Science.gov

Sample records for generation high rate

  1. The next generation high data rate VCSEL development at SEDU

    NASA Astrophysics Data System (ADS)

    Xie, Chuan; Li, Neinyi; Huang, Shenghong; Liu, Chiyu; Wang, Li; Jackson, Kenneth P.

    2013-03-01

    In May of 2012, Emcore's VCSEL FAB and VCSEL based transceiver business joined Sumitomo Electric Device Innovations USA (SEDU). After this change of ownership, our high speed VCSEL development effort continues. In this paper, we will report the progress we made in the past year in our 25Gbps to 28Gbps VCSEL. This next generation device is targeted for EDR, 32GFC as well as other optical interconnect applications.

  2. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    SciTech Connect

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  3. High Repetition Rate Charging a Marx Type Generator

    DTIC Science & Technology

    2001-06-01

    Resistive ladder networks are commonly used as the charging and isolation means for Marx type generators. The efficiency is limited to 50% and the...elements are actually increased by a factor (1+k). The Marx switches cause a re-arrangement of the coupled inductors from parallel during the

  4. High-order harmonic generation using a high-repetition-rate turnkey laser

    SciTech Connect

    Lorek, E. Larsen, E. W.; Heyl, C. M.; Carlström, S.; Mauritsson, J.; Paleček, D.; Zigmantas, D.

    2014-12-15

    We generate high-order harmonics at high pulse repetition rates using a turnkey laser. High-order harmonics at 400 kHz are observed when argon is used as target gas. In neon, we achieve generation of photons with energies exceeding 90 eV (∼13 nm) at 20 kHz. We measure a photon flux of up to 4.4 × 10{sup 10} photons per second per harmonic in argon at 100 kHz. Many experiments employing high-order harmonics would benefit from higher repetition rates, and the user-friendly operation opens up for applications of coherent extreme ultra-violet pulses in new research areas.

  5. Single-pass high harmonic generation at high repetition rate and photon flux

    NASA Astrophysics Data System (ADS)

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Demmler, Stefan; Klenke, Arno; Tünnermann, Andreas; Limpert, Jens

    2016-09-01

    Sources of short wavelength radiation with femtosecond to attosecond pulse durations, such as synchrotrons or free electron lasers, have already made possible numerous, and will facilitate more, seminal studies aimed at understanding atomic and molecular processes on fundamental length and time scales. Table-top sources of coherent extreme ultraviolet to soft x-ray radiation enabled by high harmonic generation (HHG) of ultrashort pulse lasers have also gained significant attention in the last few years due to their enormous potential for addressing a plethora of applications, therefore constituting a complementary source to large-scale facilities (synchrotrons and free electron lasers). Ti:sapphire based laser systems have been the workhorses for HHG for decades, but are limited in repetition rate and average power. On the other hand, it has been widely recognized that fostering applications in fields such as photoelectron spectroscopy and microscopy, coincidence detection, coherent diffractive imaging and frequency metrology requires a high repetition rate and high photon flux HHG sources. In this article we will review recent developments in realizing the demanding requirement of producing a high photon flux and repetition rate at the same time. Particular emphasis will be put on suitable ultrashort pulse and high average power lasers, which directly drive harmonic generation without the need for external enhancement cavities. To this end we describe two complementary schemes that have been successfully employed for high power fiber lasers, i.e. optical parametric chirped pulse amplifiers and nonlinear pulse compression. Moreover, the issue of phase-matching in tight focusing geometries will be discussed and connected to recent experiments. We will highlight the latest results in fiber laser driven high harmonic generation that currently produce the highest photon flux of all existing sources. In addition, we demonstrate the first promising applications and

  6. High-order harmonic generation at a repetition rate of 100 kHz

    SciTech Connect

    Lindner, F.; Stremme, W.; Schaetzel, M. G.; Grasbon, F.; Paulus, G. G.; Walther, H.; Hartmann, R.; Strueder, L.

    2003-07-01

    We report high-order harmonic generation (HHG) in rare gases using a femtosecond laser system with a very high repetition rate (100 kHz) and low pulse energy (7 {mu}J). To our knowledge, this is the highest repetition rate reported to date for HHG. The tight focusing geometry required to reach sufficiently high intensities implies low efficiency of the process. Harmonics up to the 45th order are nevertheless generated and detected. We show evidence of clear separation and selection of quantum trajectories by moving the gas jet with respect to the focus, in agreement with the theoretical predictions of the semiclassical model of HHG.

  7. Calculation of the gain coefficient in cryogenically cooled Yb : YAG disks at high heat generation rates

    SciTech Connect

    Vadimova, O L; Mukhin, I B; Kuznetsov, I I; Palashov, O V; Perevezentsev, E A; Khazanov, Efim A

    2013-03-31

    We have calculated the stored energy and gain coefficient in disk gain elements cooled to cryogenic temperatures. The problem has been solved with allowance for intense heat generation, amplified spontaneous emission and parasitic lasing, without averaging over any spatial coordinate. The numerical simulation results agree well with experimental data, in particular at high heat generation rates. Experimental data and theoretical analysis indicate that composite disk gain elements containing an undoped region can store considerably more energy due to suppression of amplified spontaneous emission and parasitic lasing. (extreme light fields and their applications)

  8. High-repetition rate relativistic electron beam generation from intense laser solid interactions

    NASA Astrophysics Data System (ADS)

    Batson, Thomas; Nees, John; Hou, Bixue; Thomas, A. G. R.; Krushelnick, Karl

    2015-05-01

    Relativistic electron beams have applications spanning materials science, medicine, and home- land security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high ux sources of relativistic electrons- which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma with the lambda cubed laser system at the University of Michigan (a 5 × 1018W=cm2, 500 Hz, Ti:Sapphire laser), we have measured electrons ejected from the surface of fused silica nd Cu targets having energies in excess of an MeV. The spectrum of these electrons was measured with respect to incident laser angle, prepulse timing, and focusing conditions. While taken at a high repetition rate, the pulse energy of the lambda cubed system was consistently on the order of 10 mJ. In order to predict scaling of the electron energy with laser pulse energy, simulations are underway which compare the spectrum generated with the lambda cubed system to the predicted spectrum generated on the petawatt scale HERCULES laser system at the University of Michigan.

  9. Latest generation, wide-angle, high-definition colonoscopes increase adenoma detection rate.

    PubMed

    Adler, Andreas; Aminalai, Alireza; Aschenbeck, Jens; Drossel, Rolf; Mayr, Michael; Scheel, Mathias; Schröder, Andreas; Yenerim, Timur; Wiedenmann, Bertram; Gauger, Ulrich; Roll, Stephanie; Rösch, Thomas

    2012-02-01

    Improvements to endoscopy imaging technologies might improve detection rates of colorectal cancer and patient outcomes. We compared the accuracy of the latest generation of endoscopes with older generation models in detection of colorectal adenomas. We compared data from 2 prospective screening colonoscopy studies (the Berlin Colonoscopy Project 6); each study lasted approximately 6 months and included the same 6 colonoscopists, who worked in private practice. Participants in group 1 (n = 1256) were all examined by using the latest generation of wide-angle, high-definition colonoscopes that were manufactured by the same company. Individuals in group 2 (n = 1400) were examined by endoscopists who used routine equipment (a mixture of endoscopes from different companies; none of those used to examine group 1). The adenoma detection rate was calculated on the basis of the number of all adenomas/number of all patients. There were no differences in patient parameters or withdrawal time between groups (8.0 vs 8.2 minutes). The adenoma detection rate was significantly higher in group 1 (0.33) than in group 2 (0.27; P = .01); a greater number of patients with least 1 adenoma were identified in group 1 (22.1%) than in group 2 (18.2%; P = .01). A higher percentage of high-grade dysplastic adenomas were detected in group 1 (1.19%) than in group 2 (0.57%), but this difference was not statistically significant (P = .06). The latest generation of wide-angle, high-definition colonoscopes improves rates of adenoma detection by 22%, compared with mixed, older technology endoscopes used in routine private practice. These findings might affect definitions of quality control parameters for colonoscopy screening for colorectal cancer. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. A study of high repetition rate pulse generation and all-optical add/drop multiplexing

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin

    Ultra high-speed optical time-division-multiplexed (OTDM) transmission technologies are essential for the construction of ultra high-speed all-optical networks needed in the information era. In this Ph. D thesis dissertation, essential mechanisms associated with ultra high speed OTDM transmission systems, such as, high speed ultra short pulse generation, all optical demultiplexing and all optical add/drop multiplexing, have been studied. Both experimental demonstrations and numerical simulations have been performed. In order to realize high-speed optical TDM systems, high repetition rate, ultra short pulses are needed. A rational harmonic mode-locked ring fiber laser has been used to produce ultrashort pulses, the pulse jitter will be eliminated using a Phase-Locked-Loop (PLL), and the self-pulsation has been suppressed using a semiconductor optical amplifier (SOA). Sub pico-second pulses are very important for all optical sampling in the ultrahigh-speed OTDM transmission system. In this thesis, a two stage compression scheme utilizing the nonlinearity and dispersion of the optical fibers has been constructed and used to compress the gain switched DFB laser pulses. Also a nonlinear optical loop mirror has been constructed to suppress the wings associated with nonlinear compression. Pedestal free, transform-limited pulses with pulse widths in range of 0.2 to 0.4 ps have been generated. LiNbO3 modulators play a very important role in fiber optical communication systems. In this thesis, LiNbO3 modulators have been used to perform high repetition rate pulse generation, all optical demultiplexing and all optical add/drop for the TDM transmission system.

  11. High-dose-rate stroboscopic x-ray generator with a hot-cathode triode

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Ichimaru, Toshio; Sakamaki, Kimio; Takayama, Kazuyoshi; Tamakawa, Yoshiharu

    1997-12-01

    The construction and the fundamental studies of a high-dose- rate stroboscopic x-ray generator utilizing a hot-cathode radiation tube for high-speed radiography are described. This generator consists of the following essential components: a constant high-voltage power supply, an energy-storage oil condenser of about 0.1 (mu) F, a grid pulser, a dc power supply for the filament, and an x-ray tube. The x-ray tube is a glass-enclosed hot-cathode triode and is composed of the following major parts: an anode rod made of copper, a tungsten plate target, an iron focusing electrode, a tungsten hot- cathode (filament), a tungsten grid, and a glass tube body. The electron beams from the cathode are accelerated by both the grid and anode electrodes and are roughly converged to the target by the focusing electrode. In the present work, the storage condenser is charged up to 70 kV by the power supply, and the electric charges in the condenser are discharged repetitively to the x-ray tube by the grid pulser. Because the cathode current is increased by increasing the positive grid voltage, high-dose-rate repetitive x-rays are then produced. In this generator, the cathode current which is almost equivalent to the tube current is primarily regulated by the filament temperature (fulminate voltage). The pulse widths of x-rays were about 600 ns, and the maximum repetition rate was about 50 kHz. The cathode current was less than 3.1 angstrom, and the x-ray intensity had a value of 35.2 nC/kg at 0.5 m per pulse with a charging voltage of 70 kV and a filament voltage of 12 V.

  12. Construction and demolition waste generation rates for high-rise buildings in Malaysia.

    PubMed

    Mah, Chooi Mei; Fujiwara, Takeshi; Ho, Chin Siong

    2016-12-01

    Construction and demolition waste continues to sharply increase in step with the economic growth of less developed countries. Though the construction industry is large, it is composed of small firms with individual waste management practices, often leading to the deleterious environmental outcomes. Quantifying construction and demolition waste generation allows policy makers and stakeholders to understand the true internal and external costs of construction, providing a necessary foundation for waste management planning that may overcome deleterious environmental outcomes and may be both economically and environmentally optimal. This study offers a theoretical method for estimating the construction and demolition project waste generation rate by utilising available data, including waste disposal truck size and number, and waste volume and composition. This method is proposed as a less burdensome and more broadly applicable alternative, in contrast to waste estimation by on-site hand sorting and weighing. The developed method is applied to 11 projects across Malaysia as the case study. This study quantifies waste generation rate and illustrates the construction method in influencing the waste generation rate, estimating that the conventional construction method has a waste generation rate of 9.88 t 100 m(-2), the mixed-construction method has a waste generation rate of 3.29 t 100 m(-2), and demolition projects have a waste generation rate of 104.28 t 100 m(-2).

  13. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  14. Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Heiner, Zsuzsanna; Petrov, Valentin; Mero, Mark

    2017-06-01

    We present a high-efficiency optical parametric source for broadband vibrational sum-frequency generation (BB-VSFG) for the chemically important mid-infrared spectral range at 2800-3600 cm-1 to study hydrogen bonding interactions affecting the structural organization of biomolecules at water interfaces. The source consists of a supercontinuum-seeded, dual-beam optical parametric amplifier with two broadband infrared output beams and a chirped sum-frequency mixing stage providing narrowband visible pulses with adjustable bandwidth. Utilizing a pulse energy of only 60 μJ from a turn-key, 1.03-μm pump laser operating at a repetition rate of 100 kHz, the source delivers 6-cycle infrared pulses at 1.5 and 3.2 μm with pulse energies of 4.6 and 1.8 μJ, respectively, and narrowband pulses at 0.515 μm with a pulse energy of 5.0 μJ. The 3.2-μm pulses are passively carrier envelope phase stabilized with fluctuations at the 180-mrad level over a 10-s time period. The 1.5-μm beamline can be exploited to deliver pump pulses for time-resolved studies after suitable frequency up-conversion. The high efficiency, stability, and two orders of magnitude higher repetition rate of the source compared to typically employed systems offer great potential for providing a boost in sensitivity in BB-VSFG experiments at a reduced cost.

  15. Nonthermal Biological Treatments Using Discharge Plasma Produced by Pulsed Power 2.Generation Technologies of High Repetition Rate Pulsed Power

    NASA Astrophysics Data System (ADS)

    Sakugawa, Takashi

    Recently, high repetition rate, long lifetime, and high reliability pulsed power generators have been developed using semiconductor switches. We have studied and developed an all solid-state pulsed power generator for industrial applications such as a high repetition rate pulsed gas laser and a pulsed ozonizer. Recently, semiconductor power device technology has improved the performance of fast high-power switching devices. However, the semiconductor switch is still not sufficient to drive the pulse laser and the pulse ozonizer directly. Therefore, the semiconductor switch can be used in practical application with the assistance of a magnetic switch and a gate driving technique. This all solid-state generator consists of a semiconductor switch and a magnetic switch. The progress of high repetition rate pulsed power generators is reviewed herein, with particular emphasis on pulse power conditioning by solid-state switching techniques.

  16. Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop.

    PubMed

    Dai, Yitang; Xu, Chris

    2009-04-13

    We demonstrate a novel method for femtosecond pulse generation based on a time-lens loop. Time division multiplexing in the loop is performed so that a high repetition rate can be achieved. Pulse width less than 500 fs is generated from a continuous wave (CW) laser without mode locking, and tunable repetition rate from 23 MHz to 400 MHz is demonstrated. Theoretical analysis shows that the repetition rate is ultimately limited by the in-loop interference. By using a 2 x 2 optical switch, such interference is further suppressed, and repetition rate as high as 1.1 GHz is demonstrated.

  17. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    SciTech Connect

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  18. A reliable, compact, and repetitive-rate high power microwave generation system

    SciTech Connect

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun

    2015-11-15

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.

  19. A reliable, compact, and repetitive-rate high power microwave generation system

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun

    2015-11-01

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.

  20. Optical short pulse generation at high repetition rate over 80 GHz from a monolithic passively modelocked DBR laser diode

    NASA Astrophysics Data System (ADS)

    Arahira, S.; Matsui, Y.; Kunii, T.; Oshiba, S.; Ogawa, Y.

    1993-05-01

    Optical short pulses at high repetition rate over 80 GHz were successfully generated using a monolithically fabricated passively modelocked distributed Bragg reflector laser diode for the first time. By using linear fibre compression, a transform-limited optical pulse train with a duration of 2.7 ps was obtained. The pulse envelope closely matched a sech(sup 2) waveform.

  1. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    SciTech Connect

    Ventturini, M.; Corlett, J.; Emma, P.; Papadopoulos, C.; Penn, G.; Placidi, M.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Sun, C.; Wells, R.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  2. Free-Space Quantum Key Distribution with a High Generation Rate KTP Waveguide Photon-Pair Source

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Chaffee, D.; Wilson, N.; Lekki, J.; Tokars, R.; Pouch, J.; Lind, A.; Cavin, J.; Helmick, S.; Roberts, T.; hide

    2016-01-01

    NASA awarded Small Business Innovative Research (SBIR) contracts to AdvR, Inc to develop a high generation rate source of entangled photons that could be used to explore quantum key distribution (QKD) protocols. The final product, a photon pair source using a dual-element periodically- poled potassium titanyl phosphate (KTP) waveguide, was delivered to NASA Glenn Research Center in June of 2015. This paper describes the source, its characterization, and its performance in a B92 (Bennett, 1992) protocol QKD experiment.

  3. Use of a high repetition rate neutron generator for in vivo body composition measurements via neutron inelastic scattering

    SciTech Connect

    Kehayias, J.J.; Ellis, K.J.; Cohn, S.H.; Weinlein, J.H.

    1986-01-01

    A small D-T neutron generator with a high pulse rate is used for the in vivo measurement of body carbon, oxygen and hydrogen. The core of the neutron generator is a 13 cm-long Zetatron tube pulsed at a rate of 10 kHz delivering 10/sup 3/ to 10/sup 4/ neutrons per pulse. A target-current feedback system regulates the source of the accelerator to assure constant neutron output. Carbon is measured by detecting the 4.44 MeV ..gamma..-rays from inelastic scattering. The short half-life of the 4.44 MeV state of carbon requires detection of the ..gamma..-rays during the 10 ..mu..s neutron pulse. Generators with low pulsing rate were found inappropriate for carbon measurements because of their low duty-cycle (high neutron output during the pulse). In vivo measurements were performed with normal volunteers using a scanning bed facility for a dose less than 25 mrem. This technique offers medical as well as general bulk analysis applications. 8 refs., 5 figs.

  4. High School Graduation Rates of Potential First Generation College Students: A Qualitative Case Study

    ERIC Educational Resources Information Center

    Dansby, Jacqueline O.; Dansby-Giles, Gloria

    2011-01-01

    Educational reform in the United States has focused on several factors such as academic achievement, performance on standardized test scores, dropout rates, the mandate of the No Child Left Behind (NCLB) Act of 2001 (Dee and Jacob, 2010) and other changes. A new call for a broader and bolder strategy for educational reform that focused on…

  5. Generation of tunable, high repetition rate frequency combs with equalized spectra using carrier injection based silicon modulators

    NASA Astrophysics Data System (ADS)

    Nagarjun, K. P.; Selvaraja, Shankar Kumar; Supradeepa, V. R.

    2016-03-01

    High repetition-rate frequency combs with tunable repetition rate and carrier frequency are extensively used in areas like Optical communications, Microwave Photonics and Metrology. A common technique for their generation is strong phase modulation of a CW-laser. This is commonly implemented using Lithium-Niobate based modulators. With phase modulation alone, the combs have poor spectral flatness and significant number of missing lines. To overcome this, a complex cascade of multiple intensity and phase modulators are used. A comb generator on Silicon based on these principles is desirable to enable on-chip integration with other functionalities while reducing power consumption and footprint. In this work, we analyse frequency comb generation in carrier injection based Silicon modulators. We observe an interesting effect in these comb generators. Enhanced absorption accompanying carrier injection, an undesirable effect in data modulators, shapes the amplitude here to enable high quality combs from a single modulator. Thus, along with reduced power consumption to generate a specific number of lines, the complexity has also been significantly reduced. We use a drift-diffusion solver and mode solver (Silvaco TCAD) along with Soref-Bennett relations to calculate the variations in refractive indices and absorption of an optimized Silicon PIN - waveguide modulator driven by an unbiased high frequency (10 Ghz) voltage signal. Our simulations demonstrate that with a device length of 1 cm, a driving voltage of 2V and minor shaping with a passive ring-resonator filter, we obtain 37 lines with a flatness better than 5-dB across the band and power consumption an order of magnitude smaller than Lithium-Niobate modulators.

  6. Free-Space Quantum Key Distribution with a High Generation Rate Potassium Titanyl Phosphate Waveguide Photon-Pair Source

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; hide

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  7. Free-space quantum key distribution with a high generation rate potassium titanyl phosphate waveguide photon-pair source

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip R.; Floyd, Bertram; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.

    2016-09-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nm pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nm photons are up-converted to a single 532-nm photon in the first stage. In the second stage, the 532-nm photon is down-converted to an entangled photon-pair at 800 nm and 1600 nm which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free space QKD experiment with the B92 protocol are also presented.

  8. Advances in generation of high-repetition-rate burst mode laser output.

    PubMed

    Jiang, Naibo; Webster, Matthew C; Lempert, Walter R

    2009-02-01

    It is demonstrated that the incorporation of variable pulse duration flashlamp power supplies into an Nd:YAG burst mode laser system results in very substantial increases in the realizable energy per pulse, the total pulse train length, and uniformity of the intensity envelope. As an example, trains of 20 pulses at burst frequencies of 50 and 20 kHz are demonstrated with individual pulse energy at 1064 nm of 220 and 400 mJ, respectively. Conversion efficiency to the second- (532 nm) and third- (355 nm) harmonic wavelengths of approximately 50% and 35-40%, respectively, is also achieved. Use of the third-harmonic output of the burst mode laser as a pump source for a simple, home built optical parametric oscillator (OPO) produces pulse trains of broadly wavelength tunable output. Sum-frequency mixing of OPO signal output at 622 nm with residual output from the 355 nm pump beam is shown to produce uniform bursts of tunable output at approximately 226 nm, with individual pulse energy of approximately 0.5 mJ. Time-correlated NO planar laser induced fluorescence (PLIF) image sequences are obtained in a Mach 3 wind tunnel at 500 kHz, representing, to our knowledge, the first demonstration of NO PLIF imaging at repetition rates exceeding tens of hertz.

  9. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application.

    PubMed

    Huang, K; Li, M H; Yan, W C; Guo, X; Li, D Z; Chen, Y P; Ma, Y; Zhao, J R; Li, Y F; Zhang, J; Chen, L M

    2014-11-01

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10(10) photons sr(-1) s(-1), corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  10. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions.

    PubMed

    Quinlan, Casey L; Orr, Adam L; Perevoshchikova, Irina V; Treberg, Jason R; Ackrell, Brian A; Brand, Martin D

    2012-08-03

    Respiratory complex II oxidizes succinate to fumarate as part of the Krebs cycle and reduces ubiquinone in the electron transport chain. Previous experimental evidence suggested that complex II is not a significant contributor to the production of reactive oxygen species (ROS) in isolated mitochondria or intact cells unless mutated. However, we find that when complex I and complex III are inhibited and succinate concentration is low, complex II in rat skeletal muscle mitochondria can generate superoxide or H(2)O(2) at high rates. These rates approach or exceed the maximum rates achieved by complex I or complex III. Complex II generates these ROS in both the forward reaction, with electrons supplied by succinate, and the reverse reaction, with electrons supplied from the reduced ubiquinone pool. ROS production in the reverse reaction is prevented by inhibition of complex II at either the ubiquinone-binding site (by atpenin A5) or the flavin (by malonate), whereas ROS production in the forward reaction is prevented by malonate but not by atpenin A5, showing that the ROS from complex II arises only from the flavin site (site II(F)). We propose a mechanism for ROS production by complex II that relies upon the occupancy of the substrate oxidation site and the reduction state of the enzyme. We suggest that complex II may be an important contributor to physiological and pathological ROS production.

  11. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    SciTech Connect

    Chandler, David

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  12. All-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Hua, Dacheng; Su, Jianjia; Cui, Wei; Yan, Yaxi; Jiang, Peipei

    2014-12-01

    We report an all-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation. The high repetition rate ns laser pulses were produced from a fiber Bragg grating (FBG)-constructed fiber laser cavity consisting of a piece of double cladding Yb fiber as the gain medium and a short piece of Bi/Cr-doped fiber as a saturable absorber (SA). By optimizing the fiber length of the Bi/Cr-doped fiber and the reflectivity of the FBG, the Q-switching state of the fiber laser can be adjusted so that the energy storing condition within the fiber cavity can assure the start of stimulated Brillouin scattering (SBS) and as a result, compress the laser pulse duration. The fiber laser had an average laser power output of 1.2 W at 1064 nm with pulse repetition rate of about 80 kHz, almost four times the reported results. The pulse duration was about 1 ns with peak power of about 15 kW. After one stage of amplification, the laser power was raised to about 3 W and was used to pump a 20 m long photonic crystal fiber (PCF). Supercontiuum (SC) laser output was obtained with average power up to 1.24 W and spectrum spanning from 550 to 2200 nm.

  13. The role of the sarcoplasmic reticulum in the generation of high heart rates and blood pressures in reptiles.

    PubMed

    Galli, Gina L J; Gesser, Hans; Taylor, Edwin W; Shiels, Holly A; Wang, Tobias

    2006-05-01

    The functional significance of the sarcoplasmic reticulum (SR) in the generation of high heart rates and blood pressures was investigated in four species of reptile; the turtle, Trachemys scripta; the python, Python regius, the tegu lizard, Tupinanvis merianae, and the varanid lizard, Varanus exanthematicus. Force-frequency trials and imposed pauses were performed on ventricular and atrial tissue from each species with and without the SR inhibitor ryanodine, and in the absence and presence of adrenaline. In all species, an imposed pause of 1 or 5 min caused a post-rest decay of force, and a negative force-frequency response was observed in all species within their in vivo frequency range of heart rates. These relationships were not affected by either ryanodine or adrenaline. In ventricular strips from varanid lizards and pythons, ryanodine caused significant reductions in twitch force within their physiologically relevant frequency range. In atrial tissue from the tegu and varanid lizards, SR inhibition reduced twitch force across the whole of their physiological frequency range. In contrast, in the more sedentary species, the turtle and the python, SR inhibition only decreased twitch force at stimulation frequencies above maximal in vivo heart rates. Adrenaline caused an increase in twitch force in all species studied. In ventricular tissue, this positive inotropic effect was sufficient to overcome the negative effects of ryanodine. In atrial tissue however, adrenaline could only ameliorate the negative effects of ryanodine at the lower pacing frequencies. Our results indicate that reptiles recruit Ca2+ from the SR for force development in a frequency and tissue dependent manner. This is discussed in the context of the development of high reptilian heart rates and blood pressures.

  14. Generation of rodent malaria parasites with a high mutation rate by destructing proofreading activity of DNA polymerase δ.

    PubMed

    Honma, Hajime; Hirai, Makoto; Nakamura, Shota; Hakimi, Hassan; Kawazu, Shin-Ichiro; Palacpac, Nirianne M Q; Hisaeda, Hajime; Matsuoka, Hiroyuki; Kawai, Satoru; Endo, Hiroyoshi; Yasunaga, Teruo; Ohashi, Jun; Mita, Toshihiro; Horii, Toshihiro; Furusawa, Mitsuru; Tanabe, Kazuyuki

    2014-08-01

    Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malaria biology. Here, we generated a mutator malaria parasite (hereinafter called a 'malaria mutator'), using site-directed mutagenesis and gene transfection techniques. A mutator Plasmodium berghei line with a defective proofreading 3' → 5' exonuclease activity in DNA polymerase δ (referred to as PbMut) and a control P. berghei line with wild-type DNA polymerase δ (referred to as PbCtl) were maintained by weekly passage in ddY mice for 122 weeks. High-throughput genome sequencing analysis revealed that two PbMut lines had 175-178 mutations and a 86- to 90-fold higher mutation rate than that of a PbCtl line. PbMut, PbCtl, and their parent strain, PbWT, showed similar course of infection. Interestingly, PbMut lost the ability to form gametocytes during serial passages. We believe that the malaria mutator system could provide a novel and useful tool to investigate malaria biology.

  15. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application

    SciTech Connect

    Huang, K.; Li, M. H.; Yan, W. C.; Ma, Y.; Zhao, J. R.; Li, Y. F.; Chen, L. M.; Guo, X.; Li, D. Z.; Chen, Y. P.; Zhang, J.

    2014-11-15

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10{sup 10} photons sr{sup −1} s{sup −1}, corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  16. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    PubMed

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-12-19

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.

  17. Floral-Dip Transformation of Flax (Linum usitatissimum) to Generate Transgenic Progenies with a High Transformation Rate

    PubMed Central

    Bastaki, Nasmah K.; Cullis, Christopher A.

    2014-01-01

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation. PMID:25549243

  18. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  19. High-power, high-repetition-rate performance characteristics of β-BaB₂O₄ for single-pass picosecond ultraviolet generation at 266 nm.

    PubMed

    Kumar, S Chaitanya; Casals, J Canals; Wei, Junxiong; Ebrahim-Zadeh, M

    2015-10-19

    We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz.

  20. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  1. UNAVCO GPS High-Rate and Real-Time Products and Services: Building a next generation geodetic network.

    NASA Astrophysics Data System (ADS)

    Mencin, David; Meertens, Charles; Mattioli, Glen; Feaux, Karl; Looney, Sara; Sievers, Charles; Austin, Ken

    2013-04-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1-5 Hz) and low latency (<1 s). Broad community interest in these data is growing rapidly because these data will have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami deformation sources, and moreover profoundly transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in the UNAVCO data center. Further, through the UNAVCO core proposal (GAGE), currently under review at NSF, UNAVCO has proposed upgrading a significant portion of the ~1100 GPS stations that PBO currently operates to real-time high-rate capability to address community science and operational needs. In addition, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. In preparation for this increased emphasis on high-rate GPS data, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, 2012, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time, high-rate GPS data over

  2. High Repetition Rate Electron Beam RF-Acceleration and Sub-Millimeter Wave Generation via a Free Electron Laser.

    DTIC Science & Technology

    1985-08-14

    the American Physical Society 29. 1180 (1984). (b) D.B. McDermott, W.J. Nunan and N.C. Luhmann. Jr.. "A High Repetition Rate. Compact Free Electron...Laser." to be published in Proc. of 1985 IEEE IEDM Meeting. (c) D.B. McDermott. W.J. Nunan and N.C. Luhmann. Jr.. "A High Repetition Rate. Compact Free...Electron Laser". to be published in Proc. of Tenth S Int. Conf. on IR and mm-Waves. tApI (d) W.3. Nunan . D.B. McDermott and N.C. Luhmann. Jr.. "A

  3. A workflow to increase verification rate of chromosomal structural rearrangements using high-throughput next-generation sequencing.

    PubMed

    Quek, Kelly; Nones, Katia; Patch, Ann-Marie; Fink, J Lynn; Newell, Felicity; Cloonan, Nicole; Miller, David; Fadlullah, Muhammad Z H; Kassahn, Karin; Christ, Angelika N; Bruxner, Timothy J C; Manning, Suzanne; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Steptoe, Anita; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Wilson, Peter; Biankin, Andrew V; Pearson, John V; Waddell, Nic; Grimmond, Sean M

    2014-07-01

    Somatic rearrangements, which are commonly found in human cancer genomes, contribute to the progression and maintenance of cancers. Conventionally, the verification of somatic rearrangements comprises many manual steps and Sanger sequencing. This is labor intensive when verifying a large number of rearrangements in a large cohort. To increase the verification throughput, we devised a high-throughput workflow that utilizes benchtop next-generation sequencing and in-house bioinformatics tools to link the laboratory processes. In the proposed workflow, primers are automatically designed. PCR and an optional gel electrophoresis step to confirm the somatic nature of the rearrangements are performed. PCR products of somatic events are pooled for Ion Torrent PGM and/or Illumina MiSeq sequencing, the resulting sequence reads are assembled into consensus contigs by a consensus assembler, and an automated BLAT is used to resolve the breakpoints to base level. We compared sequences and breakpoints of verified somatic rearrangements between the conventional and high-throughput workflow. The results showed that next-generation sequencing methods are comparable to conventional Sanger sequencing. The identified breakpoints obtained from next-generation sequencing methods were highly accurate and reproducible. Furthermore, the proposed workflow allows hundreds of events to be processed in a shorter time frame compared with the conventional workflow.

  4. High Repetition Rate Electron Beam RF-Acceleration and Sub-Millimeter Wave Generation Via a Free Electron Laser.

    DTIC Science & Technology

    1986-02-14

    Period, Including Journal References: (a) D.B. McDermott, W.J. Nunan and N.C. Luhmann, Jr., "A High Duty Cycle, Compact 94 GHz Free Electron Laser...34 submitted to Journal IR and am-Waves. (b) W.J. Nunan , D.B. McDermott and N.C. Luhmann, Jr., "A High Repetition *Rate, Compact 94 GHz Free Electron Laser...34 Bulletin of the American Phy- * ) sical Society 30, 1543 (1985). L J (c) D.B. McDermott, W.J. Nunan and N.C. Luhmann, Jr., "A High RepetitionLL

  5. UNAVCO Geodetic HIgh-Rate and Real-Time Products and Services: A next generation geodetic network

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Mencin, D.; Meertens, C. M.; Feaux, K.; Looney, S.

    2012-12-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1 Hz) and low latency (<1 s). These data will have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami deformation sources, and moreover profoundly transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in our data center. In addition, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time GPS data over the next decade. Additionally, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. As part of this upgrade UNAVCO is also exploring making the 75 PBO borehole strainmeter sites, whose data are now collected with a latency of 24 hours, available in SEED format in real-time in the near future, providing an opportunity to combine high-rate surface positioning and strain data together.

  6. High energy, low repetition rate, photonic crystal fiber generated supercontinuum for nanosecond to millisecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kho, Julie L. H.; Rohde, Charles A.; Vanholsbeeck, Frédérique; Cather Simpson, M.

    2013-05-01

    High energy density per pulse (-15 dBm nm-1) supercontinuum (SC) source has been developed as a probe for transient absorption (TrA) spectroscopy of systems with lifetimes from nanoseconds to a few milliseconds. We have generated a 600-1600 nm, broadband SC by pumping a 15 m photonic crystal fiber (PCF) with relatively high power, 7 ns, 1064 nm pulses. The SC generated at peak pump power of 7.1 kW was randomly polarized and maintained a stable output (6.5% rms average power; 9.1% rms shot-to-shot power). Co-pumping with both 1064 and 532 nm light extended the wavelength range of the SC by about 20%, to 500-1700 nm. Power conversion efficiency and spectral flatness were improved as well. In the visible range, the single-pump SC shows a flatness of 5 dB while the dual-pump SC exhibits 3 dB. In the NIR (1100-1600 nm), the flatness in single- and dual-pump configurations were 3 and 2 dB, respectively. Optically induced fiber breakdown was characterized.

  7. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  8. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  9. Integrated Performance of Next Generation High Data Rate Receiver and AR4JA LDPC Codec for Space Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis

    2008-01-01

    Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.

  10. Integrated Performance of Next Generation High Data Rate Receiver and AR4JA LDPC Codec for Space Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis

    2008-01-01

    Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.

  11. Generation 3 treatment technology for diluted swine wastewater using high-rate solid-liquid separation and nutrient removal processes

    USDA-ARS?s Scientific Manuscript database

    The primary objective for this project was to construct and evaluate a third generation, innovative swine manure treatment system. The system was designed to: separate solids and liquids with the aid of settling and polymer flocculants; biologically remove ammonia nitrogen with bacteria adapted to h...

  12. High Voltage Seismic Generator

    NASA Astrophysics Data System (ADS)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  13. High population increase rates.

    PubMed

    1991-09-01

    In addition to its economic and ethnic difficulties, the USSR faces several pressing demographic problems, including high population increase rates in several of its constituent republics. It has now become clear that although the country's rigid centralized planning succeeded in covering the basic needs of people, it did not lead to welfare growth. Since the 1970s, the Soviet economy has remained sluggish, which as led to increase in the death and birth rates. Furthermore, the ideology that held that demography could be entirely controlled by the country's political and economic system is contradicted by current Soviet reality, which shows that religion and ethnicity also play a significant role in demographic dynamics. Currently, Soviet republics fall under 2 categories--areas with high or low natural population increase rates. Republics with low rates consist of Christian populations (Armenia, Moldavia, Georgia, Byelorussia, Russia, Lithuania, Estonia, Latvia, Ukraine), while republics with high rates are Muslim (Tadzhikistan, Uzbekistan, Turkmenistan, Kirgizia, Azerbaijan Kazakhstan). The later group has natural increase rates as high as 3.3%. Although the USSR as a whole is not considered a developing country, the later group of republics fit the description of the UNFPA's priority list. Another serious demographic issue facing the USSR is its extremely high rate of abortion. This is especially true in the republics of low birth rates, where up to 60% of all pregnancies are terminated by induced abortions. Up to 1/5 of the USSR's annual health care budget is spent on clinical abortions -- money which could be better spent on the production of contraceptives. Along with the recent political and economic changes, the USSR is now eager to deal with its demographic problems.

  14. High voltage generator

    DOEpatents

    Schwemin, A. J.

    1959-03-17

    A generator for producing relatively large currents at high voltages is described. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The above-noted circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  15. HIGH VOLTAGE GENERATOR

    DOEpatents

    Schwemin, A.J.

    1959-03-17

    A generator is presented for producing relatively large currents at high voltages. In general, the invention comprises a plurality of capacitors connected in series by a plurality of switches alternately disposed with the capacitors. The circuit is mounted for movement with respect to contact members and switch closure means so that a load device and power supply are connected across successive numbers of capacitors, while the other capacitors are successively charged with the same power supply.

  16. High Repetition Rate Electron Beam RF-Acceleration and Sub-Millimeter Wave Generation Via a Free Electron Laser.

    DTIC Science & Technology

    1987-08-14

    D.S. Furuno, N.C. Luhmann, Jr., W.J. Nunan , Haibo Cao, "Compact, High Power Millimeter Wave Sources," Proc. of Sixth Int. Conf. High Power Particle...Beams, Osaka, Japan (1986). (b) D.B. McDermott, W.J. Nunan and N.C. Luhmann, Jr., "A Prebunched 94 GHz Free Electron Laser," Proc. of the Eleventh IEEE...Int. Conf. IR and mm-Waves, Pisa, Italy (1986). (c) W.J. Nunan , D.B. McDermott and N.C. Luhmann, Jr., "A High Duty Cycle, Compact 94 GHz FEL," Bull

  17. CO2 generation rate in Chinese people.

    PubMed

    Qi, M W; Li, X F; Weschler, L B; Sundell, J

    2014-12-01

    Carbon dioxide (CO2 ) metabolically produced by humans has been widely used as a tracer gas for determining ventilation rates in occupied rooms. Among other necessities, the method requires good estimates of human CO2 generation rates. An empirically derived equation is widely used to calculate the CO2 generation rate. However, there are indications that this equation is not valid for young Chinese people. In this study, we measured the CO2 generation rate of 44 young Chinese people at two typical activity levels, quiet sitting and relaxed standing. We found that the commonly used empirical equation overpredicted CO2 generation rates, but could be corrected with a factor of 0.75 for Chinese females and of 0.85 for Chinese males. The variance for measured CO2 sitting was much smaller than for standing, and hence, we concluded that sitting yields more precise CO2 generation estimates. The relative contributions of sex, height, weight, and metabolic rate were analyzed. We concluded that the error in estimating metabolic rate is responsible for most of the difference in measured generation of CO2 from the empirical equation's predictions. The tracer gas method using CO2 generated by people is widely used to calculate ventilation rate. However, the empirically derived equation that is normally used to estimate CO2 generation rate is not suitable for young Chinese people at rest. To estimate the CO2 generation rate in Chinese people under low-activity conditions, the empirical equation should be multiplied by correction factors of 0.75 and 0.85 for females and males, respectively. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping

    NASA Astrophysics Data System (ADS)

    Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang

    2016-03-01

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.

  19. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    SciTech Connect

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  20. Generation of stable Ps, mJ pulses at high repetition rate for ultrafast diagnostic experiments: Final report

    SciTech Connect

    Mourou, G.

    1986-10-01

    Nd:Glass amplifiers have very good energy storage capabilities (5 J/cm/sup 2/), but, the energy extraction is extremely inefficient for short-pulse amplification. At relatively high peak intensities of approx. 10 GW/cm/sup 2/, nonlinear phase shifts occur, leading to beam wavefront distortion which can result in filamentation and irreversible damage. In order that the peak intensity in the amplifier remain below this damage level, a picosecond pulse can be amplified only to an energy density of approx. 10 mJ/cm/sup 2/, two orders of magnitude less than the stored energy level of 5 J/cm/sup 2/. We have developed an amplification system, which uses an optical pulse compression technique to circumvent this peak power limitation. This technique is analogous to a method developed over forty years ago for the amplification of radar pulses. Briefly: a long optical pulse is deliberately produced by stretching a short, low-energy pulse, amplified and then compressed. The frequency chirp and the temporal broadening are produced by propagating a high-intensity pulse along a single-mode fiber. At the beginning of the fiber, the pulse undergoes self-phase modulation which produces a frequncy chirp. The chirp is then linearized by the group-velocity dispersion of the fiber. This long, frequency-chirped, pulse is amplified, and then compressed to a pulsewidth approximately equal to 1/..delta..f, where ..delta..f is the chirped bandwidth. With this system, short pulses can reach the high saturation energy levels, with moderately low peak power levels being maintained in the amplifying medium.

  1. On algorithmic rate-coded AER generation.

    PubMed

    Linares-Barranco, Alejandro; Jimenez-Moreno, Gabriel; Linares-Barranco, Bernabé; Civit-Balcells, Antón

    2006-05-01

    This paper addresses the problem of converting a conventional video stream based on sequences of frames into the spike event-based representation known as the address-event-representation (AER). In this paper we concentrate on rate-coded AER. The problem is addressed as an algorithmic problem, in which different methods are proposed, implemented and tested through software algorithms. The proposed algorithms are comparatively evaluated according to different criteria. Emphasis is put on the potential of such algorithms for a) doing the frame-based to event-based representation in real time, and b) that the resulting event streams ressemble as much as possible those generated naturally by rate-coded address-event VLSI chips, such as silicon AER retinae. It is found that simple and straightforward algorithms tend to have high potential for real time but produce event distributions that differ considerably from those obtained in AER VLSI chips. On the other hand, sophisticated algorithms that yield better event distributions are not efficient for real time operations. The methods based on linear-feedback-shift-register (LFSR) pseudorandom number generation is a good compromise, which is feasible for real time and yield reasonably well distributed events in time. Our software experiments, on a 1.6-GHz Pentium IV, show that at 50% AER bus load the proposed algorithms require between 0.011 and 1.14 ms per 8 bit-pixel per frame. One of the proposed LFSR methods is implemented in real time hardware using a prototyping board that includes a VirtexE 300 FPGA. The demonstration hardware is capable of transforming frames of 64 x 64 pixels of 8-bit depth at a frame rate of 25 frames per second, producing spike events at a peak rate of 10(7) events per second.

  2. High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masahito; Kawagoe, Hiroyuki; Nishizawa, Norihiko

    2016-02-01

    We describe the generation of a high-power, spectrally smooth supercontinuum (SC) in the 1600 nm spectral band for ultrahigh-resolution optical coherence tomography (UHR-OCT). A clean SC was achieved by using a highly nonlinear fiber with normal dispersion properties and a high-quality pedestal-free pulse obtained from a passively mode-locked erbium-doped fiber laser operating at 182 MHz. The center wavelength and spectral width were 1578 and 172 nm, respectively. The output power of the SC was 51 mW. Using the developed SC source, we demonstrated UHR-OCT imaging of biological samples with a sensitivity of 109 dB and an axial resolution of 4.9 µm in tissue.

  3. Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength.

    PubMed

    Guo, Yanyan; Tian, Ying; Zhang, Liyan; Hu, Lili; Chen, Nan-Kuang; Zhang, Junjie

    2012-08-15

    With a 980 nm laser diode pumping, the 2.7 µm emission and energy transfer processes of Er3+/Pr3+ codoped germanium-gallium-bismuthate glasses have been investigated. For Er3+ (1 mol. %) and Pr3+ (1 mol. %) molar concentrations, an intense 2.7 µm emission was obtained based on the high excited-state absorption of Er3+ ions and energy transfer (ET) between Er3+ and Pr3+ ions codopant (ET). The intrinsic lifetime of Er3+:4I(13/2) level is quenched effectively (from 6.85 ms down to 0.24 ms) and the population inversions between Er3+:4I(11/2) and 4I(13/2) levels are enhanced to achieve a four-level energy system at 2.7 µm.

  4. Compact High-Repetition-Rate Monochromatic Terahertz Source Based on Difference Frequency Generation from a Dual-Wavelength Nd:YAG Laser and DAST Crystal

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Mei, Jialin; Wang, Maorong; Liu, Pengxiang; Xu, Degang; Wang, Yuye; Shi, Wei; Yao, Jianquan; Teng, Bing; Xiao, Yong

    2017-01-01

    Although high-repetition-rate dual-wavelength Nd:YAG lasers at 1319 and 1338 nm have been realized for quite a long time, we have employed it in generating monochromatic terahertz (THz) wave in this paper for the first time. The dual-wavelength laser was LD-end-pumped and acousto-optically (AO) Q-switched with the output power of watt level operating at different repetition rates from 5.5 to 30 kHz. Using a 0.6-mm-thick organic nonlinear crystal DAST for difference frequency generation (DFG), a compact terahertz source was achieved at 3.28 THz. The maximum average output power was about 0.58 μW obtained at a repetition rate of 5.5 kHz, corresponding to the conversion efficiency of about 6.4 × 10-7. The output power scaling is still feasible with higher pump power and a longer nonlinear DFG crystal. Owing to the compactness of the dual-wavelength laser and the nonlinear crystal, a palm-top terahertz source is expected for portable applications such as imaging and so on.

  5. Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of nutrient uptake.

    PubMed

    Yip, Justine Y. H.; Vanlerberghe, Greg C.

    2001-07-01

    When wild type (wt) tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) suspension cells were grown under phosphate (P) limitation, they contained large amounts of mitochondrial alternative oxidase (AOX). When these cells were resupplied with P, there was a large, immediate and sustained stimulation of respiration to support a period of rapid P uptake. Two lines of evidence suggest that the abundant level of AOX present in wt cells contributed to this stimulated rate of respiration. First, when P-limited transgenic antisense tobacco cells (AS8) lacking AOX were resupplied with P, the stimulation of respiration was much less dramatic even though these cells displayed similar rates of P uptake. Second, while the stimulated rate of respiration in AS8 cells was insensitive (as expected) to the AOX inhibitor n-propyl gallate (nPG), much of the stimulated rate of respiration in wt cells could be inhibited by nPG. Given the non-phosphorylating nature of AOX respiration, wt cells required higher rates of electron transport to O2 than AS8 cells to support similar rates of P uptake. The utilization of AOX by wt cells during P uptake was apparently not occurring because the cytochrome (Cyt) pathway alone could not fully support the rate of P uptake, as the respiration of cells lacking AOX (either untreated AS8 cells or wt cells treated with nPG) supported similar rates of P uptake as wt cells with abundant AOX. Rather, we provide in vivo evidence that the utilization of AOX during the period of high respiration supporting P uptake was to dampen the mitochondrial generation of active oxygen species (AOS).

  6. High Repetition-Rate Neutron Generation by Several-mJ, 35 fs pulses interacting with Free-Flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, Jungmoo; Petrov, George; Nees, John; He, Zhaohan; Hammig, Mark; Krushelnick, Karl; Thomas, Alexander

    2016-10-01

    Recent advance in ultra-high power laser technology allows a development of laser-based neutron sources. Here we demonstrate heavy-water based neutron source. Using several-mJ energy pulses from a high-repetition rate (½kHz), ultrashort (35 fs) pulsed laser interacting with a 10 μm diameter stream of free-flowing heavy water (D2O), we get a 2.45 MeV neutron flux of 105/s. In the intentionally generated pre-plasma, laser pulse energy is efficiently absorbed, and energetic deuterons are generated. As a convertor, the bulk heavy water stream target and the large volume of low density D2O vapor near the target are collided with accelerated deuterons, generating neutron through d(d,n)3He reactions. As laser pulse energy increased from 6mJ to 12mJ, the neutron flux increased. From the 2D particle-in-cell simulation, comparable neutron fluxes are shown at the similar laser characteristics to the experiment. Also, simulation shows forward and backward moving deuterons, which are main distributing ions impinging upon D2O stream and vapor, respectively. This material is based upon work supported by the Air Force Office of Scien- tific Research under Award Numbers FA9550-12-1-0310 (Young Investigator Program) and FA9550-14-1-0282.

  7. High repetition-rate neutron generation by several-mJ, 35 fs pulses interacting with free-flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, J.; Petrov, G. M.; Nees, J. A.; He, Z.-H.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2016-10-01

    Using several-mJ energy pulses from a high-repetition rate (1/2 kHz), ultrashort (35 fs) pulsed laser interacting with a ˜ 10 μm diameter stream of free-flowing heavy water (D2O), we demonstrate a 2.45 MeV neutron flux of 105/s. Operating at high intensity (of order 1019 W/cm2), laser pulse energy is efficiently absorbed in the pre-plasma, generating energetic deuterons. These collide with deuterium nuclei in both the bulk target and the large volume of low density D2O vapor surrounding the target to generate neutrons through d ( d , n ) 3 He reactions. The neutron flux, as measured by a calibrated neutron bubble detector, increases as the laser pulse energy is increased from 6 mJ to 12 mJ. A quantitative comparison between the measured flux and the results derived from 2D-particle-in-cell simulations shows comparable neutron fluxes for laser characteristics similar to the experiment. The simulations reveal that there are two groups of deuterons. Forward moving deuterons generate deuterium-deuterium fusion reactions in the D2O stream and act as a point source of neutrons, while backward moving deuterons propagate through the low-density D2O vapor filled chamber and yield a volumetric source of neutrons.

  8. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution

    PubMed Central

    Kawakami, Takeshi; Smeds, Linnéa; Backström, Niclas; Husby, Arild; Qvarnström, Anna; Mugal, Carina F; Olason, Pall; Ellegren, Hans

    2014-01-01

    Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high-density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best-order map contained 4215 markers, with a total distance of 3132 cm and a mean genetic distance between markers of 0.12 cm. Facilitated by the array being designed to include markers from most scaffolds, we obtained a second-generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super-scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5–2.0 event (6.6–7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cm/Mb and correlated closely with chromosome size, from 2 cm/Mb for chromosomes >100 Mb to >10 cm/Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cm was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes. PMID:24863701

  9. Carbon dioxide generation rates for building occupants.

    PubMed

    Persily, A; de Jonge, L

    2017-09-01

    Indoor carbon dioxide (CO2 ) concentrations have been used for decades to characterize building ventilation and indoor air quality. Many of these applications require rates of CO2 generation from the building occupants, which are currently based on approaches and data that are several decades old. However, CO2 generation rates can be derived from well-established concepts within the fields of human metabolism and exercise physiology, which relate these rates to body size and composition, diet, and level of physical activity. This paper reviews how CO2 generation rates have been estimated in the past and discusses how they can be characterized more accurately. Based on this information, a new approach to estimating CO2 generation rates is presented, which is based on the described concepts from the fields of human metabolism and exercise physiology. Using this approach and more recent data on body mass and physical activity, values of CO2 generation rates from building occupants are presented along with the variability that may occur based on body mass and activity data. © 2017 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  10. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  11. Phase, Viscosity, Morphology, and Room Temperature Evaporation Rates of SOA Particles Generated from Different Precursors, at Low and High Relative Humidities, and their Interaction with Hydrophobic Organics

    NASA Astrophysics Data System (ADS)

    Wilson, J. M.; Zelenyuk, A.; Imre, D. G.; Beranek, J.; Abramson, E.; Shrivastava, M.

    2012-12-01

    Formation, properties, transformations, and temporal evolution of secondary organic aerosol (SOA) particles strongly depend on particle phase. Semi-volatile molecules that comprise SOA particles were assumed to form a low viscosity solution that maintains equilibrium with the evolving gas phase by rapid evaporation condensation. However, studies by our group indicate that laboratory-generated alpha-pinene SOA particles and ambient SOA characterized in a recent field campaign are in a semi-solid, highly viscous phase, and their evaporation rates are orders of magnitude slower than predicted. We present the results of recent studies in which we have extended our work to include SOA particles generated by oxidation of a number of precursors including limonene, n-alkenes, cyclo-alkenes and isoprene. The resulting particles are characterized by their phase, morphology and room temperature evaporation rates. We conclude that, while the detailed properties of SOA particles depend of their precursor, all studied SOA particles are highly viscous semi-solids that exhibit very slow evaporation rates. Given that atmospheric relative humidity (RH) can change particle phase, it is important to investigate the effect of RH on the phase and evaporation kinetics of SOA particles. To this end SOA particles were generated at low and high (~90%) RH, and their evaporation kinetics and phase were characterized as a function of RH. In the ambient atmosphere SOA particles form in the presence of a mixture of different organic compounds, which are present at or below their equilibrium vapor pressure, and thus have been ignored. However, our data show that these compounds can adsorb to the surface of particles during SOA formation, becoming trapped in the highly viscous SOA, and affect particle properties. We examine the interaction between SOA particles and different hydrophobic organics representing typical anthropogenic emissions by making SOA in the presence of the vapors of these

  12. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    DOE PAGES

    Kovalev, S.; Green, B.; Golz, T.; ...

    2017-03-06

    Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less

  13. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates

    PubMed Central

    Kovalev, S.; Green, B.; Golz, T.; Maehrlein, S.; Stojanovic, N.; Fisher, A. S.; Kampfrath, T.; Gensch, M.

    2017-01-01

    Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession. PMID:28382317

  14. Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates.

    PubMed

    Kovalev, S; Green, B; Golz, T; Maehrlein, S; Stojanovic, N; Fisher, A S; Kampfrath, T; Gensch, M

    2017-03-01

    Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.

  15. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  16. High-repetition-rate, widely tunable terahertz generation in GaSe pumped by a dual-wavelength KTP-OPO

    NASA Astrophysics Data System (ADS)

    Yan, Dexian; Xu, Degang; Wang, Yuye; Shi, Wei; Zhong, Kai; Liu, Pengxiang; Yan, Chao; Sheng, Quan; Mei, Jialin; Shi, Jia; Yao, Jianquan

    2016-11-01

    High-repetition-rate, monochromatic and tunable terahertz (THz) source is demonstrated. We use an orthogonally polarized dual-wavelength intracavity OPO to complete the type-II phase-matched collinear difference-frequency generation in GaSe. A high average-power 2 μm laser with 12 W output power and good beam quality based on an intracavity KTP OPO is experimentally designed. The KTP OPO is intracavity pumped by an acousto-optical Q-switched side-pumped Nd:YAG with the repetition rate of 10 kHz. Two identical KTP crystals were 7 × 8 × 15 mm3 in size, cut at θ = 51.2°, φ = 0°, which were tuned in the x-z plane to achieve type-II phase-matching. The KTP OPO consists of two identical KTP crystals to reduce the walk-off effect and improve the beam overlap area of the output signal and idler waves. The pulse-width of the 2-μm KTP OPO laser is about 11 ns with the linewidth about 0.8 nm. The focused OPO beam is injected into the uncoated GaSe with the length of 8 mm, and the generated THz wave is detected with a 4.2-K Si-bolometer after focusing with a polyethylene lens. The tunable and coherent radiation from 0.2 to 3 THz has been achieved based on the type-II phase-matching DFG when the two pump waves are in the range of 2.1064 - 2.1272 μm and 2.1516 - 2.1304 μm while symmetrically tuning the phase-matching angle of the KTPs. The maximum output THz average power can reach μW-level around 1.48 THz.

  17. Silicon cell culture templates with nanotopography: periodic nanostructures and random nanoporous topologies generated by high-repetition rate sub-15 fs pulsed near-infrared laser light

    NASA Astrophysics Data System (ADS)

    Straub, Martin; Uchugonova, Aisada; Koch, Marcus; König, Karsten

    2012-03-01

    In recent years a variety of studies has demonstrated that artificially generated microenvironments can exert a strong influence on cell growth, cell adhesion, proliferation, and differentiation behavior in the culture dish. In particular, cells tend to adapt themselves to elongated micro- and nanostructures. Thus, nanostructured substrates are of significant interest in the biological and biomedical sciences as adhesion and development of cells can be controlled via the topological surface properties. In contrast to earlier approaches relying on electron beam or nanoimprint lithography, nanostructures were produced on Si(100) surfaces using sub-15 femtosecond high-resolution laser scanning microscopy. Laser processing was performed with the silicon surface immersed in water followed by hydrofluoric acid etching in order to remove silicon oxide residues. Ripples of at a periodicity of 150 nm as well as random nanoporous surface arrangements were generated by Ti:Sapphire laser light of centre wavelength 800 nm (bandwidth 120 nm, repetition rate 85 MHz) at picojoule pulse energies. Growth of Chinese hamster ovary (CHO) cells revealed good adhesion to the silicon substrates. Importantly, alignment of cells along the direction of ripples was observed, whereas randomly nanoporous surfaces did not induce any preferences in cell orientation.

  18. Compact high-repetition-rate terahertz source based on difference frequency generation from an efficient 2-μm dual-wavelength KTP OPO

    NASA Astrophysics Data System (ADS)

    Mei, Jialin; Zhong, Kai; Wang, Maorong; Liu, Pengxiang; Xu, Degang; Wang, Yuye; Shi, Wei; Yao, Jianquan; Norwood, Robert A.; Peyghambarian, Nasser

    2016-11-01

    A compact optical terahertz (THz) source was demonstrated based on an efficient high-repetition-rate doubly resonant optical parametric oscillator (OPO) around 2 μm with two type-II phase-matched KTP crystals in the walk-off compensated configuration. The KTP OPO was intracavity pumped by an acousto-optical (AO) Q-switched Nd:YVO4 laser and emitted two tunable wavelengths near degeneracy. The tuning range extended continuously from 2.068 μm to 2.191 μm with a maximum output power of 3.29 W at 24 kHz, corresponding to an optical-optical conversion efficiency (from 808 nm to 2 μm) of 20.69%. The stable pulsed dual-wavelength operation provided an ideal pump source for generating terahertz wave of micro-watt level by the difference frequency generation (DFG) method. A 7.84-mm-long periodically inverted quasi-phase-matched (QPM) GaAs crystal with 6 periods was used to generate a terahertz wave, the maximum voltage of 180 mV at 1.244 THz was acquired by a 4.2-K Si bolometer, corresponding to average output power of 0.6 μW and DFG conversion efficiency of 4.32×10-7. The acceptance bandwidth was found to be larger than 0.35 THz (FWHM). As to the 15-mm-long GaSe crystal used in the type-II collinear DFG, a tunable THz source ranging from 0.503 THz to 3.63 THz with the maximum output voltage of 268 mV at 1.65 THz had been achieved, and the corresponding average output power and DFG conversion efficiency were 0.9 μW and 5.86×10-7 respectively. This provides a potential practical palm-top tunable THz sources for portable applications.

  19. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  20. Highly stable aerosol generator

    DOEpatents

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  1. HIGH ENERGY RATE EXTRUSION.

    DTIC Science & Technology

    Thin structural shapes can now be produced by high velocity extrusion equipment. Tooling, dies, die coatings, lubricants and general processing...degrees was important in reducing the initial peak stresses to a controllable level and tooling failures were reduced by using high strength (Rc 55-60...the high inertial forces present) can be lessened and eliminated in many cases by the selection of low reduction ratios (15:1 or below) and low impact speeds. (Author)

  2. Unconventional pore and defect generation in molybdenum disulfide: application in high-rate lithium-ion batteries and the hydrogen evolution reaction.

    PubMed

    Zhang, Kan; Kim, Hwan-Jin; Lee, Jeong-Taik; Chang, Gee-Woo; Shi, Xinjian; Kim, Wanjung; Ma, Ming; Kong, Ki-jeong; Choi, Jae-Man; Song, Min-Sang; Park, Jong Hyeok

    2014-09-01

    A 2H-MoS2 (H=hexagonal) ultrathin nanomesh with high defect generation and large porosity is demonstrated to improving electrochemical performance, including in lithium-ion batteries (LIBs) and the hydrogen evolution reaction (HER), with the aid of a 3D reduced graphene oxide (RGO) scaffold as fast electron and ion channels. The 3D defect-rich MoS2 nanomesh/RGO foam (Dr-MoS2 Nm/RGO) can be easily obtained through a one-pot cobalt acetate/graphene oxide (GO) co-assisted hydrothermal reaction, in which GO, cobalt and acetate ions are co-morphology-controlling agents and defect inducers. As an anode material for LIBs, Dr-MoS2 Nm/RGO has only a 9% capacity decay at a 10 C discharge rate versus 0.2 C with stable cyclability at the optimized composition (5 wt% RGO to MoS2 and 2 mol% Co to Mo), and significantly achieves 810 mA h g(-1) at a high current density of 9.46 A g(-1) over at least 150 cycles. Moreover, Dr-MoS2 Nm/RGO exhibits superior activity for the HER with an overpotential as low as 80 mV and a Tafel slope of about 36 mV per decade. In contrast to the MoS2 nanosheet/RGO (MoS2 Ns/RGO), which is synthesized in the absence of cobalt ions, Dr-MoS2 Nm/RGO provides high interconnectivity for efficient lithium-ion transport, and rich defects as electrochemically active sites. DFT is used to prove the existence of rich defects due to anion replacement to become a Co-Mo-S atomic structure, releasing inert basal planes to active sites.

  3. High power microwave generator

    DOEpatents

    Minich, Roger W.

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  4. The dependence of helium generation rate on nickel content of Fe-Cr-Ni alloys irradiated at high dpa levels in fast reactors

    SciTech Connect

    Garner, F.A.; Oliver, B.M.; Greenwood, L.R.

    1997-04-01

    With a few exceptions in the literature, it is generally accepted that it is nickel in Fe-Cr-Ni alloys that produces most of the transmutant helium and that the helium generation rate should scale linearly with the nickel content. Surprisingly, this assumption is based only on irradiations of pure nickel and has never been tested in an alloy series. There have also been no extensive tests of the predictions for helium production in alloys in various fast reactors spectra.

  5. Thyratron Marx High Voltage Generator.

    DTIC Science & Technology

    This invention relates to a high voltage pulse generator of the Marx type, in which capacitors are charged in parallel and discharged in series...Amongst the many techniques for producing high voltage pulses, the Marx generator is probably the best known and most widely used. For the combination of...short risetime and low output impendance (i.e. high power), large energy, high efficiency and waveform flexibility -- the Marx principle is peerless

  6. High precision triangular waveform generator

    DOEpatents

    Mueller, Theodore R.

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  7. High efficiency ozone generation system

    SciTech Connect

    Karlson, E.L.

    1990-01-09

    This final report entails research prepared to verify the workings and the efficiency of producing ozone with the ELK'' Ozone Generator, which operates at an elevated gas pressure of up to 20 MPA (3000 psi) and is an improvement of the corona discharge ozone generator. The increased pressure produces an increase in the density of oxygen gas fed into the generator. This, in turn, leads to an increased yield of ozone in the ozone oxygen gas mixture leaving the generator. The design of this new ozone generator incorporates a novel positioning of the dielectric to preserve its mechanical integrity at high operating pressures and also incorporates a novel heat removal technique. A large number of ozone production runs have been made at different pressures. Large populations of data such as, temperature points throughout the generator, gas flow, cooling water flow parameters, operating gas pressure, ozone concentration, and data on the dielectric cooling, have been compiled and fed into our computer. This new data indicates not only that high pressures used in a controlled fashion will produce more ozone per watt hour but also indicates what problems exist when pressures are increased, such as the generation of high temperatures not only in the area of ozone generation but within the dielectric. The data also shows the necessary residence time for maximum ozone production at a particular pressure, voltage, temperature and electrode spacing. 14 refs., 22 figs.

  8. Impact of socioeconomic status on municipal solid waste generation rate.

    PubMed

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes.

  9. Deconvolution of high rate flicker electroretinograms.

    PubMed

    Alokaily, A; Bóhorquez, J; Özdamar, Ö

    2014-01-01

    Flicker electroretinograms are steady-state electroretinograms (ERGs) generated by high rate flash stimuli that produce overlapping periodic responses. When a flash stimulus is delivered at low rates, a transient response named flash ERG (FERG) representing the activation of neural structures within the outer retina is obtained. Although FERGs and flicker ERGs are used in the diagnosis of many retinal diseases, their waveform relationships have not been investigated in detail. This study examines this relationship by extracting transient FERGs from specially generated quasi steady-state flicker and ERGs at stimulation rates above 10 Hz and similarly generated conventional flicker ERGs. The ability to extract the transient FERG responses by deconvolving flicker responses to temporally jittered stimuli at high rates is investigated at varying rates. FERGs were obtained from seven normal subjects stimulated with LED-based displays, delivering steady-state and low jittered quasi steady-state responses at five rates (10, 15, 32, 50, 68 Hz). The deconvolution method enabled a successful extraction of "per stimulus" unit transient ERG responses for all high stimulation rates. The deconvolved FERGs were used successfully to synthesize flicker ERGs obtained at the same high stimulation rates.

  10. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  11. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  12. High Rate GPS on Volcanoes

    NASA Astrophysics Data System (ADS)

    Mattia, M.

    2005-12-01

    The high rate GPS data processing can be considered as the "new deal" in geodetic monitoring of active volcanoes. Before an eruption, infact, transient episodes of ground displacements related to the dynamics of magmatic fluids can be revealed through a careful analysis of high rate GPS data. In the very first phases of an eruption the real time processing of high rate GPS data can be used by the authorities of Civil Protection to follow the opening of fractures field on the slopes of the volcanoes. During an eruption large explosions, opening of vents, migration of fractures fields, landslides and other dangerous phenomena can be followed and their potential of damage estimated by authorities. Examples from the recent eruption of Stromboli volcano and from the current activities of high rate GPS monitoring on Mt. Etna are reported, with the aim to show the great potential and the perspectives of this technique.

  13. High current high accuracy IGBT pulse generator

    SciTech Connect

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 {mu}F capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles.

  14. Structure of turbulence at high shear rate

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo; Kim, John; Moin, Parviz

    1990-01-01

    The structure of homogeneous turbulence subject to high shear rate has been investigated by using three-dimensional, time-dependent numerical simulations of the Navier-Stokes equations. This study indicates that high shear rate alone is sufficient for generation of the streaky structures, and that the presence of a solid boundary is not necessary. Evolution of the statistical correlations is examined to determine the effect of high shear rate on the development of anisotropy in turbulence. It is shown that the streamwise fluctuating motions are enhanced so profoundly that a highly anisotropic turbulence state with a 'one-component' velocity field and 'two-component' vorticity field develops asymptotically as total shear increases. Because of high-shear rate, rapid distortion theory predicts remarkably well the anisotropic behavior of the structural quantities.

  15. SECONDARY LOW-LEVEL WASTE GENERATION RATE ANALYSIS

    SciTech Connect

    D. LaRue

    1999-05-10

    The objective of this design analysis is -to update the assessment of estimated annual secondary low-level waste (LLW) generation rates resulting from the repackaging of spent nuclear fuel (SNF) and high-level waste (HLW) for disposal at the Monitored Geologic Repository (MGR). This analysis supports the preparation of documentation necessary for license application (LA) for the MGR. For the purposes of this analysis, secondary LLW is defined, in brief terms, as LLW generated as a direct result of processing SNF/HLW through the receiving and repackaging operations. The current Waste Handling Building (WHB) design is based on the predominant movement of fuel assemblies through the wet handling lines within the WHB. Dry handling lines are also included in the current WHB design to accommodate canistered waste (i.e., SNF and/or HLW packages). Major input changes to this analysis in comparison to previous analyses include: (1) changes in the SNF/HLW arrival schedules; (2) changes to the WHB and the Waste Treatment Building (WTB) dimensions; and (3) changes in operational staff sizes within the WHB and WTB. The rates generated in this analysis can be utilized to define necessary waste processes, waste flow rates, and equipment sizes for the processing of secondary LLW for proper disposal. This analysis is based on the present reference design, i.e., Viability Assessment (VA) design, and present projections on spent fuel delivery and processing. LLW generation rates, for both liquids and solids, are a direct function of square footages in radiological areas, and a direct function of spent fuel throughput. Future changes in the approved reference design or spent fuel throughput will directly impact the LLW generation rates defined in this analysis. Small amounts of wastes other than LLW may be generated on a non-routine basis. These wastes may include transuranic (TRU), hazardous, and mixed wastes. Although the objective of this analysis is to define LLW waste generation

  16. High current transistor pulse generator

    SciTech Connect

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs.

  17. High current transistor pulse generator

    SciTech Connect

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs.

  18. High Voltage Flux Compression Generators

    DTIC Science & Technology

    2008-04-02

    the generator: the armature radial expansion speed, the high explosive (HE) detonation speed, and the armature-stator helical contact speed. Clearly... detonation speeds, which are also the speed at which the self-similar expanding armature cone moves axially, are on the order of 8 to 9 mm/μs...product of detonation speed and the ratio of stator underside circumference to pitch, ( )prvv sc π2Δ= rr . For a typical circumference-to-pitch ratio

  19. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  20. Harmonic generation at high intensities

    SciTech Connect

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1993-06-01

    Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.

  1. The high voltage homopolar generator

    NASA Astrophysics Data System (ADS)

    Price, J. H.; Gully, J. H.; Driga, M. D.

    1986-11-01

    System and component design features of proposed high voltage homopolar generator (HVHPG) are described. The system is to have an open circuit voltage of 500 V, a peak output current of 500 kA, 3.25 MJ of stored inertial energy and possess an average magnetic-flux density of 5 T. Stator assembly components are discussed, including the stator, mount structure, hydrostatic bearings, main and motoring brushgears and rotor. Planned operational procedures such as monitoring the rotor to full speed and operation with a superconducting field coil are delineated.

  2. High Data Rate Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Kwiat, Paul; Christensen, Bradley; McCusker, Kevin; Kumor, Daniel; Gauthier, Daniel

    2015-05-01

    While quantum key distribution (QKD) systems are now commercially available, the data rate is a limiting factor for some desired applications (e.g., secure video transmission). Most QKD systems receive at most a single random bit per detection event, causing the data rate to be limited by the saturation of the single-photon detectors. Recent experiments have begun to explore using larger degree of freedoms, i.e., temporal or spatial qubits, to optimize the data rate. Here, we continue this exploration using entanglement in multiple degrees of freedom. That is, we use simultaneous temporal and polarization entanglement to reach up to 8.3 bits of randomness per coincident detection. Due to current technology, we are unable to fully secure the temporal degree of freedom against all possible future attacks; however, by assuming a technologically-limited eavesdropper, we are able to obtain 23.4 MB/s secure key rate across an optical table, after error reconciliation and privacy amplification. In this talk, we will describe our high-rate QKD experiment, with a short discussion on our work towards extending this system to ship-to-ship and ship-to-shore communication, aiming to secure the temporal degree of freedom and to implement a 30-km free-space link over a marine environment.

  3. Repetitively pulsed high power stacked Blumlein generators

    NASA Astrophysics Data System (ADS)

    Davanloo, F.; Borovina, D. L.; Collins, C. B.; Agee, F. J.; Kingsley, L. E.

    1995-05-01

    The stacked Blumlein pulse generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switching element at the other end. In this way, relatively low charging voltages are multiplied to give the desired discharge voltage across an arbitrary load. Described here is the progress in development and characterization of these novel pulse-power generators capable of discharging at high repetition rates. The introduction of a tapered transmission line concept to the stacked Blumlein design provided fine tuning of output waveforms.

  4. High strain-rate magnetoelasticity in Galfenol

    NASA Astrophysics Data System (ADS)

    Domann, J. P.; Loeffler, C. M.; Martin, B. E.; Carman, G. P.

    2015-09-01

    This paper presents the experimental measurements of a highly magnetoelastic material (Galfenol) under impact loading. A Split-Hopkinson Pressure Bar was used to generate compressive stress up to 275 MPa at strain rates of either 20/s or 33/s while measuring the stress-strain response and change in magnetic flux density due to magnetoelastic coupling. The average Young's modulus (44.85 GPa) was invariant to strain rate, with instantaneous stiffness ranging from 25 to 55 GPa. A lumped parameters model simulated the measured pickup coil voltages in response to an applied stress pulse. Fitting the model to the experimental data provided the average piezomagnetic coefficient and relative permeability as functions of field strength. The model suggests magnetoelastic coupling is primarily insensitive to strain rates as high as 33/s. Additionally, the lumped parameters model was used to investigate magnetoelastic transducers as potential pulsed power sources. Results show that Galfenol can generate large quantities of instantaneous power (80 MW/m3 ), comparable to explosively driven ferromagnetic pulse generators (500 MW/m3 ). However, this process is much more efficient and can be cyclically carried out in the linear elastic range of the material, in stark contrast with explosively driven pulsed power generators.

  5. Risk Mitigation for High Temperature Superconducting Generators

    DTIC Science & Technology

    2009-01-01

    and Technology Division Background: High temperature superconduct- ing (HTS) motors and generators will enable high- efficiency , high power density...naval propulsion, and compact electrical generators for weapons and ship systems. The second-generation high temperature superconductors (2G-HTS...manufacturability of long lengths of these materials, sufficient for demonstrations of large motors and generators. Ensuring superior fatigue prop- erties

  6. Periodic nanostructures on Si(100) surfaces generated by high-repetition rate sub-15 fs pulsed near-infrared laser light.

    PubMed

    Straub, Martin; Afshar, Maziar; Feili, Dara; Seidel, Helmut; König, Karsten

    2012-01-15

    Nanoscale rifts and ripples at a periodicity of 130 nm were generated on Si(100) surfaces immersed in water using tightly focused 800 nm 12 fs pulsed 85 MHz laser light at subnanojoule pulse energies. At radiant exposure close to the ablation threshold rifts were typically 20-50 nm in width and 70 nm in depth running perpendicular to the laser polarization. On increase of the irradiance, the rifts broadened and formed periodic ripples, whereas at highest exposure, a random nanoporous surface topology emerged. Rift and ripple formation is explained by laser-induced standing surface plasma waves, which result in periodic variation of dissipation and ablation.

  7. High data rate optical crosslinks

    NASA Astrophysics Data System (ADS)

    Boroson, Don M.; Bondurant, Roy S.

    1992-03-01

    Optical technologies, due to their extremely short wavelengths, can be designed to be much more compact than RF when addressing high data rate crosslinks and multiple apertures approaching the multi-Gbps operational range. Currently available optical technologies can furnish hundreds-of- Mbps in a package of less than 100 lbs and several cubic feet. Attention is presently given to communications and spatial acquisition/tracking system analysis, the character of such space-qualified optics hardware as the requisite laser transmitter, and advanced hardware prototypes.

  8. Altered Flow Changes Thrombin Generation Rate of Circulating Platelets.

    PubMed

    Yin, Wei; Bond, Kyle; Rouf, Farzana; Rubenstein, David A

    2015-12-01

    Shear stress affects platelet participation in coagulation. Many numerical models have been developed to describe coagulation kinetics. However, most of those models used rate constants determined under static conditions. Little is known about the effects of flow on coagulation rate constants. In the present study, platelets were exposed to constant or pulsatile shear stress/rate, with or without prothrombin, factor Xa, and factor Va. Thrombin generation was measured using a modified prothrombinase assay, and the overall thrombin generation rate was solved using typical Michaelis-Menten kinetics. Platelet surface P-selectin and phosphatidylserine (PS) expression was measured using flow cytometry. The results demonstrated that the concentration of factor Va had a dominant effect on thrombin generation rate under flow. In comparison, the expression of PS was less sensitive to altered flow. The lumped overall rate constant for prothrombin conversion to thrombin was significantly affected by the shear forces that were applied to the coagulation complex. Constant shear stress/rate induced faster thrombin generation compared to pulsatile shear stress/rate, but elevated shear stress/rate did not necessarily enhance thrombin generation. Therefore, the overall thrombin generation rate is dynamic and must be described as a function of shear stress/rate, shear exposure time and the immediate availability of coagulation proteins.

  9. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  10. A miniature high repetition rate shock tube.

    PubMed

    Tranter, R S; Lynch, P T

    2013-09-01

    A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P < 100 bars at a cycle rate of up to 4 Hz. The design of the apparatus is discussed in detail, and data are presented to demonstrate that well-formed shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.

  11. Are dialysis adequacy indices independent of solute generation rate?

    PubMed

    Waniewski, Jacek; Debowska, Malgorzata; Lindholm, Bengt

    2014-01-01

    KT/V is by definition independent of solute generation rate. Alternative dialysis adequacy indices (DAIs) such as equivalent renal clearance (EKR), standard KT/V (stdKT/V), and solute removal index (SRI) are estimated as the ratio of solute mass removed to an average solute mass in the body or solute concentration in blood; both nominator and denominator in these formulas depend on the solute generation rate. Our objective was to investigate whether and under which conditions the alternative DAIs are independent of solute generation rate. By using general compartment modeling, we show that for the metabolically stable patient (in whom the solute generated during the dialysis cycle, typically, 1 week, is equal to the solute removed from the body), DAIs estimated for the dialysis cycle are in general independent of the average solute generation rate (although they may depend on the pattern of oscillations in the generation rate). However, the alternative adequacy parameters (such as EKR, stdKT/V, and SRI) may depend on solute generation rate for metabolically unstable patients.

  12. High-Voltage, Asymmetric-Waveform Generator

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  13. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation.

    PubMed

    Ozawa, Akira; Zhao, Zhigang; Kuwata-Gonokami, Makoto; Kobayashi, Yohei

    2015-06-15

    Intracavity high harmonic generation was utilized to generate high average-power coherent radiation at vacuum ultraviolet (vuv) wavelengths. A ytterbium-doped fiber-laser based master-oscillator power-amplifier (MOPA) system with a 10 MHz repetition frequency was developed and used as a driving laser for an external cavity. A series of odd-order harmonic radiations was generated extending down to ∼ 30 nm (41 eV in photon energy). The 7th harmonic radiation generated was centered at 149 nm and had an average output power of up to 0.5 mW. In this way, we developed a sub-mW coherent vuv-laser with a 10 MHz repetition frequency, which, if used as an excitation laser source for photo-electron spectroscopy, could improve the signal count-rate without deterioration of the spectral-resolution caused by space-charge effects.

  14. Observations of HF backscatter decay rates from HAARP generated FAI

    NASA Astrophysics Data System (ADS)

    Bristow, William; Hysell, David

    2016-07-01

    Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.

  15. Observations of HF backscatter decay rates from HAARP generated FAI

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Hysell, D. L.

    2016-12-01

    Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.

  16. Wind Turbine Contingency Control Through Generator De-Rating

    NASA Technical Reports Server (NTRS)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  17. High Voltage Nanosecond Pulse Generator.

    DTIC Science & Technology

    1978-11-01

    trigger generator used to gate charging SCR1 and discharge SCR2. In order to pro- vide time for discharge SCR2 to recover after completion of the...discharge cycle, the trigger pulse to the gate of SCR1 was delayed approximately 20usec relative to the trigger pulse to the gate of SCR2. With a single

  18. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication.

    PubMed

    Chen, Jian; Sickler, Jason W; Fendel, Peter; Ippen, Erich P; Kärtner, Franz X; Wilken, Tobias; Holzwarth, Ronald; Hänsch, Theodor W

    2008-05-01

    Generation of low-timing-jitter 150 fs pulse trains at 1560 nm with 2 GHz repetition rate is demonstrated by locking a 200 MHz fundamental polarization additive-pulse mode-locked erbium fiber laser to high-finesse external Fabry-Perot cavities. The timing jitter and relative intensity noise of the repetition-rate multiplied pulse train are investigated.

  19. High-Precision Pulse Generator

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).

  20. High Repetition Rate Switch Development

    DTIC Science & Technology

    1982-04-01

    time . Higher currents were generated using a 3-Q pulse forming network with a 50-ns rise time and a low voltage 1-1 water line having a 30-ns rise...ANODE CURRENT, 146 A/DIV TIME , 50 nsecIDIV (a) Figure 18. Voltage effect on anode pulse . IS + ))A, P - 0.0362 Torr He. (a) V 0 = 3.7 kV, (b) V0 7.*7 kV...a characteristic pulse waveform (Figure 24) having an initial step rising to I, in an electron transit time followed by a roughly exponential rise to

  1. High Efficiency Thermoelectric Generator: Integration

    DTIC Science & Technology

    2011-02-25

    included: − material barriers such as thermal blankets, glass bubbles and aerogels , − encapsulation with high molecular weight gases (e.g. Xenon... aerogels impregnated with radiation scattering particles (investigated at the thermoelectric group in the NASA Jet Propulsion Laboratory). Thrust

  2. Respiratory rate detection using a wearable electromagnetic generator.

    PubMed

    Padasdao, Bryson; Boric-Lubecke, Olga

    2011-01-01

    Wearable health and fitness monitoring systems are a promising new way of collecting physiological data without inconveniencing patients. Human energy harvesting may be used to power wearable sensors. In this paper, we explore this zero-net energy biosensor concept through sensing and harvesting of respiratory effort. An off the shelf servo motor operation in reverse was used to successfully obtain respiratory rate, while also demonstrating significant harvested power. These are the first reported respiratory rate sensing results using electromagnetic generators.

  3. Quantum Communication with a High-Rate Entangled Photon Source

    NASA Technical Reports Server (NTRS)

    Wilson, Nathaniel C.; Chaffee, Dalton W.; Lekki, John D.; Wilson, Jeffrey D.

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  4. High Strain Rate Mechanical Properties of Glassy Polymers

    DTIC Science & Technology

    2012-07-25

    Force Materiel Command  United States Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2012-008 High Strain Rate...TITLE AND SUBTITLE High Strain Rate Mechanical Properties of Glassy Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...1990s, a range of experimental data has been generated describing the response of glassy polymers to high strain rate loading in compression. More

  5. High speed optical quantum random number generation.

    PubMed

    Fürst, Martin; Weier, Henning; Nauerth, Sebastian; Marangon, Davide G; Kurtsiefer, Christian; Weinfurter, Harald

    2010-06-07

    We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.

  6. A high rate proportional chamber

    SciTech Connect

    Henderson, R.; Fraszer, W.; Openshaw, R.; Sheffer, G.; Salomon, M.; Dew, S.; Marans, J.; Wilson, P.

    1987-02-01

    Gas mixtures with high specific ionization allow the use of small interelectrode distances while still maintaining full efficiency. With the short electron drift distances the timing resolution is also improved. The authors have built and operated two 25 cm/sup 2/ chambers with small interelectrode distances. Also single wire detector cells have been built to test gas mixture lifetimes. Various admixtures of CF/sub 4/, DME, Isobutane, Ethane and Argon have been tested. Possible applications of such chambers are as beam profile monitors, position tagging of rare events and front end chambers in spectrometers.

  7. Photoconductive switching for high power microwave generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-10-01

    Photoconductive switching is a technology that is being increasingly applied to generation of high power microwaves. Two primary semiconductors used for these devices are silicon and gallium arsenide. Diamond is a promising future candidate material. This paper discusses the important material parameters and switching modes, critical issues for microwave generation, and future directions for this high power, photoconductive switching technology.

  8. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  9. Application of high-rate cutting tools

    NASA Astrophysics Data System (ADS)

    Moriarty, John L., Jr.

    1989-03-01

    Widespread application of the newest high-rate cutting tools to the most appropriate jobs is slowed by the sheer magnitude of developments in tool types, materials, workpiece applications, and by the rapid pace of change. Therefore, a study of finishing and roughing sizes of coated carbide inserts having a variety of geometries for single point turning was completed. The cutting tools were tested for tool life, chip quality, and workpiece surface finish at various cutting conditions with medium alloy steel. An empirical wear-life data base was established, and a computer program was developed to facilitate technology transfer, assist selection of carbide insert grades, and provide machine operating parameters. A follow-on test program was implemented suitable for next generation coated carbides, rotary cutting tools, cutting fluids, and ceramic tool materials.

  10. High resolution, high rate x-ray spectrometer

    DOEpatents

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  11. Generation rate of carbon monoxide from CO2 arc welding.

    PubMed

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  12. Energy metabolism, body composition, and urea generation rate in hemodialysis patients.

    PubMed

    Sridharan, Sivakumar; Vilar, Enric; Berdeprado, Jocelyn; Farrington, Ken

    2013-10-01

    Hemodialysis (HD) adequacy is currently assessed using normalized urea clearance (Kt/V), although scaling based on Watson volume (V) may disadvantage women and men with low body weight. Alternative scaling factors such as resting energy expenditure and high metabolic rate organ mass have been suggested. The relationship between such factors and uremic toxin generation has not been established. We aimed to study the relationship between body size, energy metabolism, and urea generation rate. A cross-sectional cohort of 166 HD patients was studied. Anthropometric measurements were carried on all. Resting energy expenditure was measured by indirect calorimetry, fat-free mass by bio-impedance and total energy expenditure by combining resting energy expenditure with a questionnaire-derived physical activity data. High metabolic rate organ mass was calculated using a published equation and urea generation rate using formal urea kinetic modeling. Metabolic factors including resting energy expenditure, total energy expenditure and fat-free mass correlated better with urea generation rate than did Watson volume. Total energy expenditure and fat-free mass (but not Watson Volume) were independent predictors of urea generation rate, the model explaining 42% of its variation. Small women (generation rate per kg than women with higher V. Similarly urea generation rate normalized to fat-free mass was significantly greater in small women than in all others (significant only in comparison to larger men). Exercise-related energy expenditure correlated significantly with urea generation rate. Energy metabolism, body composition and physical activity play important roles in small solute uremic toxin generation in HD patients and hence may impact on minimum dialysis requirements. Small women generate relatively more small solute toxins than other groups and thus may have a higher relative need for dialysis.

  13. High dose rate brachytherapy for oral cancer

    PubMed Central

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  14. High-Voltage Pulse Voltage Generator,

    DTIC Science & Technology

    1979-12-21

    the invention: I. I. Kalyatskiy, V. I. Kurets, and V. I. Safronov Well-known are pulse voltage generators which employ the Arkad’yev- Marx principle of...P2, and hereafter the device operates like an ordinary GIN [pulse volt- age generator] according to the Arkad’yev- Marx principle. The Object of the...Invention The high-voltage pulse voltage generator, assembled according to the Arkad’yev- Marx arrangement, each stage of which incorporates reactive

  15. High-precision triangular-waveform generator

    DOEpatents

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  16. High Voltage Piezoelectric System for Generating Neutrons

    DTIC Science & Technology

    2013-06-01

    Piezoelectric transformer structural modeling - a review,” Ultrasonics , Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp...1 High Voltage Piezoelectric System for Generating Neutrons Brady Gall, Student Member, IEEE, Scott D. Kovaleski, Senior Member, IEEE, James A...Compact electrical neutron generators are a desir- able alternative to radioisotope neutron sources. A piezoelectric transformer system is presented

  17. Decreasing attrition rates across the generations through values alignment.

    PubMed

    Bodensteiner, L

    2001-09-01

    As evidenced by high attrition rates and a national nursing shortage, growing numbers of nurses are expressing dissatisfaction with their jobs. Employing institutions and schools of nursing must redefine the nursing profession to attract and retain nurses. Better placement of nurses into the subspecialty that best aligns with personal and professional values will help decrease the attrition rate by enhancing career satisfaction, increase motivation of employees, increase overall performance, and increase productivity.

  18. Measurement of generation-dependent proliferation rates and death rates during mouse erythroid progenitor cell differentiation.

    PubMed

    Akbarian, Vahe; Wang, Weijia; Audet, Julie

    2012-05-01

    Herein, we describe an experimental and computational approach to perform quantitative carboxyfluorescein diacetate succinimidyl ester (CFSE) cell-division tracking in cultures of primary colony-forming unit-erythroid (CFU-E) cells, a hematopoietic progenitor cell type, which is an important target for the treatment of blood disorders and for the manufacture of red blood cells. CFSE labeling of CFU-Es isolated from mouse fetal livers was performed to examine the effects of stem cell factor (SCF) and erythropoietin (EPO) in culture. We used a dynamic model of proliferation based on the Smith-Martin representation of the cell cycle to extract proliferation rates and death rates from CFSE time-series. However, we found that to accurately represent the cell population dynamics in differentiation cultures of CFU-Es, it was necessary to develop a model with generation-specific rate parameters. The generation-specific rates of proliferation and death were extracted for six generations (G(0) -G(5) ) and they revealed that, although SCF alone or EPO alone supported similar total cell outputs in culture, stimulation with EPO resulted in significantly higher proliferation rates from G(2) to G(5) and higher death rates in G(2) , G(3) , and G(5) compared with SCF. In addition, proliferation rates tended to increase from G(1) to G(5) in cultures supplemented with EPO and EPO + SCF, while they remained lower and more constant across generations with SCF. The results are consistent with the notion that SCF promotes CFU-E self-renewal while EPO promotes CFU-E differentiation in culture.

  19. Rate Structures for Customers With Onsite Generation: Practice and Innovation

    SciTech Connect

    Johnston, L.; Takahashi, K.; Weston, F.; Murray, C.

    2005-12-01

    Recognizing that innovation and good public policy do not always proclaim themselves, Synapse Energy Economics and the Regulatory Assistance Project, under a contract with the California Energy Commission (CEC) and the National Renewable Energy Laboratory (NREL), undertook a survey of state policies on rates for partial-requirements customers with onsite distributed generation. The survey investigated a dozen or so states. These varied in geography and the structures of their electric industries. By reviewing regulatory proceedings, tariffs, publications, and interviews, the researchers identified a number of approaches to standby and associated rates--many promising but some that are perhaps not--that deserve policymakers' attention if they are to promote the deployment of cost-effective DG in their states.

  20. Off-Gas Generation Rate during Chemical Cleaning Operations at the Savannah River Site - 12499

    SciTech Connect

    Wiersma, Bruce J.; Subramanian, Karthik H.; Ketusky, Edward T.

    2012-07-01

    The enhanced chemical cleaning process (ECC) is being developed at the Savannah River Site (SRS) to remove the residual radioactive sludge heel that remains in a liquid waste storage tank. Oxalic acid is the chemical agent utilized for this purpose. However, the acid also corrodes the carbon steel tank wall and cooling coils. If the oxalic acid has little interaction with the sludge, hydrogen gas could conceivably evolve at cathodic areas due to the corrosion of the carbon steel. Scenarios where hydrogen evolution could occur during ECC include the initial filling of the tank prior to agitation and near the end of the process when there is little or no sludge present. The purpose of this activity was to provide a bounding estimate for the hydrogen generation rate during the ECC process. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. The tests were performed with polished ASTM A285 Grade C carbon steel coupons. This steel is representative of the Type I and II waste tanks at SRS. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 deg. C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound limit on the maximum

  1. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    NASA Astrophysics Data System (ADS)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-06-01

    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  2. High-harmonic generation in amorphous solids

    DOE PAGES

    You, Yong Sing; Yin, Yanchun; Wu, Yi; ...

    2017-09-28

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  3. High-shear-rate capillary viscometer for inkjet inks

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-01

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2×105 s-1 are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  4. High-shear-rate capillary viscometer for inkjet inks

    SciTech Connect

    Wang Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  5. Urethra low-dose tunnels: validation of and class solution for generating urethra-sparing dose plans using inverse planning simulated annealing for prostate high-dose-rate brachytherapy.

    PubMed

    Cunha, J Adam M; Pouliot, Jean; Weinberg, Vivian; Wang-Chesebro, Alice; Roach, Mack; Hsu, I-Chow

    2012-01-01

    Urethral dose is related to severity of genitourinary toxicity in patients treated with brachytherapy for prostate cancer. This work describes a dose planning method that uses inverse planning to create a low-dose tunnel around the urethra and presents a class solution to achieve this additional dose sparing of the urethra. Fifteen patients on the Radiation Therapy Oncology Group (RTOG) 0321 protocol were treated for prostate cancer with a high-dose-rate brachytherapy dose boost to an external beam radiation treatment regimen. All were treated with 9.5Gy for each of the two fractions after 45Gy of the external beam radiation. The inverse-planning algorithm, inverse planning simulated annealing (IPSA), was used to create both the standard RTOG protocol (SRP) plan for treatment and the a posteriori urethra dose sparing (UDS) plan consisting of a dose tunnel along the urethra. Both plans maintained the protocol parameters: prostate V(100) (volume receiving 100% of prescribed dose)>90% and bladder and rectum V(75)<1 cm(3). In the SRP plans, the urethra surface was optimized to receive <125% of the prescription dose and in the UDS plans <100%. Dose-volume histograms for the clinical treatment volume, bladder, rectum, penile bulb, and urethra for both plans are compared using a paired sample t test with significance claimed for probability values<0.05. UDS planning reduced the urethra V(100) from 88% to 58% on average (p<0.01) and the V(125) from 3.3% to 0.2% (p < 0.01). Bladder and rectum V(75) were maintained at <1 cm(3) and not significantly different between plans. Prostate coverage was maintained per protocol at V(100)>90%, with mean for the SRP V(100)=93% versus UDS plan V(100)=90%. Prostate D(90) for SRP was 104% versus UDS plan D(90)=101%. For all patients, the UDS achieved a dose tunnel surrounding the length of the intraprostatic urethra. The class solution for generating UDS is presented. A urethral sparing-focused planning solution using IPSA reduces mean

  6. High Data Rate Architecture (HiDRA)

    NASA Technical Reports Server (NTRS)

    Hylton, Alan; Raible, Daniel

    2016-01-01

    high-rate laser terminals. These must interface with the existing, aging data infrastructure. The High Data Rate Architecture (HiDRA) project is designed to provide networked store, carry, and forward capability to optimize data flow through both the existing radio frequency (RF) and new laser communications terminal. The networking capability is realized through the Delay Tolerant Networking (DTN) protocol, and is used for scheduling data movement as well as optimizing the performance of existing RF channels. HiDRA is realized as a distributed FPGA memory and interface controller that is itself controlled by a local computer running DTN software. Thus HiDRA is applicable to other arenas seeking to employ next-generation communications technologies, e.g. deep space. In this paper, we describe HiDRA and its far-reaching research implications.

  7. High burn rate solid composite propellants

    NASA Astrophysics Data System (ADS)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  8. High Orbital Angular Momentum Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Vieira, J.; Trines, R. M. G. M.; Alves, E. P.; Fonseca, R. A.; Mendonça, J. T.; Bingham, R.; Norreys, P.; Silva, L. O.

    2016-12-01

    We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.

  9. High Orbital Angular Momentum Harmonic Generation.

    PubMed

    Vieira, J; Trines, R M G M; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-12-23

    We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.

  10. High Output Piezo/Triboelectric Hybrid Generator

    PubMed Central

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-01-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA·cm−2, and average power density of ~4.44 mW·cm−2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics. PMID:25791299

  11. High output piezo/triboelectric hybrid generator.

    PubMed

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-03-20

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA · cm(-2), and average power density of ~4.44 mW · cm(-2). The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics.

  12. High Output Piezo/Triboelectric Hybrid Generator

    NASA Astrophysics Data System (ADS)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-03-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA.cm-2, and average power density of ~4.44 mW.cm-2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics.

  13. High-rate lithium thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Goebel, F.

    1982-01-01

    A high-rate C cell with disc electrodes was developed to demonstrate current rates which are comparable to other primary systems. The tests performed established the limits of abuse beyond which the cell becomes hazardous. Tests include: impact, shock, and vibration tests; temperature cycling; and salt water immersion of fresh cells.

  14. Multichannel analyzers at high rates of input

    NASA Technical Reports Server (NTRS)

    Rudnick, S. J.; Strauss, M. G.

    1969-01-01

    Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.

  15. ISS Update: High Rate Communications System

    NASA Image and Video Library

    ISS Update Commentator Pat Ryan interviews Diego Serna, Communications and Tracking Officer, about the High Rate Communications System. Questions? Ask us on Twitter @NASA_Johnson and include the ha...

  16. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  17. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  18. Generator replacement is associated with an increased rate of ICD lead alerts.

    PubMed

    Lovelock, Joshua D; Cruz, Cesar; Hoskins, Michael H; Jones, Paul; El-Chami, Mikhael F; Lloyd, Michael S; Leon, Angel; DeLurgio, David B; Langberg, Jonathan J

    2014-10-01

    Lead malfunction is an important cause of morbidity and mortality in patients with an implantable cardioverter-defibrillator (ICD). We have shown that the failure of recalled high-voltage leads significantly increases after ICD generator replacement. However, generator replacement has not been recognized as a predictor of lead failure in general. The purpose of this study is to assess the effect of ICD generator exchange on the rate of ICD lead alerts. A time-dependent Cox proportional hazards model was used to analyze a database of remotely monitored ICDs. The model assessed the impact of generator exchange on the rate of lead alerts after ICD generator replacement. The analysis included 60,219 patients followed for 37 ± 19 months. The 5-year lead survival was 99.3% (95% confidence interval 99.2%-99.4%). Of 60,219 patients, 7458 patients (12.9%) underwent ICD generator exchange without lead replacement. After generator replacement, the rate of lead alerts was more than 5-fold higher than in controls with leads of the same age without generator replacement (hazard ratio 5.19; 95% confidence interval 3.45-7.84). A large number of lead alerted within 3 months of generator replacement. Lead alerts were more common in patients with single- vs dual-chamber ICDs and in younger patients. Sex was not associated with lead alerts. Routine generator replacement is associated with a 5-fold higher risk of lead alert compared to age-matched leads without generator replacement. This suggests the need for intense surveillance after generator replacement and the development of techniques to minimize the risk of lead damage during generator replacement. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  19. High-voltage pulsed generators for electro-discharge technologies

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Sinebrykhov, V. A.

    2013-09-01

    A high-voltage pulse technology is one of effective techniques for the disintegration and milling of rocks, separation of ores and synthesized materials, recycling of building and elastoplastic materials. We present here the design and test results of two portable HV pulsed generators, designed for materials fragmentation, though some other technological applications are possible as well. Generator #1 consists of low voltage block, high voltage transformer, high voltage capacitive storage block, two electrode gas switch, fragmentation chamber and control system block. Technical characteristics of the #1 generator: stored energy in HV capacitors can be varied from 50 to 1000 J, output voltage up to 300 kV, voltage rise time ~ 50 ns, typical operation regime 1000 pulses bursts with a repetitive rate up to 10 Hz. Generator #2 is made on an eight stages Marx scheme with two capacitors (100 kV-400 nF) per stage, connected in parallel. Two electrode spark gap switches, operated in atmospheric air, are used in the Marx generator. Parameters of the generator: stored energy in capacitors 2÷8 kJ, amplitude of the output voltage 200÷400 kV, voltage rise time on a load 50÷100 ns, repetitive rate up to 0.5 Hz. The fragmentation process can be controlled within a wide range of parameters for both generators.

  20. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  1. Performance of high flow rate samplers for respirable particle collection.

    PubMed

    Lee, Taekhee; Kim, Seung Won; Chisholm, William P; Slaven, James; Harper, Martin

    2010-08-01

    The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m(-3) in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins-Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size ((50)d(ae)) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 microm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2-11 times based on gravimetric analysis. Dust loading inside the

  2. Turbulence structure at high shear rate

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo; Kim, John; Moin, Parviz

    1987-01-01

    The structure of homogeneous turbulence in the presence of a high shear rate is studied using results obtained from three-dimensional time-dependent numerical simulations of the Navier-Stokes equations on a grid of 512 x 128 x 128 node points. It is shown that high shear rate enhances the streamwise fluctuating motion to such an extent that a highly anisotropic turbulence state with a one-dimensional velocity field and two-dimensional small-scale turbulence develops asymptotically as total shear increases. Instantaneous velocity fields show that high shear rate in homogeneous turbulent shear flow produces structures which are similar to the streaks present in the viscous sublayer of turbulent boundary layers.

  3. High-power Broadband Organic THz Generator

    PubMed Central

    Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil

    2013-01-01

    The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation. PMID:24220234

  4. Studying solutions at high shear rates: a dedicated microfluidics setup.

    PubMed

    Wieland, D C F; Garamus, V M; Zander, T; Krywka, C; Wang, M; Dedinaite, A; Claesson, P M; Willumeit-Römer, R

    2016-03-01

    The development of a dedicated small-angle X-ray scattering setup for the investigation of complex fluids at different controlled shear conditions is reported. The setup utilizes a microfluidics chip with a narrowing channel. As a consequence, a shear gradient is generated within the channel and the effect of shear rate on structure and interactions is mapped spatially. In a first experiment small-angle X-ray scattering is utilized to investigate highly concentrated protein solutions up to a shear rate of 300000 s(-1). These data demonstrate that equilibrium clusters of lysozyme are destabilized at high shear rates.

  5. Ultra High Strain Rate Nanoindentation Testing.

    PubMed

    Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl

    2017-06-17

    Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.

  6. Corrected High-Frame Rate Anchored Ultrasound with Software Alignment

    ERIC Educational Resources Information Center

    Miller, Amanda L.; Finch, Kenneth B.

    2011-01-01

    Purpose: To improve lingual ultrasound imaging with the Corrected High Frame Rate Anchored Ultrasound with Software Alignment (CHAUSA; Miller, 2008) method. Method: A production study of the IsiXhosa alveolar click is presented. Articulatory-to-acoustic alignment is demonstrated using a Tri-Modal 3-ms pulse generator. Images from 2 simultaneous…

  7. Corrected High-Frame Rate Anchored Ultrasound with Software Alignment

    ERIC Educational Resources Information Center

    Miller, Amanda L.; Finch, Kenneth B.

    2011-01-01

    Purpose: To improve lingual ultrasound imaging with the Corrected High Frame Rate Anchored Ultrasound with Software Alignment (CHAUSA; Miller, 2008) method. Method: A production study of the IsiXhosa alveolar click is presented. Articulatory-to-acoustic alignment is demonstrated using a Tri-Modal 3-ms pulse generator. Images from 2 simultaneous…

  8. Generating high Reynolds-number flows.

    NASA Technical Reports Server (NTRS)

    Russell, D. A.

    1972-01-01

    Present test facilities are seriously limited regarding investigations involving high Reynolds numbers due to financial considerations. Quasi-steady testing facilities offer a practical immediate solution to the problem of high-Re testing. A familiar example is the blowdown wind tunnel, but even more flexibility and economy may be provided by using shock-tube devices. The Ludwieg tube is the shock-tube device most often proposed as a means of generating high-Re flows. Two-stage nozzles may be used with a Ludwieg tube. Quasi-steady facilities will be useful only if the available test time exceeds that required to establish steady flow.

  9. Thrombus Formation at High Shear Rates.

    PubMed

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  10. Health Care Waste generation rates and patterns: The case of Lebanon.

    PubMed

    Maamari, Olivia; Brandam, Cedric; Lteif, Roger; Salameh, Dominique

    2015-09-01

    The objective of this study is to analyze Infectious Health Care Waste generation rates and patterns in Lebanon. Therefore, the quantities generated during five years by 57 hospitals from a total of 163 in the country have been analyzed. The seasonal evolution of Infectious Health Care Waste production and the evolution of the evaluation of the trends over years have been studied. Besides, the generation per capita have been estimated and compared to other countries. The variance between categories and the correlation between number of beds and Infectious Health Care Waste generation have been analyzed. The obtained results showed that the large private hospitals (over 200 beds) are characterized by their high generation rate: an average of 2.45kg per occupied bed(-1)day(-1), whereas the average generation rate for other categories is 0.94kg per occupied bed(-1)day(-1). The weighted mean is 1.14 per occupied kgbed(-1)day(-1). Small public hospitals (i.e. less than 100 beds) have the smallest standard deviation: 0.13, whereas large private hospitals (i.e. over than 200 beds) have the highest standard deviation: 0.40. Infectious Health Care Waste generation has been estimated to 1.42kg/capita/year. The correlation between the numbers of hospitals beds in hospitals and the generation rate per bed is weak. The correlation between Infectious Health Care Waste generation per day and beds number is stronger. The total quantity produced by hospitals has increased over the five past years. These results suggest that the quantities of medical waste are not well controlled, and that hospitals have a defective monitoring management system of their waste. Annual peaks are observed in June, July, and December. Thus, this study, for the first time in Lebanon, has provided information on the infectious waste generation, allowing benchmarking between hospitals and between countries.

  11. High Bit Rate Experiments Over ACTS

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.; Gary, J. Patrick; Edelsen, Burt; Helm, Neil; Cohen, Judith; Shopbell, Patrick; Mechoso, C. Roberto; Chung-Chun; Farrara, M.; Spahr, Joseph

    1996-01-01

    This paper describes two high data rate experiments chat are being developed for the gigabit NASA Advanced Communications Technology Satellite (ACTS). The first is a telescience experiment that remotely acquires image data at the Keck telescope from the Caltech campus. The second is a distributed global climate application that is run between two supercomputer centers interconnected by ACTS. The implementation approach for each is described along with the expected results. Also. the ACTS high data rate (HDR) ground station is also described in detail.

  12. High Bit Rate Experiments Over ACTS

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.; Gary, J. Patrick; Edelsen, Burt; Helm, Neil; Cohen, Judith; Shopbell, Patrick; Mechoso, C. Roberto; Chung-Chun; Farrara, M.; Spahr, Joseph

    1996-01-01

    This paper describes two high data rate experiments chat are being developed for the gigabit NASA Advanced Communications Technology Satellite (ACTS). The first is a telescience experiment that remotely acquires image data at the Keck telescope from the Caltech campus. The second is a distributed global climate application that is run between two supercomputer centers interconnected by ACTS. The implementation approach for each is described along with the expected results. Also. the ACTS high data rate (HDR) ground station is also described in detail.

  13. Coulomb time delays in high harmonic generation

    NASA Astrophysics Data System (ADS)

    Torlina, Lisa; Smirnova, Olga

    2017-02-01

    Measuring the time it takes to remove an electron from an atom or molecule during photoionization has been the focus of a number of recent experiments using newly developed attosecond spectroscopies. The interpretation of such measurements, however, depends critically on the measurement protocol and the specific observables available in each experiment. One such protocol relies on high harmonic generation. In this paper, we derive rigorous and general expressions for ionisation and recombination times in high harmonic generation experiments. We show that these times are different from, but related to, ionisation times measured in photoelectron spectroscopy: that is, those obtained using the attosecond streak camera, RABBITT and attoclock methods. We then proceed to use the analytical R-matrix theory to calculate these times and compare them with experimental values.

  14. High-order harmonic generation in alkanes

    SciTech Connect

    Altucci, C.; Velotta, R.; Heesel, E.; Springate, E.; Marangos, J. P.; Vozzi, C.; Benedetti, E.; Calegari, F.; Sansone, G.; Stagira, S.; Nisoli, M.; Tosa, V.

    2006-04-15

    We have investigated the process of high-order harmonic generation in light alkanes by using femtosecond laser pulses. We show the experimental results cannot be matched by a model that assumes a single active electron only in a hydrogenic s orbital. Clear evidences are shown of the important role played by the p-like character originating from the covalent C-H bond. By constructing a suitable mixture of s-type and p-type atomic wave functions, an excellent agreement between measurements in methane and simulations is found, thus confirming the validity of the developed method as a general tool for the analysis of high-order harmonic generation in complex molecules.

  15. TMF ultra-high rate discharge performance

    SciTech Connect

    Nelson, B.

    1997-12-01

    BOLDER Technologies Corporation has developed a valve-regulated lead-acid product line termed Thin Metal Film (TMF{trademark}) technology. It is characterized by extremely thin plates and close plate spacing that facilitate high rates of charge and discharge with minimal temperature increases, at levels unachievable with other commercially-available battery technologies. This ultra-high rate performance makes TMF technology ideal for such applications as various types of engine start, high drain rate portable devices and high-current pulsing. Data are presented on very high current continuous and pulse discharges. Power and energy relationships at various discharge rates are explored and the fast-response characteristics of the BOLDER{reg_sign} cell are qualitatively defined. Short-duration recharge experiments will show that devices powered by BOLDER batteries can be in operation for more than 90% of an extended usage period with multiple fast recharges. The BOLDER cell is ideal for applications such as engine-start, a wide range of portable devices including power tools, hybrid electric vehicles and pulse-power devices. Applications such as this are very attractive, and are well served by TMF technology, but an area of great interest and excitement is ultrahigh power delivery in excess of 1 kW/kg.

  16. Holographic generation of highly twisted electron beams.

    PubMed

    Grillo, Vincenzo; Gazzadi, Gian Carlo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2015-01-23

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wave front corresponding to the electron's wave function forms a helical structure with a number of twists given by the angular speed. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a conventional electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nanofabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200ℏ. Based on a novel technique the value of orbital angular momentum of the generated beam is measured and then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic moment along the propagation direction and, thus, may be used in the study of the magnetic properties of materials and for manipulating nanoparticles.

  17. Hydrogen Generation Rate Scoping Study of DOW Corning Antifoam Agent

    SciTech Connect

    Crawford, Charles

    2005-09-27

    conservatively bounds hydrogen generation rates (HGRs) from antifoam-containing simulants if the antifoam organic components are treated the same as other native organics. Tests that used the combination of radiolysis and thermolysis conducted on simulants containing antifoam produced measured hydrogen that was bounded by the WTP correlation. These tests used the bounding WTP temperature of 90 C and a dose rate of 1.8 x 10{sup 5} rad/hr. This dose rate is about ten times higher than the dose rate equivalent calculated for a bounding Hanford sludge slurry composition of 10 Ci/L, or 2 x 10{sup 4} rad/hr. Hydrogen was measured using a quadrupole mass spectroscopy instrument. Based on the analyses from the 4wt% and 10wt% antifoam samples, it is expected that the HGR results are directly proportional to the antifoam concentration added. A native organic-containing simulant that did not contain any added antifoam also produced a measurable radiolytic/thermal hydrogen rates that was in bounded by the WTP correlation. A base simulant with no added organic produced a measurable radiolytic/thermal HGR that was {approx}2X higher than the predicted HGR. Analysis of antifoam-containing simulants after prolonged irradiation of 52 Mrad and heating (23 days at 90 C) indicates that essentially all of the PDMS and greater than 60% of the PPG components are degraded, likely to lower molecular weight species. The antifoam components were analyzed by extraction from the salt simulants, followed by gel permeation chromatography (GPC) by personnel at Dow Corning. A more detailed study of the antifoam degradation and product formation from radiolysis and thermolysis is currently in progress at SRNL. That study uses a dose rate of about 2 x 10{sup 4} rad/hr and bounding temperatures of 90 C. Results from that study will be reported in a future report.

  18. Generation of highly-viscous microjets

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; Onuki, Hajime; Oi, Yuto

    2015-11-01

    An ink-jet printing system (or a liquid-dispensing device) has ecological and cost advantages compared to other printing systems such as offset printing and gravure printing since it requires a small amount of liquids. However, most ink-jet printers are not able to eject high-viscous liquids more than 10 cSt. This limitation severely restricts applications of the ink-jet system. Here we present a novel jet-generation system, discharging jets of high-viscous liquids up to 1,000 cSt. The system employs an impulsive force and converges the force efficiently in order to accelerate the liquid-air interface strongly for generating viscous jets: It consists of a liquid container and a thin tube partially inserted in the liquid. The liquid-air interface inside the thin tube is set deeper than that outside of the tube. We then add an impulsive force on the bottom of the container, leading to the microjet generation inside the thin tube. The pressure field under the impulsive force is estimated using pressure-impulse approach, deriving the jet velocity. The jet velocity is experimentally measured with varying the impulsive force and liquid levels in the tube and the container. It is found that the measured velocities agree with the estimation. Owing to the simple structure of the generation system and an ability for ejecting viscous liquids, it could extend the limits of existing ink-jet printers and may be applicable for next-generation technologies such as 3D printing systems and needle-free injection devices. JSPS KAKENHI Grant Number 26709007.

  19. High Resolution Measurement of the Glycolytic Rate

    PubMed Central

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  20. High rate, high reliability Li/SO2 cells

    NASA Astrophysics Data System (ADS)

    Chireau, R.

    1982-03-01

    The use of the lithium/sulfur dioxide system for aerospace applications is discussed. The high rate density in the system is compared to some primary systems: mercury zinc, silver zinc, and magnesium oxide. Estimates are provided of the storage life and shelf life of typical lithium sulfur batteries. The design of lithium cells is presented and criteria are given for improving the output of cells in order to achieve high rate and high reliability.

  1. High Rate for Type IC Supernovae

    SciTech Connect

    Muller, R.A.; Marvin-Newberg, H.J.; Pennypacker, Carl R.; Perlmutter, S.; Sasseen, T.P.; Smith, C.K.

    1991-09-01

    Using an automated telescope we have detected 20 supernovae in carefully documented observations of nearby galaxies. The supernova rates for late spiral (Sbc, Sc, Scd, and Sd) galaxies, normalized to a blue luminosity of 10{sup 10} L{sub Bsun}, are 0.4 h{sup 2}, 1.6 h{sup 2}, and 1.1 h{sup 2} per 100 years for SNe type la, Ic, and II. The rate for type Ic supernovae is significantly higher than found in previous surveys. The rates are not corrected for detection inefficiencies, and do not take into account the indications that the Ic supernovae are fainter on the average than the previous estimates; therefore the true rates are probably higher. The rates are not strongly dependent on the galaxy inclination, in contradiction to previous compilations. If the Milky Way is a late spiral, then the rate of Galactic supernovae is greater than 1 per 30 {+-} 7 years, assuming h = 0.75. This high rate has encouraging consequences for future neutrino and gravitational wave observatories.

  2. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  3. [Hopes of high dose-rate radiotherapy].

    PubMed

    Fouillade, Charles; Favaudon, Vincent; Vozenin, Marie-Catherine; Romeo, Paul-Henri; Bourhis, Jean; Verrelle, Pierre; Devauchelle, Patrick; Patriarca, Annalisa; Heinrich, Sophie; Mazal, Alejandro; Dutreix, Marie

    2017-04-01

    In this review, we present the synthesis of the newly acquired knowledge concerning high dose-rate irradiations and the hopes that these new radiotherapy modalities give rise to. The results were presented at a recent symposium on the subject. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Baltimore District Tackles High Suspension Rates

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2007-01-01

    This article reports on how the Baltimore District tackles its high suspension rates. Driven by an increasing belief that zero-tolerance disciplinary policies are ineffective, more educators are embracing strategies that do not exclude misbehaving students from school for offenses such as insubordination, disrespect, cutting class, tardiness, and…

  5. Baltimore District Tackles High Suspension Rates

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2007-01-01

    This article reports on how the Baltimore District tackles its high suspension rates. Driven by an increasing belief that zero-tolerance disciplinary policies are ineffective, more educators are embracing strategies that do not exclude misbehaving students from school for offenses such as insubordination, disrespect, cutting class, tardiness, and…

  6. Understanding High School Graduation Rates in Georgia

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  7. Understanding High School Graduation Rates in Oklahoma

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  8. Understanding High School Graduation Rates in Kentucky

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  9. Understanding High School Graduation Rates in Nevada

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  10. Understanding High School Graduation Rates in Kansas

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  11. Understanding High School Graduation Rates in Connecticut

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  12. Understanding High School Graduation Rates in Indiana

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  13. Understanding High School Graduation Rates in Alaska

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  14. Understanding High School Graduation Rates in Hawaii

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  15. Understanding High School Graduation Rates in Wisconsin

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  16. Understanding High School Graduation Rates in Utah

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  17. Understanding High School Graduation Rates in Alabama

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  18. Understanding High School Graduation Rates in Maryland

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  19. Understanding High School Graduation Rates in Tennessee

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  20. Understanding High School Graduation Rates in Nebraska

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  1. Understanding High School Graduation Rates in Missouri

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  2. Understanding High School Graduation Rates in Arizona

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  3. Understanding High School Graduation Rates in Montana

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  4. Understanding High School Graduation Rates in Iowa

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  5. Understanding High School Graduation Rates in Vermont

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  6. Understanding High School Graduation Rates in California

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  7. Understanding High School Graduation Rates in Mississippi

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  8. Understanding High School Graduation Rates in Ohio

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  9. Understanding High School Graduation Rates in Illinois

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  10. Understanding High School Graduation Rates in Louisiana

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  11. Understanding High School Graduation Rates in Virginia

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  12. Understanding High School Graduation Rates in Florida

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  13. Understanding High School Graduation Rates in Delaware

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  14. Understanding High School Graduation Rates in Idaho

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  15. Understanding High School Graduation Rates in Maine

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  16. Understanding High School Graduation Rates in Massachusetts

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  17. Understanding High School Graduation Rates in Michigan

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  18. Understanding High School Graduation Rates in Pennsylvania

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  19. Understanding High School Graduation Rates in Oregon

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  20. Understanding High School Graduation Rates in Washington

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  1. Understanding High School Graduation Rates in Minnesota

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  2. Understanding High School Graduation Rates in Wyoming

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  3. Understanding High School Graduation Rates in Texas

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  4. Understanding High School Graduation Rates in Arkansas

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  5. Understanding High School Graduation Rates in Colorado

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  6. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  7. Role of high shear rate in thrombosis.

    PubMed

    Casa, Lauren D C; Deaton, David H; Ku, David N

    2015-04-01

    Acute arterial occlusions occur in high shear rate hemodynamic conditions. Arterial thrombi are platelet-rich when examined histologically compared with red blood cells in venous thrombi. Prior studies of platelet biology were not capable of accounting for the rapid kinetics and bond strengths necessary to produce occlusive thrombus under these conditions where the stasis condition of the Virchow triad is so noticeably absent. Recent experiments elucidate the unique pathway and kinetics of platelet aggregation that produce arterial occlusion. Large thrombi form from local release and conformational changes in von Willebrand factor under very high shear rates. The effect of high shear hemodynamics on thrombus growth has profound implications for the understanding of all acute thrombotic cardiovascular events as well as for vascular reconstructive techniques and vascular device design, testing, and clinical performance. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  8. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  9. High throughput jet singlet oxygen generator for multi kilowatt SCOIL

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; Singhal, Gaurav; Mainuddin; Tyagi, R. K.; Dawar, A. L.

    2010-06-01

    A jet flow singlet oxygen generator (JSOG) capable of handling chlorine flows of nearly 1.5 mol s -1 has been designed, developed, and tested. The generator is designed in a modular configuration taking into consideration the practical aspects of handling high throughput flows without catastrophic BHP carry over. While for such high flow rates a cross-flow configuration has been reported, the generator utilized in the present study is a counter flow configuration. A near vertical extraction of singlet oxygen is effected at the generator exit, followed by a 90° rotation of the flow forming a novel verti-horizontal COIL scheme. This allows the COIL to be operated with a vertical extraction SOG followed by the horizontal arrangement of subsequent COIL systems such as supersonic nozzle, cavity, supersonic diffuser, etc. This enables a more uniform weight distribution from point of view of mobile and other platform mounted systems, which is highly relevant for large scale systems. The present study discusses the design aspects of the jet singlet oxygen generator along with its test results for various operating ranges. Typically, for the intended design flow rates, the chlorine utilization and singlet oxygen yield have been observed to be ˜94% and ˜64%, respectively.

  10. Optical High Harmonic Generation in C60

    NASA Astrophysics Data System (ADS)

    Zhang, Guoping

    2005-03-01

    C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).

  11. Highly stable high-rate discriminator for nuclear counting

    NASA Technical Reports Server (NTRS)

    English, J. J.; Howard, R. H.; Rudnick, S. J.

    1969-01-01

    Pulse amplitude discriminator is specially designed for nuclear counting applications. At very high rates, the threshold is stable. The output-pulse width and the dead time change negligibly. The unit incorporates a provision for automatic dead-time correction.

  12. High-Rate Capable Floating Strip Micromegas

    NASA Astrophysics Data System (ADS)

    Bortfeldt, Jonathan; Bender, Michael; Biebel, Otmar; Danger, Helge; Flierl, Bernhard; Hertenberger, Ralf; Lösel, Philipp; Moll, Samuel; Parodi, Katia; Rinaldi, Ilaria; Ruschke, Alexander; Zibell, André

    2016-04-01

    We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60 MHz/cm2. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48 cm × 50 cm with 1920 copper anode strips exhibits in 120 GeV pion beams a spatial resolution of 50 μm at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below 5° are observed. Systematic deviations of this μTPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4 cm × 6.4 cm floating strip Micromegas under intense background irradiation of the whole active area with 20 MeV protons at a rate of 550 kHz. The spatial resolution for muons is not distorted by space charge effects. A 6.4 cm × 6.4 cm floating strip Micromegas doublet with low material budget is investigated in highly ionizing proton and carbon ion beams at particle rates between 2 MHz and 2 GHz. Stable operation up to the highest rates is observed, spatial resolution, detection efficiencies, the multi-hit and high-rate capability are discussed.

  13. Phosphor thermometry at high repetition rates

    NASA Astrophysics Data System (ADS)

    Fuhrmann, N.; Brübach, J.; Dreizler, A.

    2013-09-01

    Phosphor thermometry is a semi-invasive surface temperature measurement technique utilizing the luminescence properties of thermographic phosphors. Typically these ceramic materials are coated onto the object of interest and are excited by a short UV laser pulse. Photomultipliers and high-speed camera systems are used to transiently detect the subsequently emitted luminescence decay point wise or two-dimensionally resolved. Based on appropriate calibration measurements, the luminescence lifetime is converted to temperature. Up to now, primarily Q-switched laser systems with repetition rates of 10 Hz were employed for excitation. Accordingly, this diagnostic tool was not applicable to resolve correlated temperature transients at time scales shorter than 100 ms. For the first time, the authors realized a high-speed phosphor thermometry system combining a highly repetitive laser in the kHz regime and a fast decaying phosphor. A suitable material was characterized regarding its temperature lifetime characteristic and precision. Additionally, the influence of laser power on the phosphor coating in terms of heating effects has been investigated. A demonstration of this high-speed technique has been conducted inside the thermally highly transient system of an optically accessible internal combustion engine. Temperatures have been measured with a repetition rate of one sample per crank angle degree at an engine speed of 1000 rpm. This experiment has proven that high-speed phosphor thermometry is a promising diagnostic tool for the resolution of surface temperature transients.

  14. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  15. High strain rate characterization of polymers

    NASA Astrophysics Data System (ADS)

    Siviour, Clive R.

    2017-01-01

    This paper reviews the literature on the response of polymers to high strain rate deformation. The main focus is on the experimental techniques used to characterize this response. The paper includes a small number of examples as well as references to experimental data over a wide range of rates, which illustrate the key features of rate dependence in these materials; however this is by no means an exhaustive list. The aim of the paper is to give the reader unfamiliar with the subject an overview of the techniques available with sufficient references from which further information can be obtained. In addition to the `well established' techniques of the Hopkinson bar, Taylor Impact and Transverse impact, a discussion of the use of time-temperature superposition in interpreting and experimentally replicating high rate response is given, as is a description of new techniques in which mechanical parameters are derived by directly measuring wave propagation in specimens; these are particularly appropriate for polymers with low wave speeds. The vast topic of constitutive modelling is deliberately excluded from this review.

  16. High temperature electrochemical corrosion rate probes

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

    2005-09-01

    Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

  17. High order harmonic generation in rare gases

    SciTech Connect

    Budil, Kimberly Susan

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  18. Analytical Modeling of High Rate Processes.

    DTIC Science & Technology

    2007-11-02

    TYPE AND DATES COVERED 1 13 Apr 98 Final (01 Sep 94 - 31 Aug 97) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS Analytical Modeling of High Rate Processes...20332- 8050 FROM: S. E. Jones, University Research Professor Department of Aerospace Engineering and Mechanics University of Alabama SUBJECT: Final...Mr. Sandor Augustus and Mr. Jeffrey A. Drinkard. There are no outstanding commitments. The balance in the account, as of July 31 , 1997, was $102,916.42

  19. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOEpatents

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  20. Reserve, flowing electrolyte, high rate lithium battery

    NASA Astrophysics Data System (ADS)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  1. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  2. Highly Reliable Key Generation from Electrocardiogram (ECG).

    PubMed

    Karimian, Nima; Guo, Zimu; Tehranipoor, Mark; Forte, Domenic

    2016-09-08

    Traditional passwords are inadequate as cryptographic keys, as they are easy to forge and are vulnerable to guessing. Human biometrics have been proposed as a promising alternative due to their intrinsic nature. Electrocardiogram (ECG) is an emerging biometric that is extremely difficult to forge and circumvent, but has not yet been heavily investigated for cryptographic key generation. ECG has challenges with respect to immunity to noise, abnormalities, etc. In this paper, we propose a novel key generation approach that extracts keys from real valued ECG features with high reliability and entropy in mind. Our technique, called interval optimized mapping bit allocation (IOMBA), is applied to normal and abnormal ECG signals under multiple session conditions. We also investigate IOMBA in the context of different feature extraction methods, such as wavelet, discrete cosine transform, etc. to find the best method for feature extraction. Experiments of IOMBA show that 217-bit, 38-bit, and 100-bit keys with 99.9%, 97.4%, and 95% average reliability and high entropy can be extracted from normal, abnormal, and multiple session ECG signals, respectively. By allowing more errors or lowering entropy, key lengths can be further increased by tunable parameters of IOMBA which can be useful in other applications. While IOMBA is demonstrated on ECG, it should be useful for other biometrics as well.

  3. Evolution of supersaturation of amorphous pharmaceuticals: nonlinear rate of supersaturation generation regulated by matrix diffusion.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2015-04-06

    The importance of rate of supersaturation generation on the kinetic solubility profiles of amorphous systems has recently been shown by us; however, the previous focus was limited to constant rates of supersaturation generation. The objective of the current study is to further examine the effect of nonlinear rate profiles of supersaturation generation in amorphous systems, including (1) instantaneous or infinite rate (i.e., initial degree of supersaturation), (2) first-order rate (e.g., from dissolution of amorphous drug particles), and (3) matrix diffusion regulated rate (e.g., drug release from amorphous solid dispersions (ASDs) based on cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels), on the kinetic solubility profiles of a model poorly soluble drug indomethacin (IND) under nonsink dissolution conditions. The previously established mechanistic model taking into consideration both the crystal growth and ripening processes was extended to predict the evolution of supersaturation resulting from nonlinear rates of supersaturation generation. Our results confirm that excessively high initial supersaturation or a rapid supersaturation generation leads to a surge in maximum supersaturation followed by a rapid decrease in drug concentration owing to supersaturation-induced precipitation; however, an exceedingly low degree of supersaturation or a slow rate of supersaturation generation does not sufficiently raise the supersaturation level, which results in a lower but broader maximum kinetic solubility profile. Our experimental data suggest that an optimal area-under-the-curve of the kinetic solubility profiles exists at an intermediate initial supersaturation level for the amorphous systems studied here, which agrees well with the predicted trend. Our model predictions also support our experimental findings that IND ASD in cross-linked PHEMA exhibits a unique kinetic solubility profile because the resulting supersaturation level is governed by a matrix

  4. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements

    NASA Astrophysics Data System (ADS)

    Drake, S. J.; Martin, M.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2015-07-01

    Understanding the rate of heat generation in a Li-ion cell is critical for safety and performance of Li-ion cells and systems. Cell performance, cycle life, and system safety all depend on temperature distribution in the cell, which, in turn, depends on heat generation rate within the cell and on heat removal rate at the cell surface. Despite the existence of a number of theoretical models to predict heat generation rate, there is not much literature on experimental measurement at high C-rates. This paper reports measurement of heat generation rate from a Li-ion cell at high discharge rates, up to 9.6C, using measurements of cell temperature and surface heat flux. As opposed to calorimetry-based approaches, this method can be applied in situ to yield measurements of heat generation rate in laboratory or field use provided that at least one a priori test is performed to measure the temperature gradient within a cell in the same ambient condition. This method is based on simultaneous determination of heat stored and heat lost from the cell through heat flux and temperature measurements. A novel method is established for measurement of the internal temperature of the cell. Heat generation measurements are shown to agree with well-established theoretical models. The effect of actively cooling the cell is briefly discussed.

  5. High rate pulse processing algorithms for microcalorimeters

    SciTech Connect

    Rabin, Michael; Hoover, Andrew S; Bacrania, Mnesh K; Tan, Hui; Breus, Dimitry; Henning, Wolfgang; Sabourov, Konstantin; Collins, Jeff; Warburton, William K; Dorise, Bertrand; Ullom, Joel N

    2009-01-01

    It has been demonstrated that microcalorimeter spectrometers based on superconducting transition-edge-sensor can readily achieve sub-100 eV energy resolution near 100 keV. However, the active volume of a single microcalorimeter has to be small to maintain good energy resolution, and pulse decay times are normally in the order of milliseconds due to slow thermal relaxation. Consequently, spectrometers are typically built with an array of microcalorimeters to increase detection efficiency and count rate. Large arrays, however, require as much pulse processing as possible to be performed at the front end of the readout electronics to avoid transferring large amounts of waveform data to a host computer for processing. In this paper, they present digital filtering algorithms for processing microcalorimeter pulses in real time at high count rates. The goal for these algorithms, which are being implemented in the readout electronics that they are also currently developing, is to achieve sufficiently good energy resolution for most applications while being (a) simple enough to be implemented in the readout electronics and (b) capable of processing overlapping pulses and thus achieving much higher output count rates than the rates that existing algorithms are currently achieving. Details of these algorithms are presented, and their performance was compared to that of the 'optimal filter' that is the dominant pulse processing algorithm in the cryogenic-detector community.

  6. High Strain Rate Behavior of Polyurea Compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Milby, Christopher

    2011-06-01

    Polyurea has been gaining importance in recent years due to its impact resistance properties. The actual compositions of this viscoelastic material must be tailored for specific use. It is therefore imperative to study the effect of variations in composition on the properties of the material. High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with titanium bars. The polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. The materials have been tested up to strain rates of 6000/s. Results from these tests have shown interesting trends on the high rate behavior. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Refinement in experimental methods and comparison of results using aluminum Split Hopkinson Bar is presented.

  7. High strain rate behavior of polyurea compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant S.; Milby, Christopher

    2012-03-01

    High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with aluminum bars. Three polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. These materials have been tested to strain rates of over 6000/s. High strain rate results from these tests have shown varying trends as a function of increasing strain. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior at lower strain. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Results indicate that the initial increase in the modulus of the blend of 250/1000 may lead to the loss of strain hardening characteristics as the material is compressed to 50% strain, compared to 1000 molecular weight amine based material.

  8. High Strain Rate Behavior of Nanoporous Tantalum

    NASA Astrophysics Data System (ADS)

    Ruestes, Carlos J.; Bringa, Eduardo M.; Stukowski, Alexander; Rodriguez Nieva, Joaquin F.; Bertolino, Graciela; Tang, Yizhe; Meyers, Marc A.

    2012-02-01

    Nano-scale failure under extreme conditions is not well understood. In addition to porosity arising from mechanical failure at high strain rates, porous structures also develop due to radiation damage. Therefore, understanding the role of porosity on mechanical behavior is important for the assessment and development of materials like metallic foams, and materials for new fission and fusion reactors, with improved mechanical properties. We carry out molecular dynamics (MD) simulations of a Tantalum (a model body-centered cubic metal) crystal with a collection of nanovoids under compression. The effects of high strain rate, ranging from 10^7s-1 to 10^10s-1, on the stress strain curve and on dislocation activity are examined. We find massive total dislocation densities, and estimate a much lower density of mobile dislocations, due to the formation of junctions. Despite the large stress and strain rate, we do not observe twin formation, since nanopores are effective dislocation production sources. A significant fraction of dislocations survive unloading, unlike what happens in fcc metals, and future experiments might be able to study similar recovered samples and find clues to their plastic behavior during loading.

  9. High strain rate deformation of layered nanocomposites.

    PubMed

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  10. High strain rate deformation of layered nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  11. Civilian residential fire fatality rates: Six high-rate states versus six low-rate states

    NASA Astrophysics Data System (ADS)

    Hall, J. R., Jr.; Helzer, S. G.

    1983-08-01

    Results of an analysis of 1,600 fire fatalities occurring in six states with high fire-death rates and six states with low fire-death rates are presented. Reasons for the differences in rates are explored, with special attention to victim age, sex, race, and condition at time of ignition. Fire cause patterns are touched on only lightly but are addressed more extensively in the companion piece to this report, "Rural and Non-Rural Civilian Residential Fire Fatalities in Twelve States', NBSIR 82-2519.

  12. High frame-rate digital radiographic videography

    SciTech Connect

    King, N.S.P.; Cverna, F.H.; Albright, K.L.; Jaramillo, S.A.; Yates, G.J.; McDonald, T.E.; Flynn, M.J.; Tashman, S.

    1994-09-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100-microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  13. High-frame-rate digital radiographic videography

    NASA Astrophysics Data System (ADS)

    King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott

    1994-10-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  14. Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination

    NASA Astrophysics Data System (ADS)

    Brask, Jonatan Bohr; Martin, Anthony; Esposito, William; Houlmann, Raphael; Bowles, Joseph; Zbinden, Hugo; Brunner, Nicolas

    2017-05-01

    An approach to quantum random number generation based on unambiguous quantum state discrimination is developed. We consider a prepare-and-measure protocol, where two nonorthogonal quantum states can be prepared, and a measurement device aims at unambiguously discriminating between them. Because the states are nonorthogonal, this necessarily leads to a minimal rate of inconclusive events whose occurrence must be genuinely random and which provide the randomness source that we exploit. Our protocol is semi-device-independent in the sense that the output entropy can be lower bounded based on experimental data and a few general assumptions about the setup alone. It is also practically relevant, which we demonstrate by realizing a simple optical implementation, achieving rates of 16.5 Mbits /s . Combining ease of implementation, a high rate, and a real-time entropy estimation, our protocol represents a promising approach intermediate between fully device-independent protocols and commercial quantum random number generators.

  15. Fuel droplet burning rates at high pressures.

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1973-01-01

    Combustion of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane was observed in air under natural convection conditions, at pressures up to 100 atm. The droplets were simulated by porous spheres, with diameters in the range from 0.63 to 1.90 cm. The pressure levels of the tests were high enough so that near-critical combustion was observed for methanol and ethanol. Due to the high pressures, the phase-equilibrium models of the analysis included both the conventional low-pressure approach as well as high-pressure versions, allowing for real gas effects and the solubility of combustion-product gases in the liquid phase. The burning-rate predictions of the various theories were similar, and in fair agreement with the data. The high-pressure theory gave the best prediction for the liquid-surface temperatures of ethanol and propanol-1 at high pressure. The experiments indicated the approach of critical burning conditions for methanol and ethanol at pressures on the order of 80 to 100 atm, which was in good agreement with the predictions of both the low- and high-pressure analysis.

  16. Microalgal separation from high-rate ponds

    SciTech Connect

    Nurdogan, Y.

    1988-01-01

    High rate ponding (HRP) processes are playing an increasing role in the treatment of organic wastewaters in sunbelt communities. Photosynthetic oxygenation by algae has proved to cost only one-seventh as much as mechanical aeration for activated sludge systems. During this study, an advanced HRP, which produces an effluent equivalent to tertiary treatment has been studied. It emphasizes not only waste oxidation but also algal separation and nutrient removal. This new system is herein called advanced tertiary high rate ponding (ATHRP). Phosphorus removal in HRP systems is normally low because algal uptake of phosphorus is about one percent of their 200-300 mg/L dry weights. Precipitation of calcium phosphates by autofluocculation also occurs in HRP at high pH levels, but it is generally not complete due to insufficient calcium concentration in the pond. In the case of Richmond where the studies were conducted, the sewage is very low in calcium. Therefore, enhancement of natural autoflocculation was studied by adding small amounts of lime to the pond. Through this simple procedure phosphorus and nitrogen removals were virtually complete justifying the terminology ATHRP.

  17. Transportable high-energy high-power generator.

    PubMed

    Novac, B M; Smith, I R; Senior, P; Parker, M; Louverdis, G

    2010-05-01

    High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined.

  18. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  19. Innovations in high rate condensate polishing systems

    SciTech Connect

    O`Brien, M.

    1995-01-01

    Test work is being conducted at two major east coast utilities to evaluate flow distribution in high flow rate condensate polishing service vessels. The work includes core sample data used to map the flow distribution in vessels as originally manufactured. Underdrain modifications for improved flow distribution are discussed with data that indicates performance increases of the service vessel following the modifications. The test work is on going, with preliminary data indicating that significant improvements in cycle run length are possible with underdrain modifications. The economic benefits of the above modifications are discussed.

  20. Cervix cancer brachytherapy: high dose rate.

    PubMed

    Miglierini, P; Malhaire, J-P; Goasduff, G; Miranda, O; Pradier, O

    2014-10-01

    Cervical cancer, although less common in industrialized countries, is the fourth most common cancer affecting women worldwide and the fourth leading cause of cancer death. In developing countries, these cancers are often discovered at a later stage in the form of locally advanced tumour with a poor prognosis. Depending on the stage of the disease, treatment is mainly based on a chemoradiotherapy followed by uterovaginal brachytherapy ending by a potential remaining tumour surgery or in principle for some teams. The role of irradiation is crucial to ensure a better local control. It has been shown that the more the delivered dose is important, the better the local results are. In order to preserve the maximum of organs at risk and to allow this dose escalation, brachytherapy (intracavitary and/or interstitial) has been progressively introduced. Its evolution and its progressive improvement have led to the development of high dose rate brachytherapy, the advantages of which are especially based on the possibility of outpatient treatment while maintaining the effectiveness of other brachytherapy forms (i.e., low dose rate or pulsed dose rate). Numerous innovations have also been completed in the field of imaging, leading to a progress in treatment planning systems by switching from two-dimensional form to a three-dimensional one. Image-guided brachytherapy allows more precise target volume delineation as well as an optimized dosimetry permitting a better coverage of target volumes.

  1. High voltage multichannel wave form generator for liquid crystal research

    NASA Astrophysics Data System (ADS)

    Matuszczyk, T.; Beccherelli, R.

    2000-02-01

    The article describes a wave form generator designed primarily for experiments on addressing all kinds of liquid crystal displays. It can also be used in any application requiring several simultaneous sources of high-voltage arbitrary pulse trains. The instrument has eight channels capable of pulse amplitudes of ±100 V at a slew rate better than 300 V/μs. Its design differs significantly from a typical arbitrary wave form generator. First and foremost the wave forms are directly constructed from pulses with variable width as well as amplitude. Two interchangeable memory banks guarantee transient-free adjustments of generated wave forms. The generator is computer controlled with well integrated software and provides all functionality to assist in the creation of wave forms and experiments with liquid crystal addressing schemes in a straightforward and intuitive way. To point out its versatility we discuss a new mode of operation intended primarily for generation of analogue gray shades on a surface-stabilized ferroelectric liquid crystal display. The instrument creates conditions corresponding to driving a display of virtually any size with image frames changing at video rate.

  2. High resolution Ge/Li/ spectrometer reduces rate-dependent distortions at high counting rates

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Larsen, R. N.; Mann, H. M.; Rudnick, S. J.; Sherman, I. S.; Strauss, M. G.

    1968-01-01

    Modified spectrometer system with a low-noise preamplifier reduces rate-dependent distortions at high counting rates, 25,000 counts per second. Pole-zero cancellation minimizes pulse undershoots due to multiple time constants, baseline restoration improves resolution and prevents spectral shifts.

  3. High-Rate Digital Receiver Board

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David

    2004-01-01

    A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.

  4. High voltage pulse generator. [Patent application

    DOEpatents

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  5. High counting rate resistive-plate chamber

    NASA Astrophysics Data System (ADS)

    Peskov, V.; Anderson, D. F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast (less than 1 ns) and have very simple construction: just two parallel metallic plates or mesh electrodes. Depending on the applied voltage they may work either in spark mode or avalanche mode. The advantage of the spark mode of operation is a large signal amplitude from the chamber, the disadvantage is that there is a large dead time (msec) for the entire chamber after an event. The main advantage of the avalanche mode is high rate capability 10(exp 5) counts/mm(sup 2). A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (greater than 10(exp 10) Omega(cm) materials. In practice RPC's are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm(sup 2), leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases.

  6. High teleportation rates using Rydberg-based quantum repeaters

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal; Quraishi, Qudsia

    2015-05-01

    Quantum networking over long distances may be achieved using repeater protocols to generate entanglement between memory nodes. Typically, long-lived memories have low entanglement generation rates. Neutral atom memories can be long-lived, emit at visible wavelengths and can be collectively excited leading to directionally emitted entangled photons. Here, we propose a simplified Rydberg-based quantum repeater based on recent work, where we reduce the number of ground states used for entanglement generation and use only one ensemble at each node, reducing the required resources. The collective excitation allows for deterministic memory generation that is mapped into a directionally emitted photonic qubit without the use of a high finesse optical cavity. We demonstrate a protocol between multiple memories stored within a single ensemble to implement a two-qubit gate. Additionally, we predict teleportation rates of 1 Hz without the use of a high finesse optical cavity, which could be increased to kHz if efficiencies are improved over the currently realized values. We plan to explore these protocols in ultra-cold ensemble of neutral 87Rb atoms and are currently building this setup.

  7. High-deposition-rate ceramics synthesis

    SciTech Connect

    Allendorf, M.D.; Osterheld, T.H.; Outka, D.A.

    1995-05-01

    Parallel experimental and computational investigations are conducted in this project to develop validated numerical models of ceramic synthesis processes. Experiments are conducted in the High-Temperature Materials Synthesis Laboratory in Sandia`s Combustion Research Facility. A high-temperature flow reactor that can accommodate small preforms (1-3 cm diameter) generates conditions under which deposition can be observed, with flexibility to vary both deposition temperature (up to 1500 K) and pressure (as low as 10 torr). Both mass spectrometric and laser diagnostic probes are available to provide measurements of gas-phase compositions. Experiments using surface analytical techniques are also applied to characterize important processes occuring on the deposit surface. Computational tools developed through extensive research in the combustion field are employed to simulate the chemically reacting flows present in typical industrial reactors. These include the CHEMKIN and Surface-CHEMKIN suites of codes, which permit facile development of complex reaction mechanisms and vastly simplify the implementation of multi-component transport and thermodynamics. Quantum chemistry codes are also used to estimate thermodynamic and kinetic data for species and reactions for which this information is unavailable.

  8. Impact-generated Tsunamis: An Over-rated Hazard

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    2003-01-01

    A number of authors have suggested that oceanic waves (tsunami) created by the impact of relatively small asteroids into the Earth's oceans might cause widespread devastation to coastal cities. If correct, this suggests that asteroids > 100 m in diameter may pose a serious hazard to humanity and could require a substantial expansion of the current efforts to identify earth-crossing asteroids > 1 km in diameter. The debate on this hazard was recently altered by the release of a document previously inaccessible to the scientific community. In 1968 the US Office of Naval Research commissioned a summary of several decades of research into the hazard proposed by waves generated by nuclear explosions in the ocean. Authored by tsunami expert William Van Dorn, this 173-page report entitled Handbook of Explosion-Generated Water Waves affords new insight into the process of impact wave formation, propagation, and run up onto the shoreline.

  9. High spin rate magnetic controller for nanosatellites

    NASA Astrophysics Data System (ADS)

    Slavinskis, A.; Kvell, U.; Kulu, E.; Sünter, I.; Kuuste, H.; Lätt, S.; Voormansik, K.; Noorma, M.

    2014-02-01

    This paper presents a study of a high rate closed-loop spin controller that uses only electromagnetic coils as actuators. The controller is able to perform spin rate control and simultaneously align the spin axis with the Earth's inertial reference frame. It is implemented, optimised and simulated for a 1-unit CubeSat ESTCube-1 to fulfil its mission requirements: spin the satellite up to 360 deg s-1 around the z-axis and align its spin axis with the Earth's polar axis with a pointing error of less than 3°. The attitude of the satellite is determined using a magnetic field vector, a Sun vector and angular velocity. It is estimated using an Unscented Kalman Filter and controlled using three electromagnetic coils. The algorithm is tested in a simulation environment that includes models of space environment and environmental disturbances, sensor and actuator emulation, attitude estimation, and a model to simulate the time delay caused by on-board calculations. In addition to the normal operation mode, analyses of reduced satellite functionality are performed: significant errors of attitude estimation due to non-operational Sun sensors; and limited actuator functionality due to two non-operational coils. A hardware-in-the-loop test is also performed to verify on-board software.

  10. High repetition rate plasma mirror device for attosecond science

    SciTech Connect

    Borot, A.; Douillet, D.; Iaquaniello, G.; Lefrou, T.; Lopez-Martens, R.; Audebert, P.; Geindre, J.-P.

    2014-01-15

    This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the target capabilities by driving high-order harmonic generation from plasma mirrors produced on glass targets with a near-relativistic intensity few-cycle pulse laser system operating at 1 kHz. During experiments, residual target surface motion can be actively stabilized down to 47 nm (root mean square), which ensures sub-300-as relative temporal stability of the plasma mirror as a secondary source of coherent attosecond extreme ultraviolet radiation in pump-probe experiments.

  11. Consideration of wear rates at high velocity

    NASA Astrophysics Data System (ADS)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  12. Highly excited strings I: Generating function

    NASA Astrophysics Data System (ADS)

    Skliros, Dimitri P.; Copeland, Edmund J.; Saffin, Paul M.

    2017-03-01

    This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES). In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators) in general toroidal compactifications E =R D - 1 , 1 ×T Dcr - D (with generic constant Kähler and complex structure target space moduli, background Kaluza-Klein (KK) gauge fields and torsion). We adopt a novel approach that does not rely on a ;reverse engineering; method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string) duality in string theory.

  13. Chaos and nonlinearities in high harmonic generation

    NASA Astrophysics Data System (ADS)

    Fiordilino, Emilio

    2016-11-01

    Linearity is a fundamental postulate of quantum mechanics which is occasionally the subject of debate. This paper investigates the possibility of checking this assumption by using a laser field. We study the corrections caused by the presence of a small nonlinearity in the Hamiltonian of a quantum system. As a model we use a simplified two-level quantum system whose states are coupled by a small off-diagonal term proportional to the population of the upper level. The nonlinearity causes spontaneous decay of the upper level, shift and broadening of the line and the sensitive dependence of the final state on the initial condition. The presence of a strong laser field, resonant with the atomic transition, enhances the population transfer among the levels and introduces quantitative and qualitative modifications of the spectra of high order harmonic generation (HHG); these are cumulative effects which can be subject to experimental checks. Experiments are needed in order to set an upper limit to the nonlinear term.

  14. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  15. High reliability low jitter pulse generator

    DOEpatents

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  16. Next generation leadership: a profile of self-rated competencies among administrative resident and fellows.

    PubMed

    Helfand, Brad; Cherlin, Emily; Bradley, Elizabeth H

    2005-01-01

    Healthcare executives and program faculty have voiced concerns that early careerists lack needed competencies for future leadership in the increasingly complex healthcare industry. However, empirical studies of early careerists' competency levels are limited. We sought to describe administrative fellows' and residents' (n = 78, response rate 73.6%) self-rated competency in several key areas and assess how these ratings differed by individuals' gender, age, prior work experience, year of graduate training, and type of degree program. Respondents rated their competence particularly high (41.7% of respondents rated themselves "A") in the domain of interpersonal and emotional intelligence, which included being an effective team leader and member, coaching and developing others, self-awareness, and self-regulation. Lower ratings were in the domains of facilities management and in development and fundraising. Compared to males, females rated their competency in the financial skills domain lower (P-value = 0.04). Age, prior work experience, year of graduate training, and type of degree program were not significantly associated with self-rated competency in any area. These results provide early evidence that may help program faculty and preceptors consider pedagogical approaches that reflect students' vocalized needs and may help to design strategies that effectively cultivate next generation leadership.

  17. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    SciTech Connect

    Martino, C. J.; Newell, J. D.; Williams, M. S.

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  18. [High vaccination rates among children of Amsterdam].

    PubMed

    van der Wal, M F; Diepenmaat, A C; Pauw-Plomp, H; van Weert-Waltman, M L

    2001-01-20

    To examine if in Amsterdam there are social or cultural groups of children with a relatively low vaccination coverage for diphtheria, pertussis, tetanus and poliomyelitis (DPTP) and mumps, measles and rubella (MMR). Descriptive cross-sectional study. In the Department of Child Health Care of the Municipal Health Service of Amsterdam all 83,217 children aged 2-12 years living in Amsterdam on the 1st of January 2000 were analysed for vaccination and sociodemographic data collected routinely by the Department of Child Health Care. The sociodemographic data concerned sex, year of birth, country of birth of the mother and child, name of the school and postal code of the home address. Schools were grouped by (religious) affiliation on the basis of the Amsterdam school guide 1999/2000. Based on postal codes children were classified by the neighbourhoods in which they were living. Neighbourhoods were grouped by socio-economic status based on data from the Central Bureau for Statistics. The overall vaccination rates of DPTP and MMR were 92.4% and 93.5% respectively. No important variation in vaccination coverage was identified between more and less affluent neighbourhoods. The uptake rate among foreign children was sometimes slightly higher and sometimes slightly lower compared with native children. Especially foreign children born abroad (Surinam, Antilles, Morocco, Turkey) were not fully vaccinated: 70.9% were fully immunized for DPTP, 79.5% for MMR. Children who visited anthroposophical schools were considerably less frequently fully immunized compared with children visiting other schools: for DPTP and MMR 81.0 and 59.9% respectively versus 94.4 en 95.3% for children attending general municipal schools. The vaccination coverage was high in children in Amsterdam. Further improvement of the vaccination uptake might be achieved by a more outreaching attitude to children born abroad, and by more intensely informing sceptical parents about the benefits and (supposed) dangers

  19. Multi-rate soliton pulse train generator based on novel fiber optic components

    NASA Astrophysics Data System (ADS)

    Sova, Raymond Michael

    As data rates for communication, signal processing, and optical sensing systems increase beyond 50 Gb/sec, ultra-fast optical pulse train generators will play a key role in their development. In this research, an all-fiber optical soliton pulse train generator is developed that operates at discrete rates from 50 to 400 Gb/sec with stable subpicosecond pulses. It is based on the following three novel fiber optic components: (1) all-fiber birefringence filter, (2) dual-wavelength fiber ring laser and (3) fiber-based soliton pulse train generation and compression stage. A multi-segment birefringence comb filter is developed to provide discrete tuning of the free spectral range from 0.8 to 3.2 nm and continuous tuning of the absolute position of the transmission peaks over the entire free spectral range. Two, three and four segment filters are constructed and implemented in Lyot and Lyot-Sagnac filter configurations to demonstrate the tuning properties and provide compound filters for use in the dual-wavelength fiber ring laser. Theoretical transmission functions are derived for two-segment filters. The experimental results are in excellent agreement with theoretical models based on the Jones matrix technique. The dual-wavelength laser consists of a PM amplifier, the tunable birefringence filter and a high-Q filter based on saturable absorber properties of un-pumped Erbium-doped fiber. Tunable compound birefringence filters are designed to operate the dual-wavelength laser over the entire erbium amplifier gain region (1530 to 1565 nm) with discrete tuning of the channel separation from 0.8 to 3.2 nm. Stable tunable dual-wavelength single-longitudinal mode operation is demonstrated and initial laser properties such as dual-relaxation oscillations, laser linewidth, polarization, and multi-wavelength stability are characterized. Induced modulation instability in optical fiber is used to generate pulse trains from the fiber ring laser output signal. Through modeling, the

  20. A compact submicrosecond, high current generator.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Zorin, V B; Zherlitsyn, A A

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 ohms damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (approximately 0.08 ohms). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24x1.2x0.18 m(3) and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  1. Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  2. Screening of second-generation high-index liquids

    NASA Astrophysics Data System (ADS)

    Hendrickx, Eric; Postnikov, Sergei; Foubert, Philippe; Gronheid, Roel; Kim, ByeongSoo

    2007-03-01

    A series of experiments were designed to probe the interaction between second generation High Index Liquids (HIL, n=1.65) and the resist stack. Three different second-generation high index liquids were tested in five experiments: measurement of the contact angle of the liquid with the resist surface; leaching of Photo-Acid Generator (PAG) into the liquid; residue analysis of droplets evaporated from the resist surface; impact of liquid soaking on resist profiles; and imaging through high-index liquids at 72nm pitch. The selected liquids were the main candidates from two potential vendors. In parallel, tests have also been done for water. The tests show that one of the main differences between highindex liquids and water is their much smaller contact angles on the organic photoresist films. This contact angle can be influenced by a topcoat, but currently seen contact angles may force a new immersion hood concept. Imaging was not affected strongly by the high-index liquids. For some liquids, low evaporation rates and a tendency to leave residue on resist were observed, which may require a dedicated liquid removal strategy to reduce defectivity.

  3. Three Generations in Mars Yard, High Viewpoint

    NASA Image and Video Library

    2012-01-17

    This grouping of two test rovers and a flight spare provides a graphic comparison of three generations of Mars rovers developed at NASA Jet Propulsion Laboratory, Pasadena, Calif. The setting is JPL Mars Yard testing area.

  4. Failure Rate Data Analysis for High Technology Components

    SciTech Connect

    L. C. Cadwallader

    2007-07-01

    Understanding component reliability helps designers create more robust future designs and supports efficient and cost-effective operations of existing machines. The accelerator community can leverage the commonality of its high-vacuum and high-power systems with those of the magnetic fusion community to gain access to a larger database of reliability data. Reliability studies performed under the auspices of the International Energy Agency are the result of an international working group, which has generated a component failure rate database for fusion experiment components. The initial database work harvested published data and now analyzes operating experience data. This paper discusses the usefulness of reliability data, describes the failure rate data collection and analysis effort, discusses reliability for components with scarce data, and points out some of the intersections between magnetic fusion experiments and accelerators.

  5. Random Number Generation for High Performance Computing

    DTIC Science & Technology

    2015-01-01

    SECURITY CLASSIFICATION OF: The primary objectives of the Phase II of the project are: (a) implement the context-aware parallel random number...Report Title The primary objectives of the Phase II of the project are: (a) implement the context-aware parallel random number generator (CPRNG...standard Unix/Linux systems, and a parallel RNG based on cryptographic operations from the family of generators proposed by D.E. Shaw Group [12], and a

  6. Coal plasticity at high heating rates and temperatures

    SciTech Connect

    Darivakis, G.S.; Peters, W.A.; Howard, J.B.

    1990-01-01

    The broad objective of this project is to obtain improved, quantitative understanding of the transient plasticity of bituminous coals under high heating rates and other reaction and pretreatment conditions of scientific and practical interest. To these ends the research plan is to measure the softening and resolidification behavior of two US bituminous coals with a rapid-heating, fast response, high-temperature coal plastometer, previously developed in this laboratory. Specific measurements planned for the project include determinations of apparent viscosity, softening temperature, plastic period, and resolidificationtime for molten coal: (1) as a function of independent variations in coal type, heating rate, final temperature, gaseous atmosphere (inert, 0{sub 2} or H{sub 2}), and shear rate; and (2) in exploratory runs where coal is pretreated (preoxidation, pyridine extraction, metaplast cracking agents), before heating. The intra-coal inventory and molecular weight distribution of pyridine extractables will also be measured using a rapid quenching, electrical screen heater coal pyrolysis reactor. The yield of extractables is representative of the intra-coal inventory of plasticing agent (metaplast) remaining after quenching. Coal plasticity kinetics will then be mathematically modeled from metaplast generation and depletion rates, via a correlation between the viscosity of a suspension and the concentration of deformable medium (here metaplast) in that suspension. Work during this reporting period has been concerned with re-commissioning the rapid heating rate plastometer apparatus.

  7. High frame rate photoacoustic imaging using clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Pramanik, Manojit

    2016-03-01

    Photoacoustic tomography (PAT) is a potential hybrid imaging modality which is gaining attention in the field of medical imaging. Typically a Q-switched Nd:YAG laser is used to excite the tissue and generate photoacoustic signals. But, they are not suitable for clinical applications owing to their high cost, large size. Also, their low pulse repetition rate (PRR) of few tens of hertz prevents them from being used in real-time PAT. So, there is a growing need for an imaging system capable of real-time imaging for various clinical applications. In this work, we are using a nanosecond pulsed laser diode as an excitation source and a clinical ultrasound imaging system to obtain the photoacoustic imaging. The excitation laser is ~803 nm in wavelength with energy of ~1.4 mJ per pulse. So far, the reported frame rate for photoacoustic imaging is only a few hundred Hertz. We have demonstrated up to 7000 frames per second framerate in photoacoustic imaging (B-mode) and measured the flow rate of fast moving obje ct. Phantom experiments were performed to test the fast imaging capability and measure the flow rate of ink solution inside a tube. This fast photoacoustic imaging can be used for various clinical applications including cardiac related problems, where the blood flow rate is quite high, or other dynamic studies.

  8. High rate PLD of diamond-like-carbon utilizing high repetition rate visible lasers

    SciTech Connect

    McLean, W. II; Fehring, E.J.; Dragon, E.P.; Warner, B.E.

    1994-09-15

    Pulsed Laser Deposition (PLD) has been shown to be an effective method for producing a wide variety of thin films of high-value-added materials. The high average powers and high pulse repetition frequencies of lasers under development at LLNL make it possible to scale-up PLD processes that have been demonstrated in small systems in a number of university, government, and private laboratories to industrially meaningful, economically feasible technologies. A copper vapor laser system at LLNL has been utilized to demonstrate high rate PLD of high quality diamond-like-carbon (DLC) from graphite targets. The deposition rates for PLD obtained with a 100 W laser were {approx} 2000 {mu}m{center_dot}cm{sup 2}/h, or roughly 100 times larger than those reported by chemical vapor deposition (CVD) or physical vapor deposition (PVD) methods. Good adhesion of thin (up to 2 pm) films has been achieved on a small number of substrates that include SiO{sub 2} and single crystal Si. Present results indicate that the best quality DLC films can be produced at optimum rates at power levels and wavelengths compatible with fiber optic delivery systems. If this is also true of other desirable coating systems, this PLD technology could become an extremely attractive industrial tool for high value added coatings.

  9. The dependence of radiolytic H2 generation of the nitrate concentration in high-level solutions

    SciTech Connect

    Walker, D.D.; Bibler, N.E.

    1991-11-19

    The rate at which hydrogen is produced from the radiolysis of high-activity waste solutions depends on the radiation dose rate to the solution and the concentration of nitrate ion in solution. At a constant dose rate, the hydrogen generation rate decreases as the nitrate ion concentration increases. Using previously measured rates of hydrogen production, an equation has been derived which calculates the hydrogen generation rate when the nitrate ion concentration is known. The hydrogen generation rate from this equation can be used to more accurately predict hydrogen production in waste tanks than is currently obtained assuming a fixed generation rate. The current fixed rate underestimates the hydrogen produced in dilute waste solutions.

  10. High rate constitutive modeling of aluminium alloy tube

    NASA Astrophysics Data System (ADS)

    Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.

  11. Using Evidence to Create Next Generation High Schools

    ERIC Educational Resources Information Center

    Office of Planning, Evaluation and Policy Development, US Department of Education, 2016

    2016-01-01

    Next Generation High Schools are schools that redesign the high school experience to make it more engaging and worthwhile for high school students. In order to create such Next Generation High Schools, schools, districts, and States should utilize evidence-based strategies to transform high schools in ways that engage students and help prepare…

  12. Generation of mechanical oscillation applicable to vibratory rate gyroscopes

    NASA Technical Reports Server (NTRS)

    Lemkin, Mark A. (Inventor); Juneau, Thor N. (Inventor); Clark, William A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    To achieve a drive-axis oscillation with improved frequency and amplitude stability, additional feedback loops are used to adjust force-feedback loop parameters. An amplitude-control loop measures oscillation amplitude, compares this value to the desired level, and adjusts damping of the mechanical sense-element to grow or shrink oscillation amplitude as appropriate. A frequency-tuning loop measures the oscillation frequency, compares this value with a highly stable reference, and adjusts the gain in the force-feedback loop to keep the drive-axis oscillation frequency at the reference value. The combined topology simultaneously controls both amplitude and frequency. Advantages of the combined topology include improved stability, fast oscillation start-up, low power consumption, and excellent shock rejection.

  13. Microfluidic generation of droplets with a high loading of nanoparticles.

    PubMed

    Wan, Jiandi; Shi, Lei; Benson, Bryan; Bruzek, Matthew J; Anthony, John E; Sinko, Patrick J; Prudhomme, Robert K; Stone, Howard A

    2012-09-18

    Microfluidic approaches for controlled generation of colloidal clusters, for example, via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension (<10 wt %). Here we demonstrate microfluidic approaches for directly making droplets with moderate (10-25 wt %) and high (>60 wt %) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt % PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt % PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt %, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Q(oil)/Q(water) from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (>25 wt %) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt %. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions filled with a high loading of nanoparticles, which are useful for drug delivery applications.

  14. High temperature superconducting generator for a mobile radar system

    SciTech Connect

    Singh, S.K.; Christianson, O.R.; Lamm, P.L.; Beam, J.E.

    1998-07-01

    A cryogenically cooled power system for mobile radars (MR) offers advantages in power density and performance over conventional technology. A conventional power system for a MR system consists of a diesel engine coupled to a conventional generator producing electrical power which is converted into radar power by power conditioning electronics, transmit/receive (T/R) modules, and an antenna. Cooling subsystems, including the generator, power conditioning, and possibly T/R modules, will improve the system performance through increased efficiencies and device capabilities. The improved MR performance due to cryogenic cooling results in increased radar output for the same amount of fuel consumption and reduced overall mass and volume of a MR system. This study evaluates the use of a high temperature superconducting generator in a cryogenically cooled power system for mobile radars. The baseline high temperature superconducting generator design consists of a high temperature superconducting rotating field winding and an ambient temperature stator winding. The generator is rated at 1 MW and driven by a 1800 rpm diesel engine. The generator consists of two windings producing 850 kW at 50 V, 12 phase, 60 Hertz and 150 kW at 120 V, 3 phase, 60 Hertz. The radar power is 850 kW, while the auxiliaries consisting of coolers, electrical equipment, and air conditioners consume 150 kW. Cooling of the generator is provided by a heat exchange with helium gas cooled by a Gifford-McMahon cryocooler. An iterative computer model is developed to evaluate the HTS generator and MR system performance. Cooling subsystems will not only improve the efficiency of the subsystem being cooled, but at the same time the power required to cool the subsystem will also increase. This computer model includes cryocooler performance models in evaluating the impact of cooling the subsystem. Cryocooler characteristics including coefficient of performance (COP), mass, and volume are used as inputs to the

  15. PS foams at high pressure drop rates

    NASA Astrophysics Data System (ADS)

    Tammaro, Daniele; De Maio, Attilio; Carbone, Maria Giovanna Pastore; Di Maio, Ernesto; Iannace, Salvatore

    2014-05-01

    In this paper, we report data on PS foamed at 100 °C after CO2 saturation at 10 MPa in a new physical foaming batch that achieves pressure drop rates up to 120 MPa/s. Results show how average cell size of the foam nicely fit a linear behavior with the pressure drop rate in a double logarithmic plot. Furthermore, foam density initially decreases with the pressure drop rate, attaining a constant value at pressure drop rates higher than 40 MPa/s. Interestingly, furthermore, we observed that the shape of the pressure release curve has a large effect on the final foam morphology, as observed in tests in which the maximum pressure release rate was kept constant but the shape of the curve changed. These results allow for a fine tuning of the foam density and morphology for specific applications.

  16. High-Temperature High-Efficiency Solar Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Baranowski, Lauryn L.; Warren, Emily L.; Toberer, Eric S.

    2014-06-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000°C to 100°C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  17. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  18. High voltage high repetition rate pulse using Marx topology

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  19. A high-rate PCI-based telemetry processor system

    NASA Astrophysics Data System (ADS)

    Turri, R.

    2002-07-01

    The high performances reached by the Satellite on-board telemetry generation and transmission, as consequently, will impose the design of ground facilities with higher processing capabilities at low cost to allow a good diffusion of these ground station. The equipment normally used are based on complex, proprietary bus and computing architectures that prevent the systems from exploiting the continuous and rapid increasing in computing power available on market. The PCI bus systems now allow processing of high-rate data streams in a standard PC-system. At the same time the Windows NT operating system supports multitasking and symmetric multiprocessing, giving the capability to process high data rate signals. In addition, high-speed networking, 64 bit PCI-bus technologies and the increase in processor power and software, allow creating a system based on COTS products (which in future may be easily and inexpensively upgraded). In the frame of EUCLID RTP 9.8 project, a specific work element was dedicated to develop the architecture of a system able to acquire telemetry data of up to 600 Mbps. Laben S.p.A - a Finmeccanica Company -, entrusted of this work, has designed a PCI-based telemetry system making possible the communication between a satellite down-link and a wide area network at the required rate.

  20. High-speed pulse-shape generator, pulse multiplexer

    DOEpatents

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  1. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  2. Bipolar high-repetition-rate high-voltage nanosecond pulser

    SciTech Connect

    Tian Fuqiang; Wang Yi; Shi Hongsheng; Lei Qingquan

    2008-06-15

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N{sub 2} as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  3. Bipolar high-repetition-rate high-voltage nanosecond pulser.

    PubMed

    Tian, Fuqiang; Wang, Yi; Shi, Hongsheng; Lei, Qingquan

    2008-06-01

    The pulser designed is mainly used for producing corona plasma in waste water treatment system. Also its application in study of dielectric electrical properties will be discussed. The pulser consists of a variable dc power source for high-voltage supply, two graded capacitors for energy storage, and the rotating spark gap switch. The key part is the multielectrode rotating spark gap switch (MER-SGS), which can ensure wider range modulation of pulse repetition rate, longer pulse width, shorter pulse rise time, remarkable electrical field distortion, and greatly favors recovery of the gap insulation strength, insulation design, the life of the switch, etc. The voltage of the output pulses switched by the MER-SGS is in the order of 3-50 kV with pulse rise time of less than 10 ns and pulse repetition rate of 1-3 kHz. An energy of 1.25-125 J per pulse and an average power of up to 10-50 kW are attainable. The highest pulse repetition rate is determined by the driver motor revolution and the electrode number of MER-SGS. Even higher voltage and energy can be switched by adjusting the gas pressure or employing N(2) as the insulation gas or enlarging the size of MER-SGS to guarantee enough insulation level.

  4. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  5. High data rate systems for the future

    NASA Technical Reports Server (NTRS)

    Chitwood, John

    1991-01-01

    Information systems in the next century will transfer data at rates that are much greater than those in use today. Satellite based communication systems will play an important role in networking users. Typical data rates; use of microwave, millimeter wave, or optical systems; millimeter wave communication technology; modulators/exciters; solid state power amplifiers; beam waveguide transmission systems; low noise receiver technology; optical communication technology; and the potential commercial applications of these technologies are discussed.

  6. Electric Grid Expansion Planning with High Levels of Variable Generation

    SciTech Connect

    Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun; Liu, Yilu

    2016-02-01

    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind power across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance

  7. 78 FR 56690 - Seneca Generation, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Seneca Generation, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding, of Seneca Generation, LLC's application for market-based rate authority, with...

  8. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  9. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  10. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  11. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  12. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  13. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  14. High false positive rates in common sensory threshold tests.

    PubMed

    Running, Cordelia A

    2015-02-01

    Large variability in thresholds to sensory stimuli is observed frequently even in healthy populations. Much of this variability is attributed to genetics and day-to-day fluctuation in sensitivity. However, false positives are also contributing to the variability seen in these tests. In this study, random number generation was used to simulate responses in threshold methods using different "stopping rules": ascending 2-alternative forced choice (AFC) with 5 correct responses; ascending 3-AFC with 3 or 4 correct responses; staircase 2-AFC with 1 incorrect up and 2 incorrect down, as well as 1 up 4 down and 5 or 7 reversals; staircase 3-AFC with 1 up 2 down and 5 or 7 reversals. Formulas are presented for rates of false positives in the ascending methods, and curves were generated for the staircase methods. Overall, the staircase methods generally had lower false positive rates, but these methods were influenced even more by number of presentations than ascending methods. Generally, the high rates of error in all these methods should encourage researchers to conduct multiple tests per individual and/or select a method that can correct for false positives, such as fitting a logistic curve to a range of responses.

  15. National hospital ratings systems share few common scores and may generate confusion instead of clarity.

    PubMed

    Austin, J Matthew; Jha, Ashish K; Romano, Patrick S; Singer, Sara J; Vogus, Timothy J; Wachter, Robert M; Pronovost, Peter J

    2015-03-01

    Attempts to assess the quality and safety of hospitals have proliferated, including a growing number of consumer-directed hospital rating systems. However, relatively little is known about what these rating systems reveal. To better understand differences in hospital ratings, we compared four national rating systems. We designated "high" and "low" performers for each rating system and examined the overlap among rating systems and how hospital characteristics corresponded with performance on each. No hospital was rated as a high performer by all four national rating systems. Only 10 percent of the 844 hospitals rated as a high performer by one rating system were rated as a high performer by any of the other rating systems. The lack of agreement among the national hospital rating systems is likely explained by the fact that each system uses its own rating methods, has a different focus to its ratings, and stresses different measures of performance. Project HOPE—The People-to-People Health Foundation, Inc.

  16. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    SciTech Connect

    Tran, Ngoc Thanh; Tran, Tuan Kiet; Kim, Dong Joo

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  17. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With

  18. Canadian suicide mortality rates: first-generation immigrants versus Canadian-born.

    PubMed

    Strachan, J; Johansen, H; Nair, C; Nargundkar, M

    1990-01-01

    This article examines suicide mortality rates and trends in Canada for first-generation immigrants and the Canadian-born population. Data are analyzed by age, sex and country of birth. Since 1950, suicide rates worldwide for both men and women have been increasing. In North America and most of Europe, suicide has been one of the major causes of death for many years. In Canada, suicide rates are also rising. However, this increase is due entirely to a rise in the rate for men; the rate for women has remained relatively stable. Several differences are apparent between the rates for the Canadian-born population and those for first-generation immigrants. For example, three times as many Canadian-born men as women commit suicide. For first-generation immigrants, the ratio is two to one. Suicide mortality rates for the Canadian-born are higher than those for first-generation immigrants in every age group except for the 65 and over groups. Canadian born males have higher ASMR than first generation immigrant males. The rates for women show that first-generation immigrant women have higher suicide mortality rates than their Canadian-born counterparts, and that the highest rate for all women is for immigrants born in Asia.

  19. Bit error rate tester using fast parallel generation of linear recurring sequences

    DOEpatents

    Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.

    2003-05-06

    A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.

  20. High pressure combustor for generating steam downhole

    SciTech Connect

    Retallick, W.B.

    1983-08-09

    A catalytic combustor for generating a mixture of steam and combustion gas is located downhole in oil well, so that the gas mixture can be injected directly into the oil reservoir to displace heavy oils from the reservoir. There can be a single stage of catalytic combustion, or there can be a stage of thermal combustion followed by a catalytic stage. In either case the purpose of the catalyst is drive the combustion to completion so that the gas mixture contains no soot that would plug the reservoir.

  1. Multiple channels of ADCs for high bit rate coherent optical OFDM with low sampling rate

    NASA Astrophysics Data System (ADS)

    Wen, He; Cheng, Lin; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili

    2009-11-01

    Multiple channels of ADCs for high bit rate CO-OFDM system is proposed by jointly processing outputs of all channels with a simple algorithm. The required sampling rate of ADCs is reduced lower than Nyquist rate.

  2. High power terahertz generation using 1550 nm plasmonic photomixers

    NASA Astrophysics Data System (ADS)

    Berry, Christopher W.; Hashemi, Mohammad R.; Preu, Sascha; Lu, Hong; Gossard, Arthur C.; Jarrahi, Mona

    2014-07-01

    We present a 1550 nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  3. Inverse Bremsstrahlung and High Harmonic Generation in Clusters and Molecules

    NASA Astrophysics Data System (ADS)

    Greene, Chris

    2006-05-01

    Clusters exposed to radiation from an intense VUV free-electron laser have been observed to absorb copious amounts of energy, which has been somewhat of a surprise. Different models by competing theory groups have proposed more than one mechanism for the energy absorption. We have studied the effect of incorporating a realistic atomic screening potential on the free-free or inverse bremsstrahlung absorption rate, and found important differences that emerge, compared to simpler hydrogenic models that are frequently adopted. In a separate project to be discussed at the meeting, some of the physical issues involved in high-harmonic generation from diatomic and polyatomic molecules will be assessed. These include the importance of treating the electron scattering from the molecular ion at a nonperturbative level of approximation, as well as the possible role of Jahn-Teller physics when the molecule possesses a high degree of symmetry. This theoretical project involves collaborative contributions from Zachary Walters, Stefano Tonzani, and Robin Santra.

  4. Boiler for generating high quality vapor

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  5. Reasons of Revision for First-Generation Highly Crosslinked Polyethylenes

    PubMed Central

    Kurtz, Steven M.; Medel, Francisco; MacDonald, Daniel; Parvizi, Javad; Kraay, Matthew; Rimnac, Clare

    2010-01-01

    Over a ten-year period, we prospectively evaluated the reasons for revision for contemporary and highly crosslinked polyethylene formulations in a multicenter retrieval program. 212 consecutive retrievals were classified as conventional gamma-inert sterilized liners (n=37), annealed (Crossfire™, n=72), or remelted (Longevity™, XLPE, Durasul; n=93). The most frequent reasons for revision were loosening (35%), instability (28%) and infection (21%) and were not related to polyethylene formulation (p = 0.17). Annealed and remelted liners had comparable linear penetration rates (0.03 and 0.04 mm/y, respectively, on average) and were significantly lower than conventional retrievals (0.11 mm/y; p ≤ 0.0005). This retrieval study including first-generation highly crosslinked liners demonstrated lower wear than conventional polyethylene. While loosening remained the most prevalent reason for revision, we could not demonstrate a relationship between wear and loosening. The long-term clinical performance of first-generation highly crosslinked remains promising, based on the mid-term outcomes of the components documented in this study. PMID:20541895

  6. The Combustion of HMX. [burning rate at high pressures

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  7. The Combustion of HMX. [burning rate at high pressures

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  8. Developing models for the prediction of hospital healthcare waste generation rate.

    PubMed

    Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe

    2016-01-01

    An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals.

  9. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  10. Generating High-Brightness Ion Beams for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Cuneo, M. E.

    1997-11-01

    The generation of high current density ion beams with applied-B ion diodes showed promise in the late-1980's as an efficient, rep-rate, focusable driver for inertial confinement fusion. These devices use several Tesla insulating magnetic fields to restrict electron motion across anode-cathode gaps of order 1-2 cm, while accelerating ions to generate ≈ 1 kA/cm^2, 5 - 15 MeV beams. These beams have been used to heat hohlraums to about 65 eV. However, meeting the ICF driver requirements for low-divergence and high-brightness lithium ion beams has been more technically challenging than initially thought. Experimental and theoretical work over the last 5 years shows that high-brightness beams meeting the requirements for inertial confinement fusion are possible. The production of these beams requires the simultaneous integration of at least four conditions: 1) rigorous vacuum cleaning techniques for control of undesired anode, cathode, ion source and limiter plasma formation from electrode contaminants to control impurity ions and impedance collapse; 2) carefully tailored insulating magnetic field geometry for uniform beam generation; 3) high magnetic fields (V_crit/V > 2) and other techniques to control the electron sheath and the onset of a high divergence electromagnetic instability that couples strongly to the ion beam; and 4) an active, pre-formed, uniform lithium plasma for low source divergence which is compatible with the above electron-sheath control techniques. These four conditions have never been simultaneously present in any lithium beam experiment, but simulations and experimental tests of individual conditions have been done. The integration of these conditions is a goal of the present ion beam generation program at Sandia. This talk will focus on the vacuum cleaning techniques for ion diodes and pulsed power devices in general, including experimental results obtained on the SABRE and PBFA-II accelerators over the last 3 years. The current status of

  11. Co-axial, high energy gamma generator

    DOEpatents

    Reijonen, Jani Petteri; Gicquel, Frederic

    2011-08-16

    A gamma ray generator includes an ion source in a first chamber. A second chamber is configured co-axially around the first chamber at a lower second pressure. Co-axially arranged plasma apertures separate the two chambers and provide for restricted passage of ions and gas from the first to the second chamber. The second chamber is formed by a puller electrode having at least one long channel aperture to draw ions from the first chamber when the puller electrode is subject to an appropriate applied potential. A plurality of electrodes rings in the third chamber in third pressure co-axially surround the puller electrode and have at least one channel corresponding to the at least one puller electrode aperture and plasma aperture. The electrode rings increase the energy of the ions to a selected energy in stages in passing between successive pairs of the electrodes by application of an accelerating voltage to the successive pairs of accelerator electrodes. A target disposed co-axially around the plurality of electrodes receives the beam of accelerated ions, producing gamma rays.

  12. Coal plasticity at high heating rates and temperatures

    SciTech Connect

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1992-09-01

    Effects of pressure, temperature, and coal type on coal plasticity were investigated. Seven coals, from the Argonne premium sample bank ranging from lignite to low volatile bituminous, were studied. Elevated pressures, up to 10 atm of helium, did not affect coal plasticity, but reducing pressure from atmosphere to vacuum resulted in diminished plasticity, i.e. a shorter plastic period and a higher minimum apparent viscosity. It is hypothesized that high pressure inhibits mass transport of metaplast to tar vapors, but also favors metaplast repolymerization into coke and char. Higher holding temperature decreased the coal plastic period. It is hypothesized that higher temperature increases mass transport of liquid metaplast to tar vapors and metaplast repolymerization to coke and char. Heating rate had essentially no effect on the individual softening temperatures of five different plastic coals. Possible explanations are that, depending on coal type, metaplast generation, by chemical bond breaking or physical melting, or both, is not strongly affected by heating rate. In particular, for medium and low volatile bituminous cools, there is evidence that generation of the metaplast responsible for initial softening involves largely chemical bond breaking as opposed to physical melting.

  13. Unbalance Response Analysis and Experimental Validation of an Ultra High Speed Motor-Generator for Microturbine Generators Considering Balancing

    PubMed Central

    Hong, Do-Kwan; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun; Ahn, Chan-Woo

    2014-01-01

    The objective of the present study was to deal with the rotordynamics of the rotor of an ultra-high speed PM type synchronous motor-generator for a 500 W rated micro gas turbine generator. This paper introduces dynamic analysis, and experiments on the motor-generator. The focus is placed on an analytical approach considering the mechanical dynamic problems. It is essential to deal with dynamic stability at ultra-high speeds. Unbalance response analysis is performed by calculating the unbalance with and without balancing using a balancing machine. Critical speed analysis is performed to determine the operating speed with sufficient separation margin. The unbalance response analysis is compared with the experimental results considering the balancing grade (ISO 1940-1) and predicted vibration displacement with and without balancing. Based on these results, a high-speed motor-generator was successfully developed. PMID:25177804

  14. Unbalance response analysis and experimental validation of an ultra high speed motor-generator for microturbine generators considering balancing.

    PubMed

    Hong, Do-Kwan; Joo, Dae-Suk; Woo, Byung-Chul; Koo, Dae-Hyun; Ahn, Chan-Woo

    2014-08-29

    The objective of the present study was to deal with the rotordynamics of the rotor of an ultra-high speed PM type synchronous motor-generator for a 500 W rated micro gas turbine generator. This paper introduces dynamic analysis, and experiments on the motor-generator. The focus is placed on an analytical approach considering the mechanical dynamic problems. It is essential to deal with dynamic stability at ultra-high speeds. Unbalance response analysis is performed by calculating the unbalance with and without balancing using a balancing machine. Critical speed analysis is performed to determine the operating speed with sufficient separation margin. The unbalance response analysis is compared with the experimental results considering the balancing grade (ISO 1940-1) and predicted vibration displacement with and without balancing. Based on these results, a high-speed motor-generator was successfully developed.

  15. New high rate lead acid battery

    NASA Astrophysics Data System (ADS)

    Juergens, Tristan; Ruderman, Michael A.; Brodd, Ralph J.

    1994-05-01

    A new approach to the design of lead acid batteries has been developed based on the use of very thin lead foil current collectors. The basic cell construction and the performance characteristics for the new cell are described. Spiral wrap cells based on this electrode concept exhibit extremely high power output with excellent capacity maintenance. Additionally, these cells exhibit very flat voltage at all currents, and are capable of very rapid recharge. Applications for this high power technology cover a broad spectrum such as portable power tools, UPS systems, electrically heated catalytic converters, military pulse power applications, and electric and hybrid vehicles.

  16. Joint DoD versus Navy Specific Lead Generation Advertising: Comparison of Conversion Rates to Quality Enlistments and Marginal Costs.

    DTIC Science & Technology

    1984-09-01

    7D-Rt46 982 JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION j/j ADVERTISING : COMPARISON OF..(U) J B FUGUR SCHOOL OF N BUSINESS DURHAM NC R C MOREY...REPORT I PEPIO0 COV9cO JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION Technical Report ADVERTISING : Comparison of Conversion Rates to (0 Quality...block number) . Upper-Mental, High School Degree, enlistment contracts, national leads, Z Joint DOD advertising , Service Specific Advertising , conversion

  17. High Harmonic Generation at Long Wavelengths

    SciTech Connect

    Sheehy, B.; Martin, J. D. D.; DiMauro, L. F.; Agostini, P.; Schafer, K. J.; Gaarde, M. B.; Kulander, K. C.

    1999-12-20

    High harmonic radiation spectra up to 19th order in alkali metal vapors excited by an intense, picosecond mid-infrared (3-4 {mu} m ) laser are reported and compared to theory. The strong-field dynamics in the alkali metal atoms exhibit significant differences from all previously studied systems due to the strong coupling between their ground and first excited states. (c) 1999 The American Physical Society.

  18. High Count Rate Electron Probe Microanalysis.

    PubMed

    Geller, Joseph D; Herrington, Charles

    2002-01-01

    Reducing the measurement uncertainty of quantitative analyses made using electron probe microanalyzers (EPMA) requires a careful study of the individual uncertainties from each definable step of the measurement. Those steps include measuring the incident electron beam current and voltage, knowing the angle between the electron beam and the sample (takeoff angle), collecting the emitted x rays from the sample, comparing the emitted x-ray flux to known standards (to determine the k-ratio) and transformation of the k-ratio to concentration using algorithms which includes, as a minimum, the atomic number, absorption, and fluorescence corrections. This paper discusses the collection and counting of the emitted x rays, which are diffracted into the gas flow or sealed proportional x-ray detectors. The representation of the uncertainty in the number of collected x rays collected reduces as the number of counts increase. The uncertainty of the collected signal is fully described by Poisson statistics. Increasing the number of x rays collected involves either counting longer or at a higher counting rate. Counting longer means the analysis time increases and may become excessive to get to the desired uncertainty. Instrument drift also becomes an issue. Counting at higher rates has its limitations, which are a function of the detector physics and the detecting electronics. Since the beginning of EPMA analysis, analog electronics have been used to amplify and discriminate the x-ray induced ionizations within the proportional counter. This paper will discuss the use of digital electronics for this purpose. These electronics are similar to that used for energy dispersive analysis of x rays with either Si(Li) or Ge(Li) detectors except that the shaping time constants are much smaller.

  19. Estimation of construction and demolition waste using waste generation rates in Chennai, India.

    PubMed

    Ram, V G; Kalidindi, Satyanarayana N

    2017-06-01

    A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.

  20. High pressure, high strain rate material strength studies

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  1. High performance interconnection between high data rate networks

    NASA Technical Reports Server (NTRS)

    Foudriat, E. C.; Maly, K.; Overstreet, C. M.; Zhang, L.; Sun, W.

    1992-01-01

    The bridge/gateway system needed to interconnect a wide range of computer networks to support a wide range of user quality-of-service requirements is discussed. The bridge/gateway must handle a wide range of message types including synchronous and asynchronous traffic, large, bursty messages, short, self-contained messages, time critical messages, etc. It is shown that messages can be classified into three basic classes, synchronous and large and small asynchronous messages. The first two require call setup so that packet identification, buffer handling, etc. can be supported in the bridge/gateway. Identification enables resequences in packet size. The third class is for messages which do not require call setup. Resequencing hardware based to handle two types of resequencing problems is presented. The first is for a virtual parallel circuit which can scramble channel bytes. The second system is effective in handling both synchronous and asynchronous traffic between networks with highly differing packet sizes and data rates. The two other major needs for the bridge/gateway are congestion and error control. A dynamic, lossless congestion control scheme which can easily support effective error correction is presented. Results indicate that the congestion control scheme provides close to optimal capacity under congested conditions. Under conditions where error may develop due to intervening networks which are not lossless, intermediate error recovery and correction takes 1/3 less time than equivalent end-to-end error correction under similar conditions.

  2. High dose rate brachytherapy source measurement intercomparison.

    PubMed

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR (192)Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single (192)Ir source using their own equipment and local protocols. Results were compared to the (192)Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for (192)Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  3. High Strain Rate Response of an Elastomer

    NASA Astrophysics Data System (ADS)

    Jiao, Tong; Clifton, Rodney J.; Grunschel, Stephen E.

    2006-07-01

    Pressure-shear plate impact experiments are used to study the nonlinear dynamic response of an elastomer at shearing rates of 105 - 106 s-1. Samples with thicknesses in the range 100 μm - 400 μm are cast between two hard steel plates. Because of the comparatively low impedance of the elastomer, longitudinal waves reverberating through the thickness of the sample — and recorded with a laser interferometer — are used to determine the isentrope of the material under uniaxial strain compression. Once the sample is fully compressed a shear wave arrives and imposes a simple shearing deformation. From the transverse velocity, measured interferometrically at the rear surface of the sandwich target, the shear stress and the transverse velocity at the rear surface of the sample are determined. These measurements provide an indication of the shearing resistance of the material under pressure. When the longitudinal unloading wave arrives from the rear surface of the target, these same measurements provide an indication of the shearing resistance of the material at zero pressure. Because the sample adheres to the bounding plates the reflection of unloading waves from both the rear surface of the flyer and the rear surface of the target allows the sample to be strained in uniaxial extension. Thus, from a single experiment, one obtains the response of the elastomer in uniaxial strain compression, simple shear and uniaxial strain extension.

  4. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  5. System and method for determining an ammonia generation rate in a three-way catalyst

    DOEpatents

    Sun, Min; Perry, Kevin L; Kim, Chang H

    2014-12-30

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  6. High-harmonic generation: The bright side of downsizing

    NASA Astrophysics Data System (ADS)

    Landsman, Alexandra

    2017-07-01

    The shorter the antenna, the higher the frequency -- so what happens when nanoantennas hit optical frequencies? One answer may lead to high-harmonic generation without the need for high-powered lasers.

  7. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    PubMed

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  8. A short pulse, high rep-rate microdischarge VUV source

    NASA Astrophysics Data System (ADS)

    Stephens, Jacob; Fierro, Andrew; Dickens, James; Neuber, Andreas; CenterPulsed Power; Power Electronics Team

    2013-09-01

    A MOSFET based high voltage pulser is utilized to excite a microdischarge (MD), or microdischarge array (MDA) with pulsed voltages of up to 1 kV, with risetime and FWHM on the order of 10 ns and 30 ns, respectively. Additionally, the pulser is capable of pulsing at rep-rates in excess of 35 MHz. However, for these experiments the rep-rate was set on the order of 1 MHz, so as to limit excess energy deposition into the background gas and optimize the energy efficiency of VUV generation. Using VUV capable spectral diagnostics, the VUV emission of the MDs for various pressures (50-800 + Torr) and gases, focused on argon, argon-hydrogen mixtures, and neon-hydrogen mixtures (all of which provide strong emission at λ < 130 nm) is studied, for pulsed, MHz rep-rated excitation. Using a photomultiplier tube the time dependent behavior of the VUV emission is characterized and compared to results from transient fluid modeling of the MDA. For instance, the MDA turn-on time is recorded to be about 15 ns, which matches the full plasma development time in the model, and the MDA self- capacitance largely determines the turn-off behavior. This research was supported by an AFOSR grant on the Physics of Distributed Plasma Discharges and fellowships from the National Physical Sciences Consortium, supported by Sandia National Laboratories.

  9. NEUTRON GENERATOR FACILITY AT SFU: GEANT4 DOSE RATE PREDICTION AND VERIFICATION.

    PubMed

    Williams, J; Chester, A; Domingo, T; Rizwan, U; Starosta, K; Voss, P

    2016-11-01

    Detailed dose rate maps for a neutron generator facility at Simon Fraser University were produced via the GEANT4 Monte Carlo framework. Predicted neutron dose rates throughout the facility were compared with radiation survey measurements made during the facility commissioning process. When accounting for thermal neutrons, the prediction and measurement agree within a factor of 2 or better in most survey locations, and within 10 % inside the vault housing the neutron generator.

  10. High rate fabrication of compression molded components

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.; Smith, Glen L.; Miller, Robert J.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; and applying molding pressure to the pre-form to form the composite component.

  11. High Strain Rate Tensile and Compressive Effects in Glassy Polymers

    DTIC Science & Technology

    2013-02-08

    polymers under high strain rates has been determined in compression. Some research programs have studied the combined effects of temperature and strain rate...glassy polymers to high strain rate loading in compression. More recently, research programs that study the combined effects of temperature and strain...Force Materiel Command  United States Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2013-006 High Strain Rate

  12. Strain rate and shear stress at the grain scale generated during near equilibrium antigorite dehydration

    NASA Astrophysics Data System (ADS)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.; Mainprice, David; Clément, Maxime

    2016-04-01

    Dehydration reactions are an outstanding case of mineral replacement reactions because they produce a significant transient fluid-filled porosity. Because fluids are present, these reactions occur by interface-coupled dissolution-precipitation. Under poorly drained conditions corresponding to foliated metamorphic rocks, they generate fluid pressure gradients that evolve in time and space eventually controlling fluid migration [1]. Despite the general agreement on this fact, we still lack of a precise knowledge of the complex coupling between the stresses generated during the reaction and the timescales for mineral growth and how they ultimate control the rate of fluid migration. Constraining these rates is challenge because the timescales of the feedback between fluid flow and mineral growth rates at near equilibrium are beyond the current experimental capabilities. For instance, numerical simulations suggest that the draining times of a dehydration front by compaction are in the order of 10-100 ky [1] difficult to translate into experimental strain rates. On the other hand, the natural record of dehydration reaction might potentially provide unique constrains on this feedback, but we need to identify microstructures related to compaction and quantify them. Features interpreted as due to compaction have been identified in a microstructural study [2] of the first stages of the antigorite dehydration at high-pressure conditions in Cerro del Almirez, Spain (ca. 1.6-1.9 GPa and 630-710 ° C). Compaction features can be mostly observed in the metamorphic enstatite in the form of (1) gradual crystallographic misorientation (up to 16°) of prismatic crystals due to buckling, (3) localized orthoenstatite(Pbca)/low clinoenstatite (P21/c) inversion (confirmed optically and by means of Electron Backscattered Diffraction) and (4) brittle fracturing of prismatic enstatite wrapped by plastically deformed chlorite. The coexistence of enstatite buckling and clinoenstatite lamellae

  13. High data rate optical transceiver terminal

    NASA Technical Reports Server (NTRS)

    Clarke, E. S.

    1973-01-01

    The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.

  14. Hazardous medical waste generation rates of different categories of health-care facilities

    SciTech Connect

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. Black-Right-Pointing-Pointer Based on a 22-month study period, HMWGR were highly skewed to the right. Black-Right-Pointing-Pointer The HMWGR varied from 0.00124 to 0.718 kg bed{sup -1} d{sup -1}. Black-Right-Pointing-Pointer A positive correlation existed between the HMWGR and the number of hospital beds. Black-Right-Pointing-Pointer We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed{sup -1} d{sup -1}, using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed{sup -1} d{sup -1}, for the public psychiatric hospitals, to up to 0.72 kg bed{sup -1} d{sup -1}, for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed{sup -1} d{sup -1}, for the psychiatric clinics, to up to 0.49 kg bed{sup -1} d{sup -1}, for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes

  15. Ultrahigh strain-rate bending of copper nanopillars with laser-generated shock waves

    SciTech Connect

    Colorado, H. A.; Navarro, A.; Prikhodko, S. V.; Yang, J. M.; Ghoniem, N.; Gupta, V.

    2013-12-21

    An experimental study to bend FIB-prepared cantilevered single crystal Cu nanopillars of several hundred nanometers in diameter and length at ultrahigh strain rate is presented. The deformation is induced by laser-generated stress waves, resulting in local strain rates exceeding 10{sup 7} s{sup −1}. Loading of nano-scale Cu structures at these extremely short loading times shows unique deformation characteristics. At a nominal stress value of 297 MPa, TEM examination along with selected area electron diffraction characterization revealed that twins within the unshocked Cu pillars interacted with dislocations that nucleated from free surfaces of the pillars to form new subgrain boundaries. MD simulation results were found to be consistent with the very low values of the stress required for dislocation activation and nucleation because of the extremely high surface area to volume ratio of the nanopillars. Specifically, simulations show that the stress required to nucleate dislocations at these ultrahigh strain rates is about one order of magnitude smaller than typical values required for homogeneous nucleation of dislocation loops in bulk copper single crystals under quasi-static conditions.

  16. Optimization of Solid Circulation Rate in Compartmented Fluidized Bed Gasifier for Power Generation

    NASA Astrophysics Data System (ADS)

    Chok, V. S.; Wee, S. K.; Ariffin, M. Z. Mohd.; Gorin, A.; Chua, H. B.; Yan, H. M.

    2008-10-01

    The present paper reports the optimization of solid circulation rate (SCR) in Compartmented Fluidized Bed Gasifier (CFBG), an indirectly heated fluidized bed that incorporates two sets of v-valves and risers to control the solid circulation across the two compartments, i.e. combustor and gasifier of a pilot plant scale (the height and ID are 1.8m and 0.66m respectively). Sand was used as inert fluidized by air. Four operating variables were studied i.e. bed height, riser, v-valve and main bed flowrate. Based on 24 full factorial design of experiment in Yates' algorithm, at confidence level ⩾95%, ANOVA analysis has revealed six important effects. The steepest ascent method was applied on linear regression generated from these effects to design the subsequent optimization experiments. The optimum values of SCR have been estimated for both low and high bed level at specific operating parameters.

  17. Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers.

    PubMed

    Guillet de Chatellus, H; Jacquin, O; Hugon, O; Glastre, W; Lacot, E; Marklof, J

    2013-07-01

    We show both theoretically and experimentally that frequency-shifted feedback (FSF) lasers seeded with a single frequency laser can generate Fourier transform-limited pulses with a repetition rate tunable and limited by the spectral bandwidth of the laser. We demonstrate experimentally in a FSF laser with a 150 GHz spectral bandwidth, the generation of 6 ps-duration pulses at repetition rates tunable over more than two orders of magnitude between 0.24 and 37 GHz, by steps of 80 MHz. A simple linear analytical model i.e. ignoring both dynamic and non-linear effects, is sufficient to account for the experimental results. This possibility opens new perspectives for various applications where lasers with ultra-high repetition rates are required, from THz generation to ultrafast data processing systems.

  18. The Effect of Minimum Wage Rates on High School Completion

    ERIC Educational Resources Information Center

    Warren, John Robert; Hamrock, Caitlin

    2010-01-01

    Does increasing the minimum wage reduce the high school completion rate? Previous research has suffered from (1. narrow time horizons, (2. potentially inadequate measures of states' high school completion rates, and (3. potentially inadequate measures of minimum wage rates. Overcoming each of these limitations, we analyze the impact of changes in…

  19. The Effect of Minimum Wage Rates on High School Completion

    ERIC Educational Resources Information Center

    Warren, John Robert; Hamrock, Caitlin

    2010-01-01

    Does increasing the minimum wage reduce the high school completion rate? Previous research has suffered from (1. narrow time horizons, (2. potentially inadequate measures of states' high school completion rates, and (3. potentially inadequate measures of minimum wage rates. Overcoming each of these limitations, we analyze the impact of changes in…

  20. Predicting Offender-Generated Exchange Rates: Implications for a Theory of Sentence Severity

    ERIC Educational Resources Information Center

    May, David C.; Wood, Peter B.; Mooney, Jennifer L.; Minor, Kevin I.

    2005-01-01

    We solicited offender-generated exchange rates between prison and several noncustodial sanctions from a sample of 588 offenders currently serving community-based punishments. We then regressed these exchange rates on demographic, attitudinal, and correctional experience indicators. Males, Blacks, older offenders, offenders with prison experience,…

  1. A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation.

    PubMed

    Garg, Anurag; Achari, Gopal; Joshi, Ramesh C

    2006-08-01

    This paper presents a model using fuzzy synthetic evaluation to estimate the methane generation rate constant, k, for landfills. Four major parameters, precipitation, temperature, waste composition and landfill depth were used as inputs to the model. Whereas, these parameters are known to impact the methane generation, mathematical relationships between them and the methane generation rate constant required to estimate methane generation in landfills, are not known. In addition, the spatial variations of k within a landfill combined with the necessity of site-specific information to estimate its value, makes k one of the most elusive parameters in the accurate prediction of methane generation within a landfill. In this paper, a fuzzy technique was used to develop a model to predict the methane generation rate constant. The model was calibrated and verified using k values from 42 locations. Data from 10 sites were used to calibrate the model and the rest were used to verify it. The model predictions are reasonably accurate. A sensitivity analysis was also conducted to investigate the effect of uncertainty in the input parameters on the generation rate constant.

  2. An architecturally constrained model of random number generation and its application to modeling the effect of generation rate

    PubMed Central

    Sexton, Nicholas J.; Cooper, Richard P.

    2014-01-01

    Random number generation (RNG) is a complex cognitive task for human subjects, requiring deliberative control to avoid production of habitual, stereotyped sequences. Under various manipulations (e.g., speeded responding, transcranial magnetic stimulation, or neurological damage) the performance of human subjects deteriorates, as reflected in a number of qualitatively distinct, dissociable biases. For example, the intrusion of stereotyped behavior (e.g., counting) increases at faster rates of generation. Theoretical accounts of the task postulate that it requires the integrated operation of multiple, computationally heterogeneous cognitive control (“executive”) processes. We present a computational model of RNG, within the framework of a novel, neuropsychologically-inspired cognitive architecture, ESPro. Manipulating the rate of sequence generation in the model reproduced a number of key effects observed in empirical studies, including increasing sequence stereotypy at faster rates. Within the model, this was due to time limitations on the interaction of supervisory control processes, namely, task setting, proposal of responses, monitoring, and response inhibition. The model thus supports the fractionation of executive function into multiple, computationally heterogeneous processes. PMID:25071644

  3. Substrate inhibition and control for high rate biogas production

    SciTech Connect

    Shin, H.S.

    1982-01-01

    This research addresses a critical aspect of the technical feasibility of biogas recovery with poultry manure using anaerobic digestion, namely, inhibition and toxicity factors limiting methane generation under high rate conditions. The research was designed to identify the limiting factors and to examine alternative pretreatment and in situ control methods for the anaerobic digestion of poultry manure as an energy producing system. Biogas production was indicated by the daily gas volume produced per unit digester capacity. Enhanced biogas generation from the anaerobic digester systems using poultry manure was studied in laboratory- and pilot-scale digester operations. It was found that ammonia nitrogen concentration above 4000 mg/l was inhibitory to biogas production. Pretreatment of the manure by elutriation was effective for decreasing inhibitory/toxic conditions. Increased gas production resulted without an indication of serious inhibition by increased volatile acids, indicating a limitation of available carbon sources. For poultry manure digestion, the optimum pH range was 7.1 to 7.6. Annual costs for pretreatment/biogas systems for 10,000, 30,000 and 50,000 birds were estimated and compared with annual surplus energy produced. The economic break-even point was achieved in digesters for greater than 30,000 birds. Capital cost of the digester system was estimated to be $18,300 with annual costs around $4000. It is anticipated that the digester system could be economically applied to smaller farms as energy costs increase.

  4. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations.

  5. High resolution, high rate X-ray spectrometer

    DOEpatents

    Goulding, Frederick S.; Landis, Donald A.

    1987-01-01

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  6. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-10

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 10{sup 10} n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  7. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  8. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  9. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  10. High rate copper and energy recovery in microbial fuel cells.

    PubMed

    Rodenas Motos, Pau; Ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J N; Sleutels, Tom H J A

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L(-1) Cu(2+)) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m(-2) in combination with a power density of 5.5 W m(-2) was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery.

  11. Optical fiber instrumentation of a high power generator and turbine

    NASA Astrophysics Data System (ADS)

    da Silva, Erlon Vagner; Dreyer, Uilian José; de Morais Sousa, Kleiton; Babinski, Valderi Junot; Somenzi, Jonas; Mezzadri, Felipe; de Lourenço Junior, Ivo; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2013-05-01

    The instrumentation of a high power generator and its complementary systems including the turbine bearings is presented and discussed. The generator consists of a 175MW hydroelectric generator installed in the Salto Osório power plant in the southern region of Brazil. Results show good agreement with the already existing instrumentation and demonstrate the technology potential for a full optical fiber sensing system to monitor these large machines.

  12. DSN acquisition of Magellan high-rate telemetry data

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Au, P. A.

    1992-01-01

    The Magellan Project levied the stringent requirement of a 98-percent high-rate telemetry data capture rate on the Deep Space Network (DSN) during the Magellan Prime Mapping Mission. To meet this requirement, the DSN undertook extensive development of the DSN Telemetry System, as well as extensive DSN operations planning and test and training. In actuality, the DSN substantially exceeded the requirement by achieving a Prime Mapping Mission high-rate telemetry data capture rate of 99.14 percent. This article details the DSN telemetry system development and DSN operations planning and test and training. In addition, the actual high-rate telemetry data outages are comprehensively presented and analyzed.

  13. DSN acquisition of Magellan high-rate telemetry data

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Au, P. A.

    1992-01-01

    The Magellan Project levied the stringent requirement of a 98 percent high-rate telemetry data capture rate on the Deep Space Network (DSN) during the Magellan Prime Mapping Mission. To meet this requirement, the DSN undertook extensive development of the DSN Telemetry System, as well as extensive DSN operation planning and test and training. In actuality, the DSN substantially exceeded the requirement by achieving a Prime Mapping Mission high-rate telemetry data capture rate of 99.14 percent. This article details the DSN telemetry system development, and DSN operations planning and test and training. In addition, the actual high-rate telemetry data outages are comprehensively presented and analyzed.

  14. High-Rate Strong-Signal Quantum Cryptography

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  15. Strain rate effect in high-speed wire drawing process

    NASA Astrophysics Data System (ADS)

    He, S.; Van Houtte, P.; Van Bael, A.; Mei, F.; Sarban, A.; Boesman, P.; Galvez, F.; Atienza, J. M.

    2002-05-01

    This paper presents a study on the strain rate effect during high-speed wire drawing process by means of finite element simulation. Based on the quasistatic stresses obtained by normal tensile tests and dynamic stresses at high strain rates by split Hopkinson pressure bar tests, the wire drawing process was simulated for low carbon steel and high carbon steel. The results show that both the deformation process and the final properties of drawn wires are influenced by the strain rate.

  16. Flexible-rate optical packet generation/detection and label swapping for optical label switching networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi

    2017-03-01

    In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.

  17. Measuring selection in human populations using the growth rate per generation.

    PubMed

    Ewbank, Douglas

    2016-04-19

    Estimates of the speed of evolution between generations depend on the association between individual traits and a measure of fitness. The two most frequently used measures of fitness are the net reproduction rate and the 1-year growth factor implied by the fertility and mortality rates. Results based on the two lead to very different results. The reason is that the 1-year growth factor is not a measure of change between generations. Therefore, studies of changes between generations should use the amount of growth over the length of a generation. This is especially important for studies of human populations because of the long length of generation. In addition, estimates based on a single year's growth are overly sensitive to data on individuals who fail to reproduce. The effects of using a generational measure are demonstrated using data from Kenya and Ukraine. These results demonstrate that using a 1-year growth rate to measure fitness leads to estimates that understate the rate at which evolution changes the characteristics of a human population.

  18. Towards a high-speed quantum random number generator

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  19. Multifunctional pulse generator for high-intensity focused ultrasound system

    NASA Astrophysics Data System (ADS)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  20. Evaluation Of Methods To Measure Hydrogen Generation Rate In A Shielded Cell Environment And A Method Recommendation

    SciTech Connect

    Stone, M. E.

    2012-11-07

    The purpose of this document is to describe the current state of the art for determination of hydrogen generation rates of radioactive slurries and solutions to provide a basis for design, fabrication, testing, and implementation of a measurement method for Hydrogen Generation Rate (HGR) during qualification of waste feeds for the Hanford Waste Treatment and Immobilization Plant (WTP). The HGR measurement will be performed on samples of the Low Activity Waste (LAW) and High Level Waste (HLW) staged waste feeds for the WTP as well as on samples from selected unit operations testing during the qualification program. SRNL has performed a review of techniques utilized to measure HGR of high level radioactive waste slurries, evaluated the Hanford 222-S Laboratory method for measurement of hydrogen, and reviewed the hydrogen generation rate models for Hanford waste.Based on the literature review, method evaluation, and SRNL experience with measuring hydrogen generation rate, SRNL recommends that a continuous flow system with online gas analysis be used as the HGR measurement method during waste qualification.

  1. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  2. Extraction of correlated count rates using various gate generation techniques: Part I theory

    NASA Astrophysics Data System (ADS)

    Croft, S.; Henzlova, D.; Hauck, D. K.

    2012-11-01

    This paper presents an overview of different gate generation techniques that can be used to extract correlated counting rates from neutron pulse trains in the context of Passive Neutron Multiplicity Counting (PNMC). PNMC based on shift register pulse train time autocorrelation analyzers is an important Non-Destructive Assay (NDA) method used in the quantification of plutonium and other spontaneously fissile materials across the nuclear fuel cycle. Traditionally PNMC employs signal-triggered gate generation followed by a random gate, separated from the trigger pulse by a long delay, to extract the totals rate (gross or singles), the pairs (coincidences or doubles) rate, and the triplets (or triples) rate of correlated neutron pulse trains. In this paper we provide expressions for singles, doubles and triples rates using the information available in both, the random and signal-triggered gates (traditional shift register analysis), in the randomly triggered gates only, and introduce a third approach to extract the correlated rates using signal-triggered gates only. In addition, we expand the formalism for randomly triggered gate generation to include Fast Accidental Sampling (FAS) and consecutive gate generation.

  3. A compact, all solid-state LC high voltage generator.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  4. A compact, all solid-state LC high voltage generator

    NASA Astrophysics Data System (ADS)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  5. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    SciTech Connect

    Chao, Alex; Ratner, Daniel; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  6. Generator exchange is associated with an increased rate of Sprint Fidelis lead failure.

    PubMed

    Lovelock, Joshua D; Patel, Ayesha; Mengistu, Andenet; Hoskins, Michael; El-Chami, Mikhael; Lloyd, Michael S; Leon, Angel; DeLurgio, David; Langberg, Jonathan J

    2012-10-01

    The Medtronic Sprint Fidelis defibrillator lead is at an increased risk for failure and was recalled in October 2007. Approximately 268,000 leads were implanted, and more than 100,000 patients still have active Fidelis leads. A number of studies have examined the rate and clinical predictors of lead failure, but none has addressed the effect of an implantable cardioverter-defibrillator generator exchange on subsequent lead failure. Although the manufacturer asserts that "Sprint Fidelis performance after device change-out is similar to lead performance without device change-out," published data are lacking. To assess the effect of implantable cardioverter-defibrillator generator exchange on the rate of Fidelis lead failure. A chart review was conducted in patients who underwent implantation of a Fidelis lead. Patients with a functioning Fidelis lead at generator exchange were compared with controls with leads implanted for a comparable amount of time not undergoing ICD replacement. A total of 1366 patients received a Fidelis lead prior to the recall, of which 479 were still actively followed. Seventy-two patients with a functioning lead underwent generator exchange without lead replacement. Following generator replacement, 15 leads failed. Sixty percent of the Fidelis leads failed within 3 months. Generator exchange increased the rate of lead failure compared with matched controls (20.8% vs 2.54%; P < .001). Generator exchange is associated with a higher than expected rate of Fidelis lead failure, often within 3 months. The risk-benefit ratio of Fidelis lead replacement at the time of generator exchange may be greater than appreciated. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources.

    PubMed

    Polyakov, A; Senft, C; Thompson, K F; Feng, J; Cabrini, S; Schuck, P J; Padmore, H A; Peppernick, S J; Hess, W P

    2013-02-15

    In this Letter, we report on the efficient generation of electrons from metals using multiphoton photoemission by use of nanostructured plasmonic surfaces to trap, localize, and enhance optical fields. The plasmonic surface increases absorption over normal metals by more than an order of magnitude, and due to the localization of fields, this results in over 6 orders of magnitude increase in effective nonlinear quantum yield. We demonstrate that the achieved quantum yield is high enough for use in rf photoinjectors operating as electron sources for MHz repetition rate x-ray free electron lasers.

  8. Evaluation of Kink Generation Rate and Step Flow Velocity on Si(111) during Wet Etching

    NASA Astrophysics Data System (ADS)

    Hasunuma, Ryu; Yamabe, Kikuo

    2013-11-01

    The rate of kink generation in ultralow dissolved-oxygen water (LOW) at a <11bar 2> oriented atomic step on a Si(111) surface was experimentally determined. By controlling the step length by adding SiO2 line patterns that prevent kink propagation across the patterns, it was found that step flow velocity was proportional to step length when the step was short. From the proportionality coefficient, the rate of kink generation was evaluated to be 800 cm-1 s-1. Furthermore, the velocity of kink propagation along a step was also evaluated as 40 nm/s.

  9. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  10. High Graduate Unemployment Rate and Taiwanese Undergraduate Education

    ERIC Educational Resources Information Center

    Wu, Chih-Chun

    2011-01-01

    An expansion in higher education in combination with the recent global economic recession has resulted in a high college graduate unemployment rate in Taiwan. This study investigates how the high unemployment rate and financial constraints caused by economic cutbacks have shaped undergraduates' class choices, job needs, and future income…

  11. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  12. Double-dose, new-generation proton pump inhibitors do not improve Helicobacter pylori eradication rate.

    PubMed

    Choi, Hyo Sun; Park, Dong Il; Hwang, Sang Jun; Park, Jung Sik; Kim, Hong Joo; Cho, Yong Kyun; Sohn, Chong Il; Jeon, Woo Kyu; Kim, Byung Ik

    2007-12-01

    Up to present, omeprazole plus two antibiotics are used for Helicobacter pylori eradication therapy . Few studies have compared double-dose new-generation, proton pump inhibitors (PPI) with omeprazole. Therefore, we conducted a randomized, prospective study to evaluate differences in H. pylori eradication rates by PPI type. Between January 2006 and December 2006, 576 consecutive patients with proven H. pylori infection were enrolled prospectively. Four different PPIs [omeprazole 20 mg b.i.d. (old generation), or pantoprazole 40 mg b.i.d., rabeprazole 20 mg b.i.d., or esomeprazole 40 mg b.i.d. (new generation)] were added to clarithromycin (500 mg b.i.d.) and amoxicillin (1 g b.i.d.) for 1 week. By intention-to-treat analysis, no difference was found between the eradication rates of these four PPIs: 64.9% (omeprazole, n = 148), 69.3% (pantoprazole, n = 140), 69.3% (rabeprazole, n = 140), and 72.9% (esomoprazole, n = 148). When eradication rates were analyzed according to whether patients had an ulcer or not on a per-protocol basis, no difference was found between the eradication rates of the four PPIs. However, side-effects were more common in the esomeprazole-based triple therapy group than in the other groups (p < .05). No convincing evidence was obtained that double-dose new-generation PPIs have better H. pylori eradication rates and tolerability than omeprazole.

  13. Optimal pair-generation rate for entanglement-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Holloway, Catherine; Doucette, John A.; Erven, Christopher; Bourgoin, Jean-Philippe; Jennewein, Thomas

    2013-02-01

    In entanglement-based quantum key distribution (QKD), the generation and detection of multiphoton modes leads to a trade-off between entanglement visibility and twofold coincidence events when maximizing the secure key rate. We produce a predictive model for the optimal twofold coincidence probability per coincidence window given the channel efficiency and detector dark count rate of a given system. This model is experimentally validated and used in simulations for QKD with satellites as well as optical fibers.

  14. High yield neutron generators using the DD reaction

    SciTech Connect

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  15. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  16. High harmonic generation in ZnO with a high-power mid-IR OPA

    NASA Astrophysics Data System (ADS)

    Gholam-Mirzaei, Shima; Beetar, John; Chini, Michael

    2017-02-01

    We generate high-order harmonics in a-cut (11-20) ZnO at a high repetition rate of 50 kHz, using the tunable mid-infrared pulses (3-4 μm wavelength) from a high-power optical parametric amplifier. For driving laser pulses with 3.8 μm central wavelength, we observe nonperturbative harmonic spectra that well exceed the material band gap. The harmonic spectra depend strongly on the orientation of the crystal with respect to the laser polarization, with odd harmonics exhibiting periodicities of π/2 for a polarization within the (11-20) crystal plane. Energy conversion efficiencies of ˜10-6 per harmonic are measured for the 9th-13th harmonics, yielding an average power of more than 0.2 μW for the 13th harmonic.

  17. 2 µm femtosecond fiber laser at low repetition rate and high pulse energy.

    PubMed

    Yang, Lih-Mei; Wan, Peng; Protopopov, Vladimir; Liu, Jian

    2012-02-27

    In the paper, a 2 µm high energy fs fiber laser is presented based on Tm doped fiber at a low repetition rate. The seed laser was designed to generate pulse train at 2 µm at a pulse repetition rate of 2.5 MHz. The low repetition rate seed oscillator eliminated extra devices such as AO pulse picker. Two-stage fiber amplifier was used to boost pulse energy to 0.65 µJ with chirped pulse amplification.

  18. Plasmon-assisted high-harmonic generation in graphene

    NASA Astrophysics Data System (ADS)

    Cox, Joel D.; Marini, Andrea; de Abajo, F. Javier García

    2017-02-01

    High-harmonic generation in condensed-matter systems is both a source of fundamental insight into quantum electron motion and a promising candidate to realize compact ultraviolet and ultrafast light sources. While graphene is anticipated to efficiently generate high-order harmonics due to its anharmonic charge-carrier dispersion, experiments performed on extended samples using THz illumination have revealed only a weak effect. The situation is further complicated by the enormous electromagnetic field intensities required by this highly nonperturbative nonlinear optical phenomenon. Here we argue that the large light intensity required for high-harmonic generation to occur can be reached by exploiting localized plasmons in doped graphene nanostructures. We demonstrate through rigorous time-domain simulations that the synergistic combination of strong plasmonic near-field enhancement and a pronounced intrinsic nonlinearity result in efficient broadband high-harmonic generation within a single material. Our results support the strong potential of nanostructured graphene as a robust, electrically tunable platform for high-harmonic generation.

  19. Plasmon-assisted high-harmonic generation in graphene.

    PubMed

    Cox, Joel D; Marini, Andrea; de Abajo, F Javier García

    2017-02-22

    High-harmonic generation in condensed-matter systems is both a source of fundamental insight into quantum electron motion and a promising candidate to realize compact ultraviolet and ultrafast light sources. While graphene is anticipated to efficiently generate high-order harmonics due to its anharmonic charge-carrier dispersion, experiments performed on extended samples using THz illumination have revealed only a weak effect. The situation is further complicated by the enormous electromagnetic field intensities required by this highly nonperturbative nonlinear optical phenomenon. Here we argue that the large light intensity required for high-harmonic generation to occur can be reached by exploiting localized plasmons in doped graphene nanostructures. We demonstrate through rigorous time-domain simulations that the synergistic combination of strong plasmonic near-field enhancement and a pronounced intrinsic nonlinearity result in efficient broadband high-harmonic generation within a single material. Our results support the strong potential of nanostructured graphene as a robust, electrically tunable platform for high-harmonic generation.

  20. Plasmon-assisted high-harmonic generation in graphene

    PubMed Central

    Cox, Joel D.; Marini, Andrea; de Abajo, F. Javier García

    2017-01-01

    High-harmonic generation in condensed-matter systems is both a source of fundamental insight into quantum electron motion and a promising candidate to realize compact ultraviolet and ultrafast light sources. While graphene is anticipated to efficiently generate high-order harmonics due to its anharmonic charge-carrier dispersion, experiments performed on extended samples using THz illumination have revealed only a weak effect. The situation is further complicated by the enormous electromagnetic field intensities required by this highly nonperturbative nonlinear optical phenomenon. Here we argue that the large light intensity required for high-harmonic generation to occur can be reached by exploiting localized plasmons in doped graphene nanostructures. We demonstrate through rigorous time-domain simulations that the synergistic combination of strong plasmonic near-field enhancement and a pronounced intrinsic nonlinearity result in efficient broadband high-harmonic generation within a single material. Our results support the strong potential of nanostructured graphene as a robust, electrically tunable platform for high-harmonic generation. PMID:28224998

  1. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice.

    PubMed

    Barber, Ruth; Plumb, Mark A; Boulton, Emma; Roux, Isabelle; Dubrova, Yuri E

    2002-05-14

    Mutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice. The levels of spontaneous mutation rates and radiation-induced transgenerational instability varied between strains (BALB/c>CBA/H>C57BL/6). Pre- and postmeiotic paternal exposure resulted in similar increases in mutation rate in the germ line of both generations of CBA/H mice, which together with our previous results suggests that radiation-induced expanded simple tandem repeat instability is manifested in diploid cells after fertilization. The remarkable finding that radiation-induced germ-line instability persists for at least two generations raises important issues of risk evaluation in humans.

  2. Digitizing Standard & High Resolution High Frame Rate Video Camera Signals

    NASA Astrophysics Data System (ADS)

    Simmons, David M.

    1988-03-01

    The digitizing of an analog video camera signal requires special techniques to accurately sample the signal. Careful attention must be paid to both amplitude and timing considerations. Specifications exist which define amplitude and timing parame-ters of so called "standard" cameras. Recent advances in CCD technology have lead to the development of high resolution line scan and area cameras. Unfortunately these cameras do not con-form to any published standard. Hardware designed to digitize these "non-standard" cameras must have a flexible architecture to allow for each cameras' particular interface requirements.

  3. High-order harmonic generation from the dressed autoionizing states

    NASA Astrophysics Data System (ADS)

    Fareed, M. A.; Strelkov, V. V.; Thiré, N.; Mondal, S.; Schmidt, B. E.; Légaré, F.; Ozaki, T.

    2017-07-01

    In high-order harmonic generation, resonant harmonics (RH) are sources of intense, coherent extreme-ultraviolet radiation. However, intensity enhancement of RH only occurs for a single harmonic order, making it challenging to generate short attosecond pulses. Moreover, the mechanism involved behind such RH was circumstantial, because of the lack of direct experimental proofs. Here, we demonstrate the exact quantum paths that electron follows for RH generation using tin, showing that it involves not only the autoionizing state, but also a harmonic generation from dressed-AIS that appears as two coherent satellite harmonics at frequencies +/-2Ω from the RH (Ω represents laser frequency). Our observations of harmonic emission from dressed states open the possibilities of generating intense and broadband attosecond pulses, thus contributing to future applications in attosecond science, as well as the perspective of studying the femtosecond and attosecond dynamics of autoionizing states.

  4. HIGH-RATE FORMABILITY OF HIGH-STRENGTH ALUMINUM ALLOYS: A STUDY ON OBJECTIVITY OF MEASURED STRAIN AND STRAIN RATE

    SciTech Connect

    Upadhyay, Piyush; Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Catalini, David

    2015-02-18

    Al alloy AA7075 sheets were deformed at room temperature at strain-rates exceeding 1000 /s using the electrohydraulic forming (EHF) technique. A method that combines high speed imaging and digital image correlation technique, developed at Pacific Northwest National Laboratory, is used to investigate high strain rate deformation behavior of AA7075. For strain-rate sensitive materials, the ability to accurately model their high-rate deformation behavior is dependent upon the ability to accurately quantify the strain-rate that the material is subjected to. This work investigates the objectivity of software-calculated strain and strain rate by varying different parameters within commonly used commercially available digital image correlation software. Except for very close to the time of crack opening the calculated strain and strain rates are very consistent and independent of the adjustable parameters of the software.

  5. Miniature High Stability High Temperature Space Rated Blackbody Radiance Source

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Beswick, A. G.

    1987-09-01

    This paper presents the design and test performance of a conical cavity type blackbody radiance source that will meet the requirements of the Halogen Occultation Experiment (HALOE) on the NASA Upper Atmospheric Research Satellite program (UARS). Since a radiance source meeting the requirements of this experiment was unavailable in the commercial market, a development effort was undertaken by the HALOE Project. The blackbody radiance source operates in vacuum at 1300 K + 0.5 K over any 15-minute interval, uses less than 7.5 watts of power, maintains a 49°C outer case temperature, and fits within the 2.5 x 2.5 x 3.0 inch envelope allocated inside the HALOE instrument. Also, the unit operates in air, during ground testing of the HALOE instrument, where it uses 17 watts of power with an outer case temperature of 66°C. The thrust of this design effort was to minimize the heat losses, in order to keep the power usage under 7.5 watts, and to minimize the amount of silica in the materials. Silica in the presence of the platinum heater winding used in this design would cause the platinum to erode, changing the operating temperature set-point. The design required the development of fabrication techniques which would provide very small, close tolerance parts from extremely difficult-to-machine materials. Also, a space rated ceramic core and unique, low thermal conductance, ceramic-to-metal joint was developed, tested and incorporated in this design. The completed flight qualification hardware has undergone performance, environmental and life testing. The design configuration and test results are discussed in detail in this paper.

  6. High rate science data handling on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Masline, Richard C.

    1990-01-01

    A study by NASA's User Information System Working Group for Space Station Freedom (SSF) has determined that the proposed onboard Data Management System, as initially configured, will be incapable of handling the data-generation rates typical of numerous scientific sensor payloads; many of these generate data at rates in excess of 10 Mbps, and there are at least four cases of rates in excess of 300 Mbps. The SSF Working Group has accordingly suggested an alternative conceptual architecture based on technology expected to achieve space-qualified status by 1995. The architecture encompasses recorders with rapid data-ingest capabilities and massive storage capabilities, optical delay lines allowing the recording of only the phenomena of interest, and data flow-compressing image processors.

  7. High-frequency generation in two coupled semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Matharu, Satpal; Kusmartsev, Feodor V.; Balanov, Alexander G.

    2013-10-01

    We theoretically show that two semiconductor superlattices arranged on the same substrate and coupled with the same resistive load can be used for a generation of high-frequency periodic and quasiperiodic signals. Each superlattice involved is capable to generate current oscillations associated with drift of domains of high charge concentration. However, the coupling with the common load can eventually lead to synchronization of the current oscillations in the interacting superlattices. We reveal how synchronization depends on detuning between devices and the resistance of the common load, and discuss the effects of coupling and detuning on the high-frequency power output from the system.

  8. Role of Excited States In High-order Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.

    2016-11-01

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  9. Role of Excited States In High-order Harmonic Generation.

    PubMed

    Beaulieu, S; Camp, S; Descamps, D; Comby, A; Wanie, V; Petit, S; Légaré, F; Schafer, K J; Gaarde, M B; Catoire, F; Mairesse, Y

    2016-11-11

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  10. High-tension corona controlled ozone generator for environment protection

    NASA Astrophysics Data System (ADS)

    Vijayan, T.; Patil, Jagadish G.

    2010-02-01

    Engineering details of a high voltage driven corona-plasma ozone generator are described. The plasma diode of generator has coaxial cylindrical geometry with cathode located inside anode. Cathode is made of a large number of radial gas nozzles arranged on central tubular mast which admits oxygen gas. The sharp endings of the nozzles along with a set of corona rings create the high electric field at the cathode required for formation of dense corona plume responsible for O3 evolution. A model of coronal plasma generation and ozone production is presented. The plasma formation is strongly dependent on the electric field and temperature in side diode where a high electron density in a low temperature negative corona is suited for high ozone yields. These are established by suitable regulation of A-K gap, voltage, oxygen pressure, and cathode-nozzle population.

  11. High-Strain-Rate behavior of Hydrated Cement Paste.

    DTIC Science & Technology

    1987-01-29

    bar and the transmitter bar are made from high yield- strength material, peak loads of 150,000 psi or 10 kbar are easily reached. Typical strain rates...was originally set up for testing very high yield- strength materials. Therefore, for use with cement paste samples, a series of new pressure bars -- 1...a. A a.5.. ~ A - a .- ~- . . . ~0 MML TR 87-12c HIGH -STRAIN-RATE BEHAVIOR OF HYDRATED CEMENT PASTE

  12. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser.

    PubMed

    Qi, You-Li; Liu, Hao; Cui, Hu; Huang, Yu-Qi; Ning, Qiu-Yi; Liu, Meng; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-13

    We report on the generation of a high-repetition-rate pulse in a fiber laser using a graphene-deposited microfiber photonic device (GMPD) and a Fabry-Perot filter. Taking advantage of the unique nonlinear optical properties of the GMPD, dissipative four-wave mixing effect (DFWM) could be induced at low pump power. Based on DFWM mode-locking mechanism, the fiber laser delivers a 100 GHz repetition rate pulse train. The results indicate that the small sized GMPD offers an alternative candidate of highly nonlinear optical component to achieve high-repetition rate pulses, and also opens up possibilities for the investigation of other abundant nonlinear effects or related fields of photonics.

  13. Controlled generation of single photons in a coupled atom-cavity system at a fast repetition-rate.

    PubMed

    Kang, Sungsam; Lim, Sooin; Hwang, Myounggyu; Kim, Wookrae; Kim, Jung-Ryul; An, Kyungwon

    2011-01-31

    We have demonstrated high-speed controlled generation of single photons in a coupled atom-cavity system. A single 85Rb atom, pumped with a nanosecond-pulse laser, generates a single photon into the cavity mode, and the photon is then emitted out the cavity rapidly. By employing cavity parameters for a moderate coupling regime, the single-photon emission process was optimized for both high efficiency and fast bit rates up to 10 MHz. The temporal single-photon wave packet was studied by means of the photon-arrival-time distribution relative to the pump pulse and the efficiency of the single-photon generation was investigated as the pump power. The single-photon nature of the emission was confirmed by the second-order correlation of emitted photons.

  14. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect

    Fisch, Nathaniel J.

    2014-01-08

    The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  15. High-Yield D-T Neutron Generator

    SciTech Connect

    Ludewigt, B.A.; Wells, R.P.; Reijonen, J.

    2006-11-15

    A high-yield D-T neutron generator has been developed for neutron interrogation in homeland security applications such as cargo screening. The generator has been designed as a sealed tube with a performance goal of producing 5 {center_dot} 10{sup 11} n/s over a long lifetime. The key generator components developed are a radio-frequency (RF) driven ion source and a beam-loaded neutron production target that can handle a beam power of 10 kW. The ion source can provide a 100 mA D{sup +}/T{sup +} beam current with a high fraction of atomic species and can be pulsed up to frequencies of several kHz for pulsed neutron generator operation. Testing in D-D operation has been started.

  16. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  17. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  18. Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population

    PubMed Central

    Ferriol, M; Pichot, C; Lefèvre, F

    2011-01-01

    We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88–100%) and seedling mortality was low (0–12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load. PMID:20424643

  19. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    SciTech Connect

    Thomas, Alexander Roy; Krushelnick, Karl

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  20. Evolution of supersaturation of amorphous pharmaceuticals: the effect of rate of supersaturation generation.

    PubMed

    Sun, Dajun D; Lee, Ping I

    2013-11-04

    The combination of a rapidly dissolving and supersaturating "spring" with a precipitation retarding "parachute" has often been pursued as an effective formulation strategy for amorphous solid dispersions (ASDs) to enhance the rate and extent of oral absorption. However, the interplay between these two rate processes in achieving and maintaining supersaturation remains inadequately understood, and the effect of rate of supersaturation buildup on the overall time evolution of supersaturation during the dissolution of amorphous solids has not been explored. The objective of this study is to investigate the effect of supersaturation generation rate on the resulting kinetic solubility profiles of amorphous pharmaceuticals and to delineate the evolution of supersaturation from a mechanistic viewpoint. Experimental concentration-time curves under varying rates of supersaturation generation and recrystallization for model drugs, indomethacin (IND), naproxen (NAP) and piroxicam (PIR), were generated from infusing dissolved drug (e.g., in ethanol) into the dissolution medium and compared with that predicted from a comprehensive mechanistic model based on the classical nucleation theory taking into account both the particle growth and ripening processes. In the absence of any dissolved polymer to inhibit drug precipitation, both our experimental and predicted results show that the maximum achievable supersaturation (i.e., kinetic solubility) of the amorphous solids increases, the time to reach maximum decreases, and the rate of concentration decline in the de-supersaturation phase increases, with increasing rate of supersaturation generation (i.e., dissolution rate). Our mechanistic model also predicts the existence of an optimal supersaturation rate which maximizes the area under the curve (AUC) of the kinetic solubility concentration-time profile, which agrees well with experimental data. In the presence of a dissolved polymer from ASD dissolution, these observed trends

  1. Generating barcoded libraries for multiplex high-throughput sequencing.

    PubMed

    Knapp, Michael; Stiller, Mathias; Meyer, Matthias

    2012-01-01

    Molecular barcoding is an essential tool to use the high throughput of next generation sequencing platforms optimally in studies involving more than one sample. Various barcoding strategies allow for the incorporation of short recognition sequences (barcodes) into sequencing libraries, either by ligation or polymerase chain reaction (PCR). Here, we present two approaches optimized for generating barcoded sequencing libraries from low copy number extracts and amplification products typical of ancient DNA studies.

  2. STARLIB: A Next-generation Reaction-rate Library for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-01

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, γ), (p, α), (α, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  3. STARLIB: A NEXT-GENERATION REACTION-RATE LIBRARY FOR NUCLEAR ASTROPHYSICS

    SciTech Connect

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-15

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, {gamma}), (p, {alpha}), ({alpha}, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  4. Highly Flexible and Efficient Solar Steam Generation Device.

    PubMed

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm(-2) , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Measurement of Nitric Oxide (NO) Generation Rate by Chloroplasts Employing Electron Spin Resonance (ESR).

    PubMed

    Galatro, Andrea; Puntarulo, Susana

    2016-01-01

    Chloroplasts are among the more active organelles involved in free energy transduction in plants (photophosphorylation). Nitric oxide (NO) generation by soybean (Glycine max, var ADM 4800) chloroplasts was measured as an endogenous product assessed by electron paramagnetic resonance (ESR) spin-trapping technique. ESR spectroscopy is a methodology employed to detect species with unpaired electrons (paramagnetic). This technology has been successfully applied to different plant tissues and subcellular compartments to asses both, NO content and generation. The spin trap MGD-Fe(2+) is extensively employed to efficiently detect NO. Here, we describe a simple methodology to asses NO generation rate by isolated chloroplasts in the presence of either L-Arginine or nitrite (NO2 (-)) as substrates, since these compounds are required for enzymatic activities considered as the possible sources of NO generation in plants.

  6. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  7. Investigation of High-Pressure Hydraulic Vortex Rate Sensor

    DTIC Science & Technology

    stability - augmentation system . The feasibility of low-pressure fluid stabilization systems was demonstrated. The primary component that requires development for implementation in a high pressure system is the vortex rate sensor. The high-pressure hydraulic vortex rate sensor has an on-board built-in supply of hydraulic fluid which is used in the primary hydro-mechanical flight control of the vehicle. A small amount of hydraulic fluid under high pressure can be diverted from the main system to the vortex rate sensor, used to perform a sensing function, and

  8. Quantum data locking for high-rate private communication

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Lloyd, Seth

    2015-03-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it.

  9. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011.

    PubMed

    Debere, Mesfin Kote; Gelaye, Kassahun Alemu; Alamdo, Andamlak Gizaw; Trifa, Zemedu Mehamed

    2013-01-12

    Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Six hospitals in Addis Ababa, (three private and three public), were selected using simple random sampling method for this work. Data was recorded by using an appropriately designed questionnaire, which was completed for the period of two months. The calculations were based on the weights of the health care wastes that were regularly generated in the selected hospitals over a one week period during the year 2011. Average generation indexes were determined in relation to certain important factors, like the type of hospitals (public vs private). The median waste generation rate was found to be varied from 0.361- 0.669 kg/patient/day, comprised of 58.69% non-hazardous and 41.31% hazardous wastes. The amount of waste generated was increased as the number of patients flow increased (rs=1). Public hospitals generated high proportion of total health care wastes (59.22%) in comparison with private hospitals (40.48%). The median waste generation rate was significantly vary between hospitals with Kruskal-Wallis test (X2=30.65, p=0.0001). The amount of waste was positively correlated with the number of patients (p < 0.05). The waste separation and treatment practices were very poor. Other alternatives for waste treatment rather than incineration such as a locally made autoclave should be evaluated and implemented. These findings revealed that the management of health care waste at hospitals in Addis Ababa city was poor.

  10. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    PubMed Central

    2013-01-01

    Background Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Methods Six hospitals in Addis Ababa, (three private and three public), were selected using simple random sampling method for this work. Data was recorded by using an appropriately designed questionnaire, which was completed for the period of two months. The calculations were based on the weights of the health care wastes that were regularly generated in the selected hospitals over a one week period during the year 2011. Average generation indexes were determined in relation to certain important factors, like the type of hospitals (public vs private). Results The median waste generation rate was found to be varied from 0.361- 0.669 kg/patient/day, comprised of 58.69% non-hazardous and 41.31% hazardous wastes. The amount of waste generated was increased as the number of patients flow increased (rs=1). Public hospitals generated high proportion of total health care wastes (59.22%) in comparison with private hospitals (40.48%). The median waste generation rate was significantly vary between hospitals with Kruskal-Wallis test (X2=30.65, p=0.0001). The amount of waste was positively correlated with the number of patients (p < 0.05). The waste separation and treatment practices were very poor. Other alternatives for waste treatment rather than incineration such as a locally made autoclave should be evaluated and implemented. Conclusion These findings revealed that the management of health care waste at hospitals in Addis Ababa city was poor. PMID:23311573

  11. Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project

    SciTech Connect

    Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

    2011-09-01

    High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

  12. Uncovering high-strain rate protection mechanism in nacre.

    PubMed

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate approximately 10(3) s(-1)), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10(-3) s(-1)). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

  13. Uncovering high-strain rate protection mechanism in nacre

    PubMed Central

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate ∼103 s−1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10−3 s−1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials. PMID:22355664

  14. Uncovering high-strain rate protection mechanism in nacre

    NASA Astrophysics Data System (ADS)

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-11-01

    Under high-strain-rate compression (strain rate ~103 s-1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10-3 s-1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

  15. Laser nanoablation of diamond surface at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Gololobov, V. M.; Pashinin, V. P.; Konov, V. I.

    2016-10-01

    The chemical etching of the surface of a natural diamond single crystal irradiated by subpicosecond laser pulses with a high repetition rate (f ≤slant 500 {\\text{kHz}}) in air is experimentally investigated. The irradiation has been performed by the second-harmonic (515 {\\text{nm}}) radiation of a disk Yb : YAG laser. Dependences of the diamond surface etch rate on the laser energy density and pulse repetition rate are obtained.

  16. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors

    PubMed Central

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717

  17. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  18. High frequency SAW devices based on third harmonic generation.

    PubMed

    Le Brizoual, L; Elmazria, O; Sarry, F; El Hakiki, M; Talbi, A; Alnot, P

    2006-12-01

    We demonstrate the third harmonic generation in a ZnO/Si layered structure to obtain high frequency SAW devices. This configuration eliminates the need of high lithography resolution and allows easy integration of such devices and electronics on the same wafer. A theoretical study was carried out for the determination of the phase velocity and the electromechanical coupling coefficient (K(2)) dispersion curves of the surface acoustic waves. These results are also in agreement with those measured on a SAW filter designed for the third harmonic generation and the operating frequency is up to 2468 MHz.

  19. Bottle microresonator broadband and low-repetition-rate frequency comb generator

    NASA Astrophysics Data System (ADS)

    Dvoyrin, V.; Sumetsky, M.

    2016-12-01

    We propose a new type of broadband and low repetition rate frequency comb generator which has the shape of an elongated and nanoscale-shallow optical bottle microresonator created at the surface of an optical fiber. The free spectral range (FSR) of the broadband azimuthal eigenfrequency series of this resonator is the exact multiple of the FSR of the dense and narrowband axial series. The effective radius variation of the microresonator is close to a parabola with a nanoscale height which is greater or equal to lambda/2pi*n0 (here lambda is the characteristic radiation wavelength and n0 is the refractive index of the microresonator material). Overall, the microresonator possesses a broadband, small FSR, and accurately equidistant spectrum convenient for the generation of a broadband and low repetition rate optical frequency comb. It is shown that this comb can be generated by pumping with a cw laser, which radiation frequency matches a single axial eigenfrequency of the microresonator, or, alternatively, by pumping with a mode-locked laser, which generates a narrowband low repetition rate comb matching a series of equidistant axial eigenfrequencies situated between adjacent azimuthal eigenfrequencies.

  20. Rural and Urban High School Dropout Rates: Are They Different?

    ERIC Educational Resources Information Center

    Jordan, Jeffrey L.; Kostandini, Genti; Mykerezi, Elton

    2012-01-01

    This study estimates the high school dropout rate in rural and urban areas, the determinants of dropping out, and whether the differences in graduation rates have changed over time. We use geocoded data from two nationally representative panel household surveys (NLSY 97 and NLSY 79) and a novel methodology that corrects for biases in graduation…

  1. How Did Successful High Schools Improve Their Graduation Rates?

    ERIC Educational Resources Information Center

    Robertson, Janna Siegel; Smith, Robert W.; Rinka, Jason

    2016-01-01

    The researchers surveyed 23 North Carolina high schools that had markedly improved their graduation rates over the past five years. The administrators reported on the dropout prevention practices and programs to which they attributed their improved graduation rates. The majority of schools reported policy changes, especially with suspension. The…

  2. High School Graduation Rates in the United States. Revised.

    ERIC Educational Resources Information Center

    Greene, Jay P.

    This report presents public high school graduation rates for all students and for African Americans, Latinos, and white sub-groups. Rates are reported for each state, for each of the 50 largest school districts, and for a few other districts of interest. The state and district numbers are also reported separately for African Americans, Latinos,…

  3. A highly capable arbitrary waveform generator for next generation radar systems

    NASA Technical Reports Server (NTRS)

    Chuang, Ernie; Hensley, Scott; Wheeler, Kevin

    2006-01-01

    We are developing an Arbitrary Waveform Generator (AWG) to provide enhanced capability for radar applications. The current design will accommodate two waveform generators on a single unit for dual frequency operation. The basic architecture of this unit employs a Field Programmable Gate Array (FPGA) and a high speed and high precision Digital to Analog Converter (DAC) for direct digital synthesis. This AWG will be capable of up to 450 MHz bandwidth with ability for frequency notching. Phase fidelity of less than 1.2(sup o) deviation RMS is also achievable. This AWG operates with lower power consumption as compared with other waveform generators, which is advantageous for future spaceborne applications. This will enable radars to return higher precision data, to be reduced in complexity, and to operate in any band without interfering with dedicated bandwidths.

  4. High-efficiency generation in a short random fiber laser

    NASA Astrophysics Data System (ADS)

    Vatnik, I. D.; Churkin, D. V.; Podivilov, E. V.; Babin, S. A.

    2014-07-01

    We demonstrate a high-efficiency random lasing in a 850 m span of a phosphosilicate fiber. Random distributed feedback owing to the Rayleigh backscattering in the fiber enables narrowband generation with output power of up to 7.3 W at the Stokes wavelength λS = 1308 nm from 11 W of the pump power at λP = 1115 nm. The laser demonstrates unique generation efficiency. Near the generation threshold, more than 2 W of output power is generated from only 0.5 W of pump power excess over the generation threshold. At high pump power, the quantum conversion efficiency defined as a ratio of generated and pump photons at the laser output exceeds 100%. It is explained by the fact that every pump photon is converted into the Stokes photon far from the output fiber end, while the Stokes photons have lower attenuation than the pump photons.

  5. High Speed All Optical Nyquist Signal Generation and Full-band Coherent Detection

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Fang, Yuan; Chi, Nan

    2014-01-01

    Spectrum efficient data transmission is of key interest for high capacity optical communication systems considering the limited available bandwidth. Transmission of the high speed signal with higher-order modulation formats within the Nyquist bandwidth using coherent detection brings attractive performance advantages. However, high speed Nyquist signal generation with high order modulation formats is challenging. Electrical Nyquist pulse generation is restricted by the limited sampling rate and processor capacities of digital-to-analog convertor devices, while the optical Nyquist signals can provide a much higher symbol rate using time domain multiplexing method. However, most optical Nyquist signals are based on direct detection with simple modulation formats. Here we report the first experimental demonstration of high speed all optical Nyquist signal generation based on Sinc-shaped pulse generation and time-division multiplexing with high level modulation format and full-band coherent detection. Our experiments demonstrate a highly flexible and compatible all optical high speed Nyquist signal generation and detection scheme for future fiber communication systems. PMID:25142269

  6. A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

    NASA Astrophysics Data System (ADS)

    Marcadet, Stephane J.; Roth, Christian C.; Erice, Borja; Mohr, Dirk

    2015-09-01

    The Hosford-Coulomb model incorporates the important effect of the Lode angle parameter in addition to the stress triaxiality to predict the initiation of ductile fracture. A strain-rate dependent extension of the Hosford-Coulomb model is presented to describe the results from low, intermediate and high strain rate fracture experiments on advanced high strength steels (DP590 and TRIP780). The model predictions agree well with the experimental observation of an increase in ductility as function of strain rate for stress states ranging from uniaxial to equi-biaxial tension.

  7. Compact high current generator for x-ray radiography

    NASA Astrophysics Data System (ADS)

    Kharlov, A. V.; Kovalchuk, B. M.; Zorin, V. B.

    2006-12-01

    We report here a design of the portable high current generator, which can be used for a row of experiments and applications, including, but not limited to, X pinch, plasma focus, vacuum spark, etc. The X generator consists of the capacitor bank, multigap spark switch, load chamber, and built-in high voltage triggering generator. The capacitor bank consists of 12 General Atomics 35404 type capacitors (20nF, 25nH, 0.2Ω, 100kV). It stores ˜0.8kJ at 80kV charging voltage. Each three capacitors are commuted to a load by the multigap spark switch, which is able to commute by eight parallel channels. Switches operate in ambient air at atmospheric pressure. At 76kV charging voltage the generator provides ˜260kA with 120ns rise time and 5nH inductive load and ˜220kA with 145ns rise time and 10nH. Delay of output pulse relative to high voltage triggering pulse is ˜65ns with 5ns jitter. The dimensions of the generator are 1240×1240×225mm3 and the weight is ˜250kg, and only one high voltage power supply is required as additional equipment for the generator. The generator with a pumping system is placed on area about 0.5m2. Operation and handling are very simple, because no oil nor purified gases are required for the generator. The X generator has been successfully employed for experiments on the Ni X pinch load. X-ray pulse duration (full width at half maximum above 1keV) was about 5ns. Radiation yield Wr⩾500mJ was observed in the 1.2-1.5KeV range and Wr⩾20mJ in the 3-5keV energy range, which is comparable to results, obtained on the nanosecond accelerators. Clearly resolved images of 6μm wire indicate micron level size of hot spot. These results demonstrate possibility of this generator for application for x-ray backlighting.

  8. High-strain rate testing of HMX-based explosive

    NASA Astrophysics Data System (ADS)

    John, Henry J.; Alamo, Mike F.

    2000-04-01

    A split Hopkinson pressure bar (SHPB) was used to measure the mechanical behavior of Navy explosive PBXC-129 (a high-solids-loaded explosive material) with strain rates up to ˜3500 s-1. The PBXC-129's high-strain response is typical of other explosive and propellant behavior. At higher strain rates, the PBXC-129 shows significant stiffening with a possible reaction. Stress-strain curves and material properties for PBXC-129 are presented in this paper.

  9. Efficient ARQ scheme for high error rate channels

    NASA Astrophysics Data System (ADS)

    Moeneclaey, M.; Bruneel, H.

    1984-11-01

    A continuous error detection and retransmission (ARQ) protocol which preserves the order of the data block is presented. Data blocks are retransmitted continuously until a positive acknowledgement is received. The next block is then transmitted. It is shown that in high error rate conditions, i.e., the probability of message error is greater than 0.5, the scheme is more efficient than go-back-N and selective repeat schemes. The high error rates increase with the length of propagation delays.

  10. Identifying High-Rate Flows Based on Sequential Sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Fang, Binxing; Luo, Hao

    We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.

  11. Generation of high pressure homogeneous dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Osawa, Naoki; Takashi, Ami; Yoshioka, Yoshio; Hanaoka, Ryoichi

    2013-02-01

    We succeeded in generating an atmospheric pressure Townsend discharge (APTD) in air by using a simple DBD device that consists of alumina barriers and plane electrodes. So far, we applied the APTD to an ozonizer and found that the ozone generation efficiency was higher by the APTD mode than by the conventional DBD mode in larger specific input energy region. It is well known that an operation under an optimized high gas pressure is advantageous for efficient ozone generation from air. In this paper, we investigated whether the Townsend discharge (TD) in dry air in high pressure up to 0.17 MPa can be generated or not. From the observation results of current waveforms and discharge photographs, we found that (1) the discharge currents flow continuously and have only one peak in every half cycle in all gas pressure and (2) filamentary discharges are not recognized between barriers in all gas pressure. These features completely agree with the features of the APTD we reported. Therefore, we concluded that our TD can be generated even in dry air in the pressure range of 0.1 and 0.17 MPa. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  12. Immigration, generation and self-rated health in Canada: on the role of health literacy.

    PubMed

    Omariba, D Walter Rasugu; Ng, Edward

    2011-01-01

    The purpose of this study was to determine whether there are differences in self-rated health by immigration and generational status, and the role of health literacy in this relationship. Data were from the Canadian component of the 2003 International Adult Literacy and Skills Survey (IALSS) undertaken by Statistics Canada. The sample comprised a total of 22,818 persons, of whom 3,861 were immigrants and 18,957 non-immigrants. The study employed logistic regression to examine the relationship between health literacy and self-rated health. The analysis separately compared: immigrants and non-immigrants; immigrant groups defined by region of origin and recency of arrival in Canada; and the local-born defined by generation. Logistic regression results indicated that immigrants compared to non-immigrants, and recent immigrants not from Europe or USA compared to established immigrants from Europe or USA, were more likely to report good self-rated health. On the other hand, compared to the third-plus generation, the second generation were less likely to report good self-rated health. Health literacy was positively associated with good self-rated health. However, its effect was largely accounted for by discordance between mother tongue and language of survey administration among immigrants, and by literacy practices at home, education, place of residence, and income among non-immigrants. Health literacy is important in the health of both immigrants and non-immigrants, but with different underlying mechanisms. For non-immigrants, engaging in literacy practices at home would benefit both health literacy and overall health, whereas for immigrants, it would be improving proficiency in either English or French.

  13. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    DOE PAGES

    Green, B.; Kovalev, S.; Asgekar, V.; ...

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields andmore » the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.« less

  14. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    SciTech Connect

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; Wustmann, B.; Koesterke, I.; Schwarz, M.; Freitag, M.; Arnold, A.; Teichert, J.; Justus, M.; Seidel, W.; Ilgner, C.; Awari, N.; Nicoletti, D.; Kaiser, S.; Laplace, Y.; Rajasekaran, S.; Zhang, L.; Winnerl, S.; Schneider, H.; Schay, G.; Lorincz, I.; Rauscher, A. A.; Radu, I.; Mährlein, S.; Kim, T. H.; Lee, J. S.; Kampfrath, T.; Wall, S.; Heberle, J.; Malnasi-Csizmadia, A.; Steiger, A.; Müller, A. S.; Helm, M.; Schramm, U.; Cowan, T.; Michel, P.; Cavalleri, A.; Fisher, A. S.; Stojanovic, N.; Gensch, M.

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.

  15. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter.

    PubMed

    Green, B; Kovalev, S; Asgekar, V; Geloni, G; Lehnert, U; Golz, T; Kuntzsch, M; Bauer, C; Hauser, J; Voigtlaender, J; Wustmann, B; Koesterke, I; Schwarz, M; Freitag, M; Arnold, A; Teichert, J; Justus, M; Seidel, W; Ilgner, C; Awari, N; Nicoletti, D; Kaiser, S; Laplace, Y; Rajasekaran, S; Zhang, L; Winnerl, S; Schneider, H; Schay, G; Lorincz, I; Rauscher, A A; Radu, I; Mährlein, S; Kim, T H; Lee, J S; Kampfrath, T; Wall, S; Heberle, J; Malnasi-Csizmadia, A; Steiger, A; Müller, A S; Helm, M; Schramm, U; Cowan, T; Michel, P; Cavalleri, A; Fisher, A S; Stojanovic, N; Gensch, M

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.

  16. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    PubMed Central

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; Wustmann, B.; Koesterke, I.; Schwarz, M.; Freitag, M.; Arnold, A.; Teichert, J.; Justus, M.; Seidel, W.; Ilgner, C.; Awari, N.; Nicoletti, D.; Kaiser, S.; Laplace, Y.; Rajasekaran, S.; Zhang, L.; Winnerl, S.; Schneider, H.; Schay, G.; Lorincz, I.; Rauscher, A. A.; Radu, I.; Mährlein, S.; Kim, T. H.; Lee, J. S.; Kampfrath, T.; Wall, S.; Heberle, J.; Malnasi-Csizmadia, A.; Steiger, A.; Müller, A. S.; Helm, M.; Schramm, U.; Cowan, T.; Michel, P.; Cavalleri, A.; Fisher, A. S.; Stojanovic, N.; Gensch, M.

    2016-01-01

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution. PMID:26924651

  17. Multi-Orbital contributions in High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Guehr, Markus

    2009-05-01

    The high harmonic spectrum generated from atoms or molecules in a strong laser field contains information about the electronic structure of the generation medium. In the high harmonic generation (HHG) process, a free electron wave packet tunnel-ionizes from the molecular orbital in a strong laser field. After being accelerated by the laser electric field, the free electron wave packet coherently recombines to the orbital from which is was initially ionized, thereby emitting the harmonic spectrum. Interferences between the free electron wave packet and the molecular orbital will shape the spectrum in a characteristic way. These interferences have been used to tomographically image the highest occupied molecular orbital (HOMO) of N2 [1]. Molecular electronic states energetically below the HOMO should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. We have observed evidence of HHG from multiple orbitals in aligned N2 [2]. The tunneling ionization (and therefore the harmonic generation) is most efficient if the orbital has a large extension in the direction of the harmonic generation polarization. The HOMO with its σg symmetry therefore dominates the harmonic spectrum if the molecular axis is parallel to the harmonic generation polarization, the lower bound πu HOMO-1 dominates in the perpendicular case. The HOMO contributions appear as a regular plateau with a cutoff in the HHG spectrum. In contrast, the HOMO-1 signal is strongly peaked in the cutoff region. We explain this by semi-classical simulations of the recombination process that show constructive interferences between the HOMO-1 and the recombining wave packet in the cutoff region. The ability to monitor several orbitals opens the route to imaging coherent superpositions of electronic orbitals. [1] J. Itatani et al., Nature 432, 867 (2004)[2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)

  18. Photoconductive switching for HPM (high power microwave) generation

    SciTech Connect

    Pocha, M.D.; Hofer, W.W.

    1990-01-01

    Photoconductive switching has been explored at LLNL and demonstrated to be a viable technology for high power microwave (HPM) generation. This technology enables the development of compact, portable, and efficient HPM sources. At LLNL we have successfully switched 35 KV in <200 ps using laser triggered, 1 {times} 5 {times} 20 mm GaAs switches. Based on these results we are developing an HPM generator with applications for HPM weapons and high power, wideband radar. The paper will discuss the physics limits and tradeoffs in the application of this technology. Among the topics discussed will be switching efficiency, candidate switch materials, laser requirements, applicable laser technologies, generator configurations, and cooling requirements and techniques. In addition to presenting theoretical and practical considerations, the paper will discuss on-going work at LLNL and elsewhere. 11 refs., 2 figs., 1 tab.

  19. High-gradient generation in dielectric-loaded wakefield structures.

    SciTech Connect

    Conde, M. E.; Antipov, S.; Franchini, F.; Gai, W.; Gao, F.; Jing, C.; Konecny, R.; Liu, W.; Power, J. G.; Wang, H.; Yusof, Z.; High Energy Physics; Euclid Concepts LLC

    2006-01-01

    Dielectric loaded wakefield structures have potential to be used as high gradient accelerator components. Using the high current drive beam at the Argonne Wakefield Accelerator Facility, we employed cylindrical dielectric loaded wakefield structures to generate accelerating fields of up to 86 MV/m, at 10 GHz. Short electron bunches of up to 86 nC are used to drive these fields, either as single bunches or as bunch trains. The structures consist of cylindrical ceramic tubes (cordierite) with a dielectric constant of 4.76, inserted into cylindrical copper waveguides. These standing-wave structures have a field probe near the outer diameter of the dielectric, in order to sample the RF fields generated by the electron bunches. Monitoring the field probe signal serves to verify the absence of electric breakdown in the structures. MAFIA simulations are used to calculate the amplitude of the fields generated by the traversing electrons bunches.

  20. Highly-efficient THz generation using nonlinear plasmonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Tymchenko, M.; Gomez-Diaz, J. S.; Lee, J.; Belkin, M. A.; Alù, A.

    2017-10-01

    Nonlinear metasurfaces loaded with multi-quantum-well (MQW) heterostructures constitute a rapidly progressing class of optical devices that combine high nonlinear generation efficiency with an ultrathin profile. Here, we introduce and discuss terahertz (THz) difference-frequency generation (DFG) using MQW-based plasmonic metasurfaces and present a comprehensive theory for their rigorous electromagnetic analysis. We explicitly take into account complex phenomena associated with the local intensity saturation of intersubband transitions and identify fundamental upper-bounds for DFG conversion efficiency. Using this framework, we design and analyze a nonlinear DFG metasurface providing giant DFG nonlinear response and conversion efficiency up to 0.01% at 5.8 THz. Such metasurface can be used to generate 0.15 mW of THz power using pump intensities in the kW cm-2 range. We envision that such DFG metasurfaces can become a platform for uncooled, compact, and highly-efficient continuous-wave THz sources.

  1. Photoconductive switching for HPM (High Power Microwave) generation

    NASA Astrophysics Data System (ADS)

    Pocha, M. D.; Hofer, W. W.

    Photoconductive switching has been explored at LLNL and demonstrated to be a viable technology for high power microwave (HPM) generation. This technology enables the development of compact, portable, and efficient HPM sources. At LLNL we have successfully switched 35 KV in less than 200 ps using laser triggered, 1 x 5 x 20 mm GaAs switches. Based on these results we are developing an HPM generator with applications for HPM weapons and high power, wideband radar. The paper will discuss the physics limits and tradeoffs in the application of this technology. Among the topics discussed will be switching efficiency, candidate switch materials, laser requirements, applicable laser technologies, generator configurations, and cooling requirements and techniques. In addition to presenting theoretical and practical considerations, the paper will discuss on-going work at LLNL and elsewhere.

  2. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli.

    PubMed

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S; Iguaz, Asunción; Periago, Paula M; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing.

  3. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    PubMed Central

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  4. Measuring growth rate in high-throughput growth phenotyping.

    PubMed

    Blomberg, Anders

    2011-02-01

    Growth rate is an important variable and parameter in biology with a central role in evolutionary, functional genomics, and systems biology studies. In this review the pros and cons of the different technologies presently available for high-throughput measurements of growth rate are discussed. Growth rate can be measured in liquid microcultivation of individual strains, in competition between strains, as growing colonies on agar, as division of individual cells, and estimated from molecular reporters. Irrespective of methodology, statistical issues such as spatial biases and batch effects are crucial to investigate and correct for to ensure low false discovery rates. The rather low correlations between studies indicate that cross-laboratory comparison and standardization are pressing issue to assure high-quality and comparable growth-rate data. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Slow rate of molecular evolution in high-elevation hummingbirds.

    PubMed

    Bleiweiss, R

    1998-01-20

    Estimates of relative rates of molecular evolution from a DNA-hybridization phylogeny for 26 hummingbird species provide evidence for a negative association between elevation and rate of single-copy genome evolution. This effect of elevation on rate remains significant even after taking into account a significant negative association between body mass and molecular rate. Population-level processes do not appear to account for these patterns because (i) all hummingbirds breed within their first year and (ii) the more extensive subdivision and speciation of bird populations living at high elevations predicts a positive association between elevation and rate. The negative association between body mass and molecular rate in other organisms has been attributed to higher mutation rates in forms with higher oxidative metabolism. As ambient oxygen tensions and temperature decrease with elevation, the slow rate of molecular evolution in high-elevation hummingbirds also may have a metabolic basis. A slower rate of single-copy DNA change at higher elevations suggests that the dynamics of molecular evolution cannot be separated from the environmental context.

  6. Short pulse generation and high speed communication system

    NASA Astrophysics Data System (ADS)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  7. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    DTIC Science & Technology

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  8. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  9. Plasma structures for quasiphase matched high harmonic generation

    SciTech Connect

    Sheinfux, A. H.; Henis, Z.; Levin, M.; Zigler, A.

    2011-04-04

    A scheme for creation of periodic plasma structures by ablating a lithographic pattern is demonstrated. A proof of principle experiment was conducted, and plasma parameters were measured as a function of time with spatial resolution <10 and 100 {mu}m periodicity. Several possible applications, in particular, quasiphase matching for high harmonic generation in plasma are considered.

  10. Advances in solid polymer electrochemical capacitors for high rate applications

    NASA Astrophysics Data System (ADS)

    Lian, Keryn; Gao, Han

    2011-06-01

    All solid electrochemical capacitors (EC) have been demonstrated using proton conducting silicotungstic acid (SiWA) and poly(vinyl alcohol) (PVA) based polymer electrolytes. Graphite electrodes were utilized for electrochemical double layer capacitors (EDLC), while RuO2 electrodes were employed as pseudocapacitive electrodes. Both solid EDLC and pseudocapacitors exhibited very high charge/discharge rate capability. Especially for solid EDLC, a charge/discharge rate of 25 V/s and a 10 ms time constant ("factor of merit") were obtained. The rate capability of the solid EC is attributable to thin film thickness, good proton conductivity of the polymer electrolyte, and intimate contact between electrode and electrolyte. These results demonstrate promise of polymer electrolytes as enablers of high rate and high performance solid EC devices.

  11. Stretching Behavior of Red Blood Cells at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  12. High rate material behaviour at hot forming conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Lothar W.; Kuprin, Corinna; Halle, Thorsten

    2009-03-01

    Modern processes of hot forming use very high strain rates and large, mostly incrementally applied strains. For the simulation of such forming processes relevant material data are needed, which have to be recorded under accordant forming conditions. This places extraordinary demands on the experimental technique, because high temperatures, high strain rates and large strains have to be implemented simultaneously. In the following contribution such an aligned experimental technique is introduced. In order to apply a very large range of strain rate, compression tests are performed using different technical equipment up to a drop tower and Hopkinson pressure bar. To reach large plastic strains, a hot torsion test was developed, which allowed true plastic shear strains up to 10 at strain rates in the order of 100 1/s at hot forming temperatures.

  13. Heart-rate variability and SIDS. Examination of heart-rate patterns using an expert system generator.

    PubMed

    Välimäki, I A; Nieminen, T; Antila, K J; Southall, D P

    1988-01-01

    In a prospective, population-based study, HRV was analyzed from 24-hr tape recordings made on 16 full-term and one preterm infant who had subsequently suffered SIDS and compared to similar data on 23 control infants (n of recordings, 44). In the SIDS group, heart rate was higher, and overall and beat-to-beat HRV (CV, CVS, respectively) were lower, than in the controls, but not significantly. Respiratory rate and respiratory HRV (by spectral analysis) were similar in both groups. Assuming that cardiorespiratory mechanisms of SIDS are multifactorial, we expected that several subgroups would be detected in both test groups. Therefore, the average data for each recording were subsequently examined by means of an expert system generator (ExTran, Intelligent Terminals Ltd., Edinburgh, UK). By rules induced with 25 nodes, the following results were obtained: 16/44 recordings were diagnosed as SIDS on the basis of (1) respiratory rate (RR) less than 33 and CV less than 3.46% (n = 8); (2) RR greater than 33, CVS less than 2.18%, and BW greater than 3,520 g (n = 4); and (3) RR greater than 33, CVS less than 2.18%, BW less than 3,520 g, HR greater than 136, and CV greater than 1.89% (n = 4). Seventeen of 44 were considered as non-SIDS when (1) RR was 33-47.4, CVS greater than 2.18%, and RSA less than 74.3 and (2) RR greater than 33, CVS less than 2.18%, BW less than 3,520 g, and HR less than 142. The remaining 11 cases required more complicated rules in order to be classified. This study shows that although the trend of increased HR and decreased HRV in the SIDS cases was statistically non-significant, an expert system program may be helpful in defining decision rules to identify cases of SIDS on the basis of cardiorespiratory data.

  14. Solidification at the High and Low Rate Extreme

    SciTech Connect

    Meco, Halim

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  15. Change Rate Control of Photovoltaic Generation Output and Calculation of Necessary Capacitance

    NASA Astrophysics Data System (ADS)

    Satoh, Hiroyuki; Takayama, Satoshi; Nakamura, Koichi; Kakimoto, Naoto

    The photovoltaic (PV) generator changes its power output with the weather. If the PV output changes fast, the power system may require more load-following capability and spinning-reserve. This paper proposes a method of controlling the change rate of the PV output. The PV generator is combined with an electric double layer capacitor (EDLC). The moving average is used to eliminate short period fluctuations of the PV output. The output of the power conversion system (PCS) is determined by the moving average. The output changes within a limited rate. The capacitor voltage is maintained at a constant value to make the capacitor as small as possible. The necessary capacitance is theoretically derived. The effectiveness of this method is verified by the experiment.

  16. Radial-arrayed rotary electrification for high performance triboelectric generator.

    PubMed

    Zhu, Guang; Chen, Jun; Zhang, Tiejun; Jing, Qingshen; Wang, Zhong Lin

    2014-03-04

    Harvesting mechanical energy is an important route in obtaining cost-effective, clean and sustainable electric energy. Here we report a two-dimensional planar-structured triboelectric generator on the basis of contact electrification. The radial arrays of micro-sized sectors on the contact surfaces enable a high output power of 1.5 W (area power density of 19 mW cm(-2)) at an efficiency of 24%. The triboelectric generator can effectively harness various ambient motions, including light wind, tap water flow and normal body movement. Through a power management circuit, a triboelectric-generator-based power-supplying system can provide a constant direct-current source for sustainably driving and charging commercial electronics, immediately demonstrating the feasibility of the triboelectric generator as a practical power source. Given exceptional power density, extremely low cost and unique applicability resulting from distinctive mechanism and structure, the triboelectric generator can be applied not only to self-powered electronics but also possibly to power generation at a large scale.

  17. Radial-arrayed rotary electrification for high performance triboelectric generator

    NASA Astrophysics Data System (ADS)

    Zhu, Guang; Chen, Jun; Zhang, Tiejun; Jing, Qingshen; Wang, Zhong Lin

    2014-03-01

    Harvesting mechanical energy is an important route in obtaining cost-effective, clean and sustainable electric energy. Here we report a two-dimensional planar-structured triboelectric generator on the basis of contact electrification. The radial arrays of micro-sized sectors on the contact surfaces enable a high output power of 1.5 W (area power density of 19 mW cm-2) at an efficiency of 24%. The triboelectric generator can effectively harness various ambient motions, including light wind, tap water flow and normal body movement. Through a power management circuit, a triboelectric-generator-based power-supplying system can provide a constant direct-current source for sustainably driving and charging commercial electronics, immediately demonstrating the feasibility of the triboelectric generator as a practical power source. Given exceptional power density, extremely low cost and unique applicability resulting from distinctive mechanism and structure, the triboelectric generator can be applied not only to self-powered electronics but also possibly to power generation at a large scale.

  18. Generation Expansion Planning with High Penetration of Wind Power

    NASA Astrophysics Data System (ADS)

    Sharan, Ishan; Balasubramanian, R.

    2016-08-01

    Worldwide thrust is being provided in generation of electricity from wind. Planning for the developmental needs of wind based power has to be consistent with the objective and basic framework of overall resource planning. The operational issues associated with the integration of wind power must be addressed at the planning stage. Lack of co-ordinated planning of wind turbine generators, conventional generating units and expansion of the transmission system may lead to curtailment of wind power due to transmission inadequacy or operational constraints. This paper presents a generation expansion planning model taking into account fuel transportation and power transmission constraints, while addressing the operational issues associated with the high penetration of wind power. For analyzing the operational issues, security constrained unit commitment algorithm is embedded in the integrated generation and transmission expansion planning model. The integrated generation and transmission expansion planning problem has been formulated as a mixed integer linear problem involving both binary and continuous variables in GAMS. The model has been applied to the expansion planning of a real system to illustrate the proposed approach.

  19. New Drive Train Concept with Multiple High Speed Generator

    NASA Astrophysics Data System (ADS)

    Barenhorst, F.; Serowy, S.; Andrei, C.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    In the research project RapidWind (financed by the German Federal Ministry for Economic Affairs and Energy under Grant 0325642) an alternative 6 MW drive train configuration with six high-speed (n = 5000 rpm) permanent magnet synchronous generators for wind turbine generators (WTG) is designed. The gearbox for this drive train concept is assembled with a six fold power split spur gear stage in the first stage, followed by six individual 1 MW geared driven generators. Switchable couplings are developed to connect and disconnect individual geared generators depending on the input power. With this drive train configuration it is possible to improve the efficiency during partial load operation, increasing the energy yield about 1.15% for an exemplary low-wind site. The focus of this paper is the investigation of the dynamic behavior of this new WTG concept. Due to the high gear ratio the inertia relationship between rotor and generator differs from conventional WT concepts, possibly leading to intensified vibration behavior. Moreover there are switching procedures added, that might also lead to vibration issues.

  20. High rate, fast timing Glass RPC for the high η CMS muon detectors

    NASA Astrophysics Data System (ADS)

    Lagarde, F.; Gouzevitch, M.; Laktineh, I.; Buridon, V.; Chen, X.; Combaret, C.; Eynard, A.; Germani, L.; Grenier, G.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Wang, Y.; Gong, A.; Moreau, N.; de la Taille, C.; Dulucq, F.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumari, R.; Mehta, A.; Singh, J.; Ahmad, A.; Ahmed, W.; Asghar, H. M. I.; Awan, I. M.; Hoorani, R.; Muhammad, S.; Shahzad, H.; Shah, M. A.; Cho, S. W.; Choi, S. Y.; Hong, B.; Kang, M. H.; Lee, K. S.; Lim, J. H.; Park, S. K.; Kim, M. S.; Carpinteyro Bernardino, S.; Pedraza, I.; Uribe Estrada, C.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-09-01

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm-2s-1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.

  1. Using uniformat and gene[rate] to Analyze Data with Ambiguities in Population Genetics.

    PubMed

    Nunes, José Manuel

    2015-01-01

    Some genetic systems frequently present ambiguous data that cannot be straightforwardly analyzed with common methods of population genetics. Two possibilities arise to analyze such data: one is the arbitrary simplification of the data and the other is the development of methods adapted to such ambiguous data. In this article, we present an attempt at such a development, the uniformat grammar and The gene[rate] tools, highlighting the specific aspects and the adaptations required to analyze ambiguous nominal data in population genetics.

  2. Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate.

    PubMed

    Aubourg, Adrien; Lhermite, Jérôme; Hocquet, Steve; Cormier, Eric; Santarelli, Giorgio

    2015-12-01

    We report on a watt range laser system generating picosecond pulses using electro-optical modulation of a 1030 nm single frequency low noise laser diode. Its repetition rate is continuously tunable between 11 and 18 GHz. Over this range, output spectra and pulse characteristics are measured and compared with a numerical simulation. Finally, amplitude and residual phase noise measurements of the source are also presented.

  3. Authoritative School Climate and High School Dropout Rates

    ERIC Educational Resources Information Center

    Jia, Yuane; Konold, Timothy R.; Cornell, Dewey

    2016-01-01

    This study tested the association between school-wide measures of an authoritative school climate and high school dropout rates in a statewide sample of 315 high schools. Regression models at the school level of analysis used teacher and student measures of disciplinary structure, student support, and academic expectations to predict overall high…

  4. Authoritative School Climate and High School Dropout Rates

    ERIC Educational Resources Information Center

    Jia, Yuane; Konold, Timothy R.; Cornell, Dewey

    2016-01-01

    This study tested the association between school-wide measures of an authoritative school climate and high school dropout rates in a statewide sample of 315 high schools. Regression models at the school level of analysis used teacher and student measures of disciplinary structure, student support, and academic expectations to predict overall high…

  5. Generation rate and particle size distribution of wood dust by handheld sanding operation.

    PubMed

    Ojima, Jun

    2016-11-29

    The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m(3)/min ventilation rate.

  6. High-rate squeezing process of bulk metallic glasses

    PubMed Central

    Fan, Jitang

    2017-01-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials. PMID:28338092

  7. High-rate squeezing process of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  8. Breakdown Limit Studies in High-Rate Gaseous Detectors

    NASA Technical Reports Server (NTRS)

    Ivaniouchenkov, Yu; Fonte, P.; Peskov, V.; Ramsey, B. D.

    1999-01-01

    We report results from a systematic study of breakdown limits for novel high-rate gaseous detectors: MICROMEGAS, CAT and GEM, together with more conventional devices such as thin-gap parallel-mesh chambers and high-rate wire chambers. It was found that for all these detectors, the maximum achievable pin, before breakdown appears, drops dramatically with incident flux, and is sometimes inversely proportional to it. Further, in the presence of alpha particles, typical of the breakgrounds in high-energy experiments, additional gain drops of 1-2 orders of magnitude were observed for many detectors. It was found that breakdowns at high rates occur through what we have termed an "accumulative" mechanism, which does not seem to have been previously reported in the literature. Results of these studies may help in choosing the optimum detector for given experimental conditions.

  9. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  10. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  11. High-intensity tone generation by aeroacoustic sources

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Cho, Y. I.; Back, L. H.

    1987-01-01

    An experimental investigation has been carried out on the production of high-intensity tones by axisymmetric ring cavities. Maximum sound production occurs during an acoustic resonance at Strouhal numbers, which depend only on the local flow velocity independent of cavity location. Values of sound pressure of about 115 dB at 1-m distance can be generated by axisymmetric ring cavities on projectiles moving at a relatively low flight speed equal to 70 m/s. Frequencies in the audible range up to several kilohertz can be generated aeroacoustically. A simple analytical model has been developed to explain the experimental observations.

  12. High order harmonic generation in dual gas multi-jets

    SciTech Connect

    Tosa, Valer E-mail: calin.hojbota@itim-cj.ro; Hojbota, Calin E-mail: calin.hojbota@itim-cj.ro

    2013-11-13

    High order harmonic generation (HHG) in gas media suffers from a low conversion efficiency that has its origins in the interaction of the atom/molecule with the laser field. Phase matching is the main way to enhance the harmonic flux and several solutions have been designed to achieve it. Here we present numerical results modeling HHG in a system of multi-jets in which two gases alternate: the first gas jet (for example Ne) generates harmonics and the second one which ionizes easier, recover the phase matching condition. We obtain configurations which are experimentally feasible with respect to pressures and dimensions of the jets.

  13. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Klein, Frieder; Robbins, Mark; Moskowitz, Bruce; Berquó, Thelma S.; Jöns, Niels; Bach, Wolfgang; Templeton, Alexis

    2016-05-01

    A series of laboratory experiments were conducted to examine how partitioning of Fe among solid reaction products and rates of H2 generation vary as a function of temperature during serpentinization of olivine. Individual experiments were conducted at temperatures ranging from 200 to 320 °C, with reaction times spanning a few days to over a year. The extent of reaction ranged from <1% to ∼23%. Inferred rates for serpentinization of olivine during the experiments were 50-80 times slower than older studies had reported but are consistent with more recent results, indicating that serpentinization may proceed more slowly than previously thought. Reaction products were dominated by chrysotile, brucite, and magnetite, with minor amounts of magnesite, dolomite, and iowaite. The chrysotile contained only small amounts of Fe (XFe = 0.03-0.05, with ∼25% present as ferric Fe in octahedral sites), and displayed little variation in composition with reaction temperature. Conversely, the Fe contents of brucite (XFe = 0.01-0.09) increased steadily with decreasing reaction temperature. Analysis of the reaction products indicated that the stoichiometry of the serpentinization reactions varied with temperature, but remained constant with increasing reaction progress at a given temperature. The observed distribution of Fe among the reaction products does not appear to be entirely consistent with existing equilibrium models of Fe partitioning during serpentinization, suggesting improved models that include kinetic factors or multiple reaction steps need to be developed. Rates of H2 generation increased steeply from 200 to 300 °C, but dropped off at higher temperatures. This trend in H2 generation rates is attributable to a combination of the overall rate of serpentinization reactions and increased partitioning of Fe into brucite rather than magnetite at lower temperatures. The results suggest that millimolal concentration of H2 could be attained in moderately hot hydrothermal

  14. Evolution of high tooth replacement rates in sauropod dinosaurs.

    PubMed

    D'Emic, Michael D; Whitlock, John A; Smith, Kathlyn M; Fisher, Daniel C; Wilson, Jeffrey A

    2013-01-01

    Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs.

  15. Evolution of High Tooth Replacement Rates in Sauropod Dinosaurs

    PubMed Central

    Smith, Kathlyn M.; Fisher, Daniel C.; Wilson, Jeffrey A.

    2013-01-01

    Background Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. Methodology/Principal Findings We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Conclusions/Significance Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently

  16. Wear Analysis of Second-generation Highly Cross-Linked Polyethylene in Primary Total Hip Arthroplasty.

    PubMed

    Samujh, Christopher; Bhimani, Samrath; Smith, Langan; Malkani, Arthur L

    2016-11-01

    A major limiting factor in the longevity of total hip replacement is the wear rate of the hip bearing. As manufacturing technology has improved during the past several decades, much attention has been focused on developing newer generations of polyethylene that have lower rates of wear while minimizing free radical formation and subsequent osteolysis. The turning point for the manufacture of polyethylene was moving from gamma irradiation in air to irradiation in a low oxygen environment, which reduced free radical formation while increasing the wear resistance. New polyethylene manufacturing methods, including multiple cycles of irradiation and annealing, have resulted in greater wear resistance. Wear analysis studies are essential to determine if these new liners actually show a benefit from prior generations of polyethylene and, more importantly, if they are safe to use. This study involved a single center retrospective review of 60 patients with a mean follow-up of 5.5 years who underwent primary total hip arthroplasty with a second-generation highly cross-linked polyethylene manufactured by 3 cycles of sequential irradiation and annealing. Linear and volumetric wear rates were determined from digitized radiographs using contemporary wear analysis software. The mean linear wear rate for the entire group was 0.025 millimeters per year (mm/y). This value represents a linear wear rate 2.7 times less than that of a first-generation highly cross-linked polyethylene and 4.2 times less than that of a conventional polyethylene. At an average of 5 years, compared with a first-generation highly cross-linked polyethylene, a second-generation highly cross-linked polyethylene appears to show significant improvement regarding wear. [Orthopedics. 2016; 39(6):e1178-e1182.].

  17. Observation of Electronic Structure Minima in High-Harmonic Generation

    SciTech Connect

    Woerner, Hans Jakob; Villeneuve, D. M.; Niikura, Hiromichi; Bertrand, Julien B.; Corkum, P. B.

    2009-03-13

    We report detailed measurements of the high-harmonic spectra generated from argon atoms. The spectra exhibit a deep minimum that is shown to be independent of the laser intensity, and is thus a clear measure of the electronic structure of the atom. We show that exact field-free continuum wave functions reproduce the minimum, but plane wave and Coulomb wave functions do not. This remarkable observation suggests that electronic structure can be accurately determined in high-harmonic experiments despite the presence of the strong laser field. Our results clarify the relation between high-harmonic generation and photoelectron spectroscopy. The use of exact continuum functions also resolves the ambiguity associated with the choice of the dispersion relation.

  18. Ultra-compact Marx-type high-voltage generator

    DOEpatents

    Goerz, David A.; Wilson, Michael J.

    2000-01-01

    An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.

  19. The economic impact of state ordered avoided cost rates for photovoltaic generated electricity

    NASA Astrophysics Data System (ADS)

    Bottaro, D.; Wheatley, N. J.

    Various methods the states have devised to implement federal policy regarding the Public Utility Regulatory Policies Act (PURPA) of 1978, which requires that utilities pay their full 'avoided costs' to small power producers for the energy and capacity provided, are examined. The actions of several states are compared with rates estimated using utility expansion and rate-setting models, and the potential break-even capital costs of a photovoltaic system are estimated using models which calculate photovoltaic worth. The potential for the development of photovoltaics has been increased by the PURPA regulations more from the guarantee of utility purchase of photovoltaic power than from the high buy-back rates paid. The buy-back rate is high partly because of the surprisingly high effective capacity of photovoltaic systems in some locations.

  20. High rate and stable cycling of lithium metal anode

    SciTech Connect

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.