Science.gov

Sample records for generation gravitational wave

  1. Generation of Gravitational Waves with Nuclear Reactions

    SciTech Connect

    Fontana, Giorgio; Baker, Robert M. L. Jr.

    2006-01-20

    The problem of efficient generation of High Frequency Gravitational Waves (HFGWs) and pulses of Gravitational Radiation might find a reasonably simple solution by employing nuclear matter, especially isomers. A fissioning isomer not only rotates at extremely high frequency ({approx} 3.03x1024 s-1), but is also highly deformed in the first stages of fission (the nucleus is rotating and made asymmetric 'before' fission). Thus one achieves significant impulsive forces (e.g., 3.67x108 N) acting over extremely short time spans (e.g., 3.3x10-22 s). Alternatively, a pulsed particle beam, which could include antimatter, could trigger nuclear reactions and build up a coherent GW as the particles move through a target mass. The usual difficulty with HFGWs generated by nuclear reactions is the small dimensions of their nuclear-reaction volumes, that is, the small moment of inertia and submicroscopic radii of gyration (e.g., 10-16 m) of the nuclear-mass system. Such a difficulty is overcome by utilizing clusters of nuclear material, whose nuclear reactions are in synchronization (through the use of a computer controlled logic system) and are at a large distance apart, e.g., meters, kilometers, etc. The effective radius of gyration of the overall nuclear mass system is enormous and if the quadrupole formalism holds even approximately, then significant HFGW is generated, for example up to 8.5x1010 W to 1.64x1025 W bursts for the transient asymmetrical spinning nucleus case. In this preliminary analysis, possible conceptual designs of reactors suitable for the generation of HFGWs are discussed as well as applications to space technology. In an optimized dual-beam design, GW amplitudes on the order of A {approx} 0.005 are theoretically achieved in the laboratory, which might have interesting general-relativity and nuclear-physics consequences.

  2. The generation of gravitational waves. IV - Bremsstrahlung

    NASA Technical Reports Server (NTRS)

    Kovacs, S. J., Jr.; Thorne, K. S.

    1978-01-01

    Previously derived waveforms for gravitational bremsstrahlung are discussed along with their spectra and their limiting structure at high and low relative velocities. Waveforms and spectra are presented for a low-velocity bremsstrahlung encounter, and waveforms are given for encounters of arbitrary relative velocity. Limiting forms for the gravitational-wave amplitudes in the 'forward', 'intermediate', and 'backward' regions are derived in the high-velocity limit. The energy spectra seen by observers in the three regions are computed for arbitrary and high velocities. Simpler methods for analyzing special cases of the bremsstrahlung problem are examined, and the results of those methods are compared with the present results. Those methods include the quadrupole-moment and post-Newtonian formalisms, linear perturbations of the Schwarzschild metric, the method of colliding plane waves, the method of virtual quanta, and the zero-frequency limit. Classical gravitational bremsstrahlung is then compared with classical electromagnetic bremsstrahlung.

  3. Exploring the sensitivity of next generation gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bock, O.; Bogan, C.; Bohe, A.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C. B.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dave, I.; Davies, G. S.; Daw, E. J.; De, S.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; Geng, P.; George, J.; Gergely, L.; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lormand, M.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mohapatra, S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nayak, R. K.; Nedkova, K.; Nelson, T. J. N.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poe, M.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V. J.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Zanolin, M.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; (LIGO Scientific Collaboration; Harms, J.

    2017-02-01

    The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.

  4. A Third Generation Gravitational Wave Observatory: The Einstein Telescope

    NASA Astrophysics Data System (ADS)

    Punturo, Michele; Lück, Harald; Beker, Mark

    The first decade of the second millenium has seen the realization and the operation of the initial generation of large interferometric gravitational wave detectors, like Virgo and LIGO; these detectors demonstrated the capability of reaching their design sensitivity, which due to the novelty of their design was quite a challenging task. Achieving the target of the detection of gravitational waves still requires a large improvement in sensitivity. This is promised by the operation of the advanced detectors that are dominating the gravitational wave scene in the second decade of this century. But, in order to open the era of routine gravitational wave astronomy a new (third) generation of gravitational wave observation instruments will be needed. Will the third generation (3G) of gravitational wave observatories be the core of the gravitational astronomy in the third decade of this century? An overview of the technological progress needed to realize a 3G observatory, like the Einstein Telescope (ET), and a possible evolution scenario are discussed in this chapter.

  5. Gravitational-Wave Detectors: First, Second, and Third Generation

    SciTech Connect

    Mandic, Vuk

    2011-11-02

    Gravitational waves are predicted by the general theory of relativity to be produced by accelerating mass systems with quadrupole (or higher) moment. The amplitude of gravitational waves is expected to be very small, so the best chance of their direct detection lies with some of the most energetic events in the universe, such as mergers of two neutron stars or black holes, supernova explosions, or the Big Bang itself. Over the past decade several detectors have been built to search for such gravitational-wave sources. This talk will review the current status of these detectors, as well as some of their most recent results, and will cover plans and expectations for the future generations of gravitational wave detectors.

  6. Gauge Dependence of Gravitational Waves Generated from Scalar Perturbations

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Jeong, Donghui; Noh, Hyerim

    2017-06-01

    A tensor-type cosmological perturbation, defined as a transverse and traceless spatial fluctuation, is often interpreted as gravitational waves. While decoupled from the scalar-type perturbations in linear order, the tensor perturbations can be sourced from the scalar-type in nonlinear order. The tensor perturbations generated by the quadratic combination of a linear scalar-type cosmological perturbation are widely studied in the literature, but all previous studies are based on a zero-shear gauge without proper justification. Here, we show that, being second order in perturbation, such an induced tensor perturbation is generically gauge dependent. In particular, the gravitational wave power spectrum depends on the hypersurface (temporal gauge) condition taken for the linear scalar perturbation. We further show that, during the matter-dominated era, the induced tensor modes dominate over the linearly evolved primordial gravitational wave amplitude for k≳ {10}-2 [h/{Mpc}] even for the gauge that gives the lowest induced tensor modes with the optimistic choice of primordial gravitational waves (r = 0.1). The induced tensor modes, therefore, must be modeled correctly specific to the observational strategy for the measurement of primordial gravitational waves from large-scale structure via, for example, the parity-odd mode of weak gravitational lensing, or clustering fossils.

  7. The generation of gravitational waves. II - The postlinear formalism revisited

    NASA Technical Reports Server (NTRS)

    Crowley, R. J.; Thorne, K. S.

    1977-01-01

    Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. Then the DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs postlinear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the postlinear formalism allow one to treat the interacting bodies as point masses, while others do not.

  8. Gravitational-wave astronomy

    NASA Technical Reports Server (NTRS)

    Press, W. H.; Thorne, K. S.

    1972-01-01

    The significance of experimental evidence for gravitational waves is considered for astronomy. Properties, generation, and astrophysical sources of the waves are discussed. Gravitational wave receivers and antennas are described. A review of the Weber experiment is presented.

  9. The generation of gravitational waves. III - Derivation of bremsstrahlung formulae

    NASA Technical Reports Server (NTRS)

    Kovacs, S. J.; Thorne, K. S.

    1977-01-01

    Formulas are derived describing the gravitational waves produced by a stellar encounter of the following type. The two stars have stationary (i.e., nonpulsating) nearly Newtonian structures with arbitrary relative masses; they fly past each other with an arbitrary relative velocity; and their impact parameter is sufficiently large that they gravitationally deflect each other through an angle that is small as compared with 90 deg.

  10. Gravitational waves

    NASA Astrophysics Data System (ADS)

    Trautman, Andrzej

    2017-07-01

    Historical remarks on early theoretical work on the subject. Very early on, Einstein introduced the notion of gravitational waves, but later became convinced that they did not exist as a physical phenomenon. Exact solutions of Einstein’s equations representing waves were found by a number of authors, contributing to their final acceptance as part of physics.

  11. Advanced Virgo: a second-generation interferometric gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; Barone, F.; Baronick, J.-P.; Barsuglia, M.; Basti, A.; Basti, F.; Bauer, Th S.; Bavigadda, V.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bersanetti, D.; Bertolini, A.; Bitossi, M.; Bizouard, M. A.; Bloemen, S.; Blom, M.; Boer, M.; Bogaert, G.; Bondi, D.; Bondu, F.; Bonelli, L.; Bonnand, R.; Boschi, V.; Bosi, L.; Bouedo, T.; Bradaschia, C.; Branchesi, M.; Briant, T.; Brillet, A.; Brisson, V.; Bulik, T.; Bulten, H. J.; Buskulic, D.; Buy, C.; Cagnoli, G.; Calloni, E.; Campeggi, C.; Canuel, B.; Carbognani, F.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cesarini, E.; Chassande-Mottin, E.; Chincarini, A.; Chiummo, A.; Chua, S.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Conte, A.; Coulon, J.-P.; Cuoco, E.; Dalmaz, A.; D'Antonio, S.; Dattilo, V.; Davier, M.; Day, R.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Dereli, H.; De Rosa, R.; Di Fiore, L.; Di Lieto, A.; Di Virgilio, A.; Doets, M.; Dolique, V.; Drago, M.; Ducrot, M.; Endrőczi, G.; Fafone, V.; Farinon, S.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Gammaitoni, L.; Garufi, F.; Gaspard, M.; Gatto, A.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giacobone, L.; Giazotto, A.; Gouaty, R.; Granata, M.; Greco, G.; Groot, P.; Guidi, G. M.; Harms, J.; Heidmann, A.; Heitmann, H.; Hello, P.; Hemming, G.; Hennes, E.; Hofman, D.; Jaranowski, P.; Jonker, R. J. G.; Kasprzack, M.; Kéfélian, F.; Kowalska, I.; Kraan, M.; Królak, A.; Kutynia, A.; Lazzaro, C.; Leonardi, M.; Leroy, N.; Letendre, N.; Li, T. G. F.; Lieunard, B.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Magazzù, C.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marque, J.; Martelli, F.; Martellini, L.; Masserot, A.; Meacher, D.; Meidam, J.; Mezzani, F.; Michel, C.; Milano, L.; Minenkov, Y.; Moggi, A.; Mohan, M.; Montani, M.; Morgado, N.; Mours, B.; Mul, F.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Neri, I.; Neri, M.; Nocera, F.; Pacaud, E.; Palomba, C.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Perciballi, M.; Petit, S.; Pichot, M.; Piergiovanni, F.; Pillant, G.; Piluso, A.; Pinard, L.; Poggiani, R.; Prijatelj, M.; Prodi, G. A.; Punturo, M.; Puppo, P.; Rabeling, D. S.; Rácz, I.; Rapagnani, P.; Razzano, M.; Re, V.; Regimbau, T.; Ricci, F.; Robinet, F.; Rocchi, A.; Rolland, L.; Romano, R.; Rosińska, D.; Ruggi, P.; Saracco, E.; Sassolas, B.; Schimmel, F.; Sentenac, D.; Sequino, V.; Shah, S.; Siellez, K.; Straniero, N.; Swinkels, B.; Tacca, M.; Tonelli, M.; Travasso, F.; Turconi, M.; Vajente, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; Vasúth, M.; Vedovato, G.; Veitch, J.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Visser, G.; Vocca, H.; Ward, R.; Was, M.; Wei, L.-W.; Yvert, M.; Zadro żny, A.; Zendri, J.-P.

    2015-01-01

    Advanced Virgo is the project to upgrade the Virgo interferometric detector of gravitational waves, with the aim of increasing the number of observable galaxies (and thus the detection rate) by three orders of magnitude. The project is now in an advanced construction phase and the assembly and integration will be completed by the end of 2015. Advanced Virgo will be part of a network, alongside the two Advanced LIGO detectors in the US and GEO HF in Germany, with the goal of contributing to the early detection of gravitational waves and to opening a new window of observation on the universe. In this paper we describe the main features of the Advanced Virgo detector and outline the status of the construction.

  12. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  13. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  14. Towards Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Losurdo, Giovanni

    This chapter is meant to introduce the reader to the forthcoming network of second-generation interferometric detectors of gravitational waves, at a time when their construction is close to completion and there is the ambition to detect gravitational waves for the first time in the next few years and open the way to gravitational wave astronomy. The legacy of first-generation detectors is discussed before giving an overview of the technology challenges that have been faced to make advanced detectors possible. The various aspects outlined here are then discussed in more detail in the subsequent chapters of the book.

  15. Gravitational lensing of gravitational wave

    NASA Astrophysics Data System (ADS)

    Kei Wong, Wang; Ng, Kwan Yeung

    2017-01-01

    Gravitational lensing phenomena are widespread in electromagnetic astrophysics, and in principle may also be uncovered with gravitational waves. We examine gravitational wave events lensed by elliptical galaxies in the limit of geometric optics, where we expect to see multiple signals from the same event with different arrival times and amplitudes. By using mass functions for compact binaries from population-synthesis simulations and a lensing probability calculated from Planck data, we estimate the rate of lensed signals for future gravitational wave missions.

  16. A Nature of Gravitation and the Problem of the Laboratory Gravitational Waves Generation

    NASA Astrophysics Data System (ADS)

    Kanibolotsky, Valentyn

    2010-01-01

    This work sheds light on nature of gravitation and vacuum structure to offer new possibilities for the laboratory HFGWs generation, since neither Einstein's GR nor any another theory of gravity not make answer on this question. Well-known hypothesis about non-materiality of gravitation field unambiguously leads to representation that the elemental particles (EPs) are gravitational stabilized substance. By their nature EPs would constitute microscopic black holes with extreme curved space-time into their bulk and in the vicinity. Since EPs birth take place at interaction of photons with polarized vacuum, this latter represents medium consisting from massless gravitational skeletons of known EPs. So the particle can be not born without its antiparticle and vacuum is gravitationally neutral, particle and antiparticle skeleton, must possess gravitation and antigravitation, correspondingly. GWs would be represented oscillations of the EPs gravitational and antigravitational skeletons around the common centre and in consequence they would be transverse. The high penetrating ability of GWs is a result that neither vacuum, in which HFGWs are propagated, nor HFGWs, does not have mass (energy). In the concept frameworks a new RTG, which must be confirmed these representations, is developed. However, already the fact by itself the laboratory generation of GWs is the direct proof of correctness of these representations.

  17. Detectability of the nonlinear gravitational wave memory with second and third-generation ground-based detectors

    NASA Astrophysics Data System (ADS)

    Favata, Marc; Berti, Emanuele

    2017-01-01

    Gravitational wave memory refers to a non-oscillating component of a gravitational wave signal. In principle, all gravitational-wave sources have a memory component. The largest sources of memory waves are the merger of two black holes. These produce the so-called nonlinear or Blanchet-Damour-Christodoulou memory. We will discuss the prospects for detecting the nonlinear memory with current and third-generation ground-based interferometers. NSF Grant PHY-1308527.

  18. On generation of dark solitons by gravitational waves in a strongly magnetized pulsar plasma

    SciTech Connect

    Mofiz, U. A.

    2007-11-15

    In this paper, the propagation of gravitational wave perpendicular to a superstrong magnetic field immersed in an electron-positron pulsar plasma is considered. On the basis of the Einstein-Maxwell system of magnetohydrodynamic equations, both the linear and nonlinear interactions of the wave with plasma are investigated. In near-resonant interaction, a relation between gravitation perturbations to electromagnetic field perturbations shows that the field perturbations are directly proportional to the product of ambient magnetic field and the gravitational wave perturbation. Thus, a weak gravitational wave may resonate an effective field perturbation in the strongly magnetized plasma in an astrophysical context. A coupled system of equations describing the nonlinear interaction between gravitational wave and field perturbations in the magnetized plasma is obtained. The equations are solved in resonant approximation, and it is found that a linearly polarized electric field is generated with a frequency close to the plasma frequency. For nonresonant interaction, the solution shows that both electric and magnetic field perturbations in the plasma are produced. Density perturbation and field intensity variation in the plasma lead to a nonlinear frequency shift and the slowly varying field amplitude obeys the nonlinear Schroedinger equation. The solution of the equation is the dark soliton, the amplitude of which may be very significant in the case of a superstrong magnetic field in the pulsar plasma.

  19. Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel

    2012-03-01

    machine learning techniques. My principal goal in this chapter is to (i) describe the gravitational wave astronomy problem domain and associated analysis challenges, and (ii) identify some specific problem areas where the application of machine learning techniques may be employed to particular advantage. In Section 19.2, I describe what gravitational waves are, how they are generated and propagated, and the several different observational technologies through which we expect, over the next decade or so, gravitational wave astronomy will exploit. I have written this section for the non astronomer; however, I think that even the gravitational wave astronomer may find the viewpoint taken here to be of interest. In Section 19.3, I deconstruct the work involved in the analysis of gravitational wave data and describe (briefly!) the techniques currently used for data analysis. The focus of Section 19.4 is on the application of machine learning tools and techniques in gravitational wave data analysis. I conclude with some closing remarks in Section 19.5.

  20. The generation of gravitational waves. 2: The post-linear formalism revisited

    NASA Technical Reports Server (NTRS)

    Crowley, R. J.; Thorne, K. S.

    1975-01-01

    Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. The DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs post-linear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the post-linear formalism allow one to treat the interacting bodies as point masses, while others do not.

  1. Gravitational waves from the asymmetric-dark-matter generating phase transition

    NASA Astrophysics Data System (ADS)

    Baldes, Iason

    2017-05-01

    The baryon asymmetry, together with a dark matter asymmetry, may be produced during a first order phase transition in a generative sector. We study the possibility of a gravitational wave signal in a model realising such a scenario. We identify areas of parameter space with strong phase transitions which can be probed by future, space based, gravitational wave detectors. Other signals of this scenario include collider signatures of a Z', DM self interactions, a contribution to Δ Neff and nuclear recoils at direct detection experiments.

  2. Advanced Virgo Interferometer: a Second Generation Detector for Gravitational Waves Observation

    NASA Astrophysics Data System (ADS)

    Accadia, T.; Acernese, F.; Agathos, M.; Allocca, A.; Astone, P.; Ballardin, G.; Barone, F.; Barsuglia, M.; Basti, A.; Bauer, Th. S.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bersanetti, D.; Bertolini, A.; Bitossi, M.; Bizouard, M. A.; Blom, M.; Boer, M.; Bondu, F.; Bonelli, L.; Bonnand, R.; Boschi, V.; Bosi, L.; Bradaschia, C.; Branchesi, M.; Briant, T.; Brillet, A.; Brisson, V.; Bulik, T.; Bulten, H. J.; Buskulic, D.; Buy, C.; Cagnoli, G.; Calloni, E.; Canuel, B.; Carbognani, F.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cesarini, E.; Chassande-Mottin, E.; Chincarini, A.; Chiummo, A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Conte, A.; Coulon, J.-P.; Cuoco, E.; D'Antonio, S.; Dattilo, V.; Davier, M.; Day, R.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Dereli, H.; De Rosa, R.; di Fiore, L.; di Lieto, A.; di Virgilio, A.; Drago, M.; Endrőczi, G.; Fafone, V.; Farinon, S.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Gammaitoni, L.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Giazotto, A.; Gouaty, R.; Granata, M.; Groot, P.; Guidi, G. M.; Heidmann, A.; Heitmann, H.; Hello, P.; Hemming, G.; Jaranowski, P.; Jonker, R. J. G.; Kasprzack, M.; Kéfélian, F.; Kowalska, I.; Królak, A.; Kutynia, A.; Lazzaro, C.; Leonardi, M.; Leroy, N.; Letendre, N.; Li, T. G. F.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marque, J.; Martelli, F.; Martinelli, L.; Masserot, A.; Meacher, D.; Meidam, J.; Michel, C.; Milano, L.; Minenkov, Y.; Mohan, M.; Morgado, N.; Mours, B.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Neri, I.; Neri, M.; Nocera, F.; Palomba, C.; Paoletti, F.; Paoletti, R.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pichot, M.; Piergiovanni, F.; Pinard, L.; Poggiani, R.; Prijatelj, M.; Prodi, G. A.; Punturo, M.; Puppo, P.; Rabeling, D. S.; Rácz, I.; Rapagnani, P.; Re, V.; Regimbau, T.; Ricci, F.; Robinet, F.; Rocchi, A.; Rolland, L.; Romano, R.; Rosińska, D.; Ruggi, P.; Saracco, E.; Sassolas, B.; Sentenac, D.; Sequino, V.; Shah, S.; Siellez, K.; Sperandio, L.; Straniero, N.; Sturani, R.; Swinkels, B.; Tacca, M.; Ter Braack, A. P. M.; Toncelli, A.; Tonelli, M.; Torre, O.; Travasso, F.; Vajente, G.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; Vasúth, M.; Vedovato, G.; Veitch, J.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Wei, L.-W.; Yvert, M.; Zadrożny, A.; Zendri, J.-P.

    2015-03-01

    In the last ten years great improvements have been done in the development and operation of ground based detectors for Gravitational Waves direct observation and study. The second generation detectors are presently under construction in Italy, United States and Japan with a common intent to create a worldwide network of instruments able to start a new era in astronomy and astrophysics, a century after the development of the General Relativity theory predicting the existence of Gravitational Waves. The design sensitivity of the advanced detectors will be approximately ten times better with respect to the previous generation corresponding to an increment of a factor one thousand in the observational volume of the Universe where black holes, neutron stars and other enigmatic sources of these weak signals are spread around. In this paper we present a general overview of the advanced detectors with particular emphasis on Advanced VIRGO, the largest European interferometer located at the European Gravitational Observatory (EGO) site in the Pisa countryside (Italy).

  3. Gravitational Waves from Gravitational Collapse.

    PubMed

    Fryer, Chris L; New, Kimberly C B

    2003-01-01

    Gravitational wave emission from stellar collapse has been studied for more than three decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2003-2.

  4. Gravitational Waves from Gravitational Collapse.

    PubMed

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  5. Gravitational waves from gravitational collapse

    SciTech Connect

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  6. Signal photon flux generated by high-frequency relic gravitational waves

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Sai; Wen, Hao

    2016-08-01

    The power spectrum of primordial tensor perturbations increases rapidly in the high frequency region if the spectral index n t > 0. It is shown that the amplitude of relic gravitational waves h t(5 × 109 Hz) varies from 10-36 to 10-25 while n t varies from -6.25 × 10-3 to 0.87. A high frequency gravitational wave detector proposed by F.-Y. Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between relic gravitational waves and electromagnetic field. It is shown that the perturbative photon flux (5 × 109 Hz) varies from 1.40 × 10-4 s-1 to 2.85 × 107 s-1 while n t varies from -6.25 × 10-3 to 0.87. Correspondingly, the ratio of the transverse perturbative photon flux to the background photon flux varies from 10-28 to 10-16. Supported by National Natural Science Foundation of China (11305181,11322545,11335012) and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

  7. Stochastic background of gravitational waves generated by pre-galactic black holes

    NASA Astrophysics Data System (ADS)

    Pereira, Eduardo S.; Miranda, Oswaldo D.

    2010-01-01

    In this work, we consider the stochastic background of gravitational waves (SBGWs) produced by pre-galactic stars, which form black holes in scenarios of structure formation. The calculation is performed in the framework of hierarchical structure formation using a Press-Schechter-like formalism. Our model reproduces the observed star formation rate at redshifts z <~ 6.5. The signal predicted in this work is below the sensitivity of the first generation of detectors but could be detectable by the next generation of ground-based interferometers. Specifically, correlating two coincident advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors (LIGO III interferometers), the expected signal-to-noise ratio (S/N) could be as high as 90 (10) for stars forming at redshift z ~= 20 with a Salpeter initial mass function with slope x = 0.35 (1.35), and if the efficiency of generation of gravitational waves, namely, ɛGW is close to the maximum value ~7 × 10-4. However, the sensitivity of the future third generation of detectors as, for example, the European antenna EGO could be high enough to produce S/N > 3 same with ɛGW ~ 2 × 10-5. We also discuss what astrophysical information could be derived from a positive (or even negative) detection of the SBGWs investigated here.

  8. Generation and reduction of the data for the Ulysses gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Agresti, R.; Bonifazi, P.; Iess, L.; Trager, G. B.

    1987-01-01

    A procedure for the generation and reduction of the radiometric data known as REGRES is described. The software is implemented on a HP-1000F computer and was tested on REGRES data relative to the Voyager I spacecraft. The REGRES data are a current output of NASA's Orbit Determination Program. The software package was developed in view of the data analysis of the gravitational wave experiment planned for the European spacecraft Ulysses.

  9. A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoğlu, Anıl

    2014-12-01

    We present a new approach to solve the 2+1 Teukolsky equation for gravitational perturbations of a Kerr black hole. Our approach relies on a new horizon penetrating, hyperboloidal foliation of Kerr spacetime and spatial compactification. In particular, we present a framework for waveform generation from point-particle perturbations. Extensive tests of a time domain implementation in the Teukode code are presented. The code can efficiently deliver waveforms at future null infinity. The accuracy and convergence of the waveforms’ phase and amplitude is demonstrated. As a first application of the method, we compute the gravitational waveforms from inspiraling and coalescing black-hole binaries in the large-mass-ratio limit. The smaller mass black hole is modeled as a point particle whose dynamics is driven by an effective-one-body-resummed analytical radiation reaction force. We compare the analytical, mechanical angular momentum loss (computed using two different prescriptions) to the gravitational wave angular momentum flux. We find that higher-order post-Newtonian corrections are needed to improve the consistency for rapidly spinning binaries. We characterize the multipolar waveform as a function of the black-hole spin. Close to merger, the subdominant multipolar amplitudes (notably the m = 0 ones) are enhanced for retrograde orbits with respect to prograde ones. We argue that this effect mirrors nonnegligible deviations from the circularity of the dynamics during the late-plunge and merger phase. For the first time, we compute the gravitational wave energy flux flowing into the black hole during the inspiral using a time-domain formalism proposed by Poisson. Finally, a self-consistent, iterative method to compute the gravitational wave fluxes at leading-order in the mass of the particle is developed. The method can be used alternatively to the analytical radiation reaction in cases where the analytical information is poor or not sufficient. Specifically, we apply

  10. Theory of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Le Tiec, Alexandre; Novak, Jérôme

    The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds are powerful gravitational wave sources.

  11. Prospects for direct detection of inflationary gravitational waves by next generation interferometric detectors

    SciTech Connect

    Kuroyanagi, Sachiko; Chiba, Takeshi; Sugiyama, Naoshi

    2011-02-15

    We study the potential impact of detecting the inflationary gravitational wave background by the future space-based gravitational wave detectors, such as DECIGO and BBO. The signal-to-noise ratio of each experiment is calculated for chaotic/natural/hybrid inflation models by using the precise predictions of the gravitational wave spectrum based on numerical calculations. We investigate the dependence of each inflation model on the reheating temperature which influences the amplitude and shape of the spectrum, and find that the gravitational waves could be detected for chaotic/natural inflation models with high reheating temperature. From the detection of the gravitational waves, a lower bound on the reheating temperature could be obtained. The implications of this lower bound on the reheating temperature for particle physics are also discussed.

  12. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  13. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  14. Search for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Tsubono, K.

    The current status of the experimental search for gravitational waves is reviewed here. The emphasis is on the Japanese TAMA project. We started operation of the TAMA300 laser interferometric detector in 1999, and are now collecting and analyzing observational data to search for gravitational wave signals.

  15. Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Woods, R. Clive; Li, Fangyu

    2006-01-01

    Here we show the generation of high-frequency-gravitational-waves (HFGWs) utilizing piezoelectric elements such as the ubiquitous Film-Bulk-Acoustic-Resonators (FBARs), found in cell phones, as energized by inexpensive magnetrons, found in microwave ovens, generating GWs having a frequency of about 4.9GHz and their detection by means of new synchro-resonance techniques developed in China. In the 1960s Weber suggested piezoelectric crystals for gravitational-wave (GW) generation. Since then researchers have proposed specific designs. The major obstacle has been the cost of procuring, installing, and energizing a sufficient number of such resonators to generate sufficiently powerful GWs to allow for detection. Recent mass-production techniques, spurred on by the production of cell phones, have driven the cost of resonators down. The new Chinese detector for detecting the 4.9×109Hz HFGW is a coupling-system of fractal membranes-beam-splitters and a narrow, 6.1 cm-radius, pulsed-Gaussian-laser or continuous-Gaussian detection beam passing through a static 15T-magnetic field. The detector is sensitive to GW amplitudes of ~10-30 to be generated with signal-to-noise ratios greater than one. It is concluded that a cost-effective HFGW generation and detection apparatus can now be fabricated and operated in the laboratory. If the two groups or clusters of magnetrons and FBARs were space borne and at lunar distance (e.g., at the Moon and at the lunar L3 libration point) and the quadrupole formalism approximately holds for GW radiators (the FBAR clusters) many GW wavelengths apart, then the HFGW power would be about 420 W and the flux about 2×105 Wm-2 (or more than one hundred times greater than the solar radiation flux at the Earth) focused at the focal spot, or remote-HFGW-emitter, anywhere in the Earth's environs - on or below the Earth's surface.

  16. The gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John

    2016-03-01

    With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.

  17. Gravitational-wave joy

    NASA Astrophysics Data System (ADS)

    seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi

    2016-03-01

    In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).

  18. Gravitational waves: Stellar palaeontology

    NASA Astrophysics Data System (ADS)

    Mandel, Ilya; Farmer, Alison

    2017-07-01

    A third gravitational-wave signal has been detected with confidence, produced again by the merger of two black holes. The combined data from these detections help to reveal the histories of the stars that left these black holes behind.

  19. Event Trigger Generator for Gravitational-Wave Data based on Hilbert-Huang Transform

    NASA Astrophysics Data System (ADS)

    Son, Edwin J.; Chu, Hyoungseok; Kim, Young-Min; Blackburn, Lindy; Hayama, Kazuhiro; Kim, Hwansun; Oh, John J.; Oh, Sang Hoon; Robinet, Florent

    2015-08-01

    The Hilbert-Huang Transform (HHT) is composed of the Empirical Mode Decomposition (EMD) and the Hilbert Spectral Analysis (HSA). The EMD decomposes any time series data into a small number of components called the Intrinsic Mode Functions (IMFs), compared to the Discrete Fourier Transform which decomposes a data into a large number of harmonic functions. Each IMF has varying amplitude and frequency with respect to time, which can be obtained by HSA. The time resolution of the modes in HHT is the same as that of the given time series, while in the Wavelet Transform, Constant Q Transform and Short-Time Fourier Transform, there is a tradeoff between the resolutions in frequency and time. Based on the time-dependent amplitudes of IMFs, we develop an Event Trigger Generator and demonstrate its efficiency by applying it to gravitational-wave mock data.

  20. The First Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Królak, Andrzej; Patil, Mandar

    2017-07-01

    This article deals with the first detection of gravitational waves by the advanced Laser Interferometer Gravitational Wave Observatory (LIGO) detectors on 14 September 2015, where the signal was generated by two stellar mass black holes with masses 36 $ M_{\\odot}$ and 29 $ M_{\\odot}$ that merged to form a 62 $ M_{\\odot}$ black hole, releasing 3 $M_{\\odot}$ energy in gravitational waves, almost 1.3 billion years ago. We begin by providing a brief overview of gravitational waves, their sources and the gravitational wave detectors. We then describe in detail the first detection of gravitational waves from a binary black hole merger. We then comment on the electromagnetic follow up of the detection event with various telescopes. Finally, we conclude with the discussion on the tests of gravity and fundamental physics with the first gravitational wave detection event.

  1. Three observational differences for binary black holes detections with second- and third-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Vitale, Salvatore

    2016-12-01

    Advanced gravitational-wave observatories, such as LIGO and Virgo, will detect hundreds of gravitational-wave signals emitted by binary black holes in the next few years. The collection of detected sources is expected to have certain properties. It is expected that a selection bias will exist toward higher-mass systems, that most events will be oriented with their angular momentum pointing to or away from Earth, and that quiet events will be much more numerous than loud events. In this paper, we show how all these assumptions are only true for existing detectors and do not have any universality. Using a network of proposed third-generation gravitational-wave detectors, we show how each of these assumptions must be revised, and we discuss several consequences on the characterization of the sources.

  2. Compact Binary Inspiral and the Science Potential of Third-Generation Ground-Based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    van den Broeck, Chris; Sengupta, Anand S.

    2008-09-01

    We consider EGO as a possible third-generation ground-based gravitational wave detector and evaluate its capabilities for the detection and interpretation of compact binary inspiral signals. We identify areas of astrophysics and cosmology where EGO would have qualitative advantages, using Advanced LIGO as a benchmark for comparison.

  3. Gravitational-Wave Detection (ii). Current Gravitational Wave Detector Results

    NASA Astrophysics Data System (ADS)

    Kanda, Nobuyuki

    2005-11-01

    The workshop session C1ii was focused on the results of recent operating detectors. 10 speakers presented the latest results of each experiments: ALLEGRO, GEO, LIGO, TAMA and VIRGO experiments. There were reports about searches for gravitational waves in analysis of observation data. The results are of no detection of gravitational waves, but observational upper-limits of gravitational waves are improved.

  4. Sources of gravitational waves

    NASA Technical Reports Server (NTRS)

    Schutz, Bernard F.

    1989-01-01

    Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background.

  5. Gravitational Waves: The Evidence Mounts

    ERIC Educational Resources Information Center

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  6. Gravitational Waves: The Evidence Mounts

    ERIC Educational Resources Information Center

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  7. Detecting black-hole binary clustering via the second-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi

    2016-07-01

    The first discovery of the gravitational-wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak-lensing measurements, finding that, with a 3 year observation, the >3 σ detection of a nonzero signal is possible if the BH merger rate today is n˙ 0≳100 Gpc-3 yr-1 and the clustering bias of BH binaries is bBH ,0≳1.5 .

  8. Gravitational waves from technicolor

    SciTech Connect

    Jaervinen, Matti; Sannino, Francesco; Kouvaris, Chris

    2010-03-15

    We investigate the production and possible detection of gravitational waves stemming from the electroweak phase transition in the early universe in models of minimal walking technicolor. In particular we discuss the two possible scenarios in which one has only one electroweak phase transition and the case in which the technicolor dynamics allows for multiple phase transitions.

  9. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  10. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  11. Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  12. A vertical accelerometer for cryogenics implementation in third-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Frasconi, F.; Majorana, E.; Naticchioni, L.; Paoletti, F.; Perciballi, M.

    2014-01-01

    The design of third-generation gravitational-wave detectors requires dedicated sensors to perform very accurate measurements of the residual motion of mechanical components cooled down at cryogenic temperatures and accommodated close to the test masses. For this reason, we developed a vertical accelerometer prototype derived by the classical scheme widely used in Virgo seismic suspension control. Thermal contractions are the main concern when cooling down such a device and the calibration check at low temperature, in the absence of commercial sensors working in parallel, plays a crucial role. The accelerometer was conceived to be used at low frequencies (0.3-3 Hz) in a quite specific environment, where the noise produced by cryocoolers has to be suppressed. However, it can be easily operated over a wider frequency band, up to ˜100 Hz. The achieved sensitivity is ˜10-8 m s-2 below 3 Hz. During 2013, the device was successfully installed in the KAGRA cryostat, where it was tested at low temperatures down to 8 K and provided the measurement of vertical vibrational modes of the inner thermal shield.

  13. Plans for a Next Generation Space-Based Gravitational-Wave Observatory (NGO)

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.; Stebbins, Robin T.; Jennrich, Oliver

    2012-01-01

    The European Space Agency (ESA) is currently in the process of selecting a mission for the Cosmic Visions Program. A space-based gravitational wave observatory in the low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum is one of the leading contenders. This low frequency band has a rich spectrum of astrophysical sources, and the LISA concept has been the key mission to cover this science for over twenty years. Tight budgets have recently forced ESA to consider a reformulation of the LISA mission concept that wi" allow the Cosmic Visions Program to proceed on schedule either with the US as a minority participant, or independently of the US altogether. We report on the status of these reformulation efforts.

  14. Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Vitale, Salvatore; Evans, Matthew

    2017-03-01

    The two binary black hole (BBH) coalescences detected by LIGO, GW150914, and GW151226, were relatively nearby sources, with a redshift of ˜0.1 . As the sensitivity of Advanced LIGO and Virgo increases in the next few years, they will eventually detect stellar-mass BBHs up to redshifts of ˜1 . However, these are still relatively small distances compared with the size of the Universe, or with those encountered in most areas of astrophysics. In order to study BBH during the epoch of reionization, or black holes born from population III stars, more sensitive instruments are needed. Third-generation gravitational-wave detectors, such as the Einstein Telescope or the Cosmic Explorer, are already in an advanced R&D stage. These detectors will be roughly a factor of 10 more sensitive in strain than the current generation, and they will be able to detect BBH mergers beyond a redshift of 20. In this paper we quantify the precision with which these new facilities will be able to estimate the parameters of stellar-mass, heavy, and intermediate-mass BBHs as a function of their redshifts and the number of detectors. We show that having only two detectors would result in relatively poor estimates of black hole intrinsic masses: a situation improved with three or four instruments. Larger improvements are visible for the sky localization, although it is not yet clear whether BBHs are luminous in the electromagnetic or neutrino band. The measurement of the spin parameters, on the other hand, does not improve significantly as more detectors are added to the network since redshift information is not required to measure spin.

  15. Gravitational wave astronomy.

    NASA Astrophysics Data System (ADS)

    Finn, L. S.

    Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.

  16. Nonperturbative production of massless scalars during inflation and generation of gravitational waves

    NASA Astrophysics Data System (ADS)

    Goolsby-Cole, Cody; Sorbo, Lorenzo

    2017-08-01

    We discuss the possibility of a feature in the spectrum of inflationary gravitational waves sourced by a scalar field χ whose vacuum fluctuations are amplified by a rapidly time dependent mass. Unlike previous work which has focused on the case in which the mass of the field χ vanishes only for an instant before becoming massive again, we study a system where the scalar field becomes and remains massless through the end of inflation. After applying appropriate constraints to our parameters, we find, for future CMB experiments, a small contribution to the tensor-to-scalar ratio which can be at most of the order r ~ 10-5. At smaller scales probed by gravitational interferometers, on the other hand, the energy density in the gravitational waves produced this way might be above the projected sensitivity of LISA, ΩGW h2 ~ 10-13, in a narrow region of parameter space. If there is more than one χ species, then these amplitudes are enhanced by a factor equal to the number of those species.

  17. Chiral gravitational waves from chiral fermions

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Sabancilar, Eray

    2017-07-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  18. Demonstrating the feasibility of probing the neutron-star equation of state with second-generation gravitational-wave detectors.

    PubMed

    Del Pozzo, Walter; Li, Tjonnie G F; Agathos, Michalis; Van Den Broeck, Chris; Vitale, Salvatore

    2013-08-16

    Fisher matrix and related studies have suggested that, with second-generation gravitational-wave detectors, it may be possible to infer the equation of state of neutron stars using tidal effects in a binary inspiral. Here, we present the first fully Bayesian investigation of this problem. We simulate a realistic data analysis setting by performing a series of numerical experiments of binary neutron-star signals hidden in detector noise, assuming the projected final design sensitivity of the Advanced LIGO-Virgo network. With an astrophysical distribution of events (in particular, uniform in comoving volume), we find that only a few tens of detections will be required to arrive at strong constraints, even for some of the softest equations of state in the literature. Thus, direct gravitational-wave detection will provide a unique probe of neutron-star structure.

  19. Quantum walks and gravitational waves

    NASA Astrophysics Data System (ADS)

    Arnault, Pablo; Debbasch, Fabrice

    2017-08-01

    A new family of discrete-time quantum walks (DTQWs) propagating on a regular (1 + 2)D spacetime lattice is introduced. The continuum limit of these DTQWs is shown to coincide with the dynamics of a Dirac fermion coupled to an arbitrary relativistic gravitational field. This family is used to model the influence of arbitrary linear gravitational waves (GWs) on DTQWs. Pure shear GWs are studied in detail. We show that on large spatial scales, the spatial deformation generated by the wave induces a rescaling of the eigen-energies by a certain anisotropic factor which can be computed exactly. The effect of pure shear GWs on fermion interference patterns is also investigated, both on large scales and on scales comparable to the lattice spacing.

  20. Quantum Emulation of Gravitational Waves.

    PubMed

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  1. Quantum Emulation of Gravitational Waves

    PubMed Central

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  2. Quantum Emulation of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  3. Gravitational wave emission from oscillating millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  4. Phonon creation by gravitational waves

    NASA Astrophysics Data System (ADS)

    Sabín, Carlos; Bruschi, David Edward; Ahmadi, Mehdi; Fuentes, Ivette

    2014-08-01

    We show that gravitational waves create phonons in a Bose-Einstein condensate (BEC). A traveling spacetime distortion produces particle creation resonances that correspond to the dynamical Casimir effect in a BEC phononic field contained in a cavity-type trap. We propose to use this effect to detect gravitational waves. The amplitude of the wave can be estimated applying recently developed relativistic quantum metrology techniques. We provide the optimal precision bound on the estimation of the wave's amplitude. Finally, we show that the parameter regime required to detect gravitational waves with this technique could be, in principle, within experimental reach in a medium-term timescale.

  5. ACOUSTIC WAVES GENERATED BY IMPULSIVE DISTURBANCES IN A GRAVITATIONALLY STRATIFIED MEDIUM

    SciTech Connect

    Chae, Jongchul; Goode, Philip R.

    2015-08-01

    Even though it is well-known from observations of the Sun that three-minute period chromospheric oscillations persist in the internetwork quiet regions and sunspot umbrae, until now their origin and persistence has defied clear explanation. Here we provide a clear and simple explanation for it with a demonstration of how such oscillations at the chromosphere's cutoff frequency naturally arise in a gravitationally stratified medium when it is disturbed. The largest-wavenumber vertical components of a chromospheric disturbance produce the highest-frequency wave packets, which propagate out of the disturbed region at group speeds that are close to the sound speed. Meanwhile, the smallest-wavenumber components develop into wave packets of frequencies close to the acoustic cutoff frequency that propagate at group speeds that are much lower than the sound speed. Because of their low propagation speed, these low-frequency wave packets linger in the disturbed region and nearby, and thus, are the ones that an observer would identify as the persistent, chromospheric three-minute oscillations. We emphasize that we can account for the power of the persistent chromospheric oscillations as coming from the repeated occurrence of disturbances with length scales greater than twice the pressure scale height in the upper photosphere.

  6. Low frequency gravitational wave astrophysics

    NASA Astrophysics Data System (ADS)

    Larson, Shane

    The field of low-frequency gravitational wave astronomy is evolving as the design of the Laser Interferometer Space Antenna (LISA) is in flux. Changing mission architectures naturally has an impact on the science goals and science capabilities in gravitational wave astronomy, requiring astrophysicists to pursue a deeper understanding on three fronts. (1) What astrophysical knowledge can be extracted from populations of sources based on their relative strengths in the data streams? (2) How are the science returns maximized as detector capabilities evolve? (3) How do evolving detector performance expectations alter the science that is possible with space- based gravitational wave detectors? This work proposes a series of investigations that address these questions along two broad avenues of inquiry. The first thrust of this effort is designed to examine how the population of ultra-compact galactic binaries can be better characterized by multi-messenger observations and statistical population analyses. While these investigations are astrophysical interesting in and of themselves, they are particularly relevant as detector designs evolve because the binaries are a limiting source of astrophysical noise that must be mitigated in order to maximize the science return for other sources, such as massive binary black hole inspirals and extreme mass ratio inspirals. The second thrust of this effort is geared toward characterization of the detector itself, since this ultimately fixes our ability to answer astrophysical questions. While many high-fidelity simulators exist for the original LISA mission architecture, the work proposed here will develop a new, flexible suite of prototyping tools analogous to the "Online Sensitivity Curve Generator" (which the PI authored). These tools will allow astrophysicists and data analysts alike to rapidly assess whether new proposed architectures for a space-based gravitational wave observatory will enhance or adversely impact the science

  7. The pregalactic cosmic gravitational wave background

    NASA Technical Reports Server (NTRS)

    Matzner, Richard A.

    1989-01-01

    An outline is given that estimates the expected gravitational wave background, based on plausible pregalactic sources. Some cosmologically significant limits can be put on incoherent gravitational wave background arising from pregalactic cosmic evolution. The spectral region of cosmically generated and cosmically limited radiation is, at long periods, P greater than 1 year, in contrast to more recent cosmological sources, which have P approx. 10 to 10(exp -3).

  8. Probing cosmic superstrings with gravitational waves

    NASA Astrophysics Data System (ADS)

    Sousa, L.; Avelino, P. P.

    2016-09-01

    We compute the stochastic gravitational wave background generated by cosmic superstrings using a semianalytical velocity-dependent model to describe their dynamics. We show that heavier string types may leave distinctive signatures on the stochastic gravitational wave background spectrum within the reach of present and upcoming gravitational wave detectors. We examine the physically motivated scenario in which the physical size of loops is determined by the gravitational backreaction scale and use NANOGrav data to derive a conservative constraint of G μF<3.2 ×10-9 on the tension of fundamental strings. We demonstrate that approximating the gravitational wave spectrum generated by cosmic superstring networks using the spectrum generated by ordinary cosmic strings with reduced intercommuting probability (which is often done in the literature) leads, in general, to weaker observational constraints on G μF. We show that the inclusion of heavier string types is required for a more accurate characterization of the region of the (gs,G μF) parameter space that may be probed using direct gravitational wave detectors. In particular, we consider the observational constraints that result from NANOGrav data and show that heavier strings generate a secondary exclusion region of parameter space.

  9. Gravitational Waves from Oscillons after Inflation.

    PubMed

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-06

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.

  10. Gravitational Waves from Oscillons after Inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-01

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.

  11. Probing the early universe with gravitational waves

    NASA Astrophysics Data System (ADS)

    Boyle, L. A.; Steinhardt, P. J.; Turok, N.

    2005-12-01

    We assess the prospects for observing primordial gravitational waves, and investigate the information that such observations would provide about the early universe. First, we compute the gravitational-wave spectrum generated by the cyclic model and show that it is unobservably small in all frequency bands (hep-th/0307170). By contrast, the gravitational-wave spectrum generated by inflation is a very promising target. In particular (astro-ph/0507455), we reconsider the predictions of inflation for the spectral index of scalar (energy density) fluctuations (ns) and the tensor/scalar ratio (r) using a discrete, model-independent measure of the degree of fine-tuning required to obtain a given combination of (ns, r). We find that, except for cases with numerous unnecessary degrees of fine-tuning, ns is less than 0.98, measurably different from exact Harrison-Zel'dovich. Furthermore, if ns ≳ 0.95, in accord with current measurements, the tensor/scalar ratio satisfies r ≳ 10-2, a range that should be detectable in proposed cosmic microwave background (CMB) polarization experiments and direct gravitational wave searches. Finally, it is well known that the inflationary gravitational wave spectrum carries important information about the physics of inflation itself; but we stress that it also carries important information about the "dark age" separating the end of inflation from the beginning of big bang nucleosynthesis, and discuss how this information may be extracted by combining CMB polarization experiments with direct (laser-interferometer) gravitational wave measurements.

  12. Gravitational wave radiometry: Mapping a stochastic gravitational wave background

    NASA Astrophysics Data System (ADS)

    Mitra, Sanjit; Dhurandhar, Sanjeev; Souradeep, Tarun; Lazzarini, Albert; Mandic, Vuk; Bose, Sukanta; Ballmer, Stefan

    2008-02-01

    The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to “point” the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include “realistic” additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and

  13. Gravitational waves and the early universe

    NASA Astrophysics Data System (ADS)

    Boyle, Latham A.

    Can we detect primordial gravitational waves ( i.e. tensor perturbations)? If so, what will they teach us about the early universe? These two questions are central to this two part thesis. First, in chapters 2 and 3, we compute the gravitational wave spectrum produced by inflation. We argue that if inflation is correct, then the scalar spectral index n s should satisfy n s [Special characters omitted.] 0.98; and if n s satisfies 0.95 [Special characters omitted.] n s [Special characters omitted.] 0.98, then the tensor-to-scalar ratio r should satisfy r [Special characters omitted.] 0.01. This means that, if inflation is correct, then primordial gravitational waves are likely to be detectable. We compute in detail the "tensor transfer function" T t ( k, t) which relates the tensor power spectrum at two different times t 1 and t 2 , and the "tensor extrapolation function" E t ( k, k [low *] ) which relates the primordial tensor power spectrum at two different wavenumbers k and k [low *] . By analyzing these two expressions, we show that inflationary gravitational waves should yield crucial clues about inflation itself, and about the "primordial dark age" between the end of inflation and the start of big bang nucleosynthesis (BBN). Second, in chapters 4 and 5, we compute the gravitational wave spectrum produced by the cyclic model. We examine a surprising duality relating expanding and contracting cosmological models that generate the same spectrum of gauge-invariant Newtonian potential fluctuations. This means that, if the cyclic model is correct, then it cannot be distinguished from inflation by observing primordial scalar perturbations alone. Fortunately, gravitational waves may be used to cleanly discriminate between the inflationary and cyclic scenarios: we show that BBN constrains the gravitational wave spectrum generated by the cyclic model to be so suppressed that it cannot be detected by any known experiment. Thus, the detection of a primordial gravitational

  14. Gravitational wave astronomy: the current status

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Chu, Qi; Fang, Qi; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Reitze, David H.; Arai, Koji; Zhang, Fan; Flaminio, Raffaele; Zhu, XingJiang; Hobbs, George; Manchester, Richard N.; Shannon, Ryan M.; Baccigalupi, Carlo; Gao, Wei; Xu, Peng; Bian, Xing; Cao, ZhouJian; Chang, ZiJing; Dong, Peng; Gong, XueFei; Huang, ShuangLin; Ju, Peng; Luo, ZiRen; Qiang, Li'E.; Tang, WenLin; Wan, XiaoYun; Wang, Yue; Xu, ShengNian; Zang, YunLong; Zhang, HaiPeng; Lau, Yun-Kau; Ni, Wei-Tou

    2015-12-01

    In the centenary year of Einstein's General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein's first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1-5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry.

  15. Quantum Opportunities in Gravitational Wave Detectors

    SciTech Connect

    Mavalvala, Negris

    2012-03-14

    Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.

  16. Gravitational Waves From Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    di Girolamo, Tristano

    2016-10-01

    In this talk, I will present the first direct detections of gravitational waves from binary stellar-mass black hole mergers during the first observing run of the two detectors of the Advanced Laser Interferometer Gravitational-wave Observatory, which opened the field of gravitational-wave astronomy, and then discuss prospects for observing gravitational waves from supermassive black holes with future detectors.

  17. Gravitational waves from axion monodromy

    SciTech Connect

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-02

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  18. Gravitational waves from axion monodromy

    NASA Astrophysics Data System (ADS)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-01

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this ``dynamical phase decomposition" phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  19. Multibaseline gravitational wave radiometry

    NASA Astrophysics Data System (ADS)

    Talukder, Dipongkar; Mitra, Sanjit; Bose, Sukanta

    2011-03-01

    We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).CQGRDG0264-938110.1088/0264-9381/23/8/S23] and Mitra et al. [Phys. Rev. DPRVDAQ1550-7998 77, 042002 (2008).10.1103/PhysRevD.77.042002]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.

  20. Reduced basis catalogs for gravitational wave templates.

    PubMed

    Field, Scott E; Galley, Chad R; Herrmann, Frank; Hesthaven, Jan S; Ochsner, Evan; Tiglio, Manuel

    2011-06-03

    We introduce a reduced basis approach as a new paradigm for modeling, representing and searching for gravitational waves. We construct waveform catalogs for nonspinning compact binary coalescences, and we find that for accuracies of 99% and 99.999% the method generates a factor of about 10-10(5) fewer templates than standard placement methods. The continuum of gravitational waves can be represented by a finite and comparatively compact basis. The method is robust under variations in the noise of detectors, implying that only a single catalog needs to be generated.

  1. REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION

    SciTech Connect

    Regimbau, T.; Siellez, K.; Meacher, D.; Gendre, B.; Boër, M.

    2015-01-20

    We use realistic Monte Carlo simulations including both gravitational-wave (GW) and short gamma-ray burst (sGRB) selection effects to revisit the coincident rate of binary systems composed of two neutron stars or a neutron star and a black hole. We show that the fraction of GW triggers that can be observed in coincidence with sGRBs is proportional to the beaming factor at z = 0, but increases with the distance until it reaches 100% at the GW detector horizon distance. When this is taken into account the rate is improved by a factor of three compared to the simple beaming factor correction. We provide an estimate of the performance future GRB detectors should achieve in order to fully exploit the potentiality of the planned third-generation GW antenna Einstein Telescope, and we propose a simple method to constrain the beaming angle of sGRBs.

  2. Gravitational Wave Oscillations in Bigravity.

    PubMed

    Max, Kevin; Platscher, Moritz; Smirnov, Juri

    2017-09-15

    We derive consistent equations for gravitational wave oscillations in bigravity. In this framework a second dynamical tensor field is introduced in addition to general relativity and coupled such that one massless and one massive linear combination arise. Only one of the two tensors is the physical metric coupling to matter, and thus the basis in which gravitational waves propagate is different from the basis where the wave is produced and detected. Therefore, one should expect-in analogy to neutrino oscillations-to observe an oscillatory behavior. We show for the first time how this behavior arises explicitly, discuss phenomenological implications, and present new limits on the graviton parameter space in bigravity.

  3. Gravitational Wave Oscillations in Bigravity

    NASA Astrophysics Data System (ADS)

    Max, Kevin; Platscher, Moritz; Smirnov, Juri

    2017-09-01

    We derive consistent equations for gravitational wave oscillations in bigravity. In this framework a second dynamical tensor field is introduced in addition to general relativity and coupled such that one massless and one massive linear combination arise. Only one of the two tensors is the physical metric coupling to matter, and thus the basis in which gravitational waves propagate is different from the basis where the wave is produced and detected. Therefore, one should expect—in analogy to neutrino oscillations—to observe an oscillatory behavior. We show for the first time how this behavior arises explicitly, discuss phenomenological implications, and present new limits on the graviton parameter space in bigravity.

  4. Nearby Stars as Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Silk, Joseph

    2015-07-01

    Sun-like stellar oscillations are excited by turbulent convection and have been discovered in some 500 main-sequence and sub-giant stars and in more than 12,000 red giant stars. When such stars are near gravitational wave sources, low-order quadrupole acoustic modes are also excited above the experimental threshold of detectability, and they can be observed, in principle, in the acoustic spectra of these stars. Such stars form a set of natural detectors to search for gravitational waves over a large spectral frequency range, from {10}-7 to {10}-2 Hz. In particular, these stars can probe the {10}-6-{10}-4 Hz spectral window which cannot be probed by current conventional gravitational wave detectors, such as the Square Kilometre Array and Evolved Laser Interferometer Space Antenna. The Planetary Transits and Oscillations of State (PLATO) stellar seismic mission will achieve photospheric velocity amplitude accuracy of {cm} {{{s}}}-1. For a gravitational wave search, we will need to achieve accuracies of the order of {10}-2 {cm} {{{s}}}-1, i.e., at least one generation beyond PLATO. However, we have found that multi-body stellar systems have the ideal setup for this type of gravitational wave search. This is the case for triple stellar systems formed by a compact binary and an oscillating star. Continuous monitoring of the oscillation spectra of these stars to a distance of up to a kpc could lead to the discovery of gravitational waves originating in our galaxy or even elsewhere in the universe. Moreover, unlike experimental detectors, this observational network of stars will allow us to study the progression of gravitational waves throughout space.

  5. GRAVITATIONAL WAVES FROM STELLAR COLLAPSE

    SciTech Connect

    C. L. FRYER

    2001-01-01

    Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.

  6. Gravitational waves in bigravity cosmology

    SciTech Connect

    Cusin, Giulia; Durrer, Ruth; Guarato, Pietro; Motta, Mariele E-mail: ruth.durrer@unige.ch E-mail: mariele.motta@unige.ch

    2015-05-01

    In this paper we study gravitational wave perturbations in a cosmological setting of bigravity which can reproduce the ΛCDM background and large scale structure. We show that in general gravitational wave perturbations are unstable and only for very fine tuned initial conditions such a cosmology is viable. We quantify this fine tuning. We argue that similar fine tuning is also required in the scalar sector in order to prevent the tensor instability to be induced by second order scalar perturbations. Finally, we show that due to this power law instability, models of bigravity can lead to a large tensor to scalar ratio even for low scale inflation.

  7. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-11-01

    We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors.

  8. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  9. General-relativistic astrophysics. [gravitational wave astronomy

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    The overall relevance of general relativity to astrophysics is considered, and some of the knowledge about the ways in which general relativity should influence astrophysical systems is reviewed. Attention is focused primarily on finite-sized astrophysical systems, such as stars, globular clusters, galactic nuclei, and primordial black holes. Stages in the evolution of such systems and tools for studying the effects of relativistic gravity in these systems are examined. Gravitational-wave astronomy is discussed in detail, with emphasis placed on estimates of the strongest gravitational waves that bathe earth, present obstacles and future prospects for detection of the predicted waves, the theory of small perturbations of relativistic stars and black holes, and the gravitational waves such objects generate. Characteristics of waves produced by black-hole events in general, pregalactic black-hole events, black-hole events in galactic nuclei and quasars, black-hole events in globular clusters, the collapse of normal stars to form black holes or neutron stars, and corequakes in neutron stars are analyzed. The state of the art in gravitational-wave detection and characteristics of various types of detector are described.

  10. Gravitational waves and multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Ricci, Fulvio

    2016-07-01

    It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  11. Merging Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  12. Merging Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  13. Space Detection of Gravitational Waves (lisa)

    NASA Astrophysics Data System (ADS)

    de Araujo, J. C. Neves; Buchman, S.; Cavalleri, A.; Danzmann, K.; Doles, R.; Fontana, G.; Hanso, J.; Hueller, M.; Sigurdsso, S.; Turneaure, J.; Ungarell, C.; Vecchi, A.; Vital, S.; Webe, W.

    2002-12-01

    The Laser Interferometer Space Antenna (LISA) mission is designed to observe gravitational waves from galactic and extra-galactic binary systems, including gravitational waves generated in the vicinity of the very massive black holes found in the centers of many galaxies. Acting as a giant Michelson interferometer the three spacecraft flying 5 million km apart will open the era of astronomy in the gravitational spectrum. We give an introduction to the mission and describe the status of selected experimental, theoretical, and planning LISA work, as reported at the Ninth Marcel Grossman Meeting in 2000 in Rome. We discuss the three areas of technology challenges facing the mission inertial sensors, micronewton thrusters, and picometer interferometry. We report on the progress in the development of free falling moving test-masses for LISA and for the related technology demonstration mission. We present simple formulas to evaluate the performance of the device as a function of the various design parameters, and we compare them with preliminary experimental results from a test prototype we are developing. Quantitative agreement is found. The gravitational radiation emitted during the final stages of coalescence of stellar mass compact objects with low massive black holes is a signal detectable by LISA. It will also provide the opportunity of measuring relativistic strong field effects. A brief discussion addresses the detection by LISA of gravitational waves generated by cataclysmic binary variables at frequencies below 1 mHz. Finally the prospects for cosmology work with LISA type antennas are being analyzed.

  14. SENR: A Next-Generation, Super-Efficient Numerical Relativity Code for the Age of Gravitational Wave Astrophysics

    NASA Astrophysics Data System (ADS)

    Etienne, Zachariah; Ruchlin, Ian; Baumgarte, Thomas

    2017-01-01

    Short-inspiral black hole binary (BHB) mergers are perhaps the most extensively studied LIGO source candidate by numerical relativity (NR), so it was extremely fortuitous that LIGO's first detections of gravitational waves (GWs) were from precisely these systems. In a sense, these discoveries represent coming-of-age for our field, but NR's current position is a precarious one. LIGO data analysis depends on NR-based GW catalogs built upon only one NR code and remain largely unvalidated by independent NR codes. More worryingly, LIGO may soon detect GWs from a double neutron star (DNS) binary, and there currently exist no NR codes capable of generating DNS GWs with small, convergent phase errors over large numbers of orbits in-band. We introduce SENR, a Super-Efficient, open-development NR code aimed at addressing these critical shortcomings. Building upon recent breakthroughs in reference metric-based simulations, SENR employs dynamical coordinate systems to increase the efficiency of moving-puncture BHB and DNS GW modeling by 100x. Excitingly, SENR has the potential to afford high-end gamers the opportunity to join us in source modeling, potentially increasing throughput of GW generation by an enormous factor. We present an overview of the SENR code and its development.

  15. Gravitational waves from a curvaton model with blue spectrum

    SciTech Connect

    Kawasaki, Masahiro; Kitajima, Naoya; Yokoyama, Shuichiro E-mail: nk610@icrr.u-tokyo.ac.jp

    2013-08-01

    We investigate the gravitational wave background induced by the first order scalar perturbations in the curvaton models. We consider the quadratic and axion-like curvaton potential which can generate the blue-tilted power spectrum of curvature perturbations on small scales and derive the maximal amount of gravitational wave background today. We find the power spectrum of the induced gravitational wave background has a characteristic peak at the frequency corresponding to the scale reentering the horizon at the curvaton decay, in the case where the curvaton does not dominate the energy density of the Universe. We also find the enhancement of the amount of the gravitational waves in the case where the curvaton dominates the energy density of the Universe. Such induced gravitational waves would be detectable by the future space-based gravitational wave detectors or pulsar timing observations.

  16. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  17. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approximately 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  18. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in approx. 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters, through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum.

  19. Beamed Propulsion by Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Mori, K.

    A new concept of beamed propulsion by a remotely transmitted beam of gravitational waves (GWs) is introduced. Its theoretical possibilities are investigated within the framework of the theory of general relativity and a weak energy condition. Under the assumption that the artificially controlled beaming of gravitational waves is possible, it is demonstrated that the flight time of a spacecraft can be reduced while it travels across the area of influence of a GW beam. Two different kinds of GW-beam solutions are considered: First, a Gaussian beam solution, which satisfies the linearized Einstein equation in vacuum approximate solution, is introduced. As a result, flight-time saving is possible using a linear Gaussian beam while a beam solution of finite strength violates the weak energy condition. Second, it is demonstrated that flight-time saving can be achieved by using a non-linear wave packet which exactly satisfies the Einstein equation in vacuum and the energy conditions outside the source of the gravitational waves.

  20. Testing local Lorentz invariance with gravitational waves

    DOE PAGES

    Kostelecký, V. Alan; Mewes, Matthew

    2016-04-20

    The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation. (C) 2016 The Authors. Published by Elsevier B.V.

  1. Ground-based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuaki

    2015-01-01

    Gravitational wave is predicted by Einstein’s general relativity, which conveys the information of source objects in the universe. The detection of the gravitational wave is the direct test of the theory and will be used as new tool to investigate dynamical nature of the universe. However, the effect of the gravitational wave is too tiny to be easily detected. From the first attempt utilizing resonant antenna in the 1960s, efforts of improving antenna sensitivity were continued by applying cryogenic techniques until approaching the quantum limit of sensitivity. However, by the year 2000, resonant antenna had given the way to interferometers. Large projects involving interferometers started in the 1990s, and achieved successful operations by 2010 with an accumulated extensive number of technical inventions and improvements. In this memorial year 2015, we enter the new phase of gravitational-wave detection by the forthcoming operation of the second-generation interferometers. The main focus in this paper is on how advanced techniques have been developed step by step according to scaling the arm length of the interferometer up and the history of fighting against technical noise, thermal noise, and quantum noise is presented along with the current projects, LIGO, Virgo, GEO-HF and KAGRA.

  2. Toward a new generation of low-loss mirrors for the advanced gravitational waves interferometers.

    PubMed

    Pinard, L; Sassolas, B; Flaminio, R; Forest, D; Lacoudre, A; Michel, C; Montorio, J L; Morgado, N

    2011-04-15

    The new generation of advanced interferometer needs fused silica mirrors having better optical and mechanical properties. This Letter describes the way to reduce the ion beam sputtering coating absorption at 1064 nm and to improve the layer thickness uniformity in order to coat two large mirrors (diameter 35 cm) at the same time.

  3. Outlook for Detecting Gravitational Waves with Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic

  4. Gravitational waves from an early matter era

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2009-04-15

    We investigate the generation of gravitational waves due to the gravitational instability of primordial density perturbations in an early matter-dominated era which could be detectable by experiments such as laser interferometer gravitational wave observatory (LIGO) and laser interferometer space antenna (LISA). We use relativistic perturbation theory to give analytic estimates of the tensor perturbations generated at second order by linear density perturbations. We find that large enhancement factors with respect to the naive second-order estimate are possible due to the growth of density perturbations on sub-Hubble scales. However very large enhancement factors coincide with a breakdown of linear theory for density perturbations on small scales. To produce a primordial gravitational-wave background that would be detectable with LIGO or LISA from density perturbations in the linear regime requires primordial comoving curvature perturbations on small scales of order 0.02 for advanced LIGO or 0.005 for LISA; otherwise numerical calculations of the nonlinear evolution on sub-Hubble scales are required.

  5. Gravitational wave science from space

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.

    2016-05-01

    The rich millihertz gravitational wave band can only be accessed with a space- based detector. The technology for such a detector will be demonstrated by the LISA Pathfinder satellite that is due to launch this year and ESA has selected gravitational wave detection from space as the science theme to be addressed by the L3 large mission to be launched around 2034. In this article we will discuss the sources that such an instrument will observe, and how the numbers of events and precision of parameter determination are affected by modifications to the, as yet not finalised, mission design. We will also describe some of the exciting scientific applications of these observations, to astrophysics, fundamental physics and cosmology.

  6. Electromagnetic Counterparts to Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; GROWTH Collaboration; iPTF/ZTF Collaboration

    2017-01-01

    The direct detection of gravitational waves from merging black holes marks the dawn of a new era. I will present ongoing efforts and prospectsto identify and characterize the electromagnetic counterpart. Among the various models for electromagnetic emission from binary neutronstar mergers, free neutron decay gives the most luminous and fast-evolving optical counterpart. I will describe a co-ordinated global effort, the GROWTH (Global Relay of Observatories Watching Transients Happen) network working in tandem with the Zwicky Transient Facility.

  7. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.

    PubMed

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  8. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO3 crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  9. Bayesian analysis on gravitational waves and exoplanets

    NASA Astrophysics Data System (ADS)

    Deng, Xihao

    Attempts to detect gravitational waves using a pulsar timing array (PTA), i.e., a collection of pulsars in our Galaxy, have become more organized over the last several years. PTAs act to detect gravitational waves generated from very distant sources by observing the small and correlated effect the waves have on pulse arrival times at the Earth. In this thesis, I present advanced Bayesian analysis methods that can be used to search for gravitational waves in pulsar timing data. These methods were also applied to analyze a set of radial velocity (RV) data collected by the Hobby- Eberly Telescope on observing a K0 giant star. They confirmed the presence of two Jupiter mass planets around a K0 giant star and also characterized the stellar p-mode oscillation. The first part of the thesis investigates the effect of wavefront curvature on a pulsar's response to a gravitational wave. In it we show that we can assume the gravitational wave phasefront is planar across the array only if the source luminosity distance " 2piL2/lambda, where L is the pulsar distance to the Earth (˜ kpc) and lambda is the radiation wavelength (˜ pc) in the PTA waveband. Correspondingly, for a point gravitational wave source closer than ˜ 100 Mpc, we should take into account the effect of wavefront curvature across the pulsar-Earth line of sight, which depends on the luminosity distance to the source, when evaluating the pulsar timing response. As a consequence, if a PTA can detect a gravitational wave from a source closer than ˜ 100 Mpc, the effects of wavefront curvature on the response allows us to determine the source luminosity distance. The second and third parts of the thesis propose a new analysis method based on Bayesian nonparametric regression to search for gravitational wave bursts and a gravitational wave background in PTA data. Unlike the conventional Bayesian analysis that introduces a signal model with a fixed number of parameters, Bayesian nonparametric regression sets

  10. Primordial gravitational waves and cosmology.

    PubMed

    Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan

    2010-05-21

    The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.

  11. CMB μ distortion from primordial gravitational waves

    SciTech Connect

    Ota, Atsuhisa; Yamaguchi, Masahide; Takahashi, Tomo; Tashiro, Hiroyuki E-mail: tomot@cc.saga-u.ac.jp E-mail: gucci@phys.titech.ac.jp

    2014-10-01

    We propose a new mechanism of generating the μ distortion in cosmic microwave background (CMB) originated from primordial gravitational waves. Such μ distortion is generated by the damping of the temperature anisotropies through the Thomson scattering, even on scales larger than that of Silk damping. This mechanism is in sharp contrast with that from the primordial curvature (scalar) perturbations, in which the temperature anisotropies mainly decay by Silk damping effects. We estimate the size of the μ distortion from the new mechanism, which can be used to constrain the amplitude of primordial gravitational waves on smaller scales independently from the CMB anisotropies, giving more wide-range constraint on their spectral index by combining the amplitude from the CMB anisotropies.

  12. Extragalactic sources of gravitational waves

    NASA Astrophysics Data System (ADS)

    Rees, M. J.

    The prospects of detecting gravitational waves from galactic nuclei are shown to be bleak: although some 'scenarios', such as those involving black hole coalescence, would emit a pulse with about 0.1 efficiency, the predicted event rate is discouragingly low. If most of the 'unseen' mass in the universe were in the remnants of massive 'Population III' stars, then the overlapping bursts from the collapse of such objects in early epochs would yield a stochastic background that could amount to about 0.001 (or even more) of the critical cosmological density. Such a background may be above the detectability threshold for future experiments, and can be probed by studying the timing noise of pulsars, and the secular behavior of the binary pulsar. General constraints on stochastic backgrounds, including 'primordial' gravitational radiation, are summarized.

  13. Experimental investigation of a control scheme for a zero-detuning resonant sideband extraction interferometer for next-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Kawazoe, Fumiko; Sugamoto, Akio; Leonhardt, Volker; Sato, Shuichi; Yamazaki, Toshitaka; Fukushima, Mitsuhiro; Kawamura, Seiji; Miyakawa, Osamu; Somiya, Kentaro; Morioka, Tomoko; Nishizawa, Atsushi

    2008-10-01

    Some next-generation gravitational-wave detectors, such as the American Advanced LIGO project and the Japanese LCGT project, plan to use power recycled resonant sideband extraction (RSE) interferometers for their interferometer's optical configuration. A power recycled zero-detuning (PRZD) RSE interferometer, which is the default design for LCGT, has five main length degrees of freedom that need to be controlled in order to operate a gravitational-wave detector. This task is expected to be very challenging because of the complexity of optical configuration. A new control scheme for a PRZD RSE interferometer has been developed and tested with a prototype interferometer. The PRZD RSE interferometer was successfully locked with the control scheme. It is the first experimental demonstration of a PRZD RSE interferometer with suspended test masses. The result serves as an important step for the operation of LCGT.

  14. Electromagnetic Counterparts of Gravitational Wave Transients

    NASA Astrophysics Data System (ADS)

    Branchesi, Marica

    2015-03-01

    In the near future the ground-based gravitational wave detectors will reach sensitivities that should make it possible for the first time to directly observe gravitational waves. The simultaneous availability of gravitational wave detectors observing together with space and ground-based electromagnetic telescopes will offer a great opportunity to explore the Universe in a new multi-messenger perspective. Promising sources of gravitational waves are the most energetic astrophysical events such as the merger of neutron stars and/or stellar-mass black holes and the core collapse of massive stars. These events are believed to produce electromagnetic transients in the sky, like gamma-ray bursts and supernovae. An overview of the expected electromagnetic counterparts of the gravitational wave sources is presented, focusing on the challenges, opportunities and strategies for starting transient gravitational wave astronomy.

  15. Simulating Responses of Gravitational-Wave Instrumentation

    NASA Technical Reports Server (NTRS)

    Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele

    2006-01-01

    Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.

  16. Singularities from colliding plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    1980-12-01

    A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.

  17. The generation of gravitational waves. 1. Weak-field sources: A plug-in-and-grind formalism

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Kovacs, S. J.

    1974-01-01

    A plug-in-and-grind formalism is derived for calculating the gravitational waves emitted by any system with weak internal gravitational fields. If the internal fields have negligible influence on the system's motions, then the formalism reduces to standard linearized theory. Whether or not gravity affects the motions, if the motions are slow and internal stresses are weak, then the new formalism reduces to the standard quadrupole-moment formalism. In the general case the new formalism expresses the radiation in terms of a retarded Green's function for slightly curved spacetime, and then breaks the Green's-function integral into five easily understood pieces: direct radiation, produced directly by the motions of the sources; whump radiation, produced by the the gravitational stresses of the source; transition radiation, produced by a time-changing time delay (Shapiro effect) in the propagation of the nonradiative, 1/r field of the source; focussing radiation produced when one portion of the source focusses, in a time-dependent way, the nonradiative field of another portion of the source, and tail radiation, produced by backscatter of the nonradiative field in regions of focussing.

  18. Gravitational waves from the first stars

    SciTech Connect

    Sandick, Pearl; Olive, Keith A.; Daigne, Frederic; Vangioni, Elisabeth

    2006-05-15

    We consider the stochastic background of gravitational waves produced by an early generation of Population III stars coupled with a normal mode of star formation at lower redshift. The computation is performed in the framework of hierarchical structure formation and is based on cosmic star formation histories constrained to reproduce the observed star formation rate at redshift z < or approx. 6, the observed chemical abundances in damped Lyman alpha absorbers and in the intergalactic medium, and to allow for an early reionization of the Universe at z{approx}11 as indicated by the third year results released by WMAP. We find that the normal mode of star formation produces a gravitational wave background which peaks at 300-500 Hz and is within LIGO III sensitivity. The Population III component peaks at lower frequencies (30-100 Hz depending on the model), and could be detected by LIGO III as well as the planned BBO and DECIGO interferometers.

  19. Gravitational Waves: Elusive Cosmic Messengers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes is expected to be the strongest g ravitational wave source for ground-based interferometers such as LIG O, VIRGO, and GE0600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires t hat we know the radiation waveforms they emit. Since these mergers ta ke place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate t hese waveforms. For more than 30 years, scientists have tried to comp ute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could comple te even a single orbit. Within the past few years, however, this situ ation has changed dramatically, with a series of remarkable breakthro ughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applic ations in gravitational wave detection, data analysis, and astrophysi cs.

  20. Gravitational waves from compact objects

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, José Antonio

    2010-11-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and, consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a “pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  1. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  2. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in time-domain astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multimessenger astronomy across the gravitational wave spectrum.

  3. Physics, Astrophysics and Cosmology with Gravitational Waves.

    PubMed

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  4. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years) as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves) these signals carry direct information about their sources - such as masses) spins) luminosity distances) and orbital parameters - through dense) obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers) highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  5. Gravitational waves from surface inhomogeneities of neutron stars

    NASA Astrophysics Data System (ADS)

    Konar, Sushan; Mukherjee, Dipanjan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-11-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seems to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in high-mass x-ray binaries would be worth considering for a targeted search for continuous gravitational waves with the next generation of instruments.

  6. Atomic gravitational wave interferometric sensor

    SciTech Connect

    Dimopoulos, Savas; Hogan, Jason M.; Kasevich, Mark A.; Graham, Peter W.; Rajendran, Surjeet

    2008-12-15

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite based, utilizing the core technology of the Stanford 10 m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with two {approx}10 m atom interferometers separated by a {approx}1 km baseline can operate with strain sensitivity {approx}(10{sup -19}/{radical}(Hz)) in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with two atom interferometers separated by a {approx}1000 km baseline can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx}(10{sup -20}/{radical}(Hz)). The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.

  7. Gravitational waves in bimetric MOND

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2014-01-01

    I consider the weak-field limit (WFL) of the bimetric, relativistic formulation of the modified Newtonian dynamics (BIMOND)—the lowest order in the small departures hμν=gμν-ημν, h stretchy="false">^μν=g stretchy="false">^μν-ημν from double Minkowski space-time. In particular, I look at propagating solutions, for a favorite subclass of BIMOND. The WFL splits into two sectors for two linear combinations, hμν±, of hμν and h stretchy="false">^μν. The hμν+ sector is equivalent to the WFL of general relativity (GR), with its gauge freedom, and has the same vacuum gravitational waves. The hμν- sector is fully nonlinear even for the weakest hμν-, and inherits none of the coordinate gauge freedom. The equations of motion are scale invariant in the deep-MOND limit of purely gravitational systems. In these last two regards, the BIMOND WFL is greatly different from that of other bimetric theories studied to date. Despite the strong nonlinearity, an arbitrary pair of harmonic GR wave packets of hμν and h stretchy="false">^μν moving in the same direction, is a solution of the (vacuum) BIMOND WFL.

  8. Primordial gravitational waves in running vacuum cosmologies

    NASA Astrophysics Data System (ADS)

    Tamayo, D. A.; Lima, J. A. S.; Alves, M. E. S.; de Araujo, J. C. N.

    2017-01-01

    We investigate the cosmological production of gravitational waves in a nonsingular flat cosmology powered by a "running vacuum" energy density described by ρΛ ≡ ρΛ(H), a phenomenological expression potentially linked with the renormalization group approach in quantum field theory in curved spacetimes. The model can be interpreted as a particular case of the class recently discussed by Perico et al. (2013) [25] which is termed complete in the sense that the cosmic evolution occurs between two extreme de Sitter stages (early and late time de Sitter phases). The gravitational wave equation is derived and its time-dependent part numerically integrated since the primordial de Sitter stage. The generated spectrum of gravitons is also compared with the standard calculations where an abrupt transition, from the early de Sitter to the radiation phase, is usually assumed. It is found that the stochastic background of gravitons is very similar to the one predicted by the cosmic concordance model plus inflation except at higher frequencies (ν ≳ 100 kHz). This remarkable signature of a "running vacuum" cosmology combined with the proposed high frequency gravitational wave detectors and measurements of the CMB polarization (B-modes) may provide a new window to confront more conventional models of inflation.

  9. Detecting Gravitational Wave Memory without Parent Signals.

    PubMed

    McNeill, Lucy O; Thrane, Eric; Lasky, Paul D

    2017-05-05

    Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-wave detector and arises generically from energetic astrophysical events. For example, binary black hole mergers are expected to emit memory bursts a little more than an order of magnitude smaller in strain than the oscillatory parent waves. We introduce the concept of "orphan memory": gravitational-wave memory for which there is no detectable parent signal. In particular, high-frequency gravitational-wave bursts (≳kHz) produce orphan memory in the LIGO/Virgo band. We show that Advanced LIGO measurements can place stringent limits on the existence of high-frequency gravitational waves, effectively increasing the LIGO bandwidth by orders of magnitude. We investigate the prospects for and implications of future searches for orphan memory.

  10. Detecting Gravitational Wave Memory without Parent Signals

    NASA Astrophysics Data System (ADS)

    McNeill, Lucy O.; Thrane, Eric; Lasky, Paul D.

    2017-05-01

    Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-wave detector and arises generically from energetic astrophysical events. For example, binary black hole mergers are expected to emit memory bursts a little more than an order of magnitude smaller in strain than the oscillatory parent waves. We introduce the concept of "orphan memory": gravitational-wave memory for which there is no detectable parent signal. In particular, high-frequency gravitational-wave bursts (≳kHz ) produce orphan memory in the LIGO/Virgo band. We show that Advanced LIGO measurements can place stringent limits on the existence of high-frequency gravitational waves, effectively increasing the LIGO bandwidth by orders of magnitude. We investigate the prospects for and implications of future searches for orphan memory.

  11. Gravitational waves from the electroweak phase transition

    SciTech Connect

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.

  12. Gravitational wave-Gauge field oscillations

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.; Maksimova, N. A.

    2016-09-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multidimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  13. Gravitational waves from Affleck-Dine condensate fragmentation

    SciTech Connect

    Zhou, Shuang-Yong

    2015-06-01

    We compute the stochastic gravitational wave production from Affleck-Dine condensate fragmentation in the early universe, focusing on an effective potential with a logarithmic mass correction that typically arises in gravity mediated supersymmetry breaking scenarios. We find that a significant gravitational wave background can be generated when Q-balls are being formed out of the condensate fragmentation. This gravitational wave background has a distinct multi-peak power spectrum where the trough is closely linked to the supersymmetry breaking scale and whose frequencies are peaked around kHz for TeV supersymmetry breaking.

  14. Squeezed light for advanced gravitational wave detectors and beyond.

    PubMed

    Oelker, E; Barsotti, L; Dwyer, S; Sigg, D; Mavalvala, N

    2014-08-25

    Recent experiments have demonstrated that squeezed vacuum states can be injected into gravitational wave detectors to improve their sensitivity at detection frequencies where they are quantum noise limited. Squeezed states could be employed in the next generation of more sensitive advanced detectors currently under construction, such as Advanced LIGO, to further push the limits of the observable gravitational wave Universe. To maximize the benefit from squeezing, environmentally induced disturbances such as back scattering and angular jitter need to be mitigated. We discuss the limitations of current squeezed vacuum sources in relation to the requirements imposed by future gravitational wave detectors, and show a design for squeezed light injection which overcomes these limitations.

  15. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2017-05-01

    Stellar-remnant black holes (BH) in dense stellar clusters have always drawn attention due to their potential in a number of phenomena, especially the dynamical formation of binary black holes (BBH), which potentially coalesce via gravitational-wave radiation. This study presents a preliminary set of evolutionary models of compact stellar clusters with initial masses ranging over 1.0 × 104-5.0 × 104 M⊙, and half-mass radius of 2 or 1 pc, which is typical for young massive and starburst clusters. They have metallicities between 0.05 Z⊙ and Z⊙. Including contemporary schemes for stellar wind and remnant formation, such model clusters are evolved, for the first time, using the state-of-the-art direct N-body evolution program nbody7, until their dissolution or at least for 10 Gyr. That way, a self-regulatory behaviour in the effects of dynamical interactions among the BHs is demonstrated. In contrast to earlier studies, the BBH coalescences obtained in these models show a prominence in triple-mediated coalescences while being bound to the clusters, compared to those occurring among the BBHs that are dynamically ejected from the clusters. A broader mass spectrum of the BHs and lower escape velocities of the clusters explored here might cause this difference, which is yet to be fully understood. Among the BBH coalescences obtained here, there are ones that resemble the detected GW151226, LVT151012 and GW150914 events and also ones that are even more massive. A preliminary estimate suggests few 10-100 s of BBH coalescences per year, originating due to dynamics in stellar clusters that can be detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) at its design sensitivity.

  16. Gravitational Wave in Linear General Relativity

    NASA Astrophysics Data System (ADS)

    Cubillos, D. J.

    2017-07-01

    General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.

  17. Gravitational-wave Mission Study

    NASA Technical Reports Server (NTRS)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  18. Future Gravitational-Wave Missions

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin T.; NASA Gravitational-Wave Study Team

    2015-01-01

    In November 2013, the European Space Agency (ESA) selected the science theme, the 'Gravitational Universe,' for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA.The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies.

  19. Conformal anomalies and gravitational waves

    NASA Astrophysics Data System (ADS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2017-09-01

    We argue that the presence of conformal anomalies in gravitational theories can lead to observable modifications to Einstein's equations via the induced anomalous effective actions, whose non-localities can overwhelm the smallness of the Planck scale. The fact that no such effects have been seen in recent cosmological or gravitational wave observations therefore imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. We then show that a complete cancellation of conformal anomalies in D = 4 for both the C2 invariant and the Euler (Gauss-Bonnet) invariant E4 can only be achieved for N-extended supergravity multiplets with N ⩾ 5, as well as for M theory compactified to four dimensions. Although there remain open questions, in particular concerning the true significance of conformal anomalies in non-conformal theories, as well as their possible gauge dependence for spin s ⩾3/2, these cancellations suggest a hidden conformal structure of unknown type in these theories.

  20. Folding gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Sanders, J. R.; Ballmer, Stefan W.

    2017-01-01

    The sensitivity of kilometer-scale terrestrial gravitational wave interferometers is limited by mirror coating thermal noise. Alternative interferometer topologies can mitigate the impact of thermal noise on interferometer noise curves. In this work, we explore the impact of introducing a single folding mirror into the arm cavities of dual-recycled Fabry–Perot interferometers. While simple folding alone does not reduce the mirror coating thermal noise, it makes the folding mirror the critical mirror, opening up a variety of design and upgrade options. Improvements to the folding mirror thermal noise through crystalline coatings or cryogenic cooling can increase interferometer range by as much as a factor of two over the Advanced LIGO reference design.

  1. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  2. The Bright Future of Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Gabriela

    2008-04-01

    These are exciting times in the search for gravitational waves. Gravitational waves are expected from many different astrophysical sources: brief transients from violent events like supernova explosions and collisions of neutron stars and black holes, coalescence of compact binary systems, continuous waves from rotating systems, and stochastic signals from cosmological origin or unresolved transients. The LIGO gravitational wave detectors have achieved unprecedented sensitivity to gravitational waves, and other detectors around the world are expected to reach similar sensitivities. The LIGO Scientific Collaboration (LSC) has recently completed their most sensitive observation run to date with LIGO and GEO detectors, including several months of joint observations with the European VIRGO detector. The LIGO Laboratory and the LSC, as well as the Virgo Collaboration, are actively preparing for operating enhanced detectors in the very near future. The next decade will see the construction and commissioning of Advanced LIGO and VIRGO, and quite possibly the launch of the space-based LISA mission, starting for sure then, if not earlier, a new era for gravitational wave astronomy. Plans for a world-wide network of ground based detectors involving more detectors in Europe, Japan and Australia are becoming more concrete. The future of gravitational wave astronomy is bright indeed! In this talk, will briefly describe the present status of the ground and space based detector projects and discuss the science we may expect to do with the detectors (and detections!) we will have in the upcoming era of gravitational wave astronomy.

  3. Gravitational waves and electrodynamics: new perspectives.

    PubMed

    Cabral, Francisco; Lobo, Francisco S N

    2017-01-01

    Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.

  4. Gravitational waves and electrodynamics: new perspectives

    NASA Astrophysics Data System (ADS)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-04-01

    Given the recent direct measurement of gravitational waves (GWs) by the LIGO-VIRGO collaboration, the coupling between electromagnetic fields and gravity have a special relevance since it opens new perspectives for future GW detectors and also potentially provides information on the physics of highly energetic GW sources. We explore such couplings using the field equations of electrodynamics on (pseudo) Riemann manifolds and apply it to the background of a GW, seen as a linear perturbation of Minkowski geometry. Electric and magnetic oscillations are induced that propagate as electromagnetic waves and contain information as regards the GW which generates them. The most relevant results are the presence of longitudinal modes and dynamical polarization patterns of electromagnetic radiation induced by GWs. These effects might be amplified using appropriate resonators, effectively improving the signal to noise ratio around a specific frequency. We also briefly address the generation of charge density fluctuations induced by GWs and the implications for astrophysics.

  5. Source modelling at the dawn of gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide

    2016-09-01

    The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary

  6. Carroll symmetry of plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Duval, C.; Gibbons, G. W.; Horvathy, P. A.; Zhang, P.-M.

    2017-09-01

    The well-known 5-parameter isometry group of plane gravitational waves in 4 dimensions is identified as Lévy-Leblond’s Carroll group in 2+1 dimensions with no rotations. Our clue is that plane waves are Bargmann spaces into which Carroll manifolds can be embedded. We also comment on the scattering of light by a gravitational wave and calculate its electric permittivity considered as an impedance-matched metamaterial.

  7. A Review of Gravitational Waves from Cosmic Domain Walls

    NASA Astrophysics Data System (ADS)

    Saikawa, Ken'ichi

    2017-05-01

    In this contribution, we discuss the cosmological scenario where unstable domain walls are formed in the early universe and their late-time annihilation produces a significant amount of gravitational waves. After describing cosmological constraints on long-lived domain walls, we estimate the typical amplitude and frequency of gravitational waves observed today. We also review possible extensions of the standard model of particle physics that predict the formation of unstable domain walls and can be probed by observation of relic gravitational waves. It is shown that recent results of pulser timing arrays and direct detection experiments partially exclude the relevant parameter space, and that a much wider parameter space can be covered by the next generation of gravitational wave observatories.

  8. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.

  9. Gravitational waves from neutron star binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan

    With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of 2M⊙ neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.

  10. Introducing NINJA: A Gravitation Wave Community Project

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2010-10-01

    A world-wide network of gravitation wave detectors is operational. Fortunately one of the most important sources of gravitational waves, the coalescence of two black holes, is now routinely computed by numerical relativity. The Numerical Injection Analysis Project (NINJA) was formed to study the sensitivity of gravitational-wave analysis pipelines to numerical simulations of waveforms and foster close collaboration between numerical relativists and data analysts. This talk will summarize the results of the first NINJA project and introduce the goals of the second.

  11. High-Frequency Gravitational Wave (HFGW) Generation by Means of X-ray Lasers and Detection by Coupling Linearized GW to EM Fields

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Li, Fang-Yu

    2005-02-01

    An experiment is described for the generation and detection of High-Frequency Gravitational Waves (HFGWs) in the laboratory utilizing a pair of tabletop X-ray lasers for generation and a coupling system of semi-transparent, beam-splitting membranes with a pulsed Gaussian beam passing through a static magnetic field for detection. The laser axes are coplanar, their pulses are synchronized, and they are aligned in exactly opposite directions. They produce equal and opposite impulsive forces at the laser targets. Essentially, the X-ray lasers emulate a double-star orbit. Photons striking a target will produce a jerk (time rate of change of acceleration) and together with a computer controlled logic system will generate a HFGW spike each time the laser pulses are repeated. Specifications are tabulated for several different X-ray lasers. The focus or concentration point of the gravitational radiation generated by the X-ray laser pairs is located at the midpoint between the laser targets. The HFGW detecting system, proposed by Chongqing University, is situated at the HFGW focus. A High-Temperature Superconductor (HTSC) could might possibly concentrate the peak HFGW flux, potentially up to 4.93×1024 Wm-2 (over a very small detection area). Such large HFGW fluxes may be suitable for future aerospace applications.

  12. Gravitational wave background from reheating after hybrid inflation

    SciTech Connect

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-02-15

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm.

  13. Gravitational Wave Astronomy:The High Frequency Window

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Kokkotas, Kostas D.

    As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would (finally) open the long anticipated gravitational-wave window to our Universe, and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Over the next decade we can hope to learn much about the extreme physics associated with, in particular, neutron stars. This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated bread-and-butter source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.

  14. Gravitational wave detection in space

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    Gravitational Wave (GW) detection in space is aimed at low frequency band (100nHz-100mHz) and middle frequency band (100mHz-10Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry (TDI) and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000km to 1.3 × 109km (8.6AU) including (a) Solar orbiting detectors — (ASTROD Astrodynamical Space Test of Relativity using Optical Devices (ASTROD-GW) optimized for GW detection), Big Bang Observer (BBO), DECi-hertz Interferometer GW Observatory (DECIGO), evolved LISA (e-LISA), Laser Interferometer Space Antenna (LISA), other LISA-type detectors such as ALIA, TAIJI etc. (in Earthlike solar orbits), and Super-ASTROD (in Jupiterlike solar orbits); and (b) Earth orbiting detectors — ASTROD-EM/LAGRANGE, GADFLI/GEOGRAWI/g-LISA, OMEGA and TIANQIN.

  15. Particle production in a gravitational wave background

    NASA Astrophysics Data System (ADS)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  16. Hunting for dark particles with gravitational waves

    SciTech Connect

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-10-03

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  17. Hunting for dark particles with gravitational waves

    NASA Astrophysics Data System (ADS)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-10-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  18. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  19. Gravitational Waves: A New Observational Window

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  20. Gravitational Waves: A New Observational Window

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  1. Gravitational Wave Physics with Binary Love Relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2016-03-01

    Gravitational waves from the late inspiral of neutron star binaries encode rich information about their internal structure at supranuclear densities through their tidal deformabilities. However, extracting the individual tidal deformabilities of the components of a binary is challenging with future ground-based gravitational wave interferometers due to degeneracies between them. We overcome this difficulty by finding new, approximate universal relations between the individual tidal deformabilities that depend on the mass ratio of the two stars and are insensitive to their internal structure. Such relations have applications not only to gravitational wave astrophysics, but also to nuclear physics as they improve the measurement accuracy of tidal parameters. Moreover, the relations improve our ability to test extreme gravity and perform cosmology with gravitational waves emitted from neutron star binaries.

  2. LISA: Detecting Gravitational Waves from Space

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2009-01-01

    The laser interferometer space antenna (LISA), a joint NASA/ESA mission, will be the first dedicated gravitational wave detector in space. This presentation will provide a tutorial of the LISA measurement concept.

  3. Gravitational Wave Detection with Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.

    2008-01-23

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. The terrestrial experiment can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment probes the same frequency spectrum as LISA with better strain sensitivity {approx} 10{sup -20}/{radical}Hz. Each configuration compares two widely separated atom interferometers run using common lasers. The effect of the gravitational waves on the propagating laser field produces the main effect in this configuration and enables a large enhancement in the gravitational wave signal while significantly suppressing many backgrounds. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and reduces spacecraft control requirements.

  4. Building a Galactic Scale Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    McLaughlin, Maura

    2016-03-01

    Pulsars are rapidly rotating neutron stars with phenomenal rotational stability that can be used as celestial clocks in a variety of fundamental physics experiences. One of these experiments involves using a pulsar timing array of precisely timed millisecond pulsars to detect perturbations due to gravitational waves. The low frequency gravitational waves detectable through pulsar timing will most likely result from an ensemble of supermassive black hole binaries. I will introduce the efforts of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), a collaboration that monitors over 50 millisecond pulsars with the Green Bank Telescope and the Arecibo Observatory, with a focus on our observation and data analysis methods. I will also describe how NANOGrav has joined international partners through the International Pulsar Timing Array to form a low-frequency gravitational wave detector of unprecedented sensitivity.

  5. Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers

    NASA Astrophysics Data System (ADS)

    Huttner, S. H.; Danilishin, S. L.; Barr, B. W.; Bell, A. S.; Gräf, C.; Hennig, J. S.; Hild, S.; Houston, E. A.; Leavey, S. S.; Pascucci, D.; Sorazu, B.; Spencer, A. P.; Steinlechner, S.; Wright, J. L.; Zhang, T.; Strain, K. A.

    2017-01-01

    Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers.

  6. The Path to Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Barish, Barry

    2017-01-01

    Experimental efforts toward gravitational wave detection began with the innovative resonant bar experiments of Joseph Weber in the 1960s. This technique evolved, but was eventually replaced by the potentially more sensitive suspended mass interferometers. Large scale interferometers, GEO, LIGO and Virgo were funded in 1994. The 22 year history since that time will be discussed, tracing the key technical challenges and solutions that have enabled LIGO to reach the incredible sensitivities where gravitational waves from binary black hole mergers have been observed.

  7. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2017-01-01

    Stellar-remnant black holes (BH) in dense stellar clusters have always drawn attention due to their potential in a number of phenomena, especially the dynamical formation of binary black holes (BBH), which potentially coalesce via gravitational-wave (GW) radiation. This study presents a preliminary set of evolutionary models of compact stellar clusters with initial masses ranging over 1.0 × 104M⊙ - 5.0 × 104M⊙, and half-mass radius of 2 or 1 pc, that is typical for young massive and starburst clusters. They have metallicities between 0.05Z⊙ - Z⊙. Including contemporary schemes for stellar wind and remnant formation, such model clusters are evolved, for the first time, using the state-of-the-art direct N-body evolution program NBODY7, until their dissolution or at least for 10 Gyr. That way, a self-regulatory behaviour in the effects of dynamical interactions among the BHs is demonstrated. In contrast to earlier studies, the BBH coalescences obtained in these models show a prominence in triple-mediated coalescences while being bound to the clusters, compared to those occurring among the BBHs that are dynamically ejected from the clusters. A broader mass spectrum of the BHs and lower escape velocities of the clusters explored here might cause this difference, which is yet to be fully understood. Among the BBH coalescences obtained here, there are ones that resemble the detected GW151226, LVT151012, and GW150914 events and also ones which are even more massive. A preliminary estimate suggests few 10s-100s of BBH coalescences per year, originating due to dynamics in stellar clusters, that can be detected by the LIGO at its design sensitivity.

  8. Time Evolution of Pure Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Miyama, S. M.

    1981-03-01

    Numerical solutions to the Einstein equations in the case of pure gravitational waves are given. The system is assumed to be axially symmetric and non-rotating. The time symmetric initial data and the conformally flat initial data are obtained by solving the constraint equations at t=0. The time evolution of these initial data depends strongly on the initial amplitude of the gravitational waves. In the case of the low initial amplitude, waves only disperse to null infinity. By comparing the initial gravitational energy with the total energy loss through an r=constant surface, it is concluded that the Newman-Penrose method and the Gibbon-Hawking method are the most desirable for measuring the energy flux of gravitational radiation numerically. In the case that the initial ratio of the spatial extent of the gravitational waves to the Schwarzschild radius (M/2) is smaller than about 300, the waves collapse by themselves, leading to formation of a black hole. The analytic solutions of the linearized Einstein equations for the pure gravitational waves are also shown.

  9. Gravitational Wave (GW) science in NINJA collaboration

    NASA Astrophysics Data System (ADS)

    Dayanga, Thilina; Bose, Sukanta

    2010-10-01

    The Numerical INJection Analysis (NINJA) is a collaborative effort between members of the numerical relativity (NR) and GW data analysis communities. The purpose of NINJA project is to test the sensitivity of current gravitational wave searches using numerically generated Binary Black Hole (BBH) waveforms generated by different NR groups. The recent success in NR simulating the merger phase of the BBH coalescence helped NR community to construct more accurate waveforms for the BBH coalescence. NINJA-2 simulated data set was created injecting these full BBH waveforms. We coherently search for BBH signals in NINJA-2 data set using LIGO-VIRGO compact binary coalescence (CBC) multi-detector high-mass search pipeline. We report the efficiency of our search method and this will help us to search BBH signals in real multi-detector data. Coherent search is the optimal search method in Gaussian detector noise and NINJA-2 analysis will helpful to construct alternative methods to search in real data.

  10. Projected constraints on Lorentz-violating gravity with gravitational waves

    NASA Astrophysics Data System (ADS)

    Hansen, Devin; Yunes, Nicolás; Yagi, Kent

    2015-04-01

    Gravitational waves are excellent tools to probe the foundations of general relativity in the strongly dynamical and nonlinear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction and, thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary systems, and also in the generation and chirping of their associated gravitational waves. Here we study whether waves emitted in the late, quasicircular inspiral of nonspinning, neutron star binaries can place competitive constraints on two proxies of gravitational Lorentz violation: Einstein-Æther theory and khronometric gravity. We model the waves in the small-coupling (or decoupling) limit and in the post-Newtonian approximation, by perturbatively solving the field equations in small deformations from general relativity and in the small-velocity or weak-gravity approximation. We assume that a gravitational wave consistent with general relativity has been detected with second- and third-generation, ground-based detectors, and with the proposed space-based mission DECIGO, with and without coincident electromagnetic counterparts. Without a counterpart, a detection consistent with general relativity can only place competitive constraints on gravitational Lorentz violation when using future, third-generation or space-based instruments. On the other hand, a single counterpart is enough to place constraints that are 10 orders of magnitude more stringent than current binary pulsar bounds, even when using second-generation detectors. This is because Lorentz violation forces the group velocity of gravitational waves to be different from that of light, and this difference can be very accurately constrained with coincident observations.

  11. BOOK REVIEW Analysis of Gravitational-Wave Data Analysis of Gravitational-Wave Data

    NASA Astrophysics Data System (ADS)

    Fairhurst, Stephen

    2010-12-01

    The field of gravitational-wave data analysis has expanded greatly over the past decade and significant developments have been made in methods of analyzing the data taken by resonant bar and interferometric detectors, as well as analysis of mock LISA data. This book introduces much of the required theoretical background in gravitational physics, statistics and time series analysis before moving on to a discussion of gravitational-wave data analysis techniques themselves. The book opens with an overview of the theory of gravitational radiation, providing a comprehensive discussion of various introductory topics: linearized gravity, transverse traceless gauge, the effects of gravitational waves (via geodesic deviation), energy and momentum carried by the waves, and generation of gravitational waves. The second chapter provides an introduction to the various sources of gravitational waves, followed by more detailed expositions on some of the primary sources. For example, the description of compact binary coalescence is thorough and includes a brief exposition of the post-Newtonian formalism and the effective one body method. There also follows extended derivations of gravitational waves from distorted neutron stars, supernovae and a stochastic background. Chapter three provides an introduction to the statistical theory of signal detection, including a discussion of parameter estimation via the Fisher matrix formalism. This is presented from a very mathematical, postulate based, standpoint and I expect that even established gravitational-wave data analysts will find the derivations here more formal than they are used to. The discussion of likelihood ratio tests and the importance of prior probabilities are presented particularly clearly. The fourth chapter covers time series analysis, with power spectrum estimation, extraction of periodic signals and goodness of fit tests. Chapter five switches topics and gives the details of the response of gravitational-wave

  12. The Gravitational-Wave Universe seen by Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; International Pulsar Timing Array

    2017-01-01

    Galaxy mergers are a standard aspect of galaxy formation and evolution, and most (likely all) large galaxies contain supermassive black holes. As part of the merging process, the supermassive black holes should in-spiral together and eventually merge, generating a background of gravitational radiation in the nanohertz to microhertz regime. Processes in the early Universe such as relic gravitational waves and cosmic strings may also generate gravitational radiation in the same frequency band. An array of precisely timed pulsars spread across the sky can form a galactic-scale gravitational wave detector in the nanohertz band. I describe the current efforts to develop and extend the pulsar timing array concept, together with recent limits which have emerged from North American and international efforts to constrain astrophysical phenomena at the heart of supermassive black hole mergers.

  13. Strong gravitational lensing of gravitational waves in Einstein Telescope

    SciTech Connect

    Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl

    2013-10-01

    Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.

  14. Gravitational Waves from a Dark Phase Transition.

    PubMed

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  15. Gravitational Waves from a Dark Phase Transition

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro

    2015-10-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU (N ) dark sectors with nf flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  16. How to test gravitation theories by means of gravitational-wave measurements

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1974-01-01

    Gravitational-wave experiments are a potentially powerful tool for testing gravitation theories. Most theories in the literature predict rather different polarization properties for gravitational waves than are predicted by general relativity; and many theories predict anomalies in the propagation speeds of gravitational waves.

  17. How to test gravitation theories by means of gravitational-wave measurements

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1974-01-01

    Gravitational-wave experiments are a potentially powerful tool for testing gravitation theories. Most theories in the literature predict rather different polarization properties for gravitational waves than are predicted by general relativity; and many theories predict anomalies in the propagation speeds of gravitational waves.

  18. Massive gravitons as dark matter and gravitational waves

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Mukohyama, Shinji

    2016-07-01

    We consider the possibility that the massive graviton is a viable candidate for dark matter in the context of bimetric gravity. We first derive the energy-momentum tensor of the massive graviton and show that it indeed behaves as that of dark matter fluid. We then discuss a production mechanism and the present abundance of massive gravitons as dark matter. Since the metric to which ordinary matter fields couple is a linear combination of the two mass eigenstates of bigravity, production of massive gravitons, i.e., the dark matter particles, is inevitably accompanied by generation of massless gravitons, i.e., the gravitational waves. Therefore, in this scenario some information about dark matter in our Universe is encoded in gravitational waves. For instance, if LIGO detects gravitational waves generated by the preheating after inflation, then the massive graviton with the mass of ˜0.01 GeV is a candidate for dark matter.

  19. Revisiting the energy in gravitational waves

    NASA Astrophysics Data System (ADS)

    Qadir, Asghar

    Five years ago, at the Third Joint Italian-Pakistani Workshop on Relativistic Astrophysics, I put forward an argument why gravitational waves would be much more difficult to detect than was supposed. In view of the observation of gravitational waves in 2015, and an earlier claim that they were missing, it is worth looking again at the arguments. Here, I review the basic physical argument and then re-consider the earlier prediction. Following Weber and Wheeler, who had demonstrated the reality of gravitational waves by obtaining the momentum of test particles along their path, there had been more work done in this direction. It is also worthwhile to compare the results from that work with the proposal for the energy in the waves and that will also be mentioned.

  20. Orientational atom interferometers sensitive to gravitational waves

    SciTech Connect

    Lorek, Dennis; Laemmerzahl, Claus; Wicht, Andreas

    2010-02-15

    We present an atom interferometer that differs from common atom interferometers as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom interferometer based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause a frequency shift that scales with the binding energy of the system rather than with its physical dimension. For a gravitational wave amplitude of h=10{sup -23} the frequency shift is of the order of 110 {mu}Hz for an atom interferometer based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current atom interferometers in 1 s.

  1. When will NANOGrav detect gravitational waves?

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2014-01-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav aims to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses. In this talk I will discuss recent progress made toward realistic simulations of our sensitivity to a stochastic background of gravitational waves, as well as new scaling laws for the significance of a stochastic background detection in pulsar timing data. I will show that a detection is possible as early as 2017. I will also discuss the detection of individual sources of continuous waves, and the prospects for determining some of their parameters.

  2. Dynamical tides in coalescing superfluid neutron star binaries with hyperon cores and their detectability with third-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin N.

    2017-09-01

    The dynamical tide in a coalescing neutron star binary induces phase shifts in the gravitational waveform as the orbit sweeps through resonances with individual g-modes. Unlike the phase shift due to the equilibrium tide, the phase shifts due to the dynamical tide are sensitive to the stratification, composition and superfluid state of the core. We extend our previous study of the dynamical tide in superfluid neutron stars by allowing for hyperons in the core. Hyperon gradients give rise to a new type of composition g-mode. Compared to g-modes due to muon-to-electron gradients, those due to hyperon gradients are concentrated much deeper in the core and therefore probe higher density regions. We find that the phase shifts due to resonantly excited hyperonic modes are ∼10-3 rad, an order of magnitude smaller than those due to muonic modes. We show that by stacking events, third-generation gravitational-wave detectors should be able to detect the phase shifts due to muonic modes. Those due to hyperonic modes will, however, be difficult to detect due to their smaller magnitude.

  3. LISA in the gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John; Cornish, Neil

    2015-04-01

    With the expected direct detection of gravitational waves in the second half of this decade by Advanced LIGO and pulsar timing arrays, and with the launch of LISA Pathfinder in the summer of this year, this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. Recently, NASA has decided to join with ESA on the L3 mission as a junior partner. Both agencies formed a committee to advise them on the scientific and technological approaches for a space based gravitational wave observatory. The leading mission design, Evolved LISA or eLISA, is a slightly de-scoped version of the earlier LISA design. This talk will describe activities of the Gravitational Wave Science Interest Group (GWSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG), focusing on LISA technology development in both the U.S. and Europe, including the LISA Pathfinder mission.

  4. Relic gravitational waves from quintessential inflation

    NASA Astrophysics Data System (ADS)

    Ahmad, Safia; Myrzakulov, R.; Sami, M.

    2017-09-01

    We study relic gravitational waves in the paradigm of quintessential inflation. In this framework, irrespective of the underlying model, inflation is followed by the kinetic regime. Thereafter, the field energy density remains subdominant before the onset of acceleration. We carry out model-independent analysis to obtain the temperature at the end of inflation and the estimate for the upper bound on the Hubble parameter to circumvent the problem due to relic gravitational waves. In this process, we use Planck 2015 data to constrain the inflationary phase. We demonstrate that the required temperature can be produced by the mechanism of instant preheating. The generic feature of the scenario includes the presence of the kinetic regime after inflation, which results in the blue spectrum of gravitational wave background at high frequencies. We discuss the prospects of detection of relic gravitational wave background in the advanced LIGO and LISA space-born gravitational wave missions. Finally, we consider a concrete model to realize the paradigm of quintessential inflation and show that inflationary as well as postinflationary evolution can be successfully described by the inflaton potential, V (ϕ )∝Exp (-λ ϕn/MPln)(n >1 ) , by suitably constraining the parameters of the model.

  5. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  6. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  7. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    PubMed

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  8. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals

    NASA Astrophysics Data System (ADS)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-01

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 1 04 s . This uncertainty can be suppressed by a factor of ˜1 010, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ -ray bursts and fast radio bursts.

  9. The Scientific Potential of Space-Based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.

    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 104-107M_{⊙}, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by millions of ultra-compact binaries in the Milky Way, providing a new way to probe galactic stellar populations. ESA has recognised this great scientific potential by selecting The Gravitational Universe as its theme for the L3 large satellite mission, scheduled for launch in ˜ 2034. In this article we will review the likely sources for millihertz gravitational wave detectors and describe the wide applications that observations of these sources could have for astrophysics, cosmology and fundamental physics.

  10. Space-borne gravitational wave observatories

    NASA Astrophysics Data System (ADS)

    Vitale, Stefano

    2014-05-01

    The paper describes the progress toward a space-borne gravitational wave observatory and its foreseeable science potential. In particular the paper describes the status of the LISA-like mission called eLISA, the reference mission for the Gravitational Universe theme adopted by ESA for its Large mission L3, and the status of its precursor LISA Pathfinder, due to launch in 2015.

  11. Gravitational waves from the cosmological QCD transition

    NASA Astrophysics Data System (ADS)

    Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.

    2014-09-01

    We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.

  12. Exploring Gravitational Waves in the Classroom

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, Kevin M.; Peruta, Carolyn; Simonnet, Aurore

    2016-04-01

    On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first confirmed gravitational wave signals. Now known as GW150914 (for the date on which the signals were received), the event represents the coalescence of two black holes that were previously in mutual orbit. LIGO’s exciting discovery provides direct evidence of what is arguably the last major unconfirmed prediction of Einstein’s General Theory of Relativity. The Education and Public Outreach group at Sonoma State University has created an educator's guide that provides a brief introduction to LIGO and to gravitational waves, along with two simple demonstration activities that can be done in the classroom to engage students in understanding LIGO’s discovery. Additional resources have also been provided to extend student explorations of Einstein’s Universe.

  13. Embedding nonrelativistic physics inside a gravitational wave

    NASA Astrophysics Data System (ADS)

    Bekaert, Xavier; Morand, Kevin

    2013-09-01

    Gravitational waves with parallel rays are known to have remarkable properties: their orbit space of null rays possesses the structure of a nonrelativistic spacetime of codimension-1. Their geodesics are in one-to-one correspondence with dynamical trajectories of a nonrelativistic system. Similarly, the null dimensional reduction of Klein-Gordon’s equation on this class of gravitational waves leads to a Schrödinger equation on curved space. These properties are generalized to the class of gravitational waves with a null Killing vector field, of which we propose a new geometric definition, as conformally equivalent to the previous class and such that the Killing vector field is preserved. This definition is instrumental for performing this generalization, as well as various applications. In particular, results on geodesic completeness are extended in a similar way. Moreover, the classification of the subclass with constant scalar invariants is investigated.

  14. Gravitational waves in doubly coupled bigravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine; Noller, Johannes

    2017-07-01

    We consider gravitational waves from the point of view of both their production and their propagation in doubly coupled bigravity in the metric formalism. In bigravity, the two gravitons are coupled by a nondiagonal mass matrix and show birefrigence. In particular, we find that one of the two gravitons propagates with a speed which differs from one. This deviation is tightly constrained by both the gravitational Cerenkov effect and the energy loss of binary pulsars. When emitted from astrophysical sources, the Jordan frame gravitational wave, which is a linear combination of the two propagating gravitons, has a wave form displaying beats. The best prospect of detecting this phenomenon would come from nano-Hertz interferometric experiments.

  15. Signatures of extra dimensions in gravitational waves

    NASA Astrophysics Data System (ADS)

    Andriot, David; Lucena Gómez, Gustavo

    2017-06-01

    Considering gravitational waves propagating on the most general 4+N-dimensional space-time, we investigate the effects due to the N extra dimensions on the four-dimensional waves. All wave equations are derived in general and discussed. On Minkowski4 times an arbitrary Ricci-flat compact manifold, we find: a massless wave with an additional polarization, the breathing mode, and extra waves with high frequencies fixed by Kaluza-Klein masses. We discuss whether these two effects could be observed.

  16. Hearing the signal of dark sectors with gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Jaeckel, Joerg; Khoze, Valentin V.; Spannowsky, Michael

    2016-11-01

    Motivated by advanced LIGO (aLIGO)'s recent discovery of gravitational waves, we discuss signatures of new physics that could be seen at ground- and space-based interferometers. We show that a first-order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both bubble and domain-wall scenarios are sourced by semiclassical configurations of a dark new physics sector. In the first case, the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain-wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.

  17. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking.

    PubMed

    Armstrong, J W

    2006-01-01

    This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (∼millihertz) gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity 2Δv/c = Δν/ν0, where Δν is the Doppler shift and ν0 is the radio link carrier frequency. A gravitational wave having strain amplitude h incident on the earth-spacecraft system causes perturbations of order h in the time series of Δν/ν0. Unlike other detectors, the ∼ 1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series), some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  18. Stochastic background of gravitational waves from hybrid preheating.

    PubMed

    García-Bellido, Juan; Figueroa, Daniel G

    2007-02-09

    The process of reheating the Universe after hybrid inflation is extremely violent. It proceeds through the nucleation and subsequent collision of large concentrations of energy density in bubblelike structures, which generate a significant fraction of energy in the form of gravitational waves. We study the power spectrum of the stochastic background of gravitational waves produced at reheating after hybrid inflation. We find that the amplitude could be significant for high-scale models, although the typical frequencies are well beyond what could be reached by planned gravitational wave observatories. On the other hand, low-scale models could still produce a detectable stochastic background at frequencies accessible to those detectors. The discovery of such a background would open a new window into the very early Universe.

  19. Stochastic gravitational wave background from cold dark matter halos

    SciTech Connect

    Carbone, Carmelita; Baccigalupi, Carlo; Matarrese, Sabino

    2006-03-15

    The current knowledge of cosmological structure formation suggests that Cold Dark Matter (CDM) halos possess a nonspherical density profile, implying that cosmic structures can be potential sources of gravitational waves via power transfer from scalar perturbations to tensor metric modes in the nonlinear regime. By means of a previously developed mathematical formalism and a triaxial collapse model, we numerically estimate the stochastic gravitational-wave background generated by CDM halos during the fully nonlinear stage of their evolution. Our results suggest that the energy density associated with this background is comparable to that produced by primordial tensor modes at frequencies {nu}{approx_equal}10{sup -18}-10{sup -17} Hz if the energy scale of inflation is V{sup 1/4}{approx_equal}1-2x10{sup 15} GeV, and that these gravitational waves could give rise to several cosmological effects, including secondary CMB anisotropy and polarization.

  20. LISA Pathfinder: First steps to observing gravitational waves from space

    NASA Astrophysics Data System (ADS)

    LISA Pathfinder Collaboration

    2017-05-01

    LISA Pathfinder, the European Space Agency’s technology demonstrator mission for future spaceborne gravitational wave observatories, was launched on 3 December 2015, from the European space port of Kourou, French Guiana. After a short duration transfer to the final science orbit, the mission has been gathering science data since. This data has allowed the science community to validate the critical technologies and measurement principle for low frequency gravitational wave detection and thereby confirming the readiness to start the next generation gravitational wave observatories, such as LISA. This paper will briefly describe the mission, followed by a description of the science operations highlighting the performance achieved. Details of the various experiments performed during the nominal science operations phase can be found in accompanying papers in this volume.

  1. Gravitational waves induced by spinor fields

    NASA Astrophysics Data System (ADS)

    Feng, Kaixi; Piao, Yun-Song

    2015-07-01

    In realistic model building, spinor fields with various masses are present. During inflation, a spinor field may induce gravitational waves as a second order effect. In this paper, we calculate the contribution of a single massive spinor field to the power spectrum of primordial gravitational wave by using a retarded Green propagator. We find that the correction is scale invariant and of order H4/MP4 for arbitrary spinor mass mψ. Additionally, we also observe that when mψ≳H , the dependence of correction on mψ/H is nontrivial.

  2. Gravitational Waves and Multi-Messenger Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  3. Gravitational waves in a de Sitter universe

    NASA Astrophysics Data System (ADS)

    Bishop, Nigel T.

    2016-02-01

    The construction of exact linearized solutions to the Einstein equations within the Bondi-Sachs formalism is extended to the case of linearization about de Sitter spacetime. The gravitational wave field measured by distant observers is constructed, leading to a determination of the energy measured by such observers. It is found that gravitational wave energy conservation does not normally apply to inertial observers but that it can be formulated for a class of accelerated observers, i.e., with worldlines that are timelike but not geodesic.

  4. The memory effect for plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-09-01

    We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.

  5. Gravitational Wave Detection: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Saulson, Peter

    2015-04-01

    The search for gravitational waves began at the Chapel Hill Conference in January 1957, and will reach a successful conclusion at a set of observatories around the globe about sixty years later. This talk will review the history of the early thought experiments, the program of resonant mass detectors (``Weber bars''), and the development of the large interferometric detectors like Advanced LIGO and Advanced Virgo that are, it is hoped, about to make the first detections of gravitational wave signals. I am pleased to acknowledge the support of the National Science Foundation for my research, most recently under NSF Grant PHY-1205835.

  6. Hough transform search for continuous gravitational waves

    SciTech Connect

    Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano

    2004-10-15

    This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities.

  7. Toward loop quantization of plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Hinterleitner, Franz; Major, Seth

    2012-03-01

    The polarized Gowdy model in terms of Ashtekar-Barbero variables is reduced with an additional constraint derived from the Killing equations for plane gravitational waves with parallel rays. The new constraint is formulated in a diffeomorphism invariant manner and, when it is included in the model, the resulting constraint algebra is first class, in contrast to the prior work done in special coordinates. Using an earlier work by Banerjee and Date, the constraints are expressed in terms of classical quantities that have an operator equivalent in loop quantum gravity, making these plane gravitational wave spacetimes accessible to loop quantization techniques.

  8. Gravitational Wave Tests of General Relativity with Future Detectors

    NASA Astrophysics Data System (ADS)

    Chamberlain, Katie; Yunes, Nicolas

    2017-01-01

    Gravitational Wave detections with aLIGO have given us unrivalled insight into the extreme gravity regime, in which the gravitational field is strong and dynamical, but where will these types of detections be in 20 years? In this talk, we will explore how the construction of future generations of gravitational wave detectors influences our ability to test General Relativity in extreme gravity. In particular, using the noise spectra for aLIGO, A+, Voyager, CE, and ET-B, as well as the eLISA configurations N2A1, N2A2, and N2A5, we will compare the constraints that eLISA will provide to those that future generations of aLIGO will provide. These studies should produce useful information about instrument design to help guide design of future detectors for tests of gravity. Supported by the Montana Space Grant Consortium.

  9. Environmental Effects for Gravitational-wave Astrophysics

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-05-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.

  10. Gravitational waves in ghost free bimetric gravity

    SciTech Connect

    Mohseni, Morteza

    2012-11-01

    We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extension of the theory admits similar solutions but in general is plagued with ghost instabilities.

  11. Gravitational Wave Detection in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2017-05-01

    A long time ago in a galaxy far, far away, two black holes, one of mass 36 solar masses and the other of mass 29 solar masses, were dancing their death waltz, leading to their coalescence and the emission of gravitational waves carrying away with them three solar masses of energy. More precisely, it happened 1.3 billion years ago at a distance of 410 Mpc. When the waves were emitted, the most complex life forms on Earth were eukaryotes. As the gravitational waves propagated toward Earth, it changed much. Five hundred million years after the waves were emitted, or 800 million years ago, the first multicellular life forms emerged on Earth. Earth saw the Cambrian explosion 500 million years ago. Sixty-six million years ago the Cretaceous-Paleogene extinction event caused the disappearance of the dinosaurs. The first modern humans appeared 250,000 years ago.

  12. Space Based Gravitational Wave Observatories (SGOs)

    NASA Technical Reports Server (NTRS)

    Livas, Jeff

    2014-01-01

    Space-based Gravitational-wave Observatories (SGOs) will enable the systematic study of the frequency band from 0.0001 - 1 Hz of gravitational waves, where a rich array of astrophysical sources is expected. ESA has selected The Gravitational Universe as the science theme for the L3 mission opportunity with a nominal launch date in 2034. This will be at a minimum 15 years after ground-based detectors and pulsar timing arrays announce their first detections and at least 18 years after the LISA Pathfinder Mission will have demonstrated key technologies in a dedicated space mission. It is therefore important to develop mission concepts that can take advantage of the momentum in the field and the investment in both technology development and a precision measurement community on a more near-term timescale than the L3 opportunity. This talk will discuss a mission concept based on the LISA baseline that resulted from a recent mission architecture study.

  13. Gravitational waves from primordial black hole mergers

    NASA Astrophysics Data System (ADS)

    Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi

    2017-09-01

    We study the production of primordial black hole (PBH) binaries and the resulting merger rate, accounting for an extended PBH mass function and the possibility of a clustered spatial distribution. Under the hypothesis that the gravitational wave events observed by LIGO were caused by PBH mergers, we show that it is possible to satisfy all present constraints on the PBH abundance, and find the viable parameter range for the lognormal PBH mass function. The non-observation of a gravitational wave background allows us to derive constraints on the fraction of dark matter in PBHs, which are stronger than any other current constraint in the PBH mass range 0.5‑30Msolar. We show that the predicted gravitational wave background can be observed by the coming runs of LIGO, and its non-observation would indicate that the observed events are not of primordial origin. As the PBH mergers convert matter into radiation, they may have interesting cosmological implications, for example in the context of relieving the tension between high and low redshift measurements of the Hubble constant. However, we find that these effects are suppressed as, after recombination, no more that 1% of dark matter can be converted into gravitational waves.

  14. Quantum nondemolition measurements. [by gravitational wave antennas

    NASA Technical Reports Server (NTRS)

    Braginskii, V. B.; Vorontsov, Iu. I.; Thorne, K. S.

    1980-01-01

    The article describes new electronic techniques required for quantum nondemolition measurements and the theory underlying them. Consideration is given to resonant-bar gravitational-wave antennas. Position measurements are discussed along with energy measurements and back-action-evading measurements. Thermal noise in oscillators and amplifiers is outlined. Prospects for stroboscopic measurements are emphasized.

  15. Observing gravitational waves with a single detector

    NASA Astrophysics Data System (ADS)

    Callister, T. A.; Kanner, J. B.; Massinger, T. J.; Dhurandhar, S.; Weinstein, A. J.

    2017-08-01

    A major challenge of any search for gravitational waves is to distinguish true astrophysical signals from those of terrestrial origin. Gravitational-wave experiments therefore make use of multiple detectors, considering only those signals which appear in coincidence in two or more instruments. It is unclear, however, how to interpret loud gravitational-wave candidates observed when only one detector is operational. In this paper, we demonstrate that the observed rate of binary black hole mergers can be leveraged in order to make confident detections of gravitational-wave signals with one detector alone. We quantify detection confidences in terms of the probability P(S) that a signal candidate is of astrophysical origin. We find that, at current levels of instrumental sensitivity, loud binary black hole candidates observed with a single Advanced LIGO detector can be assigned P(S)≳0.4 . In the future, Advanced LIGO may be able to observe binary black hole mergers with single-detector confidences exceeding P(S)∼90% .

  16. Insights into the gravitational wave memory effect

    NASA Astrophysics Data System (ADS)

    Bieri, Lydia

    2017-01-01

    A major breakthrough of General Relativity (GR) happened in 2015 with LIGO's first detection of gravitational waves. Typical sources for gravitational radiation are mergers of binary black holes, binary neutron stars and core-collapse supernovae. In these processes mass and momenta are radiated away in form of gravitational waves. GR predicts that these waves leave a footprint in the spacetime, that is they change the spacetime permanently, which results in a permanent displacement of test masses. This effect is called the memory. In this talk, I will explore the gravitational wave memory. We will see that there are two types of memory, one going back to Ya. B. Zel'dovich and A. G. Polnarev and one to D. Christodoulou. Then I will discuss recent work including my collaboration with D. Garfinkle, S.-T. Yau, P. Chen, focusing on how neutrinos or electromagnetic fields contribute to the memory effect, and work with D. Garfinkle and N. Yunes on cosmological memory. The author thanks NSF for support by grant DMS-1253149 to The University of Michigan.

  17. Searching for gravitational waves from neutron stars

    NASA Astrophysics Data System (ADS)

    Idrisy, Ashikuzzaman

    generate the parameter space of a GW search so as to cover the largest physical range of parameters, while keeping the search computationally feasible. Finally we discuss the time-domain solar system barycentered resampling algorithm as a way to improve to the computational cost of the analysis. In Chapter 4 we discuss a search for GWs from two supernova remnants, G65.7 and G330.2. The searches were conducted using data from the 6th science run of the LIGO detectors. Since the searches were modeled on the Cassiopeia A search paper, Abadie et. al. [Astrophys. J. 722,1504--1513, 2010], we also used the frequency and the first and second derivatives of the frequency as the parameter space of the search. There are two main differences from the previous search. The first is the use of the resampling algorithm, which sped up the calculation of the F-statistic by a factor of 3 and thus allowed for longer stretches of data to be coherently integrated. Being able to integrate more data meant that we could beat the indirect limit on GWs expected from these sources. We used a 51 day integration time for G65.7 and 24 days for G330.2. The second difference is that the analysis pipeline is now more automated. This allows for a more efficient data analysis process. We did not find a credible source of GWs and so we placed upper limits on the gravitational wave strain, ellipticity, and r-mode amplitude of the sources. The best upper-limit for the strain was 3.0 x 10 -25, for ellipticity it was 7.0 x 10-6 and for r-mode amplitude it was 2.2 x 10-4 .

  18. Chiral primordial gravitational waves from a Lifshitz point.

    PubMed

    Takahashi, Tomohiro; Soda, Jiro

    2009-06-12

    We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.

  19. Strong gravitation waves in terms of Maurer-Cartan forms

    SciTech Connect

    Arbuzov, A. B.; Barbashov, B. M.; Pervushin, V. N.; Borowiec, A.; Zakharov, A. F.

    2011-06-15

    Strong gravitation plane waves are represented in terms of the Maurer-Cartan spin connection coefficients in cosmological background. It was shown that the diffeo-invariance of spin connection coefficients leaves only one degree of freedom of the strong gravitation plane waves in contrast to the metric approach, where gravitation waves have two degrees of freedom like photons in QED. The Hilbert action of gravitation waves in terms of spin connection coefficients takes the form of a bilinear field theory.

  20. First detections of gravitational waves from binary black holes

    NASA Astrophysics Data System (ADS)

    Bejger, Michał

    2017-07-01

    Recent direct detections of gravitational waves from coalescing binary black holes systems herald a new era in the observational astronomy, as well as in experimental verifications of the theories of gravity. I will present the principles of detection of gravitational waves, current state-of-art laser interferometric detectors (Advanced LIGO and Advanced Virgo), and the most promising astrophysical sources of gravitational waves.

  1. Physical response of light-time gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Koop, Michael J.; Finn, Lee Samuel

    2014-09-01

    Gravitational wave detectors are typically described as responding to gravitational wave metric perturbations, which are gauge-dependent and—correspondingly—unphysical quantities. This is particularly true for ground-based interferometric detectors, like LIGO, space-based detectors, like LISA and its derivatives, spacecraft Doppler tracking detectors, and pulsar timing array detectors. The description of gravitational waves, and a gravitational wave detector's response, to the unphysical metric perturbation has lead to a proliferation of false analogies and descriptions regarding how these detectors function, and true misunderstandings of the physical character of gravitational waves. Here we provide a fully physical and gauge-invariant description of the response of a wide class of gravitational wave detectors in terms of the Riemann curvature, the physical quantity that describes gravitational phenomena in general relativity. In the limit of high frequency gravitational waves, the Riemann curvature separates into two independent gauge-invariant quantities: a "background" curvature contribution and a "wave" curvature contribution. In this limit the gravitational wave contribution to the detector response reduces to an integral of the gravitational wave contribution of the curvature along the unperturbed photon path between components of the detector. The description presented here provides an unambiguous physical description of what a gravitational wave detector measures and how it operates, a simple means of computing corrections to a detectors response owing to general detector motion, a straightforward way of connecting the results of numerical relativity simulations to gravitational wave detection, and a basis for a general and fully relativistic pulsar timing formula.

  2. Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation

    NASA Astrophysics Data System (ADS)

    Obata, Ippei; Soda, Jiro; CLEO Collaboration

    2016-06-01

    We study inflation driven by a dilaton and an axion, both of which are coupled to a SU(2) gauge field. We find that the inflation driven by the dilaton occurs in the early stage of inflation during which the gauge field grows due to the gauge-kinetic function. When the energy density of magnetic fields catches up with that of electric fields, chromonatural inflation takes over in the late stage of inflation, which we call delayed chromonatural inflation. Thus, the delayed chromonatural inflation driven by the axion and the gauge field is induced by the dilaton. The interesting outcome of the model is the generation of chiral primordial gravitational waves on small scales. Since the gauge field is inert in the early stage of inflation, it is viable in contrast to the conventional chromonatural inflation. We find the parameter region where chiral gravitational waves are generated in a frequency range higher than nHz, which are potentially detectable in future gravitational wave interferometers and pulsar-timing arrays such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), evolved Laser Interferometer Space Antenna (eLISA), and Square Kilometer Array (SKA).

  3. The gravitational wave spectrum from cosmological B-L breaking

    SciTech Connect

    Buchmüller, W.; Domcke, V.; Kamada, K.; Schmitz, K. E-mail: valerie.domcke@desy.de E-mail: kai.schmitz@ipmu.jp

    2013-10-01

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω{sub GW}h{sup 2} ∼ 10{sup −13}–10{sup −8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO, ET, BBO and DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  4. The gravitational wave spectrum from cosmological B-L breaking

    NASA Astrophysics Data System (ADS)

    Buchmüller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2013-10-01

    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying ΩGWh2 ~ 10-13-10-8, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO, ET, BBO and DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  5. Gravitational Wave Detection by Interferometry (Ground and Space).

    PubMed

    Pitkin, Matthew; Reid, Stuart; Rowan, Sheila; Hough, Jim

    2011-01-01

    Significant progress has been made in recent years on the development of gravitational-wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational-wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free spacecraft. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with the significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational-wave detectors, such as the Einstein Telescope (ET), will be discussed.

  6. f( R) gravity constraints from gravitational waves

    NASA Astrophysics Data System (ADS)

    Vainio, Jaakko; Vilja, Iiro

    2017-08-01

    The recent LIGO observation sparked interest in the field of gravitational wave signals. Besides the gravitational wave observation the LIGO collaboration used the inspiraling black hole pair to constrain the graviton mass. Unlike general relativity, f( R) theories have a characteristic non-zero mass graviton. We apply this constraint on the graviton mass to viable f( R) models in order to find the effects on model parameters. We find it possible to constrain the parameter space with these gravity wave based observations. We consider the popular Hu-Sawicki model as a case study and find an appropriate parameter bracket. The result generalizes to other f( R) theories and can be used to constrain the parameter space.

  7. New window into stochastic gravitational wave background.

    PubMed

    Rotti, Aditya; Souradeep, Tarun

    2012-11-30

    A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We correct the results provided in existing literature for modifications to the CMB polarization power spectra due to lensing by gravitational waves. Weak lensing by gravitational waves distorts all four CMB power spectra; however, its effect is most striking in the mixing of power between the E mode and B mode of CMB polarization. This suggests the possibility of using measurements of the CMB angular power spectra to constrain the energy density (Ω(GW)) of the SGWB. Using current data sets (QUAD, WMAP, and ACT), we find that the most stringent constraints on the present Ω(GW) come from measurements of the angular power spectra of CMB temperature anisotropies. In the near future, more stringent bounds on Ω(GW) can be expected with improved upper limits on the B modes of CMB polarization. Any detection of B modes of CMB polarization above the expected signal from large scale structure lensing could be a signal for a SGWB.

  8. Identifying the inflaton with primordial gravitational waves.

    PubMed

    Easson, Damien A; Powell, Brian A

    2011-05-13

    We explore the ability of experimental physics to uncover the underlying structure of the gravitational Lagrangian describing inflation. While the observable degeneracy of the inflationary parameter space is large, future measurements of observables beyond the adiabatic and tensor two-point functions, such as non-gaussianity or isocurvature modes, might reduce this degeneracy. We show that, even in the absence of such observables, the range of possible inflaton potentials can be reduced with a precision measurement of the tensor spectral index, as might be possible with a direct detection of primordial gravitational waves.

  9. Quantum metrology for gravitational wave astronomy.

    PubMed

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  10. Standing gravitational waves from domain walls

    SciTech Connect

    Gogberashvili, Merab; Myrzakul, Shynaray; Singleton, Douglas

    2009-07-15

    We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.

  11. Implications of the gravitational wave event GW150914

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman

    2016-07-01

    The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two ˜30 M_⊙ black holes at a distance of {˜ }400 Mpc. This event has facilitated qualitatively new tests of gravitational theories, and has also produced exciting information about the astrophysical origin of black hole binaries. In this review we discuss the implications of this event for gravitational physics and astrophysics, as well as the expectations for future detections. In brief: (1) because the spins of the black holes could not be measured accurately and because mergers are not well calculated for modified theories of gravity, the current analysis of GW150914 does not place strong constraints on gravity variants that change only the generation of gravitational waves, but (2) it does strongly constrain alterations of the propagation of gravitational waves and alternatives to black holes. Finally, (3) many astrophysical models for the origin of heavy black hole binaries such as the GW150914 system are in play, but a reasonably robust conclusion that was reached even prior to the detection is that the environment of such systems needs to have a relatively low abundance of elements heavier than helium.

  12. Superconducting Antenna Concept for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Gulian, A.; Foreman, J.; Nikoghosyan, V.; Nussinov, S.; Sica, L.; Tollaksen, J.

    The most advanced contemporary efforts and concepts for registering gravitational waves are focused on measuring tiny deviations in large arm (kilometers in case of LIGO and thousands of kilometers in case of LISA) interferometers via photons. In this report we discuss a concept for the detection of gravitational waves using an antenna comprised of superconducting electrons (Cooper pairs) moving in an ionic lattice. The major challenge in this approach is that the tidal action of the gravitational waves is extremely weak compared with electromagnetic forces. Any motion caused by gravitational waves, which violates charge neutrality, will be impeded by Coulomb forces acting on the charge carriers (Coulomb blockade) in metals, as well as in superconductors. We discuss a design, which avoids the effects of Coulomb blockade. It exploits two different superconducting materials used in a form of thin wires -"spaghetti." The spaghetti will have a diameter comparable to the London penetration depth, and length of about 1-10 meters. To achieve competitive sensitivity, the antenna would require billions of spaghettis, which calls for a challenging manufacturing technology. If successfully materialized, the response of the antenna to the known highly periodic sources of gravitational radiation, such as the Pulsar in Crab Nebula will result in an output current, detectable by superconducting electronics. The antenna will require deep (0.3K) cryogenic cooling and magnetic shielding. This design may be a viable successor to LISA and LIGO concepts, having the prospect of higher sensitivity, much smaller size and directional selectivity. This concept of compact antenna may benefit also terrestrial gradiometry.

  13. Michelson geostationary gravitational wave observatory.

    NASA Astrophysics Data System (ADS)

    Anderson, A. J.

    Studies made during the previous year are outlined. These studies have indicated that a Michelson mm wave interferometer observatory (MGO) operating in geostationary orbit is the best configuration satisfying both current operational and design constraints. It is proposed to study the design of this space laboratory interferometer and to study the inclusion of an inertial transponder in this design.

  14. Gravitational wave searches using the DSN (Deep Space Network)

    NASA Technical Reports Server (NTRS)

    Nelson, S. J.; Armstrong, J. W.

    1988-01-01

    The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed.

  15. Dynamics of laser interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Rakhmanov, Malik

    2000-11-01

    Dynamics of fields and mirrors in the new laser interferometric gravitational wave detectors is described. The dynamics of fields is formulated in terms of difference equations, which take into account the large delay due to the light transit time in the interferometer arm cavities. Solutions of these field equations are found in both transient and steady-state regimes. The solutions for fields in the transient regime can be used for the measurement of the parameters of Fabry-Perot cavities. The solutions for fields in the steady-state regime can be used for the analysis of noise performance of Fabry-Perot cavities. The dynamics of the mirrors is described in terms of two normal coordinates: the cavity length and its center of mass. Such dynamics is strongly affected by the radiation pressure of light circulating in the cavity. The forces of radiation pressure are nonlinear and nonconservative. These two effects introduce instabilities and give rise to a violation of conservation of energy for the motion of the suspended mirrors. Analytical calculations and numerical simulations of the dynamics are done with applications to the Laser Interferometer Gravitational-Wave Observatory (LIGO). The dynamics of signal recycling and power recycling interferometers is analyzed using the field equations. The response of the interferometers to the input laser field and motion of its mirrors is calculated. Several basic transfer functions are found. These correspond to either a single or a nested cavity. A nested cavity appears either in the dynamics of the differential mode in signal recycling interferometers or in the dynamics of the common mode of power recycling interferometers. The poles of transfer functions of these nested cavities are found. The response of the interferometers to gravitational waves is described: the analysis is done in the rest frame of a local observer which is a natural coordinate system of the detector. This response is given by the interferometer

  16. Response of interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel

    2009-01-01

    The derivation of the response function of an interferometric gravitational wave detector is a paradigmatic calculation in the field of gravitational wave detection. Surprisingly, the standard derivation of the response wave detectors makes several unjustifiable assumptions, both conceptual and quantitative, regarding the coordinate trajectory and coordinate velocity of the null geodesic the light travels along. These errors, which appear to have remained unrecognized for at least 35 years, render the standard derivation inadequate and misleading as an archetype calculation. Here we identify the flaws in the existing derivation and provide, in full detail, a correct derivation of the response of a single-bounce Michelson interferometer to gravitational waves, following a procedure that will always yield correct results; compare it to the standard, but incorrect, derivation; show where the earlier mistakes were made; and identify the general conditions under which the standard derivation will yield correct results. By a fortuitous set of circumstances, not generally so, the final result is the same in the case of Minkowski background spacetime, synchronous coordinates, transverse-traceless gauge metric perturbations, and arm mirrors at coordinate rest.

  17. Breaking a dark degeneracy with gravitational waves

    SciTech Connect

    Lombriser, Lucas; Taylor, Andy E-mail: ant@roe.ac.uk

    2016-03-01

    We identify a scalar-tensor model embedded in the Horndeski action whose cosmological background and linear scalar fluctuations are degenerate with the concordance cosmology. The model admits a self-accelerated background expansion at late times that is stable against perturbations with a sound speed attributed to the new field that is equal to the speed of light. While degenerate in scalar fluctuations, self-acceleration of the model implies a present cosmological tensor mode propagation at ∼<95 % of the speed of light with a damping of the wave amplitude that is ∼>5 % less efficient than in general relativity. We show that these discrepancies are endemic to self-accelerated Horndeski theories with degenerate large-scale structure and are tested with measurements of gravitational waves emitted by events at cosmological distances. Hence, gravitational-wave cosmology breaks the dark degeneracy in observations of the large-scale structure between two fundamentally different explanations of cosmic acceleration—a cosmological constant and a scalar-tensor modification of gravity. The gravitational wave event GW150914 recently detected with the aLIGO instruments and its potential association with a weak short gamma-ray burst observed with the Fermi GBM experiment may have provided this crucial measurement.

  18. Pseudospectral method for gravitational wave collapse

    NASA Astrophysics Data System (ADS)

    Hilditch, David; Weyhausen, Andreas; Brügmann, Bernd

    2016-03-01

    We present a new pseudospectral code, bamps, for numerical relativity written with the evolution of collapsing gravitational waves in mind. We employ the first-order generalized harmonic gauge formulation. The relevant theory is reviewed, and the numerical method is critically examined and specialized for the task at hand. In particular, we investigate formulation parameters—gauge- and constraint-preserving boundary conditions well suited to nonvanishing gauge source functions. Different types of axisymmetric twist-free moment-of-time-symmetry gravitational wave initial data are discussed. A treatment of the axisymmetric apparent horizon condition is presented with careful attention to regularity on axis. Our apparent horizon finder is then evaluated in a number of test cases. Moving on to evolutions, we investigate modifications to the generalized harmonic gauge constraint damping scheme to improve conservation in the strong-field regime. We demonstrate strong-scaling of our pseudospectral penalty code. We employ the Cartoon method to efficiently evolve axisymmetric data in our 3 +1 -dimensional code. We perform test evolutions of the Schwarzschild spacetime perturbed by gravitational waves and by gauge pulses, both to demonstrate the use of our black-hole excision scheme and for comparison with earlier results. Finally, numerical evolutions of supercritical Brill waves are presented to demonstrate durability of the excision scheme for the dynamical formation of a black hole.

  19. Response of interferometric gravitational wave detectors

    SciTech Connect

    Finn, Lee Samuel

    2009-01-15

    The derivation of the response function of an interferometric gravitational wave detector is a paradigmatic calculation in the field of gravitational wave detection. Surprisingly, the standard derivation of the response wave detectors makes several unjustifiable assumptions, both conceptual and quantitative, regarding the coordinate trajectory and coordinate velocity of the null geodesic the light travels along. These errors, which appear to have remained unrecognized for at least 35 years, render the standard derivation inadequate and misleading as an archetype calculation. Here we identify the flaws in the existing derivation and provide, in full detail, a correct derivation of the response of a single-bounce Michelson interferometer to gravitational waves, following a procedure that will always yield correct results; compare it to the standard, but incorrect, derivation; show where the earlier mistakes were made; and identify the general conditions under which the standard derivation will yield correct results. By a fortuitous set of circumstances, not generally so, the final result is the same in the case of Minkowski background spacetime, synchronous coordinates, transverse-traceless gauge metric perturbations, and arm mirrors at coordinate rest.

  20. Gravitational wave astronomy with radio galaxy surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise

    2017-07-01

    In the next decade, new astrophysical instruments will deliver the first large-scale maps of gravitational waves (GWs) and radio sources. Therefore, it is timely to investigate the possibility to combine them to provide new and complementary ways to study the Universe. Using simulated catalogues appropriate to the planned surveys, it is possible to predict measurements of the cross-correlation between radio sources and GW maps and the effects of a stochastic GW background on galaxy maps. Effects of GWs on the large-scale structure (LSS) of the Universe can be used to investigate the nature of the progenitors of merging black holes, the validity of Einstein's general relativity, models for dark energy and detect a stochastic background of GW. The results obtained show that the galaxy-GW cross-correlation can provide useful information in the near future, while the detection of tensor perturbation effects on the LSS will require instruments with capabilities beyond the currently planned next generation of radio arrays. Nevertheless, any information from the combination of galaxy surveys with the GW maps will help provide additional information for the newly born GW astronomy.

  1. Gravitational Wave Emulation Using Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Doctor, Zoheyr; Farr, Ben; Holz, Daniel

    2017-01-01

    Parameter estimation (PE) for gravitational wave signals from compact binary coalescences (CBCs) requires reliable template waveforms which span the parameter space. Waveforms from numerical relativity are accurate but computationally expensive, so approximate templates are typically used for PE. These `approximants', while quick to compute, can introduce systematic errors and bias PE results. We describe a machine learning method for generating CBC waveforms and uncertainties using existing accurate waveforms as a training set. Coefficients of a reduced order waveform model are computed and each treated as arising from a Gaussian process. These coefficients and their uncertainties are then interpolated using Gaussian process regression (GPR). As a proof of concept, we construct a training set of approximant waveforms (rather than NR waveforms) in the two-dimensional space of chirp mass and mass ratio and interpolate new waveforms with GPR. We demonstrate that the mismatch between interpolated waveforms and approximants is below the 1% level for an appropriate choice of training set and GPR kernel hyperparameters.

  2. Josh Goldberg and the physical reality of gravitational waves

    NASA Astrophysics Data System (ADS)

    Saulson, Peter R.

    2011-12-01

    In this article, I pay tribute to the contributions made by Josh Goldberg toward our understanding that gravitational waves are genuine physical predictions of general relativity. Josh played a central role in developing our understanding of how a binary star system generates gravitational waves. Another key contribution came through his patronage of the 1957 Chapel Hill Conference, in his role as funding officer for the Air Force's support of research in gravitation. I examine in detail the discussion at the Chapel Hill Conference, and show how the question of the reality of gravitational waves was resolved by a recognition that one could, in principle, construct a detector for such waves. I trace the implications of this resolution in the work of Joseph Weber, who attended the Chapel Hill Conference, and of Rainer Weiss, who did not attend but who carefully studied the key paper that Felix Pirani presented there. I conclude with a brief discussion of how a few minor remaining puzzles were resolved some years later.

  3. Detecting Triple Systems with Gravitational Wave Observations

    NASA Astrophysics Data System (ADS)

    Meiron, Yohai; Kocsis, Bence; Loeb, Abraham

    2017-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) emitted by merging black hole binaries. We examine whether future GW detections may identify triple companions of merging binaries. Such a triple companion causes variations in the GW signal due to: (1) the varying path length along the line of sight during the orbit around the center of mass; (2) relativistic beaming, Doppler, and gravitational redshift; (3) the variation of the “light”-travel time in the gravitational field of the triple companion; and (4) secular variations of the orbital elements. We find that the prospects for detecting a triple companion are the highest for low-mass compact object binaries which spend the longest time in the LIGO frequency band. In particular, for merging neutron star binaries, LIGO may detect a white dwarf or M-dwarf perturber at a signal-to-noise ratio of 8, if it is within 0.4 {R}ȯ distance from the binary and the system is within a distance of 100 Mpc. Stellar mass (supermassive) black hole perturbers may be detected at a factor 5 × (103×) larger separations. Such pertubers in orbit around a merging binary emit GWs at frequencies above 1 mHz detectable by the Laser Interferometer Space Antenna in coincidence.

  4. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    NASA Astrophysics Data System (ADS)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On

  5. Interferometer techniques for gravitational-wave detection.

    PubMed

    Bond, Charlotte; Brown, Daniel; Freise, Andreas; Strain, Kenneth A

    2016-01-01

    Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

  6. Interferometer techniques for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Bond, Charlotte; Brown, Daniel; Freise, Andreas; Strain, Kenneth A.

    2016-12-01

    Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

  7. Silicon mirror suspensions for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Cumming, A. V.; Cunningham, L.; Hammond, G. D.; Haughian, K.; Hough, J.; Kroker, S.; Martin, I. W.; Nawrodt, R.; Rowan, S.; Schwarz, C.; van Veggel, A. A.

    2014-01-01

    One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. This paper reports results of analytical and experimental studies of the limits to thermal noise performance of cryogenic silicon test mass suspensions set by two constraints on suspension fibre dimensions: the minimum dimensions required to allow conductive cooling for extracting incident laser beam heat deposited in the mirrors; and the minimum dimensions of fibres (set by their tensile strength) which can support test masses of the size envisaged for use in future detectors. We report experimental studies of breaking strength of silicon ribbons, and resulting design implications for the feasibility of suspension designs for future gravitational wave detectors using silicon suspension fibres. We analyse the implication of this study for thermal noise performance of cryogenically cooled silicon suspensions.

  8. Interferometer Techniques for Gravitational-Wave Detection

    NASA Astrophysics Data System (ADS)

    Freise, Andreas; Strain, Kenneth

    2010-12-01

    Several km-scale gravitational-wave detectors have been constructed world wide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques, however, the complex optical layouts provide a new challenge. In this review we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

  9. Listening to the Universe with gravitational waves

    NASA Astrophysics Data System (ADS)

    Sathyaprakash, B. S.

    2016-07-01

    The discovery of gravitational waves by the twin LIGO detectors in September 2015 has opened a new window for observational astronomy. The coming years will witness the emergence of other detectors such as Advanced Virgo, KAGRA and LIGO-India. The worldwide network of these detectors will not only observe binary black holes, which we now know will be the dominant sources, but other sources such as binary neutron stars, neutron star-black hole binaries, supernovae, stochastic backgrounds and unknown sources that we do not know yet. In my talk I will describe how gravitational wave observations will help us gain deeper insights into fundamental physics, astrophysics and cosmology in the coming years and decades.

  10. Testing Gravitational Physics with Space-based Gravitational-wave Observations

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2011-01-01

    Gravitational wave observations provide exceptional and unique opportunities for precision tests of gravitational physics, as predicted by general relativity (GR). Space-based gravitational wave measurements, with high signal-to-noise ratios and large numbers of observed events may provide the best-suited gravitational-wave observations for testing GR with unprecedented precision. These observations will be especially useful in testing the properties of gravitational waves and strong-field aspects of the theory which are less relevant in other observations. We review the proposed GR test based on observations of massive black hole mergers, extreme mass ratio inspirals, and galactic binary systems.

  11. Gravitational Wave Detection in the Introductory Lab

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2017-01-01

    A long time ago in a galaxy far, far away, two black holes, one of mass 36 solar masses and the other of mass 29 solar masses, were dancing their death waltz, leading to their coalescence and the emission of gravitational waves carrying away with them three solar masses of energy. More precisely, it happened 1.3 billion years ago at a distance of…

  12. Vibration isolation for broadband gravitational wave antennas

    SciTech Connect

    Saulson, P.R.

    1984-08-01

    We discuss an active vibration isolation system which is a prototype of an isolation system for an interferometric gravitational wave antenna. Particular attention is paid to factors which limit the isolation which can be achieved. We were able to reduce the effective resonant frequency of the test mass to 0.04 Hz. Between 3 and 8 Hz, this was sufficient to bring the motion of the test mass within a factor of 2 of its Brownian motion amplitude.

  13. Kinks, extra dimensions, and gravitational waves

    SciTech Connect

    O'Callaghan, Eimear; Gregory, Ruth

    2011-03-01

    We investigate in detail the gravitational wave signal from kinks on cosmic (super)strings, including the kinematical effects from the internal extra dimensions. We find that the signal is suppressed, however, the effect is less significant that that for cusps. Combined with the greater incidence of kinks on (super)strings, it is likely that the kink signal offers the better chance for detection of cosmic (super)strings.

  14. Gravitational-wave detection using multivariate analysis

    NASA Astrophysics Data System (ADS)

    Adams, Thomas S.; Meacher, Duncan; Clark, James; Sutton, Patrick J.; Jones, Gareth; Minot, Ariana

    2013-09-01

    Searches for gravitational-wave bursts (transient signals, typically of unknown waveform) require identification of weak signals in background detector noise. The sensitivity of such searches is often critically limited by non-Gaussian noise fluctuations that are difficult to distinguish from real signals, posing a key problem for transient gravitational-wave astronomy. Current noise rejection tests are based on the analysis of a relatively small number of measured properties of the candidate signal, typically correlations between detectors. Multivariate analysis (MVA) techniques probe the full space of measured properties of events in an attempt to maximize the power to accurately classify events as signal or background. This is done by taking samples of known background events and (simulated) signal events to train the MVA classifier, which can then be applied to classify events of unknown type. We apply the boosted decision tree (BDT) MVA technique to the problem of detecting gravitational-wave bursts associated with gamma-ray bursts. We find that BDTs are able to increase the sensitive distance reach of the search by as much as 50%, corresponding to a factor of ˜3 increase in sensitive volume. This improvement is robust against trigger sky position, large sky localization error, poor data quality, and the simulated signal waveforms that are used. Critically, we find that the BDT analysis is able to detect signals that have different morphologies from those used in the classifier training and that this improvement extends to false alarm probabilities beyond the 3σ significance level. These findings indicate that MVA techniques may be used for the robust detection of gravitational-wave bursts with a priori unknown waveform.

  15. Spacetime Symphony: APOD and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; Simonnet, Aurore; LIGO-Virgo Scientific Collaboration

    2017-01-01

    In 1915, Albert Einstein published his General Theory of Relativity. In this theory, gravity is not a force, but a property of space and time in the presence of massive objects. A century later, on September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) received the first confirmed gravitational wave signals. Now known as GW150914, the event represents the coalescence of two distant black holes that were previously in mutual orbit. The LIGO-Virgo Scientific Collaboration planned a detailed social media strategy to publicize the February 11, 2016 press conference that announced this discovery. Astronomy Picture of the Day (APOD) was a major factor in disseminating the now iconic imagery that was developed, and the LVC worked closely with APOD to ensure that the secrecy would be maintained throughout the press embargo period. Due to the success of our efforts, we repeated the process for the AAS press conference that announced GW151226, the second confirmed gravitational wave event. We have also repurposed the APOD imagery for an online course for community college instructors, as well as in a poster that will be available through CPEPphysics.org (Contemporary Physics Education Project).

  16. Astrophysical calibration of gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Pitkin, M.; Messenger, C.; Wright, L.

    2016-03-01

    We investigate a method to assess the validity of gravitational-wave detector calibration through the use of gamma-ray bursts as standard sirens. Such signals, as measured via gravitational-wave observations, provide an estimated luminosity distance that is subject to uncertainties in the calibration of the data. If a host galaxy is identified for a given source then its redshift can be combined with current knowledge of the cosmological parameters yielding the true luminosity distance. This will then allow a direct comparison with the estimated value and can validate the accuracy of the original calibration. We use simulations of individual detectable gravitational-wave signals from binary neutron star (BNS) or neutron star-black hole systems, which we assume to be found in coincidence with short gamma-ray bursts, to estimate any discrepancy in the overall scaling of the calibration for detectors in the Advanced LIGO and Advanced Virgo network. We find that the amplitude scaling of the calibration for the LIGO instruments could on average be confirmed to within ˜10 % for a BNS source within 100 Mpc. This result is largely independent of the current detector calibration method and gives an uncertainty that is competitive with that expected in the current calibration procedure. Confirmation of the calibration accuracy to within ˜20 % can be found with BNS sources out to ˜500 Mpc .

  17. Separating Gravitational Wave Signals from Instrument Artifacts

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.; Cornish, Neil J.

    2010-01-01

    Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or "glitches" complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic "glitch fitting" using wavelets as "glitch templates", the number of which is determined by a trans-dimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black hole systems, and simulated non-stationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques.

  18. Ground-based gravitational-wave observatories

    NASA Astrophysics Data System (ADS)

    Giaime, Joseph

    2017-01-01

    After decades of development and recent upgrades, a network of ground-based interferometric gravitational-wave detectors has begun regular operation. Last year LIGO's two detectors ran for ca. 4 months, observing waves emitted during the inspiral and coalescence of pairs of black holes hundreds of megaparsec from Earth. The results from LIGO's first observational run will be described, as will plans and expectations for a larger network to include Virgo in Europe and other ground-based detectors in the coming years.

  19. The Quest for B Modes from Inflationary Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc; Kovetz, Ely D.

    2016-09-01

    The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationary gravitational-wave background.

  20. Relic gravitational waves and extended inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1990-01-01

    In extended inflation, a new version of inflation where the transition from the false-vacuum phase to a radiation-dominated Universe is accomplished by bubble nucleation and percolation, bubble collisions supply a potent-and potentially detectable-source of gravitational waves. The present energy density in relic gravity waves from bubble collisions is expected to be about 10(exp -5) of closure density-many orders of magnitude greater than that of the gravity waves produced by quantum fluctuations. Their characteristic wavelength depends upon the reheating temperature T(sub RH): lambda is approximately 10(exp 4) cm (10(exp 14) GeV/T(sub RH)). If large numbers of black holes are produced, a not implausible outcome, they will evaporate producing comparable amounts of shorter wavelength waves, lambda is approximately 10(exp -6) cm (T(sub RH)/10(exp 14) GeV).

  1. BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Poisson, Eric

    2008-10-01

    driven by radiative losses, the frequency spectrum of the radiation, and the dependence of the waveforms on cosmological parameters. In chapter 5 the author tackles a challenging topic: the post-Newtonian theory of gravitational-wave generation, mostly as developed by Luc Blanchet and his collaborators. This topic is extremely demanding, and the author does a good job of describing the main ideas and summarizing the main results. The presentation is detailed, but it is descriptive rather than didactic; this is appropriate, since a systematic development of this topic would surely require an entire book (or two, or three). In chapter 6, which concludes part I of the book, the author discusses the observational confirmation of the existence of gravitational waves that came from a handful of binary pulsars. He provides a detailed derivation of the timing formula that relates each pulse's time-of-arrival to the system's orbital parameters. Measurement of these parameters produce strongly constraining tests of general relativity, and it is the accurate determination of the slowly decreasing orbital period that led to the inescapable conclusion that gravitational waves do, in fact, exist. Part II of the book is devoted to the experimental aspects of gravitational waves: how the detectors work, and how the weak signals are extracted from the noisy data streams. In chapter 7 the author provides a solid introduction to data-analysis techniques, which include the characterization of detector noise by a spectral density function, the matched filtering of signals of known form, and the statistical theory of signal detection and parameter estimation. This last topic is beautifully covered; the author introduces both frequentist and Bayesian views of probabilities, and he (correctly) favours the Bayesian approach to determine the probability distribution function of signal parameters, given the detector's output data. The theory is applied to many types of signals: short bursts

  2. Gravitational wave detection with the solar probe: I. Motivation

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    Questions are posed and answered through discussion of gravitational wave detection with the Solar Probe. Discussed are: (1) what a gravitational wave is; (2) why wave detection is important; (3) what astrophysical information might be learned from these waves; (4) status of attempts to detect these waves; (5) why the Solar Probe is a special mission for detecting these waves; (6) how the Solar Probe's expected sensitivity compares with the strength of predicted gravitational waves; and (7) what gravity wave searchers will do after the Solar Probe.

  3. Exploring the cosmos with gravitational-waves

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen R.; Gair, Jonathan R.; Mandel, Ilya; Lentati, Lindley; Ellis, Justin

    2015-01-01

    Gravitational-wave (GW) astronomy will open up a new frontier in astrophysical studies of neutron stars (NSs) and black-holes (BHs). Near-future detections will shed light on the coalescence rate of compact-object binaries, present an independent means of constraining cosmological parameters, and offer a host of other exciting opportunities. My doctoral research has followed two threads, linked by the common goal of mining rich information from near-future GW observations. In the first thread of my dissertation, I developed a technique to probe cosmological parameters with GWs in the absence of any electromagnetic counterparts. This exploits the potential for a network of GW interferometers to extract the distance of each system from the measured gravitational waveform. I use the observed intrinsic narrowness of the NS-NS mass-distribution, along with GW-measured redshifted-masses, to deduce candidate redshift distributions for each system, thereby allowing a probe of the distance-redshift relation. I find that an advanced LIGO-Virgo network can place independent, complementary constraints on the Hubble constant, whilst a third-generation network will be capable of probing the dark energy equation-of-state and the star-formation rate of the NS-NS progenitor population. In the second thread, I studied the potential for high-precision timing of millisecond pulsars to infer the perturbing influence of passing GWs. I developed a robust data-analysis pipeline to constrain the levels of anisotropy in a stochastic nanoHertz GW background using an ensemble of these pulsars. This technique cross-correlates pulse time-of-arrival deviations from many pulsars, leveraging the common influence of a stochastic background against noise sources, and mines the cross-correlation signature for information on the angular distribution of GW-power. Additionally, I developed several rapid inference techniques applicable to pulsar-timing searches for individual supermassive BH binary

  4. Acoustic properties of a hollow sphere for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Bassan, M.; DeWaard, A.; Frossati, G.; Gianní, S.; Minenkov, Y.; Quintieri, L.; Simonetti, R.

    2010-01-01

    We report on experimental work on a small prototype of a hollow sphere, aiming at assessing the feasibility of such a resonator as a third generation gravitational wave resonant detector. We measured the resonant frequencies and quality factors of the spheroidal quadrupolar modes of a welded hollow sphere. The eigenfrequencies are found where predicted by the theory, and the quality factors were degraded from a minimum of 20% to a maximum of 60% with respect to the bulk sphere.

  5. Quantum Measurement Theory in Gravitational-Wave Detectors.

    PubMed

    Danilishin, Stefan L; Khalili, Farid Ya

    2012-01-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  6. Rapid Radio Followups of LIGO Gravitational Wave Events

    NASA Astrophysics Data System (ADS)

    Jenet, Rick; Stevens, Jamie; Wieringa, Mark; Creighton, Teviet

    2010-10-01

    We propose real time follow-up observations with the ATCA to search for radio counterparts to candidate gravitational-wave events detected by the LIGO and Virgo detectors. Electromagnetic and gravitational radiation provide complementary views of the Universe: the former being generated by the microphysical processes of charged particles, the latter by coherent bulk motion of masses. A complete picture of the most violent events in nature, such as supernovae and mergers of stellar remnants, will require both types of observation: Gravitational waves (GWs) to uncover the mechanics of the underlying (gravitational) energy source, and electromagnetic waves to reveal how that energy is then dissipated in matter. The search for GWs is entering an exciting phase with kilometer-scale interferometric detectors LIGO and Virgo achieving sensitivities for which detection of GWs is plausible. Since the sensitivity of these instruments improves incrementally, it is likely that the first verifiable detections of GWs will have signal-to-noise ratios that are just barely statistically significant. Observations in the electromagnetic spectrum will help confirm the first GW detections.

  7. Quantum Measurement Theory in Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Danilishin, Stefan L.; Khalili, Farid Ya.

    2012-12-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  8. Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aulbert, C.; Babak, S.; Ballmer, S.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogue, L.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burman, R.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.; Cepeda, C.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Cutler, C.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; de Vine, G.; DeBra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandar, S.; Di Credico, A.; Díaz, M.; Dickson, J.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Ehrens, P.; Elliffe, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fejer, M. M.; Finn, L. S.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Frey, R. E.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grimmett, D.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hanna, C.; Hanson, J.; Hardham, C.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hindman, N.; Hirose, E.; Hoak, D.; Hoang, P.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Hua, W.; Huttner, S.; Ingram, D.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Khalili, F. Ya.; Khan, A.; Kim, C.; King, P.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; MowLowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Müller-Ebhardt, H.; Mukherjee, S.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Newton, G.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Pedraza, M.; Penn, S.; Pitkin, M.; Plissi, M. V.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rakhmanov, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, D. I.; Robertson, N. A.; Robinson, C.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; de la Jordana, L. Sancho; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Seader, S. E.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Sheard, B.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sintes, A. M.; Slagmolen, B.; Slutsky, J.; Smith, J.; Smith, M. R.; Sneddon, P.; Somiya, K.; Speake, C.; Spjeld, O.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T.; Sun, K.; Sung, M.; Sutton, P. J.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Vahlbruch, H.; Vallisneri, M.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Vigeland, S.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Webber, D.; Weidner, A.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M.; zur Mühlen, H.; Zweizig, J.; LIGO Scientific Collaboration

    2007-04-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new Bayesian 90% upper limit is ΩGW×[H0/(72 km s-1 Mpc-1)2<6.5×10-5. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss the complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.

  9. PREFACE: 8th Edoardo Amaldi Conference on Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Marka, Zsuzsa; Marka, Szabolcs

    2010-04-01

    (The attached PDF contains select pictures from the Amaldi8 Conference) At Amaldi7 in Sydney in 2007 the Gravitational Wave International Committee (GWIC), which oversees the Amaldi meetings, decided to hold the 8th Edoardo Amaldi Conference on Gravitational Waves at Columbia University in the City of New York. With this decision, Amaldi returned to North America after a decade. The previous two years have seen many advances in the field of gravitational wave detection. By the summer of 2009 the km-scale ground based interferometric detectors in the US and Europe were preparing for a second long-term scientific run as a worldwide detector network. The advanced or second generation detectors had well-developed plans and were ready for the production phase or started construction. The European-American space mission, LISA Pathfinder, was progressing towards deployment in the foreseeable future and it is expected to pave the ground towards gravitational wave detection in the milliHertz regime with LISA. Plans were developed for an additional gravitational wave detector in Australia and in Japan (in this case underground) to extend the worldwide network of detectors for the advanced detector era. Japanese colleagues also presented plans for a space mission, DECIGO, that would bridge the gap between the LISA and ground-based interferometer frequency range. Compared to previous Amaldi meetings, Amaldi8 had new elements representing emerging trends in the field. For example, with the inclusion of pulsar timing collaborations to the GWIC, gravitational wave detection using pulsar timing arrays was recognized as one of the prominent directions in the field and was represented at Amaldi8 as a separate session. By 2009, searches for gravitational waves based on external triggers received from electromagnetic observations were already producing significant scientific results and plans existed for pointing telescopes by utilizing gravitational wave trigger events. Such

  10. Gravitational waves from Q-ball formation

    SciTech Connect

    Chiba, Takeshi; Kamada, Kohei; Yamaguchi, Masahide

    2010-04-15

    We study the detectability of the gravitational waves (GWs) from the Q-ball formation associated with the Affleck-Dine (AD) mechanism, taking into account both the dilution effects due to Q-ball domination and to finite temperature. The AD mechanism predicts the formation of nontopological solitons, Q-balls, from which GWs are generated. Q-balls with large conserved charge Q can produce a large amount of GWs. On the other hand, the decay rate of such Q-balls is so small that they may dominate the energy density of the Universe, which implies that GWs are significantly diluted and that their frequencies are redshifted during the Q-ball dominated era. Thus, the detectability of the GWs associated with the formation of Q-balls is determined by these two competing effects. We find that there is a finite but small parameter region where such GWs may be detected by future detectors such as DECIGO or BBO, only in the case when the thermal logarithmic potential dominates the potential of the AD field. Otherwise GWs from Q-balls would not be detectable even by these futuristic detectors: {Omega}{sub GW}{sup 0}<10{sup -21}. Unfortunately, for such parameter region the present baryon asymmetry of the Universe can hardly be explained unless one fine-tunes A-terms in the potential. However the detection of such a GW background may give us an information about the early Universe, for example, it may suggest that the flat directions with B-L=0 are favored.

  11. Extraction of gravitational waves in numerical relativity.

    PubMed

    Bishop, Nigel T; Rezzolla, Luciano

    2016-01-01

    A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

  12. Multimessenger time delays from lensed gravitational waves

    NASA Astrophysics Data System (ADS)

    Baker, Tessa; Trodden, Mark

    2017-03-01

    We investigate the potential of high-energy astrophysical events, from which both massless and massive signals are detected, to probe fundamental physics. In particular, we consider how strong gravitational lensing can induce time delays in multimessenger signals from the same source. Obvious messenger examples are massless photons and gravitational waves, and massive neutrinos, although more exotic applications can also be imagined, such as to massive gravitons or axions. The different propagation times of the massive and massless particles can, in principle, place bounds on the total neutrino mass and probe cosmological parameters. Whilst measuring such an effect may pose a significant experimental challenge, we believe that the "massive time delay" represents an unexplored fundamental physics phenomenon.

  13. Detection principle of gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    With the first two detections in late 2015, astrophysics has officially entered into the new era of gravitational wave (GW) observations. Since then, much has been going on in the field with a lot of work focusing on the observations and implications for astrophysics and tests of general relativity in the strong regime. However, much less is understood about how gravitational detectors really work at their fundamental level. For decades, the response to incoming signals has been customarily calculated using the very same physical principle, which has proved so successful in the first detections. In this paper, we review the physical principle that is behind such a detection at the very fundamental level, and we try to highlight the peculiar subtleties that make it so hard in practice. We will then mention how detectors are built starting from this fundamental measurement element.

  14. Extraction of gravitational waves in numerical relativity

    NASA Astrophysics Data System (ADS)

    Bishop, Nigel T.; Rezzolla, Luciano

    2016-12-01

    A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

  15. Gravitational waves from gamma-ray pulsar glitches

    SciTech Connect

    Stopnitzky, Elan; Profumo, Stefano

    2014-06-01

    We use data from pulsar gamma-ray glitches recorded by the Fermi Large Area Telescope as input to theoretical models of gravitational wave signals the glitches might generate. We find that the typical peak amplitude of the gravity wave signal from gamma-ray pulsar glitches lies between 10{sup –23} and 10{sup –35} in dimensionless units, with peak frequencies in the range of 1 to 1000 Hz, depending on the model. We estimate the signal-to-noise ratio (S/N) for all gamma-ray glitches, and discuss detectability with current gravity wave detectors. Our results indicate that the strongest predicted signals are potentially within reach of current detectors, and that pulsar gamma-ray glitches are promising targets for gravity wave searches by current and next-generation detectors.

  16. Experimental investigation of a control scheme for a tuned resonant sideband extraction interferometer for next-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Kawazoe, F.; Sato, S.; Leonhardt, V.; Miyakawa, O.; Morioka, T.; Nishizawa, A.; Yamazaki, T.; Fukushima, M.; Kawamura, S.; Sugamoto, A.

    2008-07-01

    LCGT plans to use tuned RSE as the optical configuration for its interferometer. A tuned RSE interferometer has five degrees of freedom that need to be controlled in order to operate a gravitational-wave detector, although it is expected to be very challenging because of the complexity of its optical configuration. A new control scheme for a tuned RSE interferometer has been developed and tested with a prototype interferometer to demonstrate successful control of the tuned RSE interferometer. The whole RSE interferometer was successfully locked with the control scheme. Here the control scheme and the current status of the experiment are presented.

  17. Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator.

    PubMed

    Tarallo, Marco G; Miller, John; Agresti, J; D'Ambrosio, E; DeSalvo, R; Forest, D; Lagrange, B; Mackowsky, J M; Michel, C; Montorio, J L; Morgado, N; Pinard, L; Remilleux, A; Simoni, B; Willems, P

    2007-09-10

    We have tested a new kind of Fabry-Perot long-baseline optical resonator proposed to reduce the thermal noise sensitivity of gravitational wave interferometric detectors--the "mesa beam" cavity--whose flat top beam shape is achieved by means of an aspherical end mirror. We present the fundamental mode intensity pattern for this cavity and its distortion due to surface imperfections and tilt misalignments, and contrast the higher order mode patterns to the Gauss-Laguerre modes of a spherical mirror cavity. We discuss the effects of mirror tilts on cavity alignment and locking and present measurements of the mesa beam tilt sensitivity.

  18. Tuning advanced gravitational-wave detectors to optimally measure neutron-star merger waves

    NASA Astrophysics Data System (ADS)

    Stein, Leo

    2010-02-01

    Next-generation gravitational wave detectors have the potential to bring us astrophysical information in yet unexplored regimes. One of the possibilities is learning about neutron stars' equations of state from the gravitational wave burst of a binary coalescence. Since these events are ``bursty'', one does not have the luxury of time-averaging to improve S/N; one can only hope to do better by ``tuning'' a detector network to have the noise performance which will be most informative about the physics. We present a Bayesian method for optimizing a detector network given a prior distribution of physical parameters which affect the gravitational wave signal. Each detection adds information about the parameter distribution, updating the posterior and the optimal detector configuration. We demonstrate the algorithm with toy signal and detector response models and predict whether tuning Advanced LIGO (via the signal recycling cavity) will be fruitful in accelerating our understanding of neutron stars through their mergers. )

  19. Doppler-cancelled response to VLF gravitational waves

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1981-01-01

    The interaction of long periodic gravitational waves with a three link microwave system known as the Doppler Cancelling System is discussed. This system, which was developed for a gravitational redshift experiment, uses one-way and two-way Doppler informatin to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave space-time. The signature left on the Doppler-cancelled beat by burst and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  20. GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE

    SciTech Connect

    Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, José A.; Obergaulinger, Martin

    2013-12-20

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ≲ 0.1 yr{sup –1}.

  1. Gravitational Wave Signatures in Black Hole Forming Core Collapse

    NASA Astrophysics Data System (ADS)

    Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, José A.; Obergaulinger, Martin

    2013-12-01

    We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates <~ 0.1 yr-1.

  2. Double optical spring enhancement for gravitational-wave detectors

    SciTech Connect

    Rehbein, Henning; Mueller-Ebhardt, Helge; Schnabel, Roman; Danzmann, Karsten; Somiya, Kentaro; Chen Yanbei; Danilishin, Stefan L.

    2008-09-15

    Currently planned second-generation gravitational-wave laser interferometers such as Advanced LIGO exploit the extensively investigated signal-recycling technique. Candidate Advanced LIGO configurations are usually designed to have two resonances within the detection band, around which the sensitivity is enhanced: a stable optical resonance and an unstable optomechanical resonance--which is upshifted from the pendulum frequency due to the so-called optical-spring effect. As an alternative to a feedback control system, we propose an all-optical stabilization scheme, in which a second optical spring is employed, and the test mass is trapped by a stable ponderomotive potential well induced by two carrier light fields whose detunings have opposite signs. The double optical spring also brings additional flexibility in reshaping the noise spectral density and optimizing toward specific gravitational-wave sources. The presented scheme can be extended easily to a multi-optical-spring system that allows further optimization.

  3. Balanced homodyne readout for quantum limited gravitational wave detectors.

    PubMed

    Fritschel, Peter; Evans, Matthew; Frolov, Valery

    2014-02-24

    Balanced homodyne detection is typically used to measure quantum-noise-limited optical beams, including squeezed states of light, at audio-band frequencies. Current designs of advanced gravitational wave interferometers use some type of homodyne readout for signal detection, in part because of its compatibility with the use of squeezed light. The readout scheme used in Advanced LIGO, called DC readout, is however not a balanced detection scheme. Instead, the local oscillator field, generated from a dark fringe offset, co-propagates with the signal field at the anti-symmetric output of the beam splitter. This article examines the alternative of a true balanced homodyne detection for the readout of gravitational wave detectors such as Advanced LIGO. Several practical advantages of the balanced detection scheme are described.

  4. Modeling Gravitational Waves to Test GR Dispersion and Polarization

    NASA Astrophysics Data System (ADS)

    Tso, Rhondale; Chen, Yanbei; Isi, Maximilliano

    2017-01-01

    Given continued observation runs from the Laser Interferometer Gravitational-Wave Observatory Scientific Collaboration, further gravitational wave (GW) events will provide added constraints on beyond-general relativity (b-GR) theories. One approach, independent of the GW generation mechanism at the source, is to look at modification to the GW dispersion and propagation, which can accumulate over vast distances. Generic modification of GW propagation can also, in certain b-GR theories, impact the polarization content of GWs. To this end, a comprehensive approach to testing the dispersion and polarization content is developed by modeling anisotropic deformations to the waveforms' phase, along with birefringence effects and corollary consequences for b-GR polarizations, i.e., breathing, vector, and longitudinal modes. Such an approach can be mapped to specific theories like Lorentz violation, amplitude birefringence in Chern-Simons, and provide hints at additional theories to be included. An overview of data analysis routines to be implemented will also be discussed.

  5. Astrophysical meaning of the discovery of gravitational waves

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.

    2016-09-01

    The discovery of gravitational waves by the international collaboration LIGO (Laser Interferometer Gravitational-Wave Observatory)/Virgo on the one hand is a triumphant confirmation of the general theory of relativity, and on the other confirms the general fundamental ideas on the nuclear evolution of baryon matter in the Universe concentrated in binary stars. LIGO/Virgo may turn out to be the first experiment in the history of physics to detect two physical entities, gravitational waves and black holes.

  6. Gravitational Wave Search with the Clock Mission

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    Doppler tracking of distant spacecraft is the only method currently available to search for gravitational waves in the low-frequency (approx. 0.0001-0.1 Hz) band. In this technique the Doppler system measures the relative dimensionless velocity 2(delta)v/c = (delta)f/f(sub o) between the earth and the spacecraft as a function of time, where (delta)f is the frequency perturbation and f(sub o) is the nominal frequency of the radio link. A gravitational wave of amplitude h incident on this system causes small frequency perturbations, of order h in (delta)f/f(sub o), replicated three times in the observed record (Estabrook and Wahlquist 1975). All experiments to date and those planned for the near future involve only 'two-way' Doppler-i.e., uplink signal coherently transponded by the spacecraft with Doppler measured using a frequency standard common to the transmit and receive chains of the ground station. If, as on the proposed Clock Mission, there is an additional frequency standard on the spacecraft and a suitable earth-spacecraft radio system, some noise sources can be isolated and removed from the data (Vessot and Levine 1978). Supposing that the Clock Mission spacecraft is transferred into a suitable interplanetary orbit, I discuss here how the on-board frequency standard could be employed with an all-Ka-band radio system using the very high stability Deep Space Network station DSS 25 being instrumented for Cassini. With this configuration, the Clock Mission could search for gravitational waves at a sensitivity limited by the frequency standards, rather than plasma or tropospheric scintillation effects, whenever the sun-earth-spacecraft angle is greater than 90 degrees.

  7. (abstract) OMEGA: A Gravitational Wave MIDEX Mission

    NASA Technical Reports Server (NTRS)

    Hellings, Ronald W.

    1996-01-01

    Among the low frequency (LF) gravitational wave sources that are of astronomical interest are white dwarf binaries, neutron star binaries, massive black hole binaries, and compact stars spiralling into massive black holes. A mission to detect these sources has been proposed to NASA as a possible member of its low-cost, near-term MIDEX mission series. This mission utilizes six tiny miniprobes in high Earth orbit to produce a sensitive Michelson interferometer with million kilometer arms, yielding a strain sensitivity below 10^{-21} at periods longer than a hundred seconds. At this sensitivity, known binary stars will be seen and plausible unknown massive black hole events will be searched for.

  8. An heuristic introduction to gravitational waves

    NASA Astrophysics Data System (ADS)

    Sandberg, Vernon D.

    1983-03-01

    We describe in physical terms the phenomenon of gravitational waves. The philosophy of William Gilbert is used.1 ``Since in the discovery of secret things and in the investigation of hidden causes, stronger reasons are obtained from sure experiments and demonstrated arguments than from probable conjectures and the opinions of philosophical speculators of the common sort; therefore to the end that the noble substance of that great loadstone, our common mother (the earth), still quite unknown, and also the forces extraordinary and exalted of this globe may the better be understood...''

  9. Sharing the Wonder of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Key, Joey Shapiro; LIGO Scientific Collaboration; Virgo Collaboration

    2017-01-01

    To share as widely as possible the excitement of the new discovery of gravitational waves, scientists in the LIGO Scientific Collaboration (LSC) and Virgo Collaboration prepared communication tools for a worldwide and diverse audience. This work included resources for traditional and social media outlets, preparing to engage at a wide range of levels and interests. The response to the LIGO discovery announcement indicated that the public is eager to engage with frontier physics. The LSC and Virgo outreach efforts hold lessons for broad STEM outreach including examples of citizen science initiatives and art +science collaboration as a way to inspire and engage a wide range of audiences.

  10. (abstract) OMEGA: A Gravitational Wave MIDEX Mission

    NASA Technical Reports Server (NTRS)

    Hellings, Ronald W.

    1996-01-01

    Among the low frequency (LF) gravitational wave sources that are of astronomical interest are white dwarf binaries, neutron star binaries, massive black hole binaries, and compact stars spiralling into massive black holes. A mission to detect these sources has been proposed to NASA as a possible member of its low-cost, near-term MIDEX mission series. This mission utilizes six tiny miniprobes in high Earth orbit to produce a sensitive Michelson interferometer with million kilometer arms, yielding a strain sensitivity below 10^{-21} at periods longer than a hundred seconds. At this sensitivity, known binary stars will be seen and plausible unknown massive black hole events will be searched for.

  11. Detecting gravitational wave bursts with Pulsar Timing

    NASA Astrophysics Data System (ADS)

    Cornish, Neil; Ellis, Justin

    2016-03-01

    The history of astronomy has shown that the Universe is full of suprises. One of the great hopes for gravitational wave astronomy is the discovery of unanticipated phenomena. To accomplish this we need to develop flexible analysis techniques that are able to detect signals with arbitrary waveform morphology. Here I will describe a multi-wavelet approach for the analysis of timing residuals from a pulsar timing array. Please schedule my talk immediately after the related talk by my co-author Justin Ellis.

  12. Probing the internal composition of neutron stars with gravitational waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás

    2015-11-01

    Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to

  13. The Data Analysis in Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Xiao-ge, Wang; Lebigot, Eric; Zhi-hui, Du; Jun-wei, Cao; Yun-yong, Wang; Fan, Zhang; Yong-zhi, Cai; Mu-zi, Li; Zong-hong, Zhu; Jin, Qian; Cong, Yin; Jian-bo, Wang; Wen, Zhao; Yang, Zhang; Blair, David; Li, Ju; Chun-nong, Zhao; Lin-qing, Wen

    2017-01-01

    Gravitational wave (GW) astronomy based on the GW detection is a rising interdisciplinary field, and a new window for humanity to observe the universe, followed after the traditional astronomy with the electromagnetic waves as the detection means, it has a quite important significance for studying the origin and evolution of the universe, and for extending the astronomical research field. The appearance of laser interferometer GW detector has opened a new era of GW detection, and the data processing and analysis of GWs have already been developed quickly around the world, to provide a sharp weapon for the GW astronomy. This paper introduces systematically the tool software that commonly used for the data analysis of GWs, and discusses in detail the basic methods used in the data analysis of GWs, such as the time-frequency analysis, composite analysis, pulsar timing analysis, matched filter, template, χ2 test, and Monte-Carlo simulation, etc.

  14. Gravitational wave background from rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.

    2012-11-01

    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars, and gravitars) is investigated. A formula for Ω(f) (a function that is commonly used to quantify the background, and is directly related to its energy density) is derived, without making the usual assumption that each radiating system evolves on a short time scale compared to the Hubble time; the time evolution of the systems since their formation until the present day is properly taken into account. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background or confusion noise, since the waveforms composing it cannot be either individually observed or subtracted out of the data of a detector) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background by present or planned detectors can be rejected. However, other models do predict the detection of the background, that would be unresolvable, by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint to be detected. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which

  15. Thermal noise from optical coatings in gravitational wave detectors.

    PubMed

    Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D

    2006-03-01

    Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.

  16. The next detectors for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Miao, HaiXing; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Blair, Carl; Ma, YiQiu; Qin, JiaYi; Page, Michael

    2015-12-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.

  17. Astrophysical Model Selection in Gravitational Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  18. Gravitational wave astronomy: needle in a haystack.

    PubMed

    Cornish, Neil J

    2013-02-13

    A worldwide array of highly sensitive ground-based interferometers stands poised to usher in a new era in astronomy with the first direct detection of gravitational waves. The data from these instruments will provide a unique perspective on extreme astrophysical objects, such as neutron stars and black holes, and will allow us to test Einstein's theory of gravity in the strong field, dynamical regime. To fully realize these goals, we need to solve some challenging problems in signal processing and inference, such as finding rare and weak signals that are buried in non-stationary and non-Gaussian instrument noise, dealing with high-dimensional model spaces, and locating what are often extremely tight concentrations of posterior mass within the prior volume. Gravitational wave detection using space-based detectors and pulsar timing arrays bring with them the additional challenge of having to isolate individual signals that overlap one another in both time and frequency. Promising solutions to these problems will be discussed, along with some of the challenges that remain.

  19. Transformations of asymptotic gravitational-wave data

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2016-04-01

    Gravitational-wave data is gauge dependent. While we can restrict the class of gauges in which such data may be expressed, there will still be an infinite-dimensional group of transformations allowed while remaining in this class, and almost as many different—though physically equivalent—waveforms as there are transformations. This paper presents a method for calculating the effects of the most important transformation group, the Bondi-Metzner-Sachs (BMS) group, consisting of rotations, boosts, and supertranslations (which include time and space translations as special cases). To a reasonable approximation, these transformations result in simple coupling between the modes in a spin-weighted spherical-harmonic decomposition of the waveform. It is shown that waveforms from simulated compact binaries in the publicly available SXS waveform catalog contain unmodeled effects due to displacement and drift of the center of mass, accounting for mode mixing at typical levels of 1%. However, these effects can be mitigated by measuring the average motion of the system's center of mass for a portion of the inspiral, and applying the opposite transformation to the waveform data. More generally, controlling the BMS transformations will be necessary to eliminate the gauge ambiguity inherent in gravitational-wave data for both numerical and analytical waveforms. Open-source code implementing BMS transformations of waveforms is supplied along with this paper in the supplemental materials.

  20. Gravitational Wave Detection in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2017-01-01

    Great physics breakthroughs are rarely included in the introductory physics course. General relativity and binary black hole coalescence are no different, and can be included in the introductory course only in a very limited sense. However, we can design activities that directly involve the detection of GW150914, the designation of the Gravitation Wave signal detected on September 14, 2015, thereby engage the students in this exciting discovery directly. The activities naturally do not include the construction of a detector or the detection of gravitational waves. Instead, we design it to include analysis of the data from GW150914, which includes some interesting analysis activities for students of the introductory course. The same activities can be assigned either as a laboratory exercise or as a computational project for the same population of students. The analysis tools used here are simple and available to the intended student population. It does not include the sophisticated analysis tools, which were used by LIGO to carefully analyze the detected signal. However, these simple tools are sufficient to allow the student to get important results. We have successfully assigned this lab project for students of the introductory course with calculus at Georgia Gwinnett College.

  1. An Atomic Gravitational Wave Interferometric Sensor (AGIS)

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.

    2008-08-01

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with baseline {approx} 1 km can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with baseline {approx} 1000 km can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx} 10{sup -20}/{radical}Hz. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations, acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.

  2. Circular polarization of primordial gravitational waves in string-inspired inflationary cosmology

    SciTech Connect

    Satoh, Masaki; Soda, Jiro; Kanno, Sugumi

    2008-01-15

    We study a mechanism to produce the circular polarization of primordial gravitational waves. The circular polarization is generated during the superinflation driven by the Gauss-Bonnet term in the string-inspired cosmology. The instability in the tensor mode caused by the Gauss-Bonnet term and the parity violation due to the gravitational Chern-Simons term are the essential ingredients of the mechanism. We also discuss detectability of the produced circular polarization of gravitational waves. It turns out that the simple model of single-field inflation contradicts cosmic microwave background (CMB) observations. To circumvent this difficulty, we propose a two-field inflation model. In this two-field model, the circular polarization of gravitational waves is created in the frequency range designed by the big-bang observer (BBO) or the deci-hertz gravitational-wave observatory (DECIGO)

  3. Gravitational waves from domain walls and their implications

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yokozaki, Norimi

    2017-07-01

    We evaluate the impact of domain-wall annihilation on the currently ongoing and planned gravitational wave experiments, including a case in which domain walls experience a frictional force due to interactions with the ambient plasma. We show the sensitivity reach in terms of physical parameters, namely, the wall tension and the annihilation temperature. We find that a Higgs portal scalar, which stabilizes the Higgs potential at high energy scales, can form domain walls whose annihilation produces a large amount of gravitational waves within the reach of the advanced LIGO experiment (O5). Domain wall annihilation can also generate baryon asymmetry if the scalar is coupled to either SU(2)L gauge fields or the (B - L) current. This is a variant of spontaneous baryogenesis, but it naturally avoids the isocurvature constraint due to the scaling behavior of the domain-wall evolution. We delineate the parameter space where the domain-wall baryogenesis works successfully and discuss its implications for the gravitational wave experiments.

  4. Probing a classically conformal B -L model with gravitational waves

    NASA Astrophysics Data System (ADS)

    Jinno, Ryusuke; Takimoto, Masahiro

    2017-01-01

    We study the cosmological history of the classical conformal B -L gauge extension of the standard model, in which the physical scales are generated via the Coleman-Weinberg-type symmetry breaking. In particular, we consider the thermal phase transition of the U (1 )B -L symmetry in the early Universe and resulting gravitational wave production. Due to the classical conformal invariance, the phase transition tends to be a first-order one with ultra-supercooling, which enhances the strength of the produced gravitational waves. We show that, requiring (1) U (1 )B -L is broken after the reheating, (2) the B -L gauge coupling does not blow up below the Planck scale, and (3) the thermal phase transition completes in almost all the patches in the Universe, the gravitational wave spectrum can be as large as ΩGW˜10-8 at the frequency f ˜0.01 - 1 Hz for some model parameters, and a vast parameter region can be tested by future interferometer experiments.

  5. Primordial gravitational waves from axion-gauge fields dynamics

    NASA Astrophysics Data System (ADS)

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Fujita, Tomohiro

    2017-01-01

    Inspired by the chromo-natural inflation model of Adshead&Wyman, we reshape its scalar content to relax the tension with current observational bounds. Besides an inflaton, the setup includes a spectator sector in which an axion and SU(2) gauge fields are coupled via a Chern-Simons-type term. The result is a viable theory endowed with an alternative production mechanism for gravitational waves during inflation. The gravitational wave signal sourced by the spectator fields can be much larger than the contribution from standard vacuum fluctuations, it is distinguishable from the latter on the basis of its chirality and, depending on the theory parameters values, also its tilt. This production process breaks the well-known relation between the tensor-to-scalar ratio and the energy scale of inflation. As a result, even if the Hubble rate is itself too small for the vacuum to generate a tensor amplitude detectable by upcoming experiments, this model still supports observable gravitational waves.

  6. Cosmological Consequences of Gravitation: Structure Formation and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Book, Laura G.

    This thesis contains work on four topics which fit into two broad areas of research: the quest to understand structure formation and through it the properties of the dark matter, and the search for primordial gravitational radiation. The first project details the effect of an accretion shock on the colors of satellites in galaxy clusters. A new model of ram pressure stripping including an accretion shock with variable radius is developed and implemented in the Galform semi-analytic model of galaxy formation. A comparison of this model with previous models and with observations indicates that current data is unable to discriminate between models, though future observations will be able to place stronger constraints on the role of ram pressure stripping in and around clusters. Next, an analysis of the angular momentum evolution of dark matter particles in high-resolution N-body simulations of dark matter halos is presented. We find that individual particle angular momentum is not conserved, and also that the angular momentum of radial shells varies over the age of the Universe by up to factors of a few. These results have serious implications for the validity of current analytical models that assume angular momentum conservation. Two methods for detecting the primordial gravitational wave (GW) background are then presented. Such a background, if detected, could greatly impact our understanding of the early universe. The first proposed method uses the apparent angular velocities of astrophysical objects induced by GWs, which may be detectable with upcoming astrometric missions such as the GAIA satellite. This work improves upon previous order-of-magnitude estimates, and presents a full calculation of the expected signal from a stochastic background of GWs. The second method uses bipolar spherical harmonics decomposition, a formalism to characterize departures from statistical isotropy and Gaussianity, to quantify the expected lensing of the cosmic microwave background

  7. Explosive Line Wave Generators

    DTIC Science & Technology

    2013-12-01

    curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave

  8. Helicity-rotation-gravity coupling for gravitational waves

    SciTech Connect

    Ramos, Jairzinho; Mashhoon, Bahram

    2006-04-15

    The consequences of spin-rotation-gravity coupling are worked out for linear gravitational waves. The coupling of helicity of the wave with the rotation of a gravitational-wave antenna is investigated and the resulting modifications in the Doppler effect and aberration are pointed out for incident high-frequency gravitational radiation. Extending these results to the case of a gravitomagnetic field via the gravitational Larmor theorem, the rotation of linear polarization of gravitational radiation propagating in the field of a rotating mass is studied. It is shown that in this case the linear polarization state rotates by twice the Skrotskii angle as a consequence of the spin-2 character of linear gravitational waves.

  9. Phase Measurement System for Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Klipstein, William

    We propose to advance the maturity of the LISA Phasemeter based on our recent experience developing a flight Phasemeter for the Laser Ranging Interferometer (LRI) on NASA's GRACE Follow-On mission. Our three main objectives are to: 1) incorporate the flight GRACE Follow-on LRI phasemeter developments into the TRL4 LISA design used extensively in our interferometer testbed; 2) evaluate the LRI Phasemeter against LISA's more stringent requirements in order to identify required design changes; 3) advance the design maturity of the LISA phasemeter through an architecture study to maintain the viability of the Phasemeter as a contribution to ESA's L3 gravitational wave mission. NASA intends to partner in the European Space Agency's (ESA) Gravitational-Wave detection mission, selected for the L3 mission to launch in 2034. This is expected to be a LISA-like mission with the two enabling LISA technologies: 1. a drag-free system to mitigate or measure non-gravitational forces on the spacecraft, 2. an interferometric measure¬ment system with precision phasemeters to measure picometer variations over the million kilometer separation between the spacecraft. To validate the key technologies of the drag-free system, the ESA LISA Pathfinder (LPF) mission is currently demonstrating a gravitational reference sensor (GRS) and microNewton thrusters in space. While LPF has an on-board interferometer to measure proof- mass motion with respect to the spacecraft, the LPF interferometer does not test the interspacecraft laser interferometry needed for a LISA-like mission. To validate the key technologies of the LISA interferometric measurement, the JPL LISA Phase Measurement Team has studied and developed a prototype LISA phase measurement system. This phase measurement system has also been adapted for a demonstration mission, albeit in a different arena. GRACE Follow-Ons Laser Ranging Interferometer (LRI), due to launch in late 2017, will make LISA-like inter-spacecraft interferometric

  10. Detecting high-frequency gravitational waves with optically levitated sensors.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  11. Design aspects of a laser gravitational wave detector in space

    NASA Technical Reports Server (NTRS)

    Decher, R.; Randall, J. L.; Bender, P. L.; Faller, J. E.

    1980-01-01

    Certain optical and mechanical aspects of a proposed laser gravitational wave antenna in space are briefly discussed. The proposed concept consists of a free-mass antenna with the test masses separated by a distance of 1,000,000 km. A laser heterodyne technique is employed to measure the distance change between test masses resulting from gravitational wave interaction. The proposed scheme is considered to offer the necessary sensitivity to detect gravitational radiation from binary stars predicted by General Relativity Theory.

  12. Parameter estimation of gravitational wave compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Haster, Carl-Johan; LIGO Scientific Collaboration Collaboration

    2017-01-01

    The first detections of gravitational waves from coalescing binary black holes have allowed unprecedented inference on the astrophysical parameters of such binaries. Given recent updates in detector capabilities, gravitational wave model templates and data analysis techniques, in this talk I will describe the prospects of parameter estimation of compact binary coalescences during the second observation run of the LIGO-Virgo collaboration.

  13. Optimizing Vetoes for Gravitational-wave Transient Searches

    NASA Technical Reports Server (NTRS)

    Essick, R.; Blackburn, Lindy L.; Katsavounidis, E.

    2014-01-01

    Interferometric gravitational-wave detectors like LIGO, GEO600 and Virgo record a surplus of information above and beyond possible gravitational-wave events. These auxiliary channels capture information about the state of the detector and its surroundings which can be used to infer potential terrestrial noise sources of some gravitational-wave-like events. We present an algorithm addressing the ordering (or equivalently optimizing) of such information from auxiliary systems in gravitational-wave detectors to establish veto conditions in searches for gravitational-wave transients. The procedure was used to identify vetoes for searches for unmodelled transients by the LIGO and Virgo collaborations during their science runs from 2005 through 2007. In this work we present the details of the algorithm; we also use a limited amount of data from LIGO's past runs in order to examine the method, compare it with other methods, and identify its potential to characterize the instruments themselves. We examine the dependence of Receiver Operating Characteristic curves on the various parameters of the veto method and the implementation on real data. We find that the method robustly determines important auxiliary channels, ordering them by the apparent strength of their correlations to the gravitational-wave channel. This list can substantially reduce the background of noise events in the gravitational-wave data. In this way it can identify the source of glitches in the detector as well as assist in establishing confidence in the detection of gravitational-wave transients.

  14. Gravitational wave astronomy - astronomy of the 21st century

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.

    2011-03-01

    An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front - the IndIGO project -, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.

  15. Gravitational wave astronomy— astronomy of the 21st century

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.

    2011-12-01

    An enigmatic prediction of Einstein's general theory of relativity is gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein's theory, the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with inteferometric gravitational wave observatories or detectors and several such detectors have been built or are being built. The initial detectors have reached their design sensitivities and now the effort is on to construct advanced detectors which are expected to detect gravitational waves from astrophysical sources. The era of gravitational wave astronomy has arrived. This article describes the worldwide effort which includes the effort on the Indian front— the IndIGO project —, the principle underlying interferometric detectors both on ground and in space, the principal noise sources that plague such detectors, the astrophysical sources of gravitational waves that one expects to detect by these detectors and some glimpse of the data analysis methods involved in extracting the very weak gravitational wave signals from detector noise.

  16. The road to the discovery of gravitational waves

    NASA Astrophysics Data System (ADS)

    Braginsky, V. B.; Bilenko, I. A.; Vyatchanin, S. P.; Gorodetsky, M. L.; Mitrofanov, V. P.; Prokhorov, L. G.; Strigin, S. E.; Khalili, F. Ya

    2016-09-01

    On 14 September 2015, the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) in the US recorded the first direct detection of gravitational waves. This paper reviews the contributions to this discovery by V B Braginsky's group at the Physics Department of Lomonosov Moscow State University.

  17. Directed search for continuous gravitational waves from the Galactic center

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-11-01

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.

  18. Gravitational wave production at the end of inflation.

    PubMed

    Easther, Richard; Giblin, John T; Lim, Eugene A

    2007-11-30

    We consider gravitational wave production due to parametric resonance at the end of inflation, or "preheating." This leads to large inhomogeneities that source a stochastic background of gravitational waves at scales inside the comoving Hubble horizon at the end of inflation. We confirm that the present amplitude of these gravitational waves need not depend on the inflationary energy scale. We analyze an explicit model where the inflationary energy scale is approximately 10{9} GeV, yielding a signal close to the sensitivity of Advanced Laser Interferometer Gravitational Wave Observatory and Big Bang Observer. This signal highlights the possibility of a new observational "window" into inflationary physics and provides significant motivation for searches for stochastic backgrounds of gravitational waves in the Hz to GHz range, with an amplitude on the order of Omega_{gw}(k)h{2} approximately 10{-11}.

  19. Using Gravitational-Wave Standard Sirens

    NASA Astrophysics Data System (ADS)

    Holz, Daniel E.; Hughes, Scott A.

    2005-08-01

    Gravitational waves (GWs) from supermassive binary black hole (BBH) in-spirals are potentially powerful standard sirens (the GW analog to standard candles; see work of B. Schutz). Because these systems are well modeled, the space-based GW observatory LISA will be able to measure the luminosity distance (but not the redshift) to some distant massive BBH systems with 1%-10% accuracy. This accuracy is largely limited by pointing error: GW sources are generally poorly localized on the sky. Localizing the binary independently (e.g., through association with an electromagnetic counterpart) greatly reduces this positional error. An electromagnetic counterpart may also allow determination of the event's redshift. In this case, BBH coalescence would constitute an extremely precise (better than 1%) standard candle visible to high redshift. In practice, gravitational lensing degrades this precision, although the candle remains precise enough to provide useful information about the distance-redshift relation. Even if very rare, these GW standard sirens would complement, and increase confidence in, other standard candles.

  20. DETECTING GRAVITATIONAL WAVE MEMORY WITH PULSAR TIMING

    SciTech Connect

    Cordes, J. M.; Jenet, F. A. E-mail: merlyn@phys.utb.edu

    2012-06-10

    We compare the detectability of gravitational bursts passing through the solar system with those passing near each millisecond pulsar in an N-pulsar timing array. The sensitivity to Earth-passing bursts can exploit the correlation expected in pulse arrival times while pulsar-passing bursts, though uncorrelated between objects, provide an N-fold increase in overall time baseline that can compensate for the lower sensitivity. Bursts with memory from mergers of supermassive black holes produce step functions in apparent spin frequency that are the easiest to detect in pulsar timing. We show that the burst rate and amplitude distribution, while strongly dependent on inadequately known cosmological evolution, may favor detection in the pulsar terms rather than the Earth timing perturbations. Any contamination of timing data by red spin noise makes burst detection more difficult because both signals grow with the length of the time data span T. Furthermore, the different bursts that could appear in one or more data sets of length T Almost-Equal-To 10 yr also affect the detectability of the gravitational wave stochastic background that, like spin noise, has a red power spectrum. A burst with memory is a worthwhile target in the timing of multiple pulsars in a globular cluster because it should produce a correlated signal with a time delay of less than about 10 years in some cases.

  1. On the direct detection of gravitational waves

    NASA Astrophysics Data System (ADS)

    Pustovoit, V. I.

    2016-10-01

    Different types of gravitational wave (GW) detectors are considered. It is noted that interferometric techniques offer the greatest prospects for GW registration due to their high sensitivity and extremely wide frequency band. Using laser interferometers, proposed as far back as 1962 in the work by M E Gertsenshtein and V I Pustovoit published in Russian (Zh. Eksp. Teor. Fiz., vol. 43, p. 605, 1962) and in English translation (Sov. Phys. JETP, vol. 16, p. 433, 1963), it proved possible for the first time to directly detect GW emission from a merger of two black holes. It is noted that the assertion that Gertsen-shtein-Pustovoit's work was unknown to some of those experts involved in direct GW detection is inconsistent with reality. The problems of high-power laser radiation affecting the electrostatic polarization of free-mass mirrors are discussed. It is shown that mirror polarization can lead to additional links with electrically conducting elements of the design resulting in the interferometer's reduced sensitivity. Some new prospects for developing high reflection structures are discussed and heat extraction problems are considered. This article is the revised and extended version of the report “On the first direct detection of gravitational waves” delivered by V I Pustovoit at the Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences (March 2, 2016). All other reports presented at the session were published in the preceding issue of Physics-Uspekhi (September 2016) (see Refs [108, 111-113]). (Editorial note)

  2. Gravitational-wave Missions at NASA

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin; McNamara, Paul; Jennrich, Oliver

    In November 2013, ESA selected the science theme, the “Gravitational Universe,” for its third large mission opportunity, known as L3, under its Cosmic Visions Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described.

  3. Gravitational waves from direct collapse black holes formation

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Ferrara, Andrea; Marassi, Stefania

    2015-05-01

    The possible formation of direct collapse black holes (DCBHs) in the first metal-free atomic cooling haloes at high redshifts (z ≳ 10) is nowadays object of intense study and several methods to prove their existence are currently under development. The abrupt collapse of a massive (˜104-105 M⊙) and rotating object is a powerful source of gravitational waves emission. In this work, we employ modern waveforms and the improved knowledge on the DCBHs formation rate to estimate the gravitational signal emitted by these sources at cosmological distances. Their formation rate is very high (˜104 yr-1 up to z ˜ 20), but due to a short duration of the collapse event (˜2-30 s, depending on the DCBH mass), the integrated signal from these sources is characterized by a very low duty-cycle (D˜ 10^{-3}), i.e. a shot-noise signal. Our results show that the estimated signal lies above the foreseen sensitivity of the Ultimate-Deci-hertz Interferometer Gravitational wave Observatory in the frequency range (0.8-300) mHz, with a peak amplitude Ωgw = 1.1 × 10-54 at νmax = 0.9 mHz and a peak signal-to-noise ratio SNR ˜ 22 at ν = 20 mHz. This amplitude is lower than the Galactic confusion noise, generated by binary systems of compact objects in the same frequency band. For this reason, advanced techniques will be required to separate this signal from background and foreground noise components. As a proof-of-concept, we conclude by proposing a simple method, based on the autocorrelation function, to recognize the presence of a D ≪ 1 signal buried into the continuous noise. The aim of this work is to test the existence of a large population of high-z DCBHs, by observing the gravitational waves emitted during their infancy.

  4. Interaction of gravitational waves with magnetic and electric fields

    SciTech Connect

    Barrabes, C.; Hogan, P. A.

    2010-03-15

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  5. The Mario Schenberg Gravitational Wave Antenna

    NASA Astrophysics Data System (ADS)

    Oliveira, Nei F.; Aguiar, Odylio D.

    2016-10-01

    This article is an account of the work done in the Mario Schenberg gravitational wave antenna up to date, focusing mainly in the participation of the Laboratório de Estado Sólido e Baixas Temperaturas (LESBT) do Instituto de Física da Universidade de S. Paulo. The text starts with an introduction describing the problem, the Brazilian project, and the participant institutions. This is followed by a description of the construction of the infrastructure, initial tests, and final basic assembly at the LESBT. Results are presented for the thermal and mechanical behaviors of the cryogenic system and for the development of active transducers in its various stages, culminating with the last version in which the project sensitivity of ˜4 × 10-20 Hz-1/2 was attained.

  6. Constraining the Braneworld with Gravitational Wave Observations

    SciTech Connect

    McWilliams, Sean T.

    2010-04-09

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the {approx}1 {mu}m level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l{<=}5 {mu}m.

  7. Constraining the braneworld with gravitational wave observations.

    PubMed

    McWilliams, Sean T

    2010-04-09

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm.

  8. Constraining the Braneworld with Gravitational Wave Observations

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.

    2011-01-01

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, L, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining L via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain L at the approximately 1 micron level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of L less than or equal to 5 microns.

  9. Primordial gravitational waves in supersolid inflation

    NASA Astrophysics Data System (ADS)

    Ricciardone, Angelo; Tasinato, Gianmassimo

    2017-07-01

    Supersolid inflation is a class of inflationary theories that simultaneously breaks time and space reparametrization invariance during inflation, with distinctive features for the dynamics of cosmological fluctuations. We investigate concrete realizations of such a scenario, including non-minimal couplings between gravity and the fields driving inflation. We focus in particular on the dynamics of primordial gravitational waves and discuss how their properties depend on the pattern of symmetry breaking that we consider. Tensor modes can have a blue spectrum, and for the first time we build models in which the squeezed limit of primordial tensor bispectra can be parametrically enhanced with respect to standard single-field scenarios. At leading order in a perturbative expansion, the tensor-to-scalar ratio depends only on the parameter controlling the breaking of space reparametrization. It is independent from the quantities controlling the breaking of time reparametrization, and this represents a difference with respect to standard single-field inflationary models.

  10. Beyond LISA: Exploring future gravitational wave missions

    NASA Astrophysics Data System (ADS)

    Crowder, Jeff; Cornish, Neil J.

    2005-10-01

    The Advanced Laser Interferometer Antenna (ALIA) and the Big Bang Observer (BBO) have been proposed as follow on missions to the Laser Interferometer Space Antenna (LISA). Here we study the capabilities of these observatories, and how they relate to the science goals of the missions. We find that the Advanced Laser Interferometer Antenna in Stereo (ALIAS), our proposed extension to the ALIA mission, will go considerably further toward meeting ALIA’s main scientific goal of studying intermediate mass black holes. We also compare the capabilities of LISA to a related extension of the LISA mission, the Laser Interferometer Space Antenna in Stereo (LISAS). Additionally, we find that the initial deployment phase of the BBO would be sufficient to address the BBO’s key scientific goal of detecting the Gravitational Wave Background, while still providing detailed information about foreground sources.

  11. Black Holes, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Baker, John

    2009-01-01

    Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.

  12. On a nonlinear gravitational wave. Geodesics

    NASA Astrophysics Data System (ADS)

    Culetu, Hristu

    2016-12-01

    An exact, plane-wave solution of the gravitational field equations is investigated. The source stress tensor is represented by an anisotropic null fluid with energy flux to which the energy density ρ and all pressures are finite throughout the spacetime. They depend on a constant length (taken of the order of the Planck length) and acquire Planck values close to the null surface t-z=0, the z-axis being the direction of propagation. However, ρ and p become positive when a cross-polarization term is introduced in the line element. The timelike geodesics of a test particle are contained in a plane whose normal has constant direction and the null trajectories are comoving with a plane of fixed direction.

  13. Black Holes, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Baker, John

    2009-01-01

    Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.

  14. Topics in gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, R.

    2004-09-01

    Both the Laser Interferometer Gravitational Wave Observatory (LIGO) the Laser Interferometer Space Antenna (LISA) will over the next decade detect gravitational waves emitted by the motion of compact objects (e.g. black hole and neutron star binaries). This thesis presents methods to improve (i)LIGO detector quality, (ii)our knowledge of waveforms for certain LIGO and LISA sources, and (iii)models for the rate of detectability of a particular LISA source. (1)Plunge of compact object into a supermassive black hole: LISA should detect many inspirals of compact objects into supermassive black holes (˜105 107 M⊙ ). Since the inspiral of each compact object terminates shortly after the inspiralling object reaches its last stable orbit, the late-stage inspiral waveform provides insight into the location of the last stable orbit and strong-field relativity. I discovered that while LISA will easily see the overall inspiral (consisting of many cycles before plunge), the present LISA design will just miss detecting the waves emitted from the transition from inspiral to plunge. (2)Scheme to reduce thermoelastic noise in advanced LIGO: After its first upgrade, LIGO will have its sensitivity limited by thermoelastic noise. [Thermoelastic noise occurs because milimeter-scale thermal fluctuations in the mirror bulk expand and contract, causing the mirror surface to shimmer.] The interferometer's sensitivity could be enhanced substantially by reducing thermoelastic noise. In collaboration with Kip Thorne, Erika d'Ambrosio, Sergey Vyatchanin, and Sergey Strigin, I developed a proposal to reduce thermoelastic noise in advanced-LIGO by switching the LIGO cavity optics from simple spherical mirrors to a new, Mexican-hat shape. (3)Geometric-optics-based analysis of stability of symmetric-hyperbolic formulations of Einstein's equations : Einstein's equations must be evolved numerically to predict accurate waveforms for the late stages of binary black hole inspiral and merger. But no

  15. Ultrahigh precision cosmology from gravitational waves

    SciTech Connect

    Cutler, Curt; Holz, Daniel E.

    2009-11-15

    We show that the Big Bang Observer (BBO), a proposed space-based gravitational-wave (GW) detector, would provide ultraprecise measurements of cosmological parameters. By detecting {approx}3x10{sup 5} compact-star binaries, and utilizing them as standard sirens, BBO would determine the Hubble constant to {approx}0.1%, and the dark-energy parameters w{sub 0} and w{sub a} to {approx}0.01 and {approx}0.1, respectively. BBO's dark-energy figure-of-merit would be approximately an order of magnitude better than all other proposed, dedicated dark-energy missions. To date, BBO has been designed with the primary goal of searching for gravitational waves from inflation, down to the level {omega}{sub GW}{approx}10{sup -17}; this requirement determines BBO's frequency band (deci-Hz) and its sensitivity requirement (strain measured to {approx}10{sup -24}). To observe an inflationary GW background, BBO would first have to detect and subtract out {approx}3x10{sup 5} merging compact-star binaries, out to a redshift z{approx}5. It is precisely this carefully measured foreground which would enable high-precision cosmology. BBO would determine the luminosity distance to each binary to {approx} percent accuracy. In addition, BBO's angular resolution would be sufficient to uniquely identify the host galaxy for the majority of binaries; a coordinated optical/infrared observing campaign could obtain the redshifts. Combining the GW-derived distances and the electromagnetically-derived redshifts for such a large sample of objects, out to such high redshift, naturally leads to extraordinarily tight constraints on cosmological parameters. We emphasize that such 'standard siren' measurements of cosmology avoid many of the systematic errors associated with other techniques: GWs offer a physics-based, absolute measurement of distance. In addition, we show that BBO would also serve as an exceptionally powerful gravitational-lensing mission, and we briefly discuss other astronomical uses of BBO

  16. Ultrahigh precision cosmology from gravitational waves

    NASA Astrophysics Data System (ADS)

    Cutler, Curt; Holz, Daniel E.

    2009-11-01

    We show that the Big Bang Observer (BBO), a proposed space-based gravitational-wave (GW) detector, would provide ultraprecise measurements of cosmological parameters. By detecting ˜3×105 compact-star binaries, and utilizing them as standard sirens, BBO would determine the Hubble constant to ˜0.1%, and the dark-energy parameters w0 and wa to ˜0.01 and ˜0.1, respectively. BBO’s dark-energy figure-of-merit would be approximately an order of magnitude better than all other proposed, dedicated dark-energy missions. To date, BBO has been designed with the primary goal of searching for gravitational waves from inflation, down to the level ΩGW˜10-17; this requirement determines BBO’s frequency band (deci-Hz) and its sensitivity requirement (strain measured to ˜10-24). To observe an inflationary GW background, BBO would first have to detect and subtract out ˜3×105 merging compact-star binaries, out to a redshift z˜5. It is precisely this carefully measured foreground which would enable high-precision cosmology. BBO would determine the luminosity distance to each binary to ˜ percent accuracy. In addition, BBO’s angular resolution would be sufficient to uniquely identify the host galaxy for the majority of binaries; a coordinated optical/infrared observing campaign could obtain the redshifts. Combining the GW-derived distances and the electromagnetically-derived redshifts for such a large sample of objects, out to such high redshift, naturally leads to extraordinarily tight constraints on cosmological parameters. We emphasize that such “standard siren” measurements of cosmology avoid many of the systematic errors associated with other techniques: GWs offer a physics-based, absolute measurement of distance. In addition, we show that BBO would also serve as an exceptionally powerful gravitational-lensing mission, and we briefly discuss other astronomical uses of BBO, including providing an early warning system for all short/hard gamma-ray bursts.

  17. LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES

    SciTech Connect

    Demorest, P. B.; Ransom, S.; Ferdman, R. D.; Kaspi, V. M.; Gonzalez, M. E.; Stairs, I. H.; Nice, D.; Arzoumanian, Z.; Brazier, A.; Cordes, J. M.; Burke-Spolaor, S.; Lazio, J.; Chamberlin, S. J.; Ellis, J.; Giampanis, S.; Finn, L. S.; Freire, P.; Jenet, F.; Lommen, A. N.; McLaughlin, M.; and others

    2013-01-10

    We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are {approx}30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h{sub c} (1 yr{sup -1}) < 7 Multiplication-Sign 10{sup -15} (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909-3744.

  18. Analysis methods for burst gravitational waves with TAMA data

    NASA Astrophysics Data System (ADS)

    Ando, Masaki; Arai, K.; Nagano, S.; Takahashi, R.; Sato, S.; Tatsumi, D.; Tsunesada, Y.; Kanda, N.; Kawamura, S.; Beyersdorf, P.; Zhu, Zonh-Hong; Numata, K.; Iida, Y.; Aso, Y.; Mio, N.; Moriwaki, S.; Somiya, K.; Miyoki, S.; Kondo, K.; Takahashi, H.; Hayama, K.; Tagoshi, H.; Fujimoto, M.-K.; Tsubono, K.; Kuroda, K.; TAMA Collaboration

    2004-10-01

    We describe analysis methods and results for burst gravitational waves with data obtained in the eighth observation run by the TAMA300 detector. In this analysis, we used an excess-power filter for signal detection, and two types of veto for fake-event rejection; one is a time-scale selection of events and the other is a veto with auxiliary information recorded together with the main signal. We generated an event-candidate list with this analysis procedure, which will be used for coincidence analysis with the other detectors.

  19. Motion of photons in a gravitational wave background

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Huang, Chao-Guang; Zhao, Zhi-Chao

    2017-09-01

    Photon motion in a Michelson interferometer is re-analyzed in terms of both geometrical optics and wave optics. The classical paths of the photons in the background of a gravitational wave are derived from the Fermat principle, which is the same as the null geodesics in general relativity. The deformed Maxwell equations and the wave equations of electric fields in the background of a gravitational wave are presented in a flat-space approximation. Both methods show that even the envelope of the response of an interferometer depends on the frequency of a gravitational wave, but it is almost independent of the frequency of the mirror’s vibrations. Supported by National Natural Science Foundation of China (11275207, 11375203, 11690022, 11675182) and Strategic Priority Research Program of the Chinese Academy of Sciences “Multi-waveband Gravitational Wave Universe” (XDB23040000)

  20. Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.

    PubMed

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A

    2014-07-04

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  1. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by the Interplanetary Network

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; hide

    2014-01-01

    We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  2. Search for Gravitational Waves Associated with γ-ray Bursts Detected by the Interplanetary Network

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Croce, R. P.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Ha, J.; Hall, E. D.; Hamilton, W.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Holt, K.; Hopkins, P.; Horrom, T.; Hoske, D.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Ingram, D. R.; Inta, R.; Islas, G.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, S.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lam, P. K.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, P. J.; Leonardi, M.; Leong, J. R.; Leonor, I.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lopez, E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Ma, Y.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Omar, S.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Recchia, S.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Reula, O.; Rhoades, E.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S. B.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sankar, S.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schilman, M.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, J.; Tarabrin, S. P.; Taylor, R.; Tellez, G.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Tuennermann, H.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wolovick, N.; Worden, J.; Wu, Y.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; Aptekar, R. L.; Atteia, J. L.; Cline, T.; Connaughton, V.; Frederiks, D. D.; Golenetskii, S. V.; Hurley, K.; Krimm, H. A.; Marisaldi, M.; Pal'shin, V. D.; Palmer, D.; Svinkin, D. S.; Terada, Y.; von Kienlin, A.; LIGO Scientific Collaboration; Virgo Collaboration; IPN Collaboration

    2014-07-01

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10-2M⊙c2 at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  3. LISA Pathfinder: First steps to observing gravitational waves from space

    NASA Astrophysics Data System (ADS)

    McNamara, Paul; LISA Pathfinder Collaboration

    2017-01-01

    With the first direct detection of gravitational waves a little over a year ago, the gravitational window to the Universe has been opened. The gravitational wave spectrum spans many orders of magnitude in frequency, with several of the most interesting astronomical sources emitting gravitational waves at frequencies only observable from space The European Space Agency (ESA) has been active in the field of space-borne gravitational wave detection for many years, and in 2013 selected the Gravitational Universe as the science theme for the third large class mission in the Cosmic Vision science programme. In addition, ESA took the step of developing the LISA Pathfinder mission to demonstrate the critical technologies required for a future mission. The goal of the LISA Pathfinder mission is to place a test body in free fall such that any external forces (acceleration) are reduced to levels lower than those expected from the passage of a gravitational wave LISA Pathfinder was launched on the 3rd December 2015 from the European Spaceport in Kourou, French Guiana. After a series of 6 apogee raising manoeuvres, the satellite left earth orbit, and travelled to its final science orbit around the first Sun-Earth Lagrange point (L1). Following a relatively short commissioning phase, science operations began on 1st March 2016. In the following 3 months over 100 experiments and over 1500hours of noise measurements have been performed, demonstrating that the observation of gravitational waves from space can be realised.

  4. Accumulative coupling between magnetized tenuous plasma and gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2017-01-01

    This talk presents solutions to the plasma waves induced by a plane gravitational wave (GW) train travelling through a region of strongly magnetized plasma. The computations constitute a very preliminary feasibility study for a possible ultra-high frequency gravitational wave detector, meant to take advantage of the observation that the plasma current is proportional to the GW amplitude, and not its square. This work is supported in part by NSFC Grant Number 11503003.

  5. Earth-orbiting resonant-mass gravitational wave detectors

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1989-01-01

    Earth-based gravitational wave detectors suffer from the need to support the large antenna masses against the earth's gravity without transmitting a significant amount of seismic noise. Passive vibration isolation is difficult to achieve below 1 Hz on the earth. Vibration-free space environment thus gives an opportunity to extend the frequency window of gravitational wave detection to ultralow frequencies. The weightless condition of a space laboratory also enables construction of a highly symmetric multimode antenna which is capable of resolving the direction of the source and the polarization of the incoming wave without resorting to multiantenna coincidence. Two types of earth-orbiting resonant-mass gravitational wave detectors are considered. One is a skyhook gravitational wave detector, proposed by Braginsky and Thorne (1985). The other is a spherical detector, proposed by Forward (1971) and analyzed by Wagoner and Paik (1976).

  6. (abstract) Spacecraft Doppler Tracking with the Deep Space Network in the Search for Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Renzetti, Nicholas

    1994-01-01

    The Deep Space Network generates accurate radio science data observables for investigators who use radio links between spacecraft and the Earth to examine small changes in the phase and/or amplitude of the signal to study a wide variety of structures and phenomena in space. Several such studies are directed at aspects of the theory of general relativity such as gravitational redshift and gravitational waves. A gravitational wave is a propagating, polarized gravitational field, a ripple in the curvature of space-time. In Einstein's theory of general relativity, the waves are propagating solutions of the Einstein field equations. Their amplitudes are dimensionless strain amplitudes that change the fractional difference in distance between test masses and the rates at which separated clocks keep time. Predicted by all relativistic theories of gravity, they are extremely weak (the ratio of gravitational forces to electrical forces is about 10(sup -40)) and are generated at detectable levels only by astrophysical sources - very massive sources under violent dynamical conditions. The waves have never been detected but searches in the low-frequency band using Doppler tracking of many spacecraft have been conducted and others are being planned. Upper limits have been placed on the gravitational wave strength with the best sensitivities to date are for periodic waves being 7 x 10(sup -15).

  7. Improved methods for detecting gravitational waves associated with short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Williamson, A. R.; Biwer, C.; Fairhurst, S.; Harry, I. W.; Macdonald, E.; Macleod, D.; Predoi, V.

    2014-12-01

    In the era of second generation ground-based gravitational wave detectors, short gamma-ray bursts (GRBs) will be among the most promising astrophysical events for joint electromagnetic and gravitational wave observation. A targeted, coherent search for gravitational wave compact binary merger signals in coincidence with short GRBs was developed and used to analyze data from the first generation LIGO and Virgo instruments. In this paper, we present improvements to this search that enhance our ability to detect gravitational wave counterparts to short GRBs. Specifically, we introduce an improved method for estimating the gravitational wave background to obtain the event significance required to make detections; implement a method of tiling extended sky regions, as required when searching for signals associated to poorly localized GRBs from the Fermi Gamma-ray Burst Monitor or the InterPlanetary Network; and incorporate astrophysical knowledge about the beaming of GRB emission to restrict the search parameter space. We describe the implementation of these enhancements and demonstrate how they improve the ability to observe binary merger gravitational wave signals associated with short GRBs. A targeted, coherent GRB search provides a 25% increase in distance sensitivity, or a doubling of the event rate, for well-localized GRBs when compared with a nontargeted, coincident analysis.

  8. (abstract) Spacecraft Doppler Tracking with the Deep Space Network in the Search for Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Renzetti, Nicholas

    1994-01-01

    The Deep Space Network generates accurate radio science data observables for investigators who use radio links between spacecraft and the Earth to examine small changes in the phase and/or amplitude of the signal to study a wide variety of structures and phenomena in space. Several such studies are directed at aspects of the theory of general relativity such as gravitational redshift and gravitational waves. A gravitational wave is a propagating, polarized gravitational field, a ripple in the curvature of space-time. In Einstein's theory of general relativity, the waves are propagating solutions of the Einstein field equations. Their amplitudes are dimensionless strain amplitudes that change the fractional difference in distance between test masses and the rates at which separated clocks keep time. Predicted by all relativistic theories of gravity, they are extremely weak (the ratio of gravitational forces to electrical forces is about 10(sup -40)) and are generated at detectable levels only by astrophysical sources - very massive sources under violent dynamical conditions. The waves have never been detected but searches in the low-frequency band using Doppler tracking of many spacecraft have been conducted and others are being planned. Upper limits have been placed on the gravitational wave strength with the best sensitivities to date are for periodic waves being 7 x 10(sup -15).

  9. Testing strong gravity with gravitational waves and Love numbers

    NASA Astrophysics Data System (ADS)

    Franzin, E.; Cardoso, V.; Pani, P.; Raposo, G.

    2017-05-01

    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects.

  10. Twin mirrors for laser interferometric gravitational-wave detectors.

    PubMed

    Sassolas, Benoît; Benoît, Quentin; Flaminio, Raffaele; Forest, Danièle; Franc, Janyce; Galimberti, Massimo; Lacoudre, Aline; Michel, Christophe; Montorio, Jean-Luc; Morgado, Nazario; Pinard, Laurent

    2011-05-01

    Gravitational-wave detectors such as Virgo and the laser interferometric gravitational-wave observatory (LIGO) use a long-baseline Michelson interferometer with Fabry-Perot cavities in the arms to search for gravitational waves. The symmetry between the two Fabry-Perot cavities is crucial to reduce the interferometer's sensitivity to the laser amplitude and frequency noise. To this purpose, the transmittance of the mirrors in both cavities should be as close as possible. This paper describes the realization and the characterization of the first twin large low-loss mirrors with transmissions differing by less than 0.01%.

  11. Observable induced gravitational waves from an early matter phase

    SciTech Connect

    Alabidi, Laila; Sasaki, Misao; Kohri, Kazunori; Sendouda, Yuuiti E-mail: kohri@post.kek.jp E-mail: sendouda@cc.hirosaki-u.ac.jp

    2013-05-01

    Assuming that inflation is succeeded by a phase of matter domination, which corresponds to a low temperature of reheating T{sub r} < 10{sup 9}GeV, we evaluate the spectra of gravitational waves induced in the post-inflationary universe. We work with models of hilltop-inflation with an enhanced primordial scalar spectrum on small scales, which can potentially lead to the formation of primordial black holes. We find that a lower reheat temperature leads to the production of gravitational waves with energy densities within the ranges of both space and earth based gravitational wave detectors.

  12. MAGIC electromagnetic follow-up of gravitational wave alerts

    NASA Astrophysics Data System (ADS)

    de Lotto, Barbara; Ansoldi, Stefano; Antonelli, Angelo; Berti, Alessio; Carosi, Alessandro; Longo, Francesco; Stamerra, Antonio

    The year 2015 witnessed the first direct observations of a transient gravitational-wave (GW) signal from binary black hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) Collaboration with the Virgo Collaboration. The MAGIC two 17m diameter Cherenkov telescopes system joined since 2014 the vast collaboration of electromagnetic facilities for follow-up of gravitational wave alerts. During the 2015 LIGO-Virgo science run we set up the procedure for GW alerts follow-up and took data following the last GW alert. MAGIC results on the data analysis and prospects for the forthcoming run are presented.

  13. Mass loss due to gravitational waves with Λ > 0

    NASA Astrophysics Data System (ADS)

    Saw, Vee-Liem

    2017-07-01

    The theoretical basis for the energy carried away by gravitational waves that an isolated gravitating system emits was first formulated by Hermann Bondi during the ’60s. Recent findings from the observation of distant supernovae revealed that the rate of expansion of our universe is accelerating, which may be well explained by sticking a positive cosmological constant into the Einstein field equations for general relativity. By solving the Newman-Penrose equations (which are equivalent to the Einstein field equations), we generalize this notion of Bondi mass-energy and thereby provide a firm theoretical description of how an isolated gravitating system loses energy as it radiates gravitational waves, in a universe that expands at an accelerated rate. This is in line with the observational front of LIGO’s first announcement in February 2016 that gravitational waves from the merger of a binary black hole system have been detected.

  14. The generation of gravitational radiation by escaping supernova neutrinos

    NASA Technical Reports Server (NTRS)

    Epstein, R.

    1978-01-01

    Formulae for the gravitational radiation due to the anisotropic axisymmetric emission of neutrinos from a small source are derived. We find that a burst of neutrinos released anisotropically from a supernova will generate a burst of gravitational radiation that may be comparable in amplitude and energy to the gravitational radiation generated by the fluid motion in the collapse of the supernova core.

  15. The generation of gravitational radiation by escaping supernova neutrinos

    NASA Technical Reports Server (NTRS)

    Epstein, R.

    1978-01-01

    Formulae for the gravitational radiation due to the anisotropic axisymmetric emission of neutrinos from a small source are derived. We find that a burst of neutrinos released anisotropically from a supernova will generate a burst of gravitational radiation that may be comparable in amplitude and energy to the gravitational radiation generated by the fluid motion in the collapse of the supernova core.

  16. Neutrinos from supernovae as a trigger for gravitational wave search.

    PubMed

    Pagliaroli, G; Vissani, F; Coccia, E; Fulgione, W

    2009-07-17

    Exploiting an improved analysis of the nue signal from the explosion of a galactic core collapse supernova, we show that it is possible to identify within about 10 ms the time of the bounce, which is strongly correlated to the time of the maximum amplitude of the gravitational signal. This allows us to precisely identify the gravitational wave burst timing.

  17. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part III

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this third and final lecture, we present applications of the results of numerical relativity simulations to gravitational wave detection and astrophysics.

  18. Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part I

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this first lecture, we introduce the basic ideas of numerical relativity, highlighting the challenges that arise in simulating gravitational wave sources on a computer.

  19. Eccentric gravitational wave bursts in the post-Newtonian formalism

    NASA Astrophysics Data System (ADS)

    Loutrel, Nicholas; Yunes, Nicolás

    2017-07-01

    The detection of GW150914 by ground based gravitational wave observatories has brought about a new era in astrophysics. At optimal sensitivity, these observatories are expected to detect several events each year, with one or two of these occurring with non-negligible eccentricity. Such eccentric binaries will emit bursts of gravitational radiation during every pericenter passage, where orbital velocities can reach greater than ten percent the speed of light. As a result, such binaries may prove to be powerful probes of extreme gravitational physics and astrophysics. A promising method of achieving detection of such binaries is through power stacking, where the power in each burst is added up in time-frequency space. This detection strategy requires a theoretical prior of where the bursts will occur in time and frequency so that one knows where to search for successive bursts. We here present a generic post-Newtonian formalism for constructing such time-frequency model priors at generic post-Newtonian order. We apply our formalism to generate a burst model at third post-Newtonian order, making it potentially the most accurate, fully analytic model to date.

  20. Weber-type gravitational wave antenna with two resonant transducers: A new tool for gravitational wave signal identification

    SciTech Connect

    Canzoniere, M. ); Majorana, E. , Sezione di Roma, Rome Dipartimento di Fisica, Universita di Catania, Catania ); Ogawa, Y. ); Rapagnani, P.; Ricci, F. Istituto Nazionale di Fisica Nucleare , Sezione di Roma, Rome )

    1993-06-15

    We propose a simple new configuration of measurements for the detection of gravitational waves using a Weber-type gravitational wave antenna. The detection scheme is characterized by three normal modes of vibration; one of them is uncoupled to the gravitational wave interaction, and it is available as an anticoincidence veto for signals of different origin, such as those due to cosmic rays interacting with the antenna. Moreover, on the basis of a simplified analysis of the signal-to-noise ratio of this setup, we show that it is easier to approach the final sensitivity limit of a linear detection scheme of measurements.

  1. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  2. NASA's Gravitational-Wave Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-07-01

    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons, the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines, and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to define a conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The Study results are summarized.

  3. Theoretical implications of detecting gravitational waves

    SciTech Connect

    Geshnizjani, Ghazal; Kinney, William H. E-mail: whkinney@buffalo.edu

    2015-08-01

    This paper is the third in a series of theorems which state how cosmological observations can provide evidence for an early phase of acceleration in the universe. It was demonstrated in [1,2], that the observed power spectrum for scalar perturbations forces all possible alternative theories of inflation to theories other than General Relativity. It was shown that generically, without a phase of accelerated expansion, these alternatives have to break at least one of the following tenets of classical general relativity: the Null Energy Condition (NEC), subluminal signal propagation, or sub-Planckian energy densities. In this paper we prove how detection of primordial gravitational waves at large scales can provide independent evidence to support a phase of accelerated expansion. This proof does not rely on the spectral index for tensor modes but relies on validity of quantum field theory in curved space time and tensor modes being sourced from adiabatic vacuum fluctuations. Our approach, like in the case of scalars, is proof by contradiction: we investigate the possibility of a detectable tensor signal sourced by vacuum fluctuations in a non-accelerating, sub-Planckian universe using cosmological perturbation theory and derive contradictory limits on cosmological dynamics. The contradiction implies that one or more of our axioms for early universe must have been broken. The bound from tensor perturbations is not only independent of, but also stronger than the one obtained from scalar power spectrum.

  4. Studies for Improved Gravitational Wave Sensitivity

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.

    2003-01-01

    The main purpose of this study was to investigate the possible accuracy of the Laser Interferometer Space Antenna (LISA) for studying gravitational waves at frequencies below the usually quoted frequency range of 100 microHz to 1 Hz. The extended frequency range of most interest is from 3 to 100 microHz. During this work, a new source of spurious accelerations of the test masses for LISA that had been overlooked previously was identified. It is one of the main noise contributors at 100 microHz, and rises as the inverse of the frequency to become probably the largest error source at 3 microHz. The new error source is fluctuations in the charge on the test mass due to cosmic ray charging interacting with the electric fields inside the housing that carries the capacitive electrodes for sensing relative motion of the test mass with respect to the housing. Even for zero charge on the test mass, there will be electrical fields acting on each face due to work function differences between the capacitive electrodes and the test mass.

  5. Pulsar timing arrays: closing in on low- frequency gravitational waves

    NASA Astrophysics Data System (ADS)

    Sampson, Laura

    2017-01-01

    Just like electromagnetic radiation, gravitational waves come in a wide spectrum of frequencies. Different frequencies give us access to different physical information about our universe. By taking advantage of the phenomenal stability of the spin rate of millisecond pulsars, pulsar timing arrays will allow us to detect gravitational waves in the nanohertz band. The most likely source in this band is supermassive black hole binaries, formed when galaxies merge, and so the detection of these gravitational waves gives us a new tool to learn about the merger history of galaxies and the environment in galactic cores. I will discuss the exciting astrophysics we can learn using pulsar timing arrays, as well as the prospects and expected timeline for gravitational wave detection in this new frequency regime.

  6. Two Timescale Approximation Applied to Gravitational Waves from Eccentric EMRIs

    NASA Astrophysics Data System (ADS)

    Moxon, Jordan; Flanagan, Eanna; Hinderer, Tanja; Pound, Adam

    2016-03-01

    Gravitational-wave driven inspirals of compact objects into massive black holes (Extreme Mass Ratio Inspirals - EMRIs) form an interesting, long-lived signal for future space-based gravitational wave detectors. Accurate signal predictions will be necessary to take full advantage of matched filtering techniques, motivating the development of a calculational technique for deriving the gravitational wave signal to good approximation throughout the inspiral. We report on recent work on developing the two-timescale technique with the goal of predicting waveforms from eccentric equatorial systems to subleading (post-adiabatic) order in the phase, building on recent work by Pound in the scalar case. The computation requires us to understand the dissipative component of the second-order self force. It also demands careful consideration of how the two timescale (near-zone) approximation should match with the post-Minkowski approximation of the gravitational waves at great distances.

  7. Gravitational waves: History of black holes revealed by their spin

    NASA Astrophysics Data System (ADS)

    Sigurðsson, Steinn

    2017-08-01

    Four probable detections of gravitational waves have so far been reported, each associated with the merger of two black holes. Analysis of the signals allows formation theories of such black-hole systems to be tested. See Letter p.426

  8. The Gravitational Wave Emission of White Dwarf Dynamical Interactions

    NASA Astrophysics Data System (ADS)

    Aznar-Siguán, Gabriela; García-Berro, Enrique; Lorén-Aguilar, Pablo

    We compute the emission of gravitational waves of white dwarf dynamical interactions and close encounters in dense stellar environments and we compare it with the sensitivity curves of planned space-borne gravitational wave detectors, like eLISA and ALIA. We find that for the three possible outcomes of these interactions—which are the formation of an eccentric binary system, a lateral collision in which several mass transfer episodes occur, and a direct one in which just a single mass transfer episode takes place—only those in which an eccentric binary are formed are likely to be detected by the planned gravitational wave mission eLISA, while ALIA would be able to detect the gravitational wave signal emitted in lateral collisions.

  9. Multiple Signal Classification for Gravitational Wave Burst Search

    NASA Astrophysics Data System (ADS)

    Cao, Junwei; He, Zhengqi

    2013-01-01

    This work is mainly focused on the application of the multiple signal classification (MUSIC) algorithm for gravitational wave burst search. This algorithm extracts important gravitational wave characteristics from signals coming from detectors with arbitrary position, orientation and noise covariance. In this paper, the MUSIC algorithm is described in detail along with the necessary adjustments required for gravitational wave burst search. The algorithm's performance is measured using simulated signals and noise. MUSIC is compared with the Q-transform for signal triggering and with Bayesian analysis for direction of arrival (DOA) estimation, using the Ω-pipeline. Experimental results show that MUSIC has a lower resolution but is faster. MUSIC is a promising tool for real-time gravitational wave search for multi-messenger astronomy.

  10. The Science of Gravitational Waves with Space Observatories

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2013-01-01

    After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.

  11. Visualization of Merging Black Holes and Gravitational Waves

    NASA Image and Video Library

    This visualization shows gravitational waves emitted by two black holes of nearly equal mass as they spiral together and merge. Orange ripples represent distortions of space-time caused by the rapi...

  12. Black Hole Kicks as New Gravitational Wave Observables.

    PubMed

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  13. Tsunamis generated from long, thin, gravitationally accelerated landslides

    NASA Astrophysics Data System (ADS)

    Take, Andy; Mulligan, Ryan; Miller, Garrett

    2016-04-01

    Landslide generated tsunamis are major hazards for developed areas on lakes and reservoirs. Over the past twenty years, enormous advances have been made in both the physical and numerical modeling of the wave generation, wave propagation, and run-up components of this problem by the geoscience community. However, nearly all of the experiments capturing the mechanics of wave generation have been conducted using flume tests of either zero-porosity blocks, or granular material pneumatically accelerated to achieve different impact velocities. Therefore, wave generation has been investigated primarily for physical model landslides that tend to be short, thick, and have a packing that is not entirely dissimilar from the static packing of the material in the release box. In this study we a large-scale landslide flume consisting of an 8.2 m long 30° landslide slope to gravitationally accelerate granular landslides into a 2.1 m wide and 33.0 m long wave flume that terminates with a 27° runup slope, with still water depths of 0.05 to 0.5 m in the reservoir. Granular material is released at the top of the inclined portion of the flume, and is then accelerated under gravity to produce a long, thin, high porosity granular flow prior to impact with the water reservoir. The characteristics of the waves generated under the these conditions are then compared to the results from previous studies on shorter and thicker landslides, before drawing conclusions regarding the applicability of existing empirical models describing the maximum amplitude of landslide generated waves for this class of landslide.

  14. Electromagnetic waves and Stokes parameters in the wake of a gravitational wave

    NASA Astrophysics Data System (ADS)

    Hacyan, Shahen

    2012-11-01

    A theoretical description of electromagnetic waves in the background of a (weak) gravitational wave is presented. Explicit expressions are obtained for the Stokes parameters during the passage of a plane-fronted gravitational wave described by the Ehlers-Kundt metric. In particular, it is shown that the axis of the polarization ellipse oscillates, its ellipticity remaining constant.

  15. Perturbative and gauge invariant treatment of gravitational wave memory

    NASA Astrophysics Data System (ADS)

    Bieri, Lydia; Garfinkle, David

    2014-04-01

    We present a perturbative treatment of gravitational wave memory. The coordinate invariance of Einstein's equations leads to a type of gauge invariance in perturbation theory. As with any gauge invariant theory, results are more clear when expressed in terms of manifestly gauge invariant quantities. Therefore we derive all our results from the perturbed Weyl tensor rather than the perturbed metric. We derive gravitational wave memory for the Einstein equations coupled to a general energy-momentum tensor that reaches null infinity.

  16. Effect of extra dimensions on gravitational waves from cosmic strings.

    PubMed

    O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-08-20

    We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands.

  17. LIGO detections and the birth of gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Díaz, M. C.

    2017-10-01

    This is a review of the LIGO first gravitational wave detections announced during 2016 and the signification they have as the birth of gravitational wave astronomy. We describe briefly the results, some of it possible astrophysical implications, and also report about the electromagnetic follow-up efforts during the first detection. We give account also of the participation of observational facilities and astronomers from Argentina in this effort.

  18. Anisotropies in the gravitational-wave stochastic background

    SciTech Connect

    Ölmez, S.; Mandic, V.; Siemens, X. E-mail: mandic@physics.umn.edu

    2012-07-01

    We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising from random fluctuations in the number of gravitational-wave sources. We first develop the general formalism which can be applied to different cosmological or astrophysical scenarios. We then apply this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies as a function of angle and frequency.

  19. Gravitational waves from global second order phase transitions

    SciTech Connect

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier; Vlcek, Brian E-mail: larryp@caltech.edu E-mail: bvlcek@uwm.edu

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  20. Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; Loeb, Abraham

    2017-07-01

    In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.

  1. Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves.

    PubMed

    Chesler, Paul M; Loeb, Abraham

    2017-07-21

    In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.

  2. Gravitational Wave Science: Challenges for Numerical Relativistic Astrophysics

    NASA Technical Reports Server (NTRS)

    Cenrella, Joan

    2005-01-01

    Gravitational wave detectors on earth and in space will open up a new observational window on the universe. The new information about astrophysics and fundamental physics these observations will bring is expected to pose exciting challenges. This talk will provide an overview of this emerging area of gravitational wave science, with a focus on the challenges it will bring for numerical relativistic astrophysics and a look at some recent results.

  3. Polarizations of gravitational waves in f (R ) gravity

    NASA Astrophysics Data System (ADS)

    Liang, Dicong; Gong, Yungui; Hou, Shaoqi; Liu, Yunqi

    2017-05-01

    We point out that there are only three polarizations for gravitational waves in f (R ) gravity, and the polarization due to the massive scalar mode is a mix of the pure longitudinal and transverse breathing polarization. The classification of the six polarizations by the Newman-Penrose quantities is based on weak, plane and null gravitational waves, so it is not applicable to the massive mode.

  4. Inflationary gravitational waves and the evolution of the early universe

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Nakayama, Kazunori E-mail: moroi@hep-th.phys.s.u-tokyo.ac.jp

    2014-01-01

    We study the effects of various phenomena which may have happened in the early universe on the spectrum of inflationary gravitational waves. The phenomena include phase transitions, entropy productions from non-relativistic matter, the production of dark radiation, and decoupling of dark matter/radiation from thermal bath. These events can create several characteristic signatures in the inflationary gravitational wave spectrum, which may be direct probes of the history of the early universe and the nature of high-energy physics.

  5. Search for Gravitational Wave Counterparts with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Hui, C. M.

    2017-01-01

    The progenitor of short gamma-ray bursts (GRBs) is believed to be the merger of two compact objects. This type of events will also produce gravitational waves. Since the gravitational waves discovery by LIGO, the search for a joint detection with an electromagnetic counterpart has been ongoing. Fermi GBM detects approximately 40 short GRBs per year, and we have been expanding our search looking for faint events in the GBM data that did not trigger onboard.

  6. Effect of Extra Dimensions on Gravitational Waves from Cosmic Strings

    SciTech Connect

    O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-08-20

    We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands.

  7. Prospects for searches for long-duration gravitational-waves without time slides

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Meyers, Patrick; Kandhasamy, Shivaraj; Thrane, Eric; Christensen, N.

    2015-08-01

    The detection of unmodeled gravitational-wave transients by ground-based interferometric gravitational-wave detectors is an important goal for the advanced detector era. These searches are commonly cast as pattern recognition problems, where the goal is to identify statistically significant clusters indicating the presence of gravitational-wave transients in spectrograms of detector strain power when the precise signal morphology is unknown. In previous work, we have introduced a clustering algorithm referred to as seedless clustering, and shown that it is a powerful tool for detecting weak and long-lived (˜10 - 1000 s ) gravitational-wave transients. However, as the algorithm is currently conceived, in order to carry out a search on approximately a year of data, significant computational resources may be required for estimating background events. Currently, the use of the algorithm is limited by the computational resources required for performing background studies to assign significance to events identified by the algorithm. In this paper, we present an analytic method for estimating the background generated by the seedless clustering algorithm and compare the performance to both Monte Carlo Gaussian noise and time-shifted gravitational-wave data from a week of LIGO's 5th Science Run. We demonstrate qualitative agreement between the model and measured distributions and argue that the approximation will be useful to supplement conventional background estimation techniques for advanced detector searches for long-duration gravitational-wave transients.

  8. Birth and initial developments of experiments with resonant detectors searching for gravitational waves

    NASA Astrophysics Data System (ADS)

    Pizzella, G.

    2016-12-01

    A history of the experiments for the search of gravitational waves, with emphasis on the experiments made by the Rome group, is given. The search for gravitational waves was initiated by the brilliant scientific acumen of Joseph Weber. In this paper we start from the early times of the resonant detectors at room temperature and continue with the cryogenic resonant detectors: STANFORD, ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE. These cryogenic detectors reached a sensitivity able to observe gravitational waves generated by the conversion of about 0.001 solar masses in the Galaxy. This was an improvement by a factor of a few thousand in energy with respect to the early room temperature experiments. No clear signals due to gravitational waves have been observed with this technique. This research, that has lasted four decades, has paved the way to the more sensitive detectors for gravitational waves, the long-arm laser interferometers, which announced, on February 12th 2016, the first observation of gravitational waves.

  9. Cosmological inference using only gravitational wave observations of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; Li, Tjonnie G. F.; Messenger, Chris

    2017-02-01

    Gravitational waves emitted during the coalescence of binary neutron star systems are self-calibrating signals. As such, they can provide a direct measurement of the luminosity distance to a source without the need for a cross-calibrated cosmic distance-scale ladder. In general, however, the corresponding redshift measurement needs to be obtained via electromagnetic observations since it is totally degenerate with the total mass of the system. Nevertheless, Fisher matrix studies have shown that, if information about the equation of state of the neutron stars is available, it is possible to extract redshift information from the gravitational wave signal alone. Therefore, measuring the cosmological parameters in pure gravitational-wave fashion is possible. Furthermore, the huge number of sources potentially observable by the Einstein Telescope has led to speculations that the gravitational wave measurement is potentially competitive with traditional methods. The Einstein Telescope is a conceptual study for a third generation gravitational wave detector which is designed to yield 1 03- 1 07 detections of binary neutron star systems per year. This study presents the first Bayesian investigation of the accuracy with which the cosmological parameters can be measured using information coming only from the gravitational wave observations of binary neutron star systems by the Einstein Telescope. We find, by direct simulation of 1 03 detections of binary neutron stars, that, within our simplifying assumptions, H0 , Ωm , ΩΛ , w0 and w1 can be measured at the 95% level with an accuracy of ˜8 % , 65%, 39%, 80% and 90%, respectively. We also find, by extrapolation, that a measurement accuracy comparable with current measurements by Planck is possible if the number of gravitational wave events observed is O (1 06 - 7) . We conclude that, while not competitive with electromagnetic missions in terms of significant digits, gravitational waves alone are capable of providing a

  10. From photons to gravitational waves: pulsars in the era of multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Razzano, Massimiliano

    2015-08-01

    Multiwavelength astronomy has provided the most complete picture of the Universe so far. In the coming years the second-generation interferometers like Advanced LIGO and Advanced Virgo will reach sensitivities good enough to detect the first gravitational wave signals, opening a new window on the cosmos. In this new era of multimessenger astronomy, pulsars are very promising candidates to be studied using electromagnetic radiation and gravitational waves. In fact, being the endpoints of the evolution of massive stars, they are great tools to understand stellar structure and evolution, as well as the population of the Galaxy. Moreover, they are excellent natural laboratories to probe the laws of Physics under extreme conditions of gravity and elecromagnetic fields. I will review the multimessenger opportunities for the electromagnetic and gravitational observations of pulsars, highlighting their potential as continuous gravitational waves emitters.

  11. Experimental Limits on Gravitational Waves in the MHz frequency Range

    SciTech Connect

    Lanza, Robert Jr.

    2015-03-01

    This thesis presents the results of a search for gravitational waves in the 1-11MHz frequency range using dual power-recycled Michelson laser interferometers at Fermi National Accelerator Laboratory. An unprecedented level of sensitivity to gravitational waves in this frequency range has been achieved by cross-correlating the output fluctuations of two identical and colocated 40m long interferometers. This technique produces sensitivities better than two orders of magnitude below the quantum shot-noise limit, within integration times of less than 1 hour. 95% confidence level upper limits are placed on the strain amplitude of MHz frequency gravitational waves at the 10-21 Hz-1/2 level, constituting the best direct limits to date at these frequencies. For gravitational wave power distributed over this frequency range, a broadband upper limit of 2.4 x 10-21Hz-1/2 at 95% confidence level is also obtained. This thesis covers the detector technology, the commissioning and calibration of the instrument, the statistical data analysis, and the gravitational wave limit results. Particular attention is paid to the end-to-end calibration of the instrument’s sensitivity to differential arm length motion, and so to gravitational wave strain. A detailed statistical analysis of the data is presented as well.

  12. Response of a Doppler canceling system to plane gravitational waves

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for a gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  13. Response of a Doppler canceling system to plane gravitational waves

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for a gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  14. Prospects of observing continuous gravitational waves from known pulsars

    NASA Astrophysics Data System (ADS)

    Pitkin, Matthew

    2011-08-01

    Several past searches for gravitational waves from a selection of known pulsars have been performed with data from the science runs of the Laser Interferometer Gravitational-Wave Observatory (LIGO) gravitational wave detectors. So far these have led to no detection, but upper limits on the gravitational wave amplitudes have been set. Here we study our intrinsic ability to detect, and estimate the gravitational wave amplitude for non-accreting pulsars. Using spin-down limits on emission as a guide we examine amplitudes that would be required to observe known pulsars with future detectors (Advanced LIGO, Advanced Virgo and the Einstein Telescope), assuming that they are triaxial stars emitting at precisely twice the known rotation frequency. Maximum allowed amplitudes depend on the stars’ equation of state (e.g. a normal neutron star, a quark star, a hybrid star) and the theoretical mass quadrupoles that they can sustain. We study what range of quadrupoles, and therefore equation of state (EoS), would be consistent with being able to detect these sources. For globular cluster pulsars, with spin-downs masked by accelerations within the cluster, we examine what spin-down values gravitational wave observations would be able to set. For all pulsars we also alternatively examine what internal magnetic fields they would need to sustain observable ellipticities.

  15. Gravitational wave background from Standard Model physics: qualitative features

    SciTech Connect

    Ghiglieri, J.; Laine, M. E-mail: laine@itp.unibe.ch

    2015-07-01

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.

  16. Gravitational wave background from Standard Model physics: qualitative features

    SciTech Connect

    Ghiglieri, J.; Laine, M.

    2015-07-16

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at T>160 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.

  17. Grating Fabrication for Gravitational-Wave Interferometers and LISA GRS

    NASA Astrophysics Data System (ADS)

    Lu, Patrick; Sun, Ke-Xun; Byer, Robert L.

    2006-11-01

    Future LISA and LIGO projects may require gratings for interferometry and angular sensing to accurately monitor test mass positions. This paper summarizes some techniques used to create gratings on materials that will make up the test masses of next generation gravitational-wave detectors. As grating tip/tilt sensing will require two-dimensional grating structures with duty cycles and unit cell shapes that are as of yet undetermined, we concentrate on approaches that allow us to readily generate complex patterns. This paper discusses e-beam lithography for dielectric surfaces, and mechanical trans-imprinting and focused ion-beam writing for gold. These methods are more flexible than traditional techniques, such as the holographic exposure of photoresist with multiple laser beams. Grating patterns suitable for optical sensing have been successfully demonstrated on the surfaces of dielectric materials and gold. Their diffraction efficiencies have been measured to be sufficiently high for tip/tilt sensing.

  18. Lepton asymmetry in the primordial gravitational wave spectrum

    SciTech Connect

    Ichiki, Kiyotomo; Yamaguchi, Masahide; Yokoyama, Jun'Ichi

    2007-04-15

    Effects of neutrino free streaming are evaluated on the primordial spectrum of gravitational radiation taking both neutrino chemical potential and masses into account. The former or the lepton asymmetry induces two competitive effects, namely, to increase anisotropic stress, which damps the gravitational wave more, and to delay the matter-radiation equality time, which reduces the damping. The latter effect is more prominent and a large lepton asymmetry would reduce the damping. We may thereby be able to measure the magnitude of lepton asymmetry from the primordial gravitational wave spectrum.

  19. Gravitational wave background from binary systems

    SciTech Connect

    Rosado, Pablo A.

    2011-10-15

    Basic aspects of the background of gravitational waves and its mathematical characterization are reviewed. The spectral energy density parameter {Omega}(f), commonly used as a quantifier of the background, is derived for an ensemble of many identical sources emitting at different times and locations. For such an ensemble, {Omega}(f) is generalized to account for the duration of the signals and of the observation, so that one can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often called confusion noise or stochastic background, is made by signals that cannot be either individually identified or subtracted out of the data. To account for the resolvability of the background, the overlap function is introduced. This function is a generalization of the duty cycle, which has been commonly used in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar binaries and massive black hole binaries) are presented over the frequencies of all existing and planned detectors. A semi-analytical formula for {Omega}(f) is derived in the case of stellar binaries (containing white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of background, upper and lower limits are given, to account for the uncertainties in some astrophysical parameters such as binary coalescence rates. One interesting result concerns all current and planned ground-based detectors (including the Einstein Telescope). In their frequency range, the background of binaries is resolvable and only sporadically present. In other words, there is no stochastic background of binaries for ground-based detectors.

  20. Pulsar timing arrays: the promise of gravitational wave detection.

    PubMed

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves.

  1. The potential for very high-frequency gravitational wave detection

    NASA Astrophysics Data System (ADS)

    Cruise, A. M.

    2012-05-01

    The science case for observing gravitational waves at frequencies in the millihertz-kilohertz range using LIGO, VIRGO, GEO600 or LISA is very strong and the first results are expected at these frequencies. However, as gravitational wave astronomy progresses beyond the first detections, other frequency bands may be worth exploring. Early predictions of gravitational wave emission from discrete sources at very much higher frequencies (megahertz and above) have been published and more recent studies of cosmological signals from inflation, Kaluza-Klein modes from gravitational interactions in brane worlds and plasma instabilities surrounding violent astrophysical events, are all possible sources. This communication examines current observational possibilities and the detector technology required to make meaningful observations at these frequencies.

  2. LISA: Science and Prospects for Gravitational Wave Detection in Space

    NASA Astrophysics Data System (ADS)

    Larson, Shane L.

    2017-01-01

    Spaceborne gravitational wave observatories with million kilometer armlengths will probe gravitational waves with kilosecond periods. This part of the spectrum is populated by a diverse menagerie of high energy astrophysical systems that will give new insights into stellar evolution, the formation and evolution of super-massive black holes, and the growth of structure in the Universe. LISA is a laser interferometric observatory that will be sensitive to gravitational wave frequencies from about 10 microHertz to about 1 Hertz, providing gravitational wave observations of these phenomena that will enable population studies, detailed characterization of the structure and bulk motion of matter in these systems, as well as enabling new, detailed tests of physics in strong gravitational fields. The core LISA measurement has been demonstrated by the successful flight of LISA Pathfinder, paving the way for the start of LISA mission design and planning. In this talk, we will discuss the science that low-frequency gravitational wave observations will reveal and enable, as well as the current technology status and progress forward toward an eventual LISA flight.

  3. Newtorites in bar detectors of gravitational wave

    NASA Astrophysics Data System (ADS)

    Ronga, F.; ROG Collaboration

    2016-05-01

    The detection of particles with only gravitational interactions (Newtorites) in gravitational bar detectors was studied in 1984 by Bernard, De Rujula and Lautrup. The negative results of dark matter searches suggest to look to exotic possibilities like Newtorites. The limits obtained with the Nautilus bar detector will be presented and the possible improvements will be discussed. Since the gravitational coupling is very weak, the possible limits are very far from what is needed for dark matter, but for large masses are the best limits obtained on the Earth. An update of limits for MACRO particles will be given.

  4. Observing binary black hole ringdowns by advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Kokkotas, Kostas D.; Laguna, Pablo

    2017-05-01

    The direct discovery of gravitational waves from compact binary systems leads for the first time to explore the possibility of black hole spectroscopy. Newly formed black holes produced by coalescing events are copious emitters of gravitational radiation, in the form of damped sinusoids, the quasinormal modes. The latter provides a precious source of information on the nature of gravity in the strong field regime, as they represent a powerful tool to investigate the validity of the no-hair theorem. In this work we perform a systematic study on the accuracy with which current and future interferometers will measure the fundamental parameters of ringdown events, such as frequencies and damping times. We analyze how these errors affect the estimate of the mass and the angular momentum of the final black hole, constraining the parameter space which will lead to the most precise measurements. We explore both single and multimode events, showing how the uncertainties evolve when multiple detectors are available. We also prove that, for the second generation of interferometers, a network of instruments is a crucial and necessary ingredient to perform strong-gravity tests of the no-hair theorem. Finally, we analyze the constraints that a third generation of detectors may be able to set on the mode's parameters, comparing the projected bounds against those obtained for current facilities.

  5. DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES

    SciTech Connect

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz; Berti, Emanuele; O’Shaughnessy, Richard; Mandel, Ilya; Fryer, Christopher; Holz, Daniel E.; Pannarale, Francesco

    2015-06-20

    The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)—i.e., neutron star–neutron star (NS–NS), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) binary systems—is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown gravitational waveform models in our signal-to-noise ratio calculations. We find that (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS–NS and BH–NS systems, but it boosts rates by a factor of ∼1.5 for BH–BH systems; (2) in almost all of our models BH–BH systems yield by far the largest rates, followed by NS–NS and BH–NS systems, respectively; and (3) a majority of the detectable BH–BH systems were formed in the early universe in low-metallicity environments. We make predictions for the distributions of detected binaries and discuss what the first GW detections will teach us about the astrophysics underlying binary formation and evolution.

  6. The Influence of High-Frequency Gravitational Waves Upon Muscles

    SciTech Connect

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-30

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.

  7. Understanding the Physical Mechanisms and Capabilities of Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Koop, Michael J.

    The direct detection of gravitational waves from astrophysical sources has been a goal of physics and astronomy for over 40 years. Two modern techniques for detecting gravitational waves that are actively being pursued are gravitational wave detection via laser interferometry and pulsar timing arrays (PTAs). In this dissertation we address a number of questions regarding how these detectors physically interact with a gravitational wave and how PTAs can be optimized for various scientific goals. We develop a fully physical and gauge-invariant description of the response of a wide class of light travel time gravitational wave detectors (which includes PTAs and laser interferometers) in terms of the spacetime Riemann curvature, the physical quantity that describes all gravitational phenomena in general relativity. In the presence of a gravitational wave with a radiation length-scale that is much shorter than the background curvature length-scale, we find the leading contribution to the detector response is an integral of the gravitational wave curvature along unperturbed photon paths between the detector components. This provides a simple, intuitive understanding of how these detectors operate. This framework also allows the straightforward calculation of corrections to the detector response corresponding to the relative motion of detector components and non-Minkowski background spacetimes. We then focus on gravitational wave detection via pulsar timing and introduce performance metrics that quantify the ability of a PTA to detect isolated gravitational wave signals, measure their radiation polarization, and localize their sources on the sky. The PTA sensitivity depends, in part, on the measured timing noise of each pulsar in the array. The timing noise can be reduced by longer pulsar observation times. Using the NANOGrav PTA as an example case, we identify a set of strategies for the allocation of available telescope time between pulsars that are optimized for

  8. Search for Transient Gravitational Waves in Coincidence with Short-Duration Radio Transients During 2007-2013

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; hide

    2016-01-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  9. Towards robust detection of gravitational waves by pulsar timing

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; Sampson, Laura

    2016-01-01

    Precision timing of highly stable milli-second pulsars is a promising technique for detecting very low frequency sources of gravitational waves. In any one pulsar, the gravitational wave signal appears as an additional source of timing noise, and it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources, or in the limit where there are many pulsars in the array, the waves produce a unique tensor correlation pattern that depends only on the angular separation of each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when there are a finite number of signals and pulsars, which breaks the statistical isotropy of the timing array and of the gravitational wave sky. We also study the use of "sky-scrambles'' to break the signal correlations in the data as a way to increase confidence in a detection.

  10. Learning about Black-Hole Formation from Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kesden, Michael H.

    2017-01-01

    The first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves from two binary black-hole mergers. Although astrophysical black holes are simple objects fully characterized by their masses and spins, key features of binary black-hole formation such as mass transfer, natal kicks, and common-envelope evolution can misalign black-hole spins with the orbital angular momentum of the binary. These misaligned spins will precess as gravitational-wave emission causes the black holes to inspiral to separations at which the waves are detectable by observatories like LIGO. Spin precession modulates the amplitude and frequency of the gravitational waves observed by LIGO, allowing it to not only test general relativity but also reveal the secrets of black-hole formation. This talk will briefly describe those elements of binary black-hole formation responsible for initial spin misalignments, how spin precession and radiation reaction in general relativity determine how spins evolve from formation until the black holes enter LIGO’s sensitivity band, and how spin-induced gravitational-wave modulation in band can be used as a diagnostic of black-hole formation.

  11. The space microwave interferometer and the search for cosmic background gravitational wave radiation

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel

    1989-01-01

    Present and planned investigations which use interplanetary spacecraft for gravitational wave searches are severely limited in their detection capability. This limitation has to do both with the Earth-based tracking procedures used and with the configuration of the experiments themselves. It is suggested that a much improved experiment can now be made using a multiarm interferometer designed with current operating elements. An important source of gravitational wave radiation, the cosmic background, may well be within reach of detection with these procedures. It is proposed to make a number of experimental steps that can now be carried out using TDRSS spacecraft and would conclude in the establishment of an operating multiarm microwave interferometer. This interferometer is projected to have a sensitivity to cosmic background gravitational wave radiation with an energy of less than 10(exp -4) cosmic closure density and to periodic waves generating spatial strain approaching 10(exp -19) in the range 0.1 to 0.001 Hz.

  12. Squeezed states in the theory of primordial gravitational waves

    NASA Technical Reports Server (NTRS)

    Grishchuk, Leonid P.

    1992-01-01

    It is shown that squeezed states of primordial gravitational waves are inevitably produced in the course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of squeezed light. Squeezed parameters and statistical properties of the expected relic gravity-wave radiation are described.

  13. Wave-theoretical description of the solar gravitational lens

    NASA Astrophysics Data System (ADS)

    Turyshev, Slava G.

    2017-04-01

    We discuss the propagation of electromagnetic (EM) waves in the post-Newtonian approximation of the general theory of relativity. We consider diffraction of EM waves in the static gravitational field of a massive monopole. We develop a wave-theoretical description of the solar gravitational lens (SGL) and show that with its enormous magnifying power of ˜1011 (for λ =1 μ m ) and angular resolution of ≲10-10 arcsec , the SGL may be used for direct megapixel imaging of an exoplanet.

  14. Soft gravitons and the memory effect for plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-09-01

    The "gravitational memory effect" due to an exact plane wave provides us with an elementary description of the diffeomorphisms associated with the analogue of "soft gravitons for this nonasymptotically flat system. We explain how the presence of the latter may be detected by observing the motion of freely falling particles or other forms of gravitational wave detection. Numerical calculations confirm the relevance of the first, second and third time integrals of the Riemann tensor pointed out earlier. Solutions for various profiles are constructed. It is also shown how to extend our treatment to Einstein-Maxwell plane waves and a midisuperspace quantization is given.

  15. Resonant mode for gravitational wave detectors based on atom interferometry

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet

    2016-11-01

    We describe an atom interferometric gravitational wave detector design that can operate in a resonant mode for increased sensitivity. By oscillating the positions of the atomic wave packets, this resonant detection mode allows for coherently enhanced, narrow-band sensitivity at target frequencies. The proposed detector is flexible and can be rapidly switched between broadband and narrow-band detection modes. For instance, a binary discovered in broadband mode can subsequently be studied further as the inspiral evolves by using a tailored narrow-band detector response. In addition to functioning like a lock-in amplifier for astrophysical events, the enhanced sensitivity of the resonant approach also opens up the possibility of searching for important cosmological signals, including the stochastic gravitational wave background produced by inflation. We give an example of detector parameters which would allow detection of inflationary gravitational waves down to ΩGW˜10-14 for a two-satellite space-based detector.

  16. Ocean wave electric generators

    SciTech Connect

    Rosenberg, H.R.

    1986-02-04

    This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbine and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.

  17. Supernova seismology: gravitational wave signatures of rapidly rotating core collapse

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Klion, Hannah; Abdikamalov, Ernazar; Ott, Christian D.

    2015-06-01

    Gravitational waves (GW) generated during a core-collapse supernova open a window into the heart of the explosion. At core bounce, progenitors with rapid core rotation rates exhibit a characteristic GW signal which can be used to constrain the properties of the core of the progenitor star. We investigate the dynamics of rapidly rotating core collapse, focusing on hydrodynamic waves generated by the core bounce, and the GW spectrum they produce. The centrifugal distortion of the rapidly rotating proto-neutron star (PNS) leads to the generation of axisymmetric quadrupolar oscillations within the PNS and surrounding envelope. Using linear perturbation theory, we estimate the frequencies, amplitudes, damping times, and GW spectra of the oscillations. Our analysis provides a qualitative explanation for several features of the GW spectrum and shows reasonable agreement with non-linear hydrodynamic simulations, although a few discrepancies due to non-linear/rotational effects are evident. The dominant early post-bounce GW signal is produced by the fundamental quadrupolar oscillation mode of the PNS, at a frequency 0.70 ≲ f ≲ 0.80 kHz, whose energy is largely trapped within the PNS and leaks out on a ˜10-ms time-scale. Quasi-radial oscillations are not trapped within the PNS and quickly propagate outwards until they steepen into shocks. Both the PNS structure and Coriolis/centrifugal forces have a strong impact on the GW spectrum, and a detection of the GW signal can therefore be used to constrain progenitor properties.

  18. Predicting Electromagnetic Signatures of Gravitational Wave Sources

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel John

    This dissertation investigates the signatures of electromagnetic radiation that may accompany two specific sources of gravitational radiation: the inspiral and merger of massive black hole binaries (MBHBs) in galactic nuclei, and the coalescence of black hole neutron star (BHNS) pairs. Part I considers the interaction of MBHBs, at sub-pc separations, with a circumbinary gas disk. Accretion rates onto the MBHB are calculated from two-dimensional hydrodynamical simulations as a function of the relative masses of the black holes. The results are applied to interpretation of the recent, sub-pc separation MBHB candidate in the nucleus of the periodically variable Quasar PG 1302-102. We advance an interpretation of the variability observed in PG 1302-102 as being caused by Doppler-boosted emission sourced by the orbital velocity of the smaller black hole in a MBHB with disparate relative masses. Part II considers BHNS binaries in which the black hole is large enough to swallow the neutron star whole before it is disrupted. As the pair nears merger, orbital motion of the black hole through the magnetosphere of the neutron star generates an electromotive force, a black-hole-battery, which, for the strongest neutron star magnetic field strengths, could power luminosities large enough to make the merging pair observable out to cosmic distances. Relativistic solutions for vacuum fields of a magnetic dipole near a horizon are given, and a mechanism for harnessing the power of the black-hole-battery is put forth in the form of a fireball emitting in hard X-rays to gamma-rays.

  19. Topics in the Detection of Gravitational Waves from Compact Binary Inspirals

    NASA Astrophysics Data System (ADS)

    Kapadia, Shasvath Jagat

    Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The

  20. Turbulence generation by waves

    SciTech Connect

    Kaftori, D.; Nan, X.S.; Banerjee, S.

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  1. Gravitational-wave probe of effective quantum gravity

    SciTech Connect

    Alexander, Stephon; Finn, Lee Samuel; Yunes, Nicolas

    2008-09-15

    All modern routes leading to a quantum theory of gravity - i.e., perturbative quantum gravitational one-loop exact correction to the global chiral current in the standard model, string theory, and loop quantum gravity - require modification of the classical Einstein-Hilbert action for the spacetime metric by the addition of a parity-violating Chern-Simons term. The introduction of such a term leads to spacetimes that manifest an amplitude birefringence in the propagation of gravitational waves. While the degree of birefringence may be intrinsically small, its effects on a gravitational wave accumulate as the wave propagates. Observation of gravitational waves that have propagated over cosmological distances may allow the measurement of even a small birefringence, providing evidence of quantum gravitational effects. The proposed Laser Interferometer Space Antenna (LISA) will be sensitive enough to observe the gravitational waves from sources at cosmological distances great enough that interesting bounds on the Chern-Simons coupling may be found. Here we evaluate the effect of a Chern-Simons induced spacetime birefringence to the propagation of gravitational waves from such systems. Focusing attention on the gravitational waves from coalescing binary black holes systems, which LISA will be capable of observing at redshifts approaching 30, we find that the signature of Chern-Simons gravity is a time-dependent change in the apparent orientation of the binary's orbital angular momentum with respect to the observer line-of-sight, with the magnitude of change reflecting the integrated history of the Chern-Simons coupling over the worldline of the radiation wave front. While spin-orbit coupling in the binary system will also lead to an evolution of the system's orbital angular momentum, the time dependence and other details of this real effect are different than the apparent effect produced by Chern-Simons birefringence, allowing the two effects to be separately identified

  2. Gravitational wave hotspots: Ranking potential locations of single-source gravitational wave emission

    SciTech Connect

    Simon, Joseph; Polin, Abigail; Lommen, Andrea; Christy, B; Stappers, Ben; Finn, Lee Samuel; Jenet, F. A.

    2014-03-20

    The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests that gravitational waves (GWs) from supermassive black hole binary (SMBHB) systems in the nearby universe will be detectable sometime during the next decade. Currently, PTAs assume an equal probability of detection from every sky position, but as evidence grows for a non-isotropic distribution of sources, is there a most likely sky position for a detectable single source of GWs? In this paper, a collection of Galactic catalogs is used to calculate various metrics related to the detectability of a single GW source resolvable above a GW background, assuming that every galaxy has the same probability of containing an SMBHB. Our analyses of these data reveal small probabilities that one of these sources is currently in the PTA band, but as sensitivity is improved regions of consistent probability density are found in predictable locations, specifically around local galaxy clusters.

  3. Streamlining Collaboration for the Gravitational-wave Astronomy Community

    NASA Astrophysics Data System (ADS)

    Koranda, S.

    2016-12-01

    In the morning hours of September 14, 2015 the LaserInterferometer Gravitational-wave Observatory (LIGO) directlydetected gravitational waves from inspiraling and coalescingblack holes, confirming a major prediction of AlbertEinstein's general theory of relativity and beginning the eraof gravitational-wave astronomy. With the LIGO detectors in the United States, the Virgo andGEO detectors in Europe, and the KAGRA detector in Japan thegravitational-wave astrononmy community is opening a newwindow on our Universe. Realizing the full science potentialof LIGO and the other interferometers requires globalcollaboration not only within the gravitational-wave astronomycommunity but also with the astronomers and astrophysicists acrossmultipe disciplines working to realize and leverage the powerof multi-messenger astronomy. Enabling thousands of researchers from around the world andacross multiple projects to efficiently collaborate, share,and analyze data and provide streamlined access to services,computing, and tools requires new and scalable approaches toidentity and access management (IAM). We will discuss LIGO'sIAM journey that began in 2007 and how today LIGO leveragesinternal identity federations like InCommon and eduGAIN toprovide scalable and managed access for the gravitational-waveastronomy community. We will discuss the steps both largeand small research organizations and projects take as theirIAM infrastructure matures from ad-hoc silos of independent services to fully integrated and federated services thatstreamline collaboration so that scientists can focus onresearch and not managing passwords.

  4. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  5. Effects of finite-time singularities on gravitational waves

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Oikonomou, V. K.

    2016-10-01

    We analyze the impact of finite-time singularities on gravitational waves, in the context of F(R) gravity. We investigate which singularities are allowed to occur during the inflationary era, when gravitational waves are considered, and we discuss the quantitative implications of each allowed singularity. As we show, only a pressure singularity, the so-called Type II and also a Type IV singularity are allowed to occur during the inflationary era. In the case of a Type II, the resulting amplitude of the gravitational wave is zero or almost zero, hence this pressure singularity has a significant impact on the primordial gravitational waves. The case of a Type IV singularity is more interesting since as we show, the singularity has no effect on the amplitude of the gravitational waves. Therefore, this result combined with the fact that the Type IV singularity affects only the dynamics of inflation, leads to the conclusion that the Universe passes smoothly through a Type IV singularity.

  6. Gravitational waves, black holes and cosmic strings in cylindrical symmetry

    NASA Astrophysics Data System (ADS)

    Hayward, Sean A.

    2000-04-01

    Gravitational waves in cylindrically symmetric Einstein gravity are described by an effective energy tensor with the same form as that of a massless Klein-Gordon field, in terms of a gravitational potential generalizing the Newtonian potential. Energy-momentum vectors for the gravitational waves and matter are defined with respect to a canonical flow of time. The combined energy-momentum is covariantly conserved, the corresponding charge being the modified Thorne energy. Energy conservation is formulated as the first law expressing the gradient of the energy as work and energy-supply terms, including the energy flux of the gravitational waves. Projecting this equation along a trapping horizon yields a first law of black-hole dynamics containing the expected term involving area and surface gravity, where the dynamic surface gravity is defined with respect to the canonical flow of time. A first law for dynamic cosmic strings also follows. The Einstein equation is written as three wave equations plus the first law, each with sources determined by the combined energy tensor of the matter and gravitational waves.

  7. Observation of Gravitational Waves from a Binary Black Hole Merger.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  8. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  9. Studies on the high-energy follow-up of gravitational wave transient events

    NASA Astrophysics Data System (ADS)

    Razzano, Massimiliano; Patricelli, Barbara; Cella, Giancarlo; Fidecaro, Francesco; Pian, Elena; Stamerra, Antonio; Branchesi, Marica

    2016-05-01

    Second-generation gravitational wave interferometers, such as Advanced LIGO and Advanced Virgo, will soon reach sensitivities sufficient to first detect gravitational waves and open a new era in the multi-messenger investigations of the cosmos. The most violent and energetic astrophysical phenomena, including the mergers of compact objects or the core collapse of massive stars, are promising sources of gravitational waves, and are thought to be connected with transient phenomena such as Gamma Ray Bursts and supernovae. Combined observations of gravitational and electromagnetic signals from these events will thus provide a unique opportunity to unveil their progenitors and study the physics of compact objects. In particular, gamma-ray ground-based and space observatories such as Fermi or the Air Cherenkov Telescopes will be crucial to observe the high-energy electromagnetic counterparts of transient gravitational wave signals and provide a robust identification based on a precise sky localization. We will report on our studies of possible joint observation strategies carried on by gravitational interferometers and gamma-ray telescopes, with particular attention to the high-energy follow-up of Gamma Ray Bursts.

  10. Propagation of gravitational waves in the generalized tensor-vector-scalar theory

    SciTech Connect

    Sagi, Eva

    2010-03-15

    Efforts are underway to improve the design and sensitivity of gravitational wave detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet-undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more mixed longitudinal-transverse modes and two trace modes, of which at least one has longitudinal polarization. Additionally, the propagation speeds are different from the speed of light.

  11. Information-theoretic approach to the gravitational-wave burst detection problem

    NASA Astrophysics Data System (ADS)

    Lynch, Ryan; Vitale, Salvatore; Essick, Reed; Katsavounidis, Erik; Robinet, Florent

    2017-05-01

    The observational era of gravitational-wave astronomy began in the fall of 2015 with the detection of GW150914. One potential type of detectable gravitational wave is short-duration gravitational-wave bursts, whose waveforms can be difficult to predict. We present the framework for a detection algorithm for such burst events—oLIB—that can be used in low latency to identify gravitational-wave transients. This algorithm consists of (1) an excess-power event generator based on the Q transform—Omicron—, (2) coincidence of these events across a detector network, and (3) an analysis of the coincident events using a Markov chain Monte Carlo Bayesian evidence calculator—LALInferenceBurst. These steps compress the full data streams into a set of Bayes factors for each event. Through this process, we use elements from information theory to minimize the amount of information regarding the signal-versus-noise hypothesis that is lost. We optimally extract this information using a likelihood-ratio test to estimate a detection significance for each event. Using representative archival LIGO data across different burst waveform morphologies, we show that the algorithm can detect gravitational-wave burst events of astrophysical strength in realistic instrumental noise. We also demonstrate that the combination of Bayes factors by means of a likelihood-ratio test can improve the detection efficiency of a gravitational-wave burst search. Finally, we show that oLIB's performance is robust against the choice of gravitational-wave populations used to model the likelihood-ratio test likelihoods.

  12. A new twist on the geometry of gravitational plane waves

    NASA Astrophysics Data System (ADS)

    Shore, Graham M.

    2017-09-01

    The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The rôle of twist in the relation of the Rosen coordinates adapted to a null congruence with the fundamental Brinkmann coordinates is explained and a generalised form of the Rosen metric describing a gravitational plane wave is derived. The Killing vectors and isometry algebra of homogeneous plane waves (HPWs) are described in both Brinkmann and twisted Rosen form and used to demonstrate the coset space structure of HPWs. The van Vleck-Morette determinant for twisted congruences is evaluated in both Brinkmann and Rosen descriptions. The twisted null congruences of the Ozsváth-Schücking, `anti-Mach' plane wave are investigated in detail. These developments provide the necessary geometric toolkit for future investigations of the rôle of twist in loop effects in quantum field theory in curved spacetime, where gravitational plane waves arise generically as Penrose limits; in string theory, where they are important as string backgrounds; and potentially in the detection of gravitational waves in astronomy.

  13. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Bacon, David

    2017-03-01

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080, 10.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on cGW/cγ at the 10-7 level, if a high-energy EM counterpart is observed within the field of view of an observing γ -ray burst monitor.

  14. Upper limits on a stochastic background of gravitational waves.

    PubMed

    Abbott, B; Abbott, R; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Buonanno, A; Busby, D; Butler, W E; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cardenas, L; Carter, K; Casey, M M; Charlton, P; Chatterji, S; Chen, Y; Chin, D; Christensen, N; Cokelaer, T; Colacino, C N; Coldwell, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; DeBra, D; Dergachev, V; Desai, S; DeSalvo, R; Dhurandar, S; Díaz, M; Di Credico, A; Drever, R W P; Dupuis, R J; Ehrens, P; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Finn, L S; Franzen, K Y; Frey, R E; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Gholami, I; Giaime, J A; Goda, K; Goggin, L; González, G; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grunewald, S; Guenther, M; Gustafson, R; Hamilton, W O; Hanna, C; Hanson, J; Hardham, C; Harry, G; Heefner, J; Heng, I S; Hewitson, M; Hindman, N; Hoang, P; Hough, J; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, L; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Khan, A; Kim, C; King, P; Klimenko, S; Koranda, S; Kozak, D; Krishnan, B; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Lindquist, P; Liu, S; Lormand, M; Lubinski, M; Lück, H; Luna, M; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marka, S; Maros, E; Mason, K; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mueller, G; Mukherjee, S; Myers, E; Myers, J; Nash, T; Nocera, F; Noel, J S; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rawlins, K; Ray-Majumder, S; Re, V; Regimbau, T; Reitze, D H; Riesen, R; Riles, K; Rivera, B; Robertson, D I; Robertson, N A; Robinson, C; Roddy, S; Rodriguez, A; Rollins, J; Romano, J D; Romie, J; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B S; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sintes, A M; Smith, J; Smith, M R; Spjeld, O; Strain, K A; Strom, D M; Stuver, A; Summerscales, T; Sung, M; Sutton, P J; Tanner, D B; Taylor, R; Thorne, K A; Thorne, K S; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D; Ungarelli, C; Vallisneri, M; van Putten, M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Ward, H; Ward, R; Watts, K; Webber, D; Weiland, U; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Willke, B; Wilson, A; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yoshida, S; Zanolin, M; Zhang, L; Zotov, N; Zucker, M; Zweizig, J

    2005-11-25

    The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of omega0 < 8.4 x 10(-4) in the 69-156 Hz band is approximately 10(5) times lower than the previous result in this frequency range.

  15. Detectability of primordial gravitational waves produced in bouncing models

    NASA Astrophysics Data System (ADS)

    Pinto-Neto, Nelson; Scardua, Arthur

    2017-06-01

    It is widely known that bouncing models with a dust hydrodynamical fluid satisfying cs2=pd/ρd≈0 , where cs , pd , ρd are the sound velocity, pressure, and energy density of the dust fluid, respectively, have almost scale invariant spectrum of scalar perturbations and negligible primordial gravitational waves. We investigate whether adding another fluid with 1 /3 gravitational waves in the high frequency regime, turning them detectable in near future observations for such range of frequencies. Indeed, we show that the energy density of primordial gravitational waves is proportional to k2 (9 w -1 )/(1 +3 w ) for wavelengths which become bigger than the Hubble radius when this extra fluid dominates the background. Hence, as w →1 (an almost stiff matter fluid), the energy density of primordial gravitational waves will increase faster in frequency, turning them potentially detectable at high frequencies. However, there is an extra factor Iq(w ) in the amplitude which decreases exponentially with w . The net effect of these two contributions turns the energy density of primordial gravitational waves not sufficiently big at high frequencies in order to be detected by present day or near future observations for models which satisfy the nucleosynthesis bounds and is symmetric with respect to the bounce. Hence, symmetric bouncing models where the background is dominated by a dust hydrodynamical fluid with small sound velocity, do not present any significant amount of primordial gravitational waves at any frequency range compatible with observations, even if there are other fields present in the model dominating the bounce phase. Any detection of such waves will then rule out this kind of model.

  16. More on cosmological gravitational waves and their memories

    NASA Astrophysics Data System (ADS)

    Chu, Yi-Zen

    2017-10-01

    We extend recent theoretical results on the propagation of linear gravitational waves (GWs), including their associated memories, in spatially flat Friedmann–Lemaître–Robertson–Walker universes, for all spacetime dimensions higher than 3. By specializing to a cosmology driven by a perfect fluid with a constant equation-of-state w, conformal re-scaling, dimension-reduction and Nariai’s ansatz may then be exploited to obtain analytic expressions for the graviton and photon Green’s functions, allowing their causal structure to be elucidated. When 0 < w ≤slant 1 , the gauge-invariant scalar mode admits wave solutions, and like its tensor counterpart, likely contributes to the tidal squeezing and stretching of the space around a GW detector. In addition, scalar GWs in 4D radiation dominated universes—like tensor GWs in 4D matter dominated ones—appear to yield a tail signal that does not decay with increasing spatial distance from the source. We then solve electromagnetism in the same cosmologies, and point out a tail-induced electric memory effect. Finally, in even dimensional Minkowski backgrounds higher than 2, we make a brief but explicit comparison between the linear GW memory generated by point masses scattering off each other on unbound trajectories and the linear Yang–Mills memory generated by color point charges doing the same—and point out how there is a ‘double copy’ relation between the two.

  17. Studying inflation with future space-based gravitational wave detectors

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Takahashi, Tomo E-mail: moroi@phys.s.u-tokyo.ac.jp

    2014-12-01

    Motivated by recent progress in our understanding of the B-mode polarization of cosmic microwave background (CMB), which provides important information about the inflationary gravitational waves (IGWs), we study the possibility to acquire information about the early universe using future space-based gravitational wave (GW) detectors. We perform a detailed statistical analysis to estimate how well we can determine the reheating temperature after inflation as well as the amplitude, the tensor spectral index, and the running of the inflationary gravitational waves. We discuss how the accuracies depend on noise parameters of the detector and the minimum frequency available in the analysis. Implication of such a study on the test of inflation models is also discussed.

  18. LIGO: The Laser Interferometer Gravitational-Wave Observatory.

    PubMed

    Abramovici, A; Althouse, W E; Drever, R W; Gürsel, Y; Kawamura, S; Raab, F J; Shoemaker, D; Sievers, L; Spero, R E; Thorne, K S; Vogt, R E; Weiss, R; Whitcomb, S E; Zucker, M E

    1992-04-17

    The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics of gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.

  19. Detectability of Gravitational Waves from High-Redshift Binaries.

    PubMed

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  20. LIGO: the Laser Interferometer Gravitational-Wave Observatory

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; DeBra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmenn, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mow Lowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Sakata, S.; de la Jordana, L. Sancho; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Mühlen, H. zur; Zweizig, J.

    2009-07-01

    The goal of the Laser Interferometric Gravitational-Wave Observatory (LIGO) is to detect and study gravitational waves (GWs) of astrophysical origin. Direct detection of GWs holds the promise of testing general relativity in the strong-field regime, of providing a new probe of exotic objects such as black holes and neutron stars and of uncovering unanticipated new astrophysics. LIGO, a joint Caltech-MIT project supported by the National Science Foundation, operates three multi-kilometer interferometers at two widely separated sites in the United States. These detectors are the result of decades of worldwide technology development, design, construction and commissioning. They are now operating at their design sensitivity, and are sensitive to gravitational wave strains smaller than one part in 1021. With this unprecedented sensitivity, the data are being analyzed to detect or place limits on GWs from a variety of potential astrophysical sources.

  1. Detectability of Gravitational Waves from High-Redshift Binaries

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.; Lasky, Paul D.; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-01

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳1010M⊙ can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  2. Causal properties of nonlinear gravitational waves in modified gravity

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  3. Electromagnetic radiation accompanying gravitational waves from black hole binaries

    NASA Astrophysics Data System (ADS)

    Dolgov, A.; Postnov, K.

    2017-09-01

    The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.

  4. GRAVITATIONAL WAVES OF JET PRECESSION IN GAMMA-RAY BURSTS

    SciTech Connect

    Sun Mouyuan; Liu Tong; Gu Weimin; Lu Jufu

    2012-06-10

    The physical nature of gamma-ray bursts (GRBs) is believed to involve an ultra-relativistic jet. The observed complex structure of light curves motivates the idea of jet precession. In this work, we study the gravitational waves of jet precession based on neutrino-dominated accretion disks around black holes, which may account for the central engine of GRBs. In our model, the jet and the inner part of the disk may precess along with the black hole, which is driven by the outer part of the disk. Gravitational waves are therefore expected to be significant from this black-hole-inner-disk precession system. By comparing our numerical results with the sensitivity of some detectors, we find that it is possible for DECIGO and BBO to detect such gravitational waves, particularly for GRBs in the Local Group.

  5. LIGO - The Laser Interferometer Gravitational-Wave Observatory

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex; Althouse, William E.; Drever, Ronald W. P.; Gursel, Yekta; Kawamura, Seiji; Raab, Frederick J.; Shoemaker, David; Sievers, Lisa; Spero, Robert E.; Thorne, Kip S.

    1992-01-01

    The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics for gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.

  6. Searches for gravitational waves associated with gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Talukder, Dipongkar

    2014-08-01

    Gamma-ray bursts are likely related to several processes linked to catastrophic stellar events. The progenitor scenarios of gamma-ray bursts include mergers of binary systems composed of neutron stars or a neutron star and a stellar-mass black hole, core collapse of massive stars, and perturbed neutron stars. Gravitational-wave emission is expected to accompany such events. We discuss the strategies developed to search for gravitational waves associated with these events and the search results from the initial LIGO and Virgo detectors. We also discuss the prospects for such searches with advanced LIGO and Virgo detectors. In order to provide quick feedback, we are developing promptly launched gravitational-wave data analyses for the gamma-ray bursts observed by the Swift and Fermi satellites.

  7. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  8. Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune

    2016-04-01

    Gravitational waves from inspiraling compact binaries are known to be an excellent absolute distance indicator, yet it is unclear whether electromagnetic counterparts of these events are securely identified for measuring their redshifts, especially in the case of black hole-black hole mergers such as the one recently observed with the Advanced LIGO. We propose to use the cross-correlation between spatial distributions of gravitational wave sources and galaxies with known redshifts as an alternative means of constraining the distance-redshift relation from gravitational waves. In our analysis, we explicitly include the modulation of the distribution of gravitational wave sources due to weak gravitational lensing. We show that the cross-correlation analysis in next-generation observations will be able to tightly constrain the relation between the absolute distance and the redshift and therefore constrain the Hubble constant as well as dark energy parameters.

  9. Searching for gravitational-wave transients with a qualitative signal model: Seedless clustering strategies

    NASA Astrophysics Data System (ADS)

    Thrane, Eric; Coughlin, Michael

    2013-10-01

    Gravitational-wave bursts are observable as bright clusters of pixels in spectrograms of strain power. Clustering algorithms can be used to identify candidate gravitational-wave events. Clusters are often identified by grouping together seed pixels in which the power exceeds some threshold. If the gravitational-wave signal is long-lived, however, the excess power may be spread out over many pixels, none of which are bright enough to become seeds. Without seeds, the problem of detection through clustering becomes more complicated. In this paper, we investigate seedless clustering algorithms in searches for long-lived narrow-band gravitational-wave bursts. Using four astrophysically motivated test waveforms, we compare a seedless clustering algorithm to two algorithms using seeds. We find that the seedless algorithm can detect gravitational-wave signals (at a fixed false-alarm and false-dismissal rate) at distances between 1.5-2× those achieved with the seed-based clustering algorithms, corresponding to significantly increased detection volumes: 4.2-7.4×. This improvement in sensitivity may extend the reach of second-generation detectors such as Advanced LIGO and Advanced Virgo deeper into astrophysically interesting distances.

  10. An information-theoretic approach to the gravitational-wave burst detection problem

    NASA Astrophysics Data System (ADS)

    Katsavounidis, E.; Lynch, R.; Vitale, S.; Essick, R.; Robinet, F.

    2016-03-01

    The advanced era of gravitational-wave astronomy, with data collected in part by the LIGO gravitational-wave interferometers, has begun as of fall 2015. One potential type of detectable gravitational waves is short-duration gravitational-wave bursts, whose waveforms can be difficult to predict. We present the framework for a new detection algorithm - called oLIB - that can be used in relatively low-latency to turn calibrated strain data into a detection significance statement. This pipeline consists of 1) a sine-Gaussian matched-filter trigger generator based on the Q-transform - known as Omicron -, 2) incoherent down-selection of these triggers to the most signal-like set, and 3) a fully coherent analysis of this signal-like set using the Markov chain Monte Carlo (MCMC) Bayesian evidence calculator LALInferenceBurst (LIB). We optimally extract this information by using a likelihood-ratio test (LRT) to map these search statistics into a significance statement. Using representative archival LIGO data, we show that the algorithm can detect gravitational-wave burst events of realistic strength in realistic instrumental noise with good detection efficiencies across different burst waveform morphologies. With support from the National Science Foundation under Grant PHY-0757058.

  11. Stochastic gravitational waves associated with the formation of primordial black holes

    NASA Astrophysics Data System (ADS)

    Nakama, Tomohiro; Silk, Joseph; Kamionkowski, Marc

    2017-02-01

    Primordial black hole (PBH) mergers have been proposed as an explanation for the gravitational wave events detected by the LIGO collaboration. Such PBHs may be formed in the early Universe as a result of the collapse of extremely rare high-sigma peaks of primordial fluctuations on small scales, as long as the amplitude of primordial perturbations on small scales is enhanced significantly relative to the amplitude of perturbations observed on large scales. One consequence of these small-scale perturbations is generation of stochastic gravitational waves that arise at second order in scalar perturbations, mostly before the formation of the PBHs. These induced gravitational waves have been shown, assuming Gaussian initial conditions, to be comparable to the current limits from the European Pulsar Timing Array, severely restricting this scenario. We show, however, that models with enhanced fluctuation amplitudes typically involve non-Gaussian initial conditions. With such initial conditions, the current limits from pulsar timing can be evaded. The amplitude of the induced gravitational-wave background can be larger or smaller than the stochastic gravitational-wave background from supermassive black hole binaries.

  12. Probing the core-collapse supernova mechanism with gravitational waves

    NASA Astrophysics Data System (ADS)

    Ott, Christian D.

    2009-10-01

    The mechanism of core-collapse supernova explosions must draw on the energy provided by gravitational collapse and transfer the necessary fraction to the kinetic and internal energy of the ejecta. Despite many decades of concerted theoretical effort, the detailed mechanism of core-collapse supernova explosions is still unknown, but indications are strong that multi-D processes lie at its heart. This opens up the possibility of probing the supernova mechanism with gravitational waves, carrying direct dynamical information from the supernova engine deep inside a dying massive star. I present a concise overview of the physics and primary multi-D dynamics in neutrino-driven, magnetorotational, and acoustically driven core-collapse supernova explosion scenarios. Discussing and contrasting estimates for the gravitational-wave emission characteristics of these mechanisms, I argue that their gravitational-wave signatures are clearly distinct and that the observation (or non-observation) of gravitational waves from a nearby core-collapse event could put strong constraints on the supernova mechanism.

  13. Progress Toward a Space-Based Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    Livas, Jeffrey C.; Stebbins, Robin T.

    The discovery of binary pulsar PSR 1913+16 by Hulse & Taylor in 1974 established the existence of gravitational waves, for which the 1983 Nobel Prize was awarded. However, the measurement of astrophysical parameters from gravitational waves will open an entirely new spectrum for discovery and understanding of the Universe, not simply a new window in the electromagnetic spectrum like gamma ray telescopes in the 1970s. Two types of ground-based detectors, Advanced LIGO/Virgo and Pulsar Timing Arrays, are expected to directly detect gravitational waves in their respective frequency bands before the end of the decade. However, many of the most exciting sources are in the band from 0.1-100 mHz, accessible only from space due to seismic and gravity gradient noise on Earth. The European Space Agency (ESA) has chosen the 'Gravitational Universe' as the science theme for its L3 Cosmic Visions opportunity, planned for launch in 2034. NASA is planning to participate as a junior partner. Here we summarize progress toward realizing a gravitational wave observatory in space.

  14. Coherent network detection of gravitational waves: the redundancy veto

    NASA Astrophysics Data System (ADS)

    Wen, Linqing; Schutz, Bernard F.

    2005-09-01

    A network of gravitational wave detectors is called redundant if, given the direction to a source, the strain induced by a gravitational wave in one or more of the detectors can be fully expressed in terms of the strain induced in others in the network. Because gravitational waves have only two polarizations, any network of three or more differently oriented interferometers with similar observing bands is redundant. The three-armed LISA space interferometer has three outputs that are redundant at low frequencies. The two aligned LIGO interferometers at Hanford WA are redundant, and the LIGO detector at Livingston LA is nearly redundant with either of the Hanford detectors. Redundant networks have a powerful veto against spurious noise, a linear combination of the detector outputs that contains no gravitational wave signal. For LISA, this 'null' output is known as the Sagnac mode, and its use in discriminating between detector noise and a cosmological gravitational wave background is well understood. But the usefulness of the null veto for ground-based detector networks has been ignored until now. We show that it should make it possible to discriminate in a model-independent way between real gravitational waves and accidentally coincident non-Gaussian noise 'events' in redundant networks of two or more broadband detectors. It has been shown that with three detectors, the null output can even be used to locate the direction to the source, and then two other linear combinations of detector outputs give the optimal 'coherent' reconstruction of the two polarization components of the signal. We discuss briefly the implementation of such a detection strategy in realistic networks, where signals are weak, detector calibration is a significant uncertainty, and the various detectors may have different (but overlapping) observing bands.

  15. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors.

    PubMed

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-12-12

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors.

  16. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-12-01

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors.

  17. Are pre-big-bang models falsifiable by gravitational wave experiments?

    NASA Astrophysics Data System (ADS)

    Ungarelli, Carlo; Vecchio, Alberto

    2000-06-01

    One of the most interesting predictions of string-inspired cosmological models is the presence of a stochastic background of relic gravitational waves in the frequency band accessible to Earth-based detectors. Here we consider a ``minimal'' class of string cosmology models and explore whether they are falsifiable by gravitational wave observations. In particular, we show that, the detectability of the signal depends crucially on the actual values of the model parameters. This feature will enable laser interferometers-starting from the second generation of detectors-to place stringent constraints on the theory for a fairly large range of the free parameters of the model. .

  18. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    PubMed Central

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-01-01

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors. PMID:25705087

  19. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    SciTech Connect

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-04-15

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  20. Cylindrical gravitational waves in expanding universes: Models for waves from compact sources

    NASA Astrophysics Data System (ADS)

    Gowdy, Robert H.; Edmonds, B. Douglas

    2007-04-01

    New boundary conditions are imposed on the familiar cylindrical gravitational wave vacuum spacetimes. The new spacetime family represents cylindrical waves in a flat expanding (Kasner) universe. Space sections are flat and nonconical where the waves have not reached and wave amplitudes fall off more rapidly than they do in Einstein-Rosen solutions, permitting a more regular null inifinity.

  1. Cylindrical gravitational waves in expanding universes: Models for waves from compact sources

    SciTech Connect

    Gowdy, Robert H.; Edmonds, B. Douglas

    2007-04-15

    New boundary conditions are imposed on the familiar cylindrical gravitational wave vacuum spacetimes. The new spacetime family represents cylindrical waves in a flat expanding (Kasner) universe. Space sections are flat and nonconical where the waves have not reached and wave amplitudes fall off more rapidly than they do in Einstein-Rosen solutions, permitting a more regular null inifinity.

  2. Bayesian reconstruction of gravitational wave bursts using chirplets

    NASA Astrophysics Data System (ADS)

    Millhouse, Margaret; Cornish, Neil; Littenberg, Tyson

    2017-01-01

    The BayesWave algorithm has been shown to accurately reconstruct unmodeled short duration gravitational wave bursts and to distinguish between astrophysical signals and transient noise events. BayesWave does this by using a variable number of sine-Gaussian (Morlet) wavelets to reconstruct data in multiple interferometers. While the Morlet wavelets can be summed together to produce any possible waveform, there could be other wavelet functions that improve the performance. Because we expect most astrophysical gravitational wave signals to evolve in frequency, modified Morlet wavelets with linear frequency evolution - called chirplets - may better reconstruct signals with fewer wavelets. We compare the performance of BayesWave using Morlet wavelets and chirplets on a variety of simulated signals.

  3. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    NASA Astrophysics Data System (ADS)

    Mitra, Aniruddha; Roychoudhury, Rajkumar; Bhar, Radhaballav; Khan, Manoranjan

    2017-02-01

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through 'viscosity modified Ostrovsky equation' in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem.

  4. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  5. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    NASA Astrophysics Data System (ADS)

    Artymowski, Michal; Lewicki, Marek; Wells, James D.

    2017-03-01

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  6. Modeling Thermal Noise From Crystalline Coatings For Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2017-01-01

    In 2015, Advanced LIGO made the first direct detection of gravitational waves. The sensitivity of current and future ground-based gravitational-wave detectors is limited by thermal noise in each detector's test mass substrate and coating. This noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. I will present results from a new code that numerically models thermal noise for different crystalline mirror coatings. The thermal noise in crystalline mirror coatings could be significantly lower but is challenging to model analytically. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. Specifically, I will show results for a crystal coating on an amorphous substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  7. GRB as a counterpart for Gravitational Wave detection in LCGT

    NASA Astrophysics Data System (ADS)

    Kanda, Nobuyuki

    2010-10-01

    Short Gamma-ray burst (GRB) progenitors are considered as merger of compact star binaries which consist of neutron stars or blackholes. These compact star binaries will radiate a strong gravitational wave in their coalescence, and gravitational wave detectors aim to detect them. We studied the chance probability of coincidence between GRB and GW detection in LCGT detector. Due to omni-directional acceptance of GW detectors, about 75% of GRB events which closer than cosmological redshift z<0.1 are expected to confirm by GW detection.

  8. MHz gravitational waves from short-term anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Ito, Asuka; Soda, Jiro

    2016-04-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10-26~ 10-27 are copiously produced in high-frequency bands 10 MHz~100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  9. Gravitational waves from periodic three-body systems.

    PubMed

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  10. Space-Based Gravitational-wave Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey C.

    2012-01-01

    The LISA Mission Concept has been under study for over two decades as a spacebased gravitational-wave detector capable of observing astrophysical sources in the 0.0001 to 1 Hz band. The concept has consistently received strong recommendations from various review panels based on the expected science, most recently from the US Astr02010 Decadal Review. Budget constraints have led both the US and European Space agencies to search for lower cost options. We report results from the US effort to explore the tradeoffs between mission cost and science return, and in particular a family of mission concepts referred to as SGO (Space-based Gravitational-wave Observatory).

  11. Anisotropies of gravitational wave backgrounds: A line of sight approach

    NASA Astrophysics Data System (ADS)

    Contaldi, Carlo R.

    2017-08-01

    In the weak field regime, gravitational waves can be considered as being made up of collisionless, relativistic tensor modes that travel along null geodesics of the perturbed background metric. We work in this geometric optics picture to calculate the anisotropies in gravitational wave backgrounds resulting from astrophysical and cosmological sources. Our formalism yields expressions for the angular power spectrum of the anisotropies. We show how the anisotropies are sourced by intrinsic, Doppler, Sachs-Wolfe, and Integrated Sachs-Wolfe terms in analogy with Cosmic Microwave Background photons.

  12. MHz gravitational waves from short-term anisotropic inflation

    SciTech Connect

    Ito, Asuka; Soda, Jiro

    2016-04-18

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  13. Dynamics and Gravitational Wave Signature of Collapsar Formation

    NASA Astrophysics Data System (ADS)

    Ott, C. D.; Reisswig, C.; Schnetter, E.; O'Connor, E.; Sperhake, U.; Löffler, F.; Diener, P.; Abdikamalov, E.; Hawke, I.; Burrows, A.

    2011-04-01

    We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.

  14. Gravitational Wave Detection by Laser Interferometry in Space LISA

    NASA Astrophysics Data System (ADS)

    Ruediger, Albrecht

    2003-07-01

    The space project LISA shares its goal and principle of operation with the ground-based interferometers currently under construction: the detection and measurement of gravitational waves by laser interferometry. It is only in space that detection of signals below, say, 1 Hz is possible, opening a wide window to a different class of interesting sources of gravitational waves. The project LISA consists of three spacecraft in helio centric orbits, forming a triangle of 5 million km sides. A technology demonstrator, designed to test vital LISA technologies, is to be launched, aboard a SMART-2 mission, in 2006.

  15. Education and public outreach on gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Hendry, M.; Bradaschia, C.; Audley, H.; Barke, S.; Blair, D. G.; Christensen, N.; Danzmann, K.; Freise, A.; Gerberding, O.; Knispel, B.; Lieser, M.; Mandel, I.; Moore, T.; Stuver, A.; Whiting, B.

    2014-08-01

    In this paper we summarise the presentations given during the "Education and Public Outreach on Gravitational-Wave Astronomy" parallel session at the GR-20/Amaldi conference, held in Warsaw, July 2013. The talks presented demonstrate the wide range of education and public outreach activities being undertaken in the field of gravitational-wave astronomy—across science festivals, science education centers, junior schools and high schools, colleges and universities, via both face-to-face delivery and (increasingly) the internet and social media.

  16. Spherical gravitational wave detectors: MiniGRAIL and Mario Schenberg

    NASA Astrophysics Data System (ADS)

    Da Silva Costa, C. F.; Aguiar, O. D.

    2014-03-01

    Spherical gravitational wave detectors allow the analysis of multiple independent channels and, therefore, are able to determine gravitational wave directions and polarizations. There are two spherical detectors being developed now: MiniGRAIL (Netherlands) and Mario Schenberg (Brazil). Both share the same principle of detection and main features. They have done commissioning runs and shown progress in their development. We have presented here the status of Mario Schenberg. Its transducers have been redesigned for sensitivity improvements. While an offline analysis was already developed for MiniGRAIL, we have investigated a low latency data analysis technique for Mario Schenberg. Both analysis are based on directional detection.

  17. Dynamics and gravitational wave signature of collapsar formation.

    PubMed

    Ott, C D; Reisswig, C; Schnetter, E; O'Connor, E; Sperhake, U; Löffler, F; Diener, P; Abdikamalov, E; Hawke, I; Burrows, A

    2011-04-22

    We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.

  18. Lunar LIGO and gravitational wave astronomy on the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lafave, Norman

    1994-01-01

    Gravitational wave astronomy continues to be one of the exploration concepts under consideration in NASA's strategy for conducting physics and astrophysics from the lunar surface. As with other proposals for new concepts in science and astronomy from the Moon, this one has a number of very interesting features which need to be developed further in order to assess them adequately. The possibility of robotic deployment of a gravitational wave antenna on the Moon in a triangular configuration and the question of closure on the third interferometer leg are discussed here.

  19. Listening to the low-frequency gravitational-wave band

    NASA Astrophysics Data System (ADS)

    Hughes, Scott

    2016-03-01

    Ground-based gravitational-wave detectors are beginning to explore the high-frequency band of roughly 10 to 1000 Hz. These three decades in frequency represent one of several astrophysically important wavebands. In this talk, I will focus on the astrophysics of the low-frequency band, from roughly 30 microhertz to 0.1 Hz. This band is expected to be particularly rich with very loud sources. I will survey what we expect to be important sources of low-frequency gravitational waves, and review the scientific payoff that would come from measuring them.

  20. What can we learn about cosmic structure from gravitational waves?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2003-01-01

    Observations of low frequency gravitational waves by the space-based LISA mission will open a new observational window on the early universe and the emergence of structure. LISA will observe the dynamical coalescence of massive black hole binaries at high redshifts, giving an unprecedented look at the merger history of galaxies and the reionization epoch. LISA will also observe gravitational waves from the collapse of supermassive stars to form black holes, and will map the spacetime in the central regions of galaxy cusps at high precision.

  1. Electroweak baryogenesis and gravitational waves from a real scalar singlet

    NASA Astrophysics Data System (ADS)

    Vaskonen, Ville

    2017-06-01

    We consider a real scalar singlet field which provides a strong first-order electroweak phase transition via its coupling to the Higgs boson, and gives a C P violating contribution on the top quark mass via a dimension-6 operator. We study the correlation between the baryon-to-entropy ratio produced by electroweak baryogenesis, and the gravitational wave signal from the electroweak phase transition. We show that future gravitational wave experiments can test, in particular, the region of the model parameter space where the observed baryon-to-entropy ratio can be obtained even if the new physics scale, which is explicit in the dimension-6 operator, is high.

  2. Gravitational wave bursts from cosmic superstrings with Y-junctions

    SciTech Connect

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2009-12-15

    Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.

  3. Detection of gravitational waves from the QCD phase transition with pulsar timing arrays

    SciTech Connect

    Caprini, Chiara; Durrer, Ruth; Siemens, Xavier

    2010-09-15

    If the cosmological QCD phase transition is strongly first order and lasts sufficiently long, it generates a background of gravitational waves which may be detected via pulsar timing experiments. We estimate the amplitude and the spectral shape of such a background and we discuss its detectability prospects.

  4. Binary Black Holes, Numerical Relativity, and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA

  5. Cosmic Messengers: Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein s equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. . This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will. be observed by LISA.

  6. Binary Black Holes, Numerical Relativity, and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA

  7. Cosmic Messengers: Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein s equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. . This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will. be observed by LISA.

  8. Gravitational waves from double hybrid inflation

    NASA Astrophysics Data System (ADS)

    Lazarides, G.; Panagiotakopoulos, C.

    2015-12-01

    We present a two-stage hybrid inflationary scenario in nonminimal supergravity which can predict values of the tensor-to-scalar ratio of the order of a few ×10-2 . For the parameters considered, the underlying supersymmetric particle physics model possesses two inflationary paths, the trivial and the semishifted one. The trivial path is stabilized by supergravity corrections and supports a first stage of inflation with a limited number of e-foldings. The tensor-to-scalar ratio can become appreciable while the value of the scalar spectral index remains acceptable as a result of the competition between the relatively mild supergravity corrections and the strong radiative corrections to the inflationary potential. The additional number of e-foldings required for solving the puzzles of hot big bang cosmology are generated by a second stage of inflation taking place along the semishifted path. This is possible only because the semishifted path is almost perpendicular to the trivial one, and thus not affected by the strong radiative corrections along the trivial path, and also because the supergravity effects remain mild. The requirement that the running of the scalar spectral index remain acceptable limits the possible values of the tensor-to-scalar ratio not to exceed about 5 ×10-2 . Our model predicts the formation of an unstable string-monopole network, which may lead to detectable gravity wave signatures in future space-based laser interferometer observations.

  9. The Suitability of Hybrid Waveforms for Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Ilana; Pfeiffer, H.; Nissanke, S.; Mroue, A.

    2013-01-01

    General relativity predicts that the coalescence of two compact objects, such as black holes, will produce gravitational radiation; i.e., ripples in the curvature of space-time. Detectors like Advanced LIGO (the Laser Interferometry Gravitational-wave Observatory) are expected to measure such events within the next few years. In order to be able to characterize the gravitational waves they measure, these detectors require accurate waveform models, which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity late-inspiral-merger-ringdown waveform. Numerical relativity, though the most accurate model, is computationally expensive: the longest simulations to date taking several months to run. Post-Newtonian theory, an analytic approximation to General Relativity, is easy to compute but becomes increasingly inaccurate near merger. Because of this trade-off, it is important to determine the optimal length of the numerical waveform, while maintaining the necessary accuracy for gravitational wave detectors. We present a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. We perform a comprehensive analysis of errors that enter such “hybrid waveforms” in the case of equal-mass and unequal mass non-spinning binaries. We also explore the possibility of using these hybrid waveforms as a detection template bank for Advanced LIGO. Accurate hybrids play an important role in investigating the efficiency of gravitational wave search pipelines, as with NINJA (Numerical INJection Analysis); and also in constructing analytical models that span the entire parameter space of binary black hole mass ratios and spins, as with NRAR (Numerical Relativity and Analytic Relativity).

  10. The Suitability of Hybrid Waveforms for Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Ilana; Pfeiffer, H.; Nissanke, S.

    2012-01-01

    General relativity predicts that the coalescence of two compact objects, such as black holes, will produce gravitational radiation; i.e., ripples in the curvature of space-time. Detectors like Advanced LIGO (the Laser Interferometry Gravitational-wave Observatory) are expected to measure such events within the next few years. In order to be able to characterize the gravitational waves they measure, these detectors require accurate waveform models, which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity late-inspiral-merger-ringdown waveform. Numerical relativity, though the most accurate model, is computationally expensive: the longest simulations to date taking several months to run. Post-Newtonian theory, an analytic approximation to General Relativity, is easy to compute but becomes increasingly inaccurate near merger. Because of this trade-off, it is important to determine the optimal length of the numerical waveform, while maintaining the necessary accuracy for gravitational wave detectors. We present a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. We perform a comprehensive analysis of errors that enter such "hybrid waveforms” in the case of equal-mass non-spinning binaries. Preliminary research has also been done in the case of unequal-mass non-spinning binaries. Accurate hybrids play an important role in investigating the efficiency of gravitational wave search pipelines, as with NINJA (Numerical INJection Analysis); and also in constructing analytical models that span the entire parameter space of binary black hole mass ratios and spins, as with NRAR (Numerical Relativity and Analytic Relativity).

  11. Gravitational-Wave Cosmology across 29 Decades in Frequency

    NASA Astrophysics Data System (ADS)

    Lasky, Paul D.; Mingarelli, Chiara M. F.; Smith, Tristan L.; Giblin, John T.; Thrane, Eric; Reardon, Daniel J.; Caldwell, Robert; Bailes, Matthew; Bhat, N. D. Ramesh; Burke-Spolaor, Sarah; Dai, Shi; Dempsey, James; Hobbs, George; Kerr, Matthew; Levin, Yuri; Manchester, Richard N.; Osłowski, Stefan; Ravi, Vikram; Rosado, Pablo A.; Shannon, Ryan M.; Spiewak, Renée; van Straten, Willem; Toomey, Lawrence; Wang, Jingbo; Wen, Linqing; You, Xiaopeng; Zhu, Xingjiang

    2016-01-01

    Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index nt and the tensor-to-scalar ratio r . Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, ΩGW(f )<2.3 ×10-10 . Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95% confidence to nt≲5 for a tensor-to-scalar ratio of r =0.11 . However, the combination of all the above experiments limits nt<0.36 . Future Advanced LIGO observations are expected to further constrain nt<0.34 by 2020. When cosmic microwave background experiments detect a nonzero r , our results will imply even more stringent constraints on nt and, hence, theories of the early Universe.

  12. Lunar LIGO: A new concept in gravitational wave astronomy

    NASA Technical Reports Server (NTRS)

    Lafave, Norman; Wilson, Thomas L.

    1993-01-01

    For three decades, physicists have been in search of an elusive phenomenon predicted by Einstein's general theory of relativity; gravitational radiation. These weak vibrations of spacetime have, thus far, eluded conclusive Earth-based detection due in part to insufficient detector sensitivity and noise isolation. The detection of gravitational waves is crucial for two reasons. It would provide further evidence for the validity of Einstein's theory of relativity, the presently accepted theory of gravitation. Furthermore, the ability to identify the location of a source of a detected gravitational wave event would yield a radical new type of astronomy based on non-electromagnetic emissions. We continue our study of