-01

    Aims. In this work, the main objectives were to investigate the clinical characteristics and bacterial spectrum present in open fractures contaminated by seawater. Methods. We conducted a retrospective cohort study and included all patients with open fractures from 1st January, 2012, to 31st December, 2015, in our hospital. Patients were grouped based on the presence of seawater contamination in wounds. We compared the infection rate, bacterial spectrum, and antibiotic resistance between the two groups. Results. We totally included 1337 cases of open fracture. Wounds from 107 cases (8.0%) were contaminated by seawater. The wound infection rate of seawater-contaminated group was significantly higher in patients with Gustilo-Anderson Type II and Type III open fractures. The bacterial spectrum from seawater-contaminated wounds was remarkably different from that of the remaining. Antibiotic sensitivity tests revealed that more than 90% of infecting pathogens in seawater-contaminated wounds were sensitive to levofloxacin and ciprofloxacin. Conclusion. Cephalosporin in combination with quinolone was recommended in the early-stage management of open fractures contaminated by seawater. PMID:28303249

  11. Antibiotic Consumption During a 4-year Period in a Community Hospital with an Antimicrobial Stewardship Program

    PubMed Central

    Garcell, Humberto Guanche; Arias, Ariadna Villanueva; Fernandez, Eliezer Alemán; Guerrero, Yaquelín Batista; Serrano, Ramon N. Alfonso

    2016-01-01

    Objectives We sought to evaluate the trend of antibiotic consumption in patients admitted to a community hospital in Qatar with an antimicrobial stewardship program. Methods This observational study was carried out in a 75-bed facility in Western Qatar over a 4-year period (2012–2015). The monitoring of antimicrobial consumption from inpatient wards was performed from the pharmacy records and presented as defined daily dose (DDD) divided by the patient days and expressed as 100 bed-days (DBD). Results The consumption of antimicrobials in 2012 was 171.3 DBD, and increased to 252.7 DBD in 2013, 229.1 DBD in 2014, and 184.7 DBD in 2015. Cephalosporins use reduced from 98.2 DBD in 2013 to 51.5 DBD in 2015 while the consumption of penicillins increased during the beginning of 2014 with a slight decrease in 2015. Carbapenems consumption during 2014–2015 was lower than previous years, and vice-versa for aminoglycosides. Fluoroquinolones had a sustained increase with 37.1% increased consumption in 2015 compared to the two previous years. There was an increase in the use of intravenous (IV) (108.5%) and oral azithromycin (55.1%) and the use of oral (152.8%) and IV moxifloxacin (22.9%). Conclusions We observed a decrease in antibiotic use in patients admitted to a community hospital with an antimicrobial stewardship program, but the increase in fluoroquinolones consumption is a concern that requires focused strategies. PMID:27602189

  12. A Descriptive Study of Open Fractures Contaminated by Seawater: Infection, Pathogens, and Antibiotic Resistance.

    PubMed

    Zhu, Hongyi; Li, Xingwei; Zheng, Xianyou

    2017-01-01

    Aims. In this work, the main objectives were to investigate the clinical characteristics and bacterial spectrum present in open fractures contaminated by seawater. Methods. We conducted a retrospective cohort study and included all patients with open fractures from 1st January, 2012, to 31st December, 2015, in our hospital. Patients were grouped based on the presence of seawater contamination in wounds. We compared the infection rate, bacterial spectrum, and antibiotic resistance between the two groups. Results. We totally included 1337 cases of open fracture. Wounds from 107 cases (8.0%) were contaminated by seawater. The wound infection rate of seawater-contaminated group was significantly higher in patients with Gustilo-Anderson Type II and Type III open fractures. The bacterial spectrum from seawater-contaminated wounds was remarkably different from that of the remaining. Antibiotic sensitivity tests revealed that more than 90% of infecting pathogens in seawater-contaminated wounds were sensitive to levofloxacin and ciprofloxacin. Conclusion. Cephalosporin in combination with quinolone was recommended in the early-stage management of open fractures contaminated by seawater.

  13. Antibiotic-Resistant Klebsiella pneumoniae and Escherichia coli High-Risk Clones and an IncFIIk Mosaic Plasmid Hosting Tn1 (blaTEM-4) in Isolates from 1990 to 2004

    PubMed Central

    Rodríguez, Irene; Novais, Ângela; Lira, Felipe; Valverde, Aránzazu; Curião, Tânia; Martínez, José Luis; Baquero, Fernando; Cantón, Rafael

    2015-01-01