ERIC Educational Resources Information Center
Kapur, Manu
2018-01-01
The goal of this paper is to isolate the preparatory effects of problem-generation from solution generation in problem-posing contexts, and their underlying mechanisms on learning from instruction. Using a randomized-controlled design, students were assigned to one of two conditions: (a) problem-posing with solution generation, where they…
Feedback laws for fuel minimization for transport aircraft
NASA Technical Reports Server (NTRS)
Price, D. B.; Gracey, C.
1984-01-01
The Theoretical Mechanics Branch has as one of its long-range goals to work toward solving real-time trajectory optimization problems on board an aircraft. This is a generic problem that has application to all aspects of aviation from general aviation through commercial to military. Overall interest is in the generic problem, but specific problems to achieve concrete results are examined. The problem is to develop control laws that generate approximately optimal trajectories with respect to some criteria such as minimum time, minimum fuel, or some combination of the two. These laws must be simple enough to be implemented on a computer that is flown on board an aircraft, which implies a major simplification from the two point boundary value problem generated by a standard trajectory optimization problem. In addition, the control laws allow for changes in end conditions during the flight, and changes in weather along a planned flight path. Therefore, a feedback control law that generates commands based on the current state rather than a precomputed open-loop control law is desired. This requirement, along with the need for order reduction, argues for the application of singular perturbation techniques.
A Study on the Control of Third Generation Spacecraft
NASA Technical Reports Server (NTRS)
Davison, E. J.; Gesing, W.
1985-01-01
An overview of some studies which have recently been carried out on the control of third generation spcecraft, as modelled by the MSAT space vehicle configuration, is made. This spacecraft is highly nonsymmetrical and has appendages which cannot in general be assumed to be rigid. In particular, it is desired to design a controller for MSAT which stabilizes the system and satisfies certain attitude control, shape control, and possibly stationkeeping requirements; in addition, it is desired that the resultant controller should be robust and avoid any undesirable spill over effects. In addition, the controller obtained should have minimum complexity. The method of solution adopted to solve this class of problems is to formulate the problem as a robust servomechanism problem, and thence to obtain existence conditions and a controller characterization to solve the problem. The final controller obtained for MSAT has a distributed control configuration and appears to be quite satisfactory.
Simulation-Based Rule Generation Considering Readability
Yahagi, H.; Shimizu, S.; Ogata, T.; Hara, T.; Ota, J.
2015-01-01
Rule generation method is proposed for an aircraft control problem in an airport. Designing appropriate rules for motion coordination of taxiing aircraft in the airport is important, which is conducted by ground control. However, previous studies did not consider readability of rules, which is important because it should be operated and maintained by humans. Therefore, in this study, using the indicator of readability, we propose a method of rule generation based on parallel algorithm discovery and orchestration (PADO). By applying our proposed method to the aircraft control problem, the proposed algorithm can generate more readable and more robust rules and is found to be superior to previous methods. PMID:27347501
A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles
1994-05-02
AD-A282 787 " A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles Alonzo Kelly CMU-RI-TR-94-17 The Robotics...follow, or a direction to prefer, it cannot generate its own strategic goals. Therefore, it solves the local planning problem for autonomous vehicles . The... autonomous vehicles . It is intelligent because it uses range images that are generated from either a laser rangefinder or a stereo triangulation
Optimal Control of Distributed Energy Resources using Model Predictive Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.
2012-07-22
In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizingmore » costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.« less
JFK airport ground control recommendations.
DOT National Transportation Integrated Search
1971-11-01
The object of this effort was to generate a detailed recommendation on what to do about the JFK Airport Ground Traffic Control Problem, including a review of STRACS, a Surface Traffic Control System. Problem areas were identified by direct observatio...
Ishihara, Koji; Morimoto, Jun
2018-03-01
Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
The terminal area automated path generation problem
NASA Technical Reports Server (NTRS)
Hsin, C.-C.
1977-01-01
The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.
Finite element solution of optimal control problems with state-control inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1992-01-01
It is demonstrated that the weak Hamiltonian finite-element formulation is amenable to the solution of optimal control problems with inequality constraints which are functions of both state and control variables. Difficult problems can be treated on account of the ease with which algebraic equations can be generated before having to specify the problem. These equations yield very accurate solutions. Owing to the sparse structure of the resulting Jacobian, computer solutions can be obtained quickly when the sparsity is exploited.
NASA Astrophysics Data System (ADS)
Alemadi, Nasser Ahmed
Deregulation has brought opportunities for increasing efficiency of production and delivery and reduced costs to customers. Deregulation has also bought great challenges to provide the reliability and security customers have come to expect and demand from the electrical delivery system. One of the challenges in the deregulated power system is voltage instability. Voltage instability has become the principal constraint on power system operation for many utilities. Voltage instability is a unique problem because it can produce an uncontrollable, cascading instability that results in blackout for a large region or an entire country. In this work we define a system of advanced analytical methods and tools for secure and efficient operation of the power system in the deregulated environment. The work consists of two modules; (a) contingency selection module and (b) a Security Constrained Optimization module. The contingency selection module to be used for voltage instability is the Voltage Stability Security Assessment and Diagnosis (VSSAD). VSSAD shows that each voltage control area and its reactive reserve basin describe a subsystem or agent that has a unique voltage instability problem. VSSAD identifies each such agent. VS SAD is to assess proximity to voltage instability for each agent and rank voltage instability agents for each contingency simulated. Contingency selection and ranking for each agent is also performed. Diagnosis of where, why, when, and what can be done to cure voltage instability for each equipment outage and transaction change combination that has no load flow solution is also performed. A security constrained optimization module developed solves a minimum control solvability problem. A minimum control solvability problem obtains the reactive reserves through action of voltage control devices that VSSAD determines are needed in each agent to obtain solution of the load flow. VSSAD makes a physically impossible recommendation of adding reactive generation capability to specific generators to allow a load flow solution to be obtained. The minimum control solvability problem can also obtain solution of the load flow without curtailing transactions that shed load and generation as recommended by VSSAD. A minimum control solvability problem will be implemented as a corrective control, that will achieve the above objectives by using minimum control changes. The control includes; (1) voltage setpoint on generator bus voltage terminals; (2) under load tap changer tap positions and switchable shunt capacitors; and (3) active generation at generator buses. The minimum control solvability problem uses the VSSAD recommendation to obtain the feasible stable starting point but completely eliminates the impossible or onerous recommendation made by VSSAD. This thesis reviews the capabilities of Voltage Stability Security Assessment and Diagnosis and how it can be used to implement a contingency selection module for the Open Access System Dispatch (OASYDIS). The OASYDIS will also use the corrective control computed by Security Constrained Dispatch. The corrective control would be computed off line and stored for each contingency that produces voltage instability. The control is triggered and implemented to correct the voltage instability in the agent experiencing voltage instability only after the equipment outage or operating changes predicted to produce voltage instability have occurred. The advantages and the requirements to implement the corrective control are also discussed.
Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System
NASA Astrophysics Data System (ADS)
Bhende, C. N.; Kalam, A.; Malla, S. G.
2016-04-01
Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.
Model Predictive Control-based Optimal Coordination of Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming
2013-01-07
Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less
Model Predictive Control-based Optimal Coordination of Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming
2013-04-03
Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive controlmore » (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.« less
Neuromorphic walking gait control.
Still, Susanne; Hepp, Klaus; Douglas, Rodney J
2006-03-01
We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.
Slaug, Björn; Nilsson, Maria H; Iwarsson, Susanne
2013-12-01
To investigate differences and similarities in person-environment (P-E) fit problems between very old people with self-reported Parkinson's disease (PD) and matched controls. Data collected for the cross-national ENABLE-AGE Survey Study were used to identify people with self-reported PD (n = 20), and to select three matched controls per individual (n = 60). The matching criteria were age (mean = 82 years), sex, country, and type of housing. The data analysis targeted P-E fit (i.e. accessibility) problems, including studying the personal and environmental components separately. The personal component was analyzed in terms of functional limitations, and the environmental component in terms of physical environmental barriers. In comparison to the matched controls, the participants with PD had more functional limitations, used more mobility devices and were subjected to more P-E fit problems, though the number of environmental barriers did not differ from the controls. In the PD sample, P-E fit problems were significantly stronger associated with poor balance and incoordination, and the environmental barriers that generated the most severe P-E fit problems were more often located to the exterior surroundings of the housing compared to the controls. The novel contribution of this explorative study is the demonstration of the type of knowledge that can be generated by unfolding and comparing the composition of P-E fit (accessibility) problems among people with self-reported PD as compared with matched controls. The knowledge thereby generated can be used to develop more targeted rehabilitation approaches, efficient housing adaptation services and societal planning for people with neurodegenerative disorders.
How to Integrate Variable Power Source into a Power Grid
NASA Astrophysics Data System (ADS)
Asano, Hiroshi
This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
Seminar on Understanding Digital Control and Analysis in Vibration Test Systems, part 2
NASA Technical Reports Server (NTRS)
1975-01-01
A number of techniques for dealing with important technical aspects of the random vibration control problem are described. These include the generation of pseudo-random and true random noise, the control spectrum estimation problem, the accuracy/speed tradeoff, and control correction strategies. System hardware, the operator-system interface, safety features, and operational capabilities of sophisticated digital random vibration control systems are also discussed.
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
Lee, Leng-Feng; Umberger, Brian R
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1-2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility.
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
Lee, Leng-Feng
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility. PMID:26835184
NASA Astrophysics Data System (ADS)
Cao, Zhengcai; Yin, Longjie; Fu, Yili
2013-01-01
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
Landfill gas control at military installations. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, R.A.; Renta-Babb, A.; Bandy, J.T.
1984-01-01
This report provides information useful to Army personnel responsible for recognizing and solving potential problems from gas generated by landfills. Information is provided on recognizing and gauging the magnitude of landfill gas problems; selecting appropriate gas control strategies, procedures, and equipment; use of computer modeling to predict gas production and migration and the success of gas control devices; and safety considerations.
Discrete optimal control approach to a four-dimensional guidance problem near terminal areas
NASA Technical Reports Server (NTRS)
Nagarajan, N.
1974-01-01
Description of a computer-oriented technique to generate the necessary control inputs to guide an aircraft in a given time from a given initial state to a prescribed final state subject to the constraints on airspeed, acceleration, and pitch and bank angles of the aircraft. A discrete-time mathematical model requiring five state variables and three control variables is obtained, assuming steady wind and zero sideslip. The guidance problem is posed as a discrete nonlinear optimal control problem with a cost functional of Bolza form. A solution technique for the control problem is investigated, and numerical examples are presented. It is believed that this approach should prove to be useful in automated air traffic control schemes near large terminal areas.
A Summary of Some Discrete-Event System Control Problems
NASA Astrophysics Data System (ADS)
Rudie, Karen
A summary of the area of control of discrete-event systems is given. In this research area, automata and formal language theory is used as a tool to model physical problems that arise in technological and industrial systems. The key ingredients to discrete-event control problems are a process that can be modeled by an automaton, events in that process that cannot be disabled or prevented from occurring, and a controlling agent that manipulates the events that can be disabled to guarantee that the process under control either generates all the strings in some prescribed language or as many strings as possible in some prescribed language. When multiple controlling agents act on a process, decentralized control problems arise. In decentralized discrete-event systems, it is presumed that the agents effecting control cannot each see all event occurrences. Partial observation leads to some problems that cannot be solved in polynomial time and some others that are not even decidable.
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less
Worry and problem-solving skills and beliefs in primary school children.
Parkinson, Monika; Creswell, Cathy
2011-03-01
To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.
Automatic Generation Control Study in Two Area Reheat Thermal Power System
NASA Astrophysics Data System (ADS)
Pritam, Anita; Sahu, Sibakanta; Rout, Sushil Dev; Ganthia, Sibani; Prasad Ganthia, Bibhu
2017-08-01
Due to industrial pollution our living environment destroyed. An electric grid system has may vital equipment like generator, motor, transformers and loads. There is always be an imbalance between sending end and receiving end system which cause system unstable. So this error and fault causing problem should be solved and corrected as soon as possible else it creates faults and system error and fall of efficiency of the whole power system. The main problem developed from this fault is deviation of frequency cause instability to the power system and may cause permanent damage to the system. Therefore this mechanism studied in this paper make the system stable and balance by regulating frequency at both sending and receiving end power system using automatic generation control using various controllers taking a two area reheat thermal power system into account.
Intelligent and robust optimization frameworks for smart grids
NASA Astrophysics Data System (ADS)
Dhansri, Naren Reddy
A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.
Feedback Implementation of Zermelo's Optimal Control by Sugeno Approximation
NASA Technical Reports Server (NTRS)
Clifton, C.; Homaifax, A.; Bikdash, M.
1997-01-01
This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our methodology does not require solving two-point boundary value problems online and may not require it off-line either. The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories. We compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law when applied to Zermelo's ship steering problem.
Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Kim, Chunghun; Chung, Chung Choo
This paper proposes a coordinated control of wind turbine and energy storage system (ESS). Because wind power (WP) is highly dependent on variable wind speed and could induce a severe stability problem to power system especially when the WP has high penetration level. To solve this problem, many power generation corporations or grid operators recently use the ESS. It has very quick response and good performance for reducing the impact of WP fluctuation but has high cost for its installation. Therefore, it is very important to design the control algorithm considering both ESS capacity and grid reliability. Thus, we proposemore » the control algorithm to mitigate the WP fluctuation by using the coordinated control between wind turbine and ESS considering ESS state of charge (SoC) and the WP fluctuation. From deloaded control according to WP fluctuation and ESS SoC management, we can expect the ESS lifespan expansion and improved grid reliability. The effectiveness of the proposed method is validated in MATLAB/Simulink considering power system including both wind turbine generator and conventional generators which react to system frequency deviation.« less
NASA Technical Reports Server (NTRS)
Dywer, T. A. W., III; Lee, G. K. F.
1984-01-01
In connection with the current interest in agile spacecraft maneuvers, it has become necessary to consider the nonlinear coupling effects of multiaxial rotation in the treatment of command generation and tracking problems. Multiaxial maneuvers will be required in military missions involving a fast acquisition of moving targets in space. In addition, such maneuvers are also needed for the efficient operation of robot manipulators. Attention is given to details regarding the direct nonlinear command generation and tracking, an approach which has been successfully applied to the design of control systems for V/STOL aircraft, linearizing transformations for spacecraft controlled with external thrusters, the case of flexible spacecraft dynamics, examples from robot dynamics, and problems of implementation and testing.
Numerical solutions of a control problem governed by functional differential equations
NASA Technical Reports Server (NTRS)
Banks, H. T.; Thrift, P. R.; Burns, J. A.; Cliff, E. M.
1978-01-01
A numerical procedure is proposed for solving optimal control problems governed by linear retarded functional differential equations. The procedure is based on the idea of 'averaging approximations', due to Banks and Burns (1975). For illustration, numerical results generated on an IBM 370/158 computer, which demonstrate the rapid convergence of the method are presented.
Control theory and splines, applied to signature storage
NASA Technical Reports Server (NTRS)
Enqvist, Per
1994-01-01
In this report the problem we are going to study is the interpolation of a set of points in the plane with the use of control theory. We will discover how different systems generate different kinds of splines, cubic and exponential, and investigate the effect that the different systems have on the tracking problems. Actually we will see that the important parameters will be the two eigenvalues of the control matrix.
Coordinated control of micro-grid based on distributed moving horizon control.
Ma, Miaomiao; Shao, Liyang; Liu, Xiangjie
2018-05-01
This paper proposed the distributed moving horizon coordinated control scheme for the power balance and economic dispatch problems of micro-grid based on distributed generation. We design the power coordinated controller for each subsystem via moving horizon control by minimizing a suitable objective function. The objective function of distributed moving horizon coordinated controller is chosen based on the principle that wind power subsystem has the priority to generate electricity while photovoltaic power generation coordinates with wind power subsystem and the battery is only activated to meet the load demand when necessary. The simulation results illustrate that the proposed distributed moving horizon coordinated controller can allocate the output power of two generation subsystems reasonably under varying environment conditions, which not only can satisfy the load demand but also limit excessive fluctuations of output power to protect the power generation equipment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1975-01-01
NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.
An architectural approach to create self organizing control systems for practical autonomous robots
NASA Technical Reports Server (NTRS)
Greiner, Helen
1991-01-01
For practical industrial applications, the development of trainable robots is an important and immediate objective. Therefore, the developing of flexible intelligence directly applicable to training is emphasized. It is generally agreed upon by the AI community that the fusion of expert systems, neural networks, and conventionally programmed modules (e.g., a trajectory generator) is promising in the quest for autonomous robotic intelligence. Autonomous robot development is hindered by integration and architectural problems. Some obstacles towards the construction of more general robot control systems are as follows: (1) Growth problem; (2) Software generation; (3) Interaction with environment; (4) Reliability; and (5) Resource limitation. Neural networks can be successfully applied to some of these problems. However, current implementations of neural networks are hampered by the resource limitation problem and must be trained extensively to produce computationally accurate output. A generalization of conventional neural nets is proposed, and an architecture is offered in an attempt to address the above problems.
Perceptual support promotes strategy generation: Evidence from equation solving.
Alibali, Martha W; Crooks, Noelle M; McNeil, Nicole M
2017-08-30
Over time, children shift from using less optimal strategies for solving mathematics problems to using better ones. But why do children generate new strategies? We argue that they do so when they begin to encode problems more accurately; therefore, we hypothesized that perceptual support for correct encoding would foster strategy generation. Fourth-grade students solved mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __) in a pre-test. They were then randomly assigned to one of three perceptual support conditions or to a Control condition. Participants in all conditions completed three mathematical equivalence problems with feedback about correctness. Participants in the experimental conditions received perceptual support (i.e., highlighting in red ink) for accurately encoding the equal sign, the right side of the equation, or the numbers that could be added to obtain the correct solution. Following this intervention, participants completed a problem-solving post-test. Among participants who solved the problems incorrectly at pre-test, those who received perceptual support for correctly encoding the equal sign were more likely to generate new, correct strategies for solving the problems than were those who received feedback only. Thus, perceptual support for accurate encoding of a key problem feature promoted generation of new, correct strategies. Statement of Contribution What is already known on this subject? With age and experience, children shift to using more effective strategies for solving math problems. Problem encoding also improves with age and experience. What the present study adds? Support for encoding the equal sign led children to generate correct strategies for solving equations. Improvements in problem encoding are one source of new strategies. © 2017 The British Psychological Society.
Studies in the Human Use of Controlled English
2015-12-01
Controlled English (CE) is intended to aid human problem solving processes when analysing data and generating high-value conclusions in collaboration...state of affairs. The second approach is to guide a user face-to-face to formulate free English sentences into CE to solve a logic problem. The paper describes both approaches and provides an informal analysis of the results to date.
Numerical Recovering of a Speed of Sound by the BC-Method in 3D
NASA Astrophysics Data System (ADS)
Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr
We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.
NASA Astrophysics Data System (ADS)
Masuta, Taisuke; Shimizu, Koichiro; Yokoyama, Akihiko
In Japan, from the viewpoints of global warming countermeasures and energy security, it is expected to establish a smart grid as a power system into which a large amount of generation from renewable energy sources such as wind power generation and photovoltaic generation can be installed. Measures for the power system stability and reliability are necessary because a large integration of these renewable energy sources causes some problems in power systems, e.g. frequency fluctuation and distribution voltage rise, and Battery Energy Storage System (BESS) is one of effective solutions to these problems. Due to a high cost of the BESS, our research group has studied an application of controllable loads such as Heat Pump Water Heater (HPWH) and Electric Vehicle (EV) to the power system control for reduction of the required capacity of BESS. This paper proposes a new coordinated Load Frequency Control (LFC) method for the conventional power plants, the BESS, the HPWHs, and the EVs. The performance of the proposed LFC method is evaluated by the numerical simulations conducted on a power system model with a large integration of wind power generation and photovoltaic generation.
ERIC Educational Resources Information Center
Cassotti, Mathieu; Agogué, Marine; Camarda, Anaëlle; Houdé, Olivier; Borst, Grégoire
2016-01-01
Developmental cognitive neuroscience studies tend to show that the prefrontal brain regions (known to be involved in inhibitory control) are activated during the generation of creative ideas. In the present article, we discuss how a dual-process model of creativity--much like the ones proposed to account for decision making and reasoning--could…
NASA Astrophysics Data System (ADS)
Nayar, Priya; Singh, Bhim; Mishra, Sukumar
2017-08-01
An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.
Overview of Krylov subspace methods with applications to control problems
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
An overview of projection methods based on Krylov subspaces are given with emphasis on their application to solving matrix equations that arise in control problems. The main idea of Krylov subspace methods is to generate a basis of the Krylov subspace Span and seek an approximate solution the the original problem from this subspace. Thus, the original matrix problem of size N is approximated by one of dimension m typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now just becoming popular for solving nonlinear equations. It is shown how they can be used to solve partial pole placement problems, Sylvester's equation, and Lyapunov's equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krogh, B.; Chow, J.H.; Javid, H.S.
1983-05-01
A multi-stage formulation of the problem of scheduling generation, load shedding and short term transmission capacity for the alleviation of a viability emergency is presented. The formulation includes generation rate of change constraints, a linear network solution, and a model of the short term thermal overload capacity of transmission lines. The concept of rotating transmission line overloads for emergency state control is developed. The ideas are illustrated by a numerical example.
[Approaches and problems in vaccine development against leishmaniasis].
Allahverdiyev, Adil; Bağirova, Melahat; Cakir Koç, Rabia; Oztel, Olga Nehir; Elçıçek, Serhat; Ateş, Sezen Canım; Karaca, Tuğçe Deniz
2010-01-01
Leishmaniasis is a major public health problem of the world and Turkey. Recently there has been increasing interest in vaccine studies among strategies for control of leishmaniasis. Recently the increase of interest in vaccine studies among leishmaniasis control strategies makes the subject more up to date. So the aim of this review is to present information about recent vaccine studies, problems and new strategies for vaccine development studies. There are 3 generations of vaccine against leishmaniasis. First-generation vaccines are killed or live attenuated parasites; second-generation vaccines are recombinant or native antigens and live genetically modified parasites (knock out and suicidal cassettes), third generation vaccines are DNA vaccines. Also vector salivary proteins, dendritic cells and non-pathogenic L. tarentolae have been used as vaccine candidates. However there is still no effective vaccine against leishmaniasis. Since polymer conjugates considerably increase immunogenicity, polymer based vaccine studies have gained importance in recent years. However, there has not been such a study for an antileishmanial vaccine yet. LPG, surface antigen of Leishmania promastigotes, and polymer conjugates may be promising in antileishmanial vaccine studies so we are carrying out a TUBITAK Project on this subject which has been given the number, 1085170SBAG-4007.
DOT National Transportation Integrated Search
1971-06-01
An analysis has been made of the potentialities and problems involved in assigning some computer processing and control functions to the remote sites in an upgraded third generation air traffic control system. Interrogator sites offer the most fruitf...
An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.
In-Process Metrology And Control Of Large Optical Grinders
NASA Astrophysics Data System (ADS)
Anderson, D. S.; Ketelsen, D.; Kittrell, W. Cary; Kuhn, Wm; Parks, R. E.; Stahl, P.
1987-01-01
The advent of rapid figure generation at the University of Arizona has prompted the development of rapid metrology techniques. The success and efficiency of the generating process is highly dependent on timely and accurate measurements to update the feedback loop between machine and optician. We will describe the advantages and problems associated with the in-process metrology and control systems used at the Optical Sciences Center.
Berlow, Noah; Pal, Ranadip
2011-01-01
Genetic Regulatory Networks (GRNs) are frequently modeled as Markov Chains providing the transition probabilities of moving from one state of the network to another. The inverse problem of inference of the Markov Chain from noisy and limited experimental data is an ill posed problem and often generates multiple model possibilities instead of a unique one. In this article, we address the issue of intervention in a genetic regulatory network represented by a family of Markov Chains. The purpose of intervention is to alter the steady state probability distribution of the GRN as the steady states are considered to be representative of the phenotypes. We consider robust stationary control policies with best expected behavior. The extreme computational complexity involved in search of robust stationary control policies is mitigated by using a sequential approach to control policy generation and utilizing computationally efficient techniques for updating the stationary probability distribution of a Markov chain following a rank one perturbation.
Initialization Method for Grammar-Guided Genetic Programming
NASA Astrophysics Data System (ADS)
García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.
This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.
VTOL controls for shipboard landing. M.S.Thesis
NASA Technical Reports Server (NTRS)
Mcmuldroch, C. G.
1979-01-01
The problem of landing a VTOL aircraft on a small ship in rough seas using an automatic controller is examined. The controller design uses the linear quadratic Gaussian results of modern control theory. Linear time invariant dynamic models are developed for the aircraft, ship, and wave motions. A hover controller commands the aircraft to track position and orientation of the ship deck using only low levels of control power. Commands for this task are generated by the solution of the steady state linear quadratic gaussian regulator problem. Analytical performance and control requirement tradeoffs are obtained. A landing controller commands the aircraft from stationary hover along a smooth, low control effort trajectory, to a touchdown on a predicted crest of ship motion. The design problem is formulated and solved as an approximate finite-time linear quadratic stochastic regulator. Performance and control results are found by Monte Carlo simulations.
Debbarma, Sanjoy; Saikia, Lalit Chandra; Sinha, Nidul
2014-03-01
Present work focused on automatic generation control (AGC) of a three unequal area thermal systems considering reheat turbines and appropriate generation rate constraints (GRC). A fractional order (FO) controller named as I(λ)D(µ) controller based on crone approximation is proposed for the first time as an appropriate technique to solve the multi-area AGC problem in power systems. A recently developed metaheuristic algorithm known as firefly algorithm (FA) is used for the simultaneous optimization of the gains and other parameters such as order of integrator (λ) and differentiator (μ) of I(λ)D(µ) controller and governor speed regulation parameters (R). The dynamic responses corresponding to optimized I(λ)D(µ) controller gains, λ, μ, and R are compared with that of classical integer order (IO) controllers such as I, PI and PID controllers. Simulation results show that the proposed I(λ)D(µ) controller provides more improved dynamic responses and outperforms the IO based classical controllers. Further, sensitivity analysis confirms the robustness of the so optimized I(λ)D(µ) controller to wide changes in system loading conditions and size and position of SLP. Proposed controller is also found to have performed well as compared to IO based controllers when SLP takes place simultaneously in any two areas or all the areas. Robustness of the proposed I(λ)D(µ) controller is also tested against system parameter variations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
System analysis of vehicle active safety problem
NASA Astrophysics Data System (ADS)
Buznikov, S. E.
2018-02-01
The problem of the road transport safety affects the vital interests of the most of the population and is characterized by a global level of significance. The system analysis of problem of creation of competitive active vehicle safety systems is presented as an interrelated complex of tasks of multi-criterion optimization and dynamic stabilization of the state variables of a controlled object. Solving them requires generation of all possible variants of technical solutions within the software and hardware domains and synthesis of the control, which is close to optimum. For implementing the task of the system analysis the Zwicky “morphological box” method is used. Creation of comprehensive active safety systems involves solution of the problem of preventing typical collisions. For solving it, a structured set of collisions is introduced with its elements being generated also using the Zwicky “morphological box” method. The obstacle speed, the longitudinal acceleration of the controlled object and the unpredictable changes in its movement direction due to certain faults, the road surface condition and the control errors are taken as structure variables that characterize the conditions of collisions. The conditions for preventing typical collisions are presented as inequalities for physical variables that define the state vector of the object and its dynamic limits.
Sheldon, S; Vandermorris, S; Al-Haj, M; Cohen, S; Winocur, G; Moscovitch, M
2015-02-01
It is well accepted that the medial temporal lobes (MTL), and the hippocampus specifically, support episodic memory processes. Emerging evidence suggests that these processes also support the ability to effectively solve ill-defined problems which are those that do not have a set routine or solution. To test the relation between episodic memory and problem solving, we examined the ability of individuals with single domain amnestic mild cognitive impairment (aMCI), a condition characterized by episodic memory impairment, to solve ill-defined social problems. Participants with aMCI and age and education matched controls were given a battery of tests that included standardized neuropsychological measures, the Autobiographical Interview (Levine et al., 2002) that scored for episodic content in descriptions of past personal events, and a measure of ill-defined social problem solving. Corroborating previous findings, the aMCI group generated less episodically rich narratives when describing past events. Individuals with aMCI also generated less effective solutions when solving ill-defined problems compared to the control participants. Correlation analyses demonstrated that the ability to recall episodic elements from autobiographical memories was positively related to the ability to effectively solve ill-defined problems. The ability to solve these ill-defined problems was related to measures of activities of daily living. In conjunction with previous reports, the results of the present study point to a new functional role of episodic memory in ill-defined goal-directed behavior and other non-memory tasks that require flexible thinking. Our findings also have implications for the cognitive and behavioural profile of aMCI by suggesting that the ability to effectively solve ill-defined problems is related to sustained functional independence. Copyright © 2015 Elsevier Ltd. All rights reserved.
An episodic specificity induction enhances means-end problem solving in young and older adults.
Madore, Kevin P; Schacter, Daniel L
2014-12-01
Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction-brief training in recollecting details of past experiences-enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem-solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem-solving task, as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the 3 tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the 3 tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem-solving performance of older adults can benefit from a specificity induction as much as that of young adults. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
An episodic specificity induction enhances means-end problem solving in young and older adults
Madore, Kevin P.; Schacter, Daniel L.
2014-01-01
Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction- brief training in recollecting details of past experiences- enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem solving task as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the three tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the three tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem solving performance of older adults can benefit from a specificity induction as much as that of young adults. PMID:25365688
NASA Astrophysics Data System (ADS)
Fu, Junjie; Wang, Jin-zhi
2017-09-01
In this paper, we study the finite-time consensus problems with globally bounded convergence time also known as fixed-time consensus problems for multi-agent systems subject to directed communication graphs. Two new distributed control strategies are proposed such that leaderless and leader-follower consensus are achieved with convergence time independent on the initial conditions of the agents. Fixed-time formation generation and formation tracking problems are also solved as the generalizations. Simulation examples are provided to demonstrate the performance of the new controllers.
NASA Technical Reports Server (NTRS)
Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric
2014-01-01
We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.
A definition of the degree of controllability - A criterion for actuator placement
NASA Technical Reports Server (NTRS)
Viswanathan, C. N.; Longman, R. W.; Likins, P. W.
1979-01-01
The unsolved problem of how to control the attitude and shape of future very large flexible satellite structures represents a challenging problem for modern control theory. One aspect of this problem is the question of how to choose the number and locations throughout the spacecraft of the control system actuators. Starting from basic physical considerations, this paper develops a concept of the degree of controllability of a control system, and then develops numerical methods to generate approximate values of the degree of controllability for any spacecraft. These results offer the control system designer a tool which allows him to rank the effectiveness of alternative actuator distributions, and hence to choose the actuator locations on a rational basis. The degree of controllability is shown to take a particularly simple form when the satellite dynamics equations are in modal form. Examples are provided to illustrate the use of the concept on a simple flexible spacecraft.
Steam generator degradation: Current mitigation strategies for controlling corrosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millett, P.
1997-02-01
Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degreemore » or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O&M) and capital costs. SG corrosion is a major contributor to the O&M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R&D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment).« less
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
Efficient Optimization of Low-Thrust Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul
2007-01-01
A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.
Attitude guidance and tracking for spacecraft with two reaction wheels
NASA Astrophysics Data System (ADS)
Biggs, James D.; Bai, Yuliang; Henninger, Helen
2018-04-01
This paper addresses the guidance and tracking problem for a rigid-spacecraft using two reaction wheels (RWs). The guidance problem is formulated as an optimal control problem on the special orthogonal group SO(3). The optimal motion is solved analytically as a function of time and is used to reduce the original guidance problem to one of computing the minimum of a nonlinear function. A tracking control using two RWs is developed that extends previous singular quaternion stabilisation controls to tracking controls on the rotation group. The controller is proved to locally asymptotically track the generated reference motions using Lyapunov's direct method. Simulations of a 3U CubeSat demonstrate that this tracking control is robust to initial rotation errors and angular velocity errors in the controlled axis. For initial angular velocity errors in the uncontrolled axis and under significant disturbances the control fails to track. However, the singular tracking control is combined with a nano-magnetic torquer which simply damps the angular velocity in the uncontrolled axis and is shown to provide a practical control method for tracking in the presence of disturbances and initial condition errors.
NASA Astrophysics Data System (ADS)
Rosenberg, David E.
2015-04-01
State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the modeled issues and managers often seek near-optimal alternatives that address unmodeled objectives, preferences, limits, uncertainties, and other issues. Early on, Modeling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally different alternatives that addressed some unmodeled issues. This paper presents new stratified, Monte-Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and extent of the near-optimal region to an optimization problem. Interactive plot controls allow users to explore region features of most interest. Controls also streamline the process to elicit unmodeled issues and update the model formulation in response to elicited issues. Use for an example, single-objective, linear water quality management problem at Echo Reservoir, Utah, identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Flexibility is upheld by further interactive alternative generation, transforming the formulation into a multiobjective problem, and relaxing the tolerance parameter to expand the near-optimal region. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, and help elicit a larger set of unmodeled issues.
Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization
NASA Technical Reports Server (NTRS)
Pinson, Robin; Lu, Ping
2015-01-01
This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.
Problems, perceptions and actions: An interdependent process for generating informal social control.
Hipp, John R; Wickes, Rebecca
2018-07-01
Using two waves of survey data for residents in neighborhoods in Brisbane, this study explores the interdependent relationship between residents' perceptions of neighboring, cohesion, collective efficacy, neighborhood disorder, and the actions they take to address these problems. Our longitudinal results show that residents' perceived severity of a problem helps explain engaging in activity to address the problem. People loitering appeared to be the most galvanizing problem for residents, but had particularly deleterious effects on perceptions of cohesion and collective efficacy. We also find that residents who perceive more neighboring in their local area engage in more public and parochial social control activity and residents who live in collectively efficacious neighborhoods are more likely to engage in parochial social control action. Furthermore, residents who themselves perceive more collective efficacy in the neighborhood engage in more parochial or public social control during the subsequent time period. Importantly, we find strong evidence that residents update their sense of collective efficacy. Perceiving more problems in the neighborhood, and perceiving that these problems are increasing, reduced perceptions of neighboring and collective efficacy over time. Copyright © 2018 Elsevier Inc. All rights reserved.
Design, economic and system considerations of large wind-driven generators
NASA Technical Reports Server (NTRS)
Jorgensen, G. E.; Lotker, M.; Meier, R. C.; Brierley, D.
1976-01-01
The increased search for alternative energy sources has lead to renewed interest and studies of large wind-driven generators. This paper presents the results and considerations of such an investigation. The paper emphasizes the concept selection of wind-driven generators, system optimization, control system design, safety aspects, economic viability on electric utility systems and potential electric system interfacing problems.
Power processing and control requirements of dispersed solar thermal electric generation systems
NASA Technical Reports Server (NTRS)
Das, R. L.
1980-01-01
Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.
Functional test generation for digital circuits described with a declarative language: LUSTRE
NASA Astrophysics Data System (ADS)
Almahrous, Mazen
1990-08-01
A functional approach to the test generation problem starting from a high level description is proposed. The circuit tested is modeled, using the LUSTRE high level data flow description language. The different LUSTRE primitives are translated to a SATAN format graph in order to evaluate the testability of the circuit and to generate test sequences. Another method of testing the complex circuits comprising an operative part and a control part is defined. It consists of checking experiments for the control part observed through the operative part. It was applied to the automata generated from a LUSTRE description of the circuit.
Dynamic remedial action scheme using online transient stability analysis
NASA Astrophysics Data System (ADS)
Shrestha, Arun
Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system configuration and operating state. The generation-shedding cost is calculated using pre-RAS and post-RAS OPF costs. The criteria for selecting generators to trip is based on the minimum cost rather than minimum amount of generation to shed. For an unstable Category C contingency, the RAS control action that results in stable system with minimum generation shedding cost is selected among possible candidate solutions. The RAS control actions update whenever there is a change in operating condition, system configuration, or cost functions. The effectiveness of the proposed technique is demonstrated by simulations on the IEEE 9-bus system, the IEEE 39-bus system, and IEEE 145-bus system. This dissertation also proposes an improved, yet relatively simple, technique for solving Transient Stability-Constrained Optimal Power Flow (TSC-OPF) problem. Using the SIME method, the sets of dynamic and transient stability constraints are reduced to a single stability constraint, decreasing the overall size of the optimization problem. The transient stability constraint is formulated using the critical machines' power at the initial time step, rather than using the machine rotor angles. This avoids the addition of machine steady state stator algebraic equations in the conventional OPF algorithm. A systematic approach to reach an optimal solution is developed by exploring the quasi-linear behavior of critical machine power and stability margin. The proposed method shifts critical machines active power based on generator costs using an OPF algorithm. Moreover, the transient stability limit is based on stability margin, and not on a heuristically set limit on OMIB rotor angle. As a result, the proposed TSC-OPF solution is more economical and transparent. The proposed technique enables the use of fast and robust commercial OPF tool and time-domain simulation software for solving large scale TSC-OPF problem, which makes the proposed method also suitable for real-time application.
A roadmap for optimal control: the right way to commute.
Ross, I Michael
2005-12-01
Optimal control theory is the foundation for many problems in astrodynamics. Typical examples are trajectory design and optimization, relative motion control of distributed space systems and attitude steering. Many such problems in astrodynamics are solved by an alternative route of mathematical analysis and deep physical insight, in part because of the perception that an optimal control framework generates hard problems. Although this is indeed true of the Bellman and Pontryagin frameworks, the covector mapping principle provides a neoclassical approach that renders hard problems easy. That is, although the origins of this philosophy can be traced back to Bernoulli and Euler, it is essentially modern as a result of the strong linkage between approximation theory, set-valued analysis and computing technology. Motivated by the broad success of this approach, mission planners are now conceiving and demanding higher performance from space systems. This has resulted in new set of theoretical and computational problems. Recently, under the leadership of NASA-GRC, several workshops were held to address some of these problems. This paper outlines the theoretical issues stemming from practical problems in astrodynamics. Emphasis is placed on how it pertains to advanced mission design problems.
Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment
NASA Technical Reports Server (NTRS)
Williams, David H.; Green, Steven M.
1991-01-01
Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.
Propellant-free Spacecraft Relative Maneuvering via Atmospheric Differential Drag
2015-07-06
functions is a challenge that varies from problem to problem, and a widely studied theory exists (see [5-7]). In this work, a quadratic Lyapunov...with respect to the duration of the maneuvers. Thus, it is assumed the drag surfaces deploy/retract instantly, generating a bang -off- bang control...It should be noted that the adaptations occur every 10 minutes and that that for a bang -off- bang control the Δt from Equations (10) and (13) is
Unbalanced voltage control of virtual synchronous generator in isolated micro-grid
NASA Astrophysics Data System (ADS)
Cao, Y. Z.; Wang, H. N.; Chen, B.
2017-06-01
Virtual synchronous generator (VSG) control is recommended to stabilize the voltage and frequency in isolated micro-grid. However, common VSG control is challenged by widely used unbalance loads, and the linked unbalance voltage problem worsens the power quality of the micro-grid. In this paper, the mathematical model of VSG was presented. Based on the analysis of positive- and negative-sequence equivalent circuit of VSG, an approach was proposed to eliminate the negative-sequence voltage of VSG with unbalance loads. Delay cancellation method and PI controller were utilized to identify and suppress the negative-sequence voltages. Simulation results verify the feasibility of proposed control strategy.
NASA Technical Reports Server (NTRS)
Anderson, T. O. (Inventor)
1976-01-01
An interface logic circuit permitting the transfer of information between two computers having asynchronous clocks is disclosed. The information transfer involves utilization of control signals (including request, return-response, ready) to generate properly timed data strobe signals. Noise problems are avoided because each control signal, upon receipt, is verified by at least two clock pulses at the receiving computer. If control signals are verified, a data strobe pulse is generated to accomplish a data transfer. Once initiated, the data strobe signal is properly completed independently of signal disturbances in the control signal initiating the data strobe signal. Completion of the data strobe signal is announced by automatic turn-off of a return-response control signal.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhu, Zheng H.; Meguid, S. A.
2016-07-01
This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.
Real-Time Load-Side Control of Electric Power Systems
NASA Astrophysics Data System (ADS)
Zhao, Changhong
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Adaptive Critic-based Neurofuzzy Controller for the Steam Generator Water Level
NASA Astrophysics Data System (ADS)
Fakhrazari, Amin; Boroushaki, Mehrdad
2008-06-01
In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts of the fuzzy inference rules. The critic agent here has a proportional-derivative structure and the fuzzy rule base has nine rules. The proposed controller shows satisfactory transient responses, disturbance rejection and robustness to model uncertainty. Its simple design procedure and structure, nominates it as one of the suitable controller designs for the steam generator water level control in nuclear power plant industry.
A top-down approach in control engineering third-level teaching: The case of hydrogen-generation
NASA Astrophysics Data System (ADS)
Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo
2017-09-01
This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.
Vortex generator design for aircraft inlet distortion as a numerical optimization problem
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Levy, Ralph
1991-01-01
Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for aircraft that must operate in many different flight regimes. Takeoff, subsonic cruise, supersonic cruise, transonic maneuvering, and high altitude loiter each place different constraints on inlet design. Vortex generators, small wing like sections mounted on the inside surfaces of the inlet duct, are used to control flow separation and engine face distortion. The design of vortex generator installations in an inlet is defined as a problem addressable by numerical optimization techniques. A performance parameter is suggested to account for both inlet distortion and total pressure loss at a series of design flight conditions. The resulting optimization problem is difficult since some of the design parameters take on integer values. If numerical procedures could be used to reduce multimillion dollar development test programs to a small set of verification tests, numerical optimization could have a significant impact on both cost and elapsed time to design new aircraft.
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Becker, J. D.; Merriam, E. W.
1974-01-01
The conceptual, experimental, and practical aspects of the development of a robot computer problem solving system were investigated. The distinctive characteristics were formulated of the approach taken in relation to various studies of cognition and robotics. Vehicle and eye control systems were structured, and the information to be generated by the visual system is defined.
[Issues in the use of medical oxygen generator with molecular sieve].
Xu, Junfeng; Yang, Xiaoling; Zhao, Xiaolei; Bai, Jiefang; Wang, Chaojie
2014-07-01
There are some existing problems in controlling the quality of oxygen. In order to improve quality, efficiency and safety in the use of oxygen, we presented some factors which may give rise to variations in concentration of oxygen and proposed some suggestions based on the investigation and analysis of such problems.
Common approach to solving SGEMP, DEMP, and ESD survivability
NASA Technical Reports Server (NTRS)
Ling, D.
1977-01-01
System Generated Electromagnetic Pulse (SGEMP) and Dispersed Electromagnetic Pulse DEMP) are nuclear generated spacecraft environments. Electrostatic discharge (ESD) is a natural spacecraft environment resulting from differential charging in magnetic substorms. All three phenomena, though differing in origin, result in the same problem to the spacecraft and that is Electromagnetic Interference (EMI). A common design approach utilizing a spacecraft structural Faraday Cage is presented which helps solve the EMI problem. Also, other system design techniques are discussed which minimize the magnitude of these environments through control of materials and electrical grounding configuration.
Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance
2003-07-21
Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance Vincent A. Cicirello CMU-RI-TR-03-27 Submitted in partial fulfillment...AND SUBTITLE Boosting Stochastic Problem Solvers Through Online Self-Analysis of Performance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...lead to the development of a search control framework, called QD-BEACON that uses online -generated statistical models of search performance to
[Investigation of problem solving skills among psychiatric patients].
Póos, Judit; Annus, Rita; Perczel Forintos, Dóra
2008-01-01
According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.
Linear quadratic optimization for positive LTI system
NASA Astrophysics Data System (ADS)
Muhafzan, Yenti, Syafrida Wirma; Zulakmal
2017-05-01
Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.
Diverse Planning for UAV Control and Remote Sensing
Tožička, Jan; Komenda, Antonín
2016-01-01
Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs. PMID:28009831
Diverse Planning for UAV Control and Remote Sensing.
Tožička, Jan; Komenda, Antonín
2016-12-21
Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.
Generating Adaptive Behaviour within a Memory-Prediction Framework
Rawlinson, David; Kowadlo, Gideon
2012-01-01
The Memory-Prediction Framework (MPF) and its Hierarchical-Temporal Memory implementation (HTM) have been widely applied to unsupervised learning problems, for both classification and prediction. To date, there has been no attempt to incorporate MPF/HTM in reinforcement learning or other adaptive systems; that is, to use knowledge embodied within the hierarchy to control a system, or to generate behaviour for an agent. This problem is interesting because the human neocortex is believed to play a vital role in the generation of behaviour, and the MPF is a model of the human neocortex. We propose some simple and biologically-plausible enhancements to the Memory-Prediction Framework. These cause it to explore and interact with an external world, while trying to maximize a continuous, time-varying reward function. All behaviour is generated and controlled within the MPF hierarchy. The hierarchy develops from a random initial configuration by interaction with the world and reinforcement learning only. Among other demonstrations, we show that a 2-node hierarchy can learn to successfully play “rocks, paper, scissors” against a predictable opponent. PMID:22272231
Concepts for design of an energy management system incorporating dispersed storage and generation
NASA Technical Reports Server (NTRS)
Kirkham, H.; Koerner, T.; Nightingale, D.
1981-01-01
New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.
Liquid propellant gas generators
NASA Technical Reports Server (NTRS)
1972-01-01
The design of gas generators intended to provide hot gases for turbine drive is discussed. Emphasis is placed on the design and operation of bipropellant gas generators because of their wider use. Problems and limitations involved in turbine operation due to temperature effects are analyzed. Methods of temperature control of gas turbines and combustion products are examined. Drawings of critical sections of gas turbines to show their operation and areas of stress are included.
Effect of rotation rate on the forces of a rotating cylinder: Simulation and control
NASA Technical Reports Server (NTRS)
Burns, John A.; Ou, Yuh-Roung
1993-01-01
In this paper we present numerical solutions to several optimal control problems for an unsteady viscous flow. The main thrust of this work is devoted to simulation and control of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating the rotation rate as a control variable, we can formulate two optimal control problems and use a central difference/pseudospectral transform method to numerically compute the optimal control rates. Several types of rotations are considered as potential controls, and we show that a proper synchronization of forcing frequency with the natural vortex shedding frequency can greatly influence the flow. The results here indicate that using moving boundary controls for such systems may provide a feasible mechanism for flow control.
Weed control and canopy light management in blackberries
USDA-ARS?s Scientific Manuscript database
Weed control in blackberries (Rubus spp.) is a serious problem for organic producers and those who wish to reduce their reliance on herbicides. At the southern limits of blackberry production, late season yields are reduced because of high day-time temperatures generated by solar irradiation and ot...
Inventory Control System for a Healthcare Apparel Service Centre with Stockout Risk: A Case Analysis
Hui, Chi-Leung
2017-01-01
Based on the real-world inventory control problem of a capacitated healthcare apparel service centre in Hong Kong which provides tailor-made apparel-making services for the elderly and disabled people, this paper studies a partial backordered continuous review inventory control problem in which the product demand follows a Poisson process with a constant lead time. The system is controlled by an (Q,r) inventory policy which incorporate the stockout risk, storage capacity, and partial backlog. The healthcare apparel service centre, under the capacity constraint, aims to minimize the inventory cost and achieving a low stockout risk. To address this challenge, an optimization problem is constructed. A real case-based data analysis is conducted, and the result shows that the expected total cost on an order cycle is reduced substantially at around 20% with our proposed optimal inventory control policy. An extensive sensitivity analysis is conducted to generate additional insights. PMID:29527283
Pan, An; Hui, Chi-Leung
2017-01-01
Based on the real-world inventory control problem of a capacitated healthcare apparel service centre in Hong Kong which provides tailor-made apparel-making services for the elderly and disabled people, this paper studies a partial backordered continuous review inventory control problem in which the product demand follows a Poisson process with a constant lead time. The system is controlled by an ( Q , r ) inventory policy which incorporate the stockout risk, storage capacity, and partial backlog. The healthcare apparel service centre, under the capacity constraint, aims to minimize the inventory cost and achieving a low stockout risk. To address this challenge, an optimization problem is constructed. A real case-based data analysis is conducted, and the result shows that the expected total cost on an order cycle is reduced substantially at around 20% with our proposed optimal inventory control policy. An extensive sensitivity analysis is conducted to generate additional insights.
Pilot Line Development of High-Performance Thermal Insulation
1989-09-01
with the fiber blend described, full attention was given to the problems of pilot pro- duction. C. Assembly of the Pilot Production Line and Initial...that virtually all possible static control steps had been taken, we presented the problem to the fiber manufacturer, TeiJin. They re- sponded by...1988. The line was operated continuously during production of the 5-roll sample se, as static generation within the fiber was no longer a problem
Chen, G; Fournier, R L; Varanasi, S
1998-02-20
An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. Copyright 1998 John Wiley & Sons, Inc.
ERIC Educational Resources Information Center
van Nieuwenhuijzen, M.; Orobio de Castro, B.; van Aken, M. A. G.; Matthys, W.
2009-01-01
Background: A growing interest exists in mechanisms involved in behaviour problems in children with mild intellectual disabilities and borderline intelligence (MID/BI). Social problem solving difficulties have been found to be an explanatory mechanism for aggressive behaviour in these children. However, recently a discrepancy was found between…
Automated knowledge generation
NASA Technical Reports Server (NTRS)
Myler, Harley R.; Gonzalez, Avelino J.
1988-01-01
The general objectives of the NASA/UCF Automated Knowledge Generation Project were the development of an intelligent software system that could access CAD design data bases, interpret them, and generate a diagnostic knowledge base in the form of a system model. The initial area of concentration is in the diagnosis of the process control system using the Knowledge-based Autonomous Test Engineer (KATE) diagnostic system. A secondary objective was the study of general problems of automated knowledge generation. A prototype was developed, based on object-oriented language (Flavors).
Helicopter Acoustics, part 2. [conferences
NASA Technical Reports Server (NTRS)
1978-01-01
Exterior and interior helicopter noise problems are addressed from the physics and engineering as well as the human factors point of view. Noise regulation concepts, human factors and criteria, rotor noise generation and control, design, operations and testing for noise control, helicopter noise prediction, and research tools and measurements are covered.
Coping with Discrimination: The Subjective Well-Being of South Asian American Women
ERIC Educational Resources Information Center
Liang, Christopher T. H.; Nathwani, Anisha; Ahmad, Sarah; Prince, Jessica K.
2010-01-01
The relationship between coping strategies used by South Asian American women and subjective well-being (SWB) was studied. Second-generation women were found to use more support compared with 1st-generation women. Problem-solving coping was inversely related to age. Avoidance coping was found to predict SWB when controlling for age and…
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system
NASA Astrophysics Data System (ADS)
Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes
2015-01-01
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).
Rogers, S J; Parcel, T L; Menaghan, E G
1991-06-01
We assess the impact of maternal sense of mastery and maternal working conditions on maternal perceptions of children's behavior problems as a means to study the transmission of social control across generations. We use a sample of 521 employed mothers and their four-to six-year-old children from the National Longitudinal Survey's Youth Cohort in 1986. Regarding working conditions, we consider mother's hourly wage, work hours, and job content including involvement with things (vs. people), the requisite level of physical activity, and occupational complexity. We also consider maternal and child background and current family characteristics, including marital status, family size, and home environment. Maternal mastery was related to fewer reported behavior problems among children. Lower involvement with people and higher involvement with things, as well as low physical activity, were related significantly to higher levels of perceived problems. In addition, recent changes in maternal marital status, including maternal marriage or remarriage, increased reports of problems; stronger home environments had the opposite effect. We interpret these findings as suggesting how maternal experiences of control in the workplace and personal resources of control can influence the internalization of control in children.
Option generation in decision making: ideation beyond memory retrieval
Del Missier, Fabio; Visentini, Mimì; Mäntylä, Timo
2015-01-01
According to prescriptive decision theories, the generation of options for choice is a central aspect of decision making. A too narrow representation of the problem may indeed limit the opportunity to evaluate promising options. However, despite the theoretical and applied significance of this topic, the cognitive processes underlying option generation are still unclear. In particular, while a cued recall account of option generation emphasizes the role of memory and executive control, other theoretical proposals stress the importance of ideation processes based on various search and thinking processes. Unfortunately, relevant behavioral evidence on the cognitive processes underlying option generation is scattered and inconclusive. In order to reach a better understanding, we carried out an individual-differences study employing a wide array of cognitive predictors, including measures of episodic memory, semantic memory, cognitive control, and ideation fluency. The criterion tasks consisted of three different poorly-structured decision-making scenarios, and the participants were asked to generate options to solve these problems. The main criterion variable of the study was the number of valid options generated, but also the diversity and the quality of generated options were examined. The results showed that option generation fluency and diversity in the context of ill-structured decision making are supported by ideation ability even after taking into account the effects of individual differences in several other aspects of cognitive functioning. Thus, ideation processes, possibly supported by search and thinking processes, seem to contribute to option generation beyond basic associative memory retrieval. The findings of the study also indicate that generating more options may have multifaceted consequences for choice, increasing the quality of the best option generated but decreasing the mean quality of the options in the generated set. PMID:25657628
Option generation in decision making: ideation beyond memory retrieval.
Del Missier, Fabio; Visentini, Mimì; Mäntylä, Timo
2014-01-01
According to prescriptive decision theories, the generation of options for choice is a central aspect of decision making. A too narrow representation of the problem may indeed limit the opportunity to evaluate promising options. However, despite the theoretical and applied significance of this topic, the cognitive processes underlying option generation are still unclear. In particular, while a cued recall account of option generation emphasizes the role of memory and executive control, other theoretical proposals stress the importance of ideation processes based on various search and thinking processes. Unfortunately, relevant behavioral evidence on the cognitive processes underlying option generation is scattered and inconclusive. In order to reach a better understanding, we carried out an individual-differences study employing a wide array of cognitive predictors, including measures of episodic memory, semantic memory, cognitive control, and ideation fluency. The criterion tasks consisted of three different poorly-structured decision-making scenarios, and the participants were asked to generate options to solve these problems. The main criterion variable of the study was the number of valid options generated, but also the diversity and the quality of generated options were examined. The results showed that option generation fluency and diversity in the context of ill-structured decision making are supported by ideation ability even after taking into account the effects of individual differences in several other aspects of cognitive functioning. Thus, ideation processes, possibly supported by search and thinking processes, seem to contribute to option generation beyond basic associative memory retrieval. The findings of the study also indicate that generating more options may have multifaceted consequences for choice, increasing the quality of the best option generated but decreasing the mean quality of the options in the generated set.
Oxygen Generation System Laptop Bus Controller Flight Software
NASA Technical Reports Server (NTRS)
Rowe, Chad; Panter, Donna
2009-01-01
The Oxygen Generation System Laptop Bus Controller Flight Software was developed to allow the International Space Station (ISS) program to activate specific components of the Oxygen Generation System (OGS) to perform a checkout of key hardware operation in a microgravity environment, as well as to perform preventative maintenance operations of system valves during a long period of what would otherwise be hardware dormancy. The software provides direct connectivity to the OGS Firmware Controller with pre-programmed tasks operated by on-orbit astronauts to exercise OGS valves and motors. The software is used to manipulate the pump, separator, and valves to alleviate the concerns of hardware problems due to long-term inactivity and to allow for operational verification of microgravity-sensitive components early enough so that, if problems are found, they can be addressed before the hardware is required for operation on-orbit. The decision was made to use existing on-orbit IBM ThinkPad A31p laptops and MIL-STD-1553B interface cards as the hardware configuration. The software at the time of this reporting was developed and tested for use under the Windows 2000 Professional operating system to ensure compatibility with the existing on-orbit computer systems.
NASA Technical Reports Server (NTRS)
Troudet, T.; Garg, S.; Merrill, W.
1992-01-01
The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.
Sustainer electric propulsion system application for spacecraft attitude control
NASA Astrophysics Data System (ADS)
Obukhov, V. A.; Pokryshkin, A. I.; Popov, G. A.; Yashina, N. V.
2010-07-01
Application of electric propulsion system (EPS) requires spacecraft (SC) equipping with large solar panels (SP) for the power supply to electric propulsions. This makes the problem of EPS-equipped SC control at the insertion stage more difficult to solve than in the case of SC equipped with chemical engines, because in addition to the SC attitude control associated with the mission there appears necessity in keeping SP orientation to Sun that is necessary for generation of electric power sufficient for the operation of service systems, purpose-oriented equipment, and EPS. The theoretical study of the control problem is the most interesting for a non-coplanar transfer from high elliptic orbit (HEO) to geostationary orbit (GSO).
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, Renate J.
1990-01-01
The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.
Knowledge-based approach to system integration
NASA Technical Reports Server (NTRS)
Blokland, W.; Krishnamurthy, C.; Biegl, C.; Sztipanovits, J.
1988-01-01
To solve complex problems one can often use the decomposition principle. However, a problem is seldom decomposable into completely independent subproblems. System integration deals with problem of resolving the interdependencies and the integration of the subsolutions. A natural method of decomposition is the hierarchical one. High-level specifications are broken down into lower level specifications until they can be transformed into solutions relatively easily. By automating the hierarchical decomposition and solution generation an integrated system is obtained in which the declaration of high level specifications is enough to solve the problem. We offer a knowledge-based approach to integrate the development and building of control systems. The process modeling is supported by using graphic editors. The user selects and connects icons that represent subprocesses and might refer to prewritten programs. The graphical editor assists the user in selecting parameters for each subprocess and allows the testing of a specific configuration. Next, from the definitions created by the graphical editor, the actual control program is built. Fault-diagnosis routines are generated automatically as well. Since the user is not required to write program code and knowledge about the process is present in the development system, the user is not required to have expertise in many fields.
NASA Astrophysics Data System (ADS)
Wan, Tian
This work is motivated by the lack of fully coupled computational tool that solves successfully the turbulent chemically reacting Navier-Stokes equation, the electron energy conservation equation and the electric current Poisson equation. In the present work, the abovementioned equations are solved in a fully coupled manner using fully implicit parallel GMRES methods. The system of Navier-Stokes equations are solved using a GMRES method with combined Schwarz and ILU(0) preconditioners. The electron energy equation and the electric current Poisson equation are solved using a GMRES method with combined SOR and Jacobi preconditioners. The fully coupled method has also been implemented successfully in an unstructured solver, US3D, and convergence test results were presented. This new method is shown two to five times faster than the original DPLR method. The Poisson solver is validated with analytic test problems. Then, four problems are selected; two of them are computed to explore the possibility of onboard MHD control and power generation, and the other two are simulation of experiments. First, the possibility of onboard reentry shock control by a magnetic field is explored. As part of a previous project, MHD power generation onboard a re-entry vehicle is also simulated. Then, the MHD acceleration experiments conducted at NASA Ames research center are simulated. Lastly, the MHD power generation experiments known as the HVEPS project are simulated. For code validation, the scramjet experiments at University of Queensland are simulated first. The generator section of the HVEPS test facility is computed then. The main conclusion is that the computational tool is accurate for different types of problems and flow conditions, and its accuracy and efficiency are necessary when the flow complexity increases.
Development and Evaluation of Control System for Microgrid Supplying Heat and Electricity
NASA Astrophysics Data System (ADS)
Kojima, Yasuhiro; Koshio, Masanobu; Nakamura, Shizuka
Photovoltaic (PV) and Wind Turbine (WT) generation systems are expected to offer solutions to reduce green house gases and become more widely used in the future. However, the chief technical drawback of using these kinds of weather-dependent generators is the difficulty of forecasting their output, which can have negative impacts on commercial grids if a large number of them are introduced. Thus, this problem may hinder the wider application of PV and WT generation systems. The Regional Power Grid with Renewable Energy Resources Project was launched to seek a solution to this problem. The scope of the project is to develop, operate, and evaluate a Dispersed Renewable Energy Supply System with the ability to adapt the total energy output in response to changes in weather and demand. Such a system would reduce the impact that PV and WT generation systems have on commercial grids and allow the interconnection of more Dispersed Energy Resources (DER). In other words, the main objective of this project is to demonstrate an integrated energy management system, or a type of microgrid [1], as a new way of introducing DERs. The system has been in operation since October 2005 and will continue operation until March 2008. Through the project period, the data on power quality, system efficiency, operation cost, and environmental burden will be gathered and a cost-benefit analysis of the system will be undertaken. In this paper, firstly we introduce the concept of microgrid for reducing negative impact of natural energy, and secondly illustrate the structure of electric and thermal supply control system for Microgrid, especially for the Hachinohe demonstration project. The control system consists of four stages; weekly operation planning, economic dispatching control, tie-line control and local frequency control. And finally demonstration results and evaluation results are shown.
Teaching adolescents with learning disabilities to generate and use task-specific strategies.
Ellis, E S; Deshler, D D; Schumaker, J B
1989-02-01
The effects of an intervention designed to enhance students' roles as control agents for strategic functioning were investigated. The goal was to increase the ability of students labeled learning disabled to generate new strategies or adapt existing task-specific strategies for meeting varying demands of the regular classroom. Measures were taken in three areas: (a) metacognitive knowledge related to generating or adapting strategies, (b) ability to generate problem-solving strategies for novel problems, and (c) the effects of the intervention on students' regular classroom grades and teachers' perceptions of the students' self-reliance and work quality. A multiple baseline across subjects design was used. The intervention resulted in dramatic increases in the subjects' verbal expression of metacognitive knowledge and ability to generate task-specific strategies. Students' regular class grades increased; for those students who did not spontaneously generalize use of the strategy to problems encountered in these classes, providing instruction to target specific classes resulted in improved grades. Teacher perceptions of students' self-reliance and work quality did not change, probably because baseline measures were already high in both areas. Implications for instruction and future research are discussed.
A Framework for Optimal Control Allocation with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc
2010-01-01
Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.
Physical Principle for Generation of Randomness
NASA Technical Reports Server (NTRS)
Zak, Michail
2009-01-01
A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)
Wang, Tiancai; He, Xing; Huang, Tingwen; Li, Chuandong; Zhang, Wei
2017-09-01
The economic emission dispatch (EED) problem aims to control generation cost and reduce the impact of waste gas on the environment. It has multiple constraints and nonconvex objectives. To solve it, the collective neurodynamic optimization (CNO) method, which combines heuristic approach and projection neural network (PNN), is attempted to optimize scheduling of an electrical microgrid with ten thermal generators and minimize the plus of generation and emission cost. As the objective function has non-derivative points considering valve point effect (VPE), differential inclusion approach is employed in the PNN model introduced to deal with them. Under certain conditions, the local optimality and convergence of the dynamic model for the optimization problem is analyzed. The capability of the algorithm is verified in a complicated situation, where transmission loss and prohibited operating zones are considered. In addition, the dynamic variation of load power at demand side is considered and the optimal scheduling of generators within 24 h is described. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo
This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less
Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation
Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo
2017-12-27
This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less
Control of generation regimes of ring chip laser under the action of the stationary magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G
2013-05-31
We consider realisation of different generation regimes in an autonomous ring chip laser, which is a rather complicated problem. We offer and demonstrate a simple and effective method for controlling the radiation dynamics of a ring Nd:YAG chip laser when it is subjected to a stationary magnetic field producing both frequency and substantial amplitude nonreciprocities. The amplitude and frequency nonreciprocities of a ring cavity, arising under the action of this magnetic field, change when the magnet is moved with respect to the active element of the chip laser. Some self-modulation and stationary generation regimes as well as the regime ofmore » beatings and dynamic chaos regime are experimentally realised. Temporal and spectral characteristics of radiation are studied and conditions for the appearance of the generation regime are found. (control of laser radiation parameters)« less
Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon
2017-01-01
In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.
Neilson, Peter D; Neilson, Megan D
2005-09-01
Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.
NASA Astrophysics Data System (ADS)
Mezentsev, Yu A.; Baranova, N. V.
2018-05-01
A universal economical and mathematical model designed for determination of optimal strategies for managing subsystems (components of subsystems) of production and logistics of enterprises is considered. Declared universality allows taking into account on the system level both production components, including limitations on the ways of converting raw materials and components into sold goods, as well as resource and logical restrictions on input and output material flows. The presented model and generated control problems are developed within the framework of the unified approach that allows one to implement logical conditions of any complexity and to define corresponding formal optimization tasks. Conceptual meaning of used criteria and limitations are explained. The belonging of the generated tasks of the mixed programming with the class of NP is shown. An approximate polynomial algorithm for solving the posed optimization tasks for mixed programming of real dimension with high computational complexity is proposed. Results of testing the algorithm on the tasks in a wide range of dimensions are presented.
Nice or effective? Social problem solving strategies in patients with major depressive disorder.
Thoma, Patrizia; Schmidt, Tobias; Juckel, Georg; Norra, Christine; Suchan, Boris
2015-08-30
Our study addressed distinct aspects of social problem solving in 28 hospitalized patients with Major Depressive Disorder (MDD) and 28 matched healthy controls. Three scenario-based tests assessed the ability to infer the mental states of story characters in difficult interpersonal situations, the capacity to freely generate good strategies for dealing with such situations and the ability to identify the best solutions among less optimal alternatives. Also, standard tests assessing attention, memory, executive function and trait empathy were administered. Compared to controls, MDD patients showed impaired interpretation of other peoples' sarcastic remarks but not of the mental states underlying other peoples' actions. Furthermore, MDD patients generated fewer strategies that were socially sensitive and practically effective at the same time or at least only socially sensitive. Overall, while the free generation of adequate strategies for difficult social situations was impaired, recognition of optimal solutions among alternatives was spared in MDD patients. Higher generation scores were associated with higher trait empathy and cognitive flexibility scores. We suggest that this specific pattern of impairments ought to be considered in the development of therapies addressing impaired social skills in MDD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Model and Procedure for an Objective Maneuver Analysis. Technical Report.
ERIC Educational Resources Information Center
Brecke, Fritz; Gerlach, Vernon
The problem of generating verbal cues to facilitate psychomotor skill training is considered in the context of flight instruction. The flying task is conceptualized in terms of a pilot-aircraft closed loop control system. The control system model effectively illustrates the three types of informational stimuli necessary for the pilot's effective…
Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods
NASA Astrophysics Data System (ADS)
Dubovik, S. A.; Kabanov, A. A.
2017-01-01
The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.
NASA Astrophysics Data System (ADS)
Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh
2018-06-01
This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.
High frequency x-ray generator basics.
Sobol, Wlad T
2002-02-01
The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.
NASA Astrophysics Data System (ADS)
Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh
2018-03-01
This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.
Pemberton, Caroline K.; Neiderhiser, Jenae M.; Leve, Leslie D.; Natsuaki, Misaki N.; Shaw, Daniel S.; Reiss, David; Ge, Xiaojia
2011-01-01
This study examined the developmental cascade of both genetic and environmental influences on toddlers’ behavior problems through the longitudinal and multi-generational assessment of psychosocial risk. We used data from the Early Growth and Development Study, a prospective adoption study, to test the intergenerational transmission of risk through the assessment of adoptive mother, adoptive father, and biological parent depressive symptoms on toddler behavior problems. Given that depression is often chronic, we control for across-time continuity and find that in addition to associations between adoptive mother depressive symptoms and toddler externalizing problems, adoptive father depressive symptoms when the child is 9-months of age were associated with toddler problems and associated with maternal depressive symptoms. Findings also indicated that a genetic effect may indirectly influence toddler problems through prenatal pregnancy risk. These findings help to describe how multiple generations are linked through genetic (biological parent), timing (developmental age of the child), and contextual (marital partner) pathways. PMID:20883583
Enhancing memory and imagination improves problem solving among individuals with depression.
McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T
2017-08-01
Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.
Creativity: Creativity in Complex Military Systems
2017-05-25
generation later in the problem-solving process. The design process is an alternative problem-solving framework individuals or groups use to orient...no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...the potential of their formations. 15. SUBJECT TERMS Creativity, Divergent Thinking, Design , Systems Thinking, Operational Art 16. SECURITY
NASA Astrophysics Data System (ADS)
Wang, Xingjian; Shi, Cun; Wang, Shaoping
2017-07-01
Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.
Impact of Uncertainty from Load-Based Reserves and Renewables on Dispatch Costs and Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bowen; Maroukis, Spencer D.; Lin, Yashen
2016-11-21
Aggregations of controllable loads are considered to be a fast-responding, cost-efficient, and environmental-friendly candidate for power system ancillary services. Unlike conventional service providers, the potential capacity from the aggregation is highly affected by factors like ambient conditions and load usage patterns. Previous work modeled aggregations of controllable loads (such as air conditioners) as thermal batteries, which are capable of providing reserves but with uncertain capacity. A stochastic optimal power flow problem was formulated to manage this uncertainty, as well as uncertainty in renewable generation. In this paper, we explore how the types and levels of uncertainty, generation reserve costs, andmore » controllable load capacity affect the dispatch solution, operational costs, and CO2 emissions. We also compare the results of two methods for solving the stochastic optimization problem, namely the probabilistically robust method and analytical reformulation assuming Gaussian distributions. Case studies are conducted on a modified IEEE 9-bus system with renewables, controllable loads, and congestion. We find that different types and levels of uncertainty have significant impacts on dispatch and emissions. More controllable loads and less conservative solution methodologies lead to lower costs and emissions.« less
ERIC Educational Resources Information Center
Calbom, Linda
This testimony summarizes a report generated by the U.S. General Accounting Office concerned with internal control problems found in the U.S. Department of Education. Significant internal control weaknesses in the U.S. Department of Education's payment processes and poor physical control over its computer assets made the department vulnerable to…
NASA Astrophysics Data System (ADS)
Okedu, Kenneth Eloghene; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji
Recent wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage is recovered. However, fixed speed wind turbine generator system using induction generator (IG) has the stability problem similar to the step-out phenomenon of a synchronous generator. On the other hand, doubly fed induction generator (DFIG) can control its real and reactive powers independently while being operated in variable speed mode. This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs, without incorporating additional FACTS devices. A new current controlled voltage source converter (CC-VSC) scheme is proposed to control the converters of DFIG and the performance is verified by comparing the results with those of voltage controlled voltage source converter (VC-VSC) scheme. Another salient feature of this study is to reduce the number of proportionate integral (PI) controllers used in the rotor side converter without degrading dynamic and transient performances. Moreover, DC-link protection scheme during grid fault can be omitted in the proposed scheme which reduces overall cost of the system. Extensive simulation analyses by using PSCAD/EMTDC are carried out to clarify the effectiveness of the proposed CC-VSC based control scheme of DFIGs.
Hybrid switched time-optimal control of underactuated spacecraft
NASA Astrophysics Data System (ADS)
Olivares, Alberto; Staffetti, Ernesto
2018-04-01
This paper studies the time-optimal control problem for an underactuated rigid spacecraft equipped with both reaction wheels and gas jet thrusters that generate control torques about two of the principal axes of the spacecraft. Since a spacecraft equipped with two reaction wheels is not controllable, whereas a spacecraft equipped with two gas jet thrusters is controllable, this mixed actuation ensures controllability in the case in which one of the control axes is unactuated. A novel control logic is proposed for this hybrid actuation in which the reaction wheels are the main actuators and the gas jet thrusters act only after saturation or anticipating future saturation of the reaction wheels. The presence of both reaction wheels and gas jet thrusters gives rise to two operating modes for each actuated axis and therefore the spacecraft can be regarded as a switched dynamical system. The time-optimal control problem for this system is reformulated using the so-called embedding technique and the resulting problem is a classical optimal control problem. The main advantages of this technique are that integer or binary variables do not have to be introduced to model switching decisions between modes and that assumptions about the number of switches are not necessary. It is shown in this paper that this general method for the solution of optimal control problems for switched dynamical systems can efficiently deal with time-optimal control of an underactuated rigid spacecraft in which bound constraints on the torque of the actuators and on the angular momentum of the reaction wheels are taken into account.
Analysis of synchronous and induction generators used at hydroelectric power plant
NASA Astrophysics Data System (ADS)
Diniş, C. M.; Popa, G. N.; lagăr, A.
2017-01-01
In this paper is presented an analysis of the operating electric generators (synchronous and induction) within a small capacity hydroelectric power plant. Such is treated the problem of monitoring and control hydropower plant using SCADA systems. Have been carried an experimental measurements in small hydropower plant for different levels of water in the lake and various settings of the operating parameters.
ERIC Educational Resources Information Center
Nwatu, Gideon U.
2011-01-01
One of the objectives of any government is the establishment of an effective solution to significantly control crime. Identity fraud in Nigeria has generated global attention and negative publicity toward its citizens. The research problem addressed in this study was the lack of understanding of the dynamics that influenced the adoption and…
ERIC Educational Resources Information Center
Poljac, Edita; Poljac, Ervin; Yeung, Nick
2012-01-01
Impairments in cognitive control generating deviant adaptive cognition have been proposed to account for the strong preference for repetitive behavior in autism. We examined if this preference reflects intentional deficits rather than problems in task execution in the broader autism phenotype using the Autism-Spectrum Quotient (AQ). Participants…
ERIC Educational Resources Information Center
Fetterman, David M.
1982-01-01
The design and conduct of a national evaluation study is discussed, demonstrating that a control group may not provide the no-cause baseline information expected. Resolution of this problem requires reexamination of paradigms, research practices, and policies, as well as the underlying real world constraints and views that generate them. (PN)
NASA Astrophysics Data System (ADS)
Roesch, Frank; Nerb, Josef; Riess, Werner
2015-03-01
Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of experimental problem-solving ability better than conventional lessons in science. We used a paper-and-pencil test to assess students' abilities in a quasi-experimental intervention study utilizing a pretest/posttest control-group design (N = 340; average performing sixth-grade students). The treatment group received lessons on forest ecosystems consistent with the principle of education for sustainable development. This learning environment was expected to help students enhance their ecological knowledge and their theoretical and methodological experimental competencies. Two control groups received either the teachers' usual lessons on forest ecosystems or non-specific lessons on other science topics. We found that the treatment promoted specific components of experimental problem-solving ability (generating epistemic questions, planning two-factorial experiments, and identifying correct experimental controls). However, the observed effects were small, and awareness for aspects of higher ecological experimental validity was not promoted by the treatment.
Flight-deck automation - Promises and problems
NASA Technical Reports Server (NTRS)
Wiener, E. L.; Curry, R. E.
1980-01-01
The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.
Variational Trajectory Optimization Tool Set: Technical description and user's manual
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.
1993-01-01
The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.
NASA Astrophysics Data System (ADS)
Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro
In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.
Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.
Lian, Chuanqiang; Xu, Xin; Chen, Hong; He, Haibo
2016-11-01
Trajectory tracking control of wheeled mobile robots (WMRs) has been an important research topic in control theory and robotics. Although various tracking control methods with stability have been developed for WMRs, it is still difficult to design optimal or near-optimal tracking controller under uncertainties and disturbances. In this paper, a near-optimal tracking control method is presented for WMRs based on receding-horizon dual heuristic programming (RHDHP). In the proposed method, a backstepping kinematic controller is designed to generate desired velocity profiles and the receding horizon strategy is used to decompose the infinite-horizon optimal control problem into a series of finite-horizon optimal control problems. In each horizon, a closed-loop tracking control policy is successively updated using a class of approximate dynamic programming algorithms called finite-horizon dual heuristic programming (DHP). The convergence property of the proposed method is analyzed and it is shown that the tracking control system based on RHDHP is asymptotically stable by using the Lyapunov approach. Simulation results on three tracking control problems demonstrate that the proposed method has improved control performance when compared with conventional model predictive control (MPC) and DHP. It is also illustrated that the proposed method has lower computational burden than conventional MPC, which is very beneficial for real-time tracking control.
Mentalising and social problem solving in adults with Asperger's syndrome
Channon, Shelley; Crawford, Sarah; Orlowska, Danuta; Parikh, Nimmi; Thoma, Patrizia
2013-01-01
Introduction It is well established that autistic spectrum disorder is linked to difficulties with mentalising, but the ways in which this affects everyday behaviour is less well understood. This study explored the nature and extent of difficulties in everyday social functioning in adults with Asperger's syndrome (AS), since increased understanding can enhance the development of more effective intervention strategies. Methods Individuals with AS (n = 21) were compared with healthy control participants (n = 21) on three tests of social cognition: the Mentalistic Interpretation task, which assesses interpretation of sarcasm and actions; the Social Problem Fluency task, which assesses ability to generate problem solutions; and the Social Problem Resolution task, which assesses judgement in selecting problem solutions. Results Comprehension of both sarcastic remarks and actions was impaired in those with AS on the mentalistic interpretation task. Participants with AS showed difficulties in identifying the awkward elements of everyday social scenarios, and they were also impaired in generating problem solutions but not in judging alternative solutions on the social problem fluency and resolution tasks. Conclusions These tasks potentially provide a means of profiling strengths and weaknesses in social processing, which in turn has implications for informing clinical evaluation and training. PMID:23875885
Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.
1983-12-01
numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for
User's guide for ERB-7 SEFDT. Volume 3: Quality control report for year-2
NASA Technical Reports Server (NTRS)
Vasanth, K. L.
1984-01-01
Problems in the solar data generated by the Nimbus 7 satellite are discussed specifically for scientific users. Major and minor data flaws in the Solar and Earth Flux Data Tape (SEFDT) were identified, defined and categorized. Solar channel assembly misalignment, data gaps, and algorithm errors were among the problems described in detail. Solar flux density data derived from SEFDT are presented in graphical form.
Assessment and control of electrostatic charges. [hazards to space missions
NASA Technical Reports Server (NTRS)
Barrett, M.
1974-01-01
The experience is described of NASA and DOD with electrostatic problems, generation mechanisms, and type of electrostatic hazards. Guidelines for judging possible effects of electrostatic charges on space missions are presented along with mathematical formulas and definitions.
Control method of Three-phase Four-leg converter based on repetitive control
NASA Astrophysics Data System (ADS)
Hui, Wang
2018-03-01
The research chose the magnetic levitation force of wind power generation system as the object. In order to improve the power quality problem caused by unbalanced load in power supply system, we combined the characteristics and repetitive control principle of magnetic levitation wind power generation system, and then an independent control strategy for three-phase four-leg converter was proposed. In this paper, based on the symmetric component method, the second order generalized integrator was used to generate the positive and negative sequence of signals, and the decoupling control was carried out under the synchronous rotating reference frame, in which the positive and negative sequence voltage is PI double closed loop, and a PI regulator with repetitive control was introduced to eliminate the static error regarding the fundamental frequency fluctuation characteristic of zero sequence component. The simulation results based on Matlab/Simulink show that the proposed control project can effectively suppress the disturbance caused by unbalanced loads and maintain the load voltage balance. The project is easy to be achieved and remarkably improves the quality of the independent power supply system.
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Rañó, Iñaki
2012-07-01
Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.
Inflight performance of the Ulysses reaction control system
NASA Technical Reports Server (NTRS)
McGarry, Andrew; Berry, William; Parker, David
1997-01-01
The Ulysses spacecraft has been exploring the heliosphere since October 1990 in a six-year polar orbit. Despite varying operational demands, the pressure-fed monopropellant hydrazine reaction control system (RCS) has experienced few problems. The observed anomalies, having minimal operational impact, include plume impingement effects, electrical power overload effects and hydrazine gas generation effects. These anomalies are presented and discussed, with emphasis on the first observation of gas in the hydrazine propellant. The relatively low gas generation rate is attributed to: the use of high purity hydrazine; the configuration of the spin-stabilized spacecraft; the extensive use of titanium alloys; and the efficiency of the thermal control of the propellant tank which maintains a temperature of 21 C.
NASA Astrophysics Data System (ADS)
Zaryankin, A. E.; Rogalev, N. D.; Rogalev, A. N.; Garanin, I. V.; Osipov, S. K.; Grigoriev, E. Yu.
2016-06-01
This paper considers the problems that will unavoidably be encountered in the creation of new-generation turbines operated at ultrasupercritical initial steam parameters, namely, the development of new control and shutoff valves, the reduction of end energy losses in blade cascades and steam leaks in high-pressure cylinders (HPCs), the elimination of effect produced by regenerative steam bleedoffs on the afterextraction stage, the cooling of a blade cascade, etc. Some possible solutions are given for the two first of the listed problems. The conclusion about the need for the transition to new-generation control valves in the development of new advanced steam turbines with ultrasupercritical initial steam parameters has been made. From the viewpoint of their design, the considered new-generation valves differ from the known contemporary constructions by a shaped axially symmetric confusor channel and perforated zones on the streamlined spool surface and the inlet diffuser saddle part. The analysis of the vibration behavior of new-generation valves has demonstrated a decrease in the dynamic loads acting on their stems. To reduce the end energy losses in nozzle or blade cascades with small aspect ratios, it is proposed to use finned shrouds in the interblade channels. The cross section of fins has a triangular profile, and their height must be comparable with the thickness of the boundary layer in the outlet cross section of a cascade and, provisionally, be smaller than 8% of the cascade chord.
The sixth generation robot in space
NASA Technical Reports Server (NTRS)
Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.
1990-01-01
The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.
Quantum Sensors for the Generating Functional of Interacting Quantum Field Theories
NASA Astrophysics Data System (ADS)
Bermudez, A.; Aarts, G.; Müller, M.
2017-10-01
Difficult problems described in terms of interacting quantum fields evolving in real time or out of equilibrium abound in condensed-matter and high-energy physics. Addressing such problems via controlled experiments in atomic, molecular, and optical physics would be a breakthrough in the field of quantum simulations. In this work, we present a quantum-sensing protocol to measure the generating functional of an interacting quantum field theory and, with it, all the relevant information about its in- or out-of-equilibrium phenomena. Our protocol can be understood as a collective interferometric scheme based on a generalization of the notion of Schwinger sources in quantum field theories, which make it possible to probe the generating functional. We show that our scheme can be realized in crystals of trapped ions acting as analog quantum simulators of self-interacting scalar quantum field theories.
Learner-generated drawing for phonological and orthographic dyslexic readers.
Wang, Li-Chih; Yang, Hsien-Ming; Tasi, Hung-Ju; Chan, Shih-Yi
2013-01-01
This study presents an examination of learner-generated drawing for different reading comprehension subtypes of dyslexic students and control students. The participants were 22 phonological dyslexic students, 20 orthographic dyslexic students, 21 double-deficit dyslexic students, and 45 age-, gender-, and IQ-matched control students. The major evaluation tools included word recognition task, orthographic task, phonological awareness task, and scenery texts and questions. Comparisons of the four groups of students showed differences among phonological dyslexia, orthographic dyslexia, double-deficit dyslexia, and the chronological age control groups in pre- and posttest performance of scenery texts. Differences also existed in relevant questions and the effect of the learner-generated drawing method. The pretest performance showed problems in the dyslexic samples in reading the scenery texts and answering relevant questions. The posttest performance revealed certain differences among phonological dyslexia, orthographic dyslexia, double-deficit dyslexia, and the chronological age control group. Finally, all dyslexic groups obtained a great effect from using the learner-generated drawing, particularly orthographic dyslexia. These results suggest that the learner-generated drawing was also useful for dyslexic students, with the potential for use in the classroom for teaching text reading to dyslexic students. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong
2015-11-01
The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.
NASA Astrophysics Data System (ADS)
Dehbozorgi, Mohammad Reza
2000-10-01
Improvements in power system reliability have always been of interest to both power companies and customers. Since there are no sizable electrical energy storage elements in electrical power systems, the generated power should match the load demand at any given time. Failure to meet this balance may cause severe system problems, including loss of generation and system blackouts. This thesis proposes a methodology which can respond to either loss of generation or loss of load. It is based on switching of electric water heaters using power system frequency as the controlling signal. The proposed methodology encounters, and the thesis has addressed, the following associated problems. The controller must be interfaced with the existing thermostat control. When necessary to switch on loads, the water in the tank should not be overheated. Rapid switching of blocks of load, or chattering, has been considered. The contributions of the thesis are: (A) A system has been proposed which makes a significant portion of the distributed loads connected to a power system to behave in a predetermined manner to improve the power system response during disturbances. (B) The action of the proposed system is transparent to the customers. (C) The thesis proposes a simple analysis for determining the amount of such loads which might be switched and relates this amount to the size of the disturbances which can occur in the utility. (D) The proposed system acts without any formal communication links, solely using the embedded information present system-wide. (E) The methodology of the thesis proposes switching of water heater loads based on a simple, localized frequency set-point controller. The thesis has identified the consequent problem of rapid switching of distributed loads, which is referred to as chattering. (F) Two approaches have been proposed to reduce chattering to tolerable levels. (G) A frequency controller has been designed and built according to the specifications required to switch electric water heater loads in response to power system disturbances. (H) A cost analysis for building and installing the distributed frequency controller has been carried out. (I) The proposed equipment and methodology has been implemented and tested successfully. (Abstract shortened by UMI.)
Automatic phase control in solar power satellite systems
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Kantak, A. V.
1978-01-01
Various approaches to the problem of generating, maintaining and distributing a coherent, reference phase signal over a large area are suggested, mathematically modeled and analyzed with respect to their ability to minimize: phase build-up, beam diffusion and beam steering phase jitter, cable length, and maximize power transfer efficiency. In addition, phase control configurations are suggested which alleviate the need for layout symmetry.
Development of an adaptive hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1994-01-01
In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.
Advanced technology applications for second and third general coal gasification systems
NASA Technical Reports Server (NTRS)
Bradford, R.; Hyde, J. D.; Mead, C. W.
1980-01-01
The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.
The problem of the driverless vehicle specified path stability control
NASA Astrophysics Data System (ADS)
Buznikov, S. E.; Endachev, D. V.; Elkin, D. S.; Strukov, V. O.
2018-02-01
Currently the effort of many leading foreign companies is focused on creation of driverless transport for transportation of cargo and passengers. Among many practical problems arising while creating driverless vehicles, the problem of the specified path stability control occupies a central place. The purpose of this paper is formalization of the problem in question in terms of the quadratic functional of the control quality, the comparative analysis of the possible solutions and justification of the choice of the optimum technical solution. As square value of the integral of the deviation from the specified path is proposed as the quadratic functional of the control quality. For generation of the set of software and hardware solution variants the Zwicky “morphological box” method is used within the hardware and software environments. The heading control algorithms use the wheel steering angle data and the deviation from the lane centerline (specified path) calculated based on the navigation data and the data from the video system. Where the video system does not detect the road marking, the control is carried out based on the wheel navigation system data and where recognizable road marking exits - based on to the video system data. The analysis of the test results allows making the conclusion that the application of the combined navigation system algorithms that provide quasi-optimum solution of the problem while meeting the strict functional limits for the technical and economic indicators of the driverless vehicle control system under development is effective.
42 CFR 480.101 - Scope and definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ORGANIZATION INFORMATION Utilization and Quality Control Quality Improvement Organizations (QIOs) General... governing— (1) Disclosure of information collected, acquired or generated by a Utilization and Quality... of the problem and follow-up. Quality review study information means all documentation related to the...
42 CFR 480.101 - Scope and definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ORGANIZATION INFORMATION Utilization and Quality Control Quality Improvement Organizations (QIOs) General... governing— (1) Disclosure of information collected, acquired or generated by a Utilization and Quality... of the problem and follow-up. Quality review study information means all documentation related to the...
42 CFR 480.101 - Scope and definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ORGANIZATION INFORMATION Utilization and Quality Control Quality Improvement Organizations (QIOs) General... governing— (1) Disclosure of information collected, acquired or generated by a Utilization and Quality... of the problem and follow-up. Quality review study information means all documentation related to the...
Autorotation flight control system
NASA Technical Reports Server (NTRS)
Bachelder, Edward N. (Inventor); Aponso, Bimal L. (Inventor); Lee, Dong-Chan (Inventor)
2011-01-01
The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.
An investigation of dynamic-analysis methods for variable-geometry structures
NASA Technical Reports Server (NTRS)
Austin, F.
1980-01-01
Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
NASA Astrophysics Data System (ADS)
Pezzulo, Giovanni; Donnarumma, Francesco; Iodice, Pierpaolo; Prevete, Roberto; Dindo, Haris
2015-03-01
Controlling the body - given its huge number of degrees of freedom - poses severe computational challenges. Mounting evidence suggests that the brain alleviates this problem by exploiting "synergies", or patterns of muscle activities (and/or movement dynamics and kinematics) that can be combined to control action, rather than controlling individual muscles of joints [1-10].
Several examples where turbulence models fail in inlet flow field analysis
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1993-01-01
Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.
Quantum control on entangled bipartite qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, Francisco
2010-04-15
Ising interactions between qubits can produce distortion on entangled pairs generated for engineering purposes (e.g., for quantum computation or quantum cryptography). The presence of parasite magnetic fields destroys or alters the expected behavior for which it was intended. In addition, these pairs are generated with some dispersion in their original configuration, so their discrimination is necessary for applications. Nevertheless, discrimination should be made after Ising distortion. Quantum control helps in both problems; making some projective measurements upon the pair to decide the original state to replace it, or just trying to reconstruct it using some procedures which do not altermore » their quantum nature. Results about the performance of these procedures are reported. First, we will work with pure systems studying restrictions and advantages. Then, we will extend these operations for mixed states generated with uncertainty in the time of distortion, correcting them by assuming the control prescriptions for the most probable one.« less
Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K
2008-05-01
Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1-F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8-E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1-F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1-F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states.
Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K
2017-01-01
Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1–F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8–E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1–F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1–F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states. PMID:18304984
Cassotti, Mathieu; Agogué, Marine; Camarda, Anaëlle; Houdé, Olivier; Borst, Grégoire
2016-01-01
Developmental cognitive neuroscience studies tend to show that the prefrontal brain regions (known to be involved in inhibitory control) are activated during the generation of creative ideas. In the present article, we discuss how a dual-process model of creativity-much like the ones proposed to account for decision making and reasoning-could broaden our understanding of the processes involved in creative ideas generation. When generating creative ideas, children, adolescents, and adults tend to follow "the path of least resistance" and propose solutions that are built on the most common and accessible knowledge within a specific domain, leading to fixation effect. In line with recent theory of typical cognitive development, we argue that the ability to resist the spontaneous activation of design heuristics, to privilege other types of reasoning, might be critical to generate creative ideas at all ages. In the present review, we demonstrate that inhibitory control at all ages can actually support creativity. Indeed, the ability to think of something truly new and original requires first inhibiting spontaneous solutions that come to mind quickly and unconsciously and then exploring new ideas using a generative type of reasoning. © 2016 Wiley Periodicals, Inc.
Single step optimization of manipulator maneuvers with variable structure control
NASA Technical Reports Server (NTRS)
Chen, N.; Dwyer, T. A. W., III
1987-01-01
One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.
Pattern Generator for Bench Test of Digital Boards
NASA Technical Reports Server (NTRS)
Berkun, Andrew C.; Chu, Anhua J.
2012-01-01
All efforts to develop electronic equipment reach a stage where they need a board test station for each board. The SMAP digital system consists of three board types that interact with each other using interfaces with critical timing. Each board needs to be tested individually before combining into the integrated digital electronics system. Each board needs critical timing signals from the others to be able to operate. A bench test system was developed to support test of each board. The test system produces all the outputs of the control and timing unit, and is delivered much earlier than the timing unit. Timing signals are treated as data. A large file is generated containing the state of every timing signal at any instant. This file is streamed out to an IO card, which is wired directly to the device-under-test (DUT) input pins. This provides a flexible test environment that can be adapted to any of the boards required to test in a standalone configuration. The problem of generating the critical timing signals is then transferred from a hardware problem to a software problem where it is more easily dealt with.
Does the nervous system use equilibrium-point control to guide single and multiple joint movements?
Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S
1992-12-01
The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.
Quadratic Optimization in the Problems of Active Control of Sound
NASA Technical Reports Server (NTRS)
Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).
Oizumi, Ryo
2014-01-01
Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of "Stochastic Control Theory" in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path-integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models.
Unification Theory of Optimal Life Histories and Linear Demographic Models in Internal Stochasticity
Oizumi, Ryo
2014-01-01
Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of “Stochastic Control Theory” in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path–integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models. PMID:24945258
Gambling prevalence rates among immigrants: a multigenerational examination.
Wilson, Alyssa N; Salas-Wright, Christopher P; Vaughn, Michael G; Maynard, Brandy R
2015-03-01
The present study employed data from Waves I and II of the National Epidemiologic Survey of Alcohol and Related Conditions (NESARC) to compare gambling prevalence rates across gender and world regions (e.g., Africa, Asia, Europe, and Latin America). Responses from first generation (n=5363), second generation (n=4826), third generation (n=4746), and native-born Americans (n=19,715) were subjected to a series of multinomial regression analyses, after controlling for sociodemographic variables such as age, gender, race/ethnicity, household income, education level, region of the United States, and urbanicity. The prevalence of gambling and problem gambling was markedly lower among first-generation immigrants than that of native-born Americans and second and third-generation immigrants. Results also point to inter- and intra-generational dynamics related to gender, age of arrival and duration in the United States, and world region from which participants emigrated. Additionally, we found that second-generation immigrants and nonimmigrants were significantly more likely to meet criteria for disordered gambling compared to first-generation immigrants in general. Compared to first-generation immigrants, male and female immigrants of subsequent generations and nonimmigrants were significantly more likely to report involvement in all problem gambling behaviors examined. Findings suggest that gambling prevalence rates increase across subsequent generations, and are more likely to occur in women than among men. Copyright © 2014 Elsevier Ltd. All rights reserved.
Power oscillation suppression by robust SMES in power system with large wind power penetration
NASA Astrophysics Data System (ADS)
Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori
2009-01-01
The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.
2015-06-21
problem was detected . Protection elements were implemented to trigger on over- voltage , over-current, over/under-frequency, and zero-sequence voltage ...power hardware in the loop simulation of distribution networks with photovoltaic generation,” International Journal of Renewable Energy Research...source modules were intended to support both emulation of a representative gas turbine generator set, as well as a flexible, controllable voltage source
Fairbank, Michael; Li, Shuhui; Fu, Xingang; Alonso, Eduardo; Wunsch, Donald
2014-01-01
We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets. The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1980-01-01
It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.
Handbook for industrial noise control
NASA Technical Reports Server (NTRS)
1981-01-01
The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.
Handbook for industrial noise control
NASA Astrophysics Data System (ADS)
The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.
ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1994-01-01
This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1989. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.
ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)
NASA Technical Reports Server (NTRS)
Frisch, H.
1994-01-01
This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1986. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.
NASA Astrophysics Data System (ADS)
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
Analysis of the Space Propulsion System Problem Using RAVEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
diego mandelli; curtis smith; cristian rabiti
This paper presents the solution of the space propulsion problem using a PRA code currently under development at Idaho National Laboratory (INL). RAVEN (Reactor Analysis and Virtual control ENviroment) is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities. It is designed to derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures) and to perform both Monte- Carlo sampling of random distributed events and Event Tree based analysis. In order to facilitate the input/output handling, a Graphical User Interface (GUI) and a post-processing data-mining module are available.more » RAVEN allows also to interface with several numerical codes such as RELAP5 and RELAP-7 and ad-hoc system simulators. For the space propulsion system problem, an ad-hoc simulator has been developed and written in python language and then interfaced to RAVEN. Such simulator fully models both deterministic (e.g., system dynamics and interactions between system components) and stochastic behaviors (i.e., failures of components/systems such as distribution lines and thrusters). Stochastic analysis is performed using random sampling based methodologies (i.e., Monte-Carlo). Such analysis is accomplished to determine both the reliability of the space propulsion system and to propagate the uncertainties associated to a specific set of parameters. As also indicated in the scope of the benchmark problem, the results generated by the stochastic analysis are used to generate risk-informed insights such as conditions under witch different strategy can be followed.« less
Active Control of Engine Dynamics (Le controle actif pour la dynamique des moteurs)
2002-11-01
optimum operating conditions, avoiding, for example, inadvertent operation when the pulsations can cause unacceptable rates of surface heat transfer or...such as shipboard incineration, and power and heat generation in the field. Because the practical problem of suppressing combustion instabilities has...aforementioned physical processes are essentially completed prior to entering the combustor. One consequence of fuel-air premixing is that the heat
Instability in Rotating Machinery
NASA Technical Reports Server (NTRS)
1985-01-01
The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.
Optimal control for wind turbine system via state-space method
NASA Astrophysics Data System (ADS)
Shanoob, Mudhafar L.
Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on using type 1 servo system that depends on the full state feedback variables and tracking error. The LQR improves the transient stability and time response of the wind turbine system in all three-disturbance scenarios. The results of both methods are deeply explained in the simulation section.
NASA Astrophysics Data System (ADS)
Liu, Yifang; Wang, Zhijie; Li, Renfu; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu; Liu, Sanming
2017-05-01
When the grid voltage drop, over current of transient rotor and over voltage may damage the power electronic devices. The attenuation of electromagnetic torque will lead to speed up. This paper proposes an improved feed-forward control strategy and its application in the PWM converter. When the PWM converter on voltage drops, bus voltage will be more stable. So over current problems of the DFIG rotor side can be reduced, and it also can improve voltage regulation speed of the DC bus voltage and reduce the oscillation amplitude. Furthermore, the stability of doubly fed wind generator system can be improved. The simulation results verify the validity of the modified control strategy.
Employing static excitation control and tie line reactance to stabilize wind turbine generators
NASA Technical Reports Server (NTRS)
Hwang, H. H.; Mozeico, H. V.; Guo, T.
1978-01-01
An analytical representation of a wind turbine generator is presented which employs blade pitch angle feedback control. A mathematical model was formulated. With the functioning MOD-0 wind turbine serving as a practical case study, results of computer simulations of the model as applied to the problem of dynamic stability at rated load are also presented. The effect of the tower shadow was included in the input to the system. Different configurations of the drive train, and optimal values of the tie line reactance were used in the simulations. Computer results revealed that a static excitation control system coupled with optimal values of the tie line reactance would effectively reduce oscillations of the power output, without the use of a slip clutch.
Lv, Yueyong; Hu, Qinglei; Ma, Guangfu; Zhou, Jiakang
2011-10-01
This paper treats the problem of synchronized control of spacecraft formation flying (SFF) in the presence of input constraint and parameter uncertainties. More specifically, backstepping based robust control is first developed for the total 6 DOF dynamic model of SFF with parameter uncertainties, in which the model consists of relative translation and attitude rotation. Then this controller is redesigned to deal with the input constraint problem by incorporating a command filter such that the generated control could be implementable even under physical or operating constraints on the control input. The convergence of the proposed control algorithms is proved by the Lyapunov stability theorem. Compared with conventional methods, illustrative simulations of spacecraft formation flying are conducted to verify the effectiveness of the proposed approach to achieve the spacecraft track the desired attitude and position trajectories in a synchronized fashion even in the presence of uncertainties, external disturbances and control saturation constraint. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Musdalifah, N.; Handajani, S. S.; Zukhronah, E.
2017-06-01
Competition between the homoneous companies cause the company have to keep production quality. To cover this problem, the company controls the production with statistical quality control using control chart. Shewhart control chart is used to normal distributed data. The production data is often non-normal distribution and occured small process shift. Grand median control chart is a control chart for non-normal distributed data, while cumulative sum (cusum) control chart is a sensitive control chart to detect small process shift. The purpose of this research is to compare grand median and cusum control charts on shuttlecock weight variable in CV Marjoko Kompas dan Domas by generating data as the actual distribution. The generated data is used to simulate multiplier of standard deviation on grand median and cusum control charts. Simulation is done to get average run lenght (ARL) 370. Grand median control chart detects ten points that out of control, while cusum control chart detects a point out of control. It can be concluded that grand median control chart is better than cusum control chart.
Efficiency of quantum vs. classical annealing in nonconvex learning problems
Zecchina, Riccardo
2018-01-01
Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764
Energy Storage Sizing Taking Into Account Forecast Uncertainties and Receding Horizon Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Hug, Gabriela; Li, Xin
Energy storage systems (ESS) have the potential to be very beneficial for applications such as reducing the ramping of generators, peak shaving, and balancing not only the variability introduced by renewable energy sources, but also the uncertainty introduced by errors in their forecasts. Optimal usage of storage may result in reduced generation costs and an increased use of renewable energy. However, optimally sizing these devices is a challenging problem. This paper aims to provide the tools to optimally size an ESS under the assumption that it will be operated under a model predictive control scheme and that the forecast ofmore » the renewable energy resources include prediction errors. A two-stage stochastic model predictive control is formulated and solved, where the optimal usage of the storage is simultaneously determined along with the optimal generation outputs and size of the storage. Wind forecast errors are taken into account in the optimization problem via probabilistic constraints for which an analytical form is derived. This allows for the stochastic optimization problem to be solved directly, without using sampling-based approaches, and sizing the storage to account not only for a wide range of potential scenarios, but also for a wide range of potential forecast errors. In the proposed formulation, we account for the fact that errors in the forecast affect how the device is operated later in the horizon and that a receding horizon scheme is used in operation to optimally use the available storage.« less
Wind-energy recovery by a static Scherbius induction generator
NASA Astrophysics Data System (ADS)
Smith, G. A.; Nigim, K. A.
1981-11-01
The paper describes a technique for controlling a doubly fed induction generator driven by a windmill, or other form of variable-speed prime mover, to provide power generation into the national grid system. The secondary circuit of the generator is supplied at a variable frequency from a current source inverter which for test purposes is rated to allow energy recovery, from a simulated windmill, from maximum speed to standstill. To overcome the stability problems normally associated with doubly fed machines a novel signal generator, which is locked in phase with the rotor EMF, controls the secondary power to provide operation over a wide range of subsynchronous and supersynchronous speeds. Consideration of power flow enables the VA rating of the secondary power source to be determined as a function of the gear ratio and online operating range of the system. A simple current source model is used to predict performance which is compared with experimental results. The results indicate a viable system, and suggestions for further work are proposed.
Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V
2014-12-18
Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.
Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle
NASA Technical Reports Server (NTRS)
Bergmann, E.; Weiler, P.
1983-01-01
An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator
Bouallègue, Soufiene; Garrido, Aitor J.; Haggège, Joseph
2018-01-01
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances. PMID:29695127
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator.
Ghefiri, Khaoula; Bouallègue, Soufiene; Garrido, Izaskun; Garrido, Aitor J; Haggège, Joseph
2018-04-24
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.
Development and Validation of the Diabetes Adolescent Problem Solving Questionnaire
Mulvaney, Shelagh A.; Jaser, Sarah S.; Rothman, Russell L.; Russell, William; Pittel, Eric J.; Lybarger, Cindy; Wallston, Kenneth A.
2014-01-01
Objective Problem solving is a critical diabetes self-management skill. Because of a lack of clinically feasible measures, our aim was to develop and validate a self-report self-management problem solving questionnaire for adolescents with type 1 diabetes (T1D). Methods A multidisciplinary team of diabetes experts generated questionnaire items that addressed diabetes self-management problem solving. Iterative feedback from parents and adolescents resulted in 27 items. Adolescents from two studies (N=156) aged 13–17 were recruited through a pediatric diabetes clinic and completed measures through an online survey. Glycemic control was measured by HbA1c recorded in the medical record. Results Empirical elimination of items using Principal Components Analyses resulted in a 13-item unidimensional measure, the Diabetes Adolescent Problem Solving Questionnaire (DAPSQ) that explained 57% of the variance. The DAPSQ demonstrated internal consistency (Cronbach’s alpha = 0.92) and was correlated with diabetes self-management (r=0.53, p<.001), self-efficacy (r=0.54, p<.001), and glycemic control (r= −0.24, p<.01). Conclusion The DAPSQ is a brief instrument for assessment of diabetes self-management problem solving in youth with T1D associated with better self-management behaviors and glycemic control. Practice Implications The DAPSQ is a clinically feasible self-report measure that can provide valuable information regarding level of self-management problem solving and guide patient education. PMID:25063715
Development and validation of the diabetes adolescent problem solving questionnaire.
Mulvaney, Shelagh A; Jaser, Sarah S; Rothman, Russell L; Russell, William E; Pittel, Eric J; Lybarger, Cindy; Wallston, Kenneth A
2014-10-01
Problem solving is a critical diabetes self-management skill. Because of a lack of clinically feasible measures, our aim was to develop and validate a self-report self-management problem solving questionnaire for adolescents with type 1 diabetes (T1D). A multidisciplinary team of diabetes experts generated questionnaire items that addressed diabetes self-management problem solving. Iterative feedback from parents and adolescents resulted in 27 items. Adolescents from two studies (N=156) aged 13-17 were recruited through a pediatric diabetes clinic and completed measures through an online survey. Glycemic control was measured by HbA1c recorded in the medical record. Empirical elimination of items using principal components analyses resulted in a 13-item unidimensional measure, the diabetes adolescent problem solving questionnaire (DAPSQ) that explained 56% of the variance. The DAPSQ demonstrated internal consistency (Cronbach's alpha=0.92) and was correlated with diabetes self-management (r=0.53, p<.001), self-efficacy (r=0.54, p<.001), and glycemic control (r=-0.24, p<.01). The DAPSQ is a brief instrument for assessment of diabetes self-management problem solving in youth with T1D and is associated with better self-management behaviors and glycemic control. The DAPSQ is a clinically feasible self-report measure that can provide valuable information regarding level of self-management problem solving and guide patient education. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Continuous performance measurement in flight systems. [sequential control model
NASA Technical Reports Server (NTRS)
Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.
1975-01-01
The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.
ENEL power generation and transmission control (PGTC) system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, F.; Schiavi
1986-08-01
The ENEL (Italian State Power Board) PGTC System has a multi-level architecture which consists of a National Control Center (NCC), eight Area Control Centers (ACC), and Remote Terminal Units (RTU). Remote Control Centers (RCC), representing the third hierarchical level of the control system, will be integrated into the system beginning in 1987. This paper describes the structure of the PGTC system from the remote stations up to the NCC and the main control functions. The method of implementation, the organizational and managerial problems that were faced in the development of the project are also described.
NASA Technical Reports Server (NTRS)
1971-01-01
The strong influence NASA-sponsored research has had on the development of solutions to difficult contamination problems is considered. The contamination control field is comprised of an industrial base, supplying the tools of control; a user base, adopting control techniques; and a technical base, expanding the concepts of control. Both formal and informal mechanisms used by NASA to communicate a variety of technical advances are reviewed and certain examples of the expansion of the user base through technology transfer are given. Issues related to transfer of NASA-generated contamination control technology are emphasized.
Zinc Bromide Flow Battery Installation for Islanding and Backup Power
2017-08-09
predictably is in place. The ability to control generation has become more difficult with the increase of RE systems such as solar PV and wind turbines ...Both PV and wind systems generate power based on unpredictable cycles of nature. At very low levels of RE penetration the grid can be balanced by...Page Intentionally Left Blank 15 5.0 TEST DESIGN This goal of this demonstration was to solve two main problems . The first
Reinforcement learning for a biped robot based on a CPG-actor-critic method.
Nakamura, Yutaka; Mori, Takeshi; Sato, Masa-aki; Ishii, Shin
2007-08-01
Animals' rhythmic movements, such as locomotion, are considered to be controlled by neural circuits called central pattern generators (CPGs), which generate oscillatory signals. Motivated by this biological mechanism, studies have been conducted on the rhythmic movements controlled by CPG. As an autonomous learning framework for a CPG controller, we propose in this article a reinforcement learning method we call the "CPG-actor-critic" method. This method introduces a new architecture to the actor, and its training is roughly based on a stochastic policy gradient algorithm presented recently. We apply this method to an automatic acquisition problem of control for a biped robot. Computer simulations show that training of the CPG can be successfully performed by our method, thus allowing the biped robot to not only walk stably but also adapt to environmental changes.
Coordinated control of wind generation and energy storage for power system frequency regulation
NASA Astrophysics Data System (ADS)
Baone, Chaitanya Ashok
Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local measurements is developed. In addition to the system-wide objective of frequency regulation, a local objective of reducing the wind turbine drivetrain stress is considered. Also, an algorithm is proposed to characterize the modal degrees of controllability and observability on a subspace of critical modes of the system, so that the most effective sensor and actuator locations to be used in the control design can be found.
Selective loss of verbal imagery.
Mehta, Z; Newcombe, F
1996-05-01
This single case study of the ability to generate verbal and non-verbal imagery in a woman who sustained a gunshot wound to the brain reports a significant difficulty in generating images of word shapes but not a significant problem in generating object images. Further dissociation, however, was observed in her ability to generate images of living vs non-living material. She made more errors in imagery and factual information tasks for non-living items than for living items. This pattern contrasts with our previous report of the agnosic patient, M.S., who had severe difficulty in generating images of living material, whereas his ability to image the shape of words was comparable to that of normal control subjects. Furthermore, with regard to the generation of images of living compared with non-living material, M.S. shows more errors with living than nonliving items. In contrast, the present patient, S.M., made significantly more errors with non-living relative to living items. There appear to be two types of double dissociation which reinforce the growing evidence of dissociable impairments in the ability to generate images for different types of verbal and non-verbal material. Such dissociations, presumably related to sensory and cognitive processing demands, address the problem of the neural basis of imagery.
Delay test generation for synchronous sequential circuits
NASA Astrophysics Data System (ADS)
Devadas, Srinivas
1989-05-01
We address the problem of generating tests for delay faults in non-scan synchronous sequential circuits. Delay test generation for sequential circuits is a considerably more difficult problem than delay testing of combinational circuits and has received much less attention. In this paper, we present a method for generating test sequences to detect delay faults in sequential circuits using the stuck-at fault sequential test generator STALLION. The method is complete in that it will generate a delay test sequence for a targeted fault given sufficient CPU time, if such a sequence exists. We term faults for which no delay test sequence exists, under out test methodology, sequentially delay redundant. We describe means of eliminating sequential delay redundancies in logic circuits. We present a partial-scan methodology for enhancing the testability of difficult-to-test of untestable sequential circuits, wherein a small number of flip-flops are selected and made controllable/observable. The selection process guarantees the elimination of all sequential delay redundancies. We show that an intimate relationship exists between state assignment and delay testability of a sequential machine. We describe a state assignment algorithm for the synthesis of sequential machines with maximal delay fault testability. Preliminary experimental results using the test generation, partial-scan and synthesis algorithm are presented.
NASA Astrophysics Data System (ADS)
Wilches-Bernal, Felipe
Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control of the WTG while the second controller manipulates the reactive power control of the WTG using the current magnitude as the feedback signal. Finally, the dissertation proposes a parameter identification method for identifying and verifying the reactive power control parameters of WTGs. Using voltage and current measurements of a wind unit as an input, the proposed method estimates an optimal set of parameters such that the output current of a standalone WTG model better approximates the measured signal. Because WTG are nonlinear systems, the identification method is solved by a Gauss-Newton iteration used to calculate the solution of a nonlinear least-squares problem. The effectiveness of the proposed method is illustrated using a set of simulated data and actual PMU recordings.
Weighted Distributions Arising Out of Methods of Ascertainment.
1984-07-01
control and statistical problems generated by it. In Applications of Statistics, P. R. Krishnaiah (ed.), North-Holland, 1-26. Patil, 0. P. and Ord, J. K...weighted distributions: A survey of their applications. In Aplications of Statistics, P. R. Krishnaiah (ed.), 383-405, North Holland Publishing Company
Compulsory Birth Control and Fertility Measures in India.
ERIC Educational Resources Information Center
Halli, S. S.
1983-01-01
Discussion of possible applications of the microsimulation approach to analysis of population policy proposes compulsory sterilization policy for all of India. Topics covered include India's population problem, methods for generating a distribution of couples to be sterilized, model validation, data utilized, data analysis, program limitations,…
Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials
USDA-ARS?s Scientific Manuscript database
Raman imaging can analyze biological materials by generating detailed chemical images. Over the last decade, tremendous advancements in Raman imaging and data analysis techniques have overcome problems such as long data acquisition and analysis times and poor sensitivity. This review article introdu...
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Solikhin
2016-06-01
In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well.
The Shock and Vibration Digest, Volume 4, Number 5, May 1972.
1972-05-01
capability to solve real-time on aircraft noise, its generation instrumentation problems found effects and control will be sur- In manufacturing plants...annoyance. Noise measurements indicate that the same manufacturing plantisto machine the the respondents, in general, properly identify modified... Manufacturing 1W San Diego, Calif. A. J. Favrata, SAE iiq. Meeting, SAE Internaional Conference on Noise Control Engineering, INCE 4-6 Wanington, D. C. Mi. .f
Plan Debugging Using Approximate Domain Theories.
1995-03-01
compelling suggestion that generative plan- ning systems solving large problems will need to exploit the control information implicit in uncertain...control information implicit in uncertain information may well lead the planner to expand one portion of a plan at one point, and a separate portion of...solutions that have been proposed are to abandon declarativism (as suggested in the work on situated automata theory and its variants [1, 16, 56, 72
Lateral-deflection-controlled friction force microscopy
NASA Astrophysics Data System (ADS)
Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong
2014-08-01
Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.
Yang, Yongliang; Modares, Hamidreza; Wunsch, Donald C; Yin, Yixin
2018-06-01
This paper develops optimal control protocols for the distributed output synchronization problem of leader-follower multiagent systems with an active leader. Agents are assumed to be heterogeneous with different dynamics and dimensions. The desired trajectory is assumed to be preplanned and is generated by the leader. Other follower agents autonomously synchronize to the leader by interacting with each other using a communication network. The leader is assumed to be active in the sense that it has a nonzero control input so that it can act independently and update its control to keep the followers away from possible danger. A distributed observer is first designed to estimate the leader's state and generate the reference signal for each follower. Then, the output synchronization of leader-follower systems with an active leader is formulated as a distributed optimal tracking problem, and inhomogeneous algebraic Riccati equations (AREs) are derived to solve it. The resulting distributed optimal control protocols not only minimize the steady-state error but also optimize the transient response of the agents. An off-policy reinforcement learning algorithm is developed to solve the inhomogeneous AREs online in real time and without requiring any knowledge of the agents' dynamics. Finally, two simulation examples are conducted to illustrate the effectiveness of the proposed algorithm.
Generative Representations for Evolving Families of Designs
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2003-01-01
Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.
Using Self-Generated Drawings to Solve Arithmetic Word Problems.
ERIC Educational Resources Information Center
Van Essen, Gerard; Hamaker, Christiaan
1990-01-01
Results are presented from two intervention studies which investigate whether encouraging elementary students to generate drawings of arithmetic word problems facilitates problem-solving performance. Findings indicate that fifth graders (N=50) generated many drawings of word problems and improved problem solutions after the intervention, whereas…
Is there a role for a test controller in the development of new ATC equipment?
NASA Technical Reports Server (NTRS)
Westrum, Ron
1994-01-01
Earl Wiener points out that human factors problems fixed during the R & D stage are paid for once. When they are not fixed during R & D, they are then paid for every day. How users are involved in the R & D process to assist in developing equipment is a critical issue. Effective involvement can produce real improvements. Ineffective involvement can produce inefficient kludges or systems that are actually dangerous. The underlying problem is the management of information and ideas. To develop a really generative system a great deal would have to change in the way that the FAA innovates. Use of test controllers would solve only some of the problems. For instance, we have cockpit resource management now for pilots; we may have it soon for controllers. But the management of ideas in the innovation process also needs intellectual resource management. Simply involving users is not enough. Brought in at the wrong point in the development process, users can block or compromise innovation. User involvement must be carefully considered. A test controller may be one solution to this problem. It might be necessary to have several kinds of test controllers (en route versus TRACON, for instance). No doubt further problems would surface in getting test controllers into operation. I would recommend that the FAA engage in a series of case studies of controller involvement in the innovation process. A systematic comparison of effective and ineffective cases would do much to clarify what we ought to do in the future. Unfortunately, I have been unable to find any cases where test controllers have been used. Perhaps we need to create some, to see how they work.
Intelligent communication assistant for databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobson, G.; Shaked, V.; Rowley, S.
1983-01-01
An intelligent communication assistant for databases, called FRED (front end for databases) is explored. FRED is designed to facilitate access to database systems by users of varying levels of experience. FRED is a second generation of natural language front-ends for databases and intends to solve two critical interface problems existing between end-users and databases: connectivity and communication problems. The authors report their experiences in developing software for natural language query processing, dialog control, and knowledge representation, as well as the direction of future work. 10 references.
Application of decomposition techniques to the preliminary design of a transport aircraft
NASA Technical Reports Server (NTRS)
Rogan, J. E.; Kolb, M. A.
1987-01-01
A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.
US PWR steam generator management: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welty, C.S. Jr.
1997-02-01
This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, andmore » is provided as a supplement to that material.« less
NASA Astrophysics Data System (ADS)
Shamieh, Hadi; Sedaghati, Ramin
2017-12-01
The magnetorheological brake (MRB) is an electromechanical device that generates a retarding torque through employing magnetorheological (MR) fluids. The objective of this paper is to design, optimize and control an MRB for automotive applications considering. The dynamic range of a disk-type MRB expressing the ratio of generated toque at on and off states has been formulated as a function of the rotational speed, geometrical and material properties, and applied electrical current. Analytical magnetic circuit analysis has been conducted to derive the relation between magnetic field intensity and the applied electrical current as a function of the MRB geometrical and material properties. A multidisciplinary design optimization problem has then been formulated to identify the optimal brake geometrical parameters to maximize the dynamic range and minimize the response time and weight of the MRB under weight, size and magnetic flux density constraints. The optimization problem has been solved using combined genetic and sequential quadratic programming algorithms. Finally, the performance of the optimally designed MRB has been investigated in a quarter vehicle model. A PID controller has been designed to regulate the applied current required by the MRB in order to improve vehicle’s slipping on different road conditions.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
NASA Astrophysics Data System (ADS)
Verma, H. K.; Mafidar, P.
2013-09-01
In view of growing concern towards environment, power system engineers are forced to generate quality green energy. Hence the economic dispatch (ED) aims at the power generation to meet the load demand at minimum fuel cost with environmental and voltage constraints along with essential constraints on real and reactive power. The emission control which reduces the negative impact on environment is achieved by including the additional constraints in ED problem. Presently, the power system mostly operates near its stability limits, therefore with increased demand the system faces voltage problem. The bus voltages are brought within limit in the present work by placement of static var compensator (SVC) at weak bus which is identified from bus participation factor. The optimal size of SVC is determined by univariate search method. This paper presents the use of Teaching Learning based Optimization (TLBO) algorithm for voltage stable environment friendly ED problem with real and reactive power constraints. The computational effectiveness of TLBO is established through test results over particle swarm optimization (PSO) and Big Bang-Big Crunch (BB-BC) algorithms for the ED problem.
Mirus, B.B.; Ebel, B.A.; Heppner, C.S.; Loague, K.
2011-01-01
Concept development simulation with distributed, physics-based models provides a quantitative approach for investigating runoff generation processes across environmental conditions. Disparities within data sets employed to design and parameterize boundary value problems used in heuristic simulation inevitably introduce various levels of bias. The objective was to evaluate the impact of boundary value problem complexity on process representation for different runoff generation mechanisms. The comprehensive physics-based hydrologic response model InHM has been employed to generate base case simulations for four well-characterized catchments. The C3 and CB catchments are located within steep, forested environments dominated by subsurface stormflow; the TW and R5 catchments are located in gently sloping rangeland environments dominated by Dunne and Horton overland flows. Observational details are well captured within all four of the base case simulations, but the characterization of soil depth, permeability, rainfall intensity, and evapotranspiration differs for each. These differences are investigated through the conversion of each base case into a reduced case scenario, all sharing the same level of complexity. Evaluation of how individual boundary value problem characteristics impact simulated runoff generation processes is facilitated by quantitative analysis of integrated and distributed responses at high spatial and temporal resolution. Generally, the base case reduction causes moderate changes in discharge and runoff patterns, with the dominant process remaining unchanged. Moderate differences between the base and reduced cases highlight the importance of detailed field observations for parameterizing and evaluating physics-based models. Overall, similarities between the base and reduced cases indicate that the simpler boundary value problems may be useful for concept development simulation to investigate fundamental controls on the spectrum of runoff generation mechanisms. Copyright 2011 by the American Geophysical Union.
A degree of controllability definition - Fundamental concepts and application to modal systems
NASA Technical Reports Server (NTRS)
Viswanathan, C. N.; Longman, R. W.; Likins, P. W.
1984-01-01
Starting from basic physical considerations, this paper develops a concept of the degree of controllability of a control system, and then develops numerical methods to generate approximate values of the degree of controllability for any linear time-invariant system. In many problems, such as the control of future, very large, flexible spacecraft and certain chemical process control problems, the question of how to choose the number and locations of the control system actuators is an important one. The results obtained here offer the control system designer a tool which allows him to rank the effectiveness of alternative actuator distributions, and hence to choose the actuator locations on a rational basis. The degree of controllability is shown to take a particularly simple form when the dynamic equations of a satellite are in second-order modal form. The degree of controllability concept has still other fundamental uses - it allows one to study the system structural relations between the various inputs and outputs of a linear system, which has applications to decoupling and model reduction.
An optimal control approach to the design of moving flight simulators
NASA Technical Reports Server (NTRS)
Sivan, R.; Ish-Shalom, J.; Huang, J.-K.
1982-01-01
An abstract flight simulator design problem is formulated in the form of an optimal control problem, which is solved for the linear-quadratic-Gaussian special case using a mathematical model of the vestibular organs. The optimization criterion used is the mean-square difference between the physiological outputs of the vestibular organs of the pilot in the aircraft and the pilot in the simulator. The dynamical equations are linearized, and the output signal is modeled as a random process with rational power spectral density. The method described yields the optimal structure of the simulator's motion generator, or 'washout filter'. A two-degree-of-freedom flight simulator design, including single output simulations, is presented.
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-05-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-01-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
ERIC Educational Resources Information Center
Cooper, Ann
2011-01-01
The obesity level and related health problems in American children have risen to the point where the Centers for Disease Control predicts the current generation may be the first to die at younger ages than their parents. Ann Cooper, a chef and long-time advocate for healthier food choices and health education for children, argues that child…
Needed: A New Generation of Problem Solvers
ERIC Educational Resources Information Center
McArthur, John W.; Sachs, Jeffrey
2009-01-01
Amid the global economic crisis dominating policy makers' recent attention, the world faces many other equal if not greater long-term challenges that will require concerted and highly skilled policy efforts in coming years. Those interwoven challenges include the mitigation of climate change, the control of emerging diseases, the reduction of…
USDA-ARS?s Scientific Manuscript database
Livestock facilities have historically generated public concerns due to their emissions of odorous air and various chemical pollutants. Odor emission factors and identification of principal odorous chemicals are needed to better understand the problem. Applications of odor emission factors include i...
Fear of Femininity Scale (FOFS): Men's Gender Role Conflict.
ERIC Educational Resources Information Center
O'Neil, James M.; And Others
One unified aspect of men's gender role conflict is the fear of femininity, which can produce six conflicts: restrictive emotionality; homophobia; socialized control, power, and competition; restrictive affectionate behavior; obsession with achievement and success; and health care problems. To measure these constructs 85 items were generated from…
Assessment of executive functioning in binge-eating disorder independent of weight status.
Eneva, Kalina T; Arlt, Jean M; Yiu, Angelina; Murray, Susan M; Chen, Eunice Y
2017-08-01
Executive functioning (EF) problems may serve as vulnerability or maintenance factors for Binge-Eating Disorder (BED). However, it is unclear if EF problems observed in BED are related to overweight status or BED status. The current study extends this literature by examining EF in overweight and normal-weight BED compared to weight-matched controls. Participants were normal-weight women with BED (n = 23), overweight BED (n = 32), overweight healthy controls (n = 48), and normal-weight healthy controls (n = 29). The EF battery utilized tests from the National Institutes of Health (NIH) Toolbox and Delis-Kaplan Executive Function System (D-KEFS). After controlling for years of education and minority status, overweight individuals performed more poorly than normal-weight individuals on a task of cognitive flexibility requiring generativity (p < .01), and speed on psychomotor performance tasks (p = .01). Normal-weight and overweight BED performed worse on working memory tasks compared to controls (p = .04). Unexpectedly, normal-weight BED individuals out-performed all other groups on an inhibitory control task (p < .01). No significant differences were found between the four groups on tasks of planning. Regardless of weight status, BED is associated with working memory problems. Replication of the finding that normal-weight BED is associated with enhanced inhibitory control is needed. © 2017 Wiley Periodicals, Inc.
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
Research on fuzzy PID control to electronic speed regulator
NASA Astrophysics Data System (ADS)
Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo
2007-12-01
As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.
Rui, Guanghao; Chen, Jian; Wang, Xiaoyan; Gu, Bing; Cui, Yiping; Zhan, Qiwen
2016-10-17
The propagation and focusing properties of light beams continue to remain a research interest owning to their promising applications in physics, chemistry and biological sciences. One of the main challenges to these applications is the control of polarization distribution within the focal volume. In this work, we propose and experimentally demonstrate a method for generating a focused beam with arbitrary homogeneous polarization at any transverse plane. The required input field at the pupil plane of a high numerical aperture objective lens can be found analytically by solving an inverse problem with the Richard-Wolf vectorial diffraction method, and can be experimentally created with a vectorial optical field generator. Focused fields with various polarizations are successfully generated and verified using a Stokes parameter measurement to demonstrate the capability and versatility of proposed technique.
Dispersed storage and generation case studies
NASA Technical Reports Server (NTRS)
Bahrami, K.; Stallkamp, J. A.; Walton, A.
1980-01-01
Three installations utilizing separate dispersed storage and generation (DSG) technologies were investigated. Each of the systems is described in costs and control. Selected institutional and environmental issues are discussed, including life cycle costs. No unresolved technical, environmental, or institutional problems were encountered in the installations. The wind and solar photovoltaic DSG were installed for test purposes, and appear to be presently uneconomical. However, a number of factors are decreasing the cost of DSG relative to conventional alternatives, and an increased DSG penetration level may be expected in the future.
Discussion on mass concrete construction of wind turbine generator foundation
NASA Astrophysics Data System (ADS)
Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong
2018-04-01
Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.
Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.
Kiumarsi, Bahare; Lewis, Frank L
2015-01-01
This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.
Rosales, Jonathan-Hernando; Cervantes, José-Antonio
2017-01-01
Emotion regulation is a process by which human beings control emotional behaviors. From neuroscientific evidence, this mechanism is the product of conscious or unconscious processes. In particular, the mechanism generated by a conscious process needs a priori components to be computed. The behaviors generated by previous experiences are among these components. These behaviors need to be adapted to fulfill the objectives in a specific situation. The problem we address is how to endow virtual creatures with emotion regulation in order to compute an appropriate behavior in a specific emotional situation. This problem is clearly important and we have not identified ways to solve this problem in the current literature. In our proposal, we show a way to generate the appropriate behavior in an emotional situation using a learning classifier system (LCS). We illustrate the function of our proposal in unknown and known situations by means of two case studies. Our results demonstrate that it is possible to converge to the appropriate behavior even in the first case; that is, when the system does not have previous experiences and in situations where some previous information is available our proposal proves to be a very powerful tool. PMID:29209362
Martínez-Munguía, Carlos; Navarro-Contreras, Gabriela
2014-01-01
Child obesity is a serious problem of public health in México. If we don't reverse it quickly, it will generate unsustainable economical consequences to the health institutions in this country, as well as serious health problems. This article reviews some psychological, social and cultural factors in the health-illness process, in particular in relation to food choices, the function of the family, and the food-related parental practices, changes in physical activity, and the role of media. As a conclusion, we can say it is very important to take into account psychological and cultural aspects, as well as the family as a whole in the creation of public policies in the fight against the obesity epidemic. Other fundamental aspect to bear in mind is the generation and effective monitoring of regulations on food advertising, particularly that aimed to children, and also in regards to a labelling of edible products accessible to all people. An interdisciplinary work is essential to generate synergies that help us to control obesity in the first place, and then to be able to reverse this problem, without disregarding the role of prevention.
Co-evolution for Problem Simplification
NASA Technical Reports Server (NTRS)
Haith, Gary L.; Lohn, Jason D.; Cplombano, Silvano P.; Stassinopoulos, Dimitris
1999-01-01
This paper explores a co-evolutionary approach applicable to difficult problems with limited failure/success performance feedback. Like familiar "predator-prey" frameworks this algorithm evolves two populations of individuals - the solutions (predators) and the problems (prey). The approach extends previous work by rewarding only the problems that match their difficulty to the level of solut,ion competence. In complex problem domains with limited feedback, this "tractability constraint" helps provide an adaptive fitness gradient that, effectively differentiates the candidate solutions. The algorithm generates selective pressure toward the evolution of increasingly competent solutions by rewarding solution generality and uniqueness and problem tractability and difficulty. Relative (inverse-fitness) and absolute (static objective function) approaches to evaluating problem difficulty are explored and discussed. On a simple control task, this co-evolutionary algorithm was found to have significant advantages over a genetic algorithm with either a static fitness function or a fitness function that changes on a hand-tuned schedule.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Li, Jingzhi; He, Zhubin; Yan, Wanfeng
2018-07-01
In this paper, a stochastic optimization framework is proposed to address the microgrid energy dispatching problem with random renewable generation and vehicle activity pattern, which is closer to the practical applications. The patterns of energy generation, consumption and storage availability are all random and unknown at the beginning, and the microgrid controller design (MCD) is formulated as a Markov decision process (MDP). Hence, an online learning-based control algorithm is proposed for the microgrid, which could adapt the control policy with increasing knowledge of the system dynamics and converges to the optimal algorithm. We adopt the linear approximation idea to decompose the original value functions as the summation of each per-battery value function. As a consequence, the computational complexity is significantly reduced from exponential growth to linear growth with respect to the size of battery states. Monte Carlo simulation of different scenarios demonstrates the effectiveness and efficiency of our algorithm.
Application of Semi Active Control Techniques to the Damping Suppression Problem of Solar Sail Booms
NASA Technical Reports Server (NTRS)
Adetona, O.; Keel, L. H.; Whorton, M. S.
2007-01-01
Solar sails provide a propellant free form for space propulsion. These are large flat surfaces that generate thrust when they are impacted by light. When attached to a space vehicle, the thrust generated can propel the space vehicle to great distances at significant speeds. For optimal performance the sail must be kept from excessive vibration. Active control techniques can provide the best performance. However, they require an external power-source that may create significant parasitic mass to the solar sail. However, solar sails require low mass for optimal performance. Secondly, active control techniques typically require a good system model to ensure stability and performance. However, the accuracy of solar sail models validated on earth for a space environment is questionable. An alternative approach is passive vibration techniques. These do not require an external power supply, and do not destabilize the system. A third alternative is referred to as semi-active control. This approach tries to get the best of both active and passive control, while avoiding their pitfalls. In semi-active control, an active control law is designed for the system, and passive control techniques are used to implement it. As a result, no external power supply is needed so the system is not destabilize-able. Though it typically underperforms active control techniques, it has been shown to out-perform passive control approaches and can be unobtrusively installed on a solar sail boom. Motivated by this, the objective of this research is to study the suitability of a Piezoelectric (PZT) patch actuator/sensor based semi-active control system for the vibration suppression problem of solar sail booms. Accordingly, we develop a suitable mathematical and computer model for such studies and demonstrate the capabilities of the proposed approach with computer simulations.
Maximum power point tracker for photovoltaic power plants
NASA Astrophysics Data System (ADS)
Arcidiacono, V.; Corsi, S.; Lambri, L.
The paper describes two different closed-loop control criteria for the maximum power point tracking of the voltage-current characteristic of a photovoltaic generator. The two criteria are discussed and compared, inter alia, with regard to the setting-up problems that they pose. Although a detailed analysis is not embarked upon, the paper also provides some quantitative information on the energy advantages obtained by using electronic maximum power point tracking systems, as compared with the situation in which the point of operation of the photovoltaic generator is not controlled at all. Lastly, the paper presents two high-efficiency MPPT converters for experimental photovoltaic plants of the stand-alone and the grid-interconnected type.
NASA Technical Reports Server (NTRS)
Voigt, Kerstin
1992-01-01
We present MENDER, a knowledge based system that implements software design techniques that are specialized to automatically compile generate-and-patch problem solvers that satisfy global resource assignments problems. We provide empirical evidence of the superior performance of generate-and-patch over generate-and-test: even with constrained generation, for a global constraint in the domain of '2D-floorplanning'. For a second constraint in '2D-floorplanning' we show that even when it is possible to incorporate the constraint into a constrained generator, a generate-and-patch problem solver may satisfy the constraint more rapidly. We also briefly summarize how an extended version of our system applies to a constraint in the domain of 'multiprocessor scheduling'.
Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles
NASA Astrophysics Data System (ADS)
Cowlagi, Raghvendra V.
Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption concerning the vehicle kinematical model. We propose a hierarchical motion planning framework based on a novel mode of interaction between these two levels of planning. This interaction rests on the solution of a special shortest-path problem on graphs, namely, one using costs defined on multiple edge transitions in the path instead of the usual single edge transition costs. These costs are provided by a local trajectory generation algorithm, which we implement using model predictive control and the concept of effective target sets for simplifying the non-convex constraints involved in the problem. The proposed motion planner ensures "consistency" between the two levels of planning, i.e., a guarantee that the higher level geometric path is always associated with a kinematically and dynamically feasible trajectory. The main contributions of this thesis are: 1. A motion planning framework based on history-dependent costs (H-costs) in cell decomposition graphs for incorporating vehicle dynamical constraints: this framework offers distinct advantages in comparison with the competing approaches of discretization of the state space, of randomized sampling-based motion planning, and of local feedback-based, decoupled hierarchical motion planning, 2. An efficient and flexible algorithm for finding optimal H-cost paths, 3. A precise and general formulation of a local trajectory problem (the tile motion planning problem) that allows independent development of the discrete planner and the trajectory planner, while maintaining "compatibility" between the two planners, 4. A local trajectory generation algorithm using mpc, and the application of the concept of effective target sets for a significant simplification of the local trajectory generation problem, 5. The geometric analysis of curvature-bounded traversal of rectangular channels, leading to less conservative results in comparison with a result reported in the literature, and also to the efficient construction of effective target sets for the solution of the tile motion planning problem, 6. A wavelet-based multi-resolution path planning scheme, and a proof of completeness of the proposed scheme: such proofs are altogether absent from other works on multi-resolution path planning, 7. A technique for extracting all information about cells---namely, the locations, the sizes, and the associated image intensities---directly from the set of significant detail coefficients considered for path planning at a given iteration, and 8. The extension of the multi-resolution path planning scheme to include vehicle dynamical constraints using the aforementioned history-dependent costs approach. The future work includes an implementation of the proposed framework involving a discrete planner that solves classical planning problems more general than the single-query path planning problem considered thus far, and involving trajectory generation schemes for realistic vehicle dynamical models such as the bicycle model.
Mansano, Raul K.; Godoy, Eduardo P.; Porto, Arthur J. V.
2014-01-01
Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors. PMID:25529208
Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment
2013-01-01
Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem. PMID:24148814
Self-organized adaptation of a simple neural circuit enables complex robot behaviour
NASA Astrophysics Data System (ADS)
Steingrube, Silke; Timme, Marc; Wörgötter, Florentin; Manoonpong, Poramate
2010-03-01
Controlling sensori-motor systems in higher animals or complex robots is a challenging combinatorial problem, because many sensory signals need to be simultaneously coordinated into a broad behavioural spectrum. To rapidly interact with the environment, this control needs to be fast and adaptive. Present robotic solutions operate with limited autonomy and are mostly restricted to few behavioural patterns. Here we introduce chaos control as a new strategy to generate complex behaviour of an autonomous robot. In the presented system, 18 sensors drive 18 motors by means of a simple neural control circuit, thereby generating 11 basic behavioural patterns (for example, orienting, taxis, self-protection and various gaits) and their combinations. The control signal quickly and reversibly adapts to new situations and also enables learning and synaptic long-term storage of behaviourally useful motor responses. Thus, such neural control provides a powerful yet simple way to self-organize versatile behaviours in autonomous agents with many degrees of freedom.
Optimization of dynamic soaring maneuvers to enhance endurance of a versatile UAV
NASA Astrophysics Data System (ADS)
Mir, Imran; Maqsood, Adnan; Akhtar, Suhail
2017-06-01
Dynamic soaring is a process of acquiring energy available in atmospheric wind shears and is commonly exhibited by soaring birds to perform long distance flights. This paper aims to demonstrate a viable algorithm which can be implemented in near real time environment to formulate optimal trajectories for dynamic soaring maneuvers for a small scale Unmanned Aerial Vehicle (UAV). The objective is to harness maximum energy from atmosphere wind shear to improve loiter time for Intelligence, Surveillance and Reconnaissance (ISR) missions. Three-dimensional point-mass UAV equations of motion and linear wind gradient profile are used to model flight dynamics. Utilizing UAV states, controls, operational constraints, initial and terminal conditions that enforce a periodic flight, dynamic soaring problem is formulated as an optimal control problem. Optimized trajectories of the maneuver are subsequently generated employing pseudo spectral techniques against distant UAV performance parameters. The discussion also encompasses the requirement for generation of optimal trajectories for dynamic soaring in real time environment and the ability of the proposed algorithm for speedy solution generation. Coupled with the fact that dynamic soaring is all about immediately utilizing the available energy from the wind shear encountered, the proposed algorithm promises its viability for practical on board implementations requiring computation of trajectories in near real time.
Blended near-optimal tools for flexible water resources decision making
NASA Astrophysics Data System (ADS)
Rosenberg, David
2015-04-01
State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the static modelled issues and managers often seek near-optimal alternatives that address un-modelled or changing objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally-different alternatives that addressed select un-modelled issues. This paper presents new stratified, Monte Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and full extent of the near-optimal region to an optimization problem. Plot controls allow users to interactively explore region features of most interest. Controls also streamline the process to elicit un-modelled issues and update the model formulation in response to elicited issues. Use for a single-objective water quality management problem at Echo Reservoir, Utah identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, help elicit a larger set of un-modelled issues, and offer managers greater flexibility to cope in a changing world.
Driving Parameters for Distributed and Centralized Air Transportation Architectures
NASA Technical Reports Server (NTRS)
Feron, Eric
2001-01-01
This report considers the problem of intersecting aircraft flows under decentralized conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed control volume), new air traffic control models and scenarios are defined that enable the study of long-term airspace stability problems. Considering a class of two intersecting aircraft flows, it is shown that airspace stability, defined both in terms of safety and performance, is preserved under decentralized conflict resolution algorithms. Performance bounds are derived for the aircraft flow problem under different maneuver models. Besides analytical approaches, numerical examples are presented to test the theoretical results, as well as to generate some insight about the structure of the traffic flow after resolution. Considering more than two intersecting aircraft flows, simulations indicate that flow stability may not be guaranteed under simple conflict avoidance rules. Finally, a comparison is made with centralized strategies to conflict resolution.
NASA Astrophysics Data System (ADS)
Febriani, Ika Kartika; Hadiyanto
2018-02-01
The problem of environmental pollution especially urban water pollution becomes major issue in Indonesia. The cause of water pollution is not only from industrial factory waste disposal but also other causes which become pollution factor. One cause of water pollution is the existence of agricultural activities with the use of the amount of pesticides that exceed the threshold. As regulated in Government Regulation No. 82/2001 on Water Quality Management and Water Pollution Control, it is necessary to manage water quality and control water pollution wisely by taking into account the interests of current and future generations as well as the ecological balance. To overcome the problem of water pollution due to agricultural activities, it is necessary to conduct research on phytoremediation technique by utilizing eceng gondok plant. It is excepted that using this phytoremediation technique can reduce the problem of water pollution due to the use of pesticides on agricultural activities.
Economic growth and carbon emission control
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu
The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal policies of emissions control required for achieving the social goal in a private context. The results suggest that the efficiency of abatement technology is crucial for the timing of executing the emission tax. And emission tax is preferred to an input tax, as long as the detection of emissions is not costly and abatement technology is efficient. Keywords: Economic growth, Carbon emission, Power generation, Joint production, China
Supply and Demand Control of Distributed Generators in a Microgrid for New Energy
NASA Astrophysics Data System (ADS)
Shimakage, Toyonari; Sumita, Jiro; Uchiyama, Noriyuki; Kato, Takeyoshi; Suzuoki, Yasuo
We report the operational results of distributed generators (DGs) in a microgrid and present the effects after incorporating photovoltaic power generation (PV) systems into the microgrid for electric power system. The microgrid was constructed at the EXPO 2005 Aichi site as part of a demonstration promoted by NEDO. A solution is needed to problems where instability in the DGs that utilize natural energy such as solar light and wind force negatively influence existing electric power systems. So, we developed energy control system and controlled DGs output to reduce the fluctuation at the grid connected point caused by PV system's instability output. Our microgrid consists of DGs such as PV systems, fuel cells, and NaS batteries, and these DGs are controlled by an energy control system. We verified practical effectiveness of the installing the microgrid as follows. (1) 99.5% of the power imbalance in the supply and demand over 30 minutes was within a range of ±3% under normal operating conditions, (2) the microgrid contributes to the load leveling, (3) energy control system smoothes the power flow fluctuation of PV system output at the grid connected point, (4) in the future, installing a microgrid will help reduce the additional LFC (Load Frequency Control) capacity.
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Gibb, James
1992-01-01
The present study demonstrates that the Reduced Navier-Stokes code RNS3D can be used very effectively to develop a vortex generator installation for the purpose of minimizing the engine face circumferential distortion by controlling the development of secondary flow. The computing times required are small enough that studies such as this are feasible within an analysis-design environment with all its constraints of time and costs. This research study also established the nature of the performance improvements that can be realized with vortex flow control, and suggests a set of aerodynamic properties (called observations) that can be used to arrive at a successful vortex generator installation design. The ultimate aim of this research is to manage inlet distortion by controlling secondary flow through an arrangements of vortex generators configurations tailored to the specific aerodynamic characteristics of the inlet duct. This study also indicated that scaling between flight and typical wind tunnel test conditions is possible only within a very narrow range of generator configurations close to an optimum installation. This paper also suggests a possible law that can be used to scale generator blade height for experimental testing, but further research in this area is needed before it can be effectively applied to practical problems. Lastly, this study indicated that vortex generator installation design for inlet ducts is more complex than simply satisfying the requirement of attached flow, it must satisfy the requirement of minimum engine face distortion.
A Statistical Method to Distinguish Functional Brain Networks
Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.
2017-01-01
One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045
A Statistical Method to Distinguish Functional Brain Networks.
Fujita, André; Vidal, Maciel C; Takahashi, Daniel Y
2017-01-01
One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism ( p < 0.001).
Tag Content Access Control with Identity-based Key Exchange
NASA Astrophysics Data System (ADS)
Yan, Liang; Rong, Chunming
2010-09-01
Radio Frequency Identification (RFID) technology that used to identify objects and users has been applied to many applications such retail and supply chain recently. How to prevent tag content from unauthorized readout is a core problem of RFID privacy issues. Hash-lock access control protocol can make tag to release its content only to reader who knows the secret key shared between them. However, in order to get this shared secret key required by this protocol, reader needs to communicate with a back end database. In this paper, we propose to use identity-based secret key exchange approach to generate the secret key required for hash-lock access control protocol. With this approach, not only back end database connection is not needed anymore, but also tag cloning problem can be eliminated at the same time.
NASA Astrophysics Data System (ADS)
Davoodi, M.; Meskin, N.; Khorasani, K.
2018-03-01
The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).
The 3DGRAPE book: Theory, users' manual, examples
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1989-01-01
A users' manual for a new three-dimensional grid generator called 3DGRAPE is presented. The program, written in FORTRAN, is capable of making zonal (blocked) computational grids in or about almost any shape. Grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. The smoothness for which elliptic methods are known is seen here, including smoothness across zonal boundaries. An introduction giving the history, motivation, capabilities, and philosophy of 3DGRAPE is presented first. Then follows a chapter on the program itself. The input is then described in detail. A chapter on reading the output and debugging follows. Three examples are then described, including sample input data and plots of output. Last is a chapter on the theoretical development of the method.
A solid-state controller for a wind-driven slip-ring induction generator
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.; Leary, B. G.
1984-08-01
The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.
Online Optimization Method for Operation of Generators in a Micro Grid
NASA Astrophysics Data System (ADS)
Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi
Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.
Feedforward Tracking Control of Flat Recurrent Fuzzy Systems
NASA Astrophysics Data System (ADS)
Gering, Stefan; Adamy, Jürgen
2014-12-01
Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.
Model reference adaptive control of robots
NASA Technical Reports Server (NTRS)
Steinvorth, Rodrigo
1991-01-01
This project presents the results of controlling two types of robots using new Command Generator Tracker (CGT) based Direct Model Reference Adaptive Control (MRAC) algorithms. Two mathematical models were used to represent a single-link, flexible joint arm and a Unimation PUMA 560 arm; and these were then controlled in simulation using different MRAC algorithms. Special attention was given to the performance of the algorithms in the presence of sudden changes in the robot load. Previously used CGT based MRAC algorithms had several problems. The original algorithm that was developed guaranteed asymptotic stability only for almost strictly positive real (ASPR) plants. This condition is very restrictive, since most systems do not satisfy this assumption. Further developments to the algorithm led to an expansion of the number of plants that could be controlled, however, a steady state error was introduced in the response. These problems led to the introduction of some modifications to the algorithms so that they would be able to control a wider class of plants and at the same time would asymptotically track the reference model. This project presents the development of two algorithms that achieve the desired results and simulates the control of the two robots mentioned before. The results of the simulations are satisfactory and show that the problems stated above have been corrected in the new algorithms. In addition, the responses obtained show that the adaptively controlled processes are resistant to sudden changes in the load.
NASA Technical Reports Server (NTRS)
Perry, J. L.
2017-01-01
Trace chemical contaminant generation inside crewed spacecraft cabins is a technical and medical problem that must be continuously evaluated. Although passive control through materials selection and active control by adsorption and catalytic oxidation devices is employed during normal operations of a spacecraft, contaminant buildup can still become a problem. Buildup is particularly troublesome during the stages between the final closure of a spacecraft during ground processing and the time that a crewmember enters for the first time during the mission. Typically, the elapsed time between preflight closure and first entry on orbit for spacecraft such as Spacelab modules was 30 days. During that time, the active contamination control systems are not activated and contaminants can potentially build up to levels which exceed the spacecraft maximum allowable concentrations (SMACs) specified by NASA toxicology experts. To prevent excessively high contamination levels at crew entry, the Spacelab active contamination control system was operated for 53 hours just before launch.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.
USDA-ARS?s Scientific Manuscript database
There is a growing need to combine DNA sequencing technologies to address complex problems in genome biology. These genomic studies routinely generate voluminous image, sequence, and mapping files that should be associated with quality control information (gels, spectra, etc.), and other important ...
Distributed control topologies for deep space formation flying spacecraft
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Smith, R. S.
2002-01-01
A formation of satellites flying in deep space can be specified in terms of the relative satellite positions and absolute satellite orientations. The redundancy in the relative position specification generates a family of control topologies with equivalent stability and reference tracking performance, one of which can be implemented without requiring communication between the spacecraft. A relative position design formulation is inherently unobservable, and a methodology for circumventing this problem is presented. Additional redundancy in the control actuation space can be exploited for feed-forward control of the formation centroid's location in space, or for minimization of total fuel consumption.
Power factor regulation for household usage
NASA Astrophysics Data System (ADS)
Daud, Nik Ghazali Nik; Hashim, Fakroul Ridzuan; Tarmizi, Muhammad Haziq Ahmad
2018-02-01
Power factor regulator technology has recently drawn attention to the consumer and to power generation company in order for consumers to use electricity efficiently. Controlling of power factor for efficient usage can reduce the production of power in fulfilment demands hence reducing the greenhouse effect. This paper presents the design method of power factor controller for household usage. There are several methods to improve the power factor. The power factor controller used by this method is by using capacitors. Total harmonic distortion also has become a major problem for the reliability of the electrical appliances and techniques to control it will be discussed.
Optimal Control of Induction Machines to Minimize Transient Energy Losses
NASA Astrophysics Data System (ADS)
Plathottam, Siby Jose
Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the deviations from desired speed-torque-magnetic flux setpoints. Using Pontryagin's minimum principle, a set of necessary conditions that must be satisfied by the optimal control trajectories are derived. The conditions are in the form a two-point boundary value problem, that can be solved numerically. The conjugate gradient method that was modified using the Hestenes-Stiefel formula was used to obtain the numerical solution of both the control and state trajectories. Using the distinctive shape of the numerical trajectories as inspiration, analytical expressions were derived for the state, and control trajectories. It was shown that the trajectory could be fully described by finding the solution of a one-dimensional optimization problem. The sensitivity of both the optimal trajectory and the optimal energy efficiency to different induction machine parameters were analyzed. A non-iterative solution that can use feedback for generating optimal control trajectories in real time was explored. It was found that an artificial neural network could be trained using the numerical solutions and made to emulate the optimal control trajectories with a high degree of accuracy. Hence a neural network along with a supervisory logic was implemented and used in a real-time simulation to control the Finite Element Method model of the induction machine. The results were compared with three other control regimes and the optimal control system was found to have the highest energy efficiency for the same drive cycle.
NASA Astrophysics Data System (ADS)
Nugraha, A. T.; Agustinah, T.
2018-01-01
Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.
Helvik, Anne-Sofie; Iversen, Valentina Cabral; Steiring, Randi; Hallberg, Lillemor R-M
2011-01-01
Aim This study aims at exploring the main concern for elderly individuals with somatic health problems and what they do to manage this. Method In total, 14 individuals (mean=74.2 years; range=68–86 years) of both gender including hospitalized and outpatient persons participated in the study. Open interviews were conducted and analyzed according to grounded theory, an inductive theory-generating method. Results The main concern for the elderly individuals with somatic health problems was identified as their striving to maintain control and balance in life. The analysis ended up in a substantive theory explaining how elderly individuals with somatic disease were calibrating and adjusting their expectations in life in order to adapt to their reduced energy level, health problems, and aging. By adjusting the expectations to their actual abilities, the elderly can maintain a sense of that they still have the control over their lives and create stability. The ongoing adjustment process is facilitated by different strategies and result despite lower expectations in subjective well-being. The facilitating strategies are utilizing the network of important others, enjoying cultural heritage, being occupied with interests, having a mission to fulfill, improving the situation by limiting boundaries and, finally, creating meaning in everyday life. Conclusion The main concern of the elderly with somatic health problems was to maintain control and balance in life. The emerging theory explains how elderly people with somatic health problems calibrate their expectations of life in order to adjust to reduced energy, health problems, and aging. This process is facilitated by different strategies and result despite lower expectation in subjective well-being. PMID:21468299
Novel Driving Control of Power Assisted Wheelchair Based on Minimum Jerk Trajectory
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu
This paper describes a novel trajectory control scheme for power assisted wheelchair. Human input torque patterns are always intermittent in power assisted wheelchairs, therefore, the suitable trajectories must be generated also after the human decreases his/her input torque. This paper tries to solve this significant problem based on minimum jerk model minimizing the changing rate of acceleration. The proposed control system based on minimum jerk trajectory is expected to improve the ride quality, stability and safety. Some experiments show the effectiveness of the proposed method.
Behavioral Economics of Self-Control Failure
Heshmat, Shahram
2015-01-01
The main idea in this article is that addiction is a consequence of falling victim to decision failures that lead to preference for the addictive behaviors. Addiction is viewed as valuation disease, where the nervous system overvalues cues associated with drugs or drug-taking. Thus, addiction can be viewed as a diminished capacity to choose. Addicted individuals assign lower values to delayed rewards than to immediate ones. The preference for immediate gratification leads to self-control problems. This article highlights a number of motivational forces that can generate self-control failure. PMID:26339218
Nanoparticle coated optical fibers for single microbubble generation
NASA Astrophysics Data System (ADS)
Pimentel-Domínguez, Reinher; Hernández-Cordero, Juan
2011-09-01
The study of bubbles and bubbly flows is important in various fields such as physics, chemistry, medicine, geophysics, and even the food industry. A wide variety of mechanical and acoustic techniques have been reported for bubble generation. Although a single bubble may be generated with these techniques, controlling the size and the mean lifetime of the bubble remains a difficult task. Most of the optical methods for generation of microbubbles involve high-power pulsed laser sources focused in absorbing media such as liquids or particle solutions. With these techniques, single micron-sized bubbles can be generated with typical mean lifetimes ranging from nano to microseconds. The main problem with these bubbles is their abrupt implosion: this produces a shock wave that can potentially produce damages on the surroundings. These effects have to be carefully controlled in biological applications and in laser surgery, but thus far, not many options are available to effectively control micron-size bubble growth. In this paper, we present a new technique to generate microbubbles in non-absorbing liquids. In contrast to previous reports, the proposed technique uses low-power and a CW radiation from a laser diode. The laser light is guided through an optical fiber whose output end has been coated with nanostructures. Upon immersing the tip of the fiber in ethanol or water, micron-size bubbles can be readily generated. With this technique, bubble growth can be controlled through adjustments on the laser power. We have obtained micron-sized bubbles with mean lifetimes in the range of seconds. Furthermore, the generated bubbles do not implode, as verified with a high-speed camera and flow visualization techniques.
Novel Design for a Wind Tunnel Vertical Gust Generator
NASA Astrophysics Data System (ADS)
Smith, Zachary; Jones, Anya; Hrynuk, John
2017-11-01
Gust response of MAVs is a fundamental problem for flight stability and control of such aircraft. Current knowledge about the gust response of these vehicles is limited and gust interaction often results in damage to vehicles. Studying isolated gust effects on simple airfoil models in a controlled environment is a necessity for the further development of MAV control laws. Gusts have typically been generated by oscillating an airfoil causing the shedding of vortices to propagate through the system. While effective, this method provides only a transient up and downdraft behavior with small changes in angle of attack, not suitable for studying MAV scale gust interactions. To study these interactions, a gust that creates a change in flow angle larger than the static stall angle of typical airfoils was developed. This work was done in a low speed, low turbulence wind tunnel at base operating speed of 1.5 m/s, generating a Reynolds number of 12,000 on a NACA 0012 wing. It describes the fundamental mechanisms of how this gust was generated and the results obtained from the gust generator. The gust, which can alter the flow field in less than 1 second, was characterized using PIV and the interactions with a stationary airfoil at several angles of attack are evaluated.
Real-time fuzzy inference based robot path planning
NASA Technical Reports Server (NTRS)
Pacini, Peter J.; Teichrow, Jon S.
1990-01-01
This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.
Parallel Polarization State Generation
NASA Astrophysics Data System (ADS)
She, Alan; Capasso, Federico
2016-05-01
The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.
Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu
2014-01-01
Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.
Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu
2014-01-01
Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215
A practical guide to the Piccolo autopilot
NASA Astrophysics Data System (ADS)
Mornhinweg, Anton
In support of a UAV contract the Piccolo SL and Piccolo II autopilots were installed and operated on various aircraft. Numerous problems with the autopilot setup and analysis processes were found along with numerous problems with documentation and autopilot system information. Major areas of concern are identified along with objectives to eliminate the major areas of concern. Piccolo simulator vehicle gain calculations and Piccolo generation 2 version 2.1.4 control laws are reverse engineered. A complete modeling guide is created. Methods are developed to perform and analyze doublet maneuvers. A series of flight procedures are outlined that include methods for tuning gains. A series of MATLAB graphical user interfaces were created to analyze flight data and pertinent control loop data for gain tuning.
NASA Astrophysics Data System (ADS)
Pajares, Andres; Schuster, Eugenio
2016-10-01
Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.
A Behavior Genetic Investigation of Adolescent Motherhood and Offspring Mental Health Problems
Harden, K. Paige; Lynch, Stacy K.; Turkheimer, Eric; Emery, Robert E.; D’Onofrio, Brian M.; Slutske, Wendy S.; Waldron, Mary D.; Heath, Andrew C.; Statham, Dixie J.; Martin, Nicholas G.
2010-01-01
The present study examines the relations between adolescent motherhood and children’s behavior, substance use, and internalizing problems in a sample of 1,368 children of 712 female twins from Australia. Adolescent motherhood remained significantly associated with all mental health problems, even when using a quasiexperimental design capable of controlling for genetic and environmental confounds. However, the relation between adolescent motherhood and offspring behavior problems and substance use was partially confounded by family background variables that influence both generations. The results are consistent with a causal relation between adolescent motherhood and offspring mental health problems, and they highlight the usefulness of behavior genetic designs when examining putative environmental risks for the development of psychopathology. The generalizability of these results to the United States, which has a higher adolescent birth rate, is discussed. PMID:18020715
1999-02-24
technology. Y2K related failures in business systems will generally cause an en - terprise to lose partial or complete control of critical...generation systems may include steam turbines, diesel en - gines, or hydraulic turbines connected to alternators that gener- ERCOT ;*_... Inter...control centers used to manage sub- transmission and distribution sys- tems. These systems are typically operated using a subset of an en - ergy
NASA Technical Reports Server (NTRS)
Forgoston, Eric; Tumin, Anatoli; Ashpis, David E.
2005-01-01
An analysis of the optimal control by blowing and suction in order to generate stream- wise velocity streaks is presented. The problem is examined using an iterative process that employs the Parabolized Stability Equations for an incompressible uid along with its adjoint equations. In particular, distributions of blowing and suction are computed for both the normal and tangential velocity perturbations for various choices of parameters.
Smith-Spark, James H; Henry, Lucy A; Messer, David J; Zięcik, Adam P
2017-08-01
The executive function of fluency describes the ability to generate items according to specific rules. Production of words beginning with a certain letter (phonemic fluency) is impaired in dyslexia, while generation of words belonging to a certain semantic category (semantic fluency) is typically unimpaired. However, in dyslexia, verbal fluency has generally been studied only in terms of overall words produced. Furthermore, performance of adults with dyslexia on non-verbal design fluency tasks has not been explored but would indicate whether deficits could be explained by executive control, rather than phonological processing, difficulties. Phonemic, semantic and design fluency tasks were presented to adults with dyslexia and without dyslexia, using fine-grained performance measures and controlling for IQ. Hierarchical regressions indicated that dyslexia predicted lower phonemic fluency, but not semantic or design fluency. At the fine-grained level, dyslexia predicted a smaller number of switches between subcategories on phonemic fluency, while dyslexia did not predict the size of phonemically related clusters of items. Overall, the results suggested that phonological processing problems were at the root of dyslexia-related fluency deficits; however, executive control difficulties could not be completely ruled out as an alternative explanation. Developments in research methodology, equating executive demands across fluency tasks, may resolve this issue. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Evaluating the Process of Generating a Clinical Trial Protocol
Franciosi, Lui G.; Butterfield, Noam N.; MacLeod, Bernard A.
2002-01-01
The research protocol is the principal document in the conduct of a clinical trial. Its generation requires knowledge about the research problem, the potential experimental confounders, and the relevant Good Clinical Practices for conducting the trial. However, such information is not always available to authors during the writing process. A checklist of over 80 items has been developed to better understand the considerations made by authors in generating a protocol. It is based on the most cited requirements for designing and implementing the randomised controlled trial. Items are categorised according to the trial's research question, experimental design, statistics, ethics, and standard operating procedures. This quality assessment tool evaluates the extent that a generated protocol deviates from the best-planned clinical trial.
Development and evaluation of automatic landing control laws for power lift STOL aircraft
NASA Technical Reports Server (NTRS)
Feinreich, B.; Gevaert, G.
1981-01-01
A series of investigations were conducted to generate and verify through ground bases simulation and flight research a data base to aid in the design and certification of advanced propulsive lift short takeoff and landing aircraft. Problems impacting the design of powered lift short haul aircraft that are to be landed automatically on STOL runways in adverse weather were examined. An understanding of the problems was gained by a limited coverage of important elements that are normally included in the certification process of a CAT 3 automatic landing system.
Time management in health care social work.
Sheridan, M S
1988-01-01
Health care social workers face significant problems in controlling and managing time. Among the causes are increased demands for service, economy measures in health care, and the concurrent responsibility which social workers often have for both ongoing case management and crisis coverage. Individuals and social work departments can increase productivity through streamlining case management, increasing use of available resources, and generating new resources. With planning and preparation, many emergencies can be moved into the expected work flow. The social work profession needs to address time management problems and expectations in a more realistic and systematic way.
NASA Astrophysics Data System (ADS)
Faisal, A.; Hasan, S.; Suherman
2018-03-01
AC-DC converter is widely used in the commercial industry even for daily purposes. The AC-DC converter is used to convert AC voltage into DC. In order to obtain the desired output voltage, the converter usually has a controllable regulator. This paper discusses buck boost regulator with a power MOSFET as switching component which is adjusted based on the duty cycle of pulse width modulation (PWM). The main problems of the buck boost converter at start up are the high overshoot, the long peak time and rise time. This paper compares the effectiveness of two control techniques: proportional integral derivative (PID) and fuzzy logic control in controlling the buck boost converter through simulations. The results show that the PID is more sensitive to voltage change than fuzzy logic. However, PID generates higher overshoot, long peak time and rise time. On the other hand, fuzzy logic generates no overshoot and shorter rise time.
Active controls: A look at analytical methods and associated tools
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Adams, W. M., Jr.; Mukhopadhyay, V.; Tiffany, S. H.; Abel, I.
1984-01-01
A review of analytical methods and associated tools for active controls analysis and design problems is presented. Approaches employed to develop mathematical models suitable for control system analysis and/or design are discussed. Significant efforts have been expended to develop tools to generate the models from the standpoint of control system designers' needs and develop the tools necessary to analyze and design active control systems. Representative examples of these tools are discussed. Examples where results from the methods and tools have been compared with experimental data are also presented. Finally, a perspective on future trends in analysis and design methods is presented.
SMES application for frequency control during islanded microgrid operation
NASA Astrophysics Data System (ADS)
Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man
2013-01-01
This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.
Inclán, Cristina; Hijar, Martha; Tovar, Victor
2005-11-01
There exists a differential ability within local communities to maintain effective social controls to prevent road traffic injuries (RTIs) in high risks areas. In 2002 we conducted a cross-sectional study in Cuernavaca, Mexico which incorporated 339 adults living in three areas which were characterized by high RTI concentrations. Multivariate analyses demonstrated that even when participants perceived RTIs as a local problem, they expressed no expectations that community members would exert social control through their involvement in local issues and law adherence. The study revealed four key conclusions regarding the association between the low levels of social capital and RTIs: (a) public roads are used solely for transportation, are not viewed as a communal space, and consequently reciprocity is not viewed as a relevant way of controlling behaviors in public places; (b) "strong immediate personal networks" bring about a lack of reciprocity between those sharing the public space which generates uncooperative behavior; (c) high levels of residential instability hinders the identification of common problems; (d) when there exists a low level of civic commitment and a scarcity of social resources directed towards the problem, the possibilities of social control over RTIs are low.
Social cognition and social problem solving abilities in individuals with alcohol use disorder.
Schmidt, Tobias; Roser, Patrik; Juckel, Georg; Brüne, Martin; Suchan, Boris; Thoma, Patrizia
2016-11-01
Up to now, little is known about higher order cognitive abilities like social cognition and social problem solving abilities in alcohol-dependent patients. However, impairments in these domains lead to an increased probability for relapse and are thus highly relevant in treatment contexts. This cross-sectional study assessed distinct aspects of social cognition and social problem solving in 31 hospitalized patients with alcohol use disorder (AUD) and 30 matched healthy controls (HC). Three ecologically valid scenario-based tests were used to gauge the ability to infer the mental state of story characters in complicated interpersonal situations, the capacity to select the best problem solving strategy among other less optimal alternatives, and the ability to freely generate appropriate strategies to handle difficult interpersonal conflicts. Standardized tests were used to assess executive function, attention, trait empathy, and memory, and correlations were computed between measures of executive function, attention, trait empathy, and tests of social problem solving. AUD patients generated significantly fewer socially sensitive and practically effective solutions for problematic interpersonal situations than the HC group. Furthermore, patients performed significantly worse when asked to select the best alternative among a list of presented alternatives for scenarios containing sarcastic remarks and had significantly more problems to interpret sarcastic remarks in difficult interpersonal situations. These specific patterns of impairments should be considered in treatment programs addressing impaired social skills in individuals with AUD.
Juang, Chia-Feng; Hsu, Chia-Hung
2009-12-01
This paper proposes a new reinforcement-learning method using online rule generation and Q-value-aided ant colony optimization (ORGQACO) for fuzzy controller design. The fuzzy controller is based on an interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS uses interval type-2 fuzzy sets to improve controller robustness to noise. There are initially no fuzzy rules in the IT2FS. The ORGQACO concurrently designs both the structure and parameters of an IT2FS. We propose an online interval type-2 rule generation method for the evolution of system structure and flexible partitioning of the input space. Consequent part parameters in an IT2FS are designed using Q -values and the reinforcement local-global ant colony optimization algorithm. This algorithm selects the consequent part from a set of candidate actions according to ant pheromone trails and Q-values, both of which are updated using reinforcement signals. The ORGQACO design method is applied to the following three control problems: 1) truck-backing control; 2) magnetic-levitation control; and 3) chaotic-system control. The ORGQACO is compared with other reinforcement-learning methods to verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems verify the noise robustness property of using an IT2FS.
Special Test Methods for Batteries
NASA Technical Reports Server (NTRS)
Gross, S.
1984-01-01
Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.
Special test methods for batteries
NASA Astrophysics Data System (ADS)
Gross, S.
1984-09-01
Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.
A linguistic geometry for space applications
NASA Technical Reports Server (NTRS)
Stilman, Boris
1994-01-01
We develop a formal theory, the so-called Linguistic Geometry, in order to discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, and apply them to different systems. This research relies on the formalization of search heuristics of high-skilled human experts which allow for the decomposition of complex system into the hierarchy of subsystems, and thus solve intractable problems reducing the search. The hierarchy of subsystems is represented as a hierarchy of formal attribute languages. This paper includes a formal survey of the Linguistic Geometry, and new example of a solution of optimization problem for the space robotic vehicles. This example includes actual generation of the hierarchy of languages, some details of trajectory generation and demonstrates the drastic reduction of search in comparison with conventional search algorithms.
NASA Astrophysics Data System (ADS)
Tofighi, Elham; Mahdizadeh, Amin
2016-09-01
This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.
A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models
NASA Technical Reports Server (NTRS)
Runckel, Jack F.; Swihart, John M.
1959-01-01
A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.
Papantoniou, V.
1999-01-01
The Palaiomation Consortium, supported by the European Commission, is building a robot Iguanodon atherfieldensis for museum display that is much more sophisticated than existing animatronic exhibits. The current half-size (2.5 m) prototype is fully autonomous, carrying its own computer and batteries. It walks around the room, choosing its own path and avoiding obstacles. A bigger version with a larger repertoire of behaviours is planned. Many design problems have had to be overcome. A real dinosaur would have had hundreds of muscles, and we have had to devise means of achieving life-like movement with a much smaller number of motors; we have limited ourselves to 20, to keep the control problems manageable. Realistic stance requires a narrower trackway and a higher centre of mass than in previous (often spider-like) legged robots, making it more difficult to maintain stability. Other important differences from previous walking robots are that the forelegs have to be shorter than the hind, and the machinery has had to be designed to fit inside a realistically shaped body shell. Battery life is about one hour, but to achieve this we have had to design the robot to have very low power consumption. Currently, this limits it to unrealistically slow movement. The control system includes a high-level instructions processor, a gait generator, a motion-coordination generator, and a kinematic model.
Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.
2007-01-01
Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.
Design of bearings for rotor systems based on stability
NASA Technical Reports Server (NTRS)
Dhar, D.; Barrett, L. E.; Knospe, C. R.
1992-01-01
Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.
A New Computational Technique for the Generation of Optimised Aircraft Trajectories
NASA Astrophysics Data System (ADS)
Chircop, Kenneth; Gardi, Alessandro; Zammit-Mangion, David; Sabatini, Roberto
2017-12-01
A new computational technique based on Pseudospectral Discretisation (PSD) and adaptive bisection ɛ-constraint methods is proposed to solve multi-objective aircraft trajectory optimisation problems formulated as nonlinear optimal control problems. This technique is applicable to a variety of next-generation avionics and Air Traffic Management (ATM) Decision Support Systems (DSS) for strategic and tactical replanning operations. These include the future Flight Management Systems (FMS) and the 4-Dimensional Trajectory (4DT) planning and intent negotiation/validation tools envisaged by SESAR and NextGen for a global implementation. In particular, after describing the PSD method, the adaptive bisection ɛ-constraint method is presented to allow an efficient solution of problems in which two or multiple performance indices are to be minimized simultaneously. Initial simulation case studies were performed adopting suitable aircraft dynamics models and addressing a classical vertical trajectory optimisation problem with two objectives simultaneously. Subsequently, a more advanced 4DT simulation case study is presented with a focus on representative ATM optimisation objectives in the Terminal Manoeuvring Area (TMA). The simulation results are analysed in-depth and corroborated by flight performance analysis, supporting the validity of the proposed computational techniques.
Voltage regulation in distribution networks with distributed generation
NASA Astrophysics Data System (ADS)
Blažič, B.; Uljanić, B.; Papič, I.
2012-11-01
The paper deals with the topic of voltage regulation in distribution networks with relatively high distributed energy resources (DER) penetration. The problem of voltage rise is described and different options for voltage regulation are given. The influence of DER on voltage profile and the effectiveness of the investigated solutions are evaluated by means of simulation in DIgSILENT. The simulated network is an actual distribution network in Slovenia with a relatively high penetration of distributed generation. Recommendations for voltage control in networks with DER penetration are given at the end.
Perturbation Techniques in Condition-Controlled Freeze-Thaw Heat Transfer
1993-06-01
is substituted into the governing equations for the problem. By equating the coefficients of each power ofe to zero , one can generate a sequence of...that a digital computer can be used to generate as many terms as desirable. The scheme circumvents the mounting algebraic labor entailed in manual...Ouj + o;* -(c;2#0 -3cjcj)OO = uolo (ul,- u04O 1c~, - uOI) UOW[FI UOOIO,# p + O(ut,-u0.~OI),.=,] (219) u2(NJ, O=I)=0 u2(WdtO= W)=0 (220) Zero -order
Blackboard system generator (BSG) - An alternative distributed problem-solving paradigm
NASA Technical Reports Server (NTRS)
Silverman, Barry G.; Feggos, Kostas; Chang, Joseph Shih
1989-01-01
A status review is presented for a generic blackboard-based distributed problem-solving environment in which multiple-agent cooperation can be effected. This environment is organized into a shared information panel, a chairman control panel, and a metaplanning panel. Each panel contains a number of embedded AI techniques that facilitate its operation and that provide heuristics for solving the underlying team-agent decision problem. The status of these panels and heuristics is described along with a number of robustness considerations. The techniques for each of the three panels and for four sets of paradigm-related advances are described, along with selected results from classroom teaching experiments and from three applications.
2010-01-01
Background Recent research based on comparisons between bilinguals and monolinguals postulates that bilingualism enhances cognitive control functions, because the parallel activation of languages necessitates control of interference. In a novel approach we investigated two groups of bilinguals, distinguished by their susceptibility to cross-language interference, asking whether bilinguals with strong language control abilities ("non-switchers") have an advantage in executive functions (inhibition of irrelevant information, problem solving, planning efficiency, generative fluency and self-monitoring) compared to those bilinguals showing weaker language control abilities ("switchers"). Methods 29 late bilinguals (21 women) were evaluated using various cognitive control neuropsychological tests [e.g., Tower of Hanoi, Ruff Figural Fluency Task, Divided Attention, Go/noGo] tapping executive functions as well as four subtests of the Wechsler Adult Intelligence Scale. The analysis involved t-tests (two independent samples). Non-switchers (n = 16) were distinguished from switchers (n = 13) by their performance observed in a bilingual picture-naming task. Results The non-switcher group demonstrated a better performance on the Tower of Hanoi and Ruff Figural Fluency task, faster reaction time in a Go/noGo and Divided Attention task, and produced significantly fewer errors in the Tower of Hanoi, Go/noGo, and Divided Attention tasks when compared to the switchers. Non-switchers performed significantly better on two verbal subtests of the Wechsler Adult Intelligence Scale (Information and Similarity), but not on the Performance subtests (Picture Completion, Block Design). Conclusions The present results suggest that bilinguals with stronger language control have indeed a cognitive advantage in the administered tests involving executive functions, in particular inhibition, self-monitoring, problem solving, and generative fluency, and in two of the intelligence tests. What remains unclear is the direction of the relationship between executive functions and language control abilities. PMID:20180956
Modal Analysis for Grid Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signalmore » stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.« less
Octopuses use a human-like strategy to control precise point-to-point arm movements.
Sumbre, Germán; Fiorito, Graziano; Flash, Tamar; Hochner, Binyamin
2006-04-18
One of the key problems in motor control is mastering or reducing the number of degrees of freedom (DOFs) through coordination. This problem is especially prominent with hyper-redundant limbs such as the extremely flexible arm of the octopus. Several strategies for simplifying these control problems have been suggested for human point-to-point arm movements. Despite the evolutionary gap and morphological differences, humans and octopuses evolved similar strategies when fetching food to the mouth. To achieve this precise point-to-point-task, octopus arms generate a quasi-articulated structure based on three dynamic joints. A rotational movement around these joints brings the object to the mouth . Here, we describe a peripheral neural mechanism-two waves of muscle activation propagate toward each other, and their collision point sets the medial-joint location. This is a remarkably simple mechanism for adjusting the length of the segments according to where the object is grasped. Furthermore, similar to certain human arm movements, kinematic invariants were observed at the joint level rather than at the end-effector level, suggesting intrinsic control coordination. The evolutionary convergence to similar geometrical and kinematic features suggests that a kinematically constrained articulated limb controlled at the level of joint space is the optimal solution for precise point-to-point movements.
Results of an integrated structure-control law design sensitivity analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1988-01-01
Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.
Study of active noise control system for a commercial HVAC unit
NASA Astrophysics Data System (ADS)
Devineni, Naga
Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.
Research on LLCL Filtering Grid - Connected inverter under the Control of PFI
NASA Astrophysics Data System (ADS)
Li, Ren-qing; Zong, Ke-yong; Wang, Yan-ping; Li, Yang; Zhang, Jing
2018-03-01
This passage puts forward a kind of LLCL inverter which is based on the proportional feedback integral(PFI) control so as so satisfy the request of the grid-current outputed by the renewable energy generation system. The passage builds the topological graph of grid-connected inverter and makes an analysis of principle of linear superposition aims to reveal the essence of the problem of steady-state error that exists in proportional integral control. We use LLCL filter and the method of passive damping to solve the problem of resonant peak. We make simulation of the grid system with the software named MATLAB/Simulink. The result shows that the grid current enters steady state quickly and in the same time, which has the identical phase and frequency of grid-voltage. The harmonic content in grid current satisfies the request of grid standard.
Model-Free Adaptive Control for Unknown Nonlinear Zero-Sum Differential Game.
Zhong, Xiangnan; He, Haibo; Wang, Ding; Ni, Zhen
2018-05-01
In this paper, we present a new model-free globalized dual heuristic dynamic programming (GDHP) approach for the discrete-time nonlinear zero-sum game problems. First, the online learning algorithm is proposed based on the GDHP method to solve the Hamilton-Jacobi-Isaacs equation associated with optimal regulation control problem. By setting backward one step of the definition of performance index, the requirement of system dynamics, or an identifier is relaxed in the proposed method. Then, three neural networks are established to approximate the optimal saddle point feedback control law, the disturbance law, and the performance index, respectively. The explicit updating rules for these three neural networks are provided based on the data generated during the online learning along the system trajectories. The stability analysis in terms of the neural network approximation errors is discussed based on the Lyapunov approach. Finally, two simulation examples are provided to show the effectiveness of the proposed method.
Langley's CSI evolutionary model: Phase 2
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Elliott, Kenny B.; Belvin, W. Keith; Teter, John E.
1995-01-01
Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.
Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system
Guo, Rihong; Wan, Yongjie; Xu, Dan; Cui, Libin; Deng, Mingtian; Zhang, Guomin; Jia, Ruoxin; Zhou, Wenjun; Wang, Zhen; Deng, Kaiping; Huang, Mingrui; Wang, Feng; Zhang, Yanli
2016-01-01
Myostatin (Mstn) is a conserved negative regulator of skeletal muscle mass in mammals. However, whether precise disruption of Mstn in livestock can be achieved and safely used to improve meat productivity has not been proven. We applied CRISPR/Cas9 system to generate Mstn knock-out (KO) rabbits and goats and then analyzed the changes in their phenotypes to answer this question. We efficiently generated 24 Mstn KO rabbits out of 32 newborn infants after embryo injection with two sgRNAs targeting rabbit Mstn, and found that the Mstn KO rabbits exhibited increased birthweight and a significantly increase in the weight ratios of the quadriceps and biceps muscles to the whole body. Mstn KO also caused high probability of enlarged tongue phenomenon and severe health problems such as stillbirth and early stage death. Using the same method, one out of four goats was generated with edition at Mstn locus. The early stage growth rate of this goat outperformed the control goats. In conclusion, we efficiently generated Mstn KO rabbits and goats using CRISPR/Cas9 technology. However, Mstn KO causes severe health problems and may also have the same effects on other species. This safety issue must be studied further before applied to animal reproduction processes. PMID:27417210
Miconi, Diana; Altoè, Gianmarco; Salcuni, Silvia; Di Riso, Daniela; Schiff, Sami; Moscardino, Ughetta
2018-05-24
Although discrimination is a common stressor in the everyday life of immigrant youth, individuals are not equally susceptible to its adverse effects. This cross-sectional study aimed to examine whether cultural orientation preferences and impulse control (IC) moderate the association between perceived discrimination and externalizing problems among Moroccan- and Romanian-origin early adolescents in Italy. The sample included 126 Moroccan and 126 Romanian youths (46% girls, 42% first-generation) aged 11-13 years and their parents. Perceived discrimination and cultural orientations were assessed using self-report questionnaires, while IC was evaluated via a computerized version of the Iowa Gambling Task. Externalizing behaviors were assessed via parental report. Cluster analysis identified separated, assimilated, and integrated early adolescents. Regression analyses revealed that when facing discrimination, youths who endorsed separation and exhibited low levels of IC were more vulnerable to externalizing problems. In contrast, among assimilated adolescents the discrimination-externalizing difficulties link was significant at high levels of IC. Furthermore, low levels of IC were associated with more externalizing problems for Romanian, but not for Moroccan early adolescents. Findings underscore the need to consider both cultural orientation processes and early adolescents' ability to control their impulses when developing interventions aimed to reduce discrimination-related problem behaviors in immigrant youth. Implications for theory and practice are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.
The Changing Hardwood Export Market and Research to Keep the U.S. Competitive
Philip A. Araman
1988-01-01
Primary hardwood processors face many interrelated market, product, processing, and resource problems generated by the increasing export market. In processing, yields and quality must be increased and costs must be reduced to stay competitive. Computer-aided and computer-controlled automated processing is also needed. The industry needs to keep its products competitive...
The Second Conference on the Environmental Chemistry of Hydrazine Fuels; 15 February 1979.
1982-04-01
tank by a moving piston in the tank. The hydrazine trave’s to a gas generator where it decomposes on an iridium /alumina catalyst. The gas is used to...possibility of nitrogen trichloride formation and presented control instrument problems since commercially available instru- ments required p11 of about 5
Computations of Aerodynamic Performance Databases Using Output-Based Refinement
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2009-01-01
Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.
NASA Technical Reports Server (NTRS)
Whitaker, Mike
1991-01-01
Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.
First non-OEM steam-generator replacement in US a success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendsbee, P.M.; Lees, M.D.; Smith, J.C.
1994-04-01
In selecting replacements for major powerplant components, a fresh approach can be advantageous--even when complex nuclear components are involved. This was the experience at Unit 2 of Millstone nuclear station, which features an 870-MW pressurized-water reactor (PWR) with two nuclear recirculating steam generators. The unit began operation in 1975. In the early 1980s, pitting problems surfaced in the steam generator tubing; by the mid eighties, tube corrosion had reached an unacceptable level. Virtually all of the 17,000 tubes in the two units were deteriorating, with 2500 plugged and 5000 sleeved. Several new problems also were identified, including secondary-side circumferential crackingmore » of the Alloy 600 tubing near the tubesheet face, and deterioration of the carbon steel egg-crate tube supports. Despite improvements to primary and secondary steam-generator water chemistry, including almost complete copper removal from the condensate and feedwater loops, Northeast Utilities (NU) was unable to completely control degradation of the tube bundles. The utility decided in 1987 that full replacement was the most viable alternative. NU made a bold move, selecting a supplier other than the original equipment manufacturer (OEM).« less
NASA Astrophysics Data System (ADS)
Brudny, J. F.; Pusca, R.; Roisse, H.
2008-08-01
A considerable number of communities throughout the world, most of them isolated, need hybrid energy solutions either for rural electrification or for the reduction of diesel use. Despite several research projects and demonstrations which have been conducted in recent years, wind-diesel technology remains complex and much too costly. Induction generators are the most robust and common for wind energy systems but this option is a serious challenge for electrical regulation. When a wind turbine is used in an off-grid configuration, either continuously or intermittently, precise and robust regulation is difficult to attain. The voltage parameter regulation option, as was experienced at several remote sites (on islands and in the arctic for example), is a safe, reliable and relatively simple technology, but does not optimize the wave quality and creates instabilities. These difficulties are due to the fact that no theory is available to describe the system, due to the inverse nature of the problem. In order to address and solve the problem of the unstable operation of this wind turbine generator, an innovative approach is described, based on a different induction generator single phase equivalent circuit.
Cold startup and low temperature performance of the Brayton cycle electrical subsystem
NASA Technical Reports Server (NTRS)
Vrancik, J. E.; Bainbridge, R. C.
1971-01-01
Cold performance tests and startup tests were conducted on the Brayton-cycle inverter, motor-driven pump, dc supply, speed control with parasitic load resistor and the Brayton control system. These tests were performed with the components in a vacuum and mounted on coldplates. A temperature range of ?25 to -50 C was used for the tests. No failures occurred, and component performance gave no indication that there would be any problem with the safe operation of the Brayton power generating system.
Automated quality control for stitching of textile articles
NASA Technical Reports Server (NTRS)
Miller, Jeffrey L. (Inventor); Markus, Alan (Inventor)
1999-01-01
Quality control for stitching of a textile article is performed by measuring thread tension in the stitches as the stitches are being made, determining locations of the stitches, and generating a map including the locations and stitching data derived from the measured thread tensions. The stitching data can be analyzed, off-line or in real time, to identify defective stitches. Defective stitches can then be repaired. Real time analysis of the thread tensions allows problems such as broken needle threads to be corrected immediately.
Model learning for robot control: a survey.
Nguyen-Tuong, Duy; Peters, Jan
2011-11-01
Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot's own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the influence of an agent on this environment. In the context of model-based learning control, we view the model from three different perspectives. First, we need to study the different possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.
Iterative free-energy optimization for recurrent neural networks (INFERNO).
Pitti, Alexandre; Gaussier, Philippe; Quoy, Mathias
2017-01-01
The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes' synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle.
Decentralized DC Microgrid Monitoring and Optimization via Primary Control Perturbations
NASA Astrophysics Data System (ADS)
Angjelichinoski, Marko; Scaglione, Anna; Popovski, Petar; Stefanovic, Cedomir
2018-06-01
We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements. Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.
Benbouzid, Mohamed; Beltran, Brice; Amirat, Yassine; Yao, Gang; Han, Jingang; Mangel, Hervé
2014-05-01
This paper deals with the fault ride-through capability assessment of a doubly fed induction generator-based wind turbine using a high-order sliding mode control. Indeed, it has been recently suggested that sliding mode control is a solution of choice to the fault ride-through problem. In this context, this paper proposes a second-order sliding mode as an improved solution that handle the classical sliding mode chattering problem. Indeed, the main and attractive features of high-order sliding modes are robustness against external disturbances, the grids faults in particular, and chattering-free behavior (no extra mechanical stress on the wind turbine drive train). Simulations using the NREL FAST code on a 1.5-MW wind turbine are carried out to evaluate ride-through performance of the proposed high-order sliding mode control strategy in case of grid frequency variations and unbalanced voltage sags. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Alternative Attitude Commanding and Control for Precise Spacecraft Landing
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2004-01-01
A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.
Pattern-set generation algorithm for the one-dimensional multiple stock sizes cutting stock problem
NASA Astrophysics Data System (ADS)
Cui, Yaodong; Cui, Yi-Ping; Zhao, Zhigang
2015-09-01
A pattern-set generation algorithm (PSG) for the one-dimensional multiple stock sizes cutting stock problem (1DMSSCSP) is presented. The solution process contains two stages. In the first stage, the PSG solves the residual problems repeatedly to generate the patterns in the pattern set, where each residual problem is solved by the column-generation approach, and each pattern is generated by solving a single large object placement problem. In the second stage, the integer linear programming model of the 1DMSSCSP is solved using a commercial solver, where only the patterns in the pattern set are considered. The computational results of benchmark instances indicate that the PSG outperforms existing heuristic algorithms and rivals the exact algorithm in solution quality.
Resilient Distribution System by Microgrids Formation After Natural Disasters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chen; Wang, Jianhui; Qiu, Feng
2016-03-01
Microgrids with distributed generation provide a resilient solution in the case of major faults in a distribution system due to natural disasters. This paper proposes a novel distribution system operational approach by forming multiple microgrids energized by distributed generation from the radial distribution system in real-time operations, to restore critical loads from the power outage. Specifically, a mixed-integer linear program (MILP) is formulated to maximize the critical loads to be picked up while satisfying the self-adequacy and operation constraints for the microgrids formation problem, by controlling the ON/OFF status of the remotely controlled switch devices and distributed generation. A distributedmore » multi-agent coordination scheme is designed via local communications for the global information discovery as inputs of the optimization, which is suitable for autonomous communication requirements after the disastrous event. The formed microgrids can be further utilized for power quality control and can be connected to a larger microgrid before the restoration of the main grids is complete. Numerical results based on modified IEEE distribution test systems validate the effectiveness of our proposed scheme.« less
Investigating the role of future thinking in social problem solving.
Noreen, Saima; Whyte, Katherine E; Dritschel, Barbara
2015-03-01
There is well-established evidence that both rumination and depressed mood negatively impact the ability to solve social problems. A preliminary stage of the social problem solving process may be the process of catapulting oneself forward in time to think about the consequences of a problem before attempting to solve it. The aim of the present study was to examine how thinking about the consequences of a social problem being resolved or unresolved prior to solving it influences the solution of the problem as a function of levels of rumination and dysphoric mood. Eighty six participants initially completed the Beck Depression Inventory- II (BDI-II) and the Ruminative Response Scale (RRS). They were then presented with six social problems and generated consequences for half of the problems being resolved and half of the problems remaining unresolved. Participants then solved some of the problems, and following a delay, were asked to recall all of the consequences previously generated. Participants reporting higher levels of depressed mood and rumination were less effective at generating problem solutions. Specifically, those reporting higher levels of rumination produced less effective solutions for social problems that they had previously generated unresolved than resolved consequences. We also found that individuals higher in rumination, irrespective of depressed mood recalled more of the unresolved consequences in a subsequent memory test. As participants did not solve problems for scenarios where no consequences were generated, no baseline measure of problem solving was obtained. Our results suggest thinking about the consequences of a problem remaining unresolved may impair the generation of effective solutions in individuals with higher levels of rumination. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.
Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong
2015-01-01
The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.
Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is thatmore » additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.« less
A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles
Hwang, Jenn-Jiang; Lin, Chih-Hong
2015-01-01
The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771
Improved techniques for thermomechanical testing in support of deformation modeling
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Ellis, John R.
1992-01-01
The feasibility of generating precise thermomechanical deformation data to support constitutive model development was investigated. Here, the requirement is for experimental data that is free from anomalies caused by less than ideal equipment and procedures. A series of exploratory tests conducted on Hastelloy X showed that generally accepted techniques for strain controlled tests were lacking in at least three areas. Specifically, problems were encountered with specimen stability, thermal strain compensation, and temperature/mechanical strain phasing. The source of these difficulties was identified and improved thermomechanical testing techniques to correct them were developed. These goals were achieved by developing improved procedures for measuring and controlling thermal gradients and by designing a specimen specifically for thermomechanical testing. In addition, innovative control strategies were developed to correctly proportion and phase the thermal and mechanical components of strain. Subsequently, the improved techniques were used to generate deformation data for Hastelloy X over the temperature range, 200 to 1000 C.
A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Fogle, Frank (Technical Monitor)
2002-01-01
Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.
Rapid assessment procedures in injury control.
Klevens, Joanne; Anderson, Mark
2004-03-01
Injuries are among the leading causes of death and disability worldwide. The burden caused by injuries is even greater among the poorer nations and is projected to increase. Very often the lack of technical and financial resources, as well as the urgency of the problem, preclude applying sophisticated surveillance and research methods for generating relevant information to develop effective interventions. In these settings, it is necessary to consider more rapid and less costly methods in applying the public health approach to the problem of injury prevention and control. Rapid Assessment Procedures (RAP), developed within the fields of epidemiology, anthropology and health administration, can provide valid information in a manner that is quicker, simpler, and less costly than standard data collection methods. RAP have been applied widely and successfully to infectious and chronic disease issues, but have not been used extensively, if at all, as tools in injury control. This paper describes Rapid Assessment Procedures that (1) are useful for understanding the scope of the problem and for identifying potential risk factors, (2) can assist practitioners in determining intervention priorities, (3) can provide in-depth knowledge about a specific injury-related problem, and (4) can be used in surveillance systems to monitor outcomes. Finally, the paper describes some of the caveats in using RAP.
Stoltz, Sabine; van Londen, Monique; Deković, Maja; de Castro, Bram O; Prinzie, Peter; Lochman, John E
2013-10-01
For elementary school-children with aggressive behaviour problems, there is a strong need for effective preventive interventions to interrupt the developmental trajectory towards more serious behaviour problems. The aim of this RCT-study was to evaluate a school-based individual tailor-made intervention (Stay Cool Kids), designed to reduce aggressive behaviour in selected children by enhancing cognitive behavioural skills. The sample consisted of 48 schools, with 264 fourth-grade children selected by their teachers because of elevated levels of externalizing behaviour (TRF T-score>60), randomly assigned to the intervention or no-intervention control condition. The intervention was found to be effective in reducing reactive and proactive aggressive behaviour as reported by children, mothers, fathers or teachers, with effect sizes ranging from .11 to .32. Clinically relevant changes in teacher-rated externalizing behaviour were found: the intervention reduced behaviour problems to (sub) clinical or normative levels for significantly more children than the control condition. Some aspects of problems in social cognitive functioning were reduced and children showed more positive self-perception. Ethnic background and gender moderated intervention effects on child and teacher reported aggression and child response generation. The results of this study demonstrate the effectiveness on outcome behaviour and child cognitions of an individual tailor-made intervention across informants under real-world conditions.
Ghassabian, Akhgar; Herba, Catherine M; Roza, Sabine J; Govaert, Paul; Schenk, Jacqueline J; Jaddoe, Vincent W; Hofman, Albert; White, Tonya; Verhulst, Frank C; Tiemeier, Henning
2013-01-01
Neuroimaging findings have provided evidence for a relation between variations in brain structures and attention deficit/hyperactivity disorder (ADHD). However, longitudinal neuroimaging studies are typically confined to children who have already been diagnosed with ADHD. In a population-based study, we aimed to characterize the prospective association between brain structures measured during infancy and executive function and attention deficit/hyperactivity problems assessed at preschool age. In the Generation R Study, the corpus callosum length, the gangliothalamic ovoid diameter (encompassing the basal ganglia and thalamus), and the ventricular volume were measured in 784 6-week-old children using cranial postnatal ultrasounds. Parents rated executive functioning at 4 years using the behavior rating inventory of executive function-preschool version in five dimensions: inhibition, shifting, emotional control, working memory, and planning/organizing. Attention deficit/hyperactivity problems were assessed at ages 3 and 5 years using the child behavior checklist. A smaller corpus callosum length during infancy was associated with greater deficits in executive functioning at 4 years. This was accounted for by higher problem scores on inhibition and emotional control. The corpus callosum length during infancy did not predict attention deficit/hyperactivity problem at 3 and 5 years, when controlling for the confounders. We did not find any relation between gangliothalamic ovoid diameter and executive function or Attention deficit/hyperactivity problem. Variations in brain structures detectible in infants predicted subtle impairments in inhibition and emotional control. However, in this population-based study, we could not demonstrate that early structural brain variations precede symptoms of ADHD. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.
NASA Astrophysics Data System (ADS)
Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar
2013-11-01
Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal front obtained from MODE is compared with reference pareto front and the best compromise solution for all the cases are obtained from fuzzy decision making strategy. The performance measures of proposed MODE in two test systems are calculated using suitable performance metrices. The simulation results show that the proposed approach provides considerable improvement in the congestion management by generation rescheduling and load shedding while enhancing the voltage stability in deregulated power system.
NASA Astrophysics Data System (ADS)
Sasidhar, Jaladanki; Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.
2017-07-01
The success of any construction project will depend on efficient management of resources in a perfect manner to complete the project with a reasonable budget and time and the quality cannot be compromised. The efficient and timely procurement of material, deployment of adequate labor at correct time and mobilization of machinery lacking in time, all of them causes delay, lack of quality and finally affect the project cost. It is known factor that Project cost can be controlled by taking corrective actions on mobilization of resources at a right time. This research focuses on integration of management systems with the computer to generate the model which uses OOM data structure which decides to include automatic commodity code generation, automatic takeoff execution, intelligent purchase order generation, and components of design and schedule integration to overcome the problems of stock out. To overcome the problem in equipment management system inventory management module is suggested and the data set of equipment registration number, equipment number, description, date of purchase, manufacturer, equipment price, market value, life of equipment, production data of the equipment which includes equipment number, date, name of the job, hourly rate, insurance, depreciation cost of the equipment, taxes, storage cost, interest, oil, grease, and fuel consumption, etc. is analyzed and the decision support systems to overcome the problem arising out improper management is generated. The problem on labor is managed using scheduling, Strategic management of human resources. From the generated support systems tool, the resources are mobilized at a right time and help the project manager to finish project in time and thereby save the abnormal project cost and also provides the percentage that can be improved and also research focuses on determining the percentage of delays that are caused by lack of management of materials, manpower and machinery in different types of projects and how the percentage various from project to project.
NASA Technical Reports Server (NTRS)
Toomarian, N.; Kirkham, Harold
1994-01-01
This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.
Validating a UAV artificial intelligence control system using an autonomous test case generator
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Huber, Justin
2013-05-01
The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.
A model for the submarine depthkeeping team
NASA Technical Reports Server (NTRS)
Ware, J. R.; Best, J. F.; Bozzi, P. J.; Kleinman, D. W.
1981-01-01
The most difficult task the depthkeeping team must face occurs during periscope-depth operations during which they may be required to maintain a submarine several hundred feet long within a foot of ordered depth and within one-half degree of ordered pitch. The difficulty is compounded by the facts that wave generated forces are extremely high, depth and pitch signals are very noisy and submarine speed is such that overall dynamics are slow. A mathematical simulation of the depthkeeping team based on the optimal control models is described. A solution of the optimal team control problem with an output control restriction (limited display to each controller) is presented.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
On a stochastic control method for weakly coupled linear systems. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kwong, R. H.
1972-01-01
The stochastic control of two weakly coupled linear systems with different controllers is considered. Each controller only makes measurements about his own system; no information about the other system is assumed to be available. Based on the noisy measurements, the controllers are to generate independently suitable control policies which minimize a quadratic cost functional. To account for the effects of weak coupling directly, an approximate model, which involves replacing the influence of one system on the other by a white noise process is proposed. Simple suboptimal control problem for calculating the covariances of these noises is solved using the matrix minimum principle. The overall system performance based on this scheme is analyzed as a function of the degree of intersystem coupling.
The Optimization dispatching of Micro Grid Considering Load Control
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Xie, Jiqiang; Yang, Xiu; He, Hongli
2018-01-01
This paper proposes an optimization control of micro-grid system economy operation model. It coordinates the new energy and storage operation with diesel generator output, so as to achieve the economic operation purpose of micro-grid. In this paper, the micro-grid network economic operation model is transformed into mixed integer programming problem, which is solved by the mature commercial software, and the new model is proved to be economical, and the load control strategy can reduce the charge and discharge times of energy storage devices, and extend the service life of the energy storage device to a certain extent.
NASA Astrophysics Data System (ADS)
Han, Ke-Zhen; Feng, Jian; Cui, Xiaohong
2017-10-01
This paper considers the fault-tolerant optimised tracking control (FTOTC) problem for unknown discrete-time linear system. A research scheme is proposed on the basis of data-based parity space identification, reinforcement learning and residual compensation techniques. The main characteristic of this research scheme lies in the parity-space-identification-based simultaneous tracking control and residual compensation. The specific technical line consists of four main contents: apply subspace aided method to design observer-based residual generator; use reinforcement Q-learning approach to solve optimised tracking control policy; rely on robust H∞ theory to achieve noise attenuation; adopt fault estimation triggered by residual generator to perform fault compensation. To clarify the design and implementation procedures, an integrated algorithm is further constructed to link up these four functional units. The detailed analysis and proof are subsequently given to explain the guaranteed FTOTC performance of the proposed conclusions. Finally, a case simulation is provided to verify its effectiveness.
Time domain localization technique with sparsity constraint for imaging acoustic sources
NASA Astrophysics Data System (ADS)
Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain
2017-09-01
This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate. PMID:28991919
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.
Robust multi-model control of an autonomous wind power system
NASA Astrophysics Data System (ADS)
Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul
2006-09-01
This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright
LQC control for the Mini-Mast experiment
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Ghosh, D.
1988-01-01
The Mini-Mast system is briefly reviewed, and results of a simulation study of the LQG control for the Mini-Mast experiment are reported. In particular, attention is given to problems and limitations related to the testing of control laws using reaction mass actuators, such as accounting for force and stroke limits of these devices. The local controller used in the study and the algorithm for converting the force commands of the LQG algorithm to position commands for the reaction mass device are described. It is shown that the LQG generated damping is reduced when a local controller is used and the position command is not saturated; it drops still further when the position command is saturated.
Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M
2017-07-18
Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.
Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design
NASA Technical Reports Server (NTRS)
Li, Wu; Robinson, Jay
2016-01-01
This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended somewhat so that linear models can also be generated from two- and three-dimensional steady-state results. Standard techniques are adequate for reducing the order of one-dimensional CFD-based linear models. However, reduction of linear models based on two- and three-dimensional CFD results is complicated by very sparse, ill-conditioned matrices. Some novel approaches are being investigated to solve this problem.
Research on frequency control strategy of interconnected region based on fuzzy PID
NASA Astrophysics Data System (ADS)
Zhang, Yan; Li, Chunlan
2018-05-01
In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.
Positive deviance: an elegant solution to a complex problem.
Lindberg, Curt; Clancy, Thomas R
2010-04-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 13th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. This article provides one example of how concepts taken from complex systems theory can be applied to real-world problems facing nurses today.
Lattice Boltzmann for Airframe Noise Predictions
NASA Technical Reports Server (NTRS)
Barad, Michael; Kocheemoolayil, Joseph; Kiris, Cetin
2017-01-01
Increase predictive use of High-Fidelity Computational Aero- Acoustics (CAA) capabilities for NASA's next generation aviation concepts. CFD has been utilized substantially in analysis and design for steady-state problems (RANS). Computational resources are extremely challenged for high-fidelity unsteady problems (e.g. unsteady loads, buffet boundary, jet and installation noise, fan noise, active flow control, airframe noise, etc) ü Need novel techniques for reducing the computational resources consumed by current high-fidelity CAA Need routine acoustic analysis of aircraft components at full-scale Reynolds number from first principles Need an order of magnitude reduction in wall time to solution!
[Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].
Alekseenko, V A; Kus'min, A A; Filist, S A
2008-01-01
Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.
Insight in the Brain: The Cognitive and Neural Bases of Eureka Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeman, Mark
Where do new ideas come from? Although all new ideas build on old, this can happen in different ways. Some new ideas, or solutions to old problems, are achieved through methodical, analytical processing. Other new ideas come about in a sudden burst of insight, often based on or generating a restructured view of the problem itself. Behavioral, brain imaging, and eye-tracking results all reveal distinct cortical networks contributing to insight solving, as contrasted with analytic solving. Consistently, the way in which people solve problems appears to relate to the way they engage attention and cognitive control: across time, across moods,more » and across individuals. Insight is favored when people can disengage from strong stimuli and associations - figuratively and literally looking "outside the box" of the problem to suddenly solve with a new idea.« less
NASA Astrophysics Data System (ADS)
Sirota, Dmitry; Ivanov, Vadim
2017-11-01
Any mining operations influence stability of natural and technogenic massifs are the reason of emergence of the sources of differences of mechanical tension. These sources generate a quasistationary electric field with a Newtonian potential. The paper reviews the method of determining the shape and size of a flat source field with this kind of potential. This common problem meets in many fields of mining: geological exploration mineral resources, ore deposits, control of mining by underground method, determining coal self-heating source, localization of the rock crack's sources and other applied problems of practical physics. This problems are ill-posed and inverse and solved by converting to Fredholm-Uryson integral equation of the first kind. This equation will be solved by A.N. Tikhonov regularization method.
Regulation of the Output Voltage of an Inverter in Case of Load Variation
NASA Astrophysics Data System (ADS)
Diouri, Omar; Errahimi, Fatima; Es-Sbai, Najia
2018-05-01
In a DC/AC photovoltaic application, the stability of the output voltage of the inverter plays a very important role in the electrical systems. Such a photovoltaic system is constituted by an inverter, which makes it possible to convert the continuous energy to the alternative energy used in systems which operate under a voltage of 230V. The output of this inverter can be connected to a single load or more, at which time a second load is added in parallel with the first load. In this case, it proves a voltage drop at the output of the inverter. This problem influences the proper functioning of the electrical loads. Therefore, our contribution is to give a solution to this by compensating this voltage drop using a boost converter at the input of the inverter. This boost converter will play the role of the compensator that will provide the necessary voltage to the inverter in order to increase the voltage across the loads. But the use of this boost without controlling it is not enough because it generates a voltage that depends on the duty cycle of the control signal. To stabilize the output voltage of the inverter, we used a Proportional, Integral, and Derivative control (PID), which makes it possible to generate the necessary control signal for the voltage boost in order to have a good regulation of the output voltage of the inverter. Finally, we have solved the problem of the voltage drop even though there is loads variation.
Removing Barriers for Effective Deployment of Intermittent Renewable Generation
NASA Astrophysics Data System (ADS)
Arabali, Amirsaman
The stochastic nature of intermittent renewable resources is the main barrier to effective integration of renewable generation. This problem can be studied from feeder-scale and grid-scale perspectives. Two new stochastic methods are proposed to meet the feeder-scale controllable load with a hybrid renewable generation (including wind and PV) and energy storage system. For the first method, an optimization problem is developed whose objective function is the cost of the hybrid system including the cost of renewable generation and storage subject to constraints on energy storage and shifted load. A smart-grid strategy is developed to shift the load and match the renewable energy generation and controllable load. Minimizing the cost function guarantees minimum PV and wind generation installation, as well as storage capacity selection for supplying the controllable load. A confidence coefficient is allocated to each stochastic constraint which shows to what degree the constraint is satisfied. In the second method, a stochastic framework is developed for optimal sizing and reliability analysis of a hybrid power system including renewable resources (PV and wind) and energy storage system. The hybrid power system is optimally sized to satisfy the controllable load with a specified reliability level. A load-shifting strategy is added to provide more flexibility for the system and decrease the installation cost. Load shifting strategies and their potential impacts on the hybrid system reliability/cost analysis are evaluated trough different scenarios. Using a compromise-solution method, the best compromise between the reliability and cost will be realized for the hybrid system. For the second problem, a grid-scale stochastic framework is developed to examine the storage application and its optimal placement for the social cost and transmission congestion relief of wind integration. Storage systems are optimally placed and adequately sized to minimize the sum of operation and congestion costs over a scheduling period. A technical assessment framework is developed to enhance the efficiency of wind integration and evaluate the economics of storage technologies and conventional gas-fired alternatives. The proposed method is used to carry out a cost-benefit analysis for the IEEE 24-bus system and determine the most economical technology. In order to mitigate the financial and technical concerns of renewable energy integration into the power system, a stochastic framework is proposed for transmission grid reinforcement studies in a power system with wind generation. A multi-stage multi-objective transmission network expansion planning (TNEP) methodology is developed which considers the investment cost, absorption of private investment and reliability of the system as the objective functions. A Non-dominated Sorting Genetic Algorithm (NSGA II) optimization approach is used in combination with a probabilistic optimal power flow (POPF) to determine the Pareto optimal solutions considering the power system uncertainties. Using a compromise-solution method, the best final plan is then realized based on the decision maker preferences. The proposed methodology is applied to the IEEE 24-bus Reliability Tests System (RTS) to evaluate the feasibility and practicality of the developed planning strategy.
Microbiological testing of Skylab foods.
NASA Technical Reports Server (NTRS)
Heidelbaugh, N. D.; Mcqueen, J. L.; Rowley, D. B.; Powers , E. M.; Bourland, C. T.
1973-01-01
Review of some of the unique food microbiology problems and problem-generating circumstances the Skylab manned space flight program involves. The situations these problems arise from include: extended storage times, variations in storage temperatures, no opportunity to resupply or change foods after launch of the Skylab Workshop, first use of frozen foods in space, first use of a food-warming device in weightlessness, relatively small size of production lots requiring statistically valid sampling plans, and use of food as an accurately controlled part in a set of sophisticated life science experiments. Consideration of all of these situations produced the need for definite microbiological tests and test limits. These tests are described along with the rationale for their selection. Reported test results show good compliance with the test limits.
Team Training through Communications Control
1982-02-01
training * operational environment * team training research issues * training approach * team communications * models of operator beharior e...on the market soon, it certainly would be investigated carefully for its applicability to the team training problem. ce A text-to-speech voice...generation system. Votrax has recently marketed such a device, and others may soon follow suit. ’ d. A speech replay system designed to produce speech from
Optimal tactics for close support operations. III - Degraded intelligence and communications
NASA Astrophysics Data System (ADS)
Hess, J.; Kalaba, R.; Kagiwada, H.; Spingarn, K.; Tsokos, C.
1980-04-01
A new generation of C3 (command, control, and communication) models for military cybernetics is developed. Recursive equations for the solution of the C3 problem are derived for an amphibious campaign with linear time-varying dynamics. Air and ground commanders are assumed to have no intelligence and no communications. Numerical results are given for the optimal decision rules.
Universal inverse design of surfaces with thin nematic elastomer sheets.
Aharoni, Hillel; Xia, Yu; Zhang, Xinyue; Kamien, Randall D; Yang, Shu
2018-06-21
Programmable shape-shifting materials can take different physical forms to achieve multifunctionality in a dynamic and controllable manner. Although morphing a shape from 2D to 3D via programmed inhomogeneous local deformations has been demonstrated in various ways, the inverse problem-finding how to program a sheet in order for it to take an arbitrary desired 3D shape-is much harder yet critical to realize specific functions. Here, we address this inverse problem in thin liquid crystal elastomer (LCE) sheets, where the shape is preprogrammed by precise and local control of the molecular orientation of the liquid crystal monomers. We show how blueprints for arbitrary surface geometries can be generated using approximate numerical methods and how local extrinsic curvatures can be generated to assist in properly converting these geometries into shapes. Backed by faithfully alignable and rapidly lockable LCE chemistry, we precisely embed our designs in LCE sheets using advanced top-down microfabrication techniques. We thus successfully produce flat sheets that, upon thermal activation, take an arbitrary desired shape, such as a face. The general design principles presented here for creating an arbitrary 3D shape will allow for exploration of unmet needs in flexible electronics, metamaterials, aerospace and medical devices, and more.
Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory
NASA Astrophysics Data System (ADS)
Dichter, W.; Doris, K.; Conkling, C.
1982-06-01
A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.
Using Generative Representations to Evolve Robots. Chapter 1
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
Recent research has demonstrated the ability of evolutionary algorithms to automatically design both the physical structure and software controller of real physical robots. One of the challenges for these automated design systems is to improve their ability to scale to the high complexities found in real-world problems. Here we claim that for automated design systems to scale in complexity they must use a representation which allows for the hierarchical creation and reuse of modules, which we call a generative representation. Not only is the ability to reuse modules necessary for functional scalability, but it is also valuable for improving efficiency in testing and construction. We then describe an evolutionary design system with a generative representation capable of hierarchical modularity and demonstrate it for the design of locomoting robots in simulation. Finally, results from our experiments show that evolution with our generative representation produces better robots than those evolved with a non-generative representation.
LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Carson, John M., III
2007-01-01
This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.
Automated problem list generation and physicians perspective from a pilot study.
Devarakonda, Murthy V; Mehta, Neil; Tsou, Ching-Huei; Liang, Jennifer J; Nowacki, Amy S; Jelovsek, John Eric
2017-09-01
An accurate, comprehensive and up-to-date problem list can help clinicians provide patient-centered care. Unfortunately, problem lists created and maintained in electronic health records by providers tend to be inaccurate, duplicative and out of date. With advances in machine learning and natural language processing, it is possible to automatically generate a problem list from the data in the EHR and keep it current. In this paper, we describe an automated problem list generation method and report on insights from a pilot study of physicians' assessment of the generated problem lists compared to existing providers-curated problem lists in an institution's EHR system. The natural language processing and machine learning-based Watson 1 method models clinical thinking in identifying a patient's problem list using clinical notes and structured data. This pilot study assessed the Watson method and included 15 randomly selected, de-identified patient records from a large healthcare system that were each planned to be reviewed by at least two internal medicine physicians. The physicians created their own problem lists, and then evaluated the overall usefulness of their own problem lists (P), Watson generated problem lists (W), and the existing EHR problem lists (E) on a 10-point scale. The primary outcome was pairwise comparisons of P, W, and E. Six out of the 10 invited physicians completed 27 assessments of P, W, and E, and in process evaluated 732 Watson generated problems and 444 problems in the EHR system. As expected, physicians rated their own lists, P, highest. However, W was rated higher than E. Among 89% of assessments, Watson identified at least one important problem that physicians missed. Cognitive computing systems like this Watson system hold the potential for accurate, problem-list-centered summarization of patient records, potentially leading to increased efficiency, better clinical decision support, and improved quality of patient care. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The effect of pavement markings on driving behaviour in curves: a simulator study.
Ariën, Caroline; Brijs, Kris; Vanroelen, Giovanni; Ceulemans, Wesley; Jongen, Ellen M M; Daniels, Stijn; Brijs, Tom; Wets, Geert
2017-05-01
This study investigates the effect of two pavement markings (transverse rumble strips (TRS) and a backward pointing herringbone pattern (HP)) on speed and lateral control in and nearby curves. Two real-world curves with strong indications of a safety problem were replicated as realistic as possible in the simulator. Results show that both speed and lateral control differ between the curves. These behavioural differences are probably due to curve-related dissimilarities with respect to geometric alignment, cross-sectional design and speed limit. TRS and HP both influenced mean speed and mean acceleration/deceleration but not lateral control. TRS generated an earlier and more stable speed reduction than HP which induced significant speed reductions along the curve. The TRS gives drivers more time to generate the right expectations about the upcoming curve. When accidents occur primarily near the curve entry, TRS is recommended. The HP has the potential to reduce accidents at the curve end. Practitioner Summary: Two pavement markings (transversal rumble strips and HP) nearby dangerous curves were investigated in the driving simulator. TRS generated an earlier and more stable speed reduction than HP which induced speed reductions along the curve. The TRS gives drivers more time to generate right expectations about the upcoming curve.
Flippin' Fluid Mechanics - Using Online Technology to Enhance the In-Class Learning Experience
NASA Astrophysics Data System (ADS)
Webster, D. R.; Majerich, D. M.
2013-11-01
This study provides an empirical analysis of using online technologies and team problem solving sessions to shift an undergraduate fluid mechanics course from a traditional lecture format to a collaborative learning environment. Students were from two consecutive semesters of the same course taught by the same professor. One group used online technologies and solved problems in class and the other did not. Out of class, the treatment group watched 72 short (11 minutes, average) video lectures covering course topics and example problems being solved. Three times a week students worked in teams of two to solve problems on desktop whiteboard tablets while the instructor and graduate assistants provided ``just-in-time'' tutoring. The number of team problems assigned during the semester exceeded 100. Weekly online homework was assigned to reinforce topics. The WileyPlus online system generated unique problem parameters for each student. The control group received three-50 minute weekly lectures. Data include three midterms and a final exam. Regression results indicate that controlling for all of the entered variables, for every one more problem solving session the student attended, the final grade was raised by 0.327 points. Thus, if a student participated in all 25 of the team problem solving sessions, the final grade would have been 8.2 points higher, a difference of nearly a grade. Using online technologies and teamwork appeared to result in improved achievement, but more research is needed to support these findings.
Evolution of general surgical problems in patients with left ventricular assist devices.
McKellar, Stephen H; Morris, David S; Mauermann, William J; Park, Soon J; Zietlow, Scott P
2012-11-01
Left ventricular assist devices (LVADs) are increasingly used to treat patients with end-stage heart failure. These patients may develop acute noncardiac surgical problems around the time of LVAD implantation or, as survival continues to improve, chronic surgical problems as ambulatory patients remote from the LVAD implant. Previous reports of noncardiac surgical problems in LVAD patients included patients with older, first-generation devices and do not address newer, second-generation devices. We describe the frequency and management of noncardiac surgical problems encountered during LVAD support with these newer-generation devices to assist noncardiac surgeons involved in the care of patients with LVADs. We retrospectively reviewed the medical records of consecutive patients receiving LVADs at our institution. We collected data for any consultation by noncardiac surgeons within the scope of general surgery during LVAD support and subsequent treatment. Ninety-nine patients received implantable LVADs between 2003 and 2009 (first-generation, n = 19; second-generation, n = 80). Excluding intestinal hemorrhage, general surgical opinions were rendered for 34 patients with 49 problems, mostly in the acute recovery phase after LVAD implantation. Of those, 27 patients underwent 28 operations. Respiratory failure and intra-abdominal pathologies were the most common problems addressed, and LVAD rarely precluded operation. Patients with second-generation LVADs were more likely to survive hospitalization (P = .04) and develop chronic, rather than emergent, surgical problems. Patients with LVADs frequently require consultation from noncardiac surgeons within the scope of general surgeons and often require operation. Patients with second-generation LVADs are more likely to become outpatients and develop more elective surgical problems. Noncardiac surgeons will be increasingly involved in caring for patients with LVADs and should anticipate the problems unique to this patient population. Copyright © 2012 Mosby, Inc. All rights reserved.
Nandola, Naresh N.; Rivera, Daniel E.
2011-01-01
This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087
The influence of utility-interactive PV system characteristics to ac power networks
NASA Astrophysics Data System (ADS)
Takeda, Y.; Takigawa, K.; Kaminosono, H.
Two basic experimental photovoltaic (PV) systems have been built for the study of variation of power quality, aspects of safety, and technical problems. One system uses a line-commutated inverter, while the other system uses a self-commutated inverter. A description is presented of the operating and generating characteristics of the two systems. The systems were connected to an ac simulated network which simulates an actual power distribution system. Attention is given to power generation characteristics, the control characteristics, the harmonics characteristics, aspects of coordination with the power network, and questions regarding the reliability of photovoltaic modules.
Neuromechanics: an integrative approach for understanding motor control.
Nishikawa, Kiisa; Biewener, Andrew A; Aerts, Peter; Ahn, Anna N; Chiel, Hillel J; Daley, Monica A; Daniel, Thomas L; Full, Robert J; Hale, Melina E; Hedrick, Tyson L; Lappin, A Kristopher; Nichols, T Richard; Quinn, Roger D; Satterlie, Richard A; Szymik, Brett
2007-07-01
Neuromechanics seeks to understand how muscles, sense organs, motor pattern generators, and brain interact to produce coordinated movement, not only in complex terrain but also when confronted with unexpected perturbations. Applications of neuromechanics include ameliorating human health problems (including prosthesis design and restoration of movement following brain or spinal cord injury), as well as the design, actuation and control of mobile robots. In animals, coordinated movement emerges from the interplay among descending output from the central nervous system, sensory input from body and environment, muscle dynamics, and the emergent dynamics of the whole animal. The inevitable coupling between neural information processing and the emergent mechanical behavior of animals is a central theme of neuromechanics. Fundamentally, motor control involves a series of transformations of information, from brain and spinal cord to muscles to body, and back to brain. The control problem revolves around the specific transfer functions that describe each transformation. The transfer functions depend on the rules of organization and operation that determine the dynamic behavior of each subsystem (i.e., central processing, force generation, emergent dynamics, and sensory processing). In this review, we (1) consider the contributions of muscles, (2) sensory processing, and (3) central networks to motor control, (4) provide examples to illustrate the interplay among brain, muscles, sense organs and the environment in the control of movement, and (5) describe advances in both robotics and neuromechanics that have emerged from application of biological principles in robotic design. Taken together, these studies demonstrate that (1) intrinsic properties of muscle contribute to dynamic stability and control of movement, particularly immediately after perturbations; (2) proprioceptive feedback reinforces these intrinsic self-stabilizing properties of muscle; (3) control systems must contend with inevitable time delays that can simplify or complicate control; and (4) like most animals under a variety of circumstances, some robots use a trial and error process to tune central feedforward control to emergent body dynamics.
Force-controlled absorption in a fully-nonlinear numerical wave tank
NASA Astrophysics Data System (ADS)
Spinneken, Johannes; Christou, Marios; Swan, Chris
2014-09-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.
Sreenivasa, Manish; Millard, Matthew; Felis, Martin; Mombaur, Katja; Wolf, Sebastian I.
2017-01-01
Predicting the movements, ground reaction forces and neuromuscular activity during gait can be a valuable asset to the clinical rehabilitation community, both to understand pathology, as well as to plan effective intervention. In this work we use an optimal control method to generate predictive simulations of pathological gait in the sagittal plane. We construct a patient-specific model corresponding to a 7-year old child with gait abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that minimizes muscle effort. Our simulations include the computation of foot-ground reaction forces, as well as the neuromuscular dynamics using computationally efficient muscle torque generators and excitation-activation equations. The optimal control problem (OCP) is solved with a direct multiple shooting method. The solution of this problem is physically consistent synthetic neural excitation commands, muscle activations and whole body motion. Our simulations produced similar changes to the gait characteristics as those recorded on the patient. The orthosis-equipped model was able to walk faster with more extended knees. Notably, our approach can be easily tuned to simulate weakened muscles, produces physiologically realistic ground reaction forces and smooth muscle activations and torques, and can be implemented on a standard workstation to produce results within a few hours. These results are an important contribution toward bridging the gap between research methods in computational neuromechanics and day-to-day clinical rehabilitation. PMID:28450833
NASA Astrophysics Data System (ADS)
Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter
2017-09-01
Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.
Controlling Wavebreaking in a Viscous Fluid Conduit
NASA Astrophysics Data System (ADS)
Anderson, Dalton; Maiden, Michelle; Hoefer, Mark
2015-11-01
This poster will present a new technique in the experimental investigation of dispersive hydrodynamics. In shallow water flows, internal ocean waves, superfluids, and optical media, wave breaking can be resolved by a dispersive shock wave (DSW). In this work, an experimental method to control the location of DSW formation (gradient catastrophe) is explained. The central idea is to convert an initial value problem (Riemann problem) into an equivalent boundary value problem. The system to which this technique is applied is a fluid conduit resulting from high viscosity contrast between a buoyant interior and heavier exterior fluid. The conduit cross-sectional area is modeled by a nonlinear, conservative, dispersive, third order partial differential equation. Using this model, the aim is to predict the breaking location of a DSW by controlling one boundary condition. An analytical expression for this boundary condition is derived by solving the dispersionless equation backward in time from the desired step via the method of characteristics. This is used in experiment to generate an injection rate profile for a high precision piston pump. This translates to the desired conduit shape. Varying the jump height and desired breaking location indicates good control of DSW formation. This result can be improved by deriving a conduit profile by numerical simulation of the full model equation. Controlling the breaking location of a DSW allows for the investigation of dynamics independent of the boundary. Support provided by NSF CAREER DMS-1255422 , NSF EXTREEMS.
Ridout, Nathan; Matharu, Munveen; Sanders, Elizabeth; Wallis, Deborah J
2015-08-30
The primary aim was to examine the influence of subclinical disordered eating on autobiographical memory specificity (AMS) and social problem solving (SPS). A further aim was to establish if AMS mediated the relationship between eating psychopathology and SPS. A non-clinical sample of 52 females completed the autobiographical memory test (AMT), where they were asked to retrieve specific memories of events from their past in response to cue words, and the means-end problem-solving task (MEPS), where they were asked to generate means of solving a series of social problems. Participants also completed the Eating Disorders Inventory (EDI) and Hospital Anxiety and Depression Scale. After controlling for mood, high scores on the EDI subscales, particularly Drive-for-Thinness, were associated with the retrieval of fewer specific and a greater proportion of categorical memories on the AMT and with the generation of fewer and less effective means on the MEPS. Memory specificity fully mediated the relationship between eating psychopathology and SPS. These findings have implications for individuals exhibiting high levels of disordered eating, as poor AMS and SPS are likely to impact negatively on their psychological wellbeing and everyday social functioning and could represent a risk factor for the development of clinically significant eating disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Brown, Adam D; Kouri, Nicole A; Rahman, Nadia; Joscelyne, Amy; Bryant, Richard A; Marmar, Charles R
2016-08-30
Posttraumatic Stress Disorder (PTSD) is associated with maladaptive changes in self-identity, including impoverished perceived self-efficacy. This study examined if enhancing perceptions of self-efficacy in combat veterans with and without symptoms of PTSD promotes cognitive strategies associated with positive mental health outcomes. Prior to completing a future thinking and social problem-solving task, sixty-two OEF/OIF veterans with and without symptoms of PTSD were randomized to either a high self-efficacy (HSE) induction in which they were asked to recall three autobiographical memories demonstrating self-efficacy or a control condition in which they recalled any three autobiographical events. An interaction between HSE and PTSD revealed that individuals with symptoms of PTSD in the HSE condition generated future events with more self-efficacious statements than those with PTSD in the control condition, whereas those without PTSD did not differ in self-efficacy content across the conditions. In addition, individuals in the HSE condition exhibited better social problem solving than those in the control condition. Increasing perceptions of self-efficacy may promote future thinking and problem solving in ways that are relevant to overcoming trauma and adversity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Optimal Control via Self-Generated Stochasticity
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
The problem of global maxima of functionals has been examined. Mathematical roots of local maxima are the same as those for a much simpler problem of finding global maximum of a multi-dimensional function. The second problem is instability even if an optimal trajectory is found, there is no guarantee that it is stable. As a result, a fundamentally new approach is introduced to optimal control based upon two new ideas. The first idea is to represent the functional to be maximized as a limit of a probability density governed by the appropriately selected Liouville equation. Then, the corresponding ordinary differential equations (ODEs) become stochastic, and that sample of the solution that has the largest value will have the highest probability to appear in ODE simulation. The main advantages of the stochastic approach are that it is not sensitive to local maxima, the function to be maximized must be only integrable but not necessarily differentiable, and global equality and inequality constraints do not cause any significant obstacles. The second idea is to remove possible instability of the optimal solution by equipping the control system with a self-stabilizing device. The applications of the proposed methodology will optimize the performance of NASA spacecraft, as well as robot performance.
Lovelock, Joshua D; Premkumar, Ajay; Levy, Mathew R; Mengistu, Andenet; Hoskins, Michael H; El-Chami, Mikhael F; Lloyd, Michael S; Leon, Angel R; Langberg, Jonathan J; Delurgio, David B
2015-12-01
St. Jude Riata/Riata ST defibrillator leads (St. Jude Medical, Sylmar, CA, USA) were recalled by the Food and Drug Administration in 2011 for an increased rate of failure. More than 227,000 leads were implanted and at least 79,000 patients still have active Riata leads. Studies have examined clinical predictors of lead failure in Riata leads, but none have addressed the effect of implantable cardioverter defibrillator (ICD) generator exchange on lead failure. The purpose of this study is to assess the effect of ICD generator exchange on the rate of electrical failure in the Riata lead at 1 year. A retrospective chart review was conducted in patients who underwent implantation of a Riata/Riata ST lead at one center. Patients with a functioning Riata lead (with/without externalized conductor) at the time of ICD exchange were compared to controls with Riata leads implanted for a comparable amount of time who did not undergo generator replacement. Riata leads were implanted in 1,042 patients prior to the recall and 153 of these patients underwent generator exchange without lead replacement. Conductor externalization was noted in 21.5% of Riata leads in the ICD exchange cohort, which was not different from the control group (19.2%; P = 0.32). Two leads failed in the first year after generator replacement (1.5%) which did not significantly differ from the control group (2.0%; P = 0.57). At change-out, 54% received a commanded shock (18.6 ± 0.9 J) that did not result in any change in the high-voltage lead impedance (46.1 ± 1.1 ohms). Conductor externalization was seen frequently in our cohort of patients. ICD generator exchange did not accelerate the rate of Riata lead failure at 1 year. Although both the control and the change-out cohorts failed at a rate much greater than nonrecalled leads, generator exchange did not appear to add to the problem. ©2015 Wiley Periodicals, Inc.
Computation at a coordinate singularity
NASA Astrophysics Data System (ADS)
Prusa, Joseph M.
2018-05-01
Coordinate singularities are sometimes encountered in computational problems. An important example involves global atmospheric models used for climate and weather prediction. Classical spherical coordinates can be used to parameterize the manifold - that is, generate a grid for the computational spherical shell domain. This particular parameterization offers significant benefits such as orthogonality and exact representation of curvature and connection (Christoffel) coefficients. But it also exhibits two polar singularities and at or near these points typical continuity/integral constraints on dependent fields and their derivatives are generally inadequate and lead to poor model performance and erroneous results. Other parameterizations have been developed that eliminate polar singularities, but problems of weaker singularities and enhanced grid noise compared to spherical coordinates (away from the poles) persist. In this study reparameterization invariance of geometric objects (scalars, vectors and the forms generated by their covariant derivatives) is utilized to generate asymptotic forms for dependent fields of interest valid in the neighborhood of a pole. The central concept is that such objects cannot be altered by the metric structure of a parameterization. The new boundary conditions enforce symmetries that are required for transformations of geometric objects. They are implemented in an implicit polar filter of a structured grid, nonhydrostatic global atmospheric model that is simulating idealized Held-Suarez flows. A series of test simulations using different configurations of the asymptotic boundary conditions are made, along with control simulations that use the default model numerics with no absorber, at three different grid sizes. Typically the test simulations are ∼ 20% faster in wall clock time than the control-resulting from a decrease in noise at the poles in all cases. In the control simulations adverse numerical effects from the polar singularity are observed to increase with grid resolution. In contrast, test simulations demonstrate robust polar behavior independent of grid resolution.
Benchmarking optimization software with COPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, E.D.; More, J.J.
2001-01-08
The COPS test set provides a modest selection of difficult nonlinearly constrained optimization problems from applications in optimal design, fluid dynamics, parameter estimation, and optimal control. In this report we describe version 2.0 of the COPS problems. The formulation and discretization of the original problems have been streamlined and improved. We have also added new problems. The presentation of COPS follows the original report, but the description of the problems has been streamlined. For each problem we discuss the formulation of the problem and the structural data in Table 0.1 on the formulation. The aim of presenting this data ismore » to provide an approximate idea of the size and sparsity of the problem. We also include the results of computational experiments with the LANCELOT, LOQO, MINOS, and SNOPT solvers. These computational experiments differ from the original results in that we have deleted problems that were considered to be too easy. Moreover, in the current version of the computational experiments, each problem is tested with four variations. An important difference between this report and the original report is that the tables that present the computational experiments are generated automatically from the testing script. This is explained in more detail in the report.« less
NASA Astrophysics Data System (ADS)
Alhusaini, Abdulnasser Alashaal F.
The Real Engagement in Active Problem Solving (REAPS) model was developed in 2004 by C. June Maker and colleagues as an intervention for gifted students to develop creative problem solving ability through the use of real-world problems. The primary purpose of this study was to examine the effects of the REAPS model on developing students' general creativity and creative problem solving in science with two durations as independent variables. The long duration of the REAPS model implementation lasted five academic quarters or approximately 10 months; the short duration lasted two quarters or approximately four months. The dependent variables were students' general creativity and creative problem solving in science. The second purpose of the study was to explore which aspects of creative problem solving (i.e., generating ideas, generating different types of ideas, generating original ideas, adding details to ideas, generating ideas with social impact, finding problems, generating and elaborating on solutions, and classifying elements) were most affected by the long duration of the intervention. The REAPS model in conjunction with Amabile's (1983; 1996) model of creative performance provided the theoretical framework for this study. The study was conducted using data from the Project of Differentiation for Diverse Learners in Regular Classrooms (i.e., the Australian Project) in which one public elementary school in the eastern region of Australia cooperated with the DISCOVER research team at the University of Arizona. All students in the school from first to sixth grade participated in the study. The total sample was 360 students, of which 115 were exposed to a long duration and 245 to a short duration of the REAPS model. The principal investigators used a quasi-experimental research design in which all students in the school received the treatment for different durations. Students in both groups completed pre- and posttests using the Test of Creative Thinking-Drawing Production (TCT-DP) and the Test of Creative Problem Solving in Science (TCPS-S). A one-way analysis of covariance (ANCOVA) was conducted to control for differences between the two groups on pretest results. Statistically significant differences were not found between posttest scores on the TCT-DP for the two durations of REAPS model implementation. However, statistically significant differences were found between posttest scores on the TCPS-S. These findings are consistent with Amabile's (1983; 1996) model of creative performance, particularly her explanation that domain-specific creativity requires knowledge such as specific content and technical skills that must be learned prior to being applied creatively. The findings are also consistent with literature in which researchers have found that longer interventions typically result in expected positive growth in domain-specific creativity, while both longer and shorter interventions have been found effective in improving domain-general creativity. Change scores were also calculated between pre- and posttest scores on the 8 aspects of creativity (Maker, Jo, Alfaiz, & Alhusaini, 2015a), and a binary logistic regression was conducted to assess which were the most affected by the long duration of the intervention. The regression model was statistically significant, with aspects of generating ideas, adding details to ideas, and finding problems being the most affected by the long duration of the intervention. Based on these findings, the researcher believes that the REAPS model is a useful intervention to develop students' creativity. Future researchers should implement the model for longer durations if they are interested in developing students' domain-specific creative problem solving ability.
Lynch, Raymond J.; Platt, Jeffrey L.
2009-01-01
Summary Those engaged in clinical transplantation and transplantation immunology have always taken as a central objective the elucidation of means to prevent graft rejection by the recipient immune system. Conceptually, such mechanisms stem from the concept of Paul Ehrlich that all organisms can selectively avoid autotoxicity; i.e. they exhibit horror autotoxicus. Some mechanisms of horror autotoxicus now understood. T lymphocytes and B lymphocytes recognize foreign antigens but not some auto-antigens. Clonal deletion generates lacunae in what is otherwise a virtually limitless potential to recognize antigens. We call this mechanism structural tolerance. Where imperfections in structural tolerance allow self-recognition, the full activation of lymphocytes and generation of effector activity depends on delivery of accessory signals generated by infection and/or injury. The absence of accessory signals prevents or even suppresses immunological responses. We call this dichotomy of responsiveness conditional tolerance. When, despite structural and conditional tolerance, effector activity perturbs autologous cells, metabolism changes in ways that protect against injury. We use the term accommodation to refer to this acquired protection against injury. Structural and conditional tolerance and accommodation overlap in such a way that potentially toxic products can be generated to control microorganisms and neutralize toxins without overly damaging adjacent cells. The central challenge in transplantation, then, should be the orchestration of structural and conditional tolerance and accommodation in such a way that toxic products can still be generated for defense while preserving graft function and survival. Since the earliest days of transplantation, immunobiologists have sought means by which to prevent recognition and rejection of foreign tissue. The goal of these strategies is the retention of recipient immune function while selectively avoiding graft injury. While considerable theoretical and technical problems remain, an analogous problem and solution already exists in nature. Here, we discuss the mechanisms by which organisms preclude or control auto-toxicity, and for each, consider the corollaries between prevention of auto-toxicity and graft rejection. Further study of these controls, including structural and conditional tolerance and accommodation, will offer insight into new therapies for allo- and xenotransplantation. PMID:19996920
A generalized theory on the noise generation from supersonic shear layers.
NASA Technical Reports Server (NTRS)
Pao, S. P.
1971-01-01
A generalization is presented of Phillips' (1960) theory of noise generation by supersonic turbulent shear layers. Both Mach wave radiation and non-Mach wave noise radiation mechanisms are considered. The range of validity of Phillips' theory has been expanded to include the low supersonic and transonic ranges. These generalizations are important not only for their analytical rigor, but also for their prospective applications to practical problems in jet noise prediction and control. The noise generation mechanisms in a supersonic jet are found to differ from those in a subsonic jet. The theory is considered to offer some prospects of answering important questions in supersonic jet noise, such as noise source distribution, mean flow refraction effects, directivity, spectrum, and efficiency of noise radiation.
A study of the performance of patients with frontal lobe lesions in a financial planning task.
Goel, V; Grafman, J; Tajik, J; Gana, S; Danto, D
1997-10-01
It has long been argued that patients with lesions in the prefrontal cortex have difficulties in decision making and problem solving in real-world, ill-structured situations, particularly problem types involving planning and look-ahead components. Recently, several researchers have questioned our ability to capture and characterize these deficits adequately using just the standard neuropsychological test batteries, and have called for tests that reflect real-world task requirements more accurately. We present data from 10 patients with focal lesions to the prefrontal cortex and 10 normal control subjects engaged in a real-world financial planning task. We also introduce a theoretical framework and methodology developed in the cognitive science literature for quantifying and analysing the complex data generated by problem-solving tasks. Our findings indicate that patient performance is impoverished at a global level but not at the local level. Patients have difficulty in organizing and structuring their problem space. Once they begin problem solving, they have difficulty in allocating adequate effort to each problem-solving phase. Patients also have difficulty dealing with the fact that there are no right or wrong answers nor official termination points in real-world planning problems. They also find it problematic to generate their own feedback. They invariably terminate the session before the details are fleshed out and all the goals satisfied. Finally, patients do not take full advantage of the fact that constraints on real-world problems are negotiable. However, it is not necessary to postulate a 'planning' deficit. It is possible to understand the patients' difficulties in real world planning tasks in terms of the following four accepted deficits: inadequate access to 'structured event complexes', difficulty in generalizing from particulars, failure to shift between 'mental sets', and poor judgment regarding adequacy and completeness of a plan.
NASA Technical Reports Server (NTRS)
Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.
2014-01-01
Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.
NASA Astrophysics Data System (ADS)
Sun, Zhiyong; Hao, Lina; Song, Bo; Yang, Ruiguo; Cao, Ruimin; Cheng, Yu
2016-10-01
Micro/nano positioning technologies have been attractive for decades for their various applications in both industrial and scientific fields. The actuators employed in these technologies are typically smart material actuators, which possess inherent hysteresis that may cause systems behave unexpectedly. Periodic reference tracking capability is fundamental for apparatuses such as scanning probe microscope, which employs smart material actuators to generate periodic scanning motion. However, traditional controller such as PID method cannot guarantee accurate fast periodic scanning motion. To tackle this problem and to conduct practical implementation in digital devices, this paper proposes a novel control method named discrete extended unparallel Prandtl-Ishlinskii model based internal model (d-EUPI-IM) control approach. To tackle modeling uncertainties, the robust d-EUPI-IM control approach is investigated, and the associated sufficient stabilizing conditions are derived. The advantages of the proposed controller are: it is designed and represented in discrete form, thus practical for digital devices implementation; the extended unparallel Prandtl-Ishlinskii model can precisely represent forward/inverse complex hysteretic characteristics, thus can reduce modeling uncertainties and benefits controllers design; in addition, the internal model principle based control module can be utilized as a natural oscillator for tackling periodic references tracking problem. The proposed controller was verified through comparative experiments on a piezoelectric actuator platform, and convincing results have been achieved.
Basu, Sanjay
2002-01-01
Although malaria is a growing problem affecting several hundred million people each year, many malarial countries lack successful disease control programs. Worldwide malaria incidence rates are dramatically increasing, generating fear among many people who are witnessing malaria control initiatives fail. In this paper, we explore two options for malaria control in poor countries: (1) the production and distribution of a malaria vaccine and (2) the control of mosquitoes that harbor the malaria parasite. We first demonstrate that the development of a malaria vaccine is indeed likely, although it will take several years to produce because of both biological obstacles and insufficient research support. The distribution of such a vaccine, as suggested by some economists, will require that wealthy states promise a market to pharmaceutical companies who have traditionally failed to investigate diseases affecting the poorest of nations. But prior to the development of a malaria vaccine, we recommend the implementation of vector control pro- grams, such as those using Bti toxin, in regions with low vector capacity. Our analysis indicates that both endogenous programs in malarial regions and molecular approaches to parasite control will provide pragmatic solutions to the malaria problem. But the successful control of malaria will require sustained support from wealthy nations, without whom vaccine development and vector control programs will likely fail.
The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems
NASA Astrophysics Data System (ADS)
Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.
2018-01-01
This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.
NASA Astrophysics Data System (ADS)
Gladwin, D.; Stewart, P.; Stewart, J.
2011-02-01
This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control structures.
Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda
2008-07-01
Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.
Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei
2016-01-01
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network’s performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks. PMID:27483282
Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei
2016-07-30
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.
Rethinking "Generation Me": A Study of Cohort Effects From 1976-2006.
Trzesniewski, Kali H; Donnellan, M Brent
2010-01-01
Social commentators have argued that changes over the last decades have coalesced to create a relatively unique generation of young people. However, using large samples of U.S. high-school seniors from 1976 to 2006 (Total N = 477,380), we found little evidence of meaningful change in egotism, self-enhancement, individualism, self-esteem, locus of control, hopelessness, happiness, life satisfaction, loneliness, antisocial behavior, time spent working or watching television, political activity, the importance of religion, and the importance of social status over the last 30 years. Today's youth are less fearful of social problems than previous generations and they are also more cynical and less trusting. In addition, today's youth have higher educational expectations than previous generations. However, an inspection of effect sizes provided little evidence for strong or widespread cohort-linked changes. © The Author(s) 2010.
Formation Flying Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Lau, Kenneth; Wang, P. K. C.
1997-01-01
The problem of coordination and control of multiple spacecraft (MS) moving in formation is considered. Here, each MS is modeled by a rigid body with fixed center of mass. First, various schemes for generating the desired formation patterns are discussed, Then, explicit control laws for formation-keeping and relative attitude alignment based on nearest neighbor-tracking are derived. The necessary data which must be communicated between the MS to achieve effective control are examined. The time-domain behavior of the feedback-controlled MS formation for typical low-Earth orbits is studied both analytically and via computer simulation. The paper concludes with a discussion of the implementation of the derived control laws, and the integration of the MS formation coordination and control system with a proposed inter-spacecraft communication/computing network.
Dynamic characteristics of triaxial active control magnetic bearing with asymmetric structure
NASA Astrophysics Data System (ADS)
Nakajima, Atsushi; Hirata, Katsuhiro; Niguchi, Noboru; Kato, Masayuki
2018-03-01
Supporting forces of magnetic bearings are lower than those of mechanical bearings. In order to solve these problems, this paper proposes a new three-axis active control magnetic bearing (3-axis AMB) with an asymmetric structure where its rotor is attracted only in one axial direction due to a negative pressure of fluid. Our proposed 3-axis AMB can generate a large suspension force in one axial direction due to the asymmetric structure. The performances of our proposed 3-axis AMB are computed through 3-D finite element analysis.
Integrated flight/propulsion control - Subsystem specifications for performance
NASA Technical Reports Server (NTRS)
Neighbors, W. K.; Rock, Stephen M.
1993-01-01
A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.
NASA Technical Reports Server (NTRS)
1982-01-01
A FORTRAN coded computer program and method to predict the reaction control fuel consumption statistics for a three axis stabilized rocket vehicle upper stage is described. A Monte Carlo approach is used which is more efficient by using closed form estimates of impulses. The effects of rocket motor thrust misalignment, static unbalance, aerodynamic disturbances, and deviations in trajectory, mass properties and control system characteristics are included. This routine can be applied to many types of on-off reaction controlled vehicles. The pseudorandom number generation and statistical analyses subroutines including the output histograms can be used for other Monte Carlo analyses problems.
Optimal control of Formula One car energy recovery systems
NASA Astrophysics Data System (ADS)
Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.
2014-10-01
The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.
O'Brien, Mary P; Zinberg, Jamie L; Ho, Lorena; Rudd, Alexandra; Kopelowicz, Alex; Daley, Melita; Bearden, Carrie E; Cannon, Tyrone D
2009-02-01
This study prospectively examined the relationship between social problem solving behavior exhibited by youths at ultra-high risk for psychosis (UHR) and with recent onset psychotic symptoms and their parents during problem solving discussions, and youths' symptoms and social functioning six months later. Twenty-seven adolescents were administered the Structured Interview for Prodromal Syndromes and the Strauss-Carpenter Social Contact Scale at baseline and follow-up assessment. Primary caregivers participated with youth in a ten minute discussion that was videotaped, transcribed, and coded for how skillful participants were in defining problems, generating solutions, and reaching resolution, as well as how constructive and/or conflictual they were during the interaction. Controlling for social functioning at baseline, adolescents' skillful problem solving and constructive communication, and parents' constructive communication, were associated with youths' enhanced social functioning six months later. Controlling for symptom severity at baseline, we found that there was a positive association between adolescents' conflictual communications at baseline and an increase in positive symptoms six months later. Taken together, findings from this study provide support for further research into the possibility that specific family interventions, such as problem solving and communication skills training, may improve the functional prognosis of at-risk youth, especially in terms of their social functioning.
O'Brien, Mary P.; Zinberg, Jamie L.; Ho, Lorena; Rudd, Alexandra; Kopelowicz, Alex; Daley, Melita; Bearden, Carrie E.; Cannon, Tyrone D.
2009-01-01
This study prospectively examined the relationship between social problem solving behavior exhibited by youths at ultra-high risk for psychosis (UHR) and with recent onset psychotic symptoms and their parents during problem solving discussions, and youths' symptoms and social functioning six months later. Twenty-seven adolescents were administered the Structured Interview for Prodromal Syndromes and the Strauss-Carpenter Social Contact Scale at baseline and follow-up assessment. Primary caregivers participated with youth in a ten minute discussion that was videotaped, transcribed, and coded for how skillful participants were in defining problems, generating solutions, and reaching resolution, as well as how constructive and/or conflictual they were during the interaction. Controlling for social functioning at baseline, adolescents' skillful problem solving and constructive communication, and parents' constructive communication, were associated with youths' enhanced social functioning six months later. Controlling for symptom severity at baseline, we found that there was a positive association between adolescents' conflictual communications at baseline and an increase in positive symptoms six months later. Taken together, findings from this study provide support for further research into the possibility that specificfamily interventions, such as problem solving and communication skills training, may improve the functional prognosis of at-risk youth, especially in terms of their social functioning. PMID:18996681
Nonlinear rescaling of control values simplifies fuzzy control
NASA Technical Reports Server (NTRS)
Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.
1993-01-01
Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve this problem, and show (on a real-life example) that after an optimal rescaling, the un-tuned fuzzy control can be as good as the best state-of-art traditional non-linear controls.
Varrone, C; Heggeset, T M B; Le, S B; Haugen, T; Markussen, S; Skiadas, I V; Gavala, H N
2015-01-01
Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.
Generating equilateral random polygons in confinement
NASA Astrophysics Data System (ADS)
Diao, Y.; Ernst, C.; Montemayor, A.; Ziegler, U.
2011-10-01
One challenging problem in biology is to understand the mechanism of DNA packing in a confined volume such as a cell. It is known that confined circular DNA is often knotted and hence the topology of the extracted (and relaxed) circular DNA can be used as a probe of the DNA packing mechanism. However, in order to properly estimate the topological properties of the confined circular DNA structures using mathematical models, it is necessary to generate large ensembles of simulated closed chains (i.e. polygons) of equal edge lengths that are confined in a volume such as a sphere of certain fixed radius. Finding efficient algorithms that properly sample the space of such confined equilateral random polygons is a difficult problem. In this paper, we propose a method that generates confined equilateral random polygons based on their probability distribution. This method requires the creation of a large database initially. However, once the database has been created, a confined equilateral random polygon of length n can be generated in linear time in terms of n. The errors introduced by the method can be controlled and reduced by the refinement of the database. Furthermore, our numerical simulations indicate that these errors are unbiased and tend to cancel each other in a long polygon.
Monroe, J Grey; Allen, Zachariah A; Tanger, Paul; Mullen, Jack L; Lovell, John T; Moyers, Brook T; Whitley, Darrell; McKay, John K
2017-01-01
Recent advances in nucleic acid sequencing technologies have led to a dramatic increase in the number of markers available to generate genetic linkage maps. This increased marker density can be used to improve genome assemblies as well as add much needed resolution for loci controlling variation in ecologically and agriculturally important traits. However, traditional genetic map construction methods from these large marker datasets can be computationally prohibitive and highly error prone. We present TSPmap , a method which implements both approximate and exact Traveling Salesperson Problem solvers to generate linkage maps. We demonstrate that for datasets with large numbers of genomic markers (e.g. 10,000) and in multiple population types generated from inbred parents, TSPmap can rapidly produce high quality linkage maps with low sensitivity to missing and erroneous genotyping data compared to two other benchmark methods, JoinMap and MSTmap . TSPmap is open source and freely available as an R package. With the advancement of low cost sequencing technologies, the number of markers used in the generation of genetic maps is expected to continue to rise. TSPmap will be a useful tool to handle such large datasets into the future, quickly producing high quality maps using a large number of genomic markers.
Chen, Xing-jie; Liu, Lu-lu; Cui, Ji-fang; Wang, Ya; Chen, An-tao; Li, Feng-hua; Wang, Wei-hong; Zheng, Han-feng; Gan, Ming-yuan; Li, Chun-qiu; Shum, David H. K.; Chan, Raymond C. K.
2016-01-01
Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958
Experimental study of defoaming by air-borne power ultrasonic technology
NASA Astrophysics Data System (ADS)
Rodríguez, Germán; Riera, Enrique; Gallego-Juárez, Juan A.; Acosta, Víctor M.; Pinto, Alberto; Martínez, Ignacio; Blanco, Alfonso
2010-01-01
Foam is a dispersion of gas in a liquid in which the distances between the gas bubbles are very small. Foams are frequently generated in the manufacture of many products as result from the aeration and agitation of liquids, from the vaporization of the liquid and also from biological or chemical reactions. Foams are generally an unwanted product in industrial processes because they cause difficulties in process control and in equipment operation. The most efficient conventional method for defoaming is the use of chemical agents but they contaminate the product. High-intensity ultrasonic waves offer a clean procedure to break foam bubbles. The potential use of ultrasound for foam breaking that was known since many years has been recently reinforced by the application of a new type of ultrasonic defoamer based on the stepped-plate high-power transducers to generate air-borne ultrasound. This defoamer has been successfully applied in several industrial problems such as the control of excess foam produced during the filling operation of bottles and cans on high-speed canning lines and in fermenting vessels and other reactors of great dimensions. The treatment of such industrial problems requires the proper characterization and quantification of the main parameters involved in the mechanisms of the defoaming effect. This paper deals with an experimental study about the separate influence of such parameters with the aim of improving the application of the stepped-plate power ultrasonic generators for the production of the defoaming action on industrial processes
Extensions to PIFCGT: Multirate output feedback and optimal disturbance suppression
NASA Technical Reports Server (NTRS)
Broussard, J. R.
1986-01-01
New control synthesis procedures for digital flight control systems were developed. The theoretical developments are the solution to the problem of optimal disturbance suppression in the presence of windshear. Control synthesis is accomplished using a linear quadratic cost function, the command generator tracker for trajectory following and the proportional-integral-filter control structure for practical implementation. Extensions are made to the optimal output feedback algorithm for computing feedback gains so that the multirate and optimal disturbance control designs are computed and compared for the advanced transport operating system (ATOPS). The performance of the designs is demonstrated by closed-loop poles, frequency domain multiinput sigma and eigenvalue plots and detailed nonlinear 6-DOF aircraft simulations in the terminal area in the presence of windshear.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. A procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system is presented. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
SSC San Diego Biennial Review 2003. Command and Control
2003-01-01
systems. IMAT systems use scientific visualizations, three- dimensional graphics, and animations to illustrate com- plex physical interactions in mission...Again, interactive animations are used to explain underlying concepts. For exam- ple, for principles of beamforming using a phased array, a three...solve complex problems. Experts type natural language text, use mouse clicks to provide hints for explanation generation, and use mouse clicks to
Establishment of a Cutting Fluid Control System (Phase 1)
1981-01-01
that prevent or reduce welding of contacting areas and minimize both material transfer and generation of metallic debris within the contact zone...not on ceramic abrasives. Welding between ceramics and workpiece materials is, however, less of a problem than metal-metal contact phenomena in...fluid film (hatched area) - no wear and low friction. Mating surfaces contacting at asperities with local plastic deformation and welding - wear with
SOL - SIZING AND OPTIMIZATION LANGUAGE COMPILER
NASA Technical Reports Server (NTRS)
Scotti, S. J.
1994-01-01
SOL is a computer language which is geared to solving design problems. SOL includes the mathematical modeling and logical capabilities of a computer language like FORTRAN but also includes the additional power of non-linear mathematical programming methods (i.e. numerical optimization) at the language level (as opposed to the subroutine level). The language-level use of optimization has several advantages over the traditional, subroutine-calling method of using an optimizer: first, the optimization problem is described in a concise and clear manner which closely parallels the mathematical description of optimization; second, a seamless interface is automatically established between the optimizer subroutines and the mathematical model of the system being optimized; third, the results of an optimization (objective, design variables, constraints, termination criteria, and some or all of the optimization history) are output in a form directly related to the optimization description; and finally, automatic error checking and recovery from an ill-defined system model or optimization description is facilitated by the language-level specification of the optimization problem. Thus, SOL enables rapid generation of models and solutions for optimum design problems with greater confidence that the problem is posed correctly. The SOL compiler takes SOL-language statements and generates the equivalent FORTRAN code and system calls. Because of this approach, the modeling capabilities of SOL are extended by the ability to incorporate existing FORTRAN code into a SOL program. In addition, SOL has a powerful MACRO capability. The MACRO capability of the SOL compiler effectively gives the user the ability to extend the SOL language and can be used to develop easy-to-use shorthand methods of generating complex models and solution strategies. The SOL compiler provides syntactic and semantic error-checking, error recovery, and detailed reports containing cross-references to show where each variable was used. The listings summarize all optimizations, listing the objective functions, design variables, and constraints. The compiler offers error-checking specific to optimization problems, so that simple mistakes will not cost hours of debugging time. The optimization engine used by and included with the SOL compiler is a version of Vanderplatt's ADS system (Version 1.1) modified specifically to work with the SOL compiler. SOL allows the use of the over 100 ADS optimization choices such as Sequential Quadratic Programming, Modified Feasible Directions, interior and exterior penalty function and variable metric methods. Default choices of the many control parameters of ADS are made for the user, however, the user can override any of the ADS control parameters desired for each individual optimization. The SOL language and compiler were developed with an advanced compiler-generation system to ensure correctness and simplify program maintenance. Thus, SOL's syntax was defined precisely by a LALR(1) grammar and the SOL compiler's parser was generated automatically from the LALR(1) grammar with a parser-generator. Hence unlike ad hoc, manually coded interfaces, the SOL compiler's lexical analysis insures that the SOL compiler recognizes all legal SOL programs, can recover from and correct for many errors and report the location of errors to the user. This version of the SOL compiler has been implemented on VAX/VMS computer systems and requires 204 KB of virtual memory to execute. Since the SOL compiler produces FORTRAN code, it requires the VAX FORTRAN compiler to produce an executable program. The SOL compiler consists of 13,000 lines of Pascal code. It was developed in 1986 and last updated in 1988. The ADS and other utility subroutines amount to 14,000 lines of FORTRAN code and were also updated in 1988.
Linking Substance Use and Problem Behavior across Three Generations
ERIC Educational Resources Information Center
Bailey, Jennifer A.; Hill, Karl G.; Oesterle, Sabrina; Hawkins, J. David
2006-01-01
This study examined patterns of between-generation continuity in substance use from generation 1 (G1) parents to generation 2 (G2) adolescents and from G2 adult substance use and G1 substance use to generation 3 (G3) problem behavior in childhood. Structural equation modeling of prospective, longitudinal data from 808 participants, their parents,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basher, A.M.H.
Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for themore » water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.« less
Modeling and Classifying Six-Dimensional Trajectories for Teleoperation Under a Time Delay
NASA Technical Reports Server (NTRS)
SunSpiral, Vytas; Wheeler, Kevin R.; Allan, Mark B.; Martin, Rodney
2006-01-01
Within the context of teleoperating the JSC Robonaut humanoid robot under 2-10 second time delays, this paper explores the technical problem of modeling and classifying human motions represented as six-dimensional (position and orientation) trajectories. A dual path research agenda is reviewed which explored both deterministic approaches and stochastic approaches using Hidden Markov Models. Finally, recent results are shown from a new model which represents the fusion of these two research paths. Questions are also raised about the possibility of automatically generating autonomous actions by reusing the same predictive models of human behavior to be the source of autonomous control. This approach changes the role of teleoperation from being a stand-in for autonomy into the first data collection step for developing generative models capable of autonomous control of the robot.
Real-Time Extended Interface Automata for Software Testing Cases Generation
Yang, Shunkun; Xu, Jiaqi; Man, Tianlong; Liu, Bin
2014-01-01
Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA) which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system. PMID:24892080
Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Duck, P. W.
1992-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.
Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Duck, P. W.
1990-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.
Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter
NASA Astrophysics Data System (ADS)
Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun
2018-03-01
The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.
ERIC Educational Resources Information Center
Blackburn, J. Joey; Robinson, J. Shane
2016-01-01
The purpose of this experimental study was to assess the effects of cognitive style, problem complexity, and hypothesis generation on the problem solving ability of school-based agricultural education students. Problem solving ability was defined as time to solution. Kirton's Adaption-Innovation Inventory was employed to assess students' cognitive…
2001-08-01
The electro-mechanical actuator, a new electronics technology, is an electronic system that provides the force needed to move valves that control the flow of propellant to the engine. It is proving to be advantageous for the main propulsion system plarned for a second generation reusable launch vehicle. Hydraulic actuators have been used successfully in rocket propulsion systems. However, they can leak when high pressure is exerted on such a fluid-filled hydraulic system. Also, hydraulic systems require significant maintenance and support equipment. The electro-mechanical actuator is proving to be low maintenance and the system weighs less than a hydraulic system. The electronic controller is a separate unit powering the actuator. Each actuator has its own control box. If a problem is detected, it can be replaced by simply removing one defective unit. The hydraulic systems must sustain significant hydraulic pressures in a rocket engine regardless of demand. The electro-mechanical actuator utilizes power only when needed. A goal of the Second Generation Reusable Launch Vehicle Program is to substantially improve safety and reliability while reducing the high cost of space travel. The electro-mechanical actuator was developed by the Propulsion Projects Office of the Second Generation Reusable Launch Vehicle Program at the Marshall Space Flight Center.
NASA Astrophysics Data System (ADS)
Yousefian, Reza
This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.
AN ASSESSMENT OF MCNP WEIGHT WINDOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. S. HENDRICKS; C. N. CULBERTSON
2000-01-01
The weight window variance reduction method in the general-purpose Monte Carlo N-Particle radiation transport code MCNPTM has recently been rewritten. In particular, it is now possible to generate weight window importance functions on a superimposed mesh, eliminating the need to subdivide geometries for variance reduction purposes. Our assessment addresses the following questions: (1) Does the new MCNP4C treatment utilize weight windows as well as the former MCNP4B treatment? (2) Does the new MCNP4C weight window generator generate importance functions as well as MCNP4B? (3) How do superimposed mesh weight windows compare to cell-based weight windows? (4) What are the shortcomingsmore » of the new MCNP4C weight window generator? Our assessment was carried out with five neutron and photon shielding problems chosen for their demanding variance reduction requirements. The problems were an oil well logging problem, the Oak Ridge fusion shielding benchmark problem, a photon skyshine problem, an air-over-ground problem, and a sample problem for variance reduction.« less
Control of autonomous robot using neural networks
NASA Astrophysics Data System (ADS)
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Brain-machine interfacing control of whole-body humanoid motion
Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun
2014-01-01
We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134
Current Trends in Canine Problem-Solving and Cognition.
Miklósi, Ádám; Kubinyi, Enikő
2016-10-01
Dogs have occupied a central place in modern comparative cognition, partly because of their specific past and present relationship with humans. Over the years, we have gained insights about the functioning of the dog's mind, which has helped us to understand how dogs' problem-solving abilities differ from those present in related species such as the wolf. Novel methodologies are also emerging that allow for the study of neural and genetic mechanisms that control mental functions. By providing an overview from an ethological perspective, we call for greater integration of the field and a better understanding of natural dog behavior as a way to generate scientific hypotheses.
Functional fixedness in a technologically sparse culture.
German, Tim P; Barrett, H Clark
2005-01-01
Problem solving can be inefficient when the solution requires subjects to generate an atypical function for an object and the object's typical function has been primed. Subjects become "fixed" on the design function of the object, and problem solving suffers relative to control conditions in which the object's function is not demonstrated. In the current study, such functional fixedness was demonstrated in a sample of adolescents (mean age of 16 years) among the Shuar of Ecuadorian Amazonia, whose technologically sparse culture provides limited access to large numbers of artifacts with highly specialized functions. This result suggests that design function may universally be the core property of artifact concepts in human semantic memory.
NASA Astrophysics Data System (ADS)
Kornilov, V. I.; Boiko, A. V.
2017-10-01
Problems of experimental modeling of the process of air blowing into turbulent boundary layer of incompressible fluid through finely perforated wall are discussed. Particular attention is paid to the analysis of both the main factors responsible for the effectiveness of blowing and the possibility of studying the factors in artificially generated turbulent boundary layer. It was shown that uniformity of the injected gas is one of the main requirements to enhance the effectiveness of this method of flow control. An example of the successful application of this technology exhibiting a significant reduction of the turbulent skin friction is provided.
Canale, Natale; Vieno, Alessio; Griffiths, Mark D; Borraccino, Alberto; Lazzeri, Giacomo; Charrier, Lorena; Lemma, Patrizia; Dalmasso, Paola; Santinello, Massimo
2017-03-01
The primary aim of the present study was to examine the association between immigrant generation, family sociodemographic characteristics, and problem gambling severity in a large-scale nationally representative sample of Italian youth. Data from the 2013-2014 Health Behaviour in School-aged Children (HBSC) Survey were used for cross-sectional analyses of adolescent problem gambling. Self-administered questionnaires were completed by a representative sample of 20,791 15-year-old students. Respondents' problem gambling severity, immigrant status, family characteristics (family structure, family affluence, perceived family support) and socio-demographic characteristics were individually assessed. Rates of adolescent at-risk/problem gambling were twice as high among first generation immigrants than non-immigrant students; the odds of being at-risk/problem gamblers were higher among first-generation immigrants than adolescents of other immigrant generations or non-immigrant. Not living with two biological or adoptive parents appears to be a factor that increases the risk of becoming a problem gambler in first generation immigrants. Immigrant status and family characteristics may play a key role in contributing to adolescent problem gambling. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Barnette, Daniel W.
2002-01-01
The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.
Pemberton, Caroline K; Neiderhiser, Jenae M; Leve, Leslie D; Natsuaki, Misaki N; Shaw, Daniel S; Reiss, David; Ge, Xiaojia
2010-11-01
This study examined the developmental cascade of both genetic and environmental influences on toddlers' behavior problems through the longitudinal and multigenerational assessment of psychosocial risk. We used data from the Early Growth and Development Study, a prospective adoption study, to test the intergenerational transmission of risk through the assessment of adoptive mother, adoptive father, and biological parent depressive symptoms on toddler behavior problems. Given that depression is often chronic, we control for across-time continuity and find that in addition to associations between adoptive mother depressive symptoms and toddler externalizing problems, adoptive father depressive symptoms when the child is 9 months of age were associated with toddler problems and associated with maternal depressive symptoms. Findings also indicated that a genetic effect may indirectly influence toddler problems through prenatal pregnancy risk. These findings help to describe how multiple generations are linked through genetic (biological parent), timing (developmental age of the child), and contextual (marital partner) pathways.
Decision-making and problem-solving methods in automation technology
NASA Technical Reports Server (NTRS)
Hankins, W. W.; Pennington, J. E.; Barker, L. K.
1983-01-01
The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming.
Alternative Constraint Handling Technique for Four-Bar Linkage Path Generation
NASA Astrophysics Data System (ADS)
Sleesongsom, S.; Bureerat, S.
2018-03-01
This paper proposes an extension of a new concept for path generation from our previous work by adding a new constraint handling technique. The propose technique was initially designed for problems without prescribed timing by avoiding the timing constraint, while remain constraints are solving with a new constraint handling technique. The technique is one kind of penalty technique. The comparative study is optimisation of path generation problems are solved using self-adaptive population size teaching-learning based optimization (SAP-TLBO) and original TLBO. In this study, two traditional path generation test problem are used to test the proposed technique. The results show that the new technique can be applied with the path generation problem without prescribed timing and gives better results than the previous technique. Furthermore, SAP-TLBO outperforms the original one.
Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids
Chen, Bo; Chen, Chen; Wang, Jianhui; ...
2017-07-07
Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less
A description of the verbal behavior of students during two reading instruction methods
Daly, Patricia M.
1987-01-01
The responses of students during two reading methods, the language experience approach and two Mastery Learning programs, were analyzed using verbal operants. A description of student responding was generated for these methods. The purpose of the study was to answer the questions: What are the major controlling variables determining student reading behavior during the language experience approach and two Mastery Learning programs, and how do these controlling variables change across story reading sessions and across stories in the first method? Student responses by verbal operant were compared for both reading methods. Findings indicated higher frequencies of textual operants occurred in responses during the Mastery Learning programs. A greater reliance on intraverbal control was evident in responses during the language experience approach. It is suggested that students who can generate strong intraverbal responses and who may have visual discrimination problems during early reading instruction may benefit from use of the language experience approach at this stage. ImagesFigure 2Figure 3 PMID:22477535
Sorbent control of trace metals in sewage sludge combustion and incineration
NASA Astrophysics Data System (ADS)
Naruse, I.; Yao, H.; Mkilaha, I. S. N.
2003-05-01
Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.
Multi-Time Step Service Restoration for Advanced Distribution Systems and Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Chen, Chen; Wang, Jianhui
Modern power systems are facing increased risk of disasters that can cause extended outages. The presence of remote control switches (RCSs), distributed generators (DGs), and energy storage systems (ESS) provides both challenges and opportunities for developing post-fault service restoration methodologies. Inter-temporal constraints of DGs, ESS, and loads under cold load pickup (CLPU) conditions impose extra complexity on problem formulation and solution. In this paper, a multi-time step service restoration methodology is proposed to optimally generate a sequence of control actions for controllable switches, ESSs, and dispatchable DGs to assist the system operator with decision making. The restoration sequence is determinedmore » to minimize the unserved customers by energizing the system step by step without violating operational constraints at each time step. The proposed methodology is formulated as a mixed-integer linear programming (MILP) model and can adapt to various operation conditions. Furthermore, the proposed method is validated through several case studies that are performed on modified IEEE 13-node and IEEE 123-node test feeders.« less
Wellman, G S; Hammond, R L; Talmage, R
2001-10-01
A secondary data-reporting system used to scan the archives of a hospital's automated storage and distribution cabinets (ASDCs) for indications of controlled-substance diversion is described. ASDCs, which allow access to multiple doses of the same medication at one time, use drug count verification to ensure complete audits and disposition tracking. Because an ASDC may interpret inappropriate removal of a medication as a normal transaction, users of ASDCs should have a comprehensive plan for detecting and investigating controlled-substance diversion. Monitoring for and detecting diversion can be difficult and time-consuming, given the limited report-generating features of many ASDCs. Managers at an 800-bed hospital used report-writing software to address these problems. This application interfaces with the hospital's computer system and generates customized reports. The monthly activity recapitulation report lists each user of the ASDCs and gives a summary of all the controlled-substance transactions for those users for the time period specified. The monthly summary report provides the backbone of the surveillance system and identifies situations that require further audit and review. This report provides a summary of each user's activity for a specific medication for the time period specified. The detailed summary report allows for efficient review of specific transactions before there is a decision to conduct a chart review. This report identifies all ASDC controlled-substance transactions associated with a user. A computerized report-generating system identifies instances of inappropriate removal of controlled substances from a hospital's ASDCs.
Energy Center Structure Optimization by using Smart Technologies in Process Control System
NASA Astrophysics Data System (ADS)
Shilkina, Svetlana V.
2018-03-01
The article deals with practical application of fuzzy logic methods in process control systems. A control object - agroindustrial greenhouse complex, which includes its own energy center - is considered. The paper analyzes object power supply options taking into account connection to external power grids and/or installation of own power generating equipment with various layouts. The main problem of a greenhouse facility basic process is extremely uneven power consumption, which forces to purchase redundant generating equipment idling most of the time, which quite negatively affects project profitability. Energy center structure optimization is largely based on solving the object process control system construction issue. To cut investor’s costs it was proposed to optimize power consumption by building an energy-saving production control system based on a fuzzy logic controller. The developed algorithm of automated process control system functioning ensured more even electric and thermal energy consumption, allowed to propose construction of the object energy center with a smaller number of units due to their more even utilization. As a result, it is shown how practical use of microclimate parameters fuzzy control system during object functioning leads to optimization of agroindustrial complex energy facility structure, which contributes to a significant reduction in object construction and operation costs.
NASA Astrophysics Data System (ADS)
Puzyrkov, Dmitry; Polyakov, Sergey; Podryga, Viktoriia; Markizov, Sergey
2018-02-01
At the present stage of computer technology development it is possible to study the properties and processes in complex systems at molecular and even atomic levels, for example, by means of molecular dynamics methods. The most interesting are problems related with the study of complex processes under real physical conditions. Solving such problems requires the use of high performance computing systems of various types, for example, GRID systems and HPC clusters. Considering the time consuming computational tasks, the need arises of software for automatic and unified monitoring of such computations. A complex computational task can be performed over different HPC systems. It requires output data synchronization between the storage chosen by a scientist and the HPC system used for computations. The design of the computational domain is also quite a problem. It requires complex software tools and algorithms for proper atomistic data generation on HPC systems. The paper describes the prototype of a cloud service, intended for design of atomistic systems of large volume for further detailed molecular dynamic calculations and computational management for this calculations, and presents the part of its concept aimed at initial data generation on the HPC systems.
Evaluating long-term effectiveness of sleeping sickness control measures in Guinea.
Pandey, Abhishek; Atkins, Katherine E; Bucheton, Bruno; Camara, Mamadou; Aksoy, Serap; Galvani, Alison P; Ndeffo-Mbah, Martial L
2015-10-22
Human African Trypanosomiasis threatens human health across Africa. The subspecies T.b. gambiense is responsible for the vast majority of reported HAT cases. Over the past decade, expanded control efforts accomplished a substantial reduction in HAT transmission, spurring the WHO to include Gambian HAT on its roadmap for 2020 elimination. To inform the implementation of this elimination goal, we evaluated the likelihood that current control interventions will achieve the 2020 target in Boffa prefecture in Guinea, which has one of the highest prevalences for HAT in the country, and where vector control measures have been implemented in combination with the traditional screen and treat strategy. We developed a three-species mathematical model of HAT and used a Bayesian melding approach to calibrate the model to epidemiological and entomological data from Boffa. From the calibrated model, we generated the probabilistic predictions regarding the likelihood that the current HAT control programs could achieve elimination by 2020 in Boffa. Our model projections indicate that if annual vector control is implemented in combination with annual or biennial active case detection and treatment, the probability of eliminating HAT as public health problem in Boffa by 2020 is over 90%. Annual implementation of vector control alone has a significant impact but a decreased chance of reaching the objective (77%). However, if the ongoing control efforts are interrupted, HAT will continue to remain a public health problem. In the presence of a non-human animal transmission reservoir, intervention strategies must be maintained at high coverage, even after 2020 elimination, to prevent HAT reemerging as a public health problem. Complementing active screening and treatment with vector control has the potential to achieve the elimination target before 2020 in the Boffa focus. However, surveillance must continue after elimination to prevent reemergence.
Satisfaction, Challenges, and Interaction in Online Education: A Generational Comparison
ERIC Educational Resources Information Center
Yousef, Martin C.
2012-01-01
Problem: Research suggests that multiple generations of students (predominantly Generation X and millennials) are concurrently enrolled in online classes and that the number of online students continues to grow. The problem investigated in this study was to identify the level of satisfaction as well as the preferences of students from Generation X…
Automatic Item Generation via Frame Semantics: Natural Language Generation of Math Word Problems.
ERIC Educational Resources Information Center
Deane, Paul; Sheehan, Kathleen
This paper is an exploration of the conceptual issues that have arisen in the course of building a natural language generation (NLG) system for automatic test item generation. While natural language processing techniques are applicable to general verbal items, mathematics word problems are particularly tractable targets for natural language…
Generating moment matching scenarios using optimization techniques
Mehrotra, Sanjay; Papp, Dávid
2013-05-16
An optimization based method is proposed to generate moment matching scenarios for numerical integration and its use in stochastic programming. The main advantage of the method is its flexibility: it can generate scenarios matching any prescribed set of moments of the underlying distribution rather than matching all moments up to a certain order, and the distribution can be defined over an arbitrary set. This allows for a reduction in the number of scenarios and allows the scenarios to be better tailored to the problem at hand. The method is based on a semi-infinite linear programming formulation of the problem thatmore » is shown to be solvable with polynomial iteration complexity. A practical column generation method is implemented. The column generation subproblems are polynomial optimization problems; however, they need not be solved to optimality. It is found that the columns in the column generation approach can be efficiently generated by random sampling. The number of scenarios generated matches a lower bound of Tchakaloff's. The rate of convergence of the approximation error is established for continuous integrands, and an improved bound is given for smooth integrands. Extensive numerical experiments are presented in which variants of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods on both numerical integration problems and stochastic optimization problems. The benefits of being able to match any prescribed set of moments, rather than all moments up to a certain order, is also demonstrated using optimization problems with 100-dimensional random vectors. Here, empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte Carlo based approaches on the tested problems.« less
Theoretical approach to society-wide environmental quality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayano, K.
1982-01-01
The study outlines the basis for a theory of societal control of environmental quality in the US based on the concepts and philosophy of company-wide quality control which has developed in Japan as a cross-disciplinary approach to problem-solving in the industrial realm. The basic concepts are: 1) every member of society, as a producer of environmental products and services for future generations, in principle has the responsibility to control the quality of his output; 2) environment quality is the quality of life, or the fitness of use of environment for humans; and 3) societal control is any activity necessary formore » quality production of environmental products and services continuously or in the long run. A motivator-hygiene theory of environmental quality is identified, and a proposal is made that the policy provision must be formulated differently between those aimed at hygiene factors of environmental quality and those aimed at motivators, the former in a collectivistic manner, the latter as an individual problem. The concept of societal cost of environmental quality is introduced. Based on the motivator-hygiene theory of environmental quality, the collectivistic and individual approaches are differentiated and discussed.« less
Application of the remote microphone method to active noise control in a mobile phone.
Cheer, Jordan; Elliott, Stephen J; Oh, Eunmi; Jeong, Jonghoon
2018-04-01
Mobile phones are used in a variety of situations where environmental noise may interfere with the ability of the near-end user to communicate with the far-end user. To overcome this problem, it might be possible to use active noise control technology to reduce the noise experienced by the near-end user. This paper initially demonstrates that when an active noise control system is used in a practical mobile phone configuration to minimise the noise measured by an error microphone mounted on the mobile phone, the attenuation achieved at the user's ear depends strongly on the position of the source generating the acoustic interference. To help overcome this problem, a remote microphone processing strategy is investigated that estimates the pressure at the user's ear from the pressure measured by the microphone on the mobile phone. Through an experimental implementation, it is demonstrated that this arrangement achieves a significant improvement in the attenuation measured at the ear of the user, compared to the standard active control strategy. The robustness of the active control system to changes in both the interfering sound field and the position of the mobile device relative to the ear of the user is also investigated experimentally.
How minimal executive feedback influences creative idea generation
Camarda, Anaëlle; Agogué, Marine; Houdé, Olivier; Weil, Benoît; Le Masson, Pascal
2017-01-01
The fixation effect is known as one of the most dominant of the cognitive biases against creativity and limits individuals’ creative capacities in contexts of idea generation. Numerous techniques and tools have been established to help overcome these cognitive biases in various disciplines ranging from neuroscience to design sciences. Several works in the developmental cognitive sciences have discussed the importance of inhibitory control and have argued that individuals must first inhibit the spontaneous ideas that come to their mind so that they can generate creative solutions to problems. In line with the above discussions, in the present study, we performed an experiment on one hundred undergraduates from the Faculty of Psychology at Paris Descartes University, in which we investigated a minimal executive feedback-based learning process that helps individuals inhibit intuitive paths to solutions and then gradually drive their ideation paths toward creativity. Our results provide new insights into novel forms of creative leadership for idea generation. PMID:28662154
How minimal executive feedback influences creative idea generation.
Ezzat, Hicham; Camarda, Anaëlle; Cassotti, Mathieu; Agogué, Marine; Houdé, Olivier; Weil, Benoît; Le Masson, Pascal
2017-01-01
The fixation effect is known as one of the most dominant of the cognitive biases against creativity and limits individuals' creative capacities in contexts of idea generation. Numerous techniques and tools have been established to help overcome these cognitive biases in various disciplines ranging from neuroscience to design sciences. Several works in the developmental cognitive sciences have discussed the importance of inhibitory control and have argued that individuals must first inhibit the spontaneous ideas that come to their mind so that they can generate creative solutions to problems. In line with the above discussions, in the present study, we performed an experiment on one hundred undergraduates from the Faculty of Psychology at Paris Descartes University, in which we investigated a minimal executive feedback-based learning process that helps individuals inhibit intuitive paths to solutions and then gradually drive their ideation paths toward creativity. Our results provide new insights into novel forms of creative leadership for idea generation.
Optimization of Regional Geodynamic Models for Mantle Dynamics
NASA Astrophysics Data System (ADS)
Knepley, M.; Isaac, T.; Jadamec, M. A.
2016-12-01
The SubductionGenerator program is used to construct high resolution, 3D regional thermal structures for mantle convection simulations using a variety of data sources, including sea floor ages and geographically referenced 3D slab locations based on seismic observations. The initial bulk temperature field is constructed using a half-space cooling model or plate cooling model, and related smoothing functions based on a diffusion length-scale analysis. In this work, we seek to improve the 3D thermal model and test different model geometries and dynamically driven flow fields using constraints from observed seismic velocities and plate motions. Through a formal adjoint analysis, we construct the primal-dual version of the multi-objective PDE-constrained optimization problem for the plate motions and seismic misfit. We have efficient, scalable preconditioners for both the forward and adjoint problems based upon a block preconditioning strategy, and a simple gradient update is used to improve the control residual. The full optimal control problem is formulated on a nested hierarchy of grids, allowing a nonlinear multigrid method to accelerate the solution.
A Flight Examination of Operating Problems of V/STOL Aircraft in STOL-Type Landing and Approach
NASA Technical Reports Server (NTRS)
Innis, Robert C.; Quigley, Hervey C.
1961-01-01
A flight investigation has been conducted using a large twin-engine cargo aircraft to isolate the problems associated with operating propeller-driven aircraft in the STOL speed range where appreciable engine power is used to augment aerodynamic lift. The problems considered would also be representative of those of a large overloaded VTOL aircraft operating in an STOL manner with comparable thrust-to-weight ratios. The study showed that operation at low approach speeds was compromised by the necessity of maintaining high thrust to generate high lift and yet achieving the low lift-drag ratios needed for steep descents. The useable range of airspeed and flight path angle was limited by the pilot's demand for a positive climb margin at the approach speed, a suitable stall margin, and a control and/or performance margin for one engine inoperative. The optimum approach angle over an obstacle was found to be a compromise between obtaining the shortest air distance and the lowest touchdown velocity. In order to realize the greatest low-speed potential from STOL designs, the stability and control characteristics must be satisfactory.
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Kaiser, Mary K.
2003-01-01
Perspective synthetic displays that supplement, or supplant, the optical windows traditionally used for guidance and control of aircraft are accompanied by potentially significant human factors problems related to the optical geometric conformality of the display. Such geometric conformality is broken when optical features are not in the location they would be if directly viewed through a window. This often occurs when the scene is relayed or generated from a location different from the pilot s eyepoint. However, assuming no large visual/vestibular effects, a pilot cad often learn to use such a display very effectively. Important problems may arise, however, when display accuracy or consistency is compromised, and this can usually be related to geometrical discrepancies between how the synthetic visual scene behaves and how the visual scene through a window behaves. In addition to these issues, this paper examines the potentially critical problem of the disorientation that can arise when both a synthetic display and a real window are present in a flight deck, and no consistent visual interpretation is available.
Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames
NASA Technical Reports Server (NTRS)
Dai, Z.; Faeth, G. M.
1999-01-01
Nonpremixed (diffusion) flames are attractive for practical applications because they avoid the stability, autoignition, flashback, etc. problems of premixed flames. Unfortunately, soot formation in practical hydrocarbon-fueled diffusion flames reduces their attractiveness due to widely-recognized public health and combustor durability problems of soot emissions. For example, more deaths are attributed to the emission of soot (15,000-60,000 deaths annually in the U.S. alone) than any other combustion-generated pollutant. In addition, continuum radiation from soot-containing flames is the principle heat load to combustor components and is mainly responsible for engine durability problems of aircraft and gas turbine engines. As a result, there is considerable interest in controlling both soot concentrations within flames and soot emissions from flames. Thus, the objective of the present investigation is to study ways to control soot formation in diffusion flames by manipulating the mixing process between the fuel and oxidant streams. In order to prevent the intrusion of gravity from masking flow properties that reduce soot formation in practical flames (where effects of gravity are small), methods developed during past work will be exploited to minimize effects of buoyant motion.
Multiresolution strategies for the numerical solution of optimal control problems
NASA Astrophysics Data System (ADS)
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)
1998-01-01
Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.
Evolution of the magnetic field generated by the Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modestov, M.; Bychkov, V.; Brodin, G.
2014-07-15
The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instabilitymore » development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.« less
Doyle, Orla; McGlanaghy, Edel; O’Farrelly, Christine; Tremblay, Richard E.
2016-01-01
This study examined the impact of a targeted Irish early intervention program on children’s emotional and behavioral development using multiple methods to test the robustness of the results. Data on 164 Preparing for Life participants who were randomly assigned into an intervention group, involving home visits from pregnancy onwards, or a control group, was used to test the impact of the intervention on Child Behavior Checklist scores at 24-months. Using inverse probability weighting to account for differential attrition, permutation testing to address small sample size, and quantile regression to characterize the distributional impact of the intervention, we found that the few treatment effects were largely concentrated among boys most at risk of developing emotional and behavioral problems. The average treatment effect identified a 13% reduction in the likelihood of falling into the borderline clinical threshold for Total Problems. The interaction and subgroup analysis found that this main effect was driven by boys. The distributional analysis identified a 10-point reduction in the Externalizing Problems score for boys at the 90th percentile. No effects were observed for girls or for the continuous measures of Total, Internalizing, and Externalizing problems. These findings suggest that the impact of this prenatally commencing home visiting program may be limited to boys experiencing the most difficulties. Further adoption of the statistical methods applied here may help to improve the internal validity of randomized controlled trials and contribute to the field of evaluation science more generally. Trial Registration: ISRCTN Registry ISRCTN04631728 PMID:27253184
Distributed neural control of a hexapod walking vehicle
NASA Technical Reports Server (NTRS)
Beer, R. D.; Sterling, L. S.; Quinn, R. D.; Chiel, H. J.; Ritzmann, R.
1989-01-01
There has been a long standing interest in the design of controllers for multilegged vehicles. The approach is to apply distributed control to this problem, rather than using parallel computing of a centralized algorithm. Researchers describe a distributed neural network controller for hexapod locomotion which is based on the neural control of locomotion in insects. The model considers the simplified kinematics with two degrees of freedom per leg, but the model includes the static stability constraint. Through simulation, it is demonstrated that this controller can generate a continuous range of statically stable gaits at different speeds by varying a single control parameter. In addition, the controller is extremely robust, and can continue the function even after several of its elements have been disabled. Researchers are building a small hexapod robot whose locomotion will be controlled by this network. Researchers intend to extend their model to the dynamic control of legs with more than two degrees of freedom by using data on the control of multisegmented insect legs. Another immediate application of this neural control approach is also exhibited in biology: the escape reflex. Advanced robots are being equipped with tactile sensing and machine vision so that the sensory inputs to the robot controller are vast and complex. Neural networks are ideal for a lower level safety reflex controller because of their extremely fast response time. The combination of robotics, computer modeling, and neurobiology has been remarkably fruitful, and is likely to lead to deeper insights into the problems of real time sensorimotor control.
Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F
2014-12-21
Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.
Molecular optoelectronics: the interaction of molecular conduction junctions with light.
Galperin, Michael; Nitzan, Abraham
2012-07-14
The interaction of light with molecular conduction junctions is attracting growing interest as a challenging experimental and theoretical problem on one hand, and because of its potential application as a characterization and control tool on the other. It stands at the interface between two important fields, molecular electronics and molecular plasmonics and has attracted attention as a challenging scientific problem with potentially important technological consequences. Here we review the present state of the art of this field, focusing on several key phenomena and applications: using light as a switching device, using light to control junction transport in the adiabatic and non-adiabatic regimes, light generation in biased junctions and Raman scattering from such systems. This field has seen remarkable progress in the past decade, and the growing availability of scanning tip configurations that can combine optical and electrical probes suggests that further progress towards the goal of realizing molecular optoelectronics on the nanoscale is imminent.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1985-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
Daniela Biondi; Antonio Carlos Batista; Angeline Martini
2013-01-01
Urban growth worldwide has generated great concern in the planning of the different environments belonging to the wildland-urban interface. One of the problems that arise is the landscape treatment given to roads, which must not only comply with aesthetic and ecological principles, but also be functional, adding functions relating to forest fire prevention and control...
Dynamic Distributed Cooperative Control of Multiple Heterogeneous Resources
2012-10-01
of the UAVs to maximize the total sensor footprint over the region of interest. The algorithm utilized to solve this problem was based on sampling a...and moving obstacles. Obstacle positions were assumed known a priori. Kingston and Beard [22] presented an algorithm to keep moving UAVs equally spaced...Planning Algorithms , Cambridge University Press, 2006. 11. Ma, C. S. and Miller, R. H., “Mixed integer linear programming trajectory generation for
Apollo experience report guidance and control systems: Lunar module abort guidance system
NASA Technical Reports Server (NTRS)
Kurten, P. M.
1975-01-01
The history of a unique development program that produced an operational fixed guidance system of inertial quality is presented. Each phase of development, beginning with requirement definition and concluding with qualification and testing, is addressed, and developmental problems are emphasized. Software generation and mission operations are described, and specifications for the inertial reference unit are included, as are flight performance results. Significant program observations are noted.
Generation of Aerodynamics Via Physics-Based Virtual Flight Simulations
2008-12-01
problems associated with projectile and missile aerodynamics. For maneuvering munitions, the effect of many new weapon control mechanisms being...dynamic simulation. The terms containing YPAC constitute the Magnus air load acting at the Magnus center of pressure while the terms containing 0 2...an unsteady aerodynamic moment along with terms due to the fact that the center of pressure and center of Magnus are not located at the mass
Adaptive control of periodic systems
NASA Astrophysics Data System (ADS)
Tian, Zhiling
2009-12-01
Adaptive control is needed to cope with parametric uncertainty in dynamical systems. The adaptive control of LTI systems in both discrete and continuous time has been studied for four decades and the results are currently used widely in many different fields. In recent years, interest has shifted to the adaptive control of time-varying systems. It is known that the adaptive control of arbitrarily rapidly time-varying systems is in general intractable, but systems with periodically time-varying parameters (LTP systems) which have much more structure, are amenable to mathematical analysis. Further, there is also a need for such control in practical problems which have arisen in industry during the past twenty years. This thesis is the first attempt to deal with the adaptive control of LTP systems. Adaptive Control involves estimation of unknown parameters, adjusting the control parameters based on the estimates, and demonstrating that the overall system is stable. System theoretic properties such as stability, controllability, and observability play an important role both in formulating of the problems, as well as in generating solutions for them. For LTI systems, these properties have been studied since 1960s, and algebraic conditions that have to be satisfied to assure these properties are now well established. In the case of LTP systems, these properties can be expressed only in terms of transition matrices that are much more involved than those for LTI systems. Since adaptive control problems can be formulated only when these properties are well understood, it is not surprising that systematic efforts have not been made thus far for formulating and solving adaptive control problems that arise in LTP systems. Even in the case of LTI systems, it is well recognized that problems related to adaptive discrete-time system are not as difficult as those that arise in the continuous-time systems. This is amply evident in the solutions that were derived in the 1980s and 1990s for all the important problems. These differences are even more amplified in the LTP case; some problems in continuous time cannot even be formulated precisely. This thesis consequently focuses primarily on the adaptive identification and control of discrete-time systems, and derives most of the results that currently exist in the literature for LTI systems. Based on these investigations of discrete-time adaptive systems, attempts are made in the thesis to examine their continuous-time counterparts, and discuss the principal difficulties encountered. The dissertation examines critically the system theoretic properties of LTP systems in Chapter 2, and the mathematical framework provided for their analysis by Floquet theory in Chapter 3. Assuming that adaptive identification and control problems can be formulated precisely, a unified method of developing stable adaptive laws using error models is treated in Chapter 4. Chapter 5 presents a detailed study of the adaptation in SISO discrete-time LTP systems, and represents the core of the thesis. The important problems of identification, stabilization, regulation, and tracking of arbitrary signals are investigated, and practically implementable stable adaptive laws are derived. The dissertation concludes with a discussion of continuous-time adaptive control in Chapter 6 and discrete multivariable systems in Chapter 7. Directions for future research are indicated towards the end of the dissertation.
Rothschild, Adam S.; Lehmann, Harold P.
2005-01-01
Objective: The aim of this study was to preliminarily determine the feasibility of probabilistically generating problem-specific computerized provider order entry (CPOE) pick-lists from a database of explicitly linked orders and problems from actual clinical cases. Design: In a pilot retrospective validation, physicians reviewed internal medicine cases consisting of the admission history and physical examination and orders placed using CPOE during the first 24 hours after admission. They created coded problem lists and linked orders from individual cases to the problem for which they were most indicated. Problem-specific order pick-lists were generated by including a given order in a pick-list if the probability of linkage of order and problem (PLOP) equaled or exceeded a specified threshold. PLOP for a given linked order-problem pair was computed as its prevalence among the other cases in the experiment with the given problem. The orders that the reviewer linked to a given problem instance served as the reference standard to evaluate its system-generated pick-list. Measurements: Recall, precision, and length of the pick-lists. Results: Average recall reached a maximum of .67 with a precision of .17 and pick-list length of 31.22 at a PLOP threshold of 0. Average precision reached a maximum of .73 with a recall of .09 and pick-list length of .42 at a PLOP threshold of .9. Recall varied inversely with precision in classic information retrieval behavior. Conclusion: We preliminarily conclude that it is feasible to generate problem-specific CPOE pick-lists probabilistically from a database of explicitly linked orders and problems. Further research is necessary to determine the usefulness of this approach in real-world settings. PMID:15684134
Prietula, M J; Feltovich, P J; Marchak, F
2000-01-01
We propose that considering four categories of task factors can facilitate knowledge elicitation efforts in the analysis of complex cognitive tasks: materials, strategies, knowledge characteristics, and goals. A study was conducted to examine the effects of altering aspects of two of these task categories on problem-solving behavior across skill levels: materials and goals. Two versions of an applied engineering problem were presented to expert, intermediate, and novice participants. Participants were to minimize the cost of running a steam generation facility by adjusting steam generation levels and flows. One version was cast in the form of a dynamic, computer-based simulation that provided immediate feedback on flows, costs, and constraint violations, thus incorporating key variable dynamics of the problem context. The other version was cast as a static computer-based model, with no dynamic components, cost feedback, or constraint checking. Experts performed better than the other groups across material conditions, and, when required, the presentation of the goal assisted the experts more than the other groups. The static group generated richer protocols than the dynamic group, but the dynamic group solved the problem in significantly less time. Little effect of feedback was found for intermediates, and none for novices. We conclude that demonstrating differences in performance in this task requires different materials than explicating underlying knowledge that leads to performance. We also conclude that substantial knowledge is required to exploit the information yielded by the dynamic form of the task or the explicit solution goal. This simple model can help to identify the contextual factors that influence elicitation and specification of knowledge, which is essential in the engineering of joint cognitive systems.
Stall Recovery Guidance Algorithms Based on Constrained Control Approaches
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana
2016-01-01
Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.
Dynamic Control of Facts Devices to Enable Large Scale Penetration of Renewable Energy Resources
NASA Astrophysics Data System (ADS)
Chavan, Govind Sahadeo
This thesis focuses on some of the problems caused by large scale penetration of Renewable Energy Resources within EHV transmission networks, and investigates some approaches in resolving these problems. In chapter 4, a reduced-order model of the 500 kV WECC transmission system is developed by estimating its key parameters from phasor measurement unit (PMU) data. The model was then implemented in RTDS and was investigated for its accuracy with respect to the PMU data. Finally it was tested for observing the effects of various contingencies like transmission line loss, generation loss and large scale penetration of wind farms on EHV transmission systems. Chapter 5 introduces Static Series Synchronous Compensators (SSSC) which are seriesconnected converters that can control real power flow along a transmission line. A new application of SSSCs in mitigating Ferranti effect on unloaded transmission lines was demonstrated on PSCAD. A new control scheme for SSSCs based on the Cascaded H-bridge (CHB) converter configuration was proposed and was demonstrated using PSCAD and RTDS. A new centralized controller was developed for the distributed SSSCs based on some of the concepts used in the CHB-based SSSC. The controller's efficacy was demonstrated using RTDS. Finally chapter 6 introduces the problem of power oscillations induced by renewable sources in a transmission network. A power oscillation damping (POD) controller is designed using distributed SSSCs in NYPA's 345 kV three-bus AC system and its efficacy is demonstrated in PSCAD. A similar POD controller is then designed for the CHB-based SSSC in the IEEE 14 bus system in PSCAD. Both controllers were noted to have significantly damped power oscillations in the transmission networks.
The why, what, where, when and how of goal-directed choice: neuronal and computational principles
Verschure, Paul F. M. J.; Pennartz, Cyriel M. A.; Pezzulo, Giovanni
2014-01-01
The central problems that goal-directed animals must solve are: ‘What do I need and Why, Where and When can this be obtained, and How do I get it?' or the H4W problem. Here, we elucidate the principles underlying the neuronal solutions to H4W using a combination of neurobiological and neurorobotic approaches. First, we analyse H4W from a system-level perspective by mapping its objectives onto the Distributed Adaptive Control embodied cognitive architecture which sees the generation of adaptive action in the real world as the primary task of the brain rather than optimally solving abstract problems. We next map this functional decomposition to the architecture of the rodent brain to test its consistency. Following this approach, we propose that the mammalian brain solves the H4W problem on the basis of multiple kinds of outcome predictions, integrating central representations of needs and drives (e.g. hypothalamus), valence (e.g. amygdala), world, self and task state spaces (e.g. neocortex, hippocampus and prefrontal cortex, respectively) combined with multi-modal selection (e.g. basal ganglia). In our analysis, goal-directed behaviour results from a well-structured architecture in which goals are bootstrapped on the basis of predefined needs, valence and multiple learning, memory and planning mechanisms rather than being generated by a singular computation. PMID:25267825
Computer Applications in Teaching and Learning.
ERIC Educational Resources Information Center
Halley, Fred S.; And Others
Some examples of the usage of computers in teaching and learning are examination generation, automatic exam grading, student tracking, problem generation, computational examination generators, program packages, simulation, and programing skills for problem solving. These applications are non-trivial and do fulfill the basic assumptions necessary…
NASA Astrophysics Data System (ADS)
Anis Atikah, Nurul; Yeng Weng, Leong; Anuar, Adzly; Chien Fat, Chau; Sahari, Khairul Salleh Mohamed; Zainal Abidin, Izham
2017-10-01
Currently, the methods of actuating robotic-based prosthetic limbs are moving away from bulky actuators to more fluid materials such as artificial muscles. The main disadvantages of these artificial muscles are their high cost of manufacturing, low-force generation, cumbersome and complex controls. A recent discovery into using super coiled polymer (SCP) proved to have low manufacturing costs, high force generation, compact and simple controls. Nevertheless, the non-linear controls still exists due to the nature of heat-based actuation, which is hysteresis. This makes position control difficult. Using electrically conductive devices allows for very quick heating, but not quick cooling. This research tries to solve the problem by using peltier devices, which can effectively heat and cool the SCP, hence giving way to a more precise control. The peltier device does not actively introduce more energy to a volume of space, which the coiled heating does; instead, it acts as a heat pump. Experiments were conducted to test the feasibility of using peltier as an actuating method on different diameters of nylon fishing strings. Based on these experiments, the performance characteristics of the strings were plotted, which could be used to control the actuation of the string efficiently in the future.
Numerical Simulation of Fluidic Actuators for Flow Control Applications
NASA Technical Reports Server (NTRS)
Vasta, Veer N.; Koklu, Mehti; Wygnanski, Israel L.; Fares, Ehab
2012-01-01
Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.