Laser wakefield accelerated electron beam monitoring and control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koga, J. K.; Mori, M.; Kotaki, H.
2016-03-25
We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10 m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.
Miller, T Reed; Duan, Huabo; Gregory, Jeremy; Kahhat, Ramzy; Kirchain, Randolph
2016-06-07
This paper describes the scope, methods, data, and results of a comprehensive quantitative analysis of generation, stock, and collection of used computers and monitors in the United States , specifically desktops, laptops, CRT monitors, and flat panel monitors in the decade leading up to 2010. Generation refers to used electronics coming directly out of use or postuse storage destined for disposal or collection, which encompasses a variety of organizations gathering used electronics for recycling or reuse. Given the lack of actual statistics on flows of used electronics, two separate approaches, the sales obsolescence method (SOM) and the survey scale-up method (SSUM), were used in order to compare the results attained and provide a range for estimated quantities. This study intentionally sought to capture the uncertainty in the estimates. To do so, uncertainty in each data set was incorporated at each stage using Monte Carlo simulations for SOM and establishing scenarios for SSUM. Considering the average results across both methods, we estimate that in 2010 the U.S. generated 130-164 thousand metric tons of used computers and 128-153 thousand tons of used monitors, of which 110-116 thousand tons of used computers and 105-106 thousand tons of used monitors were collected for further reuse, recycling, or export. While each approach has its strengths and weaknesses, both the SOM and the SSUM appear to be capable of producing reasonable ranges of estimates for the generation and collection of used electronics.
Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.
Khrustalev, K; Popov, V Yu; Popov, Yu S
2017-08-01
We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.
2007-01-01
Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.
Hatada, Mika; Loew, Noya; Inose-Takahashi, Yuka; Okuda-Shimazaki, Junko; Tsugawa, Wakako; Mulchandani, Ashok; Sode, Koji
2018-06-01
Enzyme based electrochemical biosensors are divided into three generations according to their type of electron transfer from the cofactors of the enzymes to the electrodes. Although the 3rd generation sensors using direct electron transfer (DET) type enzymes are ideal, the number of enzyme types which possess DET ability is limited. In this study, we report of a glucose sensor using mediator-modified glucose dehydrogenase (GDH), that was fabricated by a new quick-and-easy method using the pre-functionalized amine reactive phenazine ethosulfate (arPES). Thus mediator-modified GDH obtained the ability to transfer electrons to bulky electron acceptors as well as electrodes. The concentration of glucose was successfully measured using electrodes with immobilized PES-modified GDH, without addition of external electron mediators. Therefore, continuous monitoring systems can be developed based on this "2.5th generation" electron transfer principle utilizing quasi-DET. Furthermore, we successfully modified two other diagnostically relevant enzymes, glucoside 3-dehydrogenase and lactate oxidase, with PES. Therefore, various kinds of diagnostic enzymes can achieve quasi-DET ability simply by modification with arPES, suggesting that continuous monitoring systems based on the 2.5th generation principle can be developed for various target molecules. Copyright © 2018 Elsevier B.V. All rights reserved.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
An Automated Web Diary System for TeleHomeCare Patient Monitoring
Ganzinger, Matthias; Demiris, George; Finkelstein, Stanley M.; Speedie, Stuart; Lundgren, Jan Marie
2001-01-01
The TeleHomeCare project monitors home care patients via the Internet. Each patient has a personalized homepage with an electronic diary for collecting the monitoring data with HTML forms. The web pages are generated dynamically using PHP. All data are stored in a MySQL database. Data are checked immediately by the system; if a value exceeds a predefined limit an alarm message is generated and sent automatically to the patient's case manager. Weekly graphical reports (PDF format) are also generated and sent by email to the same destination.
Power generator driven by Maxwell's demon
NASA Astrophysics Data System (ADS)
Chida, Kensaku; Desai, Samarth; Nishiguchi, Katsuhiko; Fujiwara, Akira
2017-05-01
Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.
Borehole optical lateral displacement sensor
Lewis, R.E.
1998-10-20
There is provided by this invention an optical displacement sensor that utilizes a reflective target connected to a surface to be monitored to reflect light from a light source such that the reflected light is received by a photoelectric transducer. The electric signal from the photoelectric transducer is then imputed into electronic circuitry to generate an electronic image of the target. The target`s image is monitored to determine the quantity and direction of any lateral displacement in the target`s image which represents lateral displacement in the surface being monitored. 4 figs.
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Reviews apparatus design and instructional uses for Fume Cupboard Monitor, Plant Tissue Culture Kit, various equipment for electronic systems course, Welwyn Microprocessor-Tutor, Sweep Function Generator SFG 606, and Harris manufacturers materials--Regulated Power Supply Units, Electronic Current and Voltage Meters, Gas Preparation Kit, and…
Fabric-based integrated energy devices for wearable activity monitors.
Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong
2014-09-01
A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Online fault diagnostics and testing of area gamma radiation monitor using wireless network
NASA Astrophysics Data System (ADS)
Reddy, Padi Srinivas; Kumar, R. Amudhu Ramesh; Mathews, M. Geo; Amarendra, G.
2017-07-01
Periodical surveillance, checking, testing, and calibration of the installed Area Gamma Radiation Monitors (AGRM) in the nuclear plants are mandatory. The functionality of AGRM counting electronics and Geiger-Muller (GM) tube is to be monitored periodically. The present paper describes the development of online electronic calibration and testing of the GM tube from the control room. Two electronic circuits were developed, one for AGRM electronic test and another for AGRM detector test. A dedicated radiation data acquisition system was developed using an open platform communication server and data acquisition software. The Modbus RTU protocol on ZigBee based wireless communication was used for online monitoring and testing. The AGRM electronic test helps to carry out the three-point electronic calibration and verification of accuracy. The AGRM detector test is used to verify the GM threshold voltage and the plateau slope of the GM tube in-situ. The real-time trend graphs generated during these tests clearly identified the state of health of AGRM electronics and GM tube on go/no-go basis. This method reduces the radiation exposures received by the maintenance crew and facilitates quick testing with minimum downtime of the instrument.
Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.
Wang, Xuewen; Liu, Zheng; Zhang, Ting
2017-07-01
Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic System for Preventing Airport Runway Incursions
NASA Technical Reports Server (NTRS)
Dabney, Richard; Elrod, Susan
2009-01-01
A proposed system of portable illuminated signs, electronic monitoring equipment, and radio-communication equipment for preventing (or taking corrective action in response to) improper entry of aircraft, pedestrians, or ground vehicles onto active airport runways is described. The main overall functions of the proposed system would be to automatically monitor aircraft ground traffic on or approaching runways and to generate visible and/or audible warnings to affected pilots, ground-vehicle drivers, and control-tower personnel when runway incursions take place.
Investigation of the silicon ion density during molecular beam epitaxy growth
NASA Astrophysics Data System (ADS)
Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.
2002-05-01
Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, Josh; /SLAC
2006-08-28
The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995)more » field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.« less
Li, Ruyan; Zhang, Yue; Tu, Wenwen; Dai, Zhihui
2017-07-12
By using in situ generation of electron acceptor coupled with heterojunction as dual signal amplification, a simple photoelectrochemical (PEC) bioanalysis platform was designed. The synergic effect between the photoelectrochemical (PEC) activities of carbon nitride (C 3 N 4 ) nanosheets and PbS quantum dots (QDs) achieved almost nine-fold photocurrent intensity increment compared with the C 3 N 4 alone. After the G-quadruplex/hemin/Pt nanoparticles (NPs) with catalase-like activity toward H 2 O 2 were introduced, oxygen was in situ generated and acted as electron donor by improving charge separation efficiency and further enhancing photocurrent response. The dually amplified signal made enough sensitivity for monitoring H 2 O 2 released from live cells. The photocathode was prepared by the stepwise assembly of C 3 N 4 nanosheets and PbS QDs on indium tin oxide (ITO) electrode, which was characterized by scanning electron microscope. A signal-on protocol was achieved for H 2 O 2 detection in vitro due to the relevance of photocurrent on the concentration of H 2 O 2 . Under the optimized condition, the fabricated PEC bioanalysis platform exhibited a linear range of 10-7000 μM with a detection limit of 1.05 μM at S/N of 3. Besides, the bioanalysis platform displayed good selectivity against other reductive biological species. By using HepG2 cells as a model, a dual signal amplifying PEC bioanalysis platform for monitoring cells was developed. The bioanalysis platform was successfully applied to the detection of H 2 O 2 release from live cells, which provided a novel method for cells monitoring and would have prospect in clinical assay.
Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation.
Shen, Daozhi; Xiao, Ming; Zou, Guisheng; Liu, Lei; Duley, Walter W; Zhou, Y Norman
2018-05-01
Most state-of-the-art electronic wearable sensors are powered by batteries that require regular charging and eventual replacement, which would cause environmental issues and complex management problems. Here, a device concept is reported that can break this paradigm in ambient moisture monitoring-a new class of simple sensors themselves can generate moisture-dependent voltage that can be used to determine the ambient humidity level directly. It is demonstrated that a moisture-driven electrical generator, based on the diffusive flow of water in titanium dioxide (TiO 2 ) nanowire networks, can yield an output power density of up to 4 µW cm -2 when exposed to a highly moist environment. This performance is two orders of magnitude better than that reported for carbon-black generators. The output voltage is strongly dependent on humidity of ambient environment. As a big breakthrough, this new type of device is successfully used as self-powered wearable human-breathing monitors and touch pads, which is not achievable by any existing moisture-induced-electricity technology. The availability of high-output self-powered electrical generators will facilitate the design and application of a wide range of new innovative flexible electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Breathing Monitor Using Dye-Doped Optical Fiber
NASA Astrophysics Data System (ADS)
Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi
1990-08-01
A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.
Smartphone data as an electronic biomarker of illness activity in bipolar disorder.
Faurholt-Jepsen, Maria; Vinberg, Maj; Frost, Mads; Christensen, Ellen Margrethe; Bardram, Jakob E; Kessing, Lars Vedel
2015-11-01
Objective methods are lacking for continuous monitoring of illness activity in bipolar disorder. Smartphones offer unique opportunities for continuous monitoring and automatic collection of real-time data. The objectives of the paper were to test the hypotheses that (i) daily electronic self-monitored data and (ii) automatically generated objective data collected using smartphones correlate with clinical ratings of depressive and manic symptoms in patients with bipolar disorder. Software for smartphones (the MONARCA I system) that collects automatically generated objective data and self-monitored data on illness activity in patients with bipolar disorder was developed by the authors. A total of 61 patients aged 18-60 years and with a diagnosis of bipolar disorder according to ICD-10 used the MONARCA I system for six months. Depressive and manic symptoms were assessed monthly using the Hamilton Depression Rating Scale 17-item (HDRS-17) and the Young Mania Rating Scale (YMRS), respectively. Data are representative of over 400 clinical ratings. Analyses were computed using linear mixed-effect regression models allowing for both between individual variation and within individual variation over time. Analyses showed significant positive correlations between the duration of incoming and outgoing calls/day and scores on the HDRS-17, and significant positive correlations between the number and duration of incoming calls/day and scores on the YMRS; the number of and duration of outgoing calls/day and scores on the YMRS; and the number of outgoing text messages/day and scores on the YMRS. Analyses showed significant negative correlations between self-monitored data (i.e., mood and activity) and scores on the HDRS-17, and significant positive correlations between self-monitored data (i.e., mood and activity) and scores on the YMRS. Finally, the automatically generated objective data were able to discriminate between affective states. Automatically generated objective data and self-monitored data collected using smartphones correlate with clinically rated depressive and manic symptoms and differ between affective states in patients with bipolar disorder. Smartphone apps represent an easy and objective way to monitor illness activity with real-time data in bipolar disorder and may serve as an electronic biomarker of illness activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Recombinant Reflectin-Based Optical Materials
2012-01-01
sili- con substrates were placed in a sealed plastic box. The RH was controlled using a Dydra electronic cigar humidifier and monitored using a Fisher...diffraction gratings to generate diffraction patterns. Nano-spheres and la- mellar microstructures of refCBA samples were observed by scanning electron ...samples were observed by scanning electron microscopy and atomic force microscopy. Despite the reduced complexity of the refCBA protein compared to natural
Lewicka, Małgorzata; Henrykowska, Gabriela A; Pacholski, Krzysztof; Szczęsny, Artur; Dziedziczak-Buczyńska, Maria; Buczyński, Andrzej
2015-01-01
Electromagnetic radiation emitted by a variety of devices, e.g. cell phones, computers and microwaves, interacts with the human body in many ways. Research studies carried out in the last few decades have not yet resolved the issue of the effect of this factor on the human body and many questions are left without an unequivocal answer. Various biological and health-related effects have not been fully recognized. Thus further studies in this area are justified. A comparison of changes within catalase enzymatic activity and malondialdehyde concentration arising under the influence of the electromagnetic radiation emitted by car electronics, equipment used in physiotherapy and LCD monitors. The suspension of human blood platelets at a concentration of 1 × 109/0.001 dm 3, obtained from whole blood by manual apheresis, was the study material. Blood platelets were exposed to an electromagnetic field for 30 min in a laboratory stand designed for the reconstruction of the electromagnetic radiation generated by car electronics, physiotherapy equipment and LCD monitors. The changes in catalase activity and malondialdehyde concentration were investigated after the exposure and compared to the control values (unexposed material). An increase in catalase activity and malondialdehyde concentration was observed after 30 min exposure of platelets to EMF regardless of the radiation source. The most significant changes determining the degree of oxidative stress were observed after exposure to the EMF generated by car electronics. The low frequency electromagnetic fields generated by car electronics, physiotherapy equipment and LCD monitors may be a cause of oxidative stress in the human body and may lead to free radical diseases.
Muramoto, Hideyuki; Shimamoto, Kazuhiro; Ikeda, Mitsuru; Koyama, Kazuyuki; Fukushima, Hiromichi; Ishigaki, Takeo
2006-06-01
The influence of monitor brightness and room illumination on soft-copy diagnosis by both cathode-ray tube (CRT) monitor and liquid crystal display (LCD) was evaluated and compared using a contrast-detail phantom. Nine observers (7 radiologists and 2 radiological technicians) interpreted six types of electronically generated contrast-detail phantom images using a 21-inch CRT (2,048x2,560) and a 21-inch LCD (2,048x2,560) under 6 kinds of viewing conditions, i.e. monitor brightness of 330 cd/m2 or 450 cd/m2, and room illumination of 20, 100 or 420 lux at the center of the display. Observers were requested to determine the visible borderline of the objects. Between 330 cd/m2 and 450 cd/m2, no significant difference in the visible area was found under any of the three lighting conditions. However, in two low-contrast phantom images, the visible area on the LCD was significantly larger than that on the CRT, independent of both monitor brightness and room illumination. (p<0.05). The effect of room illumination was not significant, suggesting that the use of LCD at high room illumination is acceptable.
Microelectrode-based technology for the detection of low levels of bacteria
NASA Technical Reports Server (NTRS)
Rogers, Tom D.; Hitchens, G. D.; Mishra, S. K.; Pierson, D. L.
1992-01-01
A microelectrode-based electrochemical detection method was used for quantitation of bacteria in water samples. The redox mediator, benzoquinone, was used to accept electrons from the bacterial metabolic pathway to create a flow of electrons by reducing the mediator. Electrochemical monitoring electrodes detected the reduced mediator as it diffused out of the cells and produced a small electrical current. By using a combination of microelectrodes and monitoring instrumentation, the cumulative current generated by a particular bacterial population could be monitored. Using commercially available components, an electrochemical detection system was assembled and tested to evaluate its potential as an emerging technology for rapid detection and quantitation of bacteria in water samples.
Cutaneous Recording and Stimulation of Muscles Using Organic Electronic Textiles.
Papaiordanidou, Maria; Takamatsu, Seiichi; Rezaei-Mazinani, Shahab; Lonjaret, Thomas; Martin, Alain; Ismailova, Esma
2016-08-01
Electronic textiles are an emerging field providing novel and non-intrusive solutions for healthcare. Conducting polymer-coated textiles enable a new generation of fully organic surface electrodes for electrophysiological evaluations. Textile electrodes are able to assess high quality muscular monitoring and to perform transcutaneous electrical stimulation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron {sup 83}Rb/{sup 83m}Kr Source for the Energy Scale Monitoring in the KATRIN Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zboril, Miroslav; Nuclear Physics Institute of the ASCR, p. r. i., CZ-25068 Rez; Collaboration: KATRIN Collaboration
The KATRIN (KArlsruhe TRItium Neutrino) experiment investigates the endpoint region of the tritium {beta}-spectrum aiming for the sensitivity on the neutrino mass of 0.2 eV (90% C.L.). A spectrometer of the MAC-E filter (Magnetic Adiabatic Collimation with an Electrostatic filter) type will be used for a total time of at least 5 years. An unrecognized shift of the filtering potential would directly influence the resulting neutrino mass. To continuously monitor the filtering potential the high voltage (HV) will be simultaneously applied to an additional MAC-E filter spectrometer. In this monitor spectrometer suitable electron sources based on atomic/nuclear standards will bemore » utilized. As one of such monitoring tools the solid {sup 83}Rb/{sup 83m}Kr source is intended. It provides conversion electrons from {sup 83m}Kr(t{sub 1/2} = 1.83 h) which is continuously generated by {sup 83}Rb(t{sub 1/2}{approx_equal}86 d). The Calibration and Monitoring task of the KATRIN project demands the long-term energy stability {Delta}E/E of the K-32 conversion electron line (E = 17.8 keV, {Gamma} = 2.7 eV) of {+-}1.6 ppm/month.« less
Impact of Pre-Plasma on Electron Generation and Transport in Laser Plasma Interactions
NASA Astrophysics Data System (ADS)
Peebles, Jonathan Lee
Relativistic laser plasma interactions in conjunction with an underdense pre-plasma have been shown to generate a two temperature component electron spectrum. The lower temperature component described by "ponderomotive scaling'" is relatively well known and understood and is useful for applications such as the fast ignition inertial confinement fusion scheme. The higher energy electrons generated due to pre-plasma are denoted as "super-ponderomotive" electrons and facilitate interesting and useful applications. These include but are not limited to table top particle acceleration and generating high energy protons, x-rays and neutrons from secondary interactions. This dissertation describes experimental and particle-in-cell computational studies of the electron spectra produced from interactions between short pulse high intensity lasers and controlled pre-plasma conditions. Experiments were conducted at 3 laser labs: Texas Petawatt (University of Texas at Austin), Titan (Lawrence Livermore National Laboratory) and OMEGA-EP (University of Rochester). These lasers have different capabilities, and multiple experiments were carried out in order to fully understand super-ponderomotive electron generation and transport in the high intensity laser regime (I > 1018 W/cm2). In these experiments, an additional secondary long pulse beam was used to generate different scale lengths of "injected" pre-plasma while the pulse length and intensity of the short pulse beam were varied. The temperature and quantity of super-ponderomotive electrons were monitored with magnetic spectrometers and inferred via bremsstrahlung spectrometers while trajectory was estimated via Cu-Kalpha imaging. The experimental and simulation data show that super-ponderomotive electrons require pulse lengths of at least 450 fs to be accelerated and that higher intensity interactions generate large magnetic fields which cause severe deflection of the super-ponderomotive electrons. Laser incidence angle is shown to be extremely important in determining hot electron trajectory. Longer pulse length data taken on OMEGA-EP and Titan showed that super-ponderomotive electrons could be created without the need for an initial pre-plasma due to the underdense plasma created during the high intensity interaction alone.
Backman, Chantal; Vanderloo, Saskia; Momtahan, Kathy; d'Entremont, Barb; Freeman, Lisa; Kachuik, Lynn; Rossy, Dianne; Mille, Toba; Mojaverian, Naghmeh; Lemire-Rodger, Ginette; Forster, Alan
2015-09-01
Monitoring the quality of nursing care is essential to identify patients at risk, measure adherence to hospital policies and evaluate the effectiveness of best practice interventions. However, monitoring nursing-sensitive indicators (NSI) is a challenge. Prevalence surveys are one method used by some organizations to monitor NSI, which are patient outcomes that are directly affected by the quantity or quality of nursing care that the patient receives. The aim of this paper is to describe the development of an innovative electronic data collection tool to monitor NSI. In the preliminary development work, we designed a mobile computing application with pre-populated patient census information to collect the nursing quality data. In subsequent phases, we refined this process by designing an electronic trigger using The Ottawa Hospital's Patient Safety Learning System, which automatically generated a case report form for each inpatient based on the hospital's daily patient census on the day of the prevalence survey. Both of these electronic data collection tools were accessible on tablet computers, which substantially reduced data collection, analysis and reporting time compared to previous paper-based methods. The electronic trigger provided improved completeness of the data. This work leveraged the use of tablet computers combined with a web-based application for patient data collection at point of care. Overall, the electronic methods improved data completeness and timeliness compared to traditional paper-based methods. This initiative has resulted in the ability to collect and report on NSI organization-wide to advance decision-making support and identify quality improvement opportunities within the organization. Copyright © 2015 Longwoods Publishing.
Exploiting algal NADPH oxidase for biophotovoltaic energy
Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K.; ...
2015-01-29
Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anionmore » production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. Furthermore, the results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.« less
Post-pinch generation of electron beam in a low energy Mather-type plasma focus device
NASA Astrophysics Data System (ADS)
Behbahani, R. A.; Aghamir, F. M.; Aghamir
2013-10-01
The post-pinch generation of electron beam in a low energy Mather-type plasma focus (PF) device has been investigated. A fast-calibrated Rogowski coil was used to monitor the emission of electron beam. A two-channel diode X-ray spectrometer along with suitable filters provided the records of energy spectrum of X-ray radiation. Single time-period emissions of electron beam with duration of 100 to 20 ns were recorded in the high range of the device operating pressure (0.8-2 mbar). However, in the low range regime (0.2-0.8 mbar), occurrence of single spike electron beam with duration of 150 +/- 50 ns, as well as multi-emission of electrons with duration of 400 +/- 50 ns, was visible. A multi-peak of tube voltage along with multi-time-period radiation of X-rays dominated by copper lines (Cukα and Cukβ) was noticeable in the low-pressure range. The generated electron beam during the post-pinch phase of anomalous resistances is suspected to be the main source of X-ray radiation. This can also be related to the turbulence of the plasma column during the occurrence of anomalous resistances.
Internal Electrostatic Discharge Monitor - IESDM
NASA Technical Reports Server (NTRS)
Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.
2011-01-01
A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).
Ionospheric Results with Sounding Rockets and the Explorer VIII Satellite (1960 )
NASA Technical Reports Server (NTRS)
Bourdeau, R. E.
1961-01-01
A review is made of ionospheric data reported since the IGY from rocket and satellite-borne ionospheric experiments. These include rocket results on electron density (RF impedance probe), D-region conductivity (Gerdien condenser), and electron temperature (Langmuir probe). Also included are data in the 1000 kilometer region on ion concentration (ion current monitor) and electron temperature from the Explorer VIII Satellite (1960 xi). The review includes suggestions for second generation experiments and combinations thereof particularly suited for small sounding rockets.
The Mu2e Solenoid Cold Mass Position Monitor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
The Mu2e Solenoid Cold Mass Position Monitor System
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...
2018-01-23
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
A radiation belt monitor for the High Energy Transient Experiment Satellite
NASA Technical Reports Server (NTRS)
Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.
1993-01-01
A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Kumar, Ranjeet; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu
Silicon photonic microchips may be useful for compact, inexpensive, room-temperature optically pumped photon-pair sources, which unlike conventional photon-pair generators based on crystals or optical fibers, can be manufactured using CMOS-compatible processes on silicon wafers. It has been shown that photon pairs can be created in simple structures such as microring resonators at a rate of a few hundred kilohertz using less than a milliwatt of optical pump power, based on the process of spontaneous four-wave mixing. To create a practical photon-pair source, however, also requires some way of monitoring the device and aligning the pump wavelength when the temperature varies,more » since silicon resonators are highly sensitive to temperature. In fact, monitoring photodiodes are standard components in classical laser diodes, but the incorporation of germanium or InGaAs photodiodes would raise the cost and fabrication complexity. Here, we present a simple and effective all-electronic technique for finding the optimum operating point for the microring used to generate photon pairs, based on measuring the reverse-biased current in a silicon p-i-n junction diode fabricated across the waveguide that constitutes the silicon microring. We show that by monitoring the current, and using it to tune the pump laser wavelength, the photon-pair generation properties of the microring can be preserved over a temperature range of more than 30 °C.« less
Vapor phase diamond growth technology
NASA Technical Reports Server (NTRS)
Angus, J. C.
1981-01-01
Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.
LabVIEW Serial Driver Software for an Electronic Load
NASA Technical Reports Server (NTRS)
Scullin, Vincent; Garcia, Christopher
2003-01-01
A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.
Electronic monitoring in bipolar disorder.
Faurholt-Jepsen, Maria
2018-03-01
Major reasons for the insufficient effects of current treatment options in bipolar disorder include delayed intervention for prodromal depressive and manic symptoms and decreased adherence to psychopharmacological treatment. The reliance on subjective information and clinical evaluations when diagnosing and assessing the severity of depressive and manic symptoms calls for less biased and more objective markers. By using electronic devices, fine-grained data on complex psychopathological aspects of bipolar disorder can be evaluated unobtrusively over the long term. Moreover, electronic data could possibly represent candidate markers of diagnosis and illness activity in bipolar disorder and allow for early and individualized intervention for prodromal symptoms outside clinical settings. The present dissertation concerns the use of electronic monitoring as a marker and treatment intervention in bipolar disorder and investigated the scientific literature and body of evidence within the area, which includes ten original study reports and two systematic reviews, one of which included a meta-analysis, conducted by the author of the dissertation. Taken together, the literature presented in this dissertation illustrates that 1) smartphone-based electronic self-monitoring of mood seems to reflect clinically assessed depressive and manic symptoms and enables the long-term characterization of mood instability in bipolar disorder; 2) preliminary results suggest that smartphone-based automatically generated data (e.g. the number of text messages sent/day; the number of incoming and outgoing calls/day; the number of changes in cell tower IDs/day; and voice features) seem to reflect clinically assessed depressive and manic symptoms in bipolar disorder; 3) smartphone-based electronic self-monitoring had no effects on the severity of depressive and manic symptoms in bipolar disorder, according to a randomized controlled trial; and 4) electronic monitoring of psychomotor activity and heart rate variability seems to reflect illness activity in bipolar disorder and differentiate between patients with bipolar disorder and healthy control individuals. These findings point toward the usefulness of electronic monitoring as a marker of illness in bipolar disorder. Using electronic monitoring as a treatment intervention could provide innovative and novel interventions on-demand with a potential global reach, filling the gap between availability and the need for treatment. However, future studies using rigorous methodology and more randomized controlled trials that carefully investigate the positive effects and possible harmful effects of electronic monitoring in bipolar disorder are needed. In addition, patient safety, privacy issues, data security and legal aspects are major concerns that must be considered and addressed when using electronic monitoring. Articles published in the Danish Medical Journal are “open access”. This means that the articles are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits any non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Studies of beam position monitor stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenenbaum, P.
1998-05-01
The authors present the results from two studies of the time stability between the mechanical center of a beam position monitor and its electrical/electronic center. In the first study, a group of 93 BPM processors was calibrated via Test Pulse Generator once per hour in order to measure the contribution of the readout electronics to offset drifts. In the second study, a triplet of stripline BPMs in the Final Focus Test Beam, separated only by drift spaces, was read out every 6 minutes during 1 week of beam operation. In both cases offset stability was observed to be on themore » order of microns over time spans ranging from hours to days, although during the beam study much worse performance was also observed. Implications for the beam position monitor system of future linear collider systems are discussed.« less
A novel pulse height analysis technique for nuclear spectroscopic and imaging systems
NASA Astrophysics Data System (ADS)
Tseng, H. H.; Wang, C. Y.; Chou, H. P.
2005-08-01
The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.
Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials
NASA Astrophysics Data System (ADS)
Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.
2018-02-01
Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.
Engine health monitoring: An advanced system
NASA Technical Reports Server (NTRS)
Dyson, R. J. E.
1981-01-01
The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... include staff time associated with: (A) Processing FOIA requests; (B) Locating and reviewing files; (C) Monitoring file reviews; (D) Generating computer records (electronic print-outs); and (E) Preparing logs of..., black and white copies. The charge for copying standard sized, black and white public records shall be...
Code of Federal Regulations, 2012 CFR
2012-04-01
... include staff time associated with: (A) Processing FOIA requests; (B) Locating and reviewing files; (C) Monitoring file reviews; (D) Generating computer records (electronic print-outs); and (E) Preparing logs of..., black and white copies. The charge for copying standard sized, black and white public records shall be...
TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING.
Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris
2017-04-01
The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h-1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. © The Author 2016. Published by Oxford University Press.
TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING
Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris
2017-01-01
Abstract The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h−1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. PMID:27909154
Some computer graphical user interfaces in radiation therapy.
Chow, James C L
2016-03-28
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.
[A design and study of a novel electronic device for cuff-pressure monitoring].
Wang, Shupeng; Li, Wei; Li, Wen; Song, Dejing; Chen, Desheng; Duan, Jun; Li, Chen; Li, Gang
2017-06-01
To design a novel electronic device for measuring the pressure in the cuff of the artificial airway; and to study the advantage of this device on continuous and intermittent cuff pressure monitoring. (1) a portable electronic device for cuff pressure measurement was invented, which could turn pressure signal into electrical signal through a pressure transducer. Meantime, it was possible to avoid pressure leak from the joint and the inside of the apparatus by modified Luer taper and sophisticated design. If the cuff pressure was out of the normal range, the apparatus could release a sound and light alarm. (2) Six traditional mechanical manometers were used to determine the cuff pressure in 6 tracheal tubes. The cuff pressure was maintain at 30 cmH 2 O (1 cmH 2 O = 0.098 kPa) by the manometer first, and repeated every 30 seconds for 4 times. (3) Study of continuous cuff pressure monitoring: We used a random number generator to randomize 6 tracheal tubes, 6 mechanical manometers and 6 our products by number 1-6, which has the same number of a group. Every group was further randomized into two balanced groups, one group used the mechanical manometer first, and the other used our product first. The baseline pressure was 30 cmH 2 O, measurement was performed every 4 hours for 6 times. When traditional mechanical manometer was used for cuff pressure monitoring, cuff pressure was decreased by an average of 2.9 cmH 2 O for each measurement (F = 728.2, P = 0.000). In study of continually monitoring, at each monitoring point, the pressure measured by electronic manometer was higher than the mechanical manometer. All the pressures measured by mechanical manometer were dropped below 20 cmH 2 O at 8th hour, and there was no pressure decrease below 20 cmH 2 O measured by electronic manometer in 24 hours by contrast. In study of intermittent monitoring, the same result was found. The pressure was dropped significantly with time when measured by mechanical manometer (F = 61.795, P = 0.000), the drops below 20 cmH 2 O began at 8th hour; but when measured by electronic manometer, all the value stayed unchanged around the baseline in 24 hours (F = 0.511, P = 0.796). Compared with traditional mechanical manometer, cuff pressures monitored by our novel electronic manometer were steadier in both continuous and intermittent monitoring. The device is compact and convenient, and can provide a good solution for continuously monitor of the tracheal cuff pressure.
Note: Measurement of the runaway electrons in the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.
2012-05-01
The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schott, J.
1996-12-31
Entergy Corporation is a Phase II utility with a fossil generation base composed primarily natural gas and low sulfur coal. This paper presents an analysis of a large Phase II utility`s continuous emissions monitoring data reported to EPA under Title IV Acid Rain. Electric utilities currently report hourly emissions of NOx, SO{sub 2}, CO{sub 2}, fuel use, and generation through electronic data reports to EPA. This paper describes strengths and weaknesses of the data reported to EPA as determined through an analysis of 1995 data. Emissions reported by this company tinder acid rain for SO{sub 2} and NOx are verymore » different from emissions reported to state agencies for annual emission inventory purposes in past years and will represent a significant break with historic trends. A comparison of emissions has been made of 1995 emissions reported under Electronic Data Reports to the emissions that would have been reported using emission factors and fuel data in past years. In addition, the paper examines the impacts of 40 CFR Part 75 Acid Rain requirements such as missing data substitution and monitor bias adjustments. Measurement system errors including stack flow measurement and false NOx Lb/MMBtu readings at very low loads are discussed. This paper describes the implications for public policy, compliance, emissions inventories, and business decisions of Part 75 acid rain monitoring and reporting requirements.« less
Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices.
Batchelor, John C; Yeates, Stephen G; Casson, Alexander J
2016-08-01
Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail.
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.
This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.
NASA Astrophysics Data System (ADS)
Wiacek, Daniel; Kudla, Ignacy M.; Pozniak, Krzysztof T.; Bunkowski, Karol
2005-02-01
The main task of the RPC (Resistive Plate Chamber) Muon Trigger monitoring system design for the CMS (Compact Muon Solenoid) experiment (at LHC in CERN Geneva) is the visualization of data that includes the structure of electronic trigger system (e.g. geometry and imagery), the way of its processes and to generate automatically files with VHDL source code used for programming of the FPGA matrix. In the near future, the system will enable the analysis of condition, operation and efficiency of individual Muon Trigger elements, registration of information about some Muon Trigger devices and present previously obtained results in interactive presentation layer. A broad variety of different database and programming concepts for design of Muon Trigger monitoring system was presented in this article. The structure and architecture of the system and its principle of operation were described. One of ideas for building this system is use object-oriented programming and design techniques to describe real electronics systems through abstract object models stored in database and implement these models in Java language.
NASA Technical Reports Server (NTRS)
Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George
2013-01-01
A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.
An inexpensive frequency-modulated (FM) audio monitor of time-dependent analog parameters.
Langdon, R B; Jacobs, R S
1980-02-01
The standard method for quantification and presentation of an experimental variable in real time is the use of visual display on the ordinate of an oscilloscope screen or chart recorder. This paper describes a relatively simple electronic circuit, using commercially available and inexpensive integrated circuits (IC), which generates an audible tone, the pitch of which varies in proportion to a running variable of interest. This device, which we call an "Audioscope," can accept as input the monitor output from any instrument that expresses an experimental parameter as a dc voltage. The Audioscope is particularly useful in implanting microelectrodes intracellularly. It may also function to mediate the first step in data recording on magnetic tape, and/or data analysis and reduction by electronic circuitary. We estimate that this device can be built, with two-channel capability, for less than $50, and in less than 10 hr by an experienced electronics technician.
Measuring Conformational Dynamics of Single Biomolecules Using Nanoscale Electronic Devices
NASA Astrophysics Data System (ADS)
Akhterov, Maxim V.; Choi, Yongki; Sims, Patrick C.; Olsen, Tivoli J.; Gul, O. Tolga; Corso, Brad L.; Weiss, Gregory A.; Collins, Philip G.
2014-03-01
Molecular motion can be a rate-limiting step of enzyme catalysis, but motions are typically too quick to resolve with fluorescent single molecule techniques. Recently, we demonstrated a label-free technique that replaced fluorophores with nano-electronic circuits to monitor protein motions. The solid-state electronic technique used single-walled carbon nanotube (SWNT) transistors to monitor conformational motions of a single molecule of T4 lysozyme while processing its substrate, peptidoglycan. As lysozyme catalyzes the hydrolysis of glycosidic bonds, two protein domains undergo 8 Å hinge bending motion that generates an electronic signal in the SWNT transistor. We describe improvements to the system that have extended our temporal resolution to 2 μs . Electronic recordings at this level of detail directly resolve not just transitions between open and closed conformations but also the durations for those transition events. Statistical analysis of many events determines transition timescales characteristic of enzyme activity and shows a high degree of variability within nominally identical chemical events. The high resolution technique can be readily applied to other complex biomolecules to gain insights into their kinetic parameters and catalytic function.
Soltau, Sarah R.; Dahlberg, Peter D.; Niklas, Jens; Poluektov, Oleg G.; Mulfort, Karen L.
2016-01-01
A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(ii)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(iii)–Fd–Co(i) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(i)–ApoFld–Co(i) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(ii)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production. PMID:28451142
USDA-ARS?s Scientific Manuscript database
Electropenetrography (EPG) waveforms represent electrical conductivity of fluids flowing through an insect’s mouthparts. Over the 50 years since its invention, EPG has undergone three major electronic transformations. The newest, third generation of electropenetrograph, the AC-DC EPG monitor, offers...
Razavi, Hessom; Baglin, Elizabeth; Sharangan, Pyrawy; Caruso, Emily; Tindill, Nicole; Griffin, Susan; Guymer, Robyn
2017-11-13
Improved vision self-monitoring tools are required for people at risk of neovascular complications from age related macular degeneration (AMD). to report the self-monitoring habits of participants with intermediate AMD using the Amsler grid chart, and the use of personal electronic devices and gameplay in this over 50 year old cohort. single-centre descriptive study carried out at the Centre for Eye Research (CERA), Melbourne, Australia. 140 participants over 50 years of age, with a diagnosis of intermediate AMD and best-corrected visual acuity (BCVA) of ≥6/12 in each eye. structured questionnaire survey of participants who were enrolled in natural history of AMD studies at CERA. frequency of vision self-monitoring using the Amsler grid chart, and frequency of general use of personal electronic devices and gameplay. Of 140 participants with mean age of 70.5 years, 83.6% used an Amsler grid chart, but only 39.3% used it once per week. Most participants (91.4%) used one or more personal electronic devices. Of these, over half (54.7%) played games on them, among whom 39% played games once a day. Of participants aged 50-69 years, 92% (95%CI 85.1-98.9) were willing to play a game to monitor their vision, compared to 78% (95%CI 69.0-87.0) of those aged 70 years and older (P < 0.05). a large proportion of AMD patients already use personal electronic devices. Gamification techniques are likely to increase compliance with self-monitoring, leading to earlier detection in the next generation of patients with neovascular AMD. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Multi-Orbital contributions in High Harmonic Generation
NASA Astrophysics Data System (ADS)
Guehr, Markus
2009-05-01
The high harmonic spectrum generated from atoms or molecules in a strong laser field contains information about the electronic structure of the generation medium. In the high harmonic generation (HHG) process, a free electron wave packet tunnel-ionizes from the molecular orbital in a strong laser field. After being accelerated by the laser electric field, the free electron wave packet coherently recombines to the orbital from which is was initially ionized, thereby emitting the harmonic spectrum. Interferences between the free electron wave packet and the molecular orbital will shape the spectrum in a characteristic way. These interferences have been used to tomographically image the highest occupied molecular orbital (HOMO) of N2 [1]. Molecular electronic states energetically below the HOMO should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. We have observed evidence of HHG from multiple orbitals in aligned N2 [2]. The tunneling ionization (and therefore the harmonic generation) is most efficient if the orbital has a large extension in the direction of the harmonic generation polarization. The HOMO with its σg symmetry therefore dominates the harmonic spectrum if the molecular axis is parallel to the harmonic generation polarization, the lower bound πu HOMO-1 dominates in the perpendicular case. The HOMO contributions appear as a regular plateau with a cutoff in the HHG spectrum. In contrast, the HOMO-1 signal is strongly peaked in the cutoff region. We explain this by semi-classical simulations of the recombination process that show constructive interferences between the HOMO-1 and the recombining wave packet in the cutoff region. The ability to monitor several orbitals opens the route to imaging coherent superpositions of electronic orbitals. [1] J. Itatani et al., Nature 432, 867 (2004)[2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)
Margusino-Framiñán, Luis; Cid-Silva, Purificación; Mena-de-Cea, Álvaro; Sanclaudio-Luhía, Ana Isabel; Castro-Castro, José Antonio; Vázquez-González, Guillermo; Martín-Herranz, Isabel
2017-01-01
Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
A real-time spectroscopic sensor for monitoring laser welding processes.
Sibillano, Teresa; Ancona, Antonio; Berardi, Vincenzo; Lugarà, Pietro Mario
2009-01-01
In this paper we report on the development of a sensor for real time monitoring of laser welding processes based on spectroscopic techniques. The system is based on the acquisition of the optical spectra emitted from the laser generated plasma plume and their use to implement an on-line algorithm for both the calculation of the plasma electron temperature and the analysis of the correlations between selected spectral lines. The sensor has been patented and it is currently available on the market.
Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterhoff, J.; Nakamura, K.; Bakeman, M.
The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.
Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.
2013-01-01
New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522
Oshiro, Thomas; Sinha, Usha; Lu, David; Sinha, Shantanu
2002-01-01
MRI has been used increasingly in the recent past for the guidance and monitoring of minimally invasive interventional procedures, using typically radiofrequency (RF) and laser energy, cryoablation, and percutaneous ethanol. RF energy has been used over the last 30 years for the ablation of tissues. Its use in conjunction with MRI for monitoring is limited, however, because of the electronic noise produced by the RF generators, which can significantly deteriorate image quality. The objective of this work was to devise methods by which this noise can be reduced to an acceptable level to allow simultaneous acquisition of MR images for monitoring purposes with the application of RF energy. Three different methods of noise reduction were investigated in a 0.2 T MR scanner: filtration using external hardware circuitry, MR scanner software-controlled filtration, and keyholing. The last two methods were unable by themselves to suppress the noise to an acceptable degree. Hardware filtration, however, provides excellent suppression of RF noise and is able to withstand up to 12 W of RF energy. When all the three approaches are combined, significant reduction of RF noise is achieved. The feasibility of creating an RF lesion of about 1.2 cm diameter in vivo in a porcine model simultaneously with temperature-sensitive MRI with adequate noise suppression is demonstrated.
1989-09-01
Guidelines Generation #2 b. Electronic Submission of Commerce Business Daily ( CBD ) Notices #6 c. On-line Debarred/Suspended List #5 d. On-Line Contract...a number of years. Reality of system differs from manual. One reference - easy to follow, block by block - is needed. -Imaging and CBD electronic...milestones are tracked - and those milestones should be monitored as a natural outcome of thc process - e.g. A milestone is noted when the RFP is
Zhou, Liang; Abraham, Adam C; Tang, Simon Y; Chakrabartty, Shantanu
2016-12-01
Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- [Formula: see text] bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.
Some computer graphical user interfaces in radiation therapy
Chow, James C L
2016-01-01
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations. PMID:27027225
Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.
Wu, Xiaodong; Han, Yangyang; Zhang, Xinxing; Lu, Canhui
2017-07-12
Flexible and stretchable electronics are highly desirable for next generation devices. However, stretchability and conductivity are fundamentally difficult to combine for conventional conductive composites, which restricts their widespread applications especially as stretchable electronics. Here, we innovatively develop a new class of highly stretchable and robust conductive composites via a simple and scalable structural approach. Briefly, carbon nanotubes are spray-coated onto a self-adhesive rubber film, followed by rolling up the film completely to create a spirally layered structure within the composites. This unique spirally layered structure breaks the typical trade-off between stretchability and conductivity of traditional conductive composites and, more importantly, restrains the generation and propagation of mechanical microcracks in the conductive layer under strain. Benefiting from such structure-induced advantages, the spirally layered composites exhibit high stretchability and flexibility, good conductive stability, and excellent robustness, enabling the composites to serve as highly stretchable conductors (up to 300% strain), versatile sensors for monitoring both subtle and large human activities, and functional threads for wearable electronics. This novel and efficient methodology provides a new design philosophy for manufacturing not only stretchable conductors and sensors but also other stretchable electronics, such as transistors, generators, artificial muscles, etc.
Extremely Efficient Multiple Electron-hole Pair Generation in Carbon Nanotube Photodiodes
NASA Astrophysics Data System (ADS)
Gabor, Nathaniel
2010-03-01
The efficient generation of multiple electron-hole (e-h) pairs from a single photon could improve the efficiency of photovoltaic solar cells beyond standard thermodynamic limits [1] and has been the focus of much recent work in semiconductor nanomaterials [2,3]. In single walled carbon nanotubes (SWNTs), the small Fermi velocity and low dielectric constant suggests that electron-electron interactions are very strong and that high-energy carriers should efficiently generate e-h pairs. Here, I will discuss observations of highly efficient generation of e-h pairs due to impact excitation in SWNT p-n junction photodiodes [4]. To investigate optoelectronic transport properties of individual SWNT photodiodes, we focus a laser beam over the device while monitoring the electronic characteristics. Optical excitation into the second electronic subband E22 ˜ 2 EGAP leads to striking photocurrent steps in the device I-VSD characteristics that occur at voltage intervals of the band gap energy EGAP/ e. Spatially and spectrally resolved photocurrent combined with temperature-dependent studies suggest that these steps result from efficient generation of multiple e-h pairs from a single hot E22 carrier. We conclude that in the SWNT photodiode, a single photon with energy greater than 2EGAP is converted into multiple e-h pairs, leading to enhanced photocurrent and increased photo-conversion efficiency. [1] W. Shockley, and H. J. Queisser, Journal of Applied Physics 32, 510 (1961). [2] R. D. Schaller, and V. I. Klimov, Physical Review Letters 92 (18), 186601 (2004). [3] R. J. Ellingson, et al, Nano Letters, 5 (5), 865-871 (2005). [4] Nathaniel M. Gabor, Zhaohui Zhong, Ken Bosnick, Jiwoong Park, and Paul McEuen, Science, 325, 1367 (2009).
Aerosol generation and measurement of multi-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Myojo, Toshihiko; Oyabu, Takako; Nishi, Kenichiro; Kadoya, Chikara; Tanaka, Isamu; Ono-Ogasawara, Mariko; Sakae, Hirokazu; Shirai, Tadashi
2009-01-01
Mass production of some kinds of carbon nanotubes (CNT) is now imminent, but little is known about the risk associated with their exposure. It is important to assess the propensity of the CNT to release particles into air for its risk assessment. In this study, we conducted aerosolization of a multi-walled CNT (MWCNT) to assess several aerosol measuring instruments. A Palas RBG-1000 aerosol generator applied mechanical stress to the MWCNT by a rotating brush at feed rates ranging from 2 to 20 mm/h, which the MWCNT was fed to a two-component fluidized bed. The fluidized bed aerosol generator was used to disperse the MWCNT aerosol once more. We monitored the generated MWCNT aerosol concentrations based on number, area, and mass using a condensation particle counter and nanoparticle surface area monitor. Also we quantified carbon mass in MWCNT aerosol samples by a carbon monitor. The shape of aerosolized MWCNT fibers was observed by a scanning electron microscope (SEM). The MWCNT was well dispersed by our system. We found isolated MWCNT fibers in the aerosols by SEM and the count median lengths of MWCNT fibers were 4-6 μm. The MWCNT was quantified by the carbon monitor with a modified condition based on the NIOSH analytical manual. The MWCNT aerosol concentration (EC mass base) was 4 mg/m3 at 2 mm/h in this study.
The JPL Electronic Nose: Monitoring Air in the US Lab on the International Space Station
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Manatt, K. S.; Gluck, S.; Shevade, A. V.; Kisor, A. K.; Zhou, H.; Lara, L. M.; Homer, M. L.
2010-01-01
An electronic nose with a sensor array of 32 conductometric sensors has been developed at the Jet Propulsion Laboratory (JPL) to monitor breathing air in spacecraft habitat. The Third Generation ENose is designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 oC, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The monitoring targets are anomalous events such as leaks and spills of solvents, coolants or other fluids. The JPL ENose operated as a technology demonstration for seven months in the U.S. Laboratory Destiny during 2008-2009. Analysis of ENose monitoring data shows that there was regular, periodic rise and fall of humidity and occasional releases of Freon 218 (perfluoropropane), formaldehyde, methanol and ethanol. There were also several events of unknown origin, half of them from the same source. Each event lasted from 20 to 100 minutes, consistent with the air replacement time in the US Lab.
Automated Monitoring with a BSP Fault-Detection Test
NASA Technical Reports Server (NTRS)
Bickford, Randall L.; Herzog, James P.
2003-01-01
The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals.
Implementation of civionics in a second generation steel-free bridge deck
NASA Astrophysics Data System (ADS)
Klowak, Chad; Rivera, Evangeline; Mufti, Aftab
2005-05-01
As the design and construction of civil structures continue to evolve, it is becoming imperative that these structures be monitored for their health. In order to meet this need, the discipline of Civionics has emerged. Civionics is a new term coined from Civil-Electronics, which is derived from the application of electronics to civil structures. It is similar to the term Avionics, which is used in the aerospace industry. If structural health monitoring is to become part of civil structural engineering, it should include Civionics. It involves the application of electronics to civil structures and aims to assist engineers in realizing the full benefits of structural health monitoring (SHM). In past SHM field applications, the main reason for the failure of a sensor was not the installation of the sensor itself but the egress of the sensor cables. Often, the cables were not handled and protected correctly. For SHM to be successful, specifications must be written on the entire process, beginning with system design and concluding with data collection, interpretation, and management. Civionics specifications include the technical requirements for a SHM system which encompasses fibre optic sensors, cables, conduits, junction boxes and the control room. A specification for data collection and storage is currently being developed as well. In the spring of 2004 research engineers at the University of Manitoba constructed a full-scale second generation steel free bridge deck. The bridge deck is the first of its kind to fully incorporate a complete civionics structural health monitoring system to monitor the deck's behaviour during destructive testing. Throughout the construction of the bridge deck, the entire installation of the civionics system was carried out by research engineers simulating an actual implementation of such a system in a large scale construction environment. One major concern that consulting engineers have raised is the impact that a civionics system that uses conduit, junction boxes, and other electrical ancillary protection, will have when embedded and installed externally on full-scale infrastructure. The full-scale destructive testing of a second generation steel-free bridge deck using a civionics system designed and implemented following guidelines in a civioncs specification manual at the University of Manitoba will provide engineers with the information necessary to address the constructability and structural integrity issues. Civioncs combined with structural health monitoring will provide engineers with feedback necessary to aid in optimizing design techniques and understanding our infrastructures performance, behaviour and state of condition.
Automatic lightning detection and photographic system
NASA Technical Reports Server (NTRS)
Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B. (Inventor)
1972-01-01
A system is presented for monitoring and recording lightning strokes within a predetermined area with a camera having an electrically operated shutter with means for advancing the film in the camera after activating the shutter. The system includes an antenna for sensing lightning strikes which, in turn, generates a signal that is fed to an electronic circuit which generates signals for operating the shutter of the camera. Circuitry is provided for preventing activation of the shutter as the film in the camera is being advanced.
[Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].
Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang
2017-07-27
To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.
Redder, J D; Leth, R A; Møller, J K
2015-11-01
Monitoring of hospital-acquired infection (HAI) by automated compilation of registry data may address the disadvantages of laborious, costly and potentially subjective and often random sampling of data by manual surveillance. To evaluate a system for automated monitoring of hospital-acquired urinary tract (HA-UTI) and bloodstream infections (HA-BSI) and to report incidence rates over a five-year period in a Danish hospital trust. Based primarily on electronically available data relating to microbiology results and antibiotic prescriptions, the automated monitoring of HA-UTIs and HA-BSIs was validated against data from six previous point-prevalence surveys (PPS) from 2010 to 2013 and data from a manual assessment (HA-UTI only) of one department of internal medicine from January 2010. Incidence rates (infections per 1000 bed-days) from 2010 to 2014 were calculated. Compared with the PPSs, the automated monitoring showed a sensitivity of 88% in detecting UTI in general, 78% in detecting HA-UTI, and 100% in detecting BSI in general. The monthly incidence rates varied between 4.14 and 6.61 per 1000 bed-days for HA-UTI and between 0.09 and 1.25 per 1000 bed-days for HA-BSI. Replacing PPSs with automated monitoring of HAIs may provide better and more objective data and constitute a promising foundation for individual patient risk analyses and epidemiological studies. Automated monitoring may be universally applicable in hospitals with electronic databases comprising microbiological findings, admission data, and antibiotic prescriptions. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Uzal, Natalia E; Chavez, Benjamin; Kosirog, Emily R; Billups, Sarah J; Saseen, Joseph J
2018-02-01
In 2004, a consensus statement outlining recommended metabolic monitoring for patients prescribed second-generation antipsychotics (SGAs) was published. More than a decade later, suboptimal adherence rates to these recommendations continue to be reported, which could lead to long-term and costly complications. To define the prevalence of appropriately monitored Medicaid patients receiving care at federally qualified health centers (FQHCs) prescribed SGAs. This was a retrospective study examining electronic health record and Medicaid claims data to assess the rates of glucose and lipid monitoring for patients prescribed SGAs from January 2014 to August 2016 in a FQHC. Prescription and laboratory claims for patients receiving care at 4 FQHCs were reviewed. Descriptive statistics were used to evaluate the primary outcome. A total of 235 patients were included in the analysis. Patients initiated on SGA therapy (n = 92) had baseline glucose and lipid monitoring rates of 50% and 23%, respectively. The 3-month monitoring rates were 37% for glucose and 26% for lipids, whereas annual rates were 71% and 40%, respectively. Patients continuing SGA therapy (n = 143) had annual glucose and lipid monitoring rates of 67% and 44%. Medicaid patients at FQHCs initially prescribed SGAs have low baseline and 3-month metabolic monitoring, whereas annual monitoring was comparable to previously published studies. Adults receiving chronic care at a FQHC were more likely to receive glucose monitoring. Those with type 2 diabetes mellitus and/or hyperlipidemia were more likely to receive glucose and lipid monitoring.
Yugova, I A; Sokolova, A A; Yakovlev, D R; Greilich, A; Reuter, D; Wieck, A D; Bayer, M
2009-04-24
Pulsed optical excitation of the negatively charged trion has been used to generate electron spin coherence in an n-doped (In,Ga)As/GaAs quantum well. The coherence is monitored by resonant spin amplification detected at times exceeding the trion lifetime by 2 orders of magnitude. Still, even then signatures of the hole spin dynamics in the trion complex are imprinted in the signal leading to an unusual batlike shape of the magnetic field dispersion of spin amplification. From this shape information about the spin relaxation of both electrons and holes can be derived.
Helder, Onno K; van Goudoever, Johannes B; Hop, Wim C J; Brug, Johannes; Kornelisse, René F
2012-10-08
Good hand hygiene compliance is essential to prevent nosocomial infections in healthcare settings. Direct observation of hand hygiene compliance is the gold standard but is time consuming. An electronic dispenser with built-in wireless recording equipment allows continuous monitoring of its usage. The purpose of this study was to monitor the use of alcohol-based hand rub dispensers with a built-in electronic counter in a neonatal intensive care unit (NICU) setting and to determine compliance with hand hygiene protocols by direct observation. A one-year observational study was conducted at a 27 bed level III NICU at a university hospital. All healthcare workers employed at the NICU participated in the study. The use of bedside dispensers was continuously monitored and compliance with hand hygiene was determined by random direct observations. A total of 258,436 hand disinfection events were recorded; i.e. a median (interquartile range) of 697 (559-840) per day. The median (interquartile range) number of hand disinfection events performed per healthcare worker during the day, evening, and night shifts was 13.5 (10.8 - 16.7), 19.8 (16.3 - 24.1), and 16.6 (14.2 - 19.3), respectively. In 65.8% of the 1,168 observations of patient contacts requiring hand hygiene, healthcare workers fully complied with the protocol. We conclude that the electronic devices provide useful information on frequency, time, and location of its use, and also reveal trends in hand disinfection events over time. Direct observations offer essential data on compliance with the hand hygiene protocol. In future research, data generated by the electronic devices can be supplementary used to evaluate the effectiveness of hand hygiene promotion campaigns.
A quality monitor and monitoring technique employing optically stimulated electron emission
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Welch, Christopher S. (Inventor); Joe, Edmond J. (Inventor); Hefner, Bill Bryan, Jr. (Inventor)
1995-01-01
A light source directs ultraviolet light onto a test surface and a detector detects a current of photoelectrons generated by the light. The detector includes a collector which is positively biased with respect to the test surface. Quality is indicated based on the photoelectron current. The collector is then negatively biased to replace charges removed by the measurement of a nonconducting substrate to permit subsequent measurements. Also, the intensity of the ultraviolet light at a particular wavelength is monitored and the voltage of the light source varied to maintain the light a constant desired intensity. The light source is also cooled via a gas circulation system. If the test surface is an insulator, the surface is bombarded with ultraviolet light in the presence of an electron field to remove the majority of negative charges from the surface. The test surface is then exposed to an ion field until it possesses no net charge. The technique described above is then performed to assess quality.
Micro-patterned graphene-based sensing skins for human physiological monitoring
NASA Astrophysics Data System (ADS)
Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik
2018-03-01
Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.
Probing organic field effect transistors in situ during operation using SFG.
Ye, Hongke; Abu-Akeel, Ashraf; Huang, Jia; Katz, Howard E; Gracias, David H
2006-05-24
In this communication, we report results obtained using surface-sensitive IR+Visible Sum Frequency Generation (SFG) nonlinear optical spectroscopy on interfaces of organic field effect transistors during operation. We observe remarkable correlations between trends in the surface vibrational spectra and electrical properties of the transistor, with changes in gate voltage (VG). These results suggest that field effects on electronic conduction in thin film organic semiconductor devices are correlated to interfacial nonlinear optical characteristics and point to the possibility of using SFG spectroscopy to monitor electronic properties of OFETs.
Spalax™ new generation: A sensitive and selective noble gas system for nuclear explosion monitoring.
Le Petit, G; Cagniant, A; Gross, P; Douysset, G; Topin, S; Fontaine, J P; Taffary, T; Moulin, C
2015-09-01
In the context of the verification regime of the Comprehensive nuclear Test ban Treaty (CTBT), CEA is developing a new generation (NG) of SPALAX™ system for atmospheric radioxenon monitoring. These systems are able to extract more than 6cm(3) of pure xenon from air samples each 12h and to measure the four relevant xenon radioactive isotopes using a high resolution detection system operating in electron-photon coincidence mode. This paper presents the performances of the SPALAX™ NG prototype in operation at Bruyères-le-Châtel CEA centre, integrating the most recent CEA developments. It especially focuses on an innovative detection system made up of a gas cell equipped with two face-to-face silicon detectors associated to one or two germanium detectors. Minimum Detectable activity Concentrations (MDCs) of environmental samples were calculated to be approximately 0.1 mBq/m(3) for the isotopes (131m)Xe, (133m)Xe, (133)Xe and 0.4 mBq/m(3) for (135)Xe (single germanium configuration). The detection system might be used to simultaneously measure particulate and noble gas samples from the CTBT International Monitoring System (IMS). That possibility could lead to new capacities for particulate measurements by allowing electron-photon coincidence detection of certain fission products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wide-area continuous offender monitoring
NASA Astrophysics Data System (ADS)
Hoshen, Joseph; Drake, George; Spencer, Debra D.
1997-02-01
The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first- generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender's home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.
Wide area continuous offender monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshen, J.; Drake, G.; Spencer, D.
The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first-generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offendermore » at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender`s home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.« less
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
NASA Astrophysics Data System (ADS)
Rubano, Andrea; Mou, Sen; Paparo, Domenico
2018-05-01
Oxides and new functional materials such as oxide-based hetero-structures are very good candidates to achieve the goal of the next generation electronics. One of the main features that rules the electronic behavior of these compounds is the interfacial electric field which confines the charge carriers to a quasi-two-dimensional space region. The sign of the confined charge clearly depends on the electric field direction, which is however a very elusive quantity, as most techniques can only detect its absolute value. Even more valuable would be to access the sign of the interfacial electric field directly during the sample growth, being thus able to optimize the growth conditions directly looking at the feature of interest. For this aim, solid and reliable sensors are needed for monitoring the thin films while grown. Recently optical second harmonic generation has been proposed by us as a tool for non-invasive, non-destructive, real-time, in-situ imaging of oxide epitaxial film growth. The spatial resolution of this technique has been exploited to obtain real-time images of the sample under investigation. Here we propose to exploit another very important physical property of the second harmonic wave: its phase, which is directly coupled with the electric field direction, as shown by our measurements.
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
Ultrashort electron bunch length measurement with diffraction radiation deflector
NASA Astrophysics Data System (ADS)
Xiang, Dao; Huang, Wen-Hui
2007-01-01
In this paper, we propose a novel method to measure electron bunch length with a diffraction radiation (DR) deflector which is composed of a DR radiator and three beam position monitors (BPMs). When an electron beam passes through a metallic aperture which is tilted by 45 degrees with respect to its trajectory, backward DR that propagates perpendicular to the beam’s trajectory is generated which adds a transverse deflection to the beam as a result of momentum conservation. The deflection is found to be largely dependent on the bunch length and could be easily observed with a downstream BPM. Detailed investigations show that this method has wide applicability, high temporal resolution, and great simplicity.
Ionization based multi-directional flow sensor
Chorpening, Benjamin T [Morgantown, WV; Casleton, Kent H [Morgantown, WV
2009-04-28
A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.
Attitudes toward Electronic Monitoring among Monitored Offenders and Criminal Justice Students.
ERIC Educational Resources Information Center
Payne, Brian K.; Gainey, Randy R.
1999-01-01
Examines what 180 students think about electronic monitoring and compares their perceptions to those of 29 electronically-monitored offenders. Results show that students were less supportive of electronic monitoring but when asked about what offenders have to give up, they viewed the sanction more punitively than did offenders. Implications…
1993-12-01
72 D. MINES AND THE MILITARY-TECHNOLOGICAL REVOLUTION ...................................... 74 E. CUSTOMIZING THE TDD PROLIFERATION MARKET M...Data Storage & Peripherals - Systems Managmnt Technologies 4. Passive Sensors - Sensors and Signal Processing 5. Photonics - Electronic and...a reproducible procedure to allow customization of the model, provides the "guts" of the method. 18 Third, because they are not optimized for
Warneke, Jonas; Kopyra, Janina
2018-01-01
Focused electron beam induced deposition (FEBID) is a versatile tool for the direct-write fabrication of nanostructures on surfaces. However, FEBID nanostructures are usually highly contaminated by carbon originating from the precursor used in the process. Recently, it was shown that platinum nanostructures produced by FEBID can be efficiently purified by electron irradiation in the presence of water. If such processes can be transferred to FEBID deposits produced from other carbon-containing precursors, a new general approach to the generation of pure metallic nanostructures could be implemented. Therefore this study aims to understand the chemical reactions that are fundamental to the water-assisted purification of platinum FEBID deposits generated from trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe3). The experiments performed under ultrahigh vacuum conditions apply a combination of different desorption experiments coupled with mass spectrometry to analyse reaction products. Electron-stimulated desorption monitors species that leave the surface during electron exposure while post-irradiation thermal desorption spectrometry reveals products that evolve during subsequent thermal treatment. In addition, desorption of volatile products was also observed when a deposit produced by electron exposure was subsequently brought into contact with water. The results distinguish between contributions of thermal chemistry, direct chemistry between water and the deposit, and electron-induced reactions that all contribute to the purification process. We discuss reaction kinetics for the main volatile products CO and CH4 to obtain mechanistic information. The results provide novel insights into the chemistry that occurs during purification of FEBID nanostructures with implications also for the stability of the carbonaceous matrix of nanogranular FEBID materials under humid conditions. PMID:29441253
Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.
Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang
2015-10-01
Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.
Muftić, Lisa R; Payne, Brian K; Maljević, Almir
2015-06-01
The use of community corrections continues to grow across the globe as alternatives to incarceration are sought. Little research attention, however, has been directed at correctional alternatives from a global orientation. The purpose of this research study is to compare the way that a sample of criminal justice students from the United States (n = 118) and Bosnia and Herzegovina (n = 133) perceive electronic monitoring. Because electronic monitoring is a newer sentencing alternative and it is used differently in Bosnia and Herzegovina than it is in the United States, it is predicted that Bosnian students will view electronic monitoring differently than will students from the United States. This study finds that while students are largely supportive of electronic monitoring sentences, support is affected by offender type and student nationality. For example, Bosnian students are more supportive of electronic monitoring sentences for drug offenders while American students are more supportive of electronic monitoring sentences for juvenile offenders. Differences were also found across student groups when attitudes toward electronic monitoring and the costs and pains associated with electronic monitoring were assessed. Specifically, American students were less likely to view electronic monitoring as meeting the goals of rehabilitation and more likely to view the conditions and restrictions associated with electronic monitoring as being punitive than Bosnian students were. Implications from these findings, as well as limitations and suggestions for further research are discussed. © The Author(s) 2013.
Chong, Christian; Mishra, Haritosh; Boukheddaden, Kamel; Denise, Stéphane; Bouchez, Guillaume; Collet, Eric; Ameline, Jean-Claude; Naik, Anil D; Garcia, Yann; Varret, François
2010-02-11
The colorimetric analysis of images recorded with an optical microscope during the onset of the spin crossover transformation allows monitoring separately the involved electronic and structural aspects, through the separation of resonant absorption and scattering effects. Complementary information can also be obtained by using the polarized modes of the microscope. These potentialities are illustrated by the observation of [Fe(ptz)(6)](BF(4))(2) single crystals during the onset of the thermal transitions in the 110-140 K range. We characterized the interplay between the electronic (HS <--> LS) and structural (order <--> disorder) transformations. Elastic stresses and mechanical effects (hopping, self-cleavage) generated by the volume change upon electronic transition are also illustrated, with their impact on the photoswitching properties of the crystals.
Koo, Ja Hoon; Jeong, Seongjin; Shim, Hyung Joon; Son, Donghee; Kim, Jaemin; Kim, Dong Chan; Choi, Suji; Hong, Jong-In; Kim, Dae-Hyeong
2017-10-24
With the rapid advances in wearable electronics, the research on carbon-based and/or organic materials and devices has become increasingly important, owing to their advantages in terms of cost, weight, and mechanical deformability. Here, we report an effective material and device design for an integrative wearable cardiac monitor based on carbon nanotube (CNT) electronics and voltage-dependent color-tunable organic light-emitting diodes (CTOLEDs). A p-MOS inverter based on four CNT transistors allows high amplification and thereby successful acquisition of the electrocardiogram (ECG) signals. In the CTOLEDs, an ultrathin exciton block layer of bis[2-(diphenylphosphino)phenyl]ether oxide is used to manipulate the balance of charges between two adjacent emission layers, bis[2-(4,6-difluorophenyl)pyridinato-C 2 ,N](picolinato)iridium(III) and bis(2-phenylquinolyl-N,C(2'))iridium(acetylacetonate), which thereby produces different colors with respect to applied voltages. The ultrathin nature of the fabricated devices supports extreme wearability and conformal integration of the sensor on human skin. The wearable CTOLEDs integrated with CNT electronics are used to display human ECG changes in real-time using tunable colors. These materials and device strategies provide opportunities for next generation wearable health indicators.
Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen
2017-12-01
Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbonyl compounds generated from electronic cigarettes.
Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki
2014-10-28
Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.
Faurholt-Jepsen, Maria; Munkholm, Klaus; Frost, Mads; Bardram, Jakob E; Kessing, Lars Vedel
2016-01-15
Various paper-based mood charting instruments are used in the monitoring of symptoms in bipolar disorder. During recent years an increasing number of electronic self-monitoring tools have been developed. The objectives of this systematic review were 1) to evaluate the validity of electronic self-monitoring tools as a method of evaluating mood compared to clinical rating scales for depression and mania and 2) to investigate the effect of electronic self-monitoring tools on clinically relevant outcomes in bipolar disorder. A systematic review of the scientific literature, reported according to the Preferred Reporting items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines was conducted. MEDLINE, Embase, PsycINFO and The Cochrane Library were searched and supplemented by hand search of reference lists. Databases were searched for 1) studies on electronic self-monitoring tools in patients with bipolar disorder reporting on validity of electronically self-reported mood ratings compared to clinical rating scales for depression and mania and 2) randomized controlled trials (RCT) evaluating electronic mood self-monitoring tools in patients with bipolar disorder. A total of 13 published articles were included. Seven articles were RCTs and six were longitudinal studies. Electronic self-monitoring of mood was considered valid compared to clinical rating scales for depression in six out of six studies, and in two out of seven studies compared to clinical rating scales for mania. The included RCTs primarily investigated the effect of heterogeneous electronically delivered interventions; none of the RCTs investigated the sole effect of electronic mood self-monitoring tools. Methodological issues with risk of bias at different levels limited the evidence in the majority of studies. Electronic self-monitoring of mood in depression appears to be a valid measure of mood in contrast to self-monitoring of mood in mania. There are yet few studies on the effect of electronic self-monitoring of mood in bipolar disorder. The evidence of electronic self-monitoring is limited by methodological issues and by a lack of RCTs. Although the idea of electronic self-monitoring of mood seems appealing, studies using rigorous methodology investigating the beneficial as well as possible harmful effects of electronic self-monitoring are needed.
A button - type beam position monitor design for TARLA facility
NASA Astrophysics Data System (ADS)
Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.
2016-03-01
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.
Security and privacy issues with health care information technology.
Meingast, Marci; Roosta, Tanya; Sastry, Shankar
2006-01-01
The face of health care is changing as new technologies are being incorporated into the existing infrastructure. Electronic patient records and sensor networks for in-home patient monitoring are at the current forefront of new technologies. Paper-based patient records are being put in electronic format enabling patients to access their records via the Internet. Remote patient monitoring is becoming more feasible as specialized sensors can be placed inside homes. The combination of these technologies will improve the quality of health care by making it more personalized and reducing costs and medical errors. While there are benefits to technologies, associated privacy and security issues need to be analyzed to make these systems socially acceptable. In this paper we explore the privacy and security implications of these next-generation health care technologies. We describe existing methods for handling issues as well as discussing which issues need further consideration.
Investigation of an electronic image enhancer for radiographs
NASA Technical Reports Server (NTRS)
Vary, A.
1972-01-01
Radiographs of nuclear and aerospace components were studied with a closed-circuit television system to determine the advantages of electronic enhancement in radiographic nondestructive evaluation. The radiographic images were examined on a television monitor under various degrees of magnification and enhancement. The enhancement was accomplished by generating a video signal whose amplitude is proportional to the rate of change of density. Points, lines, edges, and other density variations that are faintly registered in the original image are rendered in sharp relief. Examples of the applications of this mode of enhancement are discussed together with the system's dynamic response and resolution.
Investigation of an electronic image enhancer for radiographs.
NASA Technical Reports Server (NTRS)
Vary, A.
1972-01-01
Radiographs of nuclear and aerospace components were studied with a closed-circuit television system to determine the advantages of electronic enhancement in radiographic nondestructive evaluation. The radiographic images were examined on a television monitor under various degrees of magnification and enhancement. The enhancement was accomplished by generating a video signal whose amplitude is proportional to the rate of change of density. Points, lines, edges, and other density variations that are faintly registered in the original image are rendered in sharp relief. Examples of the applications of this mode of enhancement are discussed together with the system's dynamic response and resolution.
1979-11-01
plasma focus operations have been experimentally analyzed in terms of (A) The fine structure of the axial-current channel during maximum of compression. (B) Correlation coefficient, for neutron yield n (by D2 discharges) and the multiplicity of the electron beam pulses; (C) Different values of the electrode voltage. The current distribution near the axial plasma column during the explosive decay of the column has been monitored and correlated with the electron beam production. Plasma focus discharges by our mode of operation generate high-intensity
Serrano, M S; Backus, E A; Cardona, C
2000-12-01
Two methods for estimating the tolerance of common bean genotypes to Empoasca kraemeri Ross & Moore were compared, using a yield trial carried out at Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, versus stylet penetration tactics measured by AC electronic feeding monitors. A stylet penetration index was devised based on principal component scores of three penetration tactics identified (pulsing laceration, cell rupturing, and lancing sap ingestion), combined with knowledge of the hopperburn symptoms caused by each tactic. Tolerant genotypes, as classified by the CIAT yield index, showed significantly more unprotected yield and lower hopperburn scores than the susceptible control. They also induced performance of less pulsing laceration (the tactic considered most damaging to the plant), and more of the other two, mitigating tactics, especially cell rupturing. When index values were calculated for each genotype, stylet penetration index values matched those of the yield index for three out of five genotypes: two EMP-coded tolerant lines ('EMP 385' and 'EMP 392') and the susceptible control 'BAT 41'. Thus, for these three genotypes, all subsequent hoppereburn symptoms are predictable by the type of feeding behavior performed on them. 'Porrillo Sintético' and 'EMP 84', considered borderline genotypes by the yield index, were overestimated and underestimated respectively, by the stylet penetration index. We postulate that, for these two genotypes, plant physiological responses to feeding (either compensatory or heightened sensitivity, respectively) synergize with type of feeding performed to generate the overall hopperburn condition. This multivariate analysis of electronic monitoring data was successfully used to devise an index of resistance. The implications of using the stylet penetration index and the advantages of using electronic monitoring in a bean-breeding program are discussed.
Jones, Kevin C; Vander Stappen, François; Bawiec, Christopher R; Janssens, Guillaume; Lewin, Peter A; Prieels, Damien; Solberg, Timothy D; Sehgal, Chandra M; Avery, Stephen
2015-12-01
To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.
Carreras, Anna; Mateos-Martín, María Luisa; Velázquez-Palenzuela, Amado; Brillas, Enric; Sánchez-Tena, Susana; Cascante, Marta; Juliá, Luis; Torres, Josep Lluís
2012-02-22
Plant polyphenols may be free radical scavengers or generators, depending on their nature and concentration. This dual effect, mediated by electron transfer reactions, may contribute to their influence on cell viability. This study used two stable radicals (tris(2,3,5,6-tetrachloro-4-nitrophenyl)methyl (TNPTM) and tris(2,4,6-trichloro-3,5-dinitrophenyl)methyl (HNTTM)) sensitive only to electron transfer reduction reactions to monitor the redox properties of polyphenols (punicalagin and catechins) that contain phenolic hydroxyls with different reducing capacities. The use of the two radicals reveals that punicalagin's substructures consisting of gallate esters linked together by carbon-carbon (C-C) bonds are more reactive than simple gallates and less reactive than the pyrogallol moiety of green tea catechins. The most reactive hydroxyls, detected by TNPTM, are present in the compounds that affect HT-29 cell viability the most. TNPTM reacts with C-C-linked gallates and pyrogallol and provides a convenient way to detect potentially beneficial polyphenols from natural sources.
Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations
NASA Astrophysics Data System (ADS)
Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.
2017-11-01
Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.
The utility of an automated electronic system to monitor and audit transfusion practice.
Grey, D E; Smith, V; Villanueva, G; Richards, B; Augustson, B; Erber, W N
2006-05-01
Transfusion laboratories with transfusion committees have a responsibility to monitor transfusion practice and generate improvements in clinical decision-making and red cell usage. However, this can be problematic and expensive because data cannot be readily extracted from most laboratory information systems. To overcome this problem, we developed and introduced a system to electronically extract and collate extensive amounts of data from two laboratory information systems and to link it with ICD10 clinical codes in a new database using standard information technology. Three data files were generated from two laboratory information systems, ULTRA (version 3.2) and TM, using standard information technology scripts. These were patient pre- and post-transfusion haemoglobin, blood group and antibody screen, and cross match and transfusion data. These data together with ICD10 codes for surgical cases were imported into an MS ACCESS database and linked by means of a unique laboratory number. Queries were then run to extract the relevant information and processed in Microsoft Excel for graphical presentation. We assessed the utility of this data extraction system to audit transfusion practice in a 600-bed adult tertiary hospital over an 18-month period. A total of 52 MB of data were extracted from the two laboratory information systems for the 18-month period and together with 2.0 MB theatre ICD10 data enabled case-specific transfusion information to be generated. The audit evaluated 15,992 blood group and antibody screens, 25,344 cross-matched red cell units and 15,455 transfused red cell units. Data evaluated included cross-matched to transfusion ratios and pre- and post-transfusion haemoglobin levels for a range of clinical diagnoses. Data showed significant differences between clinical units and by ICD10 code. This method to electronically extract large amounts of data and linkage with clinical databases has provided a powerful and sustainable tool for monitoring transfusion practice. It has been successfully used to identify areas requiring education, training and clinical guidance and allows for comparison with national haemoglobin-based transfusion guidelines.
Kurashiki, T
1996-11-01
For resolving the discrepancy of concentrations found among anesthetic gas monitors, the author proposed a new method using a vaporizer as a standard anesthetic gas generator for calibration. In this method, the carrier gas volume is measured by a mass flow meter (SEF-510 + FI-101) installed before the inlet of the vaporizer. The vaporized weight of volatile anesthetic agent is simultaneously measured by an electronic force balance (E12000S), on which the vaporizer is placed directly. The molar percent of the anesthetic is calculated using these data and is transformed into the volume percent. These gases discharging from the vaporizer are utilized for calibrating anesthetic gas monitors. These monitors are normalized by the linear equation describing the relationship between concentrations of calibration gases and readings of the anesthetic gas monitors. By using normalized monitors, flow rate-concentration performance curves of several anesthetic vaporizers were obtained. The author concludes that this method can serve as a standard in evaluating anesthetic vaporizers.
Christensen, Arne; Osterberg, Lars G; Hansen, Ebba Holme
2009-08-01
Poor patient adherence is often the reason for suboptimal blood pressure control. Electronic monitoring is one method of assessing adherence. The aim was to systematically review the literature on electronic monitoring of patient adherence to self-administered oral antihypertensive medications. We searched the Pubmed, Embase, Cinahl and Psychinfo databases and websites of suppliers of electronic monitoring devices. The quality of the studies was assessed according to the quality criteria proposed by Haynes et al. Sixty-two articles were included; three met the criteria proposed by Haynes et al. and nine reported the use of electronic adherence monitoring for feedback interventions. Adherence rates were generally high, whereas average study quality was low with a recent tendency towards improved quality. One study detected investigator fraud based on electronic monitoring data. Use of electronic monitoring of patient adherence according to the quality criteria proposed by Haynes et al. has been rather limited during the past two decades. Electronic monitoring has mainly been used as a measurement tool, but it seems to have the potential to significantly improve blood pressure control as well and should be used more widely.
A Procedural Electroencephalogram Simulator for Evaluation of Anesthesia Monitors.
Petersen, Christian Leth; Görges, Matthias; Massey, Roslyn; Dumont, Guy Albert; Ansermino, J Mark
2016-11-01
Recent research and advances in the automation of anesthesia are driving the need to better understand electroencephalogram (EEG)-based anesthesia end points and to test the performance of anesthesia monitors. This effort is currently limited by the need to collect raw EEG data directly from patients. A procedural method to synthesize EEG signals was implemented in a mobile software application. The application is capable of sending the simulated signal to an anesthesia depth of hypnosis monitor. Systematic sweeps of the simulator generate functional monitor response profiles reminiscent of how network analyzers are used to test electronic components. Three commercial anesthesia monitors (Entropy, NeuroSENSE, and BIS) were compared with this new technology, and significant response and feature variations between the monitor models were observed; this includes reproducible, nonmonotonic apparent multistate behavior and significant hysteresis at light levels of anesthesia. Anesthesia monitor response to a procedural simulator can reveal significant differences in internal signal processing algorithms. The ability to synthesize EEG signals at different anesthetic depths potentially provides a new method for systematically testing EEG-based monitors and automated anesthesia systems with all sensor hardware fully operational before human trials.
A dose optimization method for electron radiotherapy using randomized aperture beams
NASA Astrophysics Data System (ADS)
Engel, Konrad; Gauer, Tobias
2009-09-01
The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.
Wireless Biological Electronic Sensors.
Cui, Yue
2017-10-09
The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.
Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport
NASA Astrophysics Data System (ADS)
Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.
2018-04-01
Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.
Vrbacký, Marek; Drahota, Zdenek; Mrácek, Tomás; Vojtísková, Alena; Jesina, Pavel; Stopka, Pavel; Houstek, Josef
2007-07-01
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.
Implant for in-vivo parameter monitoring, processing and transmitting
Ericson, Milton N [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Smith, Stephen F [London, TN; Hylton, James O [Clinton, TN
2009-11-24
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring
Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.
2003-01-01
The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.
Wearable Health Monitoring Systems
NASA Technical Reports Server (NTRS)
Bell, John
2015-01-01
The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.
Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Johnson, Michael; Litton, Charles D.; Lam, Nicholas L.; Pennise, David; Smith, Kirk R.
2017-01-01
Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley—in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions—has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO2-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them. PMID:28812989
Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Hill, L Drew; Johnson, Michael; Litton, Charles D; Lam, Nicholas L; Pennise, David; Smith, Kirk R
2017-08-16
Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley-in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions-has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO₂-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them.
500 MHz narrowband beam position monitor electronics for electron synchrotrons
NASA Astrophysics Data System (ADS)
Mohos, I.; Dietrich, J.
1998-12-01
Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.
Roadmap on semiconductor-cell biointerfaces
NASA Astrophysics Data System (ADS)
Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen
2018-05-01
This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.
Indirect monitoring shot-to-shot shock waves strength reproducibility during pump-probe experiments
NASA Astrophysics Data System (ADS)
Pikuz, T. A.; Faenov, A. Ya.; Ozaki, N.; Hartley, N. J.; Albertazzi, B.; Matsuoka, T.; Takahashi, K.; Habara, H.; Tange, Y.; Matsuyama, S.; Yamauchi, K.; Ochante, R.; Sueda, K.; Sakata, O.; Sekine, T.; Sato, T.; Umeda, Y.; Inubushi, Y.; Yabuuchi, T.; Togashi, T.; Katayama, T.; Yabashi, M.; Harmand, M.; Morard, G.; Koenig, M.; Zhakhovsky, V.; Inogamov, N.; Safronova, A. S.; Stafford, A.; Skobelev, I. Yu.; Pikuz, S. A.; Okuchi, T.; Seto, Y.; Tanaka, K. A.; Ishikawa, T.; Kodama, R.
2016-07-01
We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ˜660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and to control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ˜2%, implying an accuracy in the derived electron plasma temperature of 5%-10% in pump-probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ˜ 0.5, the electron temperature follows Te ˜ Ilas2/3. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.
Use of electronic monitoring in clinical nursing research.
Ailinger, Rita L; Black, Patricia L; Lima-Garcia, Natalie
2008-05-01
In the past decade, the introduction of electronic monitoring systems for monitoring medication adherence has contributed to the dialog about what works and what does not work in monitoring adherence. The purpose of this article is to describe the use of the Medication Event Monitoring System (MEMS) in a study of patients receiving isoniazid for latent tuberculosis infection. Three case examples from the study illustrate the data that are obtained from the electronic device compared to self-reports and point to the disparities that may occur in electronic monitoring. The strengths and limitations of using the MEMS and ethical issues in utilizing this technology are discussed. Nurses need to be aware of these challenges when using electronic measuring devices to monitor medication adherence in clinical nursing practice and research.
The Future of the Perfusion Record: Automated Data Collection vs. Manual Recording
Ottens, Jane; Baker, Robert A.; Newland, Richard F.; Mazzone, Annette
2005-01-01
Abstract: The perfusion record, whether manually recorded or computer generated, is a legal representation of the procedure. The handwritten perfusion record has been the most common method of recording events that occur during cardiopulmonary bypass. This record is of significant contrast to the integrated data management systems available that provide continuous collection of data automatically or by means of a few keystrokes. Additionally, an increasing number of monitoring devices are available to assist in the management of patients on bypass. These devices are becoming more complex and provide more data for the perfusionist to monitor and record. Most of the data from these can be downloaded automatically into online data management systems, allowing more time for the perfusionist to concentrate on the patient while simultaneously producing a more accurate record. In this prospective report, we compared 17 cases that were recorded using both manual and electronic data collection techniques. The perfusionist in charge of the case recorded the perfusion using the manual technique while a second perfusionist entered relevant events on the electronic record generated by the Stockert S3 Data Management System/Data Bahn (Munich, Germany). Analysis of the two types of perfusion records showed significant variations in the recorded information. Areas that showed the most inconsistency included measurement of the perfusion pressures, flow, blood temperatures, cardioplegia delivery details, and the recording of events, with the electronic record superior in the integrity of the data. In addition, the limitations of the electronic system were also shown by the lack of electronic gas flow data in our hardware. Our results confirm the importance of accurate methods of recording of perfusion events. The use of an automated system provides the opportunity to minimize transcription error and bias. This study highlights the limitation of spot recording of perfusion events in the overall record keeping for perfusion management. PMID:16524151
NASA Astrophysics Data System (ADS)
Zanoni, Enrico; Meneghesso, Gaudenzio; Menozzi, Roberto
2000-03-01
Hot electron in III-V FETs can be indirectly monitored by measuring the current coming out from the gate when the device is biased at high electric fields. This negative current is due to the collection of holes generated by impact ionization in the gate-to drain region. Electroluminescence represents a powerful tool in order to characterize not only hot electrons but also material properties. By using spatially resolved emission microscopy it is possible to show that the light due to cold electron/hole recombination is emitted between the gate and the source (low electric field region), while the contribution due to hot electrons is emitted between the gate and the drain (high electric field region). Deep-traps created in the device by hot carriers can be analysed by means of drain current deep level transient spectroscopy and by transconductance frequency dispersion. Cathodoluminescence, optical beam induced current, X-ray spectroscopy, electron energy loss spectroscopy in combination with a transmission electron microscopy are powerful tools in order to identify and localize surface modification following hot-electron stress tests.
40 CFR 75.62 - Monitoring plan submittals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... representative for an affected unit shall submit a complete, electronic, up-to-date monitoring plan file (except... quarterly report for a reporting quarter where an update of the electronic monitoring plan information is... associated, pursuant to § 75.53(b). Electronic submittal of all monitoring plan information, including...
Airborne Optical Communications Demonstrator Design And Preflight Test Results
NASA Technical Reports Server (NTRS)
Biswas, Abhijit; Page, N.; Neal, J.; Zhu, D.; Wright, M.; Ovtiz, G.; Farr, W. H.; Hernnzati, H.
2005-01-01
A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition pointing and tracking. The transmitted beam width is nominally 200-(micro)rad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller 3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5- microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu
Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be onmore » the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.« less
NASA Astrophysics Data System (ADS)
Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.
2013-08-01
The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.
An acoustic sensor for monitoring airflow in pediatric tracheostomy patients.
Ruscher, Thomas; Wicks Phd, Alexandrina; Muelenaer Md, Andre
2012-01-01
Without proper monitoring, patients with artificial airways in the trachea are at high risk for complications or death. Despite routine maintenance of the tube, dislodged or copious mucus can obstruct the airway. Young children ( 3yrs) have difficulty tending to their own tubes and are particularly vulnerable to blockages. They require external respiratory sensors. In a hospital environment, ventilators, end-tidal CO2 monitors, thermistors, and other auxiliary equipment provide sufficient monitoring of respiration. However, outpatient monitoring methods, such as thoracic impedance and pulse oximetry, are indirect and prone to false positives. Desensitization of caregivers to frequent false alarms has been cited in medical literature as a contributing factor in cases of child death. Ultrasonic time-of-flight (TOF) is a technique used in specialized industrial applications to non-invasively measure liquid and gas flow. Two transducers are oriented at a diagonal across a flow channel. Velocity measurement is accomplished by detecting slight variations in transit time of contra-propagating acoustic signals with a directional component parallel to air flow. Due to the symmetry of acoustic pathway between sensors, velocity measurements are immune to partial fouling in the tube from mucus, saliva, and condensation. A first generation proof of concept prototype was constructed to evaluate the ultrasonic TOF technique for medical tracheostomy monitoring. After successful performance, a second generation prototype was designed with a smaller form factor and more advanced electronics. This prototype was tested and found to measure inspired volume with a root-mean-square error < 2% during initial trials.
Electronic Biosensors Based on III-Nitride Semiconductors.
Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena
2015-01-01
We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.
The Medusa Sea Floor Monitoring System
NASA Astrophysics Data System (ADS)
Flynn, F. T.; Schultz, A.; Gupta, M.; Powers, L.; Klinkhammer, G.
2004-12-01
The Medusa Sea Floor Monitoring System (MSMS) is a technology development project that is designed to enable fundamental research into understanding the potential for and limits to chemolithoautotrophic life. This is life within which inorganic carbon is converted to organic carbon and where only inorganic compounds serve as electron acceptors and electron donors. Such life forms are postulated to be capable of surviving in a Europan ocean. If we can prove that such life forms exist on Earth it would provide credence to the hypothesis that they might exist on other planets or moons in our Solar System. It has been hypothesized that one environment which might foster such life is associated with sub-seafloor hydrothermal vent structures. The goal of the MSMS project is to develop an instrument capable of testing this hypothesis. The MSMS instrument is an evolution of a sea floor monitoring system developed by Dr. Adam Schultz. Its design is the result of many generations of hardware and dive programs. Medusa provides the capability to measure and sample effluent and influent sea floor hydraulic flows associated with hydrothermal vent structures, active sea mounds, and sea floor bore holes. Through this proposal we are developing the next generation Medusa system and initiating the integration of several select chemical and biological sensors into the Medusa backbone. These sensors are an in situ flow-through spectral chemistry system, a cavity ringdown 12C/13C system, and an intrinsic fluorescence instrument. der way. This instrument can be used to target and discriminate between biological samples for automated sample collection
NASA Astrophysics Data System (ADS)
Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud
2005-05-01
Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.
Wireless Biological Electronic Sensors
Cui, Yue
2017-01-01
The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors. PMID:28991220
Precipitation of energetic magnetospheric electrons and accompanying solar wind characteristics
NASA Astrophysics Data System (ADS)
Bazilevskaya, G. A.; Kalinin, M. S.; Kvashnin, A. N.; Krainev, M. B.; Makhmutov, V. S.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Stozhkov, Yu. I.; Balabin, Yu. V.; Gvozdevsky, B. B.
2017-03-01
From 1957 up to the present time, the Lebedev Physical Institute (LPI) has performed regular monitoring of ionizing radiation in the Earth's atmosphere. There are cases when the X-ray radiation generated by energetic magnetospheric electrons penetrates the atmosphere and is observed at polar latitudes. The vast majority of these events occurs against the background of high-velocity solar wind streams, while magnetospheric perturbations related to interplanetary coronal mass ejections (ICMEs) are noneffective for precipitation. It is shown in the paper that ICMEs do not cause acceleration of a sufficient amount of electrons in the magnetosphere. Favorable conditions for acceleration and subsequent scattering of electrons into the loss cone are created by magnetic storms with an extended recovery phase and with sufficiently frequent periods of negative Bz component of the interplanetary magnetic field (IMF). Such geomagnetic perturbations are typical for storms associated with high-velocity solar wind streams.
Chen, Han-Yang; Chauhan, Suneet P; Ananth, Cande V; Vintzileos, Anthony M; Abuhamad, Alfred Z
2011-06-01
To examine the association between electronic fetal heart rate monitoring and neonatal and infant mortality, as well as neonatal morbidity. We used the United States 2004 linked birth and infant death data. Multivariable log-binomial regression models were fitted to estimate risk ratio for association between electronic fetal heart rate monitoring and mortality, while adjusting for potential confounders. In 2004, 89% of singleton pregnancies had electronic fetal heart rate monitoring. Electronic fetal heart rate monitoring was associated with significantly lower infant mortality (adjusted relative risk, 0.75); this was mainly driven by the lower risk of early neonatal mortality (adjusted relative risk, 0.50). In low-risk pregnancies, electronic fetal heart rate monitoring was associated with decreased risk for Apgar scores <4 at 5 minutes (relative risk, 0.54); in high-risk pregnancies, with decreased risk of neonatal seizures (relative risk, 0.65). In the United States, the use of electronic fetal heart rate monitoring was associated with a substantial decrease in early neonatal mortality and morbidity that lowered infant mortality. Copyright © 2011 Mosby, Inc. All rights reserved.
A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.
Fraiwan, Arwa; Lee, Hankeun; Choi, Seokheun
2016-09-01
Volatile organic compound (VOC) detection is critical for controlling industrial and commercial emissions, environmental monitoring, and public health. Simple, portable, rapid and low-cost VOC sensing platforms offer the benefits of on-site and real-time monitoring anytime and anywhere. The best and most practically useful approaches to monitoring would include equipment-free and power-free detection by the naked eye. In this work, we created a novel, paper-based cantilever sensor array that allows simple and rapid naked-eye VOC detection without the need for power, electronics or readout interface/equipment. This simple VOC detection method was achieved using (i) low-cost paper materials as a substrate and (ii) swellable thin polymers adhered to the paper. Upon exposure to VOCs, the polymer swelling adhered to the paper-based cantilever, inducing mechanical deflection that generated a distinctive composite pattern of the deflection angles for a specific VOC. The angle is directly measured by the naked eye on a 3-D protractor printed on a paper facing the cantilevers. The generated angle patterns are subjected to statistical algorithms (linear discriminant analysis (LDA)) to classify each VOC sample and selectively detect a VOC. We classified four VOC samples with 100% accuracy using LDA. Copyright © 2016 Elsevier B.V. All rights reserved.
Trung, Tran Quang; Le, Hoang Sinh; Dang, Thi My Linh; Ju, Sanghyun; Park, Sang Yoon; Lee, Nae-Eung
2018-06-01
Fiber-based sensors integrated on textiles or clothing systems are required for the next generation of wearable electronic platforms. Fiber-based physical sensors are developed, but the development of fiber-based temperature sensors is still limited. Herein, a new approach to develop wearable temperature sensors that use freestanding single reduction graphene oxide (rGO) fiber is proposed. A freestanding and wearable temperature-responsive rGO fiber with tunable thermal index is obtained using simple wet spinning and a controlled graphene oxide reduction time. The freestanding fiber-based temperature sensor shows high responsivity, fast response time (7 s), and good recovery time (20 s) to temperature. It also maintains its response under an applied mechanical deformation. The fiber device fabricated by means of a simple process is easily integrated into fabric such as socks or undershirts and can be worn by a person to monitor the temperature of the environment and skin temperature without interference during movement and various activities. These results demonstrate that the freestanding fiber-based temperature sensor has great potential for fiber-based wearable electronic platforms. It is also promising for applications in healthcare and biomedical monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thompson, A J; Weary, D M; von Keyserlingk, M A G
2017-05-01
The electronic equipment used on farms can be creatively co-opted to collect data for which it was not originally designed. In the current study, we describe 2 novel algorithms that harvest data from electronic feeding equipment and data loggers used to record standing and lying behavior, to estimate the time that dairy cows spend away from their pen to be milked. Our 2 objectives were to (1) measure the ability of the first algorithm to estimate the time cows spend away from the pen as a group and (2) determine the capability of a second algorithm to estimate the time it takes for individual cows to return to their pen after being milked. To achieve these objectives, we conducted 2 separate experiments: first, to estimate group time away, the feeding behavior of 1 pen of 20 Holstein cows was monitored electronically for 1 mo; second, to measure individual latency to return to the pen, feeding and lying behavior of 12 healthy Holstein cows was monitored electronically from parturition to 21 d in milk. For both experiments, we monitored the time each individual cow exited the pen before each milking and when she returned to the pen after milking using video recordings. Estimates generated by our algorithms were then compared with the times captured from the video recordings. Our first algorithm provided reliable pen-based estimates for the minimum time cows spent away from the pen to be milked in the morning [coefficient of determination (R 2 ) = 0.92] and afternoon (R 2 = 0.96). The second algorithm was able to estimate of the time it took for individual cows to return to the pen after being milked in the morning (R 2 = 0.98), but less so in the afternoon (R 2 = 0.67). This study illustrates how data from electronic systems used to assess feeding and lying behavior can be mined to estimate novel measures. New work is now required to improve the estimates of our algorithm for individuals, for example by adding data from other electronic monitoring systems on the farm. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrd, J.M.; Hao, Z.; Martin, M.C.
2004-07-01
Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. Themore » intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.« less
Sakamoto, Hiroki; Shimizu, Tatsuki; Nagao, Ryo; Noguchi, Takumi
2017-02-08
Photosynthetic water oxidation performed at the Mn 4 CaO 5 cluster in photosystem II plays a crucial role in energy production as electron and proton sources necessary for CO 2 fixation. Molecular oxygen, a byproduct, is a source of the oxygenic atmosphere that sustains life on earth. However, the molecular mechanism of water oxidation is not yet well-understood. In the reaction cycle of intermediates called S states, the S 2 → S 3 transition is particularly important; it consists of multiple processes of electron transfer, proton release, and water insertion, and generates an intermediate leading to O-O bond formation. In this study, we monitored the reaction process during the S 2 → S 3 transition using time-resolved infrared spectroscopy to clarify its molecular mechanism. A change in the hydrogen-bond interaction of the oxidized Y Z • radical, an immediate electron acceptor of the Mn 4 CaO 5 cluster, was clearly observed as a ∼100 μs phase before the electron-transfer phase with a time constant of ∼350 μs. This observation provides strong experimental evidence that rearrangement of the hydrogen-bond network around Y Z • , possibly due to the movement of a water molecule located near Y Z • to the Mn site, takes place before the electron transfer. The electron transfer was coupled with proton release, as revealed by a relatively high deuterium kinetic isotope effect of 1.9. This proton release, which decreases the redox potential of the Mn 4 CaO 5 cluster to facilitate electron transfer to Y Z • , was proposed to determine, as a rate-limiting step, the relatively slow electron-transfer rate of the S 2 → S 3 transition.
Majdecka, Dominika; Draminska, Sylwia; Janusek, Dariusz; Krysinski, Paweł; Bilewicz, Renata
2018-04-15
In this work, we propose an integrated self-powered sensing system, driven by a hybrid biofuel cell (HBFC) with carbon paper discs coated with multiwalled carbon nanotubes. The sensing system has a biocathode made from laccase or bilirubin oxidase, and the anode is made from a zinc plate. The system includes a dedicated custom-built electronic control unit for the detection of oxygen and catechol analytes, which are central to medical and environmental applications. Both the HBFC and sensors, operate in a mediatorless direct electron transfer mode. The measured characteristics of the HBFC with externally applied resistance included the power-time dependencies under flow cell conditions, the sensors performance (evaluated by cyclic voltammetry), and chronoamperometry. The HBFC is integrated with analytical devices and operating in a pulse mode form long-run monitoring experiments. The HBFC generated sufficient power for wireless data transmission to a local computer. Copyright © 2017 Elsevier B.V. All rights reserved.
SSUSI-Lite: a far-ultraviolet hyper-spectral imager for space weather remote sensing
NASA Astrophysics Data System (ADS)
Ogorzalek, Bernard; Osterman, Steven; Carlsson, Uno; Grey, Matthew; Hicks, John; Hourani, Ramsey; Kerem, Samuel; Marcotte, Kathryn; Parker, Charles; Paxton, Larry J.
2015-09-01
SSUSI-Lite is a far-ultraviolet (115-180nm) hyperspectral imager for monitoring space weather. The SSUSI and GUVI sensors, its predecessors, have demonstrated their value as space weather monitors. SSUSI-Lite is a refresh of the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) design that has flown on the Defense Meteorological Satellite Program (DMSP) spacecraft F16 through F19. The refresh updates the 25-year-old design and insures that the next generation of SSUSI/GUVI sensors can be accommodated on any number of potential platforms. SSUSI-Lite maintains the same optical layout as SSUSI, includes updates to key functional elements, and reduces the sensor volume, mass, and power requirements. SSUSI-Lite contains an improved scanner design that results in precise mirror pointing and allows for variable scan profiles. The detector electronics have been redesigned to employ all digital pulse processing. The largest decrease in volume, mass, and power has been obtained by consolidating all control and power electronics into one data processing unit.
Toxin detection using a tyrosinase-coupled oxygen electrode.
Smit, M H; Rechnitz, G A
1993-02-15
An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.
Wearable and flexible electronics for continuous molecular monitoring.
Yang, Yiran; Gao, Wei
2018-04-03
Wearable biosensors have received tremendous attention over the past decade owing to their great potential in predictive analytics and treatment toward personalized medicine. Flexible electronics could serve as an ideal platform for personalized wearable devices because of their unique properties such as light weight, low cost, high flexibility and great conformability. Unlike most reported flexible sensors that mainly track physical activities and vital signs, the new generation of wearable and flexible chemical sensors enables real-time, continuous and fast detection of accessible biomarkers from the human body, and allows for the collection of large-scale information about the individual's dynamic health status at the molecular level. In this article, we review and highlight recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath. The flexible platforms, sensing mechanisms, and device and system configurations employed for continuous monitoring are summarized. We also discuss the key challenges and opportunities of the wearable and flexible chemical sensors that lie ahead.
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook
2015-06-23
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.
Fetal Heart Rate Monitoring during Labor
... of monitoring? • How is auscultation performed? • How is electronic fetal monitoring performed? • How is external monitoring performed? • ... method of periodically listening to the fetal heartbeat. Electronic fetal monitoring is a procedure in which instruments ...
Observing microscopic structures of a relativistic object using a time-stretch strategy.
Roussel, E; Evain, C; Le Parquier, M; Szwaj, C; Bielawski, S; Manceron, L; Brubach, J-B; Tordeux, M-A; Ricaud, J-P; Cassinari, L; Labat, M; Couprie, M-E; Roy, P
2015-05-28
Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources.
Observing microscopic structures of a relativistic object using a time-stretch strategy
NASA Astrophysics Data System (ADS)
Roussel, E.; Evain, C.; Le Parquier, M.; Szwaj, C.; Bielawski, S.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Ricaud, J.-P.; Cassinari, L.; Labat, M.; Couprie, M.-E.; Roy, P.
2015-05-01
Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources.
Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung
2017-03-31
Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.
NASA Astrophysics Data System (ADS)
Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung
2017-03-01
Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.
Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung
2017-01-01
Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867
Strong suppression of shot noise in a feedback-controlled single-electron transistor
NASA Astrophysics Data System (ADS)
Wagner, Timo; Strasberg, Philipp; Bayer, Johannes C.; Rugeramigabo, Eddy P.; Brandes, Tobias; Haug, Rolf J.
2017-03-01
Feedback control of quantum mechanical systems is rapidly attracting attention not only due to fundamental questions about quantum measurements, but also because of its novel applications in many fields in physics. Quantum control has been studied intensively in quantum optics but progress has recently been made in the control of solid-state qubits as well. In quantum transport only a few active and passive feedback experiments have been realized on the level of single electrons, although theoretical proposals exist. Here we demonstrate the suppression of shot noise in a single-electron transistor using an exclusively electronic closed-loop feedback to monitor and adjust the counting statistics. With increasing feedback response we observe a stronger suppression and faster freezing of charge current fluctuations. Our technique is analogous to the generation of squeezed light with in-loop photodetection as used in quantum optics. Sub-Poisson single-electron sources will pave the way for high-precision measurements in quantum transport similar to optical or optomechanical equivalents.
Klumpner, Thomas T; Kountanis, Joanna A; Langen, Elizabeth S; Smith, Roger D; Tremper, Kevin K
2018-06-26
Maternal early warning systems reduce maternal morbidity. We developed an electronic maternal surveillance system capable of visually summarizing the labor and delivery census and identifying changes in clinical status. Automatic page alerts to clinical providers, using an algorithm developed at our institution, were incorporated in an effort to improve early detection of maternal morbidity. We report the frequency of pages generated by the system. To our knowledge, this is the first time such a system has been used in peripartum care. Alert criteria were developed after review of maternal early warning systems, including the Maternal Early Warning Criteria (MEWC). Careful consideration was given to the frequency of pages generated by the surveillance system. MEWC notification criteria were liberalized and a paging algorithm was created that triggered paging alerts to first responders (nurses) and then managing services due to the assumption that paging all clinicians for each vital sign triggering MEWC would generate an inordinate number of pages. For preliminary analysis, to determine the effect of our automated paging algorithm on alerting frequency, the paging frequency of this system was compared to the frequency of vital signs meeting the Maternal Early Warning Criteria (MEWC). This retrospective analysis was limited to a sample of 34 patient rooms uniquely capable of storing every vital sign reported by the bedside monitor. Over a 91-day period, from April 1 to July 1, 2017, surveillance was conducted from 64 monitored beds, and the obstetrics service received one automated page every 2.3 h. The most common triggers for alerts were for hypertension and tachycardia. For the subset of 34 patient rooms uniquely capable of real-time recording, one vital sign met the MEWC every 9.6 to 10.3 min. Anecdotally, the system was well-received. This novel electronic maternal surveillance system is designed to reduce cognitive bias and improve timely clinical recognition of maternal deterioration. The automated paging algorithm developed for this software dramatically reduces paging frequency compared to paging for isolated vital sign abnormalities alone. Long-term, prospective studies will be required to determine its impact on patient outcomes.
Space Experiments with Particle Accelerators (SEPAC)
NASA Technical Reports Server (NTRS)
Obayashi, T.; Kawashima, N.; Kuriki, K.; Nagatomo, M.; Ninomiya, K.; Sasaki, S.; Ushirokawa, A.; Kudo, I.; Ejiri, M.; Roberts, W. T.
1982-01-01
Plans for SEPAC, an instrument array to be used on Spacelab 1 to study vehicle charging and neutralization, beam-plasma interaction in space, beam-atmospheric interaction exciting artificial aurora and airglow, and the electromagnetic-field configuration of the magnetosphere, are presented. The hardware, consisting of electron beam accelerator, magnetoplasma arcjet, neutral-gas plume generator, power supply, diagnostic package (photometer, plasma probes, particle analyzers, and plasma-wave package), TV monitor, and control and data-management unit, is described. The individual SEPAC experiments, the typical operational sequence, and the general outline of the SEPAC follow-on mission are discussed. Some of the experiments are to be joint ventures with AEPI (INS 003) and will be monitored by low-light-level TV.
78 FR 47675 - Pacific Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... Pacific Fishery Management Council's (Pacific Council) Ad Hoc Groundfish Electronic Monitoring Committee and Ad Hoc Trawl Groundfish Electronic Monitoring Technical Advisory Committee (GEM Committees) will... meeting is to discuss and develop potential alternatives for electronic monitoring (EM) for vessels...
Micro-thermocouple on nano-membrane: thermometer for nanoscale measurements.
Balčytis, Armandas; Ryu, Meguya; Juodkazis, Saulius; Morikawa, Junko
2018-04-20
A thermocouple of Au-Ni with only 2.5-μm-wide electrodes on a 30-nm-thick Si 3 N 4 membrane was fabricated by a simple low-resolution electron beam lithography and lift off procedure. The thermocouple is shown to be sensitive to heat generated by laser as well as an electron beam. Nano-thin membrane was used to reach a high spatial resolution of energy deposition and to realise a heat source of sub-1 μm diameter. This was achieved due to a limited generation of secondary electrons, which increase a lateral energy deposition. A low thermal capacitance of the fabricated devices is useful for the real time monitoring of small and fast temperature changes, e.g., due to convection, and can be detected through an optical and mechanical barrier of the nano-thin membrane. Temperature changes up to ~2 × 10 5 K/s can be measured at 10 kHz rate. A simultaneous down-sizing of both, the heat detector and heat source strongly required for creation of thermal microscopy is demonstrated. Peculiarities of Seebeck constant (thermopower) dependence on electron injection into thermocouple are discussed. Modeling of thermal flows on a nano-membrane with presence of a micro-thermocouple was carried out to compare with experimentally measured temporal response.
Moriguchi, Keiichi
2018-03-01
When polymorphonuclear leukocytes (PMNs) phagocytose opsonised zymosan particles (OPZ), free radicals and reactive oxygen species (ROS) are formed in the phagosomes. ROS production is mediated by NADPH oxidase (Nox), which transfers electrons in converting oxygen to superoxide (O 2 - ). Nox-generated O 2 - is rapidly converted to other ROS. Free radical-forming secretory vesicles containing the Nox redox center flavocytochrome b558, a membrane protein, and azurophil granules with packaged myeloperoxidase (MPO) have been described. Presuming the probable fusion of these vesicular and granular organelles with phagosomes, the translation process of the enzymes was investigated using energy-filtering and energy-dispersive spectroscopy-scanning transmission electron microscopy. In this work, the primary method for imaging cerium (Ce) ions demonstrated the localisation of H 2 O 2 generated by phagocytosing PMNs. The MPO activity of the same PMNs was continuously monitored using 0.1% 3,3'-diaminobenzidine-tetrahydrochloride (DAB) and 0.01% H 2 O 2 . A detailed view of these vesicular and granular structures was created by overlaying each electron micrograph with pseudocolors: blue for Ce and green for nitrogen (N). © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1999-06-01
The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detectionmore » level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.« less
CREM monitoring: a wireless RF application
NASA Astrophysics Data System (ADS)
Valencia, J. D.; Burghard, B. J.; Skorpik, J. R.; Silvers, K. L.; Schwartz, M. J.
2005-05-01
Recent security lapses within the Department of Energy laboratories prompted the establishment and implementation of additional procedures and training for operations involving classified removable electronic media (CREM) storage. In addition, the definition of CREM has been expanded and the number of CREM has increased significantly. Procedures now require that all CREM be inventoried and accounted for on a weekly basis. Weekly inventories consist of a physical comparison of each item against the reportable inventory listing. Securing and accounting for CREM is a continuous challenge for existing security systems. To address this challenge, an innovative framework, encompassing a suite of technologies, has been developed by Pacific Northwest National Laboratory (PNNL) to monitor, track, and locate CREM in safes, vaults, and storage areas. This Automated Removable Media Observation and Reporting (ARMOR)framework, described in this paper, is an extension of an existing PNNL program, SecureSafe. The key attributes of systems built around the ARMOR framework include improved accountability, reduced risk of human error, improved accuracy and timeliness of inventory data, and reduced costs. ARMOR solutions require each CREM to be tagged with a unique electronically readable ID code. Inventory data is collected from tagged CREM at regular intervals and upon detection of an access event. Automated inventory collection and report generation eliminates the need for hand-written inventory sheets and allows electronic transfer of the collected inventory data to a modern electronic reporting system. An electronic log of CREM access events is maintained, providing enhanced accountability for daily/weekly checks, routine audits, and follow-up investigations.
Study of a non-equilibrium plasma pinch with application for microwave generation
NASA Astrophysics Data System (ADS)
Al Agry, Ahmad Farouk
The Non-Equilibrium Plasma Pinch (NEPP), also known as the Dense Plasma Focus (DPF) is well known as a source of energetic ions, relativistic electrons and neutrons as well as electromagnetic radiation extending from the infrared to X-ray. In this dissertation, the operation of a 15 kJ, Mather type, NEPP machine is studied in detail. A large number of experiments are carried out to tune the machine parameters for best performance using helium and hydrogen as filling gases. The NEPP machine is modified to be able to extract the copious number of electrons generated at the pinch. A hollow anode with small hole at the flat end, and a mock magnetron without biasing magnetic field are built. The electrons generated at the pinch are very difficult to capture, therefore a novel device is built to capture and transport the electrons from the pinch to the magnetron. The novel cup-rod-needle device successfully serves the purpose to capture and transport electrons to monitor the pinch current. Further, the device has the potential to field emit charges from its needle end acting as a pulsed electron source for other devices such as the magnetron. Diagnostics tools are designed, modeled, built, calibrated, and implemented in the machine to measure the pinch dynamics. A novel, UNLV patented electromagnetic dot sensors are successfully calibrated, and implemented in the machine. A new calibration technique is developed and test stands designed and built to measure the dot's ability to track the impetus signal over its dynamic range starting and ending in the noise region. The patented EM-dot sensor shows superior performance over traditional electromagnetic sensors, such as Rogowski coils. On the other hand, the cup-rod structure, when grounded on the rod side, serves as a diagnostic tool to monitor the pinch current by sampling the actual current, a quantity that has been always very challenging to measure without perturbing the pinch. To the best of our knowledge, this method of measuring the pinch current is unique and has never been done before. Agreement with other models is shown. The operation of the NEPP machine with the hole in the center of the anode and the magnetron connected including the cup-rod structure is examined against the NEPP machine signature with solid anode. Both cases showed excellent agreement. This suggests that the existence of the hole and the diagnostic tool inside the anode have negligible effects on the pinch.
Emerging technologies for pediatric and adult trauma care.
Moulton, Steven L; Haley-Andrews, Stephanie; Mulligan, Jane
2010-06-01
Current Emergency Medical Service protocols rely on provider-directed care for evaluation, management and triage of injured patients from the field to a trauma center. New methods to quickly diagnose, support and coordinate the movement of trauma patients from the field to the most appropriate trauma center are in development. These methods will enhance trauma care and promote trauma system development. Recent advances in machine learning, statistical methods, device integration and wireless communication are giving rise to new methods for vital sign data analysis and a new generation of transport monitors. These monitors will collect and synchronize exponentially growing amounts of vital sign data with electronic patient care information. The application of advanced statistical methods to these complex clinical data sets has the potential to reveal many important physiological relationships and treatment effects. Several emerging technologies are converging to yield a new generation of smart sensors and tightly integrated transport monitors. These technologies will assist prehospital providers in quickly identifying and triaging the most severely injured children and adults to the most appropriate trauma centers. They will enable the development of real-time clinical support systems of increasing complexity, able to provide timelier, more cost-effective, autonomous care.
Indirect monitoring shot-to-shot shock waves strength reproducibility during pump–probe experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikuz, T. A., E-mail: tatiana.pikuz@eie.eng.osaka-u.ac.jp; Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871 Japan; Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412
We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ∼660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and tomore » control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ∼2%, implying an accuracy in the derived electron plasma temperature of 5%–10% in pump–probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ∼ 0.5, the electron temperature follows T{sub e} ∼ I{sub las}{sup 2/3}. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.« less
Examining Big Brother's Purpose for Using Electronic Performance Monitoring
ERIC Educational Resources Information Center
Bartels, Lynn K.; Nordstrom, Cynthia R.
2012-01-01
We examined whether the reason offered for electronic performance monitoring (EPM) influenced participants' performance, stress, motivation, and satisfaction. Participants performed a data-entry task in one of five experimental conditions. In one condition, participants were not electronically monitored. In the remaining conditions, participants…
Lambert, N; Plumb, J; Looise, B; Johnson, I T; Harvey, I; Wheeler, C; Robinson, M; Rolfe, P
2005-08-01
The aim of the study was to test the feasibility of using smart card technology to track the eating behaviours of nearly a thousand children in a school cafeteria. Within a large boys' school a smart card based system was developed that was capable of providing a full electronic audit of all the individual transactions that occurred within the cafeteria. This dataset was interfaced to an electronic version of the McCance and Widdowson composition of foods dataset. The accuracy of the smart card generated data and the influence of portion size and wastage were determined empirically during two 5-day trials. The smart card system created succeeded in generating precise data on the food choices made by hundreds of children over an indefinite time period. The data was expanded to include a full nutrient analysis of all the foods chosen. The accuracy of this information was only constrained by the limitations facing all food composition research, e.g. variations in recipes, portion sizes, cooking practices, etc. Although technically possible to introduce wastage correction factors into the software, thereby providing information upon foods consumed, this was not seen as universally practical. The study demonstrated the power of smart card technology for monitoring food/nutrient choice over limitless time in environments such as school cafeterias. The strengths, limitations and applications of such technology are discussed.
Schneeweiss, S; Eichler, H-G; Garcia-Altes, A; Chinn, C; Eggimann, A-V; Garner, S; Goettsch, W; Lim, R; Löbker, W; Martin, D; Müller, T; Park, B J; Platt, R; Priddy, S; Ruhl, M; Spooner, A; Vannieuwenhuyse, B; Willke, R J
2016-12-01
Analyses of healthcare databases (claims, electronic health records [EHRs]) are useful supplements to clinical trials for generating evidence on the effectiveness, harm, use, and value of medical products in routine care. A constant stream of data from the routine operation of modern healthcare systems, which can be analyzed in rapid cycles, enables incremental evidence development to support accelerated and appropriate access to innovative medicines. Evidentiary needs by regulators, Health Technology Assessment, payers, clinicians, and patients after marketing authorization comprise (1) monitoring of medication performance in routine care, including the materialized effectiveness, harm, and value; (2) identifying new patient strata with added value or unacceptable harms; and (3) monitoring targeted utilization. Adaptive biomedical innovation (ABI) with rapid cycle database analytics is successfully enabled if evidence is meaningful, valid, expedited, and transparent. These principles will bring rigor and credibility to current efforts to increase research efficiency while upholding evidentiary standards required for effective decision-making in healthcare. © 2016 American Society for Clinical Pharmacology and Therapeutics.
Assessments and Applications of Terra and Aqua MODIS On-Orbit Electronic Calibration
NASA Technical Reports Server (NTRS)
Xiong, Xiaoxiong; Chen, Na; Li, Yonghong; Wilson, Truman
2016-01-01
MODIS has 36 spectral bands located on four focal plane assemblies (FPAs), covering wavelengths from 0.41 to 14.4 micrometers. MODIS bands 1-30 collect data using photovoltaic (PV) detectors and, therefore, are referred to as the PV bands. Similarly, bands 31-36 using photoconductive (PC) detectors are referred to as the PC bands.The MODIS instrument was built with a set of on-board calibrators (OBCs) in order to track on-orbit changes of its radiometric, spatial, and spectral characteristics. In addition, an electronic calibration (ECAL) function can be used to monitor on-orbit changes of its electronic responses (gains). This is accomplished via a series of stair step signals generated by the ECAL function. These signals, in place of the FPA detector signals, are amplified and digitized just like the detector signals. Over the entire mission of both Terra and Aqua MODIS,the ECAL has been performed for the PV bands and used to assess their on-orbit performance. This paper provides an overview of MODIS on-orbit calibration activities with a focus on the PV ECAL, including its calibration process and approaches used to monitor the electronic performance. It presents the results derived and lessons learned from Terra and Aqua MODIS on-orbit ECAL. Also discussed are some of the applications performed with the information provided by the ECAL data.
Calibration of the Cherenkov telescope array using cosmic ray electrons
NASA Astrophysics Data System (ADS)
Parsons, R. D.; Hinton, J. A.; Schoorlemmer, H.
2016-11-01
Cosmic ray electrons represent a background for gamma-ray observations with Cherenkov telescopes, initiating air-showers which are difficult to distinguish from photon-initiated showers. This similarity, however, and the presence of cosmic ray electrons in every field observed, makes them potentially very useful for calibration purposes. Here we study the precision with which the relative energy scale and collection area/efficiency for photons can be established using electrons for a major next generation instrument such as CTA. We find that variations in collection efficiency on hour timescales can be corrected to better than 1%. Furthermore, the break in the electron spectrum at ∼ 0.9 TeV can be used to calibrate the energy scale at the 3% level on the same timescale. For observations on the order of hours, statistical errors become negligible below a few TeV and allow for an energy scale cross-check with instruments such as CALET and AMS. Cosmic ray electrons therefore provide a powerful calibration tool, either as an alternative to intensive atmospheric monitoring and modelling efforts, or for independent verification of such procedures.
The outlook of innovative optical-electronic technologies implementation in transportation
NASA Astrophysics Data System (ADS)
Shilina, Elena V.; Ryabichenko, Roman B.
2005-06-01
Information and telecommunication technologies (ITT) are already tool economic development of society and their role will grow. The first task is providing of information security of ITT that is necessary for it distribution in "information" society. The state policy of the leading world countries (USA, France, Japan, Great Britain and China) is focused on investment huge funds in innovative technologies development. Within the next 4-6 years the main fiber-optic transfer lines will have data transfer speed 40 Gbit/s, number of packed channels 60-200 that will provide effective data transfer speed 2,4-8 Tbit/s. Photonic-crystalline fibers will be promising base of new generation fiber-optic transfer lines. The market of information imaging devices and digital photo cameras will be grown in 3-5 times. Powerful lasers based on CO2 and Nd:YAG will be actively used in transport machinery construction when producing aluminum constructions of light rolling-stock. Light-emitting diodes (LEDs) will be base for energy saving and safety light sources used for vehicles and indoor lighting. For example, in the USA cost reducing for lighting will be 200 billion dollars. Implementation analysis of optic electronic photonic technologies (OPT) in ground and aerospace systems shows that they provide significant increasing of traffic safety, crew and passengers comfort with help of smart vehicles construction and non-contact dynamic monitoring both transport facilities (for example, wheel flanges) and condition of rail track (road surface), equipping vehicles with night vision equipment. Scientific-technical programs of JSC "RZD" propose application of OPT in new generation systems: axle-box units for coaches and freight cars monitoring when they are moved, track condition analysis, mechanical stress and permanent way irregularity detection, monitoring geometric parameters of aerial contact wire, car truck, rail and wheel pair roll surface, light signals automatic detection from locomotive, video monitoring, gyroscopes based on fiber optic.
Electronic Monitoring and Family Control in Probation and Parole.
ERIC Educational Resources Information Center
Quinn, James F.; Holman, John E.
1992-01-01
Examined effects of electronic monitoring on family's contribution to external constraint of felony offenders under community supervision. Data from probationers and parolees (n=121) indicated that reported levels of family control did not change significantly during three months of electronic monitoring. Demographic variables, offense type, and…
50 CFR 622.5 - Recordkeeping and reporting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... such record as specified in paragraph (a)(2) of this section. (B) Electronic logbook/video monitoring... participate in the NMFS-sponsored electronic logbook and/or video monitoring reporting program as directed by...) of this section. (ii) Electronic logbook/video monitoring reporting. The owner or operator of a...
Ultrasonic wave-based structural health monitoring embedded instrument.
Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano
2013-12-01
Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.
Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display
NASA Astrophysics Data System (ADS)
Nelson, Scott A.
1994-06-01
The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.
A TWT upgrade to study wave-particle interactions in plasma
NASA Astrophysics Data System (ADS)
Doveil, Fabrice; Caetano de Sousa, Meirielen; Guyomarc'h, Didier; Kahli, Aissa; Elskens, Yves
2015-11-01
Beside industrial applications, Traveling Wave Tubes (TWT) are useful to mimic and study wave-particle interaction in plasma. We upgraded a TWT, whose slow wave structure is a 4 m long helix (diameter 3.4 cm, pitch 1 mm) of Be-Cu wire (diameter 0.6 mm) wrapped in insulating tape. The helix is inserted in a vacuum glass tube. At one end, an electron gun produces a beam propagating along the helix, radially confined by a constant axial magnetic field. Movable probes, capacitively coupled to the helix through the glass tube, launch and monitor waves generated by an arbitrary waveform generator at a few tens of MHz. At the other end of the helix, a trochoidal analyzer allows to reconstruct the electron distribution functions of the beam after its self-consistent interaction with the waves. Linear properties of the new device will be reported. The measured coupling coefficients of each probe with the helix are used to reconstruct the growth and saturation of a launched wave as it interacts with the electron beam. J-B. Faure and V. Long are thanked for their efficient help in designing and using a new way to build the helix.
[Implementation of Oncomelania hupensis monitoring system based on Baidu Map].
Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang
2017-10-25
To construct the Oncomelania hupensis snail monitoring system based on the Baidu Map. The environmental basic information about historical snail environment and existing snail environment, etc. was collected with the monitoring data about different kinds of O. hupensis snails, and then the O. hupensis snail monitoring system was built. Geographic Information System (GIS) and the electronic fence technology and Application Program Interface (API) were applied to set up the electronic fence of the snail surveillance environments, and the electronic fence was connected to the database of the snail surveillance. The O. hupensis snail monitoring system based on the Baidu Map were built up, including three modules of O. hupensis Snail Monitoring Environmental Database, Dynamic Monitoring Platform and Electronic Map. The information about monitoring O. hupensis snails could be obtained through the computer and smartphone simultaneously. The O. hupensis snail monitoring system, which is based on Baidu Map, is a visible platform to follow the process of snailsearching and molluscaciding.
Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology.
Jin, Liangmin; Tao, Juan; Bao, Rongrong; Sun, Li; Pan, Caofeng
2017-09-05
The triboelectric nanogenerator (TENG) has great potential in the field of self-powered sensor fabrication. Recently, smart electronic devices and movement monitoring sensors have attracted the attention of scientists because of their application in the field of artificial intelligence. In this article, a TENG finger movement monitoring, self-powered sensor has been designed and analysed. Under finger movements, the TENG realizes the contact and separation to convert the mechanical energy into electrical signal. A pulse output current of 7.8 μA is generated by the bending and straightening motions of the artificial finger. The optimal output power can be realized when the external resistance is approximately 30 MΩ. The random motions of the finger are detected by the system with multiple TENG sensors in series. This type of flexible and self-powered sensor has potential applications in artificial intelligence and robot manufacturing.
Means of storage and automated monitoring of versions of text technical documentation
NASA Astrophysics Data System (ADS)
Leonovets, S. A.; Shukalov, A. V.; Zharinov, I. O.
2018-03-01
The paper presents automation of the process of preparation, storage and monitoring of version control of a text designer, and program documentation by means of the specialized software is considered. Automation of preparation of documentation is based on processing of the engineering data which are contained in the specifications and technical documentation or in the specification. Data handling assumes existence of strictly structured electronic documents prepared in widespread formats according to templates on the basis of industry standards and generation by an automated method of the program or designer text document. Further life cycle of the document and engineering data entering it are controlled. At each stage of life cycle, archive data storage is carried out. Studies of high-speed performance of use of different widespread document formats in case of automated monitoring and storage are given. The new developed software and the work benches available to the developer of the instrumental equipment are described.
Smart garments for safety improvement of emergency/disaster operators.
Curone, Davide; Dudnik, Gabriela; Loriga, Giannicola; Luprano, Jean; Magenes, Giovanni; Paradiso, Rita; Tognetti, Alessandro; Bonfiglio, Annalisa
2007-01-01
The main purpose of the European project ProeTEX is to develop equipment to improve safety, coordination and efficiency of emergency disaster intervention personnel like fire-fighters or civil protection rescuers. The equipment consists of a new generation of "smart" garments, integrating wearable sensors which will allow monitoring physiological parameters, position and activity of the user, as like as environmental variables of the operating field in which rescuers are working: both commercial and newly developed textile and fibre based sensors will be included. The garments will also contain an electronic box to process data collected by the sensors and a communication system enabling the transmission of data to the other rescuers and to a monitoring station. Also a "smart" victim patch will be developed: a wearable garment which will allow monitoring physiological parameters of injured civilians involved in disasters, with the aim of optimizing their survival management.
Jochmann, Anja; Artusio, Luca; Jamalzadeh, Angela; Nagakumar, Prasad; Delgado-Eckert, Edgar; Saglani, Sejal; Bush, Andrew; Frey, Urs; Fleming, Louise J
2017-12-01
International guidelines recommend that severe asthma can only be diagnosed after contributory factors, including adherence, have been addressed. Accurate assessment of adherence is difficult in clinical practice. We hypothesised that electronic monitoring in children would identify nonadherence, thus delineating the small number with true severe asthma.Asthmatic children already prescribed inhaled corticosteroids were prospectively recruited and persistence of adherence assessed using electronic monitoring devices. Spirometry, airway inflammation and asthma control were measured at the start and end of the monitoring period.93 children (62 male; median age 12.4 years) were monitored for a median of 92 days. Median (range) monitored adherence was 74% (21-99%). We identified four groups: 1) good adherence during monitoring with improved control, 24% (likely previous poor adherence); 2) good adherence with poor control, 18% (severe therapy-resistant asthma); 3) poor adherence with good control, 26% (likely overtreated); and 4) poor adherence with poor control, 32%. No clinical parameter prior to monitoring distinguished these groups.Electronic monitoring is a useful tool for identifying children in whom a step up in treatment is indicated. Different approaches are needed in those who are controlled when adherent or who are nonadherent. Electronic monitoring is essential in a paediatric severe asthma clinic. Copyright ©ERS 2017.
Cerebral palsy litigation: change course or abandon ship.
Sartwelle, Thomas P; Johnston, James C
2015-06-01
The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothers and babies alike. This article explains why electronic fetal monitoring remains endorsed as efficacious in the worlds' labor rooms and courtrooms despite being such a feeble medical modality. It also reviews the reasons professional organizations have failed to condemn the use of electronic fetal monitoring in courtrooms. The failures of tort reform, special cerebral palsy courts, and damage limits to stem the escalating litigation are discussed. Finally, the authors propose using a currently available evidence rule-the Daubert doctrine that excludes "junk science" from the courtroom-as the beginning of the end to cerebral palsy litigation and electronic fetal monitoring's 40-year masquerade as science. © The Author(s) 2014.
Dynamic performance of the beam position monitor support at the SSRF.
Wang, Xiao; Cao, Yun; Du, Hanwen; Yin, Lixin
2009-01-01
Electron beam stability is very important for third-generation light sources, especially for the Shanghai Synchrotron Radiation Facility whose ground vibrations are much larger than those for other light sources. Beam position monitors (BPMs), used to monitor the position of the electron beam, require a greater stability than other mechanical structures. This paper concentrates on an investigation of the dynamic performance of the BPM support prototype. Modal and response analyses have been carried out by finite-element (FE) calculations and vibration measurements. Inconsistent results between calculation and measurement have motivated a change in the soft connections between the support and the ground from a ground bolt in the initial design to full grout. As a result the mechanical stability of the BPM support is greatly improved, showing an increase in the first eigenfrequency from 20.2 Hz to 50.2 Hz and a decrease in the ratio of the root-mean-square displacement (4-50 Hz) between the ground and the top of the support from 4.36 to 1.23 in the lateral direction. An example is given to show how FE analysis can guide the mechanical design and dynamic measurements (i.e. it is not just used as a verification method). Similar ideas can be applied to improve the stability of other mechanical structures.
Beam transport and monitoring for laser plasma accelerators
NASA Astrophysics Data System (ADS)
Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.
2012-12-01
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.
S3 targets monitoring with an electron gun
NASA Astrophysics Data System (ADS)
Kallunkathariyil, J.; Stodel, Ch.; Marry, C.; Frémont, G.; Bastin, B.; Piot, J.; Clément, E.; Le Moal, S.; Morel, V.; Thomas, J.-C.; Kamalou, O.; Spitaëls, C.; Savajols, H.; Vostinar, M.; Pellemoine, F.; Mittig, W.
2018-05-01
The monitoring of targets under irradiation was investigated using a 20 keV electron beam. An integrated and automated electron beam deflection was developed allowing a monitoring over the whole surface of target materials. Thus, local defects could be identified on-line during an experiment performed at GANIL involving different materials irradiated with a focused krypton beam at 10.5 MeV/u. Performances of this target monitoring system are presented in this paper.
More About The Video Event Trigger
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1996-01-01
Report presents additional information about system described in "Video Event Trigger" (LEW-15076). Digital electronic system processes video-image data to generate trigger signal when image shows significant change, such as motion, or appearance, disappearance, change in color, brightness, or dilation of object. Potential uses include monitoring of hallways, parking lots, and other areas during hours when supposed unoccupied, looking for fires, tracking airplanes or other moving objects, identification of missing or defective parts on production lines, and video recording of automobile crash tests.
Initial Observations of Micropulse Elongation of Electron Beams in a SCRF Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom Jr., D.
2016-10-09
Commissioning at the SCRF accelerator at the Fermilab Accelerator Science and Technology (FAST) Facility has included the implementation of a versatile bunch-length monitor located after the 4-dipole chicane bunch compressor for electron beam energies of 20-50 MeV and integrated charges in excess of 10 nC. The team has initially used a Hamamatsu C5680 synchroscan streak camera to assess the effects of space charge on the electron beam bunch lengths. An Al-coated Si screen was used to generate optical transition radiation (OTR) resulting from the beam’s interaction with the screen. The chicane bypass beamline allowed the measurements of the bunch lengthmore » without the compression stage at the downstream beamline location using OTR and the streak camera. We have observed electron beam bunch lengths from 5 to 16 ps (sigma) for micropulse charges of 60 pC to 800 pC, respectively. We also report a compressed sub-ps micropulse case.« less
NASA Astrophysics Data System (ADS)
Houlahan, Thomas J., Jr.; Su, Rui; Eden, Gary
2014-06-01
Using a pulsed plasma microjet to generate short-lived, electronically-excited diatomic molecules, and subsequently ejecting them into vacuum to cool via supersonic expansion, we are able to monitor the cooling of molecules having radiative lifetimes as low as 16 ns. Specifically, we report on the rotational cooling of He_2 molecules in the d^3Σ_u^+, e^3Π_g, and f^3Σ_u^+ states, which have lifetimes of 25 ns, 67 ns, and 16 ns, respectively. The plasma microjet is driven with a 2.6 kV, 140 ns high-voltage pulse (risetime of 20 ns) which, when combined with a high-speed optical imaging system, allows the nonequilibrium rotational distribution for these molecular states to be monitored as they cool from 1200 K to below 250 K with spatial and temporal resolutions of below 10 μm and 10 ns, respectively. The spatial and temporal resolution afforded by this system also allows the observation of excitation transfer between the f^3Σ_u^+ state and the lower lying d^3Σ_u^+ and e^3Π_g states. The extension of this method to other electronically excited diatomics with excitation energies >5 eV will also be discussed.
Telecommunications in cometary environments
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
Propagation effects on telecommunications in a cometary environment include those due to dust, the inhomogeneous plasma of the coma and tail, and ionization generated by impact of neutral molecules and dust on the spacecraft. Attenuation caused by dust particles is estimated to be on the order of 10 to the minus 5th power dB for the Halley Intercept Mission. Ionization generated by impact on the spacecraft is estimated to result in an electron content of 10 to the 12th power to 10 to the 13th power el/sq meters (3 eV electrons) along the telecommunications path. An estimate of the electron content due to Comet Halley itself is 10 to the 16th power to 10 to the 17th power el/sq meters, compared to a content of 10 to the 16th power to 10 to the 18th power el/sq meters for the Earth's ionosphere and 10 to the 17th power to 10 to the 18th power el/sq meters for the interplanetary medium. The electron content of the plasma near Comet Halley will cause excess range delay, and a Doppler shift of the signal from the spacecraft will occur in propagation to the rate of change of the path electron content. It is recommended that S and X down-link frequencies by employed to monitor the path electron content and amplitude scintillation and spectral broadening of the received signals. These measurements will provide a quantitative base of knowledge that will be valuable for radio science and telecommunications system design purposes.
Electronic management: Exploring its impact on small business
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bewayo, E.D.
Macworld magazine recently reported that more than one in five companies eavesdrops electronically on its employees. Electronic eavesdropping is one name given to electronic management Besides being known as electronic eaves-dropping, electronic management also goes by electronic monitoring, electronic supervision, electronic snooping, electronic sweat-shopping, electronic surveillance, electronic Big Brothering, and computerized performance monitoring. Some of these labels connote negative things about electronic management, and relate to applications of electronic management to extreme and unreasonable levels. In the rest of this paper the terms electronic management and electronic monitoring will be used interchangeably. In this paper we discuss the impacts ofmore » electronic management, positive and negative, on workplaces, with emphasis on small businesses. This small business emphasis is partly because of the author`s research interests, and partly because most of what has been written on electronic management has been based on large business contexts. This large business bias has been partly due to the fact that the early inroads of electronic management were almost exclusively limited to large companies--beginning with telephone service observation in the late 1800s. However, now with the growing affordability and, consequently, the proliferation of electronic technology (especially the computer), electronic management is no longer the monopoly of large corporations. Electronic management has now reached restaurants, drug stores, liquor stores, convenience stores, and trucking companies. And in some industries, e.g., banking, every business, regardless of size, uses electronic monitoring.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
...] Availability of Compliance Guide for the Use of Video or Other Electronic Monitoring or Recording Equipment in... the availability of a compliance guide on the use of video or other electronic monitoring or recording... Procedures video records. FSIS is soliciting comments on this compliance guide. Once FSIS receives OMB...
NASA Astrophysics Data System (ADS)
Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.
2012-10-01
New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.
The SPARC_LAB femtosecond synchronization for electron and photon pulsed beams
NASA Astrophysics Data System (ADS)
Bellaveglia, M.; Gallo, A.; Piersanti, L.; Pompili, R.; Gatti, G.; Anania, M. P.; Petrarca, M.; Villa, F.; Chiadroni, E.; Biagioni, A.; Mostacci, A.
2015-05-01
The SPARC LAB complex hosts a 150 MeV electron photo-injector equipped with an undulator for FEL production (SPARC) together with a high power TW laser (FLAME). Recently the synchronization system reached the performance of < 100 fsRMS relative jitter between lasers, electron beam and RF accelerating fields. This matches the requirements for next future experiments: (i) the production of X-rays by means of Thomson scattering (first collisions achieved in 2014) and (ii) the particle driven PWFA experiment by means of multiple electron bunches. We report about the measurements taken during the machine operation using BAMs (Bunch Arrival Monitors) and EOS (Electro-Optical Sampling) system. A new R and D activity concerning the LWFA using the external injection of electron bunches in a plasma generated by the FLAME laser pulse is under design. The upgrade of the synchronization system is under way to guarantee the < 30 fs RMS jitter required specification. It foresees the transition from electrical to optical architecture that mainly affects the reference signal distribution and the time of arrival detection performances. The new system architecture is presented together with the related experimental data.
Swoboda, Sandra M; Earsing, Karen; Strauss, Kevin; Lane, Stephen; Lipsett, Pamela A
2004-02-01
To determine whether electronic monitoring of hand hygiene and voice prompts can improve hand hygiene and decrease nosocomial infection rates in a surgical intermediate care unit. Three-phase quasi-experimental design. Phase I was electronic monitoring and direct observation; phase II was electronic monitoring and computerized voice prompts for failure to perform hand hygiene on room exit; and phase III was electronic monitoring only. Nine-room, 14-bed intermediate care unit in a university, tertiary-care institution. All patient rooms, utility room, and staff lavatory were monitored electronically. All healthcare personnel including physicians, nurses, nursing support personnel, ancillary staff, all visitors and family members, and any other personnel interacting with patients on the intermediate care unit. All patients with an intermediate care unit length of stay >48 hrs were followed for nosocomial infection. Electronic monitoring during all phases, computerized voice prompts during phase II only. We evaluated a total of 283,488 electronically monitored entries into a patient room with 251,526 exits for 420 days (10,080 hrs and 3,549 patient days). Compared with phase I, hand hygiene compliance in patient rooms improved 37% during phase II (odds ratio, 1.38; 95% confidence interval, 1.04-1.83) and 41% in phase III (odds ratio, 1.41; 95% confidence interval, 1.07-1.84). When adjusting for patient admissions during each phase, point estimates of nosocomial infections decreased by 22% during phase II and 48% during phase III; when adjusting for patient days, the number of infections decreased by 10% during phase II and 40% during phase III. Although the overall rate of nosocomial infections significantly decreased when combining phases II and III, the association between nosocomial infection and individual phase was not significant. Electronic monitoring provided effective ongoing feedback about hand hygiene compliance. During both the voice prompt phase and post-intervention phase, hand hygiene compliance and nosocomial infection rates improved suggesting that ongoing monitoring and feedback had both a short-term and, perhaps, a longer-term effect.
Wetzels, Gwenn E C; Nelemans, Patricia J; Schouten, Jan S A G; van Wijk, Boris L G; Prins, Martin H
2006-02-10
Poor compliance with antihypertensive medication is assumed to be an important reason for unsatisfactory control of blood pressure. Poor compliance is difficult to detect. Each method of measuring compliance has its own strengths and weaknesses. The aim of the present study was to compare patient compliance with antihypertensive drugs as measured by two methods, electronic monitoring versus refill compliance. 161 patients with a diagnosis of hypertension for at least a year prior to inclusion, and inadequate blood pressure control (systolic blood pressure > or = 160 mmHg and/or diastolic blood pressure > or = 95 mmHg) despite the use of antihypertensive drugs, were included. Patients' pharmacy records from 12 months prior to inclusion were obtained. Refill compliance was calculated as the number of days for which the pills were prescribed divided by the total number of days in this period. After inclusion compliance was measured with an electronic monitor that records time and date of each opening of the pillbox. Agreement between both compliance measures was calculated using Spearman's correlation coefficient and Cohen's kappa coefficient. There was very little agreement between the two measures. Whereas refill compliance showed a large range of values, compliance as measured by electronic monitoring was high in almost all patients with estimates between 90% and 100%. Cohen's kappa coefficient was 0.005. While electronic monitoring is often considered to be the gold standard for compliance measurements, our results suggest that a short-term electronic monitoring period with the patient being aware of electronic monitoring is probably insufficient to obtain valid compliance data. We conclude that there is a strong need for more studies that explore the effect of electronic monitoring on patient's compliance.
Control, communication and monitoring of intravaginal drug delivery in dairy cows.
Cross, Peter S; Künnemeyer, Rainer; Bunt, Craig R; Carnegie, Dale A; Rathbone, Michael J
2004-09-10
We present the design of an electronically controlled drug delivery system. The intravaginally located device is a low-invasive platform that can measure and react inside the cow vagina while providing external control and monitoring ability. The electronics manufactured from off the shelf components occupies 16 mL of a Theratron syringe. A microcontroller reads and logs sensor data and controls a gascell. The generated gas pressure propels the syringe piston and releases the formulation. A two way radio link allows communication between other devices or a base station. Proof of principle experiments confirm variable-rate, arbitrary profile drug delivery qualified by internal sensors. A total volume of 30 mL was dispensed over a 7-day-period with a volume error of +/- 1 mL or +/- 7% for larger volumes. Delivery was controlled or overridden via the wireless link, and proximity to other devices was detected and recorded. The results suggest that temperature and activity sensing or social grouping determined via proximity can be used to detect oestrus and trigger appropriate responses.
Integrated multi-ISE arrays with improved sensitivity, accuracy and precision
NASA Astrophysics Data System (ADS)
Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan
2017-03-01
Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl- electrodes, 10 F- electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.
NASA Astrophysics Data System (ADS)
Buth, G.; Huttel, E.; Mangold, S.; Steininger, R.; Batchelor, D.; Doyle, S.; Simon, R.
2013-03-01
Different methods have been proposed to calculate the vertical position of the photon beam centroid from the four blade currents of staggered pair X-ray beam position monitors (XBPMs) at bending magnet beamlines since they emerged about 15 years ago. The original difference-over-sum method introduced by Peatman and Holldack is still widely used, even though it has been proven to be rather inaccurate at large beam displacements. By systematically generating bumps in the electron orbit of the ANKA storage ring and comparing synchronized data from electron BPMs and XBPM blade currents, we have been able to show that the log-ratio method by S. F. Lin, B.G. Sun et al. is superior (meaning the characteristic being closer to linear) to the ratio method, which in turn is superior to the difference over sum method. These findings are supported by simulations of the XBPM response to changes of the beam centroid. The heuristic basis for each of the methods is investigated. The implications on using XBPM readings for orbit correction are discussed
Implementing an electronic hand hygiene monitoring system: Lessons learned from community hospitals.
Edmisten, Catherine; Hall, Charles; Kernizan, Lorna; Korwek, Kimberly; Preston, Aaron; Rhoades, Evan; Shah, Shalin; Spight, Lori; Stradi, Silvia; Wellman, Sonia; Zygadlo, Scott
2017-08-01
Measuring and providing feedback about hand hygiene (HH) compliance is a complicated process. Electronic HH monitoring systems have been proposed as a possible solution; however, there is little information available about how to successfully implement and maintain these systems for maximum benefit in community hospitals. An electronic HH monitoring system was implemented in 3 community hospitals by teams at each facility with support from the system vendor. Compliance rates were measured by the electronic monitoring system. The implementation challenges, solutions, and drivers of success were monitored within each facility. The electronic HH monitoring systems tracked on average more than 220,000 compliant HH events per facility per month, with an average monthly compliance rate >85%. The sharing of best practices between facilities was valuable in addressing challenges encountered during implementation and maintaining a high rate of use. Drivers of success included a collaborative environment, leadership commitment, using data to drive improvement, consistent and constant messaging, staff empowerment, and patient involvement. Realizing the full benefit of investments in electronic HH monitoring systems requires careful consideration of implementation strategies, planning for ongoing support and maintenance, and presenting data in a meaningful way to empower and inspire staff. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Beam transport and monitoring for laser plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Sokollik, T.; Tilborg, J. van
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less
Positive and negative generation effects in source monitoring.
Riefer, David M; Chien, Yuchin; Reimer, Jason F
2007-10-01
Research is mixed as to whether self-generation improves memory for the source of information. We propose the hypothesis that positive generation effects (better source memory for self-generated information) occur in reality-monitoring paradigms, while negative generation effects (better source memory for externally presented information) tend to occur in external source-monitoring paradigms. This hypothesis was tested in an experiment in which participants read or generated words, followed by a memory test for the source of each word (read or generated) and the word's colour. Meiser and Bröder's (2002) multinomial model for crossed source dimensions was used to analyse the data, showing that source memory for generation (reality monitoring) was superior for the generated words, while source memory for word colour (external source monitoring) was superior for the read words. The model also revealed the influence of strong response biases in the data, demonstrating the usefulness of formal modelling when examining generation effects in source monitoring.
Electronic Performance Monitoring: An Organizational Justice and Concertive Control Perspective.
ERIC Educational Resources Information Center
Alder, G. Stoney; Tompkins, Phillip K.
1997-01-01
Applies theories of organizational justice/concertive control to account for contradictions inherent in electronic monitoring of workers by organizations. Argues that results are usually positive when workers are involved in the design and implementation of monitoring systems, and monitoring is restricted to performance-related activities with…
Wireless and chip-less passive radiation sensors for high dose monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debourg, E.; Aubert, H.; Pons, P.
The safety of nuclear infrastructures may involve the monitoring of many parameters in harsh environments (high radiation level, high temperature, high pressure,..). If technological solutions exist for transducers part in such environments, the electronic part used in reader is not appropriate and still a challenging task. Well-known solutions to remove the electronic part from the harsh environment consist of connecting the transducer and the reader by long electrical wires or performing ex situ remote sensing. However wires may practically be difficult to implement while ex situ measurements are not compatible with on line monitoring. Wireless and passive sensors working inmore » harsh environments could be an appropriate solution for the remote sensing of critical parameters. Passive sensors without electronics in the sensing unit are available (e.g., SAW sensors) but they suffer from short reading range (typically lower than 10 meters). In order to overcome this range limitation a new class of electromagnetic transducers was developed in the mid-2000's. The operating principle is based on the modification of the properties of high-frequency (>> 1 GHz) passive electromagnetic devices by the quantity to be measured. Based on this principle a wide range of sensing properties can be addressed and a large number of materials can be chosen. Moreover the use of high frequency allows reducing the size of the sensor elements (antenna, transducer) and enhancing the immunity to multi-path. Several principles of RF transducers have been already validated by LAAS-CNRS (e;g; pressure, temperature, stress) as well as radar-based solution for the wireless long-range sensors interrogation. The sensor dosimeter exploit here the known property of Hydrogen-Pressure Dosimeters (HPD) for which the polymer material dehydrogenates under nuclear irradiation. The transducer principle is described. The irradiation will generate the out-gazing (hydrogen) of the polymer inside a micro-chamber. The resulting overpressure leads to the deflection of a silicon membrane which modifies the resonant frequency of the RF resonator. Tests structures have been designed in order to quantify the HDPE out-gazing inside a micro-cavity by measuring the deflection of a boss silicon membrane with a mechanical profiler. A specific set up using interferometry method has been also developed to evaluate the pressure generated inside the micro-cavity. The procedure consists in applying a pressure that pushes the membrane to recover a flat membrane. This condition is monitored thanks to the extinction of the Newton rings. Irradiations have been performed up to 30 kGy using 6 MeV focused e-beam providing by electron accelerator. Membrane deflection and generated pressure around 0.2 μm/mg{sub HDPE}/kGy and 70 mbar/mg{sub HDPE}/kGy has been obtained for a 70 μm thick membrane. In order to characterize the hermetic sealing of the micro-chamber under hydrogen over-pressure, membrane deflection after irradiation has been recorded during 50 days. The variations of membrane deflection are randomly distributed and generally lower than ±5%, showing a good hermeticity during this period. (authors)« less
An Interoperable System toward Cardiac Risk Stratification from ECG Monitoring
Mora-Jiménez, Inmaculada; Ramos-López, Javier; Quintanilla Fernández, Teresa; García-García, Antonio; Díez-Mazuela, Daniel; García-Alberola, Arcadi
2018-01-01
Many indices have been proposed for cardiovascular risk stratification from electrocardiogram signal processing, still with limited use in clinical practice. We created a system integrating the clinical definition of cardiac risk subdomains from ECGs and the use of diverse signal processing techniques. Three subdomains were defined from the joint analysis of the technical and clinical viewpoints. One subdomain was devoted to demographic and clinical data. The other two subdomains were intended to obtain widely defined risk indices from ECG monitoring: a simple-domain (heart rate turbulence (HRT)), and a complex-domain (heart rate variability (HRV)). Data provided by the three subdomains allowed for the generation of alerts with different intensity and nature, as well as for the grouping and scrutinization of patients according to the established processing and risk-thresholding criteria. The implemented system was tested by connecting data from real-world in-hospital electronic health records and ECG monitoring by considering standards for syntactic (HL7 messages) and semantic interoperability (archetypes based on CEN/ISO EN13606 and SNOMED-CT). The system was able to provide risk indices and to generate alerts in the health records to support decision-making. Overall, the system allows for the agile interaction of research and clinical practice in the Holter-ECG-based cardiac risk domain. PMID:29494497
Deschamps, Ann E; De Geest, Sabina; Vandamme, Anne-Mieke; Bobbaers, Herman; Peetermans, Willy E; Van Wijngaerden, Eric
2008-09-01
Nonadherence to antiretroviral therapy is a substantial problem in HIV and jeopardizes the success of treatment. Accurate measurement of nonadherence is therefore imperative for good clinical management but no gold standard has been agreed on yet. In a single-center prospective study nonadherence was assessed by electronic monitoring: percentage of doses missed and drug holidays and by three self reports: (1) a visual analogue scale (VAS): percentage of overall doses taken; (2) the Swiss HIV Cohort Study Adherence Questionnaire (SHCS-AQ): percentage of overall doses missed and drug holidays and (3) the European HIV Treatment Questionnaire (EHTQ): percentage of doses missed and drug holidays for each antiretroviral drug separately. Virologic failure prospectively assessed during 1 year, and electronic monitoring were used as reference standards. Using virologic failure as reference standard, the best results were for (1) the SHCS-AQ after electronic monitoring (sensitivity, 87.5%; specificity, 78.6%); (2) electronic monitoring (sensitivity, 75%; specificity, 85.6%), and (3) the VAS combined with the SHCS-AQ before electronic monitoring (sensitivity, 87.5%; specificity, 58.6%). The sensitivity of the complex EHTQ was less than 50%. Asking simple questions about doses taken or missed is more sensitive than complex questioning about each drug separately. Combining the VAS with the SHCS-AQ seems a feasible nonadherence measure for daily clinical practice. Self-reports perform better after electronic monitoring: their diagnostic value could be lower when given independently.
Electronics Environmental Benefits Calculator
The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase, use and disposal of electronics.The EEBC estimates the environmental and economic benefits of: Purchasing Electronic Product Environmental Assessment Tool (EPEAT)-registered products; Enabling power management features on computers and monitors above default percentages; Extending the life of equipment beyond baseline values; Reusing computers, monitors and cell phones; and Recycling computers, monitors, cell phones and loads of mixed electronic products.The EEBC may be downloaded as a Microsoft Excel spreadsheet.See https://www.federalelectronicschallenge.net/resources/bencalc.htm for more details.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagy, Peter
2013-09-30
The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied bymore » significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV materials. Through the results obtained from this integrated materials behavior and NDE study, new insight will be gained into the best nondestructive creep and microstructure monitoring methods for the particular mechanisms identified in these materials. The proposed project includes collaboration with a national laboratory partner and the results will also serve as a foundation to guide the efforts of scientists in the DOE laboratory, university, and industrial communities concerned with the technological challenges of monitoring creep and microstructural evolution in materials planned to be used in Generation IV Nuclear Energy Systems.« less
40 CFR 49.4166 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... burning pilot flame, electronically controlled automatic igniters, and monitoring system failures, using a... failure, electronically controlled automatic igniter failure, or improper monitoring equipment operation... and natural gas emissions in the event that natural gas recovered for pipeline injection must be...
40 CFR 49.4166 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... burning pilot flame, electronically controlled automatic igniters, and monitoring system failures, using a... failure, electronically controlled automatic igniter failure, or improper monitoring equipment operation... and natural gas emissions in the event that natural gas recovered for pipeline injection must be...
Research and Development Toward Massive Liquid Argon Time Projection Chambers for Neutrino Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiesse, Matthew
Liquid argon (LAr) time projection chambers (TPC) have rapidly increased in importance as particle detectors throughout the past four decades. While much research has been completed, there are still many areas which require further development to build and operate the next generation LAr TPC experiment, such as the Deep Underground Neutrino Experiment (DUNE). These include high voltage breakdown, argon purification and purity monitoring, and vacuum ultraviolet (VUV) scintillation light measurement. Visual monitoring of high voltage breakdown is helpful in allowing assessment of the performance of high voltage component design. Thus, a system of cryogenic cameras, the first of its kind,more » was developed for use in a large LAr cryostat, without the need for additional electronics heating. The system functioned without problem for 50 days at cryogenic temperature, with some degradation of image quality, and provided a useful monitor for the DUNE 35-ton cryogenics systems. The system did not observe any high voltage breakdowns during the run. Further development of the concept is ongoing for future installation in other experiments. The monitoring of LAr purity using TPC data is a fundamental study for LAr TPC experiments. However, the study has not been performed for a large LAr TPC in the presence of high electronic noise. Custom software was developed and validated for the accurate reconstruction of signals in noisy TPC data. The results of the reconstruction were used to successfully measure the LAr electron lifetime with an uncertainty comparable to alternate methods of measurement. The electron lifetime of the 35-ton Phase II run is determined to be 4.12 ± 0.17 (stat.) ±0.40 (syst.) ms. For general purpose research and development of high purity LAr as a particle detection medium, a dedicated test stand was designed, constructed, and commissioned. The system is used to test the gaseous photomultiplier (GPM) performance at cryogenic temperatures. The GPM functions with photoelectron multiplication at 77 K, at a reduced gain. Further study is required to show the detector’s direct sensitivity to LAr VUV scintillation light.« less
NASA Technical Reports Server (NTRS)
Tabib-Azar, M.; Akinwande, D.; Ponchak, George E.; LeClair, S. R.
1999-01-01
In this article we report the design, fabrication, and characterization of very high quality factor 10 GHz microstrip resonators on high-resistivity (high-rho) silicon substrates. Our experiments show that an external quality factor of over 13 000 can be achieved on microstripline resonators on high-rho silicon substrates. Such a high Q factor enables integration of arrays of previously reported evanescent microwave probe (EMP) on silicon cantilever beams. We also demonstrate that electron-hole pair recombination and generation lifetimes of silicon can be conveniently measured by illuminating the resonator using a pulsed light. Alternatively, the EMP was also used to nondestructively monitor excess carrier generation and recombination process in a semiconductor placed near the two-dimensional resonator.
Sartwelle, Thomas P.
2015-01-01
The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothers and babies alike. This article explains why electronic fetal monitoring remains endorsed as efficacious in the worlds’ labor rooms and courtrooms despite being such a feeble medical modality. It also reviews the reasons professional organizations have failed to condemn the use of electronic fetal monitoring in courtrooms. The failures of tort reform, special cerebral palsy courts, and damage limits to stem the escalating litigation are discussed. Finally, the authors propose using a currently available evidence rule—the Daubert doctrine that excludes “junk science” from the courtroom—as the beginning of the end to cerebral palsy litigation and electronic fetal monitoring’s 40-year masquerade as science. PMID:25183322
Beam diagnostics at high-intensity storage rings
NASA Astrophysics Data System (ADS)
Plum, Mike
1994-10-01
Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).
Bluetooth Low Energy: Wireless Connectivity for Medical Monitoring
Omre, Alf Helge
2010-01-01
Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report “Worldwide Bluetooth Semiconductor 2008-2012 Forecast,” published November 2008, a forthcoming radio frequency communication (“wireless connectivity”) standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. PMID:20307407
Bluetooth low energy: wireless connectivity for medical monitoring.
Omre, Alf Helge
2010-03-01
Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.
Vriesendorp, Reinout; Cohen, Adam; Kristanto, Paulus; Vrijens, Bernard; Rakesh, Pande; Anand, Bene; Iwebor, Henry Uchechukwaka; Stiekema, Jacobus
2007-12-01
This pilot study was designed to evaluate the feasibility and benefits of electronic adherence monitoring of antiretroviral medications in HIV patients who recently started Highly Active Anti Retroviral Therapy (HAART) in Francistown, Botswana and to compare this with self-reporting. Dosing histories were compiled electronically using Micro Electro Mechanical Systems (MEMS) monitors to evaluate adherence to prescribed therapies. Thirty patients enrolled in the antiretroviral treatment program were monitored over 6 weeks. These patients were all antiretroviral (ARV) naïve. After each visit (mean three times) to the pharmacy, the data compiled by the monitors were downloaded. Electronic monitoring of adherence was compared to patient self-reports of adherence. The mean individual medication adherence level measured with the electronic device was 85% (range 21-100%). The mean adherence level measured by means of self-reporting was 98% (range 70-100%). Medication prescribed on a once-a-day dose base was associated with a higher adherence level (97.9% for efavirenz) compared with a twice-a-day regimen (88.4% for Lamivudine/Zidovudine). It is feasible to assess treatment adherence of patients living in a low resource setting on HAART by using electronic monitors. Adherence, even in the early stages of treatment, appears to be insufficient in some patients and may be below the level required for continuous inhibition of viral replication. This approach may lead to improved targeting of counselling about their medication intake of such patients in order to prevent occurrence of resistant viral strains due to inadequate inhibition of viral replication. In this pilot study a significant difference between the data recorded through the electronic monitors and those provided by self-reporting was observed.
Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring
NASA Astrophysics Data System (ADS)
Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe
2017-07-01
Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.
Chen, Yi-Ting; Wang, Fu-Shing; Li, Zhendong; Li, Liang; Ling, Yong-Chien
2012-07-29
Phthalocyanines (PCs), an important class of chemicals widely used in many industrial sectors, are macrocyclic compounds possessing a heteroaromatic π-electron system with optical properties influenced by chemical structures and impurities or by-products introduced during the synthesis process. Analytical tools allowing for rapid monitoring of the synthesis processes are of significance for the development of new PCs with improved performance in many application areas. In this work, we report a matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) method for rapid and convenient monitoring of PC synthesis reactions. For this class of compounds, intact molecular ions could be detected by MALDI using retinoic acid as matrix. It was shown that relative quantification results of two PC compounds could be generated by MALDI MS. This method was applied to monitor the bromination reactions of nickel- and copper-containing PCs. It was demonstrated that, compared to the traditional UV-visible method, the MALDI MS method offers the advantage of higher sensitivity while providing chemical species and relative quantification information on the reactants and products, which are crucial to process monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.
Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
Biffinger, Justin C; Byrd, Jacqueline N; Dudley, Breanna L; Ringeisen, Bradley R
2008-01-18
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the presence of oxygen, power densities of 270+/-10, 350+/-20, and 120+/-10 W/m(3) were recorded from the mini-MFC for glucose, fructose, and ascorbic acid electron donors, respectively, while sucrose and acetate produced no response. The power produced from glucose decreased considerably (
Use of Electronic Documentation for Quality Improvement in Hospice
Cagle, John G.; Rokoske, Franziska S.; Durham, Danielle; Schenck, Anna P.; Spence, Carol; Hanson, Laura C.
2015-01-01
Little evidence exists on the use of electronic documentation in hospice and its relationship to quality improvement practices. The purposes of this study were to: (1) estimate the prevalence of electronic documentation use in hospice; (2) identify organizational characteristics associated with use of electronic documentation; and (3) determine whether quality measurement practices differed based on documentation format (electronic vs. nonelectronic). Surveys concerning the use of electronic documentation for quality improvement practices and the monitoring of quality-related care and outcomes were collected from 653 hospices. Users of electronic documentation were able to monitor a wider range of quality-related data than users of nonelectronic documentation. Quality components such as advanced care planning, cultural needs, experience during care of the actively dying, and the number/types of care being delivered were more likely to be documented by users of electronic documentation. Use of electronic documentation may help hospices to monitor quality and compliance. PMID:22267819
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, R. K., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in; Sahajwalla, V.; Shukla, S.
2016-01-15
Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D) MoS{sub 2}, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS{sub 2} layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS{sub 2} film resulted in hydrogen evolution. Our work shows thatmore » 2D MoS{sub 2} is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS{sub 2} shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS{sub 2} is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.« less
Button, Deeanna M; Tewksbury, Richard; Mustaine, Elizabeth E; Payne, Brian K
2013-01-01
The purpose of this article is to explore factors contributing to perceptions about electronic monitoring policies governing sex offenders. Guided by Tannenbaum's theory of attribution and Shaw and McKay's theory of social disorganization, the authors examine the influence of demographic characteristics, victimization experiences, and neighborhood characteristics on perceptions about policies regarding the electronic monitoring of sex offenders. Ordinary least squares regression and logistic regression analyses of stratified telephone survey data reveal that factors associated with favorable views on the use of global positioning satellite monitoring for registered sex offenders appear to stem primarily from individuals' demographic characteristics. Experiential and neighborhood factors do provide some influence over individuals' views of electronic monitoring policies for sex offenders. Theoretical and policy implications are discussed.
Quasi Real Time Data Analysis for Air Quality Monitoring with an Electronic Nose
NASA Technical Reports Server (NTRS)
Zhou, Hanying; Shevade, Abhijit V.; Pelletier, Christine C.; Homer, Margie L.; Ryan, M. Amy
2006-01-01
Cabin Air Quality Monitoring: A) Functions; 1) Incident monitor for targeted contaminants exceeding targeted concentrations. Identify and quantify. 2) Monitor for presence of compounds associated with fires or overheating electronics. 3) Monitor clean-up process. B) Characteristics; 1) Low mass, low power device. 2) Requires little crew time for maintenance and calibration. 3) Detects, identifies and quantifies selected chemical species at or below 24 hour SMAC.
Salathé, Marcel
2016-01-01
The digital revolution has contributed to very large data sets (ie, big data) relevant for public health. The two major data sources are electronic health records from traditional health systems and patient-generated data. As the two data sources have complementary strengths—high veracity in the data from traditional sources and high velocity and variety in patient-generated data—they can be combined to build more-robust public health systems. However, they also have unique challenges. Patient-generated data in particular are often completely unstructured and highly context dependent, posing essentially a machine-learning challenge. Some recent examples from infectious disease surveillance and adverse drug event monitoring demonstrate that the technical challenges can be solved. Despite these advances, the problem of verification remains, and unless traditional and digital epidemiologic approaches are combined, these data sources will be constrained by their intrinsic limits. PMID:28830106
DOE Office of Scientific and Technical Information (OSTI.GOV)
A, Popescu I; Lobo, J; Sawkey, D
2014-06-15
Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam MC literature. This work has been partially funded by Varian Medical Systems.« less
Fallahi, P; Yilmaz, S T; Imamoğlu, A
2010-12-17
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.
Peres, Heloísa; Cruz, Diná; Tellez, Michelle; de Cássia Gengo E Silva, Rita; Ortiz, Diley; Diogo, Regina; Ortiz, Dóris R
2016-01-01
The aim of this study was to present the experience of a teaching hospital with the implementation of improvements to an electronic documentation system of the nursing process (PROCEnf-USP®). The improvements were based on functional performance and technical quality of the system. It was adopted Scrum™ method for version control PROCEnf-USP® by enabling agility, flexibility and possibility of integration between development and users. The PROCEnf-USP® has been used since 2009 and has professional and academic environments. The current version lets you generate reports and supports decisions about diagnoses, outcomes and interventions. It is provided the use of indicators to monitor results and registration at the point of care. The establishment of important.
The effect of automated monitoring and real-time prompting on nurses' hand hygiene performance.
Levchenko, Alexander I; Boscart, Veronique M; Fernie, Geoff R
2013-10-01
Adequate hand hygiene compliance by healthcare staff is considered an effective method to reduce hospital-acquired infections. The electronic system developed at Toronto Rehabilitation Institute automatically detects hand hygiene opportunities and records hand hygiene actions. It includes an optional visual hand hygiene status indication, generates real-time hand hygiene prompting signals, and enables automated monitoring of individual and aggregated hand hygiene performance. The system was installed on a complex continuous care unit at the entrance to 17 patient rooms and a utility room. A total of 93 alcohol gel and soap dispensers were instrumented and 14 nurses were provided with the personal wearable electronic monitors. The study included three phases with the system operating in three different modes: (1) an inactive mode during the first phase when hand hygiene opportunities and hand hygiene actions were recorded but prompting and visual indication functions were disabled, (2) only hand hygiene status indicators were enabled during the second phase, and (3) both hand hygiene status and real-time hand hygiene prompting signals were enabled during the third phase. Data collection was performed automatically during all of the three phases. The system indicated significantly higher hand hygiene activity rates and compliance during the third phase, with both hand hygiene indication and real-time prompting functions enabled. To increase the efficacy of the technology, its use was supplemented with individual performance reviews of the automatically collected data.
Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L
2014-01-01
Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for widespread use. This technology has broad applications for use in clinical, public health, and rehabilitation settings. PMID:25131661
Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L
2014-08-15
Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for widespread use. This technology has broad applications for use in clinical, public health, and rehabilitation settings.
Defect generation in silicon dioxide from synchrotron radiation below 41 eV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C. K.; Reisman, A.; Bhattacharya, P.
1989-07-01
Generation of fixed positive charge, neutral electron traps, and fixednegative charge in SiO/sub 2/ due to exposure to x radiation in the photon energyrange below 41 eV from a synchrotron source is reported. For constant incidentx-radiation exposure levels of 120 mJ/cm/sup 2/ with both monochromatic andbroadband radiation, the number of defects generated in the monitoring deviceswas at or below the detection limit of the equipment. This is in sharp contrastwith the results obtained at photon energies above 300 eV reported earlier (C.K. Williams, A. Reisman, P. K. Bhattacharya, and W. Ng, J. Appl. Phys./bold 64/, 1145 (1988)) in which amore » large number of each of the three defectsmentioned above were generated. The lack of damage indicates that the problemsassociated with x-ray-induced insulator damage due to x-ray lithography may besolved by tailoring the photon energy, provided suitable mask and photoresistmaterials can be developed.« less
A simple handheld pupillometer for chromatic Flicker studies
NASA Astrophysics Data System (ADS)
Bernabei, M.; Tinarelli, R.; Peretto, L.; Rovati, L.
2014-02-01
A portable pupillometer has been developed which is capable of performing accurate measurements of the pupil diameter during chromatic flicker stimulations. The handheld measuring system records the near-infrared image of the pupil at the rate of 25 fps and simultaneously stimulates the eye using a diffused flicker light generated by light emitting diodes (LEDs). Intensity, frequency and chromatic coordinates of the stimulus can be easily adjusted using a user-friendly graphical interface. Thanks to a chromatic monitoring of the stimulus close to the plane of the eye, photopically matched conditions can be easily achieved. The pupil diameter/area can be measured during flickering stimuli that are generated with frequency in a range of 0.1-20 Hz. The electronic unit, properly connected to the personal computer through a USB port, drives the optical unit, which can be easily held in a hand. The software interface controlling the system was developed in LabVIEW. This paper describes the instrument optical setup, front-end electronics and data processing. Moreover preliminary results obtained on a voluntary are reported.
Oktem, Ozgur; Bildik, Gamze; Senbabaoglu, Filiz; Lack, Nathan A; Akin, Nazli; Yakar, Feridun; Urman, Defne; Guzel, Yilmaz; Balaban, Basak; Iwase, Akira; Urman, Bulent
2016-04-01
A recently developed technology (xCelligence) integrating micro-electronics and cell biology allows real-time, uninterrupted and quantitative analysis of cell proliferation, viability and cytotoxicity by measuring the electrical impedance of the cell population in the wells without using any labeling agent. In this study we investigated if this system is a suitable model to analyze the effects of mitogenic (FSH) and cytotoxic (chemotherapy) agents with different toxicity profiles on human granulosa cells in comparison to conventional methods of assessing cell viability, DNA damage, apoptosis and steroidogenesis. The system generated the real-time growth curves of the cells, and determined their doubling times, mean cell indices and generated dose-response curves after exposure to cytotoxic and mitogenic stimuli. It accurately predicted the gonadotoxicity of the drugs and distinguished less toxic agents (5-FU and paclitaxel) from more toxic ones (cisplatin and cyclophosphamide). This platform can be a useful tool for specific end-point assays in reproductive toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1978-01-01
Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingold, G., E-mail: gerhard.ingold@psi.ch; Rittmann, J., E-mail: jochen.rittmann@psi.ch; Beaud, P.
The ESB instrument at the SwissFEL ARAMIS hard X-ray free electron laser is designed to perform pump-probe experiments in condensed matter and material science employing photon-in and photon-out techniques. It includes a femtosecond optical laser system to generate a variety of pump beams, a X-ray optical scheme to tailor the X-ray probe beam, shot-to-shot diagnostics to monitor the X-ray intensity and arrival time, and two endstations operated at a single focus position that include multi-purpose sample environments and 2D pixel detectors for data collection.
LEP Events, TLE's, and Q-bursts observed from the Antarctic
NASA Astrophysics Data System (ADS)
Moore, R. C.; Kim, D.; Flint, Q. A.
2017-12-01
ELF/VLF measurements at Palmer Station, McMurdo Station, and South Pole Station, Antarctica are used to detect lightning-generated ELF/VLF radio atmospherics from around the globe and to remote sense ionospheric disturbances in the Southern hemisphere. The Antarctic ELF/VLF receivers complement a Northern hemisphere ELF/VLF monitoring array. In this paper, we present our latest observational results, including a full statistical analysis of conjugate observations of lightning-induced electron precipitation and radio atmospherics associated specifically with the transient luminous events known as gigantic jets and sprites.
78 FR 70282 - New England Fishery Management Council; Public Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... England Fishery Management Council's (Council) Groundfish Oversight Committee and Electronic Monitoring.... Tuesday, December 10, 2013 Beginning at 9:30 a.m.--Electronic Monitoring Working Group Agenda The EMWG will continue its work on identifying barriers and possible solutions to implementing electronic...
Cowan, J; Michel, C; Manhiça, I; Mutaquiha, C; Monivo, C; Saize, D; Beste, J; Creswell, J; Codlin, A J; Gloyd, S
2016-03-01
Electronic diagnostic tests, such as the Xpert® MTB/RIF assay, are being implemented in low- and middle-income countries (LMICs). However, timely information from these tests available via remote monitoring is underutilized. The failure to transmit real-time, actionable data to key individuals such as clinicians, patients, and national monitoring and evaluation teams may negatively impact patient care. To describe recently developed applications that allow for real-time, remote monitoring of Xpert results, and initial implementation of one of these products in central Mozambique. In partnership with the Mozambican National Tuberculosis Program, we compared three different remote monitoring tools for Xpert and selected one, GxAlert, to pilot and evaluate at five public health centers in Mozambique. GxAlert software was successfully installed on all five Xpert computers, and test results are now uploaded daily via a USB internet modem to a secure online database. A password-protected web-based interface allows real-time analysis of test results, and 1200 positive tests for tuberculosis generated 8000 SMS result notifications to key individuals. Remote monitoring of diagnostic platforms is feasible in LMICs. While promising, this effort needs to address issues around patient data ownership, confidentiality, interoperability, unique patient identifiers, and data security.
A novel method for bacterial inactivation using electrosprayed water nanostructures
NASA Astrophysics Data System (ADS)
Pyrgiotakis, Georgios; McDevitt, James; Yamauchi, Toshiyuki; Demokritou, Philip
2012-08-01
This is a study focusing on the potential to deactivate biological agents (bacteria and endospores) using engineered water nanostructures (EWNS). The EWNS were generated using an electrospray device that collects water by condensing atmospheric water vapor on a Peltier-cooled electrode. A high voltage is applied between the collection electrode and a grounded electrode resulting in aerosolization of the condensed water and a constant generation of EWNS. Gram-negative Serratia marcescens, gram-positive Staphylococcus aureus, and Bacillus atrophaeus endospores were placed on stainless steel coupons and exposed to generated EWNS at multiple time intervals. Upon exposures, the bacteria were recovered and placed on nutrient agar to grow, and the colony forming units were counted. Ozone levels as well as air temperature and relative humidity were monitored during the experiments. Qualitative confirmation of bacterial destruction was also obtained by transmission electron microscopy. In addition, important EWNS aerosol properties such as particle number concentration as a function of size as well as the average surface charge of the generated EWNS were measured using real-time instrumentation. It was shown that the novel electrospray method can generate over time a constant flux of EWNS. EWNS have a peak number concentration of 8,000 particles per cubic centimeter with a modal peak size around 20 nm. The average surface charge of the generated EWNS was found to be 10 ± 2 electrons per particle. In addition, it was shown that the EWNS have the potential to deactivate both bacteria types from surfaces. At the same administrate dose, however, the endospores were not inactivated. This novel method and the unique properties of the generated EWNS could potentially be used to develop an effective, environmentally friendly, and inexpensive method for bacteria inactivation.
NASA Astrophysics Data System (ADS)
Deckard, Michael; Ratib, Osman M.; Rubino, Gregory
2002-05-01
Our project was to design and implement a ceiling-mounted multi monitor display unit for use in a high-field MRI surgical suite. The system is designed to simultaneously display images/data from four different digital and/or analog sources with: minimal interference from the adjacent high magnetic field, minimal signal-to-noise/artifact contribution to the MRI images and compliance with codes and regulations for the sterile neuro-surgical environment. Provisions were also made to accommodate the importing and exporting of video information via PACS and remote processing/display for clinical and education uses. Commercial fiber optic receivers/transmitters were implemented along with supporting video processing and distribution equipment to solve the video communication problem. A new generation of high-resolution color flat panel displays was selected for the project. A custom-made monitor mount and in-suite electronics enclosure was designed and constructed at UCLA. Difficulties with implementing an isolated AC power system are discussed and a work-around solution presented.
Computational Analysis of a Thermoelectric Generator for Waste-Heat Harvesting in Wearable Systems
NASA Astrophysics Data System (ADS)
Kossyvakis, D. N.; Vassiliadis, S. G.; Vossou, C. G.; Mangiorou, E. E.; Potirakis, S. M.; Hristoforou, E. V.
2016-06-01
Over recent decades, a constantly growing interest in the field of portable electronic devices has been observed. Recent developments in the scientific areas of integrated circuits and sensing technologies have enabled realization and design of lightweight low-power wearable sensing systems that can be of great use, especially for continuous health monitoring and performance recording applications. However, to facilitate wide penetration of such systems into the market, the issue of ensuring their seamless and reliable power supply still remains a major concern. In this work, the performance of a thermoelectric generator, able to exploit the temperature difference established between the human body and the environment, has been examined computationally using ANSYS 14.0 finite-element modeling (FEM) software, as a means for providing the necessary power to various portable electronic systems. The performance variation imposed due to different thermoelement geometries has been estimated to identify the most appropriate solution for the considered application. Furthermore, different ambient temperature and heat exchange conditions between the cold side of the generator and the environment have been investigated. The computational analysis indicated that power output in the order of 1.8 mW can be obtained by a 100-cm2 system, if specific design criteria can be fulfilled.
Adjustable electronic load-alarm relay
Mason, Charles H.; Sitton, Roy S.
1976-01-01
This invention is an improved electronic alarm relay for monitoring the current drawn by an AC motor or other electrical load. The circuit is designed to measure the load with high accuracy and to have excellent alarm repeatability. Chattering and arcing of the relay contacts are minimal. The operator can adjust the set point easily and can re-set both the high and the low alarm points by means of one simple adjustment. The relay includes means for generating a signal voltage proportional to the motor current. In a preferred form of the invention a first operational amplifier is provided to generate a first constant reference voltage which is higher than a preselected value of the signal voltage. A second operational amplifier is provided to generate a second constant reference voltage which is lower than the aforementioned preselected value of the signal voltage. A circuit comprising a first resistor serially connected to a second resistor is connected across the outputs of the first and second amplifiers, and the junction of the two resistors is connected to the inverting terminal of the second amplifier. Means are provided to compare the aforementioned signal voltage with both the first and second reference voltages and to actuate an alarm if the signal voltage is higher than the first reference voltage or lower than the second reference voltage.
Sensing a Changing Chemical Mixture Using an Electronic Nose
NASA Technical Reports Server (NTRS)
Duong, Tuan; Ryan, Margaret
2008-01-01
A method of using an electronic nose to detect an airborne mixture of known chemical compounds and measure the temporally varying concentrations of the individual compounds is undergoing development. In a typical intended application, the method would be used to monitor the air in an inhabited space (e.g., the interior of a building) for the release of solvents, toxic fumes, and other compounds that are regarded as contaminants. At the present state of development, the method affords a capability for identifying and quantitating one or two compounds that are members of a set of some number (typically of the order of a dozen) known compounds. In principle, the method could be extended to enable monitoring of more than two compounds. An electronic nose consists of an array of sensors, typically made from polymer carbon composites, the electrical resistances of which change upon exposure to a variety of chemicals. By design, each sensor is unique in its responses to these chemicals: some or all of the sensitivities of a given sensor to the various vapors differ from the corresponding sensitivities of other sensors. In general, the responses of the sensors are nonlinear functions of the concentrations of the chemicals. Hence, mathematically, the monitoring problem is to solve the set of time-dependent nonlinear equations for the sensor responses to obtain the time dependent concentrations of individual compounds. In the present developmental method, successive approximations of the solution are generated by a learning algorithm based on independent-component analysis (ICA) an established information theoretic approach for transforming a vector of observed interdependent signals into a set of signals that are as nearly statistically independent as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallstrom, Jason O.; Ni, Zheng Richard
This STTR Phase I project assessed the feasibility of a new CO 2 sensing system optimized for low-cost, high-accuracy, whole-building monitoring for use in demand control ventilation. The focus was on the development of a wireless networking platform and associated firmware to provide signal conditioning and conversion, fault- and disruptiontolerant networking, and multi-hop routing at building scales to avoid wiring costs. Early exploration of a bridge (or “gateway”) to direct digital control services was also explored. Results of the project contributed to an improved understanding of a new electrochemical sensor for monitoring indoor CO 2 concentrations, as well as themore » electronics and networking infrastructure required to deploy those sensors at building scales. New knowledge was acquired concerning the sensor’s accuracy, environmental response, and failure modes, and the acquisition electronics required to achieve accuracy over a wide range of CO 2 concentrations. The project demonstrated that the new sensor offers repeatable correspondence with commercial optical sensors, with supporting electronics that offer gain accuracy within 0.5%, and acquisition accuracy within 1.5% across three orders of magnitude variation in generated current. Considering production, installation, and maintenance costs, the technology presents a foundation for achieving whole-building CO 2 sensing at a price point below $0.066 / sq-ft – meeting economic feasibility criteria established by the Department of Energy. The technology developed under this award addresses obstacles on the critical path to enabling whole-building CO 2 sensing and demand control ventilation in commercial retrofits, small commercial buildings, residential complexes, and other highpotential structures that have been slow to adopt these technologies. It presents an opportunity to significantly reduce energy use throughout the United States.« less
Monitoring TCE Degradation by In-situ Bioremediation in TCE-Contaminated site
NASA Astrophysics Data System (ADS)
Han, K.; Hong, U.; Ahn, G.; Jiang, H.; Yoo, H.; Park, S.; Kim, N.; Ahn, H.; Kwon, S.; Kim, Y.
2012-12-01
Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we investigated two different tests (i.e., biostimulation and bioaugmentation) of biological remediation through the Well-to-Well test (injection well to extraction well) in TCE-contaminated site. Also solutions (Electron donor & acceptor, tracer) were injected into the aquifer using a liquid coupled with nitrogen gas sparging. In biostimulation, we use 3 phases to monitoring biological remediation. Phase 1: we inject formate solution to get electron donor hydrogen (hydrogen can be generated from fermentation of formate). We also inject bromide as tracer. Phase 2: we made injection solution by formate, bromide and sulfate. The reason why we inject sulfate is that as a kind of electron accepter, sulfate reduction process is helpful to create anaerobic condition. Phase 3: we inject mixed solution made by formate, sulfate, fumarate, and bromide. The degradation of fumarate has the same mechanism and condition with TCE degradation, so we added fumarate to make sure that if the anaerobic TCE degradation by indigenous microorganisms started up (Because low TCE concentration by gas sparging). In the bioaugmentation test, we inject the Evanite culture (containing dehalococcoides spp) and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the field by measuring TCE and VC reductases.
Tools in a clinical information system supporting clinical trials at a Swiss University Hospital.
Weisskopf, Michael; Bucklar, Guido; Blaser, Jürg
2014-12-01
Issues concerning inadequate source data of clinical trials rank second in the most common findings by regulatory authorities. The increasing use of electronic clinical information systems by healthcare providers offers an opportunity to facilitate and improve the conduct of clinical trials and the source documentation. We report on a number of tools implemented into the clinical information system of a university hospital to support clinical research. In 2011/2012, a set of tools was developed in the clinical information system of the University Hospital Zurich to support clinical research, including (1) a trial registry for documenting metadata on the clinical trials conducted at the hospital, (2) a patient-trial-assignment-tool to tag patients in the electronic medical charts as participants of specific trials, (3) medical record templates for the documentation of study visits and trial-related procedures, (4) online queries on trials and trial participants, (5) access to the electronic medical records for clinical monitors, (6) an alerting tool to notify of hospital admissions of trial participants, (7) queries to identify potentially eligible patients in the planning phase as trial feasibility checks and during the trial as recruitment support, and (8) order sets to facilitate the complete and accurate performance of study visit procedures. The number of approximately 100 new registrations per year in the voluntary trial registry in the clinical information system now matches the numbers of the existing mandatory trial registry of the hospital. Likewise, the yearly numbers of patients tagged as trial participants as well as the use of the standardized trial record templates increased to 2408 documented trial enrolments and 190 reports generated/month in the year 2013. Accounts for 32 clinical monitors have been established in the first 2 years monitoring a total of 49 trials in 16 clinical departments. A total of 15 months after adding the optional feature of hospital admission alerts of trial participants, 107 running trials have activated this option, including 48 out of 97 studies (49.5%) registered in the year 2013, generating approximately 85 alerts per month. The popularity of the presented tools in the clinical information system illustrates their potential to facilitate the conduct of clinical trials. The tools also allow for enhanced transparency on trials conducted at the hospital. Future studies on monitoring and inspection findings will have to evaluate their impact on quality and safety. © The Author(s) 2014.
75 FR 47770 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... Oregon; electronic monitoring systems (EMS): installation, 6 hours; data downloads, 4 hours and EMS... have and use electronic monitoring to verify full retention of catch and for Pacific whiting shoreside... Fishery Monitoring and Catch Accounting Program. OMB Control Number: 0648-0563. Form Number(s): NA . Type...
An electronic circuit for sensing malfunctions in test instrumentation
NASA Technical Reports Server (NTRS)
Miller, W. M., Jr.
1969-01-01
Monitoring device differentiates between malfunctions occurring in the system undergoing test and malfunctions within the test instrumentation itself. Electronic circuits in the monitor use transistors to commutate silicon controlled rectifiers by removing the drive voltage, display circuits are then used to monitor multiple discrete lines.
Biophoton research in blood reveals its holistic properties.
Voeikov, V L; Asfaramov, R; Bouravleva, E V; Novikov, C N; Vilenskaya, N D
2003-05-01
Monitoring of spontaneous and luminophore amplified photon emission (PE) from non-diluted human blood under resting conditions and artificially induced immune reaction revealed that blood is a continuous source of biophotons indicating that it persists in electronically excited state. This state is pumped through generation of electron excitation produced in reactive oxygen species (ROS) reactions. Excited state of blood and of neutrophil suspensions (primary sources of ROS in blood) is an oscillatory one suggesting of interaction between individual sources of electron excitation. Excited state of blood is extremely sensitive to the tiniest fluctuations of external photonic fields but resistant to temperature variations as reflected in hysteresis of PE in response to temperature variations. These data suggest that blood is a highly cooperative non-equilibrium and non-linear system, whose components unceasingly interact in time and space. At least in part this property is provided by the ability of blood to store energy of electron excitation that is produced in course of its own normal metabolism. From a practical point of view analysis of these qualities of blood may be a basement of new approach to diagnostic procedures.
78 FR 59657 - Pacific Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
... Pacific Fishery Management Council (Pacific Council) will hold a work session for the Groundfish Electronic Monitoring Policy Advisory Committee and Groundfish Electronic Monitoring Technical Advisory...
Lee, Inyoung; Loew, Noya; Tsugawa, Wakako; Lin, Chi-En; Probst, David; La Belle, Jeffrey T; Sode, Koji
2018-06-01
Continuous glucose monitoring (CGM) is a vital technology for diabetes patients by providing tight glycemic control. Currently, many commercially available CGM sensors use glucose oxidase (GOD) as sensor element, but this enzyme is not able to transfer electrons directly to the electrode without oxygen or an electronic mediator. We previously reported a mutated FAD dependent glucose dehydrogenase complex (FADGDH) capable of direct electron transfer (DET) via an electron transfer subunit without involving oxygen or a mediator. In this study, we investigated the electrochemical response of DET by controlling the immobilization of DET-FADGDH using 3 types of self-assembled monolayers (SAMs) with varying lengths. With the employment of DET-FADGDH and SAM, high current densities were achieved without being affected by interfering substances such as acetaminophen and ascorbic acid. Additionally, the current generated from DET-FADGDH electrodes decreased with increasing length of SAM, suggesting that the DET ability can be affected by the distance between the enzyme and the electrode. These results indicate the feasibility of controlling the immobilization state of the enzymes on the electrode surface. Copyright © 2017. Published by Elsevier B.V.
A First Standardized Swiss Electronic Maternity Record.
Murbach, Michel; Martin, Sabine; Denecke, Kerstin; Nüssli, Stephan
2017-01-01
During the nine months of pregnancy, women have to regularly visit several physicians for continuous monitoring of the health and development of the fetus and mother. Comprehensive examination results of different types are generated in this process; documentation and data transmission standards are still unavailable or not in use. Relevant information is collected in a paper-based maternity record carried by the pregnant women. To improve availability and transmission of data, we aim at developing a first prototype for an electronic maternity record for Switzerland. By analyzing the documentation workflow during pregnancy, we determined a maternity record data set. Further, we collected requirements towards a digital maternity record. As data exchange format, the Swiss specific exchange format SMEEX (swiss medical data exchange) was exploited. Feedback from 27 potential users was collected to identify further improvements. The relevant data is extracted from the primary care information system as SMEEX file, stored in a database and made available in a web and a mobile application, developed as prototypes of an electronic maternity record. The user confirmed the usefulness of the system and provided multiple suggestions for an extension. An electronical maternity record as developed in this work could be in future linked to the electronic patient record.
Continuous monitoring of odours from a composting plant using electronic noses.
Sironi, Selena; Capelli, Laura; Céntola, Paolo; Del Rosso, Renato; Il Grande, Massimiliano
2007-01-01
The odour impact of a composting plant situated in an urbanized area was evaluated by continuously monitoring the ambient air close to the plant during a period of about 4 days using two electronic noses. One electronic nose was installed in a nearby house, and the other one inside the perimeter of the composting plant in order to compare the response of both instruments. The results of the monitoring are represented by tables that report the olfactory class and the odour concentration value attributed to the analyzed air for each of the 370 measurements carried out during the monitoring period. The electronic nose installed at the house detected the presence of odours coming from the composting plant for about 7.8% of the monitoring total duration. Of the odour detections, 86% (25 of 29 measurements) were classified as belonging to the olfactory class corresponding to the open air storage of the waste screening overflows heaps, which was therefore identified to be the major odour source of the monitored composting plant. In correspondence of the measurements during which the electronic nose inside the house detected the presence of odours from the composting plant, the olfactory classes recognized by both instruments coincide. Moreover, the electronic nose at the house detected the presence of odours from the composting plant at issue in correspondence of each odour perception of the house occupants. The results of the study show the possibility of using an electronic nose for environmental odours monitoring, which enables the classification of the quality of the air and to quantify the olfactory nuisance from an industrial source in terms of duration and odour concentration.
76 FR 10008 - North Pacific Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... electronic monitoring system design for less than 60 foot vessels that are included under the observer restructuring action. Electronic monitoring may be a potential alternative to an observer for some small vessels that will be subject to sampling and monitoring requirements under the new observer restructuring...
Behavioral-Progress Monitoring Using the Electronic Daily Behavioral Report Card (e-DBRC) System
ERIC Educational Resources Information Center
Burke, Mack D.; Vannest, Kimberly J.
2008-01-01
In this article, the authors present an overview of a Web-based electronic system for behavioral-progress monitoring. Behavioral-progress monitoring is necessary to evaluate responsiveness to behavioral interventions, the effects of positive behavioral support, and the attainment of individualized education program goals and objectives. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy, N.; Fellenz, B.; Prieto, P.
The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam testmore » facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.« less
Printed soft-electronics for remote body monitoring
NASA Astrophysics Data System (ADS)
Mantysalo, Matti; Vuorinen, Tiina; Jeihani, Vala; Vehkaoja, Antti
2017-08-01
Wearable electronics has emerged into the consumer markets over the past few years. Wrist worn and textile integrated devices are the most common apparatuses for unobtrusive monitoring in sports and wellness sectors. Disposable patches and bandages, however, represent the new era of wearable electronics. Soft and stretchable electronics is the enabling technology of this paradigm shift. It can conform to temporary transfer tattoo and deform with the skin without detachment or fracture. In this paper, we focus on screen-printed soft-electronics for remote body monitoring. We will present a fabrication process of a skin conformable electrode bandage designed for long-term outpatient electrocardiography (ECG) monitoring. The soft bandage is designed to be attached to the patient chest and miniaturized data collection device is connected to the bandage via Micro-USB connector. The fabricated bandage is tested in short exercise as well as continued long-term (72 hours) monitoring during normal daily activities. The attained quality of the measured ECG signals is fully satisfactory for rhythm-based cardiac analysis also during moderate-intensity exercise. After pre-processing, the signals could be used also for more profound morphological analysis of ECG wave shapes.
NASA Astrophysics Data System (ADS)
Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian
2013-05-01
Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.
Spanu, A.; Lai, S.; Cosseddu, P.; Tedesco, M.; Martinoia, S.; Bonfiglio, A.
2015-01-01
In the last four decades, substantial advances have been done in the understanding of the electrical behavior of excitable cells. From the introduction in the early 70's of the Ion Sensitive Field Effect Transistor (ISFET), a lot of effort has been put in the development of more and more performing transistor-based devices to reliably interface electrogenic cells such as, for example, cardiac myocytes and neurons. However, depending on the type of application, the electronic devices used to this aim face several problems like the intrinsic rigidity of the materials (associated with foreign body rejection reactions), lack of transparency and the presence of a reference electrode. Here, an innovative system based on a novel kind of organic thin film transistor (OTFT), called organic charge modulated FET (OCMFET), is proposed as a flexible, transparent, reference-less transducer of the electrical activity of electrogenic cells. The exploitation of organic electronics in interfacing the living matters will open up new perspectives in the electrophysiological field allowing us to head toward a modern era of flexible, reference-less, and low cost probes with high-spatial and high-temporal resolution for a new generation of in-vitro and in-vivo monitoring platforms. PMID:25744085
Lightweight Exoskeletons with Controllable Actuators
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Mavrodis, Constantinos; Melli-Huber, Juan; Fisch, Avi (Alan)
2004-01-01
A proposed class of lightweight exoskeletal electromechanical systems would include electrically controllable actuators that would generate torques and forces that, depending on specific applications, would resist and/or assist wearers movements. The proposed systems would be successors to relatively heavy, bulky, and less capable human-strength-amplifying exoskeletal electromechanical systems that have been subjects of research during the past four decades. The proposed systems could be useful in diverse applications in which there are needs for systems that could be donned or doffed easily, that would exert little effect when idle, and that could be activated on demand: examples of such applications include (1) providing controlled movement and/or resistance to movement for physical exercise and (2) augmenting wearers strengths in the performance of military, law-enforcement, and industrial tasks. An exoskeleton according to the proposal would include adjustable lightweight graphite/epoxy struts and would be attached to the wearer's body by belts made of hook-and-pile material. At selected rotary and linear joints, the exoskeleton would be fitted, variously, with lightweight, low-power-consumption rotary and linear brakes, clutches, and motors. The exoskeleton would also be equipped with electronic circuitry for monitoring, control, and possibly communication with external electronic circuits that would perform additional monitoring and control functions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... Monitoring Provisions for Electronics Manufacturing AGENCY: Environmental Protection Agency (EPA). ACTION... monitoring methods in Subpart I: Electronics Manufacturing of the Mandatory Greenhouse Gas Reporting Rule...: Electronics Manufacturing of the Greenhouse Gas Reporting Rule on December 1, 2010 (75 FR 74774). This subpart...
Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept
NASA Technical Reports Server (NTRS)
Kennedy, J. J.
1970-01-01
Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.
NASA Astrophysics Data System (ADS)
Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.
2017-12-01
We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.
Load optimised piezoelectric generator for powering battery-less TPMS
NASA Astrophysics Data System (ADS)
Blažević, D.; Kamenar, E.; Zelenika, S.
2013-05-01
The design of a piezoelectric device aimed at harvesting the kinetic energy of random vibrations on a vehicle's wheel is presented. The harvester is optimised for powering a Tire Pressure Monitoring System (TPMS). On-road experiments are performed in order to measure the frequencies and amplitudes of wheels' vibrations. It is hence determined that the highest amplitudes occur in an unperiodic manner. Initial tests of the battery-less TPMS are performed in laboratory conditions where tuning and system set-up optimization is achieved. The energy obtained from the piezoelectric bimorph is managed by employing the control electronics which converts AC voltage to DC and conditions the output voltage to make it compatible with the load (i.e. sensor electronics and transmitter). The control electronics also manages the sleep/measure/transmit cycles so that the harvested energy is efficiently used. The system is finally tested in real on-road conditions successfully powering the pressure sensor and transmitting the data to a receiver in the car cockpit.
Prolonged energy harvesting for ingestible devices.
Nadeau, Phillip; El-Damak, Dina; Glettig, Dean; Kong, Yong Lin; Mo, Stacy; Cleveland, Cody; Booth, Lucas; Roxhed, Niclas; Langer, Robert; Chandrakasan, Anantha P; Traverso, Giovanni
2017-01-01
Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW per mm 2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract.
SPR imaging based electronic tongue via landscape images for complex mixture analysis.
Genua, Maria; Garçon, Laurie-Amandine; Mounier, Violette; Wehry, Hillary; Buhot, Arnaud; Billon, Martial; Calemczuk, Roberto; Bonnaffé, David; Hou, Yanxia; Livache, Thierry
2014-12-01
Electronic noses/tongues (eN/eT) have emerged as promising alternatives for analysis of complex mixtures in the domain of food and beverage quality control. We have recently developed an electronic tongue by combining surface plasmon resonance imaging (SPRi) with an array of non-specific and cross-reactive receptors prepared by simply mixing two small molecules in varying and controlled proportions and allowing the mixtures to self-assemble on the SPRi prism surface. The obtained eT generated novel and unique 2D continuous evolution profiles (CEPs) and 3D continuous evolution landscapes (CELs) based on which the differentiation of complex mixtures such as red wine, beer and milk were successful. The preliminary experiments performed for monitoring the deterioration of UHT milk demonstrated its potential for quality control applications. Furthermore, the eT exhibited good repeatability and stability, capable of operating after a minimum storage period of 5 months. Copyright © 2014 Elsevier B.V. All rights reserved.
Leaching of heavy metals from E-waste in simulated landfill columns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yadong; Richardson, Jay B.; Mark Bricka, R.
2009-07-15
In recent history the volume of electronic products purchased by consumers has dramatically escalated. As a result this has produced an ever-increasing electronic waste (E-waste) stream, which has generated concerns regarding the E-waste's potential for adversely impacting the environment. The leaching of toxic substances from obsolete personal computers (PCs) and cathode ray tubes (CRTs) of televisions and monitors, which are the most significant components in E-waste stream, was studied using landfill simulation in columns. Five columns were employed. One column served as a control which was filled with municipal solid waste (MSW), two columns were filled with a mixture ofmore » MSW and CRTs, and the other two were filled with MSW and computer components including printed wire boards, hard disc drives, floppy disc drives, CD/DVD drives, and power supply units. The leachate generated from the columns was monitored for toxic materials throughout the two-year duration of the study. Results indicate that lead (Pb) and various other heavy metals that were of environmental and health concern were not detected in the leachate from the simulators. When the samples of the solids were collected from underneath the E-waste in the columns and were analyzed, significant amount of Pb was detected. This indicates that Pb could readily leach from the E-waste, but was absorbed by the solids around the E-waste materials. While Pb was not observed in the leachate in this study, it is likely that the Pb would eventually enter the leachate after a long term transport.« less
Miniature, low-power X-ray tube using a microchannel electron generator electron source
NASA Technical Reports Server (NTRS)
Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)
2011-01-01
Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.
Macauley, Molly; Palmer, Karen; Shih, Jhih-Shyang
2003-05-01
The importance of information technology to the world economy has brought about a surge in demand for electronic equipment. With rapid technological change, a growing fraction of the increasing stock of many types of electronics becomes obsolete each year. We model the costs and benefits of policies to manage 'e-waste' by focusing on a large component of the electronic waste stream-computer monitors-and the environmental concerns associated with disposal of the lead embodied in cathode ray tubes (CRTs) used in most monitors. We find that the benefits of avoiding health effects associated with CRT disposal appear far outweighed by the costs for a wide range of policies. For the stock of monitors disposed of in the United States in 1998, we find that policies restricting or banning some popular disposal options would increase disposal costs from about US dollar 1 per monitor to between US dollars 3 and US dollars 20 per monitor. Policies to promote a modest amount of recycling of monitor parts, including lead, can be less expensive. In all cases, however, the costs of the policies exceed the value of the avoided health effects of CRT disposal.
ERIC Educational Resources Information Center
Wells, Deborah L.; Moorman, Robert H.; Werner, Jon M.
2007-01-01
As a form of performance monitoring, electronic performance monitoring (EPM) offers the opportunity for unobtrusive and continuous performance data gathering. These strengths can also make EPM stressful and threatening. Many features of performance evaluation systems, including the organizational purposes for which they are used, can affect…
Modelling and control of a microgrid including photovoltaic and wind generation
NASA Astrophysics Data System (ADS)
Hussain, Mohammed Touseef
Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.
RadWorks Project. ISS REM - to - BIRD - to - HERA: The Evolution of a Technology
NASA Technical Reports Server (NTRS)
McLeod, Catherine D.
2015-01-01
The advancement of particle detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. One such device, the TimePix, is being developed at CERN, and is providing the technology basis for the most recent line of radiation detection devices being developed by the NASA AES RadWorks project. The most fundamental of these devices, an ISS-Radiation Environment Monitor (REM), is installed as a USB device on ISS where it is monitoring the radiation environment on a perpetual basis. The second generation of this TimePix technology, the BIRD (Battery-operated Independent Radiation Detector), was flown on the NASA EFT-1 flight in December 2014. Data collected by BIRD was the first data made available from the Trapped Belt region of the Earth's atmosphere in over 40 years. The 3rdgeneration of this technology, the HERA (Hybrid Electronic Radiation Assessor), is planned to be integrated into the Orion EM-1, and EM-2 vehicles where it will monitor the radiation environment. For the EM-2 flight, HERA will provide Caution and Warning notification for SPEs as well as real time dose measurements for crew members. The development of this line of radiation detectors provide much greater information and characterization of charged particles in the space radiation environment than has been collected in the past, and in the process provide greater information to inform crew members of radiation related risks, while being very power and mass efficient.
Miotto, Riccardo; Glicksberg, Benjamin S.; Morgan, Joseph W.; Dudley, Joel T.
2017-01-01
Monitoring and modeling biomedical, health care and wellness data from individuals and converging data on a population scale have tremendous potential to improve understanding of the transition to the healthy state of human physiology to disease setting. Wellness monitoring devices and companion software applications capable of generating alerts and sharing data with health care providers or social networks are now available. The accessibility and clinical utility of such data for disease or wellness research are currently limited. Designing methods for streaming data capture, real-time data aggregation, machine learning, predictive analytics and visualization solutions to integrate wellness or health monitoring data elements with the electronic medical records (EMRs) maintained by health care providers permits better utilization. Integration of population-scale biomedical, health care and wellness data would help to stratify patients for active health management and to understand clinically asymptomatic patients and underlying illness trajectories. In this article, we discuss various health-monitoring devices, their ability to capture the unique state of health represented in a patient and their application in individualized diagnostics, prognosis, clinical or wellness intervention. We also discuss examples of translational bioinformatics approaches to integrating patient-generated data with existing EMRs, personal health records, patient portals and clinical data repositories. Briefly, translational bioinformatics methods, tools and resources are at the center of these advances in implementing real-time biomedical and health care analytics in the clinical setting. Furthermore, these advances are poised to play a significant role in clinical decision-making and implementation of data-driven medicine and wellness care. PMID:26876889
VAXCMS - VAX CONTINUOUS MONITORING SYSTEM, VERSION 2.2
NASA Technical Reports Server (NTRS)
Farkas, L.
1994-01-01
The VAX Continuous Monitoring System (VAXCMS) was developed at NASA Headquarters to aid system managers in monitoring the performance of VAX systems through the generation of graphic images which summarize trends in performance metrics over time. Since its initial development, VAXCMS has been extensively modified at the NASA Lewis Research Center. Data is produced by utilizing the VMS MONITOR utility to collect the performance data, and then feeding the data through custom-developed linkages to the Computer Associates' TELL-A-GRAF computer graphics software to generate the chart images for analysis by the system manager. The VMS ACCOUNTING utility is also utilized to gather interactive process information. The charts that are generated by VAXCMS are: 1) CPU modes for each node over the most recent four month period 2) CPU modes for the cluster as a whole using a weighted average of all the nodes in the cluster based on processing power 3) Percent of primary memory in use for each node over the most recent four month period 4) Interactive processes for all nodes over the most recent four month period 5) Daily, weekly, and monthly, performance summaries for CPU modes, percent of primary memory in use, and page fault rates for each node 6) Daily disk I/O performance data plotting Average Disk I/O Response Time based on I/O Operation Rate and Queue Length. VAXCMS is written in DCL and VAX FORTRAN for use with DEC VAX series computers running VMS 5.1 or later. This program requires the TELL-A-GRAF graphics package in order to generate plots of system data. A FORTRAN compiler is required. The standard distribution medium for VAXCMS is a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. An electronic copy of the documentation in ASCII format is included on the distribution medium. Portions of this code are copyrighted by Mr. David Lavery and are distributed with his permission. These portions of the code may not be redistributed commercially.
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Shevade, A. V.; Manatt, K. S.; Haines, B. E.; Perry, J. L.; Roman, M. C.; Scott, J. P.; Frederick, K. R.
2010-01-01
An electronic nose has been developed at the Jet Propulsion Laboratory (JPL) to monitor spacecraft cabin air for anomalous events such as leaks and spills of solvents, coolants or other fluids with near-real-time analysis. It is designed to operate in the environment of the US Lab on ISS and was deployed on the International Space Station for a seven-month experiment in 2008-2009. In order improve understanding of ENose response to crew activities, an ENose was installed in the Regenerative ECLSS Module Simulator (REMS) at Marshall Space Flight Center (MSFC) for several months. The REMS chamber is operated with continuous analysis of the air for presence and concentration of CO, CO2, ethane, ethanol and methane. ENose responses were analyzed and correlated with logged activities and air analyses in the REMS.
Smart signal processing for an evolving electric grid
NASA Astrophysics Data System (ADS)
Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.
2015-12-01
Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.
Recent advances in electronic nose techniques for monitoring of fermentation process.
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-12-01
Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.
Bio-integrated electronics and sensor systems
NASA Astrophysics Data System (ADS)
Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.
2013-05-01
Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.
Lv, Nan; Xiao, Lan; Simmons, Martha L; Rosas, Lisa G; Chan, Albert
2017-01-01
Background EMPOWER-H (Engaging and Motivating Patients Online With Enhanced Resources-Hypertension) is a personalized-care model facilitating engagement in hypertension self-management utilizing an interactive Web-based disease management system integrated with the electronic health record. The model is designed to support timely patient-provider interaction by incorporating decision support technology to individualize care and provide personalized feedback for patients with chronic disease. Central to this process were patient-generated health data, including blood pressure (BP), weight, and lifestyle behaviors, which were uploaded using a smartphone. Objective The aim of this study was to evaluate the program among patients within primary care already under management for hypertension and with uncontrolled BP. Methods Using a 6-month pre-post design, outcome measures included office-measured and home-monitored BP, office-measured weight, intervention contacts, diet, physical activity, smoking, knowledge, and health-related quality of life. Results At 6 months, 55.9% of participants (N=149) achieved office BP goals (<140/90 mm Hg; P<.001) and 86.0% achieved clinically meaningful reduction in office BP (reduction in systolic BP [SBP] ≥5 mm Hg or diastolic BP [DBP] ≥3 mm Hg). At baseline, 25.2% of participants met home BP goals (<135/85 mm Hg), and this percentage significantly increased to 71.4% (P<.001) at 6 months. EMPOWER-H also significantly reduced both office and home SBP and DBP, decreased office-measured weight and consumption of high-salt and high-fat foods (all P<.005), and increased intake of fruit and vegetables, minutes of aerobic exercise, and hypertension knowledge (all P<.05). Patients with higher home BP upload frequencies had significantly higher odds of achieving home BP goals. Patients receiving more total intervention, behavioral, pharmaceutical contacts had significantly lower odds of achieving home BP goals but higher improvements in office BP (all P<.05). Conclusions EMPOWER-H significantly improved participants’ office-measured and home-monitored BP, weight, and lifestyle behaviors, suggesting that technologically enabled BP home-monitoring, with structured use of patient-generated health data and a personalized care-plan facilitating patient engagement, can support effective clinical management. The experience gained in this study provides support for the feasibility and value of using carefully managed patient-generated health data in the day-to-day clinical management of patients with chronic conditions. A large-scale, real-world study to evaluate sustained effectiveness, cost-effectiveness, and scalability is warranted. PMID:28928111
Continuous glucose monitoring microsensor with a nanoscale conducting matrix and redox mediator
NASA Astrophysics Data System (ADS)
Pesantez, Daniel
The major limiting factor in kidney clinical transplantation is the shortage of transplantable organs. The current inability to distinguish viability from non-viability on a prospective basis represents a major obstacle in any attempt to expand organ donor criteria. Consequently, a way to measure and monitor a relevant analyte to assess kidney viability is needed. For the first time, the initial development and characterization of a metabolic microsensor to assess kidney viability is presented. The rate of glucose consumption appears to serve as an indicator of kidney metabolism that may distinguish reversible from irreversible kidney damage. The proposed MetaSense (Metabolic Sensor) microdevice would replace periodic laboratory diagnosis tests with a continuous monitor that provides real-time data on organ viability. Amperometry, a technique that correlates an electrical signal with analyte concentration, is used as a method to detect glucose concentrations. A novel two-electrode electrochemical sensing cell design is presented. It uses a modified metallic working electrode (WE) and a bare metallic reference electrode (RE) that acts as a pseudo-reference/counter electrode as well. The proposed microsensor has the potential to be used as a minimally invasive sensor for its reduced number of probes and very small dimensions achieved by micromachining and lithography. In order to improve selectivity of the microdevice, two electron transfer mechanisms or generations were explored. A first generation microsensor uses molecular oxygen as the electron acceptor in the enzymatic reaction and oxidizes hydrogen peroxide (H2O2) to get the electrical signal. The microsensor's modified WE with conductive polymer polypyrrole (PPy) and corresponding enzyme glucose oxidase (GOx) immobilized into its matrix, constitutes the electrochemical detection mechanism. Photoluminescence spectroscopic analysis confirmed and quantified enzyme immobilized concentrations within the matrix. In vitro testing for glucose shows increasing current with increasing analyte concentration. Testing the glucose microsensor with known concentrations of glucose over a period of 48 hours demonstrated both the potential durability and sensitivity of the device. Unknown/blind in vitro glucose experiments showed the reproducibility and accuracy of the microsensor to detect various glucose levels. Thinner polymer matrix films lead to better sensing performance during in vitro tests (0.6nA/mM lower limit sensitivity and 0.2nA/mM upper limit sensitivity). In vitro experiments using electroactive ascorbic acid (AA) and uric acid (UA) showed the selectivity of the sensor for glucose. In an effort to reduce the sensor's oxidation potential (0.7V) and noise, a second generation electron transfer approach was developed by incorporating into a modified Platinum WE with a nanoscale PPy and GOx matrix, a redox mediator. Ferrocene (Fc) was selected as the artificial electron carrier, substituting molecular oxygen in the enzymatic reaction. The incorporation of Fc into the polymer matrix is done by a simple electrochemical synthesis. Modifications in the microsensor design, materials and fabrication process are presented. Experiments with the new sensor generation resulted in higher sensitivity values (22.8nA/mM lower limit sensitivity and 12.5nA/mM upper limit sensitivity) for glucose and noise was further eliminated by operating the sensor at a lower oxidation potential (0.3V). The final experimental work consisted of preliminary ex vivo tests with the MetaSense microdevice on bovine kidney samples, which showed a qualitatively correlation between glucose consumption trend profile during preservation and viability histology outcome.
... or, later in pregnancy, give you an electronic fetal non-stress test. This involves lying on your back with electronic monitors attached to your abdomen. The monitors record the baby's heart rate, movements, and contractions of the uterus. Why Do ...
van Riel, Piet; Combe, Bernard; Abdulganieva, Diana; Bousquet, Paola; Courtenay, Molly; Curiale, Cinzia; Gómez-Centeno, Antonio; Haugeberg, Glenn; Leeb, Burkhard; Puolakka, Kari; Ravelli, Angelo; Rintelen, Bernhard; Sarzi-Puttini, Piercarlo
2016-01-01
Treating to target by monitoring disease activity and adjusting therapy to attain remission or low disease activity has been shown to lead to improved outcomes in chronic rheumatic diseases such as rheumatoid arthritis and spondyloarthritis. Patient-reported outcomes, used in conjunction with clinical measures, add an important perspective of disease activity as perceived by the patient. Several validated PROs are available for inflammatory arthritis, and advances in electronic patient monitoring tools are helping patients with chronic diseases to self-monitor and assess their symptoms and health. Frequent patient monitoring could potentially lead to the early identification of disease flares or adverse events, early intervention for patients who may require treatment adaptation, and possibly reduced appointment frequency for those with stable disease. A literature search was conducted to evaluate the potential role of patient self-monitoring and innovative monitoring of tools in optimising disease control in inflammatory arthritis. Experience from the treatment of congestive heart failure, diabetes and hypertension shows improved outcomes with remote electronic self-monitoring by patients. In inflammatory arthritis, electronic self-monitoring has been shown to be feasible in patients despite manual disability and to be acceptable to older patients. Patients' self-assessment of disease activity using such methods correlates well with disease activity assessed by rheumatologists. This review also describes several remote monitoring tools that are being developed and used in inflammatory arthritis, offering the potential to improve disease management and reduce pressure on specialists. PMID:27933206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya
The research built upon a prior investigation to develop a unified constitutive model for design-by-analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-fatigue and creep-ratcheting tests were conducted on the nickel-base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-fatigue and creep-ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less
Electronic waste - an emerging threat to the environment of urban India.
Needhidasan, Santhanam; Samuel, Melvin; Chidambaram, Ramalingam
2014-01-20
Electronic waste or e-waste is one of the emerging problems in developed and developing countries worldwide. It comprises of a multitude of components with valuable materials, some containing toxic substances, that can have an adverse impact on human health and the environment. Previous studies show that India has generated 0.4 million tons of e-waste in 2010 which may increase to 0.5 to 0.6 million tons by 2013-2014. Coupled with lack of appropriate infrastructural facilities and procedures for its disposal and recycling have posed significant importance for e-waste management in India. In general, e-waste is generated through recycling of e-waste and also from dumping of these wastes from other countries. More of these wastes are ending up in dumping yards and recycling centers, posing a new challenge to the environment and policy makers as well. In general electronic gadgets are meant to make our lives happier and simpler, but the toxicity it contains, their disposal and recycling becomes a health nightmare. Most of the users are unaware of the potential negative impact of rapidly increasing use of computers, monitors, and televisions. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal, recycling operations and mechanisms to improve the condition for better environment.
Electronic waste – an emerging threat to the environment of urban India
2014-01-01
Electronic waste or e-waste is one of the emerging problems in developed and developing countries worldwide. It comprises of a multitude of components with valuable materials, some containing toxic substances, that can have an adverse impact on human health and the environment. Previous studies show that India has generated 0.4 million tons of e-waste in 2010 which may increase to 0.5 to 0.6 million tons by 2013–2014. Coupled with lack of appropriate infrastructural facilities and procedures for its disposal and recycling have posed significant importance for e-waste management in India. In general, e-waste is generated through recycling of e-waste and also from dumping of these wastes from other countries. More of these wastes are ending up in dumping yards and recycling centers, posing a new challenge to the environment and policy makers as well. In general electronic gadgets are meant to make our lives happier and simpler, but the toxicity it contains, their disposal and recycling becomes a health nightmare. Most of the users are unaware of the potential negative impact of rapidly increasing use of computers, monitors, and televisions. This review article provides a concise overview of India’s current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal, recycling operations and mechanisms to improve the condition for better environment. PMID:24444377
Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald
2015-01-01
Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.
Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong
2018-05-17
Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration
NASA Astrophysics Data System (ADS)
Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan
2012-10-01
Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.
Hydroxyl radical generation by photosystem II.
Pospísil, Pavel; Arató, András; Krieger-Liszkay, Anja; Rutherford, A William
2004-06-01
The photogeneration of hydroxyl radicals (OH(*)) in photosystem II (PSII) membranes was studied using EPR spin-trapping spectroscopy. Two kinetically distinguishable phases in the formation of the spin trap-hydroxyl (POBN-OH) adduct EPR signal were observed: the first phase (t(1/2) = 7.5 min) and the second phase (t(1/2) = 30 min). The generation of OH(*) was found to be suppressed in the absence of the Mn-complex, but it was restored after readdition of an artificial electron donor (DPC). Hydroxyl radical generation was also lost in the absence of oxygen, whereas it was stimulated when the oxygen concentration was increased. The production of OH(*) during the first kinetic phase was sensitive to the presence of SOD, whereas catalase and EDTA diminished the production of OH(*) during the second kinetic phase. The POBN-OH adduct EPR signal during the first phase exhibits a similar pH-dependence as the ability to oxidize the non-heme iron, as monitored by the Fe(3+) (g = 8) EPR signal: both EPR signals gradually decreased as the pH value was lowered below pH 6.5 and were absent at pH 5. Sodium formate decreases the production of OH(*) in intact and Mn-deleted PSII membranes. Upon illumination of PSII membranes, both superoxide, as measured by EPR signal from the spin trap-superoxide (EMPO-OOH) adduct, and H(2)O(2), measured colormetrically, were generated. These results indicated that OH(*) is produced on the electron acceptor side of PSII by two different routes, (1) O(2)(*)(-), which is generated by oxygen reduction on the acceptor side of PSII, interacts with a PSII metal center, probably the non-heme iron, to form an iron-peroxide species that is further reduced to OH(*) by an electron from PSII, presumably via Q(A)(-), and (2) O(2)(*)(-) dismutates to form free H(2)O(2) that is then reduced to OH(*) via the Fenton reaction in the presence of metal ions, the most likely being Mn(2+) and Fe(2+) released from photodamaged PSII. The two different routes of OH(*) generation are discussed in the context of photoinhibition.
Feedback quantum control of molecular electronic population transfer
NASA Astrophysics Data System (ADS)
Bardeen, Christopher J.; Yakovlev, Vladislav V.; Wilson, Kent R.; Carpenter, Scott D.; Weber, Peter M.; Warren, Warren S.
1997-11-01
Feedback quantum control, where the sample `teaches' a computer-controlled arbitrary lightform generator to find the optimal light field, is experimentally demonstrated for a molecular system. Femtosecond pulses tailored by a computer-controlled acousto-optic pulse shaper excite fluorescence from laser dye molecules in solution. Fluorescence and laser power are monitored, and the computer uses the experimental data and a genetic algorithm to optimize population transfer from ground to first excited state. Both efficiency (the ratio of excited state population to laser energy) and effectiveness (total excited state population) are optimized. Potential use as an `automated theory tester' is discussed.
Electron beam generation in the turbulent plasma of Z-pinch discharges
NASA Astrophysics Data System (ADS)
Vikhrev, Victor V.; Baronova, Elena O.
1997-05-01
Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.
2018-05-01
When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.
Taylor, Sally; Allsop, Matthew J; Bekker, Hilary L; Bennett, Michael I; Bewick, Bridgette M
2017-07-01
Poor pain assessment is a barrier to effective pain control. There is growing interest internationally in the development and implementation of remote monitoring technologies to enhance assessment in cancer and chronic disease contexts. Findings describe the development and testing of pain monitoring systems, but research identifying the needs of health professionals to implement routine monitoring systems within clinical practice is limited. To inform the development and implementation strategy of an electronic pain monitoring system, PainCheck, by understanding palliative care professionals' needs when integrating PainCheck into routine clinical practice. Qualitative study using face-to-face interviews. Data were analysed using framework analysis Setting/participants: Purposive sample of health professionals managing the palliative care of patients living in the community Results: A total of 15 interviews with health professionals took place. Three meta-themes emerged from the data: (1) uncertainties about integration of PainCheck and changes to current practice, (2) appraisal of current practice and (3) pain management is everybody's responsibility Conclusion: Even the most sceptical of health professionals could see the potential benefits of implementing an electronic patient-reported pain monitoring system. Health professionals have reservations about how PainCheck would work in practice. For optimal use, PainCheck needs embedding within existing electronic health records. Electronic pain monitoring systems have the potential to enable professionals to support patients' pain management more effectively but only when barriers to implementation are appropriately identified and addressed.
Synchronous monitoring of muscle dynamics and electromyogram
NASA Astrophysics Data System (ADS)
Zakir Hossain, M.; Grill, Wolfgang
2011-04-01
A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.
Device Would Monitor Body Parameters Continuously
NASA Technical Reports Server (NTRS)
Cook, Joseph S., Jr.
1995-01-01
Proposed miniature electronic circuit continuously measures temperature of human subject. Once mounted on subject's skin with medical adhesive tape, electronic thermometer remains in thermal equilibrium with subject's body; thereafter, no need to wait until thermometer reaches body temperature before taking reading. Design provides for switches used to set alarm alerting medical attendants if subject's temperature exceeds critical level. For use on very young child, electronic thermometer sewed into shirt or other suitable garment; device held in contact with skin, and child could not swallow it. Replacement of sensor and computing algorithm changes temperature monitor to cardiorespiratory monitor.
Macé, Sandrine; Oppert, Jean-Michel
2017-01-01
Background The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners’ requirements when prescribing electronic activity monitors have been poorly described. Objective The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. Methods We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Results Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Conclusions Features of electronic activity monitors, although popular among the general public, do not meet the needs of physicians. In-depth understanding of physicians’ expectations is a first step toward designing technologies that can be widely used in clinical settings and facilitate physical activity prescription. Physicians should have a role, along with key health care stakeholders—patients, researchers, information technology firms, the public, and private payers—in developing the most effective methods for integrating activity monitors into patient care. PMID:28947415
Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
Yao, Yao; Glisic, Branko
2015-01-01
Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407
Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.
Gessner, Oliver; Gühr, Markus
2016-01-19
The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and photocatalytic activity have been performed based on the combination of strong light absorption in dye molecules with charge separation and transport in adjacent semiconductor nanostructures. However, a fundamental understanding of the enabling and limiting dynamics on critical atomic length- and time scales is often still lacking. Femtosecond time-resolved X-ray photoelectron spectroscopy is employed to gain a better understanding of a short-lived intermediate that may be linked to the unexpectedly limited performance of ZnO based dye-sensitized solar cells by delaying the generation of free charge carriers. The transient spectra strongly suggest that photoexcited dye molecules attached to ZnO nanocrystals inject their charges into the substrate within less than 1 ps but the electrons are then temporarily trapped at the surface of the semiconductor in direct vicinity of the injecting molecules. The experiments are extended to monitor the electronic response of the semiconductor substrate to the collective injection from a monolayer of dye molecules and the subsequent electron-ion recombination dynamics. The results indicate some qualitative similarities but quantitative differences between the recombination dynamics at molecule-semiconductor interfaces and previously studied bulk-surface electron-hole recombination dynamics in photoexcited semiconductors.
Slotwiner, David J
2016-10-01
The anticipated advantages of electronic health records (EHRs)-improved efficiency and the ability to share information across the healthcare enterprise-have so far failed to materialize. There is growing recognition that interoperability holds the key to unlocking the greatest value of EHRs. Health information technology (HIT) systems including EHRs must be able to share data and be able to interpret the shared data. This requires a controlled vocabulary with explicit definitions (data elements) as well as protocols to communicate the context in which each data element is being used (syntactic structure). Cardiac implantable electronic devices (CIEDs) provide a clear example of the challenges faced by clinicians when data is not interoperable. The proprietary data formats created by each CIED manufacturer, as well as the multiple sources of data generated by CIEDs (hospital, office, remote monitoring, acute care setting), make it challenging to aggregate even a single patient's data into an EHR. The Heart Rhythm Society and CIED manufacturers have collaborated to develop and implement international standard-based specifications for interoperability that provide an end-to-end solution, enabling structured data to be communicated from CIED to a report generation system, EHR, research database, referring physician, registry, patient portal, and beyond. EHR and other health information technology vendors have been slow to implement these tools, in large part, because there have been no financial incentives for them to do so. It is incumbent upon us, as clinicians, to insist that the tools of interoperability be a prerequisite for the purchase of any and all health information technology systems.
When Pregnancy Goes Past Your Due Date
... have testing in a postterm pregnancy? • What is electronic fetal monitoring? • What is a nonstress test? • What ... some cases, delivery may be recommended. What is electronic fetal monitoring? Tests of fetal well-being use ...
Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring
Khan, Hassan; Kottapalli, Ajay; Asadnia, Mohsen
2018-01-01
Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand. PMID:29389851
Optical sensor for real-time weld defect detection
NASA Astrophysics Data System (ADS)
Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.
2002-04-01
In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.
Bed Bug Detection: Current Technologies and Future Directions
Vaidyanathan, Rajeev; Feldlaufer, Mark F.
2013-01-01
Technologies to detect bed bugs have not kept pace with their global resurgence. Early detection is critical to prevent infestations from spreading. Detection based exclusively on bites is inadequate, because reactions to insect bites are non-specific and often misdiagnosed. Visual inspections are commonly used and depend on identifying live bugs, exuviae, or fecal droplets. Visual inspections are inexpensive, but they are time-consuming and unreliable when only a few bugs are present. Use of a dog to detect bed bugs is gaining in popularity, but it can be expensive, may unintentionally advertise a bed bug problem, and is not foolproof. Passive monitors mimic natural harborages; they are discreet and typically use an adhesive to trap bugs. Active monitors generate carbon dioxide, heat, a pheromone, or a combination to attract bed bugs to a trap. New technologies using DNA analysis, mass spectrometry, and electronic noses are innovative but impractical and expensive for widespread use. PMID:23553226
Advanced CO2 removal process control and monitor instrumentation development
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Dalhausen, M. J.; Klimes, R.
1982-01-01
A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.
Fitzpatrick, Stephanie L; Hill-Briggs, Felicia
2017-06-01
Purpose The purpose of this study was to identify effective strategies for sustained weight management used by African American patients with obesity and type 2 diabetes. Methods In this study, nominal group technique was used to identify effective strategies for weight management used by 12 African Americans with overweight/obesity and type 2 diabetes who successfully lost or maintained their weight after completing DECIDE (Decision-making Education for Choices In Diabetes Everyday), a 9-module, literacy-adapted diabetes and cardiovascular disease (CVD) education and problem-solving training program. Results Participants generated a list of 101 strategies that covered 4 domains: nutrition, physical activity, cognitive-behavioral strategies, and other. Self-monitoring and relying on social support were the top 2 strategies for weight maintenance. Conclusion Future obesity studies should consider including friends/family as well as electronic tools to facilitate self-monitoring and regular practice of behavioral strategies for long-term success.
High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields
NASA Astrophysics Data System (ADS)
Pisanty, Emilio; Hickstein, Daniel D.; Galloway, Benjamin R.; Durfee, Charles G.; Kapteyn, Henry C.; Murnane, Margaret M.; Ivanov, Misha
2018-05-01
The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range, to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and its parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation as well as elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond the long-wavelength breakdown of the dipole approximation, and it can be used to observe this breakdown in high harmonic generation using currently available light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk
2015-03-02
In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes ofmore » both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.« less
Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A
2008-09-01
Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.
Automotive Stirling Engine Mod 1 Design Review, volume 2
NASA Technical Reports Server (NTRS)
1982-01-01
The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.
Automated and electronically assisted hand hygiene monitoring systems: a systematic review.
Ward, Melissa A; Schweizer, Marin L; Polgreen, Philip M; Gupta, Kalpana; Reisinger, Heather S; Perencevich, Eli N
2014-05-01
Hand hygiene is one of the most effective ways to prevent transmission of health care-associated infections. Electronic systems and tools are being developed to enhance hand hygiene compliance monitoring. Our systematic review assesses the existing evidence surrounding the adoption and accuracy of automated systems or electronically enhanced direct observations and also reviews the effectiveness of such systems in health care settings. We systematically reviewed PubMed for articles published between January 1, 2000, and March 31, 2013, containing the terms hand AND hygiene or hand AND disinfection or handwashing. Resulting articles were reviewed to determine if an electronic system was used. We identified 42 articles for inclusion. Four types of systems were identified: electronically assisted/enhanced direct observation, video-monitored direct observation systems, electronic dispenser counters, and automated hand hygiene monitoring networks. Fewer than 20% of articles identified included calculations for efficiency or accuracy. Limited data are currently available to recommend adoption of specific automatic or electronically assisted hand hygiene surveillance systems. Future studies should be undertaken that assess the accuracy, effectiveness, and cost-effectiveness of such systems. Given the restricted clinical and infection prevention budgets of most facilities, cost-effectiveness analysis of specific systems will be required before these systems are widely adopted. Published by Mosby, Inc.
Cross-sectional transport imaging in a multijunction solar cell
Haegel, Nancy M.; Ke, Chi -Wen; Taha, Hesham; ...
2016-12-01
Here, we combine a highly localized electron-beam point source excitation to generate excess free carriers with the spatial resolution of optical near-field imaging to map recombination in a cross-sectioned multijunction (Ga 0.5In 0.5P/GaIn 0.01As/Ge) solar cell. By mapping the spatial variations in emission of light for fixed generation (as opposed to traditional cathodoluminescence (CL), which maps integrated emission as a function of position of generation), it is possible to directly monitor the motion of carriers and photons. We observe carrier diffusion throughout the full width of the middle (GaInAs) cell, as well as luminescent coupling from point source excitation inmore » the top cell GaInP to the middle cell. Supporting CL and near-field photoluminescence (PL) measurements demonstrate the excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results, as well as transport limitations on the spatial resolution of conventional cross-sectional far-field measurements.« less
Salathé, Marcel
2016-12-01
The digital revolution has contributed to very large data sets (ie, big data) relevant for public health. The two major data sources are electronic health records from traditional health systems and patient-generated data. As the two data sources have complementary strengths-high veracity in the data from traditional sources and high velocity and variety in patient-generated data-they can be combined to build more-robust public health systems. However, they also have unique challenges. Patient-generated data in particular are often completely unstructured and highly context dependent, posing essentially a machine-learning challenge. Some recent examples from infectious disease surveillance and adverse drug event monitoring demonstrate that the technical challenges can be solved. Despite these advances, the problem of verification remains, and unless traditional and digital epidemiologic approaches are combined, these data sources will be constrained by their intrinsic limits. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
Laser modulator for LISA pathfinder
NASA Astrophysics Data System (ADS)
Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.
2017-11-01
LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.
An Intelligent CAI Monitor and Generative Tutor. Interim Report.
ERIC Educational Resources Information Center
Koffman, Elliot B.; And Others
Design techniques for generative computer-assisted-instructional (CAI) systems are described in this report. These are systems capable of generating problems for students and of deriving and monitoring solutions; problem difficulty, instructional pace, and depth of monitoring are all individually tailored and parts of the solution algorithms can…
Automatic cross-sectioning and monitoring system locates defects in electronic devices
NASA Technical Reports Server (NTRS)
Jacobs, G.; Slaughter, B.
1971-01-01
System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS
The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cyclesmore » to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.« less
Progress in distributed fiber optic temperature sensing
NASA Astrophysics Data System (ADS)
Hartog, Arthur H.
2002-02-01
The paper reviews the adoption of distributed temperature sensing (DTS) technology based on Raman backscatter. With one company alone having installed more than 400 units, the DTS is becoming accepted practice in several applications, notably in energy cable monitoring, specialised fire detection and oil production monitoring. The paper will provide case studies in these applications. In each case the benefit (whether economic or safety) will be addressed, together with key application engineering issues. The latter range from the selection and installation of the fibre sensor, the specific performance requirements of the opto-electronic equipment and the issues of data management. The paper will also address advanced applications of distributed sensing, notably the problem of monitoring very long ranges, which apply in subsea DC energy cables or in subsea oil wells linked to platforms through very long (e.g. 30km flowlines). These applications are creating the need for a new generation of DTS systems able to achieve measurements at up to 40km with very high temperature resolution, without sacrificing spatial resolution. This challenge is likely to drive the development of new concepts in the field of distributed sensing.
Diffuse reflectance study of the effects of bleaching agents in damaged dental pieces
NASA Astrophysics Data System (ADS)
Bante-Guerra, J.; Trejo-Tzab, R.; Macias, J. D.; Quintana, P.; Alvarado-Gil, J. J.
2011-03-01
One of the most important subjects of interest in dentistry and teeth preservation is related to the effects of bleaching agents on the integrity of the dental pieces. This is especially crucial when teeth surface has received some damage, generated by chemical, biological and mechanical agents or weathering in the case of dental pieces recovered from burial sites. In this work the time evolution of the effects of bleaching agents on the surface of dental pieces is monitored using diffuse reflectance in the visible spectrum is reported. The effects were monitored in teeth previously subject to chemical agents. Bleaching was induced using commercial whitening products. It is shown that the time evolution of the reflectance depends strongly on the condition of the surface as well as on the thickness of enamel. Additionally the colorimetric analysis of the samples during the bleaching is presented. This is especially useful in for comparing with previous studies. In order to complement our studies, the effects of the bleaching on the surface of the teeth were monitored by scanning electron microscopy.
A beam radiation monitor based on CVD diamonds for SuperB
NASA Astrophysics Data System (ADS)
Cardarelli, R.; Di Ciaccio, A.
2013-08-01
Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.
Simulating Lattice Image of Suspended Graphene Taken by Helium Ion Microscopy
NASA Astrophysics Data System (ADS)
Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel
2013-03-01
Atomic scale image in nano-scale helps us to characterize property of graphene, and performance of high-resolution transmission electron microscopy (HRTEM) is significant, so far. While a tool without pre-treatment of samples is demanded in practice. Helium ion microscopy (HIM), firstly reported by Word et. al. in 2006, was applied for monitoring graphene in device structure (Lumme, et. al., 2009). Motivated by recent HIM explorations, we examined the possibility of taking lattice image of suspended graphene by HIM. The intensity of secondary emitted electron is recorded as a profile of scanned He+-beam in HIM measurement. We mimicked this situation by performing electron-ion dynamics based on the first-principles simulation within the time-dependent density functional theory. He+ ion collision on single graphene sheet at several impact points were simulated and we found that the amount of secondary emitted electron from graphene reflected the valence charge distribution of the graphene sheet. Therefore HIM using atomically thin He-beam should be able to provide the lattice image, and we propose that an experiment generating ultra-thin He+ ion beam (Rezeq et. al., 2006) should be combined with HIM technique. All calculations were performed by using the Earth Simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, JM; Samei, E; Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, NC
2016-06-15
Purpose: Recent legislative and accreditation requirements have driven rapid development and implementation of CT radiation dose monitoring solutions. Institutions must determine how to improve quality, safety, and consistency of their clinical performance. The purpose of this work was to design a strategy and meaningful characterization of results from an in-house, clinically-deployed dose monitoring solution. Methods: A dose monitoring platform was designed by our imaging physics group that focused on extracting protocol parameters, dose metrics, and patient demographics and size. Compared to most commercial solutions, which focus on individual exam alerts and global thresholds, the program sought to characterize overall consistencymore » and targeted thresholds based on eight analytic interrogations. Those were based on explicit questions related to protocol application, national benchmarks, protocol and size-specific dose targets, operational consistency, outliers, temporal trends, intra-system variability, and consistent use of electronic protocols. Using historical data since the start of 2013, 95% and 99% intervals were used to establish yellow and amber parameterized dose alert thresholds, respectively, as a function of protocol, scanner, and size. Results: Quarterly reports have been generated for three hospitals for 3 quarters of 2015 totaling 27880, 28502, 30631 exams, respectively. Four adult and two pediatric protocols were higher than external institutional benchmarks. Four protocol dose levels were being inconsistently applied as a function of patient size. For the three hospitals, the minimum and maximum amber outlier percentages were [1.53%,2.28%], [0.76%,1.8%], [0.94%,1.17%], respectively. Compared with the electronic protocols, 10 protocols were found to be used with some inconsistency. Conclusion: Dose monitoring can satisfy requirements with global alert thresholds and patient dose records, but the real value is in optimizing patient-specific protocols, balancing image quality trade-offs that dose-reduction strategies promise, and improving the performance and consistency of a clinical operation. Data plots that capture patient demographics and scanner performance demonstrate that value.« less
Marceglia, S; Fontelo, P; Rossi, E; Ackerman, M J
2015-01-01
Mobile health Applications (mHealth Apps) are opening the way to patients' responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient's access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated "island systems". Although much work has been done on patient's access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care. Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform. The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 - CDA2). In the process, the clinician "prescribes" the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage. The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient's engagement in self-management and self-care.
Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD
NASA Astrophysics Data System (ADS)
Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group
2006-10-01
In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less
A Temporal Pattern Mining Approach for Classifying Electronic Health Record Data
Batal, Iyad; Valizadegan, Hamed; Cooper, Gregory F.; Hauskrecht, Milos
2013-01-01
We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features. Temporal pattern mining usually returns a large number of temporal patterns, most of which may be irrelevant to the classification task. To address this problem, we present the Minimal Predictive Temporal Patterns framework to generate a small set of predictive and non-spurious patterns. We apply our approach to the real-world clinical task of predicting patients who are at risk of developing heparin induced thrombocytopenia. The results demonstrate the benefit of our approach in efficiently learning accurate classifiers, which is a key step for developing intelligent clinical monitoring systems. PMID:25309815
NASA Astrophysics Data System (ADS)
Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David
2016-09-01
Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B
2016-02-28
A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue ofmore » designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)« less
ERIC Educational Resources Information Center
Burrell, William D.; Gable, Robert S.
2008-01-01
Electronic monitoring was originally designed as a system to facilitate the rehabilitation of young adult offenders. The concept was not well-received, and the first judicially sanctioned program was not initiated until 20 years later. Adoption of the technology then spread rapidly. The primary use of monitoring has evolved from being an adjunct…
76 FR 37241 - Airworthiness Directives; Airbus Model A318, A319, A320, and A321 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... Aircraft Monitoring] warnings during the landing gear retraction or extension sequence. * * * * * This... [Electronic Centralised Aircraft Monitoring] warnings during the landing gear retraction or extension sequence... [Electronic Centralised Aircraft [[Page 37243
Kelly, J William; Blackhurst, Dawn; McAtee, Wendy; Steed, Connie
2016-08-01
Electronic monitoring of hand hygiene compliance using the World Health Organization's My 5 Moments for Hand Hygiene is a new innovation that has not yet been shown to reduce hospital infections. We analyzed existing data from 23 inpatient units over a 33-month period and found a significant correlation between unit-specific improvements in electronic monitoring compliance and reductions in methicillin-resistant Staphylococcus aureus infection rates (r = -0.37, P < .001). Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays
NASA Astrophysics Data System (ADS)
Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan
2015-03-01
The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j
Regulation of electron transfer processes affects phototrophic mat structure and activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less
Regulation of electron transfer processes affects phototrophic mat structure and activity
Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; ...
2015-09-03
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less
Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer
NASA Technical Reports Server (NTRS)
Blaes, Brent R.; Schaefer, Rembrandt T.
2012-01-01
A multi-channel electrometer voltmeter that employs self-nulling lock-in detection electronics in conjunction with a mechanical resonator with noncontact voltage sensing electrodes has been developed for space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM). The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Use of an AC-coupled lock-in amplifier with closed-loop sense-signal nulling via generation of an active guard-driving feedback voltage provides the resolution, accuracy, linearity and stability needed for long-term space-based measurement of the IESDM. This implementation relies on adjusting the feedback voltage to drive the sense current received from the resonator s variable-capacitance-probe voltage transducer to approximately zero, as limited by the signal-to-noise performance of the loop electronics. The magnitude of the sense current is proportional to the difference between the input voltage being measured and the feedback voltage, which matches the input voltage when the sense current is zero. High signal-to-noise-ratio (SNR) is achieved by synchronous detection of the sense signal using the correlated reference signal derived from the oscillator circuit that drives the mechanical resonator. The magnitude of the feedback voltage, while the loop is in a settled state with essentially zero sense current, is an accurate estimate of the input voltage being measured. This technique has many beneficial attributes including immunity to drift, high linearity, high SNR from synchronous detection of a single-frequency carrier selected to avoid potentially noisy 1/f low-frequency spectrum of the signal-chain electronics, and high accuracy provided through the benefits of a driven shield encasing the capacitance- probe transducer and guarded input triaxial lead-in. Measurements obtained from a 2- channel prototype electrometer have demonstrated good accuracy (|error| < 0.2 V) and high stability. Twenty-four-hour tests have been performed with virtually no drift. Additionally, 5,500 repeated one-second measurements of 100 V input were shown to be approximately normally distributed with a standard deviation of 140 mV.
Watson, Aaron M; Foster Thompson, Lori; Rudolph, Jane V; Whelan, Thomas J; Behrend, Tara S; Gissel, Amanda L
2013-07-01
Web-based training is frequently used by organizations as a convenient and low-cost way to teach employees new knowledge and skills. As web-based training is typically unproctored, employees may be held accountable to the organization by computer software that monitors their behaviors. The current study examines how the introduction of electronic performance monitoring may provoke negative emotional reactions and decrease learning among certain types of e-learners. Through motivated action theory and trait activation theory, we examine the role of performance goal orientation when e-learners are exposed to asynchronous and synchronous monitoring. We show that some e-learners are more susceptible than others to evaluation apprehension when they perceive their activities are being monitored electronically. Specifically, e-learners higher in avoid performance goal orientation exhibited increased evaluation apprehension if they believed asynchronous monitoring was present, and they showed decreased skill attainment as a result. E-learners higher on prove performance goal orientation showed greater evaluation apprehension if they believed real-time monitoring was occurring, resulting in decreased skill attainment. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Electronic simulation of a barometric pressure sensor for the meteorological monitor assembly
NASA Technical Reports Server (NTRS)
Guiar, C. N.; Duff, L. W.
1982-01-01
An analysis of the electronic simulation of barometric pressure used to self-test the counter electronics of the digital barometer is presented. The barometer is part of the Meteorological Monitor Assembly that supports navigation in deep space communication. The theory of operation of the digital barometer, the design details, and the verification procedure used with the barometric pressure simulator are presented.
Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar
2011-09-01
In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.
21 CFR 874.1120 - Electronic noise generator for audiometric testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic noise generator for audiometric testing... noise generator for audiometric testing. (a) Identification. An electronic noise generator for.... It is intended to introduce a masking noise into the non-test ear during an audiometric evaluation...
21 CFR 874.1120 - Electronic noise generator for audiometric testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic noise generator for audiometric testing... noise generator for audiometric testing. (a) Identification. An electronic noise generator for.... It is intended to introduce a masking noise into the non-test ear during an audiometric evaluation...
Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell.
Arends, Jan B A; Speeckaert, Jonas; Blondeel, Evelyne; De Vrieze, Jo; Boeckx, Pascal; Verstraete, Willy; Rabaey, Korneel; Boon, Nico
2014-04-01
Methane (CH4) release from wetlands is an important source of greenhouse gas emissions. Gas exchange occurs mainly through the aerenchyma of plants, and production of greenhouse gases is heavily dependent on rhizosphere biogeochemical conditions (i.e. substrate availability and redox potential). It is hypothesized that by introducing a biocatalyzed anode electrode in the rhizosphere of wetland plants, a competition for carbon and electrons can be invoked between electrical current-generating bacteria and methanogenic Archaea. The anode electrode is part of a bioelectrochemical system (BES) capable of harvesting electrical current from microbial metabolism. In this work, the anode of a BES was introduced in the rhizosphere of rice plants (Oryza sativa), and the impact on methane emissions was monitored. Microbial current generation was able to outcompete methanogenic processes when the bulk matrix contained low concentrations of organic carbon, provided that the electrical circuit with the effective electroactive microorganisms was in place. When interrupting the electrical circuit or supplying an excess of organic carbon, methanogenic metabolism was able to outcompete current generating metabolism. The qPCR results showed hydrogenotrophic methanogens were the most abundant methanogenic group present, while mixotrophic or acetoclastic methanogens were hardly detected in the bulk rhizosphere or on the electrodes. Competition for electron donor and acceptor were likely the main drivers to lower methane emissions. Overall, electrical current generation with BESs is an interesting option to control CH4 emissions from wetlands but needs to be applied in combination with other mitigation strategies to be successful and feasible in practice.
Wong, Benjamin T; Glassford, Neil J; Bion, Victoria; Chai, Syn Y; Bellomo, Rinaldo
2014-03-01
Blood pressure management (assessed using nursing charts) in the early phase of septic shock may have an effect on renal outcomes. Assessment of mean arterial pressure (MAP) values as recorded on nursing charts may be inaccurate. To determine the difference between hourly blood pressure values as recorded on the nursing charts and hourly average blood pressure values over the corresponding period obtained electronically from the bedside monitor. We studied 20 patients with shock requiring vasopressor support and invasive blood pressure monitoring. Hourly blood pressure measurements were recorded on the nursing charts over a 12-hour period. Blood pressure values recorded every 10 minutes were downloaded from electronic patient monitors over the corresponding period. The hourly average of the 10-minute blood pressure values was compared with the measurements recorded on the nursing charts. We assessed 240 chart readings and 1440 electronic recordings. Average chart MAP was 72.54 mmHg and average electronic monitor MAP was 71.54 mmHg. MAP data from the two sources showed a strong correlation (ρ0.71, P < 0.005). Bland-Altman assessment revealed acceptable agreement, with a mean bias of 1mmHg and 95% limits of agreement of -11.76 mmHg and 13.76 mmHg. Using average data over 6 hours, 95% limits of agreement narrowed to -6.79mmHg and 8.79mmHg. With multiple measurements over time, mean blood pressure as recorded on nursing charts reasonably approximates mean blood pressure recorded on the monitor.
Callahan, Tiffany; Schmiege, Sarah J.; Feldstein Ewing, Sarah W.
2016-01-01
Objective In the United States, Hispanic adolescents are at elevated risk for negative outcomes related to risky sexual behavior. To evaluate potential protective factors for this group, we examined the fit of the Hispanic Paradox for sexual behavior among high-risk youth and the moderating role of parent monitoring. Method We enrolled 323 justice-involved Hispanic youth (73% male; mean age 16 years), and measured generational status, parent monitoring (monitoring location, who children spend time with outside of school, family dinner frequency), and sexual risk behavior. Results There were no main effects for generational status on sexual behavior. Parent monitoring of location moderated the relationship between generational status and sexual behavior, such that greater monitoring of location was associated with less risky sexual behavior, but only for youth second generation and above. Conclusions Rather than direct evidence supporting the Hispanic Paradox, we found a more nuanced relationship for generational status in this sample. PMID:25972373
EDITORIAL: Focus on Attosecond Physics
NASA Astrophysics Data System (ADS)
Bandrauk, André D.; Krausz, Ferenc; Starace, Anthony F.
2008-02-01
Investigations of light-matter interactions and motion in the microcosm have entered a new temporal regime, the regime of attosecond physics. It is a main 'spin-off' of strong field (i.e., intense laser) physics, in which nonperturbative effects are fundamental. Attosecond pulses open up new avenues for time-domain studies of multi-electron dynamics in atoms, molecules, plasmas, and solids on their natural, quantum mechanical time scale and at dimensions shorter than molecular and even atomic scales. These capabilities promise a revolution in our microscopic knowledge and understanding of matter. The recent development of intense, phase-stabilized femtosecond (10-15 s) lasers has allowed unparalleled temporal control of electrons from ionizing atoms, permitting for the first time the generation and measurement of isolated light pulses as well as trains of pulses on the attosecond (1 as = 10-18 s) time scale, the natural time scale of the electron itself (e.g., the orbital period of an electron in the ground state of the H atom is 152 as). This development is facilitating (and even catalyzing) a new class of ultrashort time domain studies in photobiology, photochemistry, and photophysics. These new coherent, sub-fs pulses carried at frequencies in the extreme ultraviolet and soft-x-ray spectral regions, along with their intense, synchronized near-infrared driver waveforms and novel metrology based on sub-fs control of electron-light interactions, are spawning the new science of attosecond physics, whose aims are to monitor, to visualize, and, ultimately, to control electrons on their own time and spatial scales, i.e., the attosecond time scale and the sub-nanometre (Ångstrom) spatial scale typical of atoms and molecules. Additional goals for experiment are to advance the enabling technologies for producing attosecond pulses at higher intensities and shorter durations. According to theoretical predictions, novel methods for intense attosecond pulse generation may in future involve using overdense plasmas. Electronic processes on sub-atomic spatio-temporal scales are the basis of chemical physics, atomic, molecular, and optical physics, materials science, and even some life science processes. Research in these areas using the new attosecond tools will advance together with the ability to control electrons themselves. Indeed, we expect that developments will advance in a way that is similar to advances that have occurred on the femtosecond time scale, in which much previous experimental and theoretical work on the interaction of coherent light sources has led to the development of means for 'coherent control' of nuclear motion in molecules. This focus issue of New Journal of Physics is centered on experimental and theoretical advances in the development of new methodologies and tools for electron control on the attosecond time scale. Topics such as the efficient generation of harmonics; the generation of attosecond pulses, including those having only a few cycles and those produced from overdense plasmas; the description of various nonlinear, nonperturbative laser-matter interactions, including many-electron effects and few-cycle pulse effects; the analysis of ultrashort propagation effects in atomic and molecular media; and the development of inversion methods for electron tomography, as well as many other topics, are addressed in the current focus issue dedicated to the new field of 'Attosecond Physics'. Focus on Attosecond Physics Contents Observing the attosecond dynamics of nuclear wavepackets in molecules by using high harmonic generation in mixed gases Tsuneto Kanai, Eiji J Takahashi, Yasuo Nabekawa and Katsumi Midorikawa Core-polarization effects in molecular high harmonic generation G Jordan and A Scrinzi Interferometric autocorrelation of an attosecond pulse train calculated using feasible formulae Y Nabekawa and K Midorikawa Attosecond pulse generation from aligned molecules—dynamics and propagation in H2+ E Lorin, S Chelkowski and A D Bandrauk Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses Miaochan Zhi and Alexei V Sokolov Ultrafast nanoplasmonics under coherent control Mark I Stockman Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions: roles of frequency, intensity and an additional IR pulse Liang-You Peng, Evgeny A Pronin and Anthony F Starace Angular encoding in attosecond recollision Markus Kitzler, Xinhua Xie, Stefan Roither, Armin Scrinzi and Andrius Baltuska Polarization-resolved pump-probe spectroscopy with high harmonics Y Mairesse, S Haessler, B Fabre, J Higuet, W Boutu, P Breger, E Constant, D Descamps, E Mével, S Petit and P Salières Macroscopic effects in attosecond pulse generation T Ruchon, C P Hauri, K Varjú, E Mansten, M Swoboda, R López-Martens and A L'Huillier Monitoring long-term evolution of molecular vibrational wave packet using high-order harmonic generation M Yu Emelin, M Yu Ryabikin and A M Sergeev Intense single attosecond pulses from surface harmonics using the polarization gating technique S G Rykovanov, M Geissler, J Meyer-ter-Vehn and G D Tsakiris Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields M F Kling, J Rauschenberger, A J Verhoef, E Hasović, T Uphues, D B Milošević, H G Muller and M J J Vrakking Self-compression of optical laser pulses by filamentation A Mysyrowicz, A Couairon and U Keller Towards efficient generation of attosecond pulses from overdense plasma targets N M Naumova, C P Hauri, J A Nees, I V Sokolov, R Lopez-Martens and G A Mourou Quantum-path control in high-order harmonic generation at high photon energies Xiaoshi Zhang, Amy L Lytle, Oren Cohen, Margaret M Murnane and Henry C Kapteyn Time-resolved mapping of correlated electron emission from helium atom in an intense laser pulse C Ruiz and A Becker Pump and probe ultrafast electron dynamics in LiH: a computational study M Nest, F Remacle and R D Levine Exploring intense attosecond pulses D Charalambidis, P Tzallas, E P Benis, E Skantzakis, G Maravelias, L A A Nikolopoulos, A Peralta Conde and G D Tsakiris Attosecond timescale analysis of the dynamics of two-photon double ionization of helium Emmanuel Foumouo, Philippe Antoine, Henri Bachau and Bernard Piraux Generation of tunable isolated attosecond pulses in multi-jet systems V Tosa, V S Yakovlev and F Krausz Electron wavepacket control with elliptically polarized laser light in high harmonic generation from aligned molecules Y Mairesse, N Dudovich, J Levesque, M Yu Ivanov, P B Corkum and D M Villeneuve Tracing non-equilibrium plasma dynamics on the attosecond timescale in small clusters Ulf Saalmann, Ionut Georgescu and Jan M Rost Ionization in attosecond pulses: creating atoms without nuclei? John S Briggs and Darko Dimitrovski Angular distributions in double ionization of helium under XUV sub-femtosecond radiation P Lambropoulos and L A A Nikolopoulos Potential for ultrafast dynamic chemical imaging with few-cycle infrared lasers Toru Morishita, Anh-Thu Le, Zhangjin Chen and C D Lin Attosecond electron thermalization in laser-induced nonsequential multiple ionization: hard versus glancing collisions X Liu, C Figueira de Morisson Faria and W Becker Ion-charge-state chronoscopy of cascaded atomic Auger decay Th Uphues, M Schultze, M F Kling, M Uiberacker, S Hendel, U Heinzmann, N M Kabachnik and M Drescher Measurement of electronic structure from high harmonic generation in non-adiabatically aligned polyatomic molecules N Kajumba, R Torres, Jonathan G Underwood, J S Robinson, S Baker, J W G Tisch, R de Nalda, W A Bryan, R Velotta, C Altucci, I Procino, I C E Turcu and J P Marangos Wavelength dependence of sub-laser-cycle few-electron dynamics in strong-field multiple ionization O Herrwerth, A Rudenko, M Kremer, V L B de Jesus, B Fischer, G Gademann, K Simeonidis, A Achtelik, Th Ergler, B Feuerstein, C D Schröter, R Moshammer and J Ullrich Attosecond metrology in the few-optical-cycle regime G Sansone, E Benedetti, C Vozzi, S Stagira and M Nisoli Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction A A Zholents and M S Zolotorev
Real-time measurement and monitoring of absorbed dose for electron beams
NASA Astrophysics Data System (ADS)
Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon
2004-09-01
The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.
Materials for Stretchable Electronics - Electronic Eyeballs, Brain Monitors and Other Applications
Rogers, John A. [University of Illinois, Urbana Champaign, Illinois, United States
2017-12-09
Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates. Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use. Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in âwavyâ buckled configurations on elastomeric supports. This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits. Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.
An Electronic Patch for wearable health monitoring by reflectance pulse oximetry.
Haahr, Rasmus G; Duun, Sune B; Toft, Mette H; Belhage, Bo; Larsen, Jan; Birkelund, Karen; Thomsen, Erik V
2012-02-01
We report the development of an Electronic Patch for wearable health monitoring. The Electronic Patch is a new health monitoring system incorporating biomedical sensors, microelectronics, radio frequency (RF) communication, and a battery embedded in a 3-dimensional hydrocolloid polymer. In this paper the Electronic Patch is demonstrated with a new optical biomedical sensor for reflectance pulse oximetry so that the Electronic Patch in this case can measure the pulse and the oxygen saturation. The reflectance pulse oximetry solution is based on a recently developed annular backside silicon photodiode to enable low power consumption by the light emitting components. The Electronic Patch has a disposable part of soft adhesive hydrocolloid polymer and a reusable part of hard polylaurinlactam. The disposable part contains the battery. The reusable part contains the reflectance pulse oximetry sensor and microelectronics. The reusable part is 'clicked' into the disposable part when the patch is prepared for use. The patch has a size of 88 mm by 60 mm and a thickness of 5 mm.
Hales, Brian J
2015-07-14
Most hydrophilic organic solvents inhibit enzymatic activity. Nitrogenase is shown to be approximately 3 times more sensitive to organic inhibition than most other soluble enzymes. Ethylene glycol (EG) is demonstrated to rapidly inhibit nitrogenase activity without uncoupling ATP hydrolysis. Our data suggest the mechanism of inhibition is EG's blocking of binding of MgATP to the nitrogenase Fe protein. EG quenching allows, for the first time, the observation of the relaxation of the intermediate reaction states at room temperature. Electron paramagnetic resonance (EPR) spectroscopy is used to monitor the room-temperature decay of the nitrogenase turnover states following EG quenching of catalytic activity. The return of the intermediate states to the resting state occurs in multiple phases over 2 h. During the initial stage, nitrogenase still possesses the ability to generate CO-induced EPR signals even though catalytic activity has ceased. During the last phase of relaxation, the one-electron reduced state of the MoFe protein (E1) relaxes to the resting state (E0) in a slow first-order reaction.
Application accelerator system having bunch control
Wang, Dunxiong; Krafft, Geoffrey Arthur
1999-01-01
An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.
Bellicha, Alice; Macé, Sandrine; Oppert, Jean-Michel
2017-09-23
The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners' requirements when prescribing electronic activity monitors have been poorly described. The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Features of electronic activity monitors, although popular among the general public, do not meet the needs of physicians. In-depth understanding of physicians' expectations is a first step toward designing technologies that can be widely used in clinical settings and facilitate physical activity prescription. Physicians should have a role, along with key health care stakeholders-patients, researchers, information technology firms, the public, and private payers-in developing the most effective methods for integrating activity monitors into patient care. ©Alice Bellicha, Sandrine Macé, Jean-Michel Oppert. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.09.2017.
Transmission of olfactory information for tele-medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, P.E.; Kouzes, R.T.; Kangas, L.J.
1995-01-01
While the inclusion of visual, aural, and tactile senses into virtual reality systems is widespread, the sense of smell has been largely ignored. We have developed a chemical vapor sensing system for the automated identification of chemical vapors (smells). Our prototype chemical vapor sensing system is composed of an array of tin-oxide vapor sensors coupled to an artificial neural net-work. The artificial neural network is used in the recognition of different smells and is constructed as a standard multilayer feed-forward network trained with the backpropagation algorithm. When a chemical sensor array is combined with an automated pattern identifier, it ismore » often referred to as an electronic or artificial nose. Applications of electronic noses include monitoring food and beverage odors, automated flavor control, analyzing fuel mixtures, and quantifying individual components in gas mixtures. Our prototype electronic nose has been used to identify odors from common household chemicals. An electronic nose will potentially be a key component in an olfactory input to a telepresent virtual reality system. The identified odor would be electronically transmitted from the electronic nose at one site to an odor generation system at another site. This combination would function as a mechanism for transmitting olfactory information for telepresence. This would have direct applicability in the area of telemedicine since the sense of smell is an important sense to the physician and surgeon. In this paper, our chemical sensing system (electronic nose) is presented along with a proposed method for regenerating the transmitted olfactory information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbro, Maria T.; Department of Inorganic and Organic Chemistry, Universitat Jaume I, Campus del Riu Sec, E-12071 Castellón; Gracia, Lourdes
Ag{sub 2}CrO{sub 4} microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag{sub 2}CrO{sub 4} microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of themore » optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO{sub 6}] and [AgO{sub 4}] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag{sub 2}CrO{sub 4} orthorhombic structure. Display Omitted - Highlights: • The Ag{sub 2}CrO{sub 4} microcrystals indicate an orthorhombic structure. • The formation of Ag{sup 0} promotes Ag-nanoparticle growth on the surface of the Ag{sub 2}CrO{sub 4}. • Electron irradiation of the material induces the formation of Ag vacancies.« less
Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca
2016-09-01
Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.
Electron line shape and transmission function of the KATRIN monitor spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slezák, M.
Knowledge of the neutrino mass is of particular interest in modern neutrino physics. Besides the neutrinoless double beta decay and cosmological observation information about the neutrino mass is obtained from single beta decay by observing the shape of the electron spectrum near the endpoint. The KATRIN β decay experiment aims to push the limit on the effective electron antineutrino mass down to 0.2 eV/c{sup 2}. To reach this sensitivity several systematic effects have to be under control. One of them is the fluctuations of the absolute energy scale, which therefore has to be continuously monitored at very high precision. Thismore » paper shortly describes KATRIN, the technique for continuous monitoring of the absolute energy scale and recent improvements in analysis of the monitoring data.« less
Student Monitoring in Distance Education.
ERIC Educational Resources Information Center
Holt, Peter; And Others
1987-01-01
Reviews a computerized monitoring system for distance education students at Athabasca University designed to solve the problems of tracking student performance. A pilot project for tutors is described which includes an electronic conferencing system and electronic mail, and an evaluation currently in progress is briefly discussed. (LRW)
Next-generation air monitoring
Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...
NASA Astrophysics Data System (ADS)
Spokoyny, Boris M.
Ultrafast spectroscopy offers an unprecedented view on the dynamic nature of chemical reactions. From charge transfer in semiconductors to folding and isomerization of proteins, these all important processes can now be monitored and in some instances even controlled on real, physical timescales. One of the biggest challenges of ultrafast science is the incredible energetic complexity of most systems. It is not uncommon to encounter macromolecules or materials with absorption spectra spanning significant portions of the visible spectrum. Monitoring a multitude of electronic and vibrational transitions, all dynamically interacting with each other on femtosecond timescales poses a truly daunting experimental task. The first part of this thesis deals with the development of a novel Two-Dimensional Electronic Spectroscopy (2DES) and its associated, advanced detection methodologies. Owing to its ultra-broadband implementation, this technique enables us to monitor femtosecond chemical dynamics that span the energetic landscape of the entire visible spectrum. In order to demonstrate the utility of our method, we apply it to two laser dye molecules, IR-144 and Cresyl Violet. Variation of photophysical properties on a microscopic scale in either man-made or naturally occurring systems can have profound implications on how we understand their macroscopic properties. Recently, inorganic hybrid perovskites have been tapped as the next generation solar energy harvesting materials. Their remarkable properties include low exciton binding energy, low exciton recombination rates and long carrier diffusion lengths. Nevertheless, considerable variability in device properties made with nearly identical preparation methods has puzzled the community. In the second part of this thesis we use non-linear pump probe microscopy to study the heterogeneous nature of femtosecond carrier dynamics in thin film perovskites. We show that the local morphology of the perovskite thin films has a profound influence on the underlying photophysics, opening new avenues for further optimization of device performance.
NASA Astrophysics Data System (ADS)
Wang, Zhiyuan
Solar-blind ultraviolet detection refers to photon detection specifically in the wavelength range of 200 nm to 320 nm. Without background noises from solar radiation, it has broad applications from homeland security to environmental monitoring. In this thesis, we design and fabricate a nanophotonic metal-oxide-semiconductor device for solar-blind UV detection. Instead of using semiconductors as the active absorber, we use metal Sn nano- grating structures to absorb UV photons and generate hot electrons for internal photoemission across the Sn/SiO 2 interfacial barrier, thereby generating photocurrent between metal and semiconductor region upon UV excitation. The large metal/oxide interfacial energy barrier enables solar-blind UV detection by blocking the less energetic electrons excited by visible photons. With optimized design, 85% UV absorption and hot electron excitation can be achieved within the mean free path of 20 nm from the metal/oxide interface. This feature greatly enhances hot electron transport across the interfacial barrier to generate photocurrent. Various fabrication techniques have been developed for preparing nano gratings. For nominally 20 nm-thick deposited Sn, the self- formed pseudo-periodic nanostructure help achieve 75% UV absorption from lambda=200 nm to 300 nm. With another layer of nominally 20 nm-thick Sn, similar UV absorption is maintained while conductivity is improved, which is beneficial for overall device efficiency. The Sn/SiO2/Si MOS devices show good solar-blind character while achieving 13% internal quantum efficiency for 260 nm UV with only 20 nm-thick Sn and some devices demonstrate much higher (even >100%) internal quantum efficiency. While a more accurate estimation of device effective area is needed for proving our calculation, these results indeed show a great potential for this type of hot-electron-based photodetectors and for Sn nanostructure as an effective UV absorber. The simple geometry of the self- assembled Sn nano-gratings and MOS structure make this novel type of device easy to fabricate and integrate with Si ROICs compared to existing solar-blind UV detection schemes. The presented device structure also breaks through the conventional notion that photon absorption by metal is always a loss in solid-state photodetectors, and it can potentially be extended to other active metal photonic devices.
Portable radiography system using a relativistic electron beam
Hoeberling, Robert F.
1990-01-01
A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.
Portable radiography system using a relativistic electron beam
Hoeberling, R.F.
1987-09-22
A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.
[A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].
Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi
2005-01-01
We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.
Kroon Van Diest, Ashley M; Ramsey, Rachelle; Aylward, Brandon; Kroner, John W; Sullivan, Stephanie M; Nause, Katie; Allen, Janelle R; Chamberlin, Leigh A; Slater, Shalonda; Hommel, Kevin; LeCates, Susan L; Kabbouche, Marielle A; O'Brien, Hope L; Kacperski, Joanne; Hershey, Andrew D; Powers, Scott W
2016-07-01
The purpose of this investigation was to examine treatment adherence to medication and lifestyle recommendations among pediatric migraine patients using electronic monitoring systems. Nonadherence to medical treatment is a significant public health concern, and can result in poorer treatment outcomes, decreased cost-effectiveness of medical care, and increased morbidity. No studies have systematically examined adherence to medication and lifestyle recommendations in adolescents with migraine outside of a clinical trial. Participants included 56 adolescents ages 11-17 who were presenting for clinical care. All were diagnosed with migraine with or without aura or chronic migraine and had at least 4 headache days per month. Medication adherence was objectively measured using electronic monitoring systems (Medication Event Monitoring Systems technology) and daily, prospective self-report via personal electronic devices. Adherence to lifestyle recommendations of regular exercise, eating, and fluid intake were also assessed using daily self-report on personal electronic devices. Electronic monitoring indicates that adolescents adhere to their medication 75% of the time, which was significantly higher than self-reported rates of medication adherence (64%). Use of electronic monitoring of medication detected rates of adherence that were significantly higher for participants taking once daily medication (85%) versus participants taking twice daily medication (59%). Average reported adherence to lifestyle recommendations of consistent noncaffeinated fluid intake (M = 5 cups per day) was below recommended levels of a minimum of 8 cups per day. Participants on average also reported skipping 1 meal per week despite recommendations of consistently eating three meals per day. Results suggest that intervention focused on adherence to preventive treatments (such as medication) and lifestyle recommendations may provide more optimal outcomes for children and adolescents with migraine and their families. Once daily dosing of medication may be preferred to twice daily medication for increased medication adherence among children and adolescents. © 2016 American Headache Society.
Volatile metabolic monitoring of glycemic status in diabetes using electronic olfaction.
Dalton, Pamela; Gelperin, Alan; Preti, George
2004-08-01
The increased incidence of Type I and Type II diabetes among adults and adolescents is a growing public health concern worldwide. The primary objective of diabetes mellitus management involves keeping glycemia levels within the euglycemic range to prevent a variety of serious health complications. Unfortunately, daily self-monitoring is both a requirement and a problem for many patients with diabetes, particularly children and adolescents. Studies have shown that as many as 43% of adolescents and 30% of children (<14 years old) regularly forget to use glycemic tests and are significantly poorer at recognizing and reporting symptoms and signs of hypoglycemia/hyperglycemia. For this reason, methods for noninvasive, continuous monitoring that can signal glycemic status to a parent, teacher, or other caregiver would improve the care and management of symptoms of diabetes among these individuals. The goal of this review is to describe and evaluate electronic olfaction technology ("electronic nose") for monitoring the presence and levels of volatile chemicals from human body and breath that can be used to evaluate status of diabetes. The review is organized in four sections. The first section reviews the chemistry of the volatile signals that are produced by the body that are indicative of metabolic status. The second section provides an overview of novel sensor technology, e.g., "electronic olfaction," that mimics the biological olfactory system and can be used to monitor and identify complex plumes of volatiles that are signatures of metabolic states. The third section reviews studies that have employed electronic "nose" technology for diagnosis and monitoring of diabetes via urine and breath, and the final section discusses needed future directions for the development of olfactory-based metabolic monitoring, particularly among noncompliant populations.
Faurholt-Jepsen, M; Frost, M; Ritz, C; Christensen, E M; Jacoby, A S; Mikkelsen, R L; Knorr, U; Bardram, J E; Vinberg, M; Kessing, L V
2015-10-01
The number of studies on electronic self-monitoring in affective disorder and other psychiatric disorders is increasing and indicates high patient acceptance and adherence. Nevertheless, the effect of electronic self-monitoring in patients with bipolar disorder has never been investigated in a randomized controlled trial (RCT). The objective of this trial was to investigate in a RCT whether the use of daily electronic self-monitoring using smartphones reduces depressive and manic symptoms in patients with bipolar disorder. A total of 78 patients with bipolar disorder according to ICD-10 criteria, aged 18-60 years, and with 17-item Hamilton Depression Rating Scale (HAMD-17) and Young Mania Rating Scale (YMRS) scores ≤17 were randomized to the use of a smartphone for daily self-monitoring including a clinical feedback loop (the intervention group) or to the use of a smartphone for normal communicative purposes (the control group) for 6 months. The primary outcomes were differences in depressive and manic symptoms measured using HAMD-17 and YMRS, respectively, between the intervention and control groups. Intention-to-treat analyses using linear mixed models showed no significant effects of daily self-monitoring using smartphones on depressive as well as manic symptoms. There was a tendency towards more sustained depressive symptoms in the intervention group (B = 2.02, 95% confidence interval -0.13 to 4.17, p = 0.066). Sub-group analysis among patients without mixed symptoms and patients with presence of depressive and manic symptoms showed significantly more depressive symptoms and fewer manic symptoms during the trial period in the intervention group. These results highlight that electronic self-monitoring, although intuitive and appealing, needs critical consideration and further clarification before it is implemented as a clinical tool.
Meixler, Lewis D.
1993-01-01
The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, M.; Doom, L.; Hseuh, H.
2009-09-13
National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning andmore » mounting the chambers are given.« less
Conductive surge testing of circuits and systems
NASA Technical Reports Server (NTRS)
Richman, P.
1980-01-01
Techniques are given for conductive surge testing of powered electronic equipment. The correct definitions of common and normal mode are presented. Testing requires not only spike-surge generators with a suitable range of open-circuit voltage and short-circuit current waveshapes, but also appropriate means, termed couplers, for connecting test surges to the equipment under test. Key among coupler design considerations is minimization of fail positives resulting from reduction in delivered surge energy due to the coupler. Back-filters and the lines on which they are necessary, are considered as well as ground-fault and ground potential rise. A method for monitoring delivered and resulting surge waves is mentioned.
Global Ionospheric Perturbations Monitored by the Worldwide GPS Network
NASA Technical Reports Server (NTRS)
Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.
1996-01-01
Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.
Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao
2018-03-25
The nanopore can generate an electrochemical confinement for single-molecule sensing that help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this Concept article, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mao, Li; Liu, Yu-Xiang; Huang, Chun-Hua; Gao, Hui-Ying; Kalyanaraman, Balaraman; Zhu, Ben-Zhan
2015-07-07
The ubiquitous distribution coupled with their carcinogenicity has raised public concerns on the potential risks to both human health and the ecosystem posed by the halogenated aromatic compounds (XAr). Recently, advanced oxidation processes (AOPs) have been increasingly favored as an "environmentally-green" technology for the remediation of such recalcitrant and highly toxic XAr. Here, we show that AOPs-mediated degradation of the priority pollutant pentachlorophenol and all other XAr produces an intrinsic chemiluminescence that directly depends on the generation of the extremely reactive hydroxyl radicals. We propose that the hydroxyl radical-dependent formation of quinoid intermediates and electronically excited carbonyl species is responsible for this unusual chemiluminescence production. A rapid, sensitive, simple, and effective chemiluminescence method was developed to quantify trace amounts of XAr and monitor their real-time degradation kinetics. These findings may have broad biological and environmental implications for future research on this important class of halogenated persistent organic pollutants.
Outlier Detection for Patient Monitoring and Alerting
Hauskrecht, Milos; Batal, Iyad; Valko, Michal; Visweswaran, Shyam; Cooper, Gregory F.; Clermont, Gilles
2012-01-01
We develop and evaluate a data-driven approach for detecting unusual (anomalous) patient-management decisions using past patient cases stored in electronic health records (EHRs). Our hypothesis is that a patient-management decision that is unusual with respect to past patient care may be due to an error and that it is worthwhile to generate an alert if such a decision is encountered. We evaluate this hypothesis using data obtained from EHRs of 4,486 post-cardiac surgical patients and a subset of 222 alerts generated from the data. We base the evaluation on the opinions of a panel of experts. The results of the study support our hypothesis that the outlier-based alerting can lead to promising true alert rates. We observed true alert rates that ranged from 25% to 66% for a variety of patient-management actions, with 66% corresponding to the strongest outliers. PMID:22944172
Fiber-based generator for wearable electronics and mobile medication.
Zhong, Junwen; Zhang, Yan; Zhong, Qize; Hu, Qiyi; Hu, Bin; Wang, Zhong Lin; Zhou, Jun
2014-06-24
Smart garments for monitoring physiological and biomechanical signals of the human body are key sensors for personalized healthcare. However, they typically require bulky battery packs or have to be plugged into an electric plug in order to operate. Thus, a smart shirt that can extract energy from human body motions to run body-worn healthcare sensors is particularly desirable. Here, we demonstrated a metal-free fiber-based generator (FBG) via a simple, cost-effective method by using commodity cotton threads, a polytetrafluoroethylene aqueous suspension, and carbon nanotubes as source materials. The FBGs can convert biomechanical motions/vibration energy into electricity utilizing the electrostatic effect with an average output power density of ∼0.1 μW/cm(2) and have been identified as an effective building element for a power shirt to trigger a wireless body temperature sensor system. Furthermore, the FBG was demonstrated as a self-powered active sensor to quantitatively detect human motion.
Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering
Choi, Yongki; Olsen, Tivoli J.; Sims, Patrick C.; Moody, Issa S.; Corso, Brad L.; Dang, Mytrang N.; Weiss, Gregory A.; Collins, Philip G.
2013-01-01
Single molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, non-fluorescent single molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems. PMID:23323846
[Development and clinical evaluation of an anesthesia information management system].
Feng, Jing-yi; Chen, Hua; Zhu, Sheng-mei
2010-09-21
To study the design, implementation and clinical evaluation of an anesthesia information management system. To record, process and store peri-operative patient data automatically, all kinds of bedside monitoring equipments are connected into the system based on information integrating technology; after a statistical analysis of those patient data by data mining technology, patient status can be evaluated automatically based on risk prediction standard and decision support system, and then anesthetist could perform reasonable and safe clinical processes; with clinical processes electronically recorded, standard record tables could be generated, and clinical workflow is optimized, as well. With the system, kinds of patient data could be collected, stored, analyzed and archived, kinds of anesthesia documents could be generated, and patient status could be evaluated to support clinic decision. The anesthesia information management system is useful for improving anesthesia quality, decreasing risk of patient and clinician, and aiding to provide clinical proof.
Application accelerator system having bunch control
Wang, D.; Krafft, G.A.
1999-06-22
An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
Basic equipment requirements for hemodynamic monitoring.
Morton, B C
1979-01-01
Hemodynamic monitoring in the critically ill patient requires the use of sophisticated electronic devices. To use this equipment one should have a general understanding of the principles involved and the requirements of a reliable system. This communication serves to explain the requirements of the various components of a hemodynamic monitoring system and to demonstrate how they interact to produce accurate and safe electronic signals from mechanical wave forms obtained from the patient. Images FIG. 5 PMID:497978
Cahill, Alison G; Tuuli, Methodius G; Stout, Molly J; López, Julia D; Macones, George A
2018-05-01
Intrapartum electronic fetal monitoring is the most commonly used tool in obstetrics in the United States; however, which electronic fetal monitoring patterns predict acidemia remains unclear. This study was designed to describe the frequency of patterns seen in labor using modern nomenclature, and to test the hypothesis that visually interpreted patterns are associated with acidemia and morbidities in term infants. We further identified patterns prior to delivery, alone or in combination, predictive of acidemia and neonatal morbidity. This was a prospective cohort study of 8580 women from 2010 through 2015. Patients were all consecutive women laboring at ≥37 weeks' gestation with a singleton cephalic fetus. Electronic fetal monitoring patterns during the 120 minutes prior to delivery were interpreted in 10-minute epochs. Interpretation included the category system and individual electronic fetal monitoring patterns per the Eunice Kennedy Shriver National Institute of Child Health and Human Development criteria as well as novel patterns. The primary outcome was fetal acidemia (umbilical artery pH ≤7.10); neonatal morbidities were also assessed. Final regression models for acidemia adjusted for nulliparity, pregestational diabetes, and advanced maternal age. Area under the receiver operating characteristic curves were used to assess the test characteristics of individual models for acidemia and neonatal morbidity. Of 8580 women, 149 (1.7%) delivered acidemic infants. Composite neonatal morbidity was diagnosed in 757 (8.8%) neonates within the total cohort. Persistent category I, and 10-minute period of category III, were significantly associated with normal pH and acidemia, respectively. Total deceleration area was most discriminative of acidemia (area under the receiver operating characteristic curves, 0.76; 95% confidence interval, 0.72-0.80), and deceleration area with any 10 minutes of tachycardia had the greatest discriminative ability for neonatal morbidity (area under the receiver operating characteristic curves, 0.77; 95% confidence interval, 0.75-0.79). Once the threshold of deceleration area is reached the number of cesareans needed-to-be performed to potentially prevent 1 case of acidemia and morbidity is 5 and 6, respectively. Deceleration area is the most predictive electronic fetal monitoring pattern for acidemia, and combined with tachycardia for significant risk of morbidity, from the electronic fetal monitoring patterns studied. It is important to acknowledge that this study was performed in patients delivering ≥37 weeks, which may limit the generalizability to preterm populations. We also did not use computerized analysis of the electronic fetal monitoring patterns because human visual interpretation was the basis for the Eunice Kennedy Shriver National Institute of Child Health and Human Development categories, and importantly, it is how electronic fetal monitoring is used clinically. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.
2013-03-01
With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.
Electron energy recovery system for negative ion sources
Dagenhart, William K.; Stirling, William L.
1982-01-01
An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.
Fetal monitoring during nonobstetric surgery: revisiting guidelines: a case report.
Rothschild, Tod J; Morel, Bruce; Pace, Benjamin; Fuks, Aleksandr M
2015-01-01
Nonobstetric surgery during pregnancy is not an infrequent occurrence. Guidelines for fetal monitoring during nonobstetric surgery are limited. We describe a case of appendectomy during third trimester, complicated by in utero fetal demise (IUFD). A 30-year-old, Caucasian woman underwent open appendectomy for suspected acute appendicitis. The procedure was complicated by IUFD. Fetal monitoring was done prior to but not during surgery. Guidelines for fetal monitoring were revised, recommending continuous electronic fetal monitoring when possible during third trimester nonobstetric surgery after appropriate patient counseling. A subsequent series of 5 uncomplicated appendectomies demonstrated no difficulty in implementing these guidelines. Continuous electronic fetal monitoring during third trimester nonobstetric surgery should be available and implemented after appropriate patient counseling. This approach reduces the risk of fetal mortality.
Secondary electron ion source neutron generator
Brainard, John P.; McCollister, Daryl R.
1998-01-01
A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof
Lv, Nan; Xiao, Lan; Simmons, Martha L; Rosas, Lisa G; Chan, Albert; Entwistle, Martin
2017-09-19
EMPOWER-H (Engaging and Motivating Patients Online With Enhanced Resources-Hypertension) is a personalized-care model facilitating engagement in hypertension self-management utilizing an interactive Web-based disease management system integrated with the electronic health record. The model is designed to support timely patient-provider interaction by incorporating decision support technology to individualize care and provide personalized feedback for patients with chronic disease. Central to this process were patient-generated health data, including blood pressure (BP), weight, and lifestyle behaviors, which were uploaded using a smartphone. The aim of this study was to evaluate the program among patients within primary care already under management for hypertension and with uncontrolled BP. Using a 6-month pre-post design, outcome measures included office-measured and home-monitored BP, office-measured weight, intervention contacts, diet, physical activity, smoking, knowledge, and health-related quality of life. At 6 months, 55.9% of participants (N=149) achieved office BP goals (<140/90 mm Hg; P<.001) and 86.0% achieved clinically meaningful reduction in office BP (reduction in systolic BP [SBP] ≥5 mm Hg or diastolic BP [DBP] ≥3 mm Hg). At baseline, 25.2% of participants met home BP goals (<135/85 mm Hg), and this percentage significantly increased to 71.4% (P<.001) at 6 months. EMPOWER-H also significantly reduced both office and home SBP and DBP, decreased office-measured weight and consumption of high-salt and high-fat foods (all P<.005), and increased intake of fruit and vegetables, minutes of aerobic exercise, and hypertension knowledge (all P<.05). Patients with higher home BP upload frequencies had significantly higher odds of achieving home BP goals. Patients receiving more total intervention, behavioral, pharmaceutical contacts had significantly lower odds of achieving home BP goals but higher improvements in office BP (all P<.05). EMPOWER-H significantly improved participants' office-measured and home-monitored BP, weight, and lifestyle behaviors, suggesting that technologically enabled BP home-monitoring, with structured use of patient-generated health data and a personalized care-plan facilitating patient engagement, can support effective clinical management. The experience gained in this study provides support for the feasibility and value of using carefully managed patient-generated health data in the day-to-day clinical management of patients with chronic conditions. A large-scale, real-world study to evaluate sustained effectiveness, cost-effectiveness, and scalability is warranted. ©Nan Lv, Lan Xiao, Martha L Simmons, Lisa G Rosas, Albert Chan, Martin Entwistle. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.09.2017.
Kostenbauder, Adnah G.
1988-01-01
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.
Kostenbauder, A.G.
1988-06-28
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.
46 CFR 535.701 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Washington, DC 20573-0001. A copy of the Monitoring Report form in Microsoft Word and Excel format may be... Monitoring Reports in the Commission's prescribed electronic format, either on diskette or CD-ROM. (e)(1) The... filed by this subpart may be filed by direct electronic transmission in lieu of hard copy. Detailed...
USDA-ARS?s Scientific Manuscript database
Electronic nose sensors are designed to detect differences in complex air sample matrices. For example, they have been used in the food industry to monitor process performance and quality control. However, no information is available on the application of sensor arrays to monitor process performanc...
Electronic skewing circuit monitors exact position of object underwater
NASA Technical Reports Server (NTRS)
Roller, R.; Yaroshuk, N.
1967-01-01
Linear Variable Differential Transformer /LVDT/ electronic skewing circuit guides a long cylindrical capsule underwater into a larger tube so that it does not contact the tube wall. This device detects movement of the capsule from a reference point and provides a continuous signal that is monitored on an oscilloscope.
Karoly, Hollis C; Callahan, Tiffany; Schmiege, Sarah J; Ewing, Sarah W Feldstein
2016-05-01
In the United States, Hispanic adolescents are at elevated risk for negative outcomes related to risky sexual behavior. To evaluate potential protective factors for this group, we examined the fit of the Hispanic Paradox for sexual behavior among high-risk youth and the moderating role of parent monitoring. We enrolled 323 justice-involved Hispanic youth (73% male; mean age 16 years), and measured generational status, parent monitoring (monitoring location, who children spend time with outside of school, family dinner frequency), and sexual risk behavior. There were no main effects for generational status on sexual behavior. Parent monitoring of location moderated the relationship between generational status and sexual behavior, such that greater monitoring of location was associated with less risky sexual behavior, but only for youth second generation and above. Rather than direct evidence supporting the Hispanic Paradox, we found a more nuanced relationship for generational status in this sample. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Readout Electronics for BGO Calorimeter of DAMPE: Status during the First Half-year after Launching
NASA Astrophysics Data System (ADS)
Ma, Siyuan; Feng, Changqing; Zhang, Deliang; Wang, Qi
2016-07-01
The DAMPE (DArk Matter Particle Explorer) is a scientic satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objective of DAMPE mission is indirect searching for dark matter by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO (Bismuth Germanate Oxide) calorimeter, which is a critical sub-detector of DAMPE payload, was developed for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It is composed of 308 BGO crystal logs, with the size of 2.5cm*2.5cm*60cm for each log to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. Each PMT incorporates a three dynode pick off to achieve a large dynamic range, which results in 616 PMTs and 1848 signal channels. The main function of readout electronics system, which consists of 16 FEE(Front End Electronics) modules, is to precisely measure the charge of PMT signals and providing "hit" signals. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) to generate triggers for the payload. The calibration of the BGO calorimeter is composed of pedestal testing and electronic linear scale, which are executed frequently in the space after launching. The data of the testing is transmitted to ground station in the form of scientific data. The monitor status consists of temperature, current and status words of the FEE, which are measured and recorded every 16 seconds and packed in the engineering data, then transmitted to ground station. The status of the BGO calorimeter can be evaluated by the calibration and monitor status. The preliminary results of the status in the first six month after launching are introduced in this paper.
Pilcher, Janine; Holliday, Mark; Ebmeier, Stefan; McKinstry, Steve; Messaoudi, Fatiha; Weatherall, Mark; Beasley, Richard
2016-01-01
The SmartTouch Ventolin monitor (Adherium, Auckland, New Zealand) is an electronic monitor for use with a Ventolin metered dose inhaler, which records the date and time of inhaler actuations. This technology has the potential to allow in-depth analysis of patterns of inhaler use in clinical trial settings. The aim of this study was to determine the accuracy of the SmartTouch Ventolin monitor in recording Ventolin actuations. 20 SmartTouch Ventolin monitors were attached to Ventolin metered dose inhalers. Bench testing was performed over a 10-week period, to reflect the potential time frame between visits in a clinical trial. Inhaler actuations were recorded in a paper diary, which was compared with data uploaded from the monitors. 2560 actuations were performed during the 10-week study period. Monitor sensitivity for diary-recorded actuations was 99.9% with a lower 97.5% confidence bound of 99.7%. The positive predictive value for diary-recorded actuations was 100% with a 97.5% lower confidence bound of 99.9%. The SmartTouch Ventolin monitor is highly accurate in recording and retaining electronic data. It can be recommended for use in clinical trial settings in which training and quality control systems are incorporated into study protocols to ensure accurate data acquisition.
Pilcher, Janine; Holliday, Mark; Ebmeier, Stefan; McKinstry, Steve; Messaoudi, Fatiha; Weatherall, Mark; Beasley, Richard
2016-01-01
Background The SmartTouch Ventolin monitor (Adherium, Auckland, New Zealand) is an electronic monitor for use with a Ventolin metered dose inhaler, which records the date and time of inhaler actuations. This technology has the potential to allow in-depth analysis of patterns of inhaler use in clinical trial settings. The aim of this study was to determine the accuracy of the SmartTouch Ventolin monitor in recording Ventolin actuations. Methods 20 SmartTouch Ventolin monitors were attached to Ventolin metered dose inhalers. Bench testing was performed over a 10-week period, to reflect the potential time frame between visits in a clinical trial. Inhaler actuations were recorded in a paper diary, which was compared with data uploaded from the monitors. Results 2560 actuations were performed during the 10-week study period. Monitor sensitivity for diary-recorded actuations was 99.9% with a lower 97.5% confidence bound of 99.7%. The positive predictive value for diary-recorded actuations was 100% with a 97.5% lower confidence bound of 99.9%. Conclusions The SmartTouch Ventolin monitor is highly accurate in recording and retaining electronic data. It can be recommended for use in clinical trial settings in which training and quality control systems are incorporated into study protocols to ensure accurate data acquisition. PMID:27026805
Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring
NASA Astrophysics Data System (ADS)
Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.
2000-11-01
We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a "keV-photon detector", which will allow diagnostic quality visualization of the patient, and a "MeV-photon detector", that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT.
ERIC Educational Resources Information Center
Jordan, Jerry Monroe; Roloff, Michael E.
1997-01-01
Focuses on skills necessary for effective negotiation planning. Argues that the information processing tendencies of high self-monitors make them adept at negotiation planning. Extends existing work by relating self-monitoring to plan generation, enactment, and consequences. Indicates that self-monitoring is related to prenegotiation goal…
75 FR 9392 - New England Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... monitoring; require electronic monitoring; and address other elements of catch monitoring in the Atlantic... development of catch monitoring alternatives for inclusion in Amendment 5 to the Atlantic Herring Fishery Management Plan (FMP); alternatives may include management measures to: improve quota monitoring and...
Bio-medical telemetry: Sensing and transmitting biological information from animals to man
NASA Technical Reports Server (NTRS)
Mackay, S.
1971-01-01
The application of small radio transmitters for monitoring biological activity in animals and humans is discussed. The microminiaturization of the electronic transmitters makes it possible for them to be swallowed and to operate within the body with no external connections. The small size also makes it possible for the transmitters to be surgically implanted or carried externally to monitor specific bodily functions. The use of satellites to monitor the activity of birds and animals carrying small transmitters is described. Photographs of birds, fish, and reptiles which were equipped with miniature electronic monitors are provided.
Secondary electron ion source neutron generator
Brainard, J.P.; McCollister, D.R.
1998-04-28
A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.
Hernández-Madrid, Antonio; Lewalter, Thorsten; Proclemer, Alessandro; Pison, Laurent; Lip, Gregory Y H; Blomstrom-Lundqvist, Carina
2014-01-01
The aim of this European Heart Rhythm Association survey was to provide an insight into the current use of remote monitoring for cardiac implantable electronic devices in Europe. The following topics were explored: use of remote monitoring, infrastructure and organization, patient selection and benefits. Centres using remote monitoring reported performing face-to-face visits less frequently. In many centres (56.9%), a nurse reviews all the data and forwards them to the responsible physician. The majority of the centres (91.4%) stated that remote monitoring is best used in patients with implantable cardioverter-defibrillators and those live far from the hospital (76.6% top benefit). Supraventricular and ventricular arrhythmias were reported to be the major events detected earlier by remote monitoring. Remote monitoring will have a significant impact on device management.
Electron beam deflection control system of a welding and surface modification installation
NASA Astrophysics Data System (ADS)
Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.
2018-03-01
In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.
Alumina Based 500 C Electronic Packaging Systems and Future Development
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2012-01-01
NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.
NASA Astrophysics Data System (ADS)
Chida, Kensaku; Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira
2015-08-01
We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.
NASA Astrophysics Data System (ADS)
Figueiredo, C. A. O. B.; Takahashi, H.; Wrasse, C. M.; Otsuka, Y.; Shiokawa, K.; Barros, D.
2018-03-01
A ground-based network of Global Navigation Satellite Systems receivers has been used to monitor medium-scale traveling ionospheric disturbances (MSTIDs). MSTIDs were studied using total electron content perturbation maps and keograms over south-southeast of Brazil during the period from December 2012 to February 2016. In total, 826 MSTIDs were observed mainly in daytime, thus presenting median values of horizontal wavelength, period, and horizontal phase velocity of 452 ± 107 km, 24 ± 4 min. and 323 ± 81 m/s, respectively. The direction of propagation varies on the season: during the winter (June-August), the waves preferentially propagated to north-northeast, while in the other seasons the waves propagated to other directions. The anisotropy observed in the MSTID propagation direction could be associated with the region of the gravity wave generation that takes place in the troposphere. We also found that the MSTIDs were observed most frequently during the daytime, between 11 and 15 local time in winter and near to dusk solar terminator (17-19 local time) in the other seasons. Furthermore, the occurrence of MSTIDs was higher in winter. We suggest that atmospheric gravity waves in the thermosphere, mesosphere, and troposphere could play an important role in generating the MSTIDs and the propagation direction may depend on location of the wave sources.
Gainey, Randy R; Payne, Brian K
2003-04-01
The notion that community support is critical for program success is a consistent theme in the literature on community-based corrections. Unfortunately, many citizens know very little about alternative sanctions, are misinformed about them, and do not view them favorably. At issue is whether information about alternative sanctions affects individuals' attitudes regarding them. To address this question, students in an upper division criminal justice course were surveyed before and after a presentation on electronic monitoring. Following the presentation, students were more likely to agree that electronic monitoring is punitive and that it meets several goals of the justice system. Implications for policy makers and educators are provided.
NASA Astrophysics Data System (ADS)
Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik
2018-02-01
When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.
Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikawa, K.-I.; Hardee, P. E.; Duţan, I.
2014-09-20
We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shearmore » surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.« less
2016-01-01
Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213
Nuclear Electromagnetic Pulse Review
NASA Astrophysics Data System (ADS)
Dinallo, Michael
2011-04-01
Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.
NASA Astrophysics Data System (ADS)
Simpson, R. A.; Davis, D. E.
1982-09-01
This paper describes techniques to detect submicron pattern defects on optical photomasks with an enhanced direct-write, electron-beam lithographic tool. EL-3 is a third generation, shaped spot, electron-beam lithography tool developed by IBM to fabricate semiconductor devices and masks. This tool is being upgraded to provide 100% inspection of optical photomasks for submicron pattern defects, which are subsequently repaired. Fixed-size overlapped spots are stepped over the mask patterns while a signal derived from the back-scattered electrons is monitored to detect pattern defects. Inspection does not require pattern recognition because the inspection scan patterns are derived from the original design data. The inspection spot is square and larger than the minimum defect to be detected, to improve throughput. A new registration technique provides the beam-to-pattern overlay required to locate submicron defects. The 'guard banding" of inspection shapes prevents mask and system tolerances from producing false alarms that would occur should the spots be mispositioned such that they only partially covered a shape being inspected. A rescanning technique eliminates noise-related false alarms and significantly improves throughput. Data is accumulated during inspection and processed offline, as required for defect repair. EL-3 will detect 0.5 um pattern defects at throughputs compatible with mask manufacturing.
The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater.
Dewettinck, T; Van Hege, K; Verstraete, W
2001-07-01
An electronic nose consisting of 12 metal oxide sensors was used to monitor volatile compounds in effluent of a domestic wastewater treatment plant. Effluent and reference (deionized water) samples were heated to 60 and 90 degrees C to promote the volatilization and to increase the sensitivity. An effluent measuring campaign of 12 weeks was conducted and the repeatability and reproducibility of the procedure and the apparatus were determined. Processing the obtained fingerprints with principal component analysis (PCA) allowed interpretation and differentiation of the samples in terms of origin and quality, relative to the reference. To minimize the variance due to sensitivity fluctuations of the apparatus and to detect effluents with deviating qualities, two new concepts were defined, i.e. the relative sensorial odour perception (in short: rSOP) and the relative fingerprint. Correlations between the relative overall electronic nose output, expressed as rSOP, and selected routine parameters were weak except for the parameter "volatile suspended solids" (VSS), indicating adsorption of volatile organic compounds (VOCs) onto the organic particles. The results clearly demonstrate the possibility to use the electronic nose as a rapid alarm generator towards volatile compounds, e.g. in specific advanced treatment processes to produce reclaimed water from effluent of the domestic wastewater treatment plant under scrutiny.
Digital processing with single electrons for arbitrary waveform generation of current
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa
2018-03-01
We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.
Cronin, Edmond M; Varma, Niraj
2012-07-01
Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.
Charge neutralization apparatus for ion implantation system
Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.
1992-01-01
Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.
Electronic Monitoring of Sex Offenders: Identifying Unanticipated Consequences and Implications
ERIC Educational Resources Information Center
Demichele, Matthew; Payne, Brian K.; Button, Deeanna M.
2008-01-01
In recent years, increased legislative attention has been given to strategies to supervise sex offenders in the community. Among other policies, several states have passed laws calling for the use of electronic monitoring technologies to supervise sex offenders in the community. When initially developed, this community-based sanction was designed…
29. View of typical radio frequency monitor group electronic tubetype ...
29. View of typical radio frequency monitor group electronic tube-type cabinet. System is water-cooled with antenna assist. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Effects of House Arrest with Electronic Monitoring on DUI Offenders.
ERIC Educational Resources Information Center
Courtright, Kevin E.; Berg, Bruce L.; Mutchick, Robert J.
1997-01-01
Evaluates the first 57 offenders who participated in an electronic monitoring (EM) program and compared them to offenders who went to jail. Analysis revealed no difference between the groups with respect to rearrest, revocations, and detainers filed. The overwhelming majority of EM offenders completed their period of supervision without incident.…
Offenders' Perceptions of House Arrest and Electronic Monitoring
ERIC Educational Resources Information Center
Martin, Jamie S.; Hanrahan, Kate; Bowers, James H., Jr.
2009-01-01
This article reports on a study designed to examine the perceptions of house arrest (HA) and electronic monitoring (EM) among offenders who have recently experienced this criminal sentence. Data were gathered via a self-administered questionnaire and follow-up interviews with a sample of offenders. Our primary areas of interest were to assess (a)…
[The eye of technology and the well being of women and men in Icelandic work places].
Rafnsdóttir, Guobjörg Linda; Tómasson, Kristinn; Guomundsdóttir, Margrét Lilja
2005-11-01
The study assessed the association between working under surveillance and electronic performance monitoring and the well-being among women and men in six Icelandic workplaces. In the time period from February to April 2003, a questionnaire based on the General Nordic Questionnaire for Psychological and Social Factors at Work was delivered to 1369 employees in six companies where different methods of electronic performance monitoring (EPM) are used. The data was analyzed using odds ratio and logistical regression. The response rate was 72%, with close to equal participation of men and women. The employees who were working under EPM were more likely to have poor psychosocial work-environment, to have experienced significant stress recently, to be mentally exhausted at the end of the workday, to have significant sleep difficulties and to be dissatisfied in their job. The development of the information and communication technology that allows employers and managers to monitor and collect different electronic data about the work process and productivity of the workers makes it important to follow the health condition of those who work under electronic performance monitoring.
Monitoring of Ritz modal generation
NASA Technical Reports Server (NTRS)
Chargin, Mladen; Butler, Thomas G.
1990-01-01
A scheme is proposed to monitor the adequacy of a set of Ritz modes to represent a solution by comparing the quantity generated with certain properties involving the forcing function. In so doing an attempt was made to keep this algorithm lean and efficient, so that it will be economical to apply. Using this monitoring scheme during Ritz Mode generation will automatically ensure that the k Ritz modes theta k that are generated are adequate to represent both the spatial and temporal behavior of the structure when forced under the given transient condition defined by F(s,t).
Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent
2013-09-01
Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician. Copyright © 2013 Elsevier Inc. All rights reserved.
Energy scavenging sources for biomedical sensors.
Romero, E; Warrington, R O; Neuman, M R
2009-09-01
Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed.
Electromagnetic pulses bone healing booster
NASA Astrophysics Data System (ADS)
Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.
2015-11-01
Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.
Amplitude-Stabilized Oscillator for a Capacitance-Probe Electrometer
NASA Technical Reports Server (NTRS)
Blaes, Brent R.; Schaefer, Rembrandt T.
2012-01-01
A multichannel electrometer voltmeter that employs a mechanical resonator maintained in sustained amplitude-stabilized oscillation has been developed for the space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM) sensor. The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Creating a stable oscillator from the mechanical resonator was achieved by employing magnetic induction for sensing the resonator s velocity, and forcing a current through a coil embedded in the resonator to produce a Lorentz actuation force that overcomes the resonator s dissipative losses. Control electronics employing an AGC loop provide conditions for stabilized, constant amplitude harmonic oscillation. The prototype resonator was composed of insulating FR4 printed-wireboard (PWB) material containing a flat, embedded, rectangular coil connected through flexure springs to a base PWB, and immersed in a magnetic field having two regions of opposite field direction generated by four neodymium block magnets. In addition to maintaining the mechanical movement needed for the electrometer s capacitor-probe transducer, this oscillator provides a reference signal for synchronous detection of the capacitor probe s output signal current so drift of oscillation frequency due to environmental effects is inconsequential.
Development of an electronic nose for environmental odour monitoring.
Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Zanetti, Sonia; Della Torre, Matteo
2012-10-25
Exhaustive odour impact assessment should involve the evaluation of the impact of odours directly on citizens. For this purpose it might be useful to have an instrument capable of continuously monitoring ambient air quality, detecting the presence of odours and also recognizing their provenance. This paper discusses the laboratory and field tests conducted in order to evaluate the performance of a new electronic nose, specifically developed for monitoring environmental odours. The laboratory tests proved the instrument was able to discriminate between the different pure substances being tested, and to estimate the odour concentrations giving correlation indexes (R2) of 0.99 and errors below 15%. Finally, the experimental monitoring tests conducted in the field, allowed us to verify the effectiveness of this electronic nose for the continuous detection of odours in ambient air, proving its stability to variable atmospheric conditions and its capability to detect odour peaks.
Thomas, Evan A; Tellez-Sanchez, Sarita; Wick, Carson; Kirby, Miles; Zambrano, Laura; Abadie Rosa, Ghislaine; Clasen, Thomas F; Nagel, Corey
2016-04-05
Subject reactivity--when research participants change their behavior in response to being observed--has been documented showing the effect of human observers. Electronics sensors are increasingly used to monitor environmental health interventions, but the effect of sensors on behavior has not been assessed. We conducted a cluster randomized controlled trial in Rwanda among 170 households (70 blinded to the presence of the sensor, 100 open) testing whether awareness of an electronic monitor would result in a difference in weekly use of household water filters and improved cookstoves over a four-week surveillance period. A 63% increase in number of uses of the water filter per week between the groups was observed in week 1, an average of 4.4 times in the open group and 2.83 times in the blind group, declining in week 4 to an insignificant 55% difference of 2.82 uses in the open, and 1.93 in the blind. There were no significant differences in the number of stove uses per week between the two groups. For both filters and stoves, use decreased in both groups over four-week installation periods. This study suggests behavioral monitoring should attempt to account for reactivity to awareness of electronic monitors that persists for weeks or more.
Optimized Temporal Monitors for SystemC
NASA Technical Reports Server (NTRS)
Tabakov, Deian; Rozier, Kristin Y.; Vardi, Moshe Y.
2012-01-01
SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead.
75 FR 49466 - New England Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
...-sea monitoring; address portside sampling; require electronic monitoring; and address other elements... Panel. They will also continue development of catch monitoring alternatives for inclusion in Amendment 5... to: improve quota monitoring and reporting; standardize/ certify volumetric measurements of catch...
Electronic compliance monitoring of topical treatment after ophthalmic surgery.
Hermann, Manuel Marcel; Ustündag, Can; Diestelhorst, Michael
2010-08-01
The success of many medical treatments is built on compliance. Electronic monitoring is the most accurate tool to quantify compliance by measuring adherence. In order to assess the efficiency of a recently introduced miniature monitoring device for eye drop application, we evaluated adherence in ophthalmic patients undergoing post-operative short-term topical treatment. This pilot study enrolled 30 outpatients (mean age 61.8 +/- 18.5 years) after cataract (n = 24) and glaucoma filtration surgery (n = 6) applying fixed-combination eye drops containing prednisolone and gentamicin five times daily for 2 weeks. Patients received eye drops in conventional bottles each equipped with a miniature monitoring device recording events of application. Two patients failed to bring back the monitoring device; therefore data collected from only 28 patients could be examined. Data showed highly variable results with a mean dose compliance of 50.2%. Dose compliance was below 25% in approximately one out of five patients. Four cataract patients, but no glaucoma patient, discontinued therapy prematurely. The observed mean dosage interval was calculated for each patient and ranged 4.6-19.7 h. Thirty percent of analysed dosage intervals exceeded 12.0 h. Different patterns of compliance behaviour-like early non-persistence, drug holiday and low treatment frequency could be identified and illustrated using electronic data. Age or gender did not significantly influence compliance rates. Our pilot study demonstrates successful electronic compliance monitoring using a technology capable of continuous data recording over weeks of treatment. The low compliance rate for a relevant part of the patients demonstrates the necessity to study and improve compliance in ophthalmology. In future, new application methods and electronic application devices may improve treatment response in eye care.
Botsis, Taxiarchis; Foster, Matthew; Kreimeyer, Kory; Pandey, Abhishek; Forshee, Richard
2017-01-01
Literature review is critical but time-consuming in the post-market surveillance of medical products. We focused on the safety signal of intussusception after the vaccination of infants with the Rotashield Vaccine in 1999 and retrieved all PubMed abstracts for rotavirus vaccines published after January 1, 1998. We used the Event-based Text-mining of Health Electronic Records system, the MetaMap tool, and the National Center for Biomedical Ontologies Annotator to process the abstracts and generate coded terms stamped with the date of publication. Data were analyzed in the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment to evaluate the intussusception-related findings before and after the release of the new rotavirus vaccines in 2006. The tight connection of intussusception with the historical signal in the first period and the absence of any safety concern for the new vaccines in the second period were verified. We demonstrated the feasibility for semi-automated solutions that may assist medical reviewers in monitoring biomedical literature.
Pilcher, Janine; Shirtcliffe, Philippa; Patel, Mitesh; McKinstry, Steve; Cripps, Terrianne; Weatherall, Mark; Beasley, Richard
2015-01-01
Electronic monitoring of inhaled asthma therapy is suggested as the 'gold standard' for measuring patterns of medication use in clinical trials. The SmartTurbo (Adherium (NZ) Ltd, Auckland, New Zealand) is an electronic monitor for use with a turbuhaler device (AstraZeneca, UK). The aim of this study was to determine the accuracy of the SmartTurbo in recording Symbicort actuations over a 12-week period of use. Twenty SmartTurbo monitors were attached to the base of 20 Symbicort turbuhalers. Bench testing in a research facility was undertaken on days 0, 5, 6, 7, 8, 9, 14, 21, 28, 56 and 84. Patterns of 'low-use' (2 sets of 2 actuations on the same day) and 'high-use' (2 sets of 8 actuations on the same day) were performed. The date and time of actuations were recorded in a paper diary and compared with data uploaded from the SmartTurbo monitors. 2800 actuations were performed. Monitor sensitivity was 99.9% with a lower 97.5% confidence bound of 99.6%. The positive predictive value was 99.9% with a 97.5% lower confidence bound of 99.7%. Accuracy was not affected by whether the pattern of inhaler use was low or high, or whether there was a delay in uploading the actuation data. The SmartTurbo monitor is highly accurate in recording and retaining electronic data in this 12-week bench study. It can be recommended for use in clinical trial settings, in which quality control systems are incorporated into study protocols to ensure accurate data acquisition.
21 CFR 880.2910 - Clinical electronic thermometer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Clinical electronic thermometer. 880.2910 Section... Monitoring Devices § 880.2910 Clinical electronic thermometer. (a) Identification. A clinical electronic... with an electronic signal amplification, conditioning, and display unit. The transducer may be in a...
21 CFR 880.2910 - Clinical electronic thermometer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Clinical electronic thermometer. 880.2910 Section... Monitoring Devices § 880.2910 Clinical electronic thermometer. (a) Identification. A clinical electronic... with an electronic signal amplification, conditioning, and display unit. The transducer may be in a...
21 CFR 880.2910 - Clinical electronic thermometer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Clinical electronic thermometer. 880.2910 Section... Monitoring Devices § 880.2910 Clinical electronic thermometer. (a) Identification. A clinical electronic... with an electronic signal amplification, conditioning, and display unit. The transducer may be in a...
21 CFR 880.2910 - Clinical electronic thermometer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Clinical electronic thermometer. 880.2910 Section... Monitoring Devices § 880.2910 Clinical electronic thermometer. (a) Identification. A clinical electronic... with an electronic signal amplification, conditioning, and display unit. The transducer may be in a...
21 CFR 880.2910 - Clinical electronic thermometer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Clinical electronic thermometer. 880.2910 Section... Monitoring Devices § 880.2910 Clinical electronic thermometer. (a) Identification. A clinical electronic... with an electronic signal amplification, conditioning, and display unit. The transducer may be in a...
Polymedication Electronic Monitoring System (POEMS) - a new technology for measuring adherence.
Arnet, Isabelle; Walter, Philipp N; Hersberger, Kurt E
2013-01-01
Reliable and precise measurement of patient adherence to medications is feasible by incorporating a microcircuitry into pharmaceutical packages of various designs, such that the maneuvers needed to remove a dose of drug are detected, time-stamped, and stored. The principle is called "electronic medication event monitoring" but is currently limited to the monitoring of a single drug therapy. Our aims were introducing a new technology; a clear, self-adhesive polymer film, with printed loops of conductive wires that can be affixed to multidrug punch cards for the electronic adherence monitoring of multiple medication regimens (Polymedication Electronic Monitoring System, POEMS), and illustrating potential benefits for patient care. We present a preliminary report with one patient experience. Our illustrative case was supplied with a pre-filled 7-day multiple medication punch card with unit-of-use doses for specific times of the day (six pills in the morning cavity, two pills in the evening cavity, and one pill in case of insomnia in the bedtime cavity), with the new electronic film affixed on it. The intake times over 1 week were extremely skewed (median intake hours at 2:00 pm for the morning doses and at 6:40 pm for the evening doses). After an intervention aimed at optimizing the timing adherence, the morning and evening intake hours became more balanced, with 42.3% of correct dosing intervals (±3 h) for drugs with twice daily intake (vs. 0% before the intervention). The electronic monitoring of the entire therapy revealed an intake pattern that would have remained undiscovered with any other device and allowed a personalized intervention to correct an inadequate medication intake behavior. POEMS may guide health professionals when they need to optimize a pharmacotherapy because of suspected insufficient adherence. Further, knowing the intake pattern of the entire pharmacotherapy can elucidate unreached clinical outcome, drug-drug interactions, and drug resistance. In the near future, one could imagine that medication adherence data over the entire therapy plan would be available as soon as the electronic wires are activated, so that a failure to take medication could be detected immediately and intervention could be taken if appropriate.
NASA Astrophysics Data System (ADS)
Brown, R. E.
2012-05-01
Belts have been used for centuries as a mechanism to transfer power from some form of drive system to a variety of load systems. Within industry today, many designs of belts but particularly friction, trapezoidal shaped 'V' belts are used and generally transfer power generated by electrical motors to numerous forms of driven load systems. It is suggested that belt systems, through their simplicity are sadly neglected by maintenance functions and generally are left unattended until high degrees of 'belt slippage' through loss of friction or 'belt breakage' provokes maintenance attention. These circumstances are most often identified through the reduced or loss of manufacturing production or the occurrence of catastrophic circumstances such as fire caused through excessive friction/ high belt slippage conditions. Obviously, these situations incur financial losses to companies and in some cases the near loss of the company's main manufacturing plant. Consequently, a satisfactory, viable solution is currently sought by industry to improve on current labour intensive maintenance practices. This paper will present an account of the development of an industrially robust, accurate and repeatable electronic system which continually monitors and indicates the degree of 'slippage' in a 'V' belt drive transmission system and in the circumstance of belt breakage or high belt slippage will enable and control the switching off the drive motor.
Karimov, K S; Qazi, I; Khan, T A; Draper, P H; Khalid, F A; Mahroof-Tahir, M
2008-06-01
In this investigation properties of organic semiconductor copper phthalocyanine (CuPc) capacitive humidity and illumination sensors were studied. Organic thin film was deposited by vacuum evaporation on a glass substrate with silver surface-type electrodes to form the Ag/CuPc/Ag sensor. The capacitance of the samples was evaluated at room temperature in the relative humidity range of 35-92%. It was observed that capacitance of the Ag/CuPc/Ag sensor increases with increase in humidity. The ratio of the relative capacitance to relative humidity was about 200. It is assumed that in general the capacitive response of the sensor is associated with polarization due to absorption of water molecules and transfer of charges (electrons and holes). It was observed that under filament lamp illumination of up to 1,000 lx the capacitance of the Ag/CuPc/Ag photo capacitive detectors increased continuously by 20% as compared to dark condition. It is assumed that photo capacitive response of the sensor is associated with polarization due to transfer of photo-generated electrons and holes. An equivalent circuit of the Ag/CuPc/Ag capacitive humidity and illumination sensor was developed. Humidity and illumination dependent capacitance properties of this sensor make it attractive for use in humidity and illumination multi-meters. The sensor may be used in instruments for environmental monitoring of humidity and illumination.
Russell, Cynthia; Conn, Vicki; Ashbaugh, Catherine; Madsen, Richard; Wakefield, Mark; Webb, Andrew; Coffey, Deanna; Peace, Leanne
2011-01-01
Immunosuppressive medication non-adherence is one of the most prevalent but preventable causes of poor outcomes in adult renal transplant recipients, yet there is a paucity of studies testing interventions in this area. Using a randomized controlled trial design, 30 adult renal transplant recipients were screened for medication non-adherence using electronic monitoring. Fifteen non-adherent participants were randomized to receive either a continuous self-improvement intervention or attention control management. The six-month continuous self-improvement intervention involved the participant and clinical nurse specialist collaboratively identifying the person's life routines, important people, and possible solutions to enhance medication taking. The participant then received individual monthly medication taking feedback delivered via a graphic printout of daily medication taking generated from electronic monitoring. The mean medication adherence score for the continuous self-improvement intervention group (n = 8) was statistically significantly higher than the attention control group's (n = 5) mean medication adherence score (p = 0.03). The continuous self-improvement intervention effect size (Cohen's d) was large at 1.4. Participants' perceptions of the intervention were highly favorable. The continuous self-improvement intervention shows promise as an effective and feasible approach to improve medication adherence in adult renal transplant recipients. A fully-powered study with a diverse sample is needed to confirm these preliminary findings. © 2010 John Wiley & Sons A/S.
Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.
2011-05-01
Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.
Coherent Transition Radiation Generated from Transverse Electron Density Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.; Tyukhtin, A. V.
Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper, we present a study of CTR properties produced from simultaneous electron transverse and longitudinal density modulation. We demonstrate via numerical simulations a simple technique to generate THz-scale frequencies from mm-scale transversely separated electron beamlets formed into a ps-scale bunch train. The results and a potential experimental setup are discussed.
75 FR 47780 - New England Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
...; observer coverage and portside sampling; and measures to require electronic monitoring. 2. Provide AP... follows: 1. Review and provide AP recommendations regarding catch monitoring alternatives under...: quota monitoring and reporting; measures to confirm the accuracy of self-reporting; catch monitoring and...
Tweya, Hannock; Feldacker, Caryl; Ben-Smith, Anne; Harries, Anthony D; Komatsu, Ryuichi; Jahn, Andreas; Phiri, Sam; Tassie, Jean-Michel
2012-07-20
Routine monitoring of patients on antiretroviral therapy (ART) is crucial for measuring program success and accurate drug forecasting. However, compiling data from patient registers to measure retention in ART is labour-intensive. To address this challenge, we conducted a pilot study in Malawi to assess whether patient ART retention could be determined using pharmacy records as compared to estimates of retention based on standardized paper- or electronic based cohort reports. Twelve ART facilities were included in the study: six used paper-based registers and six used electronic data systems. One ART facility implemented an electronic data system in quarter three and was included as a paper-based system facility in quarter two only. Routine patient retention cohort reports, paper or electronic, were collected from facilities for both quarter two [April-June] and quarter three [July-September], 2010. Pharmacy stock data were also collected from the 12 ART facilities over the same period. Numbers of ART continuation bottles recorded on pharmacy stock cards at the beginning and end of each quarter were documented. These pharmacy data were used to calculate the total bottles dispensed to patients in each quarter with intent to estimate the number of patients retained on ART. Information for time required to determine ART retention was gathered through interviews with clinicians tasked with compiling the data. Among ART clinics with paper-based systems, three of six facilities in quarter two and four of five facilities in quarter three had similar numbers of patients retained on ART comparing cohort reports to pharmacy stock records. In ART clinics with electronic systems, five of six facilities in quarter two and five of seven facilities in quarter three had similar numbers of patients retained on ART when comparing retention numbers from electronically generated cohort reports to pharmacy stock records. Among paper-based facilities, an average of 13 4 hours was needed to calculate patient retention for cohort reporting using patient registers as compared to 2.25 hours using pharmacy stock cards. The numbers of patients retained on ART as estimated using pharmacy stock records were largely similar to estimates based on either paper registers or electronic data system. Furthermore, less time and staff effort was needed to estimate ART patient retention using pharmacy stock records versus paper-based registers. Reinforcing ARV stock management may improve the precision of estimates.
Portal scatter to primary dose ratio of 4 to 18 MV photon spectra incident on heterogeneous phantoms
NASA Astrophysics Data System (ADS)
Ozard, Siobhan R.
Electronic portal imagers designed and used to verify the positioning of a cancer patient undergoing radiation treatment can also be employed to measure the in vivo dose received by the patient. This thesis investigates the ratio of the dose from patient-scattered particles to the dose from primary (unscattered) photons at the imaging plane, called the scatter to primary dose ratio (SPR). The composition of the SPR according to the origin of scatter is analyzed more thoroughly than in previous studies. A new analytical method for calculating the SPR is developed and experimentally verified for heterogeneous phantoms. A novel technique that applies the analytical SPR method for in vivo dosimetry with a portal imager is evaluated. Monte Carlo simulation was used to determine the imager dose from patient-generated electrons and photons that scatter one or more times within the object. The database of SPRs reported from this investigation is new since the contribution from patient-generated electrons was neglected by previous Monte Carlo studies. The SPR from patient-generated electrons was found here to be as large as 0.03. The analytical SPR method relies on the established result that the scatter dose is uniform for an air gap between the patient and the imager that is greater than 50 cm. This method also applies the hypothesis that first-order Compton scatter only, is sufficient for scatter estimation. A comparison of analytical and measured SPRs for neck, thorax, and pelvis phantoms showed that the maximum difference was within +/-0.03, and the mean difference was less than +/-0.01 for most cases. This accuracy was comparable to similar analytical approaches that are limited to homogeneous phantoms. The analytical SPR method could replace lookup tables of measured scatter doses that can require significant time to measure. In vivo doses were calculated by combining our analytical SPR method and the convolution/superposition algorithm. Our calculated in vivo doses agreed within +/-3% with the doses measured in the phantom. The present in vivo method was faster compared to other techniques that use convolution/superposition. Our method is a feasible and satisfactory approach that contributes to on-line patient dose monitoring.
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
ERIC Educational Resources Information Center
Banta, H. David; Thacker, Stephen B.
This report focuses on electronic fetal monitoring (EFM)--a technology that was developed during the 1960s and has rapidly spread into use in clinical obstetrics. The report includes a review of the extensive published literature on EFM and related subjects. It also contains original calculations concerning the technique's specificity and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... resistance monitoring and research, including activities in other national programs. Date and Time: The... space available basis beginning at 8 a.m. on the day of the meeting. If you need special accommodations... electronic comments to http://www.regulations.gov . Submit a single copy of electronic comments or two paper...
ERIC Educational Resources Information Center
Melin, Amanda D.; Lohmeier-Vogel, Elke M.
2004-01-01
We present a two-part undergraduate laboratory exercise. In the first part, electron transport in bovine heart submitochondrial particles causing reduction of cytochrome c is monitored at 550 nm. Redox-active dyes have historically been used in most previous undergraduate laboratory exercises of this sort but do not demonstrate respiratory…
A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow.
Zhang, Wei; Hou, Chengyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2017-11-23
Flexible and multifunctional sensors that continuously detect physical information are urgently required to fabricate wearable materials for health monitoring. This study describes the fabrication and performance of a strong and flexible vessel-like sensor. This electronic vessel consists of a self-supported braided cotton hose substrate, single-walled carbon nanotubes (SWCNTs)/ZnO@polyvinylidene fluoride (PVDF) function arrays and a flexible PVDF function fibrous membrane, and it possesses high mechanical property and accurate physical sensing. The rationally designed tubular structure facilities the detection of the applied temperature and strain and the frequency, pressure, and temperature of pulsed fluids. Therefore, the flexible electronic vessel holds promising potential for applications in wearable or implantable materials for the monitoring of health.
Space shuttle main engine controller
NASA Technical Reports Server (NTRS)
Mattox, R. M.; White, J. B.
1981-01-01
A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.
Automatic solar image motion measurements. [electronic disk flux monitoring
NASA Technical Reports Server (NTRS)
Colgate, S. A.; Moore, E. P.
1975-01-01
The solar seeing image motion has been monitored electronically and absolutely with a 25 cm telescope at three sites along the ridge at the southern end of the Magdalena Mountains west of Socorro, New Mexico. The uncorrelated component of the variations of the optical flux from two points at opposite limbs of the solar disk was continually monitored in 3 frequencies centered at 0.3, 3 and 30 Hz. The frequency band of maximum signal centered at 3 Hz showed the average absolute value of image motion to be somewhat less than 2sec. The observer estimates of combined blurring and image motion were well correlated with electronically measured image motion, but the observer estimates gave a factor 2 larger value.
NASA Astrophysics Data System (ADS)
Zhong, Z. H.; Tang, R. X.; Zhou, M.; Deng, X. H.; Pang, Y.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Tobert, R. B.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindquist, P.-A.
2018-02-01
Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.
Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications
NASA Astrophysics Data System (ADS)
Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu
2007-11-01
Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.
Zhong, Z H; Tang, R X; Zhou, M; Deng, X H; Pang, Y; Paterson, W R; Giles, B L; Burch, J L; Tobert, R B; Ergun, R E; Khotyaintsev, Y V; Lindquist, P-A
2018-02-16
Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.
Global Ionosphere Perturbations Monitored by the Worldwide GPS Network
NASA Technical Reports Server (NTRS)
Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.
1996-01-01
For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).
Fast and sensitive detection of an oscillating charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, X.; Hasko, D. G.; Milne, W. I.
We investigate the high-frequency operation of a percolation field effect transistor to monitor microwave excited single trapped charge. Readout is accomplished by measuring the effect of the polarization field associated with the oscillating charge on the AC signal generated in the channel due to charge pumping. This approach is sensitive to the relative phase between the polarization field and the pumped current, which is different from the conventional approach relying on the amplitude only. Therefore, despite the very small influence of the single oscillating trapped electron, a large signal can be detected. Experimental results show large improvement in both signal-to-noisemore » ratio and measurement bandwidth.« less
Sensitizers in EUV chemically amplified resist: mechanism of sensitivity improvement
NASA Astrophysics Data System (ADS)
Vesters, Yannick; Jiang, Jing; Yamamoto, Hiroki; De Simone, Danilo; Kozawa, Takahiro; De Gendt, Stefan; Vandenberghe, Geert
2018-03-01
EUV lithography utilizes photons with 91.6 eV energy to ionize resists, generate secondary electrons, and enable electron driven reactions that produce acid in chemically amplified photoresist. Efficiently using the available photons is of key importance. Unlike DUV lithography, where photons are selectively utilized by photoactive compounds, photons at 13.5nm wavelength ionize almost all materials. Nevertheless, specific elements have a significantly higher atomic photon-absorption cross section at 91.6 eV. To increase photon absorption, sensitizer molecules, containing highly absorbing elements, can be added to photoresist formulations. These sensitizers have gained growing attention in recent years, showing significant sensitivity improvement. But there are few experimental evidences that the sensitivity improvement is due to the higher absorption only, as adding metals salts into the resist formulation can induce other mechanisms, like modification of the dissolution rate, potentially affecting patterning performance. In this work, we used different sensitizers in chemically amplified resist. We measured experimentally the absorption of EUV light, the acid yield, the dissolution rate and the patterning performance of the resists. Surprisingly, the absorption of EUV resist was decreased with addition of metal salt sensitizers. Nevertheless, the resist with sensitizer showed a higher acid yield. Sensitizer helps achieving higher PAG conversion to acid, notably due to an increase of the secondary electron generation. Patterning data confirm a significant sensitivity improvement, but at the cost of roughness degradation at high sensitizer loading. This can be explained by the chemical distribution of the sensitizer in the resist combined with a modification of the dissolution contrast, as observed by Dissolution Rate Monitor.
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
Hawes, Emily M; Lambert, Erika; Reid, Alfred; Tong, Gretchen; Gwynne, Mark
2018-04-13
Results of a study evaluating quality-of-care, financial, and patient satisfaction outcomes of pharmacist-conducted telehealth visits for diabetes management and warfarin monitoring are reported. A retrospective pre-post study was conducted to determine the impact of an electronic visit (e-visit) program targeting 2 groups of outpatients: adults with uncontrolled diabetes and warfarin-treated adults performing patient self-testing (PST) for monitoring of International Normalized Ratio (INR) values. A total of 36 patients participated in the e-visit program during the 2-year study period. Among warfarin-treated patients, the percentage of INR values in the desired range increased relative to preenrollment values (from 62.5% to 72.7%, p = 0.07), and the frequency of extreme INR values (values of <1.5 or >5.0) decreased (from 4.8% to 0.01%, p = 0.01); the margin per patient was $300 during the first year and $191 annually thereafter. In the diabetes group, a decrease from baseline in glycosylated hemoglobin values of 3.4 percentage points was observed at 5.7 months after enrollment ( p < 0.001), with significant improvements in frequencies of statin use, aspirin use, and blood pressure control; the margin was $100 per patient. The overall median patient satisfaction survey score was 39 of 40. An online e-visit model for warfarin monitoring was an efficient, safe, and cost-effective method for implementing PST. Pharmacist-led management of diabetes through e-visits, often in combination with in-person visits, generated revenue while significantly improving clinical outcomes. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
Biochar as enhancement material in natural attenuation systems
NASA Astrophysics Data System (ADS)
Kirmizakis, P.; Doherty, R.; Mendonça, C. A.; Costeira, R.; Allen, C.; Kulakov, L.
2017-12-01
Bioelectrochemical systems (BESs) have gained increasingly popularity over the last years especially in monitoring and clean-up of contaminants. BES are systems that combine wastewater treatment with energy production and resource recovery by harness the electro-activity of microorganisms. BESs consist of two electrodes, an anode and a cathode, separated with a proton-exchange membrane and an external electrical circuit which permits the passage of electrons generated at the anode to the cathode. Here we present a speed up of this natural breakdown process by providing a place to capture the anaerobic contaminants onto Biochar which captures the contaminants and also acts like a high surface area electrode passing electrons to the aerobic environments. For the purpose of this project, identical graphite and Teflon cells were constructed to compare and determine whether a Biochar BES was more efficient than a standard BES and more efficient than Biochar as sorption agent. Current production monitoring used as a real-time view of the process. The Biochar BES out performed both the BES and the Biochar BES in reduction of contaminants across the board. Our results suggest that the maximum growth and electro-activity of the microbial community occurred in the Biochar BES. This is in agreement with microbial findings which suggests that Biochar BES has a less diverse population which is more focused towards degradation and electroactive activity. For further understanding of the results, further geochemical analysis performed to provide additional insight on the process. This works shows clearly the applicability and efficiency of biochar among other electrode and sorption materials and electrical monitoring is versatile experimental tool to the remediation process and can be used as a non-destructive way to indirectly reveal process leading in understanding basic fundamental physical behaviours under specific experimental conditions.
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
Method and apparatus for monitoring aircraft components
Dickens, Larry M.; Haynes, Howard D.; Ayers, Curtis W.
1996-01-01
Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.
Method and apparatus for monitoring aircraft components
Dickens, L.M.; Haynes, H.D.; Ayers, C.W.
1996-01-16
Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components. 14 figs.
Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.
Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas
2014-02-01
The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Validation of an Electronic System for Recording Medical Student Patient Encounters
Nkoy, Flory L.; Petersen, Sarah; Matheny Antommaria, Armand H.; Maloney, Christopher G.
2008-01-01
The Liaison Committee for Medical Education requires monitoring of the students’ clinical experiences. Student logs, typically used for this purpose, have a number of limitations. We used an electronic system called Patient Tracker to passively generate student encounter data. The data contained in Patient Tracker was compared to the information reported on student logs and data abstracted from the patients’ charts. Patient Tracker identified 30% more encounters than the student logs. Compared to the student logs, Patient Tracker contained a higher average number of diagnoses per encounter (2.28 vs. 1.03, p<0.01). The diagnostic data contained in Patient Tracker was also more accurate under 4 different definitions of accuracy. Only 1.3% (9/677) of diagnoses in Patient Tracker vs. 16.9% (102/601) diagnoses in the logs could not be validated in patients’ charts (p<0.01). Patient Tracker is a more effective and accurate tool for documenting student clinical encounters than the conventional student logs. PMID:18999155
cisTEM, user-friendly software for single-particle image processing.
Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus
2018-03-07
We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.
Vecellio, Elia; Georgiou, Andrew; Toouli, George; Eigenstetter, Alex; Li, Ling; Wilson, Roger; Westbrook, Johanna I
2013-01-01
Electronic test ordering, via the Electronic Medical Record (EMR), which incorporates computerised provider order entry (CPOE), is widely considered as a useful tool to support appropriate pathology test ordering. Diagnosis-related groups (DRGs) are clinically meaningful categories that allow comparisons in pathology utilisation by patient groups by controlling for many potentially confounding variables. This study used DRG data linked to pathology test data to examine changes in rates of test ordering across four years coinciding with the introduction of an EMR in six hospitals in New South Wales, Australia. This method generated a list of high pathology utilisation DRGs. We investigated patients with a Chest pain DRG to examine whether tests rates changed for specific test groups by hospital emergency department (ED) pre- and post-EMR. There was little change in testing rates between EDs or between time periods pre- and post-EMR. This is a valuable method for monitoring the impact of EMR and clinical decision support on test order rates.
Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots
Vanacore, Giovanni M.; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H.
2017-01-01
Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible. PMID:28852685
Decentralized DC Microgrid Monitoring and Optimization via Primary Control Perturbations
NASA Astrophysics Data System (ADS)
Angjelichinoski, Marko; Scaglione, Anna; Popovski, Petar; Stefanovic, Cedomir
2018-06-01
We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements. Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.
Measuring frequency of one-dimensional vibration with video camera using electronic rolling shutter
NASA Astrophysics Data System (ADS)
Zhao, Yipeng; Liu, Jinyue; Guo, Shijie; Li, Tiejun
2018-04-01
Cameras offer a unique capability of collecting high density spatial data from a distant scene of interest. They can be employed as remote monitoring or inspection sensors to measure vibrating objects because of their commonplace availability, simplicity, and potentially low cost. A defect of vibrating measurement with the camera is to process the massive data generated by camera. In order to reduce the data collected from the camera, the camera using electronic rolling shutter (ERS) is applied to measure the frequency of one-dimensional vibration, whose frequency is much higher than the speed of the camera. Every row in the image captured by the ERS camera records the vibrating displacement at different times. Those displacements that form the vibration could be extracted by local analysis with sliding windows. This methodology is demonstrated on vibrating structures, a cantilever beam, and an air compressor to identify the validity of the proposed algorithm. Suggestions for applications of this methodology and challenges in real-world implementation are given at last.
Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL
Obara, Yuki; Ito, Hironori; Ito, Terumasa; Kurahashi, Naoya; Thürmer, Stephan; Tanaka, Hiroki; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yamamoto, Yo-ichi; Karashima, Shutaro; Nishitani, Junichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko
2017-01-01
The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300–400 fs, which we assign to the structural distortion dynamics near the surface. PMID:28713842
cisTEM, user-friendly software for single-particle image processing
2018-01-01
We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216
NASA Astrophysics Data System (ADS)
Li, Baoying; Huang, Hongwei; Guo, Yuxi; Zhang, Yihe
2015-10-01
A novel diatomite-immobilized BiOI hybrid photocatalyst has been prepared by a facile one-step deposition process for the first time. The structure, morphology and optical property of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic performance of the as-prepared BiOI/diatomite photocatalysts was studied by photodegradation of Rhodamine B (RhB) and methylene blue (MB) and monitoring photocurrent generation under visible light (λ > 420 nm). The results revealed that BiOI/diatomite composites exhibit enhanced photocatalytic activity compared to the pristine BiOI sample. This enhancement should be attributed to that diatomite can play as an excellent carrier platform to increase the reactive sites and promote the separation of photogenerated electron-hole pairs. In addition, the corresponding photocatalytic mechanism was proposed based on the active species trapping experiments. This work shed new light on facile fabrication of novel composite photocatalyst based on natural mineral.
Fontelo, P.; Rossi, E.; Ackerman, MJ
2015-01-01
Summary Background Mobile health Applications (mHealth Apps) are opening the way to patients’ responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient’s access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated “island systems”. Objective Although much work has been done on patient’s access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care. Methods Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform. Results The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 – CDA2). In the process, the clinician “prescribes” the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage. Conclusions The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient’s engagement in self-management and self-care. PMID:26448794
Remote Monitoring of Cardiac Implantable Electronic Devices.
Cheung, Christopher C; Deyell, Marc W
2018-01-08
Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Surface Acoustic Waves to Drive Plant Transpiration
NASA Astrophysics Data System (ADS)
Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.
2017-03-01
Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.
Surface Acoustic Waves to Drive Plant Transpiration.
Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T
2017-03-31
Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.
Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei
2015-01-01
Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn “photon-switches” to “OFF” state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. PMID:25797442
Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei
2015-03-23
Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.
Physical characteristics of welding arc ignition process
NASA Astrophysics Data System (ADS)
Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei
2012-07-01
The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.
New generation of meteorology cameras
NASA Astrophysics Data System (ADS)
Janout, Petr; Blažek, Martin; Páta, Petr
2017-12-01
A new generation of the WILLIAM (WIde-field aLL-sky Image Analyzing Monitoring system) camera includes new features such as monitoring of rain and storm clouds during the day observation. Development of the new generation of weather monitoring cameras responds to the demand for monitoring of sudden weather changes. However, new WILLIAM cameras are ready to process acquired image data immediately, release warning against sudden torrential rains, and send it to user's cell phone and email. Actual weather conditions are determined from image data, and results of image processing are complemented by data from sensors of temperature, humidity, and atmospheric pressure. In this paper, we present the architecture, image data processing algorithms of mentioned monitoring camera and spatially-variant model of imaging system aberrations based on Zernike polynomials.
DOT National Transportation Integrated Search
2009-09-01
The opening of a major traffic generator in the San Antonio area provided an opportunity to develop and : implement an extensive traffic monitoring system to analyze local, area, and regional traffic impacts from the : generator. Researchers reviewed...
Min, Yul Ha; Park, Hyeoun-Ae; Chung, Eunja; Lee, Hyunsook
2013-12-01
The purpose of this paper is to describe the components of a next-generation electronic nursing records system ensuring full semantic interoperability and integrating evidence into the nursing records system. A next-generation electronic nursing records system based on detailed clinical models and clinical practice guidelines was developed at Seoul National University Bundang Hospital in 2013. This system has two components, a terminology server and a nursing documentation system. The terminology server manages nursing narratives generated from entity-attribute-value triplets of detailed clinical models using a natural language generation system. The nursing documentation system provides nurses with a set of nursing narratives arranged around the recommendations extracted from clinical practice guidelines. An electronic nursing records system based on detailed clinical models and clinical practice guidelines was successfully implemented in a hospital in Korea. The next-generation electronic nursing records system can support nursing practice and nursing documentation, which in turn will improve data quality.
Setup and Calibration of SLAC's Peripheral Monitoring Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, C.
2004-09-03
The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communicationmore » lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated or measured). Detector response for both detectors is dependent upon the energy of the incident radiation; this trend had to be accounted for in the calibration of the BF{sub 3} detector. Energy dependence did not have to be taken into consideration when calibrating the GM detectors since GM detector response is only dependent on radiation energy below 100 keV; SLAC only produces a spectrum of gamma radiation above 100 keV. For the GM detector, calibration consisted of bringing a {sup 137}Cs source and a NIST-calibrated RADCAL Radiation Monitor Controller (model 9010) out to the field; the absolute dose rate was determined by the RADCAL device while simultaneously irradiating the GM detector to obtain a scaler reading corresponding to counts per minute. Detector response was then calculated. Calibration of the BF{sub 3} detector was done using NIST certified neutron sources of known emission rates and energies. Five neutron sources ({sup 238}PuBe, {sup 238}PuB, {sup 238}PuF4, {sup 238}PuLi and {sup 252}Cf) with different energies were used to account for the energy dependence of the response. The actual neutron dose rate was calculated by date-correcting NIST source data and considering the direct dose rate and scattered dose rate. Once the total dose rate (sum of the direct and scattered dose rates) was known, the response vs. energy curve was plotted. The first station calibrated (PMS6) was calibrated with these five neutron sources; all subsequent stations were calibrated with one neutron source and the energy dependence was assumed to be the same.« less
Allwardt, K; Ahlberg, C; Broocks, A; Bruno, K; Taylor, A; Place, S; Richards, C; Krehbiel, C; Calvo-Lorenzo, M; DeSilva, U; VanOverbeke, D; Mateescu, R; Goad, C; Rolf, M M
2017-09-01
The Insentec Roughage Intake Control (RIC) system has been validated for the collection of water intake; however, this system has not been validated for water restriction. The objective of this validation was to evaluate the agreement between direct observations and automated intakes collected by the RIC system under both ad libitum and restricted water conditions. A total of 239 crossbred steers were used in a 3-d validation trial, which assessed intake values generated by the RIC electronic intake monitoring system for both ad libitum water intake ( = 122; BASE) and restricted water intake ( = 117; RES). Direct human observations were collected on 4 Insentec water bins for three 24-h periods and three 12-h periods for BASE and RES, respectively. An intake event was noted by the observer when the electronic identification of the animal was read by the transponder and the gate lowered, and starting and ending bin weights were recorded for each intake event. Data from direct observations across each validation period were compared to automated observations generated from the RIC system. Missing beginning or ending weight values for visual observations occasionally occurred due to the observer being unable to capture the value before the monitor changed when bin activity was high. To estimate the impact of these missing values, analyses denoted as OBS were completed with the incomplete record coded as missing data. These analyses were contrasted with analyses where observations with a single missing beginning or end weight (but not both) were assumed to be identical to that which was recorded by the Insentec system (OBS). Difference in mean total intake across BASE steers was 0.60 ± 2.06 kg OBS (0.54 ± 1.99 kg OBS) greater for system observations than visual observations. The comparison of mean total intake across the 3 RES validation days was 0.53 ± 2.30 kg OBS (0.13 ± 1.83 kg OBS) greater for system observations than direct observations. Day was not a significant source of error in this study ( > 0.05). These results indicate that the system was capable of limiting water of individual animals with reasonable accuracy, although errors are slightly higher during water restriction than during ad libitum access. The Insentec system is a suitable resource for monitoring individual water intake of growing, group-housed steers under ad libitum and restricted water conditions.
Linear beam dynamics and ampere class superconducting RF cavities at RHIC
NASA Astrophysics Data System (ADS)
Calaga, Rama R.
The Relativistic Heavy Ion Collider (RHIC) is a hadron collider designed to collide a range of ions from protons to gold. RHIC operations began in 2000 and has successfully completed five physics runs with several species including gold, deuteron, copper, and polarized protons. Linear optics and coupling are fundamental issues affecting the collider performance. Measurement and correction of optics and coupling are important to maximize the luminosity and sustain stable operation. A numerical approach, first developed at SLAC, was implemented to measure linear optics from coherent betatron oscillations generated by ac dipoles and recorded at multiple beam position monitors (BPMs) distributed around the collider. The approach is extended to a fully coupled 2D case and equivalence relationships between Hamiltonian and matrix formalisms are derived. Detailed measurements of the transverse coupling terms are carried out at RHIC and correction strategies are applied to compensate coupling both locally and globally. A statistical approach to determine BPM reliability and performance over the past three runs and future improvements also discussed. Aiming at a ten-fold increase in the average heavy-ion luminosity, electron cooling is the enabling technology for the next luminosity upgrade (RHIC II). Cooling gold ion beams at 100 GeV/nucleon requires an electron beam of approximately 54 MeV and a high average current in the range of 50-200 mA. All existing e-Coolers are based on low energy DC accelerators. The only viable option to generate high current, high energy, low emittance CW electron beam is through a superconducting energy-recovery linac (SC-ERL). In this option, an electron beam from a superconducting injector gun is accelerated using a high gradient (˜ 20 MV/m) superconducting RF (SRF) cavity. The electrons are returned back to the cavity with a 180° phase shift to recover the energy back into the cavity before being dumped. A design and development of a half-cell electron gun and a five-cell SRF linac cavity are presented. Several RF and beam dynamics issues ultimately resulting in an optimum cavity design are discussed in detail.
Exposure Assessment in a Single-Walled Carbon Nanotube Primary Manufacturer.
Kouassi, Serge; Catto, Cyril; Ostiguy, Claude; L'Espérance, Gilles; Kroeger, Jens; Debia, Maximilien
2017-03-01
This study was aimed at documenting and characterizing occupational exposure to single-walled carbon nanotubes (SWCNTs) generated in a primary manufacturing plant. It also compared various strategies of exposure monitoring. A 6-day measurement protocol was scheduled (D1-D6) including both (i) quasi-personal monitoring with an array of direct reading instruments (DRIs) and (ii) offline electron microscopy analyses of surface and breathing zone filter-based samples. The first step (D1 and D2) consisted of contamination screenings resulting from the various SWCNT production tasks using a multimetric approach. Surface sampling was also carried out to assess workplace cross-contamination. The second step (D3-D6) focused on the exposure monitoring during recovery/cleaning task, by comparing three personal elemental carbon (EC) measurements [respirable EC using a cyclone following the NIOSH 5040 method (REC-CYC), respirable and thoracic EC using parallel particle impactors [REC-PPI and TEC-PPI, respectively)] and gravimetric mass concentration measurements. DustTrak DRX and electrical low-pressure impactor measurements indicated that particles were released during weighing, transferring, and recovery/cleaning tasks of the manufacturing process. Electron microscopy revealed the presence of agglomerated SWCNTs only during the recovery/cleaning task. REC-CYC concentrations remained under the limits of quantification; REC-PPI showed levels up to 58 µg m-3; and TEC-PPI ranged from 40 to 70 µg m-3. Ratios calculated between gravimetric measurements and estimated DustTrak mass concentrations ranged from 2.8 to 4.9. Cross-contamination appeared to be limited since SWCNTs was only found on surface samples collected close to the reactor in the production room. This case study showed that the DustTrak DRX should be the preferred device among DRIs to identify potential exposure to SWCNTs. However, there is a risk of false positive since it is a non-specific instrument; therefore, the actual release of SWCNTs must be confirmed with scanning electron microscopy/transmission electron microscopy analyses. Besides, using EC measurements as a proxy for SWCNT exposure assessments, as suggested by the NIOSH, is still challenging since interferences can occur with other EC sources such as carbon black, which is also present in the workplace. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Baker, Karl; Dunwoodie, Elaine; Jones, Richard G; Newsham, Alex; Johnson, Owen; Price, Christopher P; Wolstenholme, Jane; Leal, Jose; McGinley, Patrick; Twelves, Chris; Hall, Geoff
2017-07-01
There is growing interest in the use of routinely collected electronic health records to enhance service delivery and facilitate clinical research. It should be possible to detect and measure patterns of care and use the data to monitor improvements but there are methodological and data quality challenges. Driven by the desire to model the impact of a patient self-test blood count monitoring service in patients on chemotherapy, we aimed to (i) establish reproducible methods of process-mining electronic health records, (ii) use the outputs derived to define and quantify patient pathways during chemotherapy, and (iii) to gather robust data which is structured to be able to inform a cost-effectiveness decision model of home monitoring of neutropenic status during chemotherapy. Electronic Health Records at a UK oncology centre were included if they had (i) a diagnosis of metastatic breast cancer and received adjuvant epirubicin and cyclosphosphamide chemotherapy or (ii) colorectal cancer and received palliative oxaliplatin and infusional 5-fluorouracil chemotherapy, and (iii) were first diagnosed with cancer between January 2004 and February 2013. Software and a Markov model were developed, producing a schematic of patient pathways during chemotherapy. Significant variance from the assumed care pathway was evident from the data. Of the 535 patients with breast cancer and 420 with colorectal cancer there were 474 and 329 pathway variants respectively. Only 27 (5%) and 26 (6%) completed the planned six cycles of chemotherapy without having unplanned hospital contact. Over the six cycles, 169 (31.6%) patients with breast cancer and 190 (45.2%) patients with colorectal cancer were admitted to hospital. The pathways of patients on chemotherapy are complex. An iterative approach to addressing semantic and data quality issues enabled the effective use of routinely collected patient records to produce accurate models of the real-life experiences of chemotherapy patients and generate clinically useful information. Very few patients experience the idealised patient pathway that is used to plan their care. A better understanding of real-life clinical pathways through process mining can contribute to care and data quality assurance, identifying unmet needs, facilitating quantification of innovation impact, communicating with stakeholders, and ultimately improving patient care and outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.