Positive and negative generation effects in source monitoring.
Riefer, David M; Chien, Yuchin; Reimer, Jason F
2007-10-01
Research is mixed as to whether self-generation improves memory for the source of information. We propose the hypothesis that positive generation effects (better source memory for self-generated information) occur in reality-monitoring paradigms, while negative generation effects (better source memory for externally presented information) tend to occur in external source-monitoring paradigms. This hypothesis was tested in an experiment in which participants read or generated words, followed by a memory test for the source of each word (read or generated) and the word's colour. Meiser and Bröder's (2002) multinomial model for crossed source dimensions was used to analyse the data, showing that source memory for generation (reality monitoring) was superior for the generated words, while source memory for word colour (external source monitoring) was superior for the read words. The model also revealed the influence of strong response biases in the data, demonstrating the usefulness of formal modelling when examining generation effects in source monitoring.
Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun
2018-01-01
To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.
ERIC Educational Resources Information Center
Jordan, Jerry Monroe; Roloff, Michael E.
1997-01-01
Focuses on skills necessary for effective negotiation planning. Argues that the information processing tendencies of high self-monitors make them adept at negotiation planning. Extends existing work by relating self-monitoring to plan generation, enactment, and consequences. Indicates that self-monitoring is related to prenegotiation goal…
NASA Astrophysics Data System (ADS)
Li, Jun-Wei; Cao, Jun-Wei
2010-04-01
One challenge in large-scale scientific data analysis is to monitor data in real-time in a distributed environment. For the LIGO (Laser Interferometer Gravitational-wave Observatory) project, a dedicated suit of data monitoring tools (DMT) has been developed, yielding good extensibility to new data type and high flexibility to a distributed environment. Several services are provided, including visualization of data information in various forms and file output of monitoring results. In this work, a DMT monitor, OmegaMon, is developed for tracking statistics of gravitational-wave (OW) burst triggers that are generated from a specific OW burst data analysis pipeline, the Omega Pipeline. Such results can provide diagnostic information as reference of trigger post-processing and interferometer maintenance.
Reality Monitoring and Feedback Control of Speech Production Are Related Through Self-Agency.
Subramaniam, Karuna; Kothare, Hardik; Mizuiri, Danielle; Nagarajan, Srikantan S; Houde, John F
2018-01-01
Self-agency is the experience of being the agent of one's own thoughts and motor actions. The intact experience of self-agency is necessary for successful interactions with the outside world (i.e., reality monitoring) and for responding to sensory feedback of our motor actions (e.g., speech feedback control). Reality monitoring is the ability to distinguish internally self-generated information from outside reality (externally-derived information). In the present study, we examined the relationship of self-agency between lower-level speech feedback monitoring (i.e., monitoring what we hear ourselves say) and a higher-level cognitive reality monitoring task. In particular, we examined whether speech feedback monitoring and reality monitoring were driven by the capacity to experience self-agency-the ability to make reliable predictions about the outcomes of self-generated actions. During the reality monitoring task, subjects made judgments as to whether information was previously self-generated (self-agency judgments) or externally derived (external-agency judgments). During speech feedback monitoring, we assessed self-agency by altering environmental auditory feedback so that subjects listened to a perturbed version of their own speech. When subjects heard minimal perturbations in their auditory feedback while speaking, they made corrective responses, indicating that they judged the perturbations as errors in their speech output. We found that self-agency judgments in the reality-monitoring task were higher in people who had smaller corrective responses ( p = 0.05) and smaller inter-trial variability ( p = 0.03) during minimal pitch perturbations of their auditory feedback. These results provide support for a unitary process for the experience of self-agency governing low-level speech control and higher level reality monitoring.
Rommelmann, Vanessa; Setel, Philip W.; Hemed, Yusuf; Angeles, Gustavo; Mponezya, Hamisi; Whiting, David; Boerma, Ties
2005-01-01
OBJECTIVE: To examine the costs of complementary information generation activities in a resource-constrained setting and compare the costs and outputs of information subsystems that generate the statistics on poverty, health and survival required for monitoring, evaluation and reporting on health programmes in the United Republic of Tanzania. METHODS: Nine systems used by four government agencies or ministries were assessed. Costs were calculated from budgets and expenditure data made available by information system managers. System coverage, quality assurance and information production were reviewed using questionnaires and interviews. Information production was characterized in terms of 38 key sociodemographic indicators required for national programme monitoring. FINDINGS: In 2002-03 approximately US$ 0.53 was spent per Tanzanian citizen on the nine information subsystems that generated information on 37 of the 38 selected indicators. The census and reporting system for routine health service statistics had the largest participating populations and highest total costs. Nationally representative household surveys and demographic surveillance systems (which are not based on nationally representative samples) produced more than half the indicators and used the most rigorous quality assurance. Five systems produced fewer than 13 indicators and had comparatively high costs per participant. CONCLUSION: Policy-makers and programme planners should be aware of the many trade-offs with respect to system costs, coverage, production, representativeness and quality control when making investment choices for monitoring and evaluation. In future, formal cost-effectiveness studies of complementary information systems would help guide investments in the monitoring, evaluation and planning needed to demonstrate the impact of poverty-reduction and health programmes. PMID:16184275
How to exploit twitter for public health monitoring?
Denecke, K; Krieck, M; Otrusina, L; Smrz, P; Dolog, P; Nejdl, W; Velasco, E
2013-01-01
Detecting hints to public health threats as early as possible is crucial to prevent harm from the population. However, many disease surveillance strategies rely upon data whose collection requires explicit reporting (data transmitted from hospitals, laboratories or physicians). Collecting reports takes time so that the reaction time grows. Moreover, context information on individual cases is often lost in the collection process. This paper describes a system that tries to address these limitations by processing social media for identifying information on public health threats. The primary objective is to study the usefulness of the approach for supporting the monitoring of a population's health status. The developed system works in three main steps: Data from Twitter, blogs, and forums as well as from TV and radio channels are continuously collected and filtered by means of keyword lists. Sentences of relevant texts are classified relevant or irrelevant using a binary classifier based on support vector machines. By means of statistical methods known from biosurveillance, the relevant sentences are further analyzed and signals are generated automatically when unexpected behavior is detected. From the generated signals a subset is selected for presentation to a user by matching with user queries or profiles. In a set of evaluation experiments, public health experts assessed the generated signals with respect to correctness and relevancy. In particular, it was assessed how many relevant and irrelevant signals are generated during a specific time period. The experiments show that the system provides information on health events identified in social media. Signals are mainly generated from Twitter messages posted by news agencies. Personal tweets, i.e. tweets from persons observing some symptoms, only play a minor role for signal generation given a limited volume of relevant messages. Relevant signals referring to real world outbreaks were generated by the system and monitored by epidemiologists for example during the European football championship. But, the number of relevant signals among generated signals is still very small: The different experiments yielded a proportion between 5 and 20% of signals regarded as "relevant" by the users. Vaccination or education campaigns communicated via Twitter as well as use of medical terms in other contexts than for outbreak reporting led to the generation of irrelevant signals. The aggregation of information into signals results in a reduction of monitoring effort compared to other existing systems. Against expectations, only few messages are of personal nature, reporting on personal symptoms. Instead, media reports are distributed over social media channels. Despite the high percentage of irrelevant signals generated by the system, the users reported that the effort in monitoring aggregated information in form of signals is less demanding than monitoring huge social-media data streams manually. It remains for the future to develop strategies for reducing false alarms.
Relating to monitoring ion sources
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan
2002-01-01
The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.
Advanced integrated real-time clinical displays.
Kruger, Grant H; Tremper, Kevin K
2011-09-01
Intelligent medical displays have the potential to improve patient outcomes by integrating multiple physiologic signals, exhibiting high sensitivity and specificity, and reducing information overload for physicians. Research findings have suggested that information overload and distractions caused by patient care activities and alarms generated by multiple monitors in acute care situations, such as the operating room and the intensive care unit, may produce situations that negatively impact the outcomes of patients under anesthesia. This can be attributed to shortcomings of human-in-the-loop monitoring and the poor specificity of existing physiologic alarms. Modern artificial intelligence techniques (ie, intelligent software agents) are demonstrating the potential to meet the challenges of next-generation patient monitoring and alerting. Copyright © 2011 Elsevier Inc. All rights reserved.
Monitoring microbial responses to ocean deoxygenation in a model oxygen minimum zone.
Hallam, Steven J; Torres-Beltrán, Mónica; Hawley, Alyse K
2017-10-31
Today in Scientific Data, two compendia of geochemical and multi-omic sequence information (DNA, RNA, protein) generated over almost a decade of time series monitoring in a seasonally anoxic coastal marine setting are presented to the scientific community. These data descriptors introduce a model ecosystem for the study of microbial responses to ocean deoxygenation, a phenotype that is currently expanding due to climate change. Public access to this time series information is intended to promote scientific collaborations and the generation of new hypotheses relevant to microbial ecology, biogeochemistry and global change issues.
Knowledge Management in Sensor Enabled Online Services
NASA Astrophysics Data System (ADS)
Smyth, Dominick; Cappellari, Paolo; Roantree, Mark
The Future Internet, has as its vision, the development of improved features and usability for services, applications and content. In many cases, services can be provided automatically through the use of monitors or sensors. This means web generated sensor data becoming available not only to the companies that own the sensors but also to the domain users who generate the data and to information and knowledge workers who harvest the output. The goal is improving the service through better usage of the information provided by the service. Applications and services vary from climate, traffic, health and sports event monitoring. In this paper, we present the WSW system that harvests web sensor data to provide additional and, in some cases, more accurate information using an analysis of both live and warehoused information.
Diagnosis and Threat Detection Capabilities of the SERENITY Monitoring Framework
NASA Astrophysics Data System (ADS)
Tsigkritis, Theocharis; Spanoudakis, George; Kloukinas, Christos; Lorenzoli, Davide
The SERENITY monitoring framework offers mechanisms for diagnosing the causes of violations of security and dependability (S&D) properties and detecting potential violations of such properties, called "Cthreats". Diagnostic information and threat detection are often necessary for deciding what an appropriate reaction to a violation is and taking pre-emptive actions against predicted violations, respectively. In this chapter, we describe the mechanisms of the SERENITY monitoring framework which generate diagnostic information for violations of S&D properties and detecting threats.
High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering
NASA Technical Reports Server (NTRS)
Maly, K.
1998-01-01
Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated with the monitoring architecture to reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring process. We are developing an event filtering architecture to efficiently process the large volume of event traffic generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to monitor collaborative distance learning application for obtaining debugging and feedback information. Our architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering mechanisms In supporting monitoring LSD systems and (2) devising an integrated scalable high- performance architecture of event filtering that spans several kev application domains, presenting techniques to improve the functionality, performance and scalability. This paper describes the primary characteristics and challenges of developing high-performance event filtering for monitoring LSD systems. We survey existing event filtering mechanisms and explain key characteristics for each technique. In addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will improve key aspects of event filtering.
Wireless sensor systems and methods, and methods of monitoring structures
Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.
2007-02-20
A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.
An effective online data monitoring and saving strategy for large-scale climate simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin
Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less
An effective online data monitoring and saving strategy for large-scale climate simulations
Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...
2018-01-22
Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less
Next Generation Performance Monitoring Data Needs for Nevada DOT
DOT National Transportation Integrated Search
2014-12-24
This report examines state-of-practice for performance measurement and focuses on federal requirements for traveler information mandated by SAFETEA-LU Section 1201 Real-Time System Management Information Program. Guidance for November 2016 compliance...
Constraint monitoring in TOSCA
NASA Technical Reports Server (NTRS)
Beck, Howard
1992-01-01
The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.
USDA-ARS?s Scientific Manuscript database
Thermal infrared band imagery provides key information for detecting wild fires, mapping land surface energy fluxes and evapotranspiration, monitoring urban heat fluxes and drought monitoring. Thermal infrared (TIR) imagery at fine resolution is required for field scale applications. However, therma...
Examining Adolescents' Strategic Processing during Online Reading with a Question-Generating Task
ERIC Educational Resources Information Center
Cho, Byeong-Young; Woodward, Lindsay; Li, Dan; Barlow, Wendy
2017-01-01
Forty-three high school students participated in an online reading task to generate a critical question on a controversial topic. Participants' concurrent verbal reports of strategy use (i.e., information location, meaning making, source evaluation, self-monitoring) and their reading outcome (i.e., the generated question) were evaluated with…
Finding the Maine Story in Hugh Cumbersome National Monitoring Datasets
What’s a manager, analyst, or concerned citizen to do with the complex datasets generated by State and Federal monitoring efforts? Is it possible to use such information to address Maine’s environmental issues without having a degree in informatics and statistics? This presentati...
Design and Realization of Online Monitoring System of Distributed New Energy and Renewable Energy
NASA Astrophysics Data System (ADS)
Tang, Yanfen; Zhou, Tao; Li, Mengwen; Zheng, Guotai; Li, Hao
2018-01-01
Aimed at difficult centralized monitoring and management of current distributed new energy and renewable energy generation projects due to great varieties, different communication protocols and large-scale difference, this paper designs a online monitoring system of new energy and renewable energy characterized by distributed deployment, tailorable functions, extendible applications and fault self-healing performance. This system is designed based on international general standard for grid information data model, formulates unified data acquisition and transmission standard for different types of new energy and renewable energy generation projects, and can realize unified data acquisition and real-time monitoring of new energy and renewable energy generation projects, such as solar energy, wind power, biomass energy, etc. within its jurisdiction. This system has applied in Beijing. At present, 576 projects are connected to the system. Good effect is achieved and stability and reliability of the system have been validated.
Personalized professional content recommendation
Xu, Songhua
2015-10-27
A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.
Ecosystem service information to benefit sustainability standards for commodity supply chains.
Chaplin-Kramer, Rebecca; Jonell, Malin; Guerry, Anne; Lambin, Eric F; Morgan, Alexis J; Pennington, Derric; Smith, Nathan; Franch, Jane Atkins; Polasky, Stephen
2015-10-01
The growing base of information about ecosystem services generated by ecologists, economists, and other scientists could improve the implementation, monitoring, and evaluation of commodity-sourcing standards being adopted by corporations to mitigate risk in their supply chains and achieve sustainability goals. This review examines various ways that information about ecosystem services could facilitate compliance with and auditing of commodity-sourcing standards. We also identify gaps in the current state of knowledge on the ecological effectiveness of sustainability standards and demonstrate how ecosystem-service information could complement existing monitoring efforts to build credible evidence. This paper is a call to the ecosystem-service scientists to engage in this decision context and tailor the information they are generating to the needs of the standards community, which we argue would offer greater efficiency of standards implementation for producers and enhanced effectiveness for standard scheme owners and corporations, and should thus lead to more sustainable outcomes for people and nature. © 2015 New York Academy of Sciences.
Temporal Informative Analysis in Smart-ICU Monitoring: M-HealthCare Perspective.
Bhatia, Munish; Sood, Sandeep K
2016-08-01
The rapid introduction of Internet of Things (IoT) Technology has boosted the service deliverance aspects of health sector in terms of m-health, and remote patient monitoring. IoT Technology is not only capable of sensing the acute details of sensitive events from wider perspectives, but it also provides a means to deliver services in time sensitive and efficient manner. Henceforth, IoT Technology has been efficiently adopted in different fields of the healthcare domain. In this paper, a framework for IoT based patient monitoring in Intensive Care Unit (ICU) is presented to enhance the deliverance of curative services. Though ICUs remained a center of attraction for high quality care among researchers, still number of studies have depicted the vulnerability to a patient's life during ICU stay. The work presented in this study addresses such concerns in terms of efficient monitoring of various events (and anomalies) with temporal associations, followed by time sensitive alert generation procedure. In order to validate the system, it was deployed in 3 ICU room facilities for 30 days in which nearly 81 patients were monitored during their ICU stay. The results obtained after implementation depicts that IoT equipped ICUs are more efficient in monitoring sensitive events as compared to manual monitoring and traditional Tele-ICU monitoring. Moreover, the adopted methodology for alert generation with information presentation further enhances the utility of the system.
A visual analytics approach for pattern-recognition in patient-generated data.
Feller, Daniel J; Burgermaster, Marissa; Levine, Matthew E; Smaldone, Arlene; Davidson, Patricia G; Albers, David J; Mamykina, Lena
2018-06-13
To develop and test a visual analytics tool to help clinicians identify systematic and clinically meaningful patterns in patient-generated data (PGD) while decreasing perceived information overload. Participatory design was used to develop Glucolyzer, an interactive tool featuring hierarchical clustering and a heatmap visualization to help registered dietitians (RDs) identify associative patterns between blood glucose levels and per-meal macronutrient composition for individuals with type 2 diabetes (T2DM). Ten RDs participated in a within-subjects experiment to compare Glucolyzer to a static logbook format. For each representation, participants had 25 minutes to examine 1 month of diabetes self-monitoring data captured by an individual with T2DM and identify clinically meaningful patterns. We compared the quality and accuracy of the observations generated using each representation. Participants generated 50% more observations when using Glucolyzer (98) than when using the logbook format (64) without any loss in accuracy (69% accuracy vs 62%, respectively, p = .17). Participants identified more observations that included ingredients other than carbohydrates using Glucolyzer (36% vs 16%, p = .027). Fewer RDs reported feelings of information overload using Glucolyzer compared to the logbook format. Study participants displayed variable acceptance of hierarchical clustering. Visual analytics have the potential to mitigate provider concerns about the volume of self-monitoring data. Glucolyzer helped dietitians identify meaningful patterns in self-monitoring data without incurring perceived information overload. Future studies should assess whether similar tools can support clinicians in personalizing behavioral interventions that improve patient outcomes.
Why and how to monitor the cost and evaluate the cost-effectiveness of HIV services in countries.
Beck, Eduard J; Santas, Xenophon M; Delay, Paul R
2008-07-01
The number of people in the world living with HIV is increasing as HIV-related mortality has declined but the annual number of people newly infected with HIV has not. The international response to contain the HIV pandemic, meanwhile, has grown. Since 2006, an international commitment to scale up prevention, treatment, care and support services in middle and lower-income countries by 2010 has been part of the Universal Access programme, which itself plays an important part in achieving the Millennium Development Goals by 2015. Apart from providing technical support, donor countries and agencies have substantially increased their funding to enable countries to scale up HIV services. Many countries have been developing their HIV monitoring and evaluation systems to generate the strategic information required to track their response and ensure the best use of the new funds. Financial information is an important aspect of the strategic information required for scaling up existing services as well as assessing the effect of new ones. It involves two components: tracking the money available and spent on HIV at all levels, through budget tracking, national health accounts and national AIDS spending assessments, and estimating the cost and efficiency of HIV services. The cost of service provision should be monitored over time, whereas evaluations of the cost-effectiveness of services are required periodically; both should be part of any country's HIV monitoring and evaluation system. This paper provides country examples of the complementary relationship between monitoring the cost of HIV services and evaluating their cost-effectiveness. It also summarizes global initiatives that enable countries to develop their own HIV monitoring and evaluation systems and to generate relevant, robust and up-to-date strategic information.
Monitoring item and source information: evidence for a negative generation effect in source memory.
Jurica, P J; Shimamura, A P
1999-07-01
Item memory and source memory were assessed in a task that simulated a social conversation. Participants generated answers to questions or read statements presented by one of three sources (faces on a computer screen). Positive generation effects were observed for item memory. That is, participants remembered topics of conversation better if they were asked questions about the topics than if they simply read statements about topics. However, a negative generation effect occurred for source memory. That is, remembering the source of some information was disrupted if participants were required to answer questions pertaining to that information. These findings support the notion that item and source memory are mediated, as least in part, by different processes during encoding.
Neural mechanisms of mood-induced modulation of reality monitoring in schizophrenia
Subramaniam, Karuna; Ranasinghe, Kamalini G.; Mathalon, Daniel; Nagarajan, Srikantan; Vinogradov, Sophia
2017-01-01
Reality monitoring is the ability to accurately distinguish the source of self-generated information from externally-presented information. Although people with schizophrenia (SZ) show impaired reality monitoring, nothing is known about how mood state influences this higher-order cognitive process. Accordingly, we induced positive, neutral and negative mood states to test how different mood states modulate subsequent reality monitoring performance. Our findings indicate that mood affected reality monitoring performance in HC and SZ participants in both similar and dissociable ways. Only a positive mood facilitated task performance in Healthy Control (HC) subjects, whereas a negative mood facilitated task performance in SZ subjects. Yet, when both HC and SZ participants were in a positive mood, they recruited medial prefrontal cortex (mPFC) to bias better subsequent self-generated item identification, despite the fact that mPFC signal was reduced in SZ participants. Additionally, in SZ subjects, negative mood states also modulated left and right dorsal mPFC signal to bias better externally-presented item identification. Together our findings reveal that although the mPFC is hypoactive in SZ participants, mPFC signal plays a functional role in mood–cognition interactions during both positive and negative mood states to facilitate subsequent reality monitoring decision-making. PMID:28162778
Zhang, Jun; Tian, Gui Yun; Marindra, Adi M J; Sunny, Ali Imam; Zhao, Ao Bo
2017-01-29
In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well.
Lateralization of spatial information processing in response monitoring
Stock, Ann-Kathrin; Beste, Christian
2014-01-01
The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information. PMID:24550855
NASA Astrophysics Data System (ADS)
Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro
2018-02-01
Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.
Enabling Self-Monitoring Data Exchange in Participatory Medicine.
Lopez-Campos, Guillermo; Ofoghi, Bahadorreza; Martin-Sanchez, Fernando
2015-01-01
The development of new methods, devices and apps for self-monitoring have enabled the extension of the application of these approaches for consumer health and research purposes. The increase in the number and variety of devices has generated a complex scenario where reporting guidelines and data exchange formats will be needed to ensure the quality of the information and the reproducibility of results of the experiments. Based on the Minimal Information for Self Monitoring Experiments (MISME) reporting guideline we have developed an XML format (MISME-ML) to facilitate data exchange for self monitoring experiments. We have also developed a sample instance to illustrate the concept and a Java MISME-ML validation tool. The implementation and adoption of these tools should contribute to the consolidation of a set of methods that ensure the reproducibility of self monitoring experiments for research purposes.
NASA Astrophysics Data System (ADS)
Bai, F.; Gagar, D.; Foote, P.; Zhao, Y.
2017-02-01
Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of < 1 - 7.1 % of the monitored region compared to 2.7% for the AIC method and a range of 1.8-9.4% for the conventional Fixed Threshold method at different threshold levels.
The Custom Search allows users to search for and generate customized data downloads of pollutant loadings information. Users can select varying levels of detail for outputs: annual, monitoring period, and facility level.
Calibration of Heat Stress Monitor and its Measurement Uncertainty
NASA Astrophysics Data System (ADS)
Ekici, Can
2017-07-01
Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.
Construction of Green Tide Monitoring System and Research on its Key Techniques
NASA Astrophysics Data System (ADS)
Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.
2018-04-01
As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.
Zhang, Jun; Tian, Gui Yun; Marindra, Adi M. J.; Sunny, Ali Imam; Zhao, Ao Bo
2017-01-01
In recent few years, the antenna and sensor communities have witnessed a considerable integration of radio frequency identification (RFID) tag antennas and sensors because of the impetus provided by internet of things (IoT) and cyber-physical systems (CPS). Such types of sensor can find potential applications in structural health monitoring (SHM) because of their passive, wireless, simple, compact size, and multimodal nature, particular in large scale infrastructures during their lifecycle. The big data from these ubiquitous sensors are expected to generate a big impact for intelligent monitoring. A remarkable number of scientific papers demonstrate the possibility that objects can be remotely tracked and intelligently monitored for their physical/chemical/mechanical properties and environment conditions. Most of the work focuses on antenna design, and significant information has been generated to demonstrate feasibilities. Further information is needed to gain deep understanding of the passive RFID antenna sensor systems in order to make them reliable and practical. Nevertheless, this information is scattered over much literature. This paper is to comprehensively summarize and clearly highlight the challenges and state-of-the-art methods of passive RFID antenna sensors and systems in terms of sensing and communication from system point of view. Future trends are also discussed. The future research and development in UK are suggested as well. PMID:28146067
Margusino-Framiñán, Luis; Cid-Silva, Purificación; Mena-de-Cea, Álvaro; Sanclaudio-Luhía, Ana Isabel; Castro-Castro, José Antonio; Vázquez-González, Guillermo; Martín-Herranz, Isabel
2017-01-01
Two out of six strategic axes of pharmaceutical care in our hospital are quality and safety of care, and the incorporation of information technologies. Based on this, an information system was developed in the outpatient setting for pharmaceutical care of patients with chronic hepatitis C, SiMON-VC, which would improve the quality and safety of their pharmacotherapy. The objective of this paper is to describe requirements, structure and features of Si- MON-VC. Requirements demanded were that the information system would enter automatically all critical data from electronic clinical records at each of the visits to the Outpatient Pharmacy Unit, allowing the generation of events and alerts, documenting the pharmaceutical care provided, and allowing the use of data for research purposes. In order to meet these requirements, 5 sections were structured for each patient in SiMON-VC: Main Record, Events, Notes, Monitoring Graphs and Tables, and Follow-up. Each section presents a number of tabs with those coded data needed to monitor patients in the outpatient unit. The system automatically generates alerts for assisted prescription validation, efficacy and safety of using antivirals for the treatment of this disease. It features a completely versatile Indicator Control Panel, where temporary monitoring standards and alerts can be set. It allows the generation of reports, and their export to the electronic clinical record. It also allows data to be exported to the usual operating systems, through Big Data and Business Intelligence. Summing up, we can state that SiMON-VC improves the quality of pharmaceutical care provided in the outpatient pharmacy unit to patients with chronic hepatitis C, increasing the safety of antiviral therapy. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Proteomic profiling of white muscle from freshwater catfish Rita rita.
Mohanty, Bimal Prasanna; Mitra, Tandrima; Banerjee, Sudeshna; Bhattacharjee, Soma; Mahanty, Arabinda; Ganguly, Satabdi; Purohit, Gopal Krishna; Karunakaran, Dhanasekar; Mohanty, Sasmita
2015-06-01
Muscle tissues contribute 34-48 % of the total body mass in fish. Proteomic analysis enables better understanding of the skeletal muscle physiology and metabolism. A proteome map reflects the general fingerprinting of the fish species and has the potential to identify novel proteins which could serve as biomarkers for many aspects of aquaculture including fish physiology and growth, flesh quality, food safety and aquatic environmental monitoring. The freshwater catfish Rita rita of the family Bagridae inhabiting the tropical rivers and estuaries is an important food fish with high nutritive value and is also considered a species of choice in riverine pollution monitoring. Omics information that could enhance utility of this species in molecular research is meager. Therefore, in the present study, proteomic analysis of Rita rita muscle has been carried out and functional genomics data have been generated. A reference muscle proteome has been developed, and 23 protein spots, representing 18 proteins, have been identified by MALDI-TOF/TOF-MS and LC-MS/MS. Besides, transcript information on a battery of heat shock proteins (Hsps) has been generated. The functional genomics information generated could act as the baseline data for further molecular research on this species.
Digital Controller For Emergency Beacon
NASA Technical Reports Server (NTRS)
Ivancic, William D.
1990-01-01
Prototype digital controller intended for use in 406-MHz emergency beacon. Undergoing development according to international specifications, 406-MHz emergency beacon system includes satellites providing worldwide monitoring of beacons, with Doppler tracking to locate each beacon within 5 km. Controller turns beacon on and off and generates binary codes identifying source (e.g., ship, aircraft, person, or vehicle on land). Codes transmitted by phase modulation. Knowing code, monitor attempts to communicate with user, monitor uses code information to dispatch rescue team appropriate to type and locations of carrier.
Sands, D Z; Wald, J S
2014-08-15
Address current topics in consumer health informatics. Literature review. Current health care delivery systems need to be more effective in the management of chronic conditions as the population turns older and experiences escalating chronic illness that threatens to consume more health care resources than countries can afford. Most health care systems are positioned poorly to accommodate this. Meanwhile, the availability of ever more powerful and cheaper information and communication technology, both for professionals and consumers, has raised the capacity to gather and process information, communicate more effectively, and monitor the quality of care processes. Adapting health care systems to serve current and future needs requires new streams of data to enable better self-management, improve shared decision making, and provide more virtual care. Changes in reimbursement for health care services, increased adoption of relevant technologies, patient engagement, and calls for data transparency raise the importance of patient-generated health information, remote monitoring, non-visit based care, and other innovative care approaches that foster more frequent contact with patients and better management of chronic conditions.
A Scalable Monitoring for the CMS Filter Farm Based on Elasticsearch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andre, J.M.; et al.
2015-12-23
A flexible monitoring system has been designed for the CMS File-based Filter Farm making use of modern data mining and analytics components. All the metadata and monitoring information concerning data flow and execution of the HLT are generated locally in the form of small documents using the JSON encoding. These documents are indexed into a hierarchy of elasticsearch (es) clusters along with process and system log information. Elasticsearch is a search server based on Apache Lucene. It provides a distributed, multitenant-capable search and aggregation engine. Since es is schema-free, any new information can be added seamlessly and the unstructured informationmore » can be queried in non-predetermined ways. The leaf es clusters consist of the very same nodes that form the Filter Farm thus providing natural horizontal scaling. A separate central” es cluster is used to collect and index aggregated information. The fine-grained information, all the way to individual processes, remains available in the leaf clusters. The central es cluster provides quasi-real-time high-level monitoring information to any kind of client. Historical data can be retrieved to analyse past problems or correlate them with external information. We discuss the design and performance of this system in the context of the CMS DAQ commissioning for LHC Run 2.« less
NASA Technical Reports Server (NTRS)
Butler, G. F.; Graves, A. T.; Disbrow, J. D.; Duke, E. L.
1989-01-01
A joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on knowledge-based systems has been agreed. Under the agreement, a flight status monitor knowledge base developed at Ames-Dryden has been implemented using the real-time AI (artificial intelligence) toolkit MUSE, which was developed in the UK. Here, the background to the cooperation is described and the details of the flight status monitor and a prototype MUSE implementation are presented. It is noted that the capabilities of the expert-system flight status monitor to monitor data downlinked from the flight test aircraft and to generate information on the state and health of the system for the test engineers provides increased safety during flight testing of new systems. Furthermore, the expert-system flight status monitor provides the systems engineers with ready access to the large amount of information required to describe a complex aircraft system.
A remote condition monitoring system for wind-turbine based DG systems
NASA Astrophysics Data System (ADS)
Ma, X.; Wang, G.; Cross, P.; Zhang, X.
2012-05-01
In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.
[Source monitoring: general presentation and review of literature in schizophrenia].
Ferchiou, A; Schürhoff, F; Bulzacka, E; Mahbouli, M; Leboyer, M; Szöke, A
2010-09-01
SOURCE MONITORING FRAMEWORK: Source monitoring refers to the ability to remember the origin of information. Three source monitoring processes can be distinguished: external source monitoring, internal or self-monitoring and reality monitoring (i.e. discrimination between internal and external sources of information). Source monitoring decisions are based on memory characteristics recorded such as perceptions, contextual information or emotional reactions and heuristic or more controlled judgement processes. Several studies suggested that specific structures in the prefrontal and the mediotemporal lobes are the main areas implicated in source monitoring. A typical source monitoring paradigm includes an items generation stage and a second stage of recognition of items (old versus new) and identification of their sources: external (usually the examiner) or internal (the subject). Several indices can be calculated based on the raw data such as the number of false alarms, attribution biases or discrimination indexes. To date, there is no standardized source monitoring task and differences in the type of items used (words, pictures), in the cognitive or emotional effort involved or in the delay between the two test stages, contribute to the heterogeneity of results. Factors such as age (either very young or very old) and emotions influence source monitoring performances. Influence of gender was not properly explored, whereas the role of IQ and selective attention is still debated. Source monitoring deficits are observed mainly in disorders affecting frontotemporal areas, such as frontal trauma, Alzheimer's disease or frontotemporal dementia. Source monitoring errors (e.g. external misattribution of self-generated information) are observed in schizophrenia and seem to correlate with positive symptomatology, in particular auditory hallucinations, thought intrusion and alien control symptoms. These results are of particular interest in clinical research because source monitoring is one of the rare cognitive tests showing a correlation with the positive dimension. Source monitoring deficits have been proposed as a potential explanation for the positive symptoms and some, but not all studies lent support to this hypothesis. Heterogeneity of studied samples, in particular different criteria to define hallucinating subjects (e.g. currently versus anytime during their lives), could explain the discordant results. Source monitoring impairments were observed in pharmacological models of psychosis, in first degree relatives of schizophrenic patients, and also in the general population associated with schizotypal dimensions. These results support a relationship between source monitoring deficits and some of the symptomatic dimensions of the schizophrenic spectrum but still await replication. Some studies found source monitoring deficits in other psychiatric conditions such as mania or obsessive-compulsive disorder. Thus, those studies suggest that source monitoring deficits may be not specific to schizophrenia. Source monitoring competencies are critical for good (i.e. adapted) everyday functioning. Source monitoring deficits have been suggested as a potential explanation for some (or all) positive psychotic symptoms. However, to date, methodological inconsistencies (especially with regard to test design and choice of subjects' samples) have precluded firm, definite conclusions. Copyright © 2010 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Transaction aware tape-infrastructure monitoring
NASA Astrophysics Data System (ADS)
Nikolaidis, Fotios; Kruse, Daniele Francesco
2014-06-01
Administrating a large scale, multi protocol, hierarchical tape infrastructure like the CERN Advanced STORage manager (CASTOR)[2], which stores now 100 PB (with an increasing step of 25 PB per year), requires an adequate monitoring system for quick spotting of malfunctions, easier debugging and on demand report generation. The main challenges for such system are: to cope with CASTOR's log format diversity and its information scattered among several log files, the need for long term information archival, the strict reliability requirements and the group based GUI visualization. For this purpose, we have designed, developed and deployed a centralized system consisting of four independent layers: the Log Transfer layer for collecting log lines from all tape servers to a single aggregation server, the Data Mining layer for combining log data into transaction context, the Storage layer for archiving the resulting transactions and finally the Web UI layer for accessing the information. Having flexibility, extensibility and maintainability in mind, each layer is designed to work as a message broker for the next layer, providing a clean and generic interface while ensuring consistency, redundancy and ultimately fault tolerance. This system unifies information previously dispersed over several monitoring tools into a single user interface, using Splunk, which also allows us to provide information visualization based on access control lists (ACL). Since its deployment, it has been successfully used by CASTOR tape operators for quick overview of transactions, performance evaluation, malfunction detection and from managers for report generation.
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero
2016-12-01
Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.
A Speech Controlled Information-Retrieval System,
1983-01-01
instance, monitoring the speed of articulation continuously could lead to a faster time warping algorithm by restricting the amount of overlapping of...M E (1975) "LEX - a lexical analyser generator" CSTR 39, Bell Laboratories. ’.
NASA Astrophysics Data System (ADS)
Gvillo, D.; Ragheb, M.; Parker, M.; Swartz, S.
1987-05-01
A Production-Rule Analysis System is developed for Nuclear Plant Monitoring. The signals generated by the Zion-1 Plant are considered. A Situation-Assessment and Decision-Aid capability is provided for monitoring the integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems. A total of 41 signals are currently fed as facts to an Inference Engine functioning in the backward-chaining mode and built along the same structure as the E-Mycin system. The Goal-Tree constituting the Knowledge Base was generated using a representation in the form of Fault Trees deduced from plant procedures information. The system is constructed in support of the Data Analysis and Emergency Preparedness tasks at the Illinois Radiological Emergency Assessment Center (REAC).
Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.
Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726
Canadian ENGOs in governance of water resources: information needs and monitoring practices.
Kebo, Sasha; Bunch, Martin J
2013-11-01
Water quality monitoring involves a complex set of steps and a variety of approaches. Its goals include understanding of aquatic habitats, informing management and facilitating decision making, and educating citizens. Environmental nongovernmental organizations (ENGOs) are increasingly engaged in water quality monitoring and act as environmental watchdogs and stewards of water resources. These organizations exhibit different monitoring mandates. As government involvement in water quality monitoring continues to decline, it becomes essential that we understand their modi operandi. By doing so, we can enhance efficacy and encourage data sharing and communication. This research examined Canadian ENGOs that collect their own data on water quality with respect to water quality monitoring activities and information needs. This work had a twofold purpose: (1) to enhance knowledge about the Canadian ENGOs operating in the realm of water quality monitoring and (2) to guide and inform development of web-based geographic information systems (GIS) to support water quality monitoring, particularly using benthic macroinvertebrate protocols. A structured telephone survey was administered across 10 Canadian provinces to 21 ENGOs that undertake water quality monitoring. This generated information about barriers and challenges of data sharing, commonly collected metrics, human resources, and perceptions of volunteer-collected data. Results are presented on an aggregate level and among different groups of respondents. Use of geomatics technology was not consistent among respondents, and we found no noteworthy differences between organizations that did and did not use GIS tools. About one third of respondents did not employ computerized systems (including databases and spreadsheets) to support data management, analysis, and sharing. Despite their advantage as a holistic water quality indicator, benthic macroinvertebrates (BMIs) were not widely employed in stream monitoring. Although BMIs are particularly suitable for the purpose of citizen education, few organizations collected this metric, despite having public education and awareness as part of their mandate.
Epidemiological Studies to Support the Development of Next Generation Influenza Vaccines.
Petrie, Joshua G; Gordon, Aubree
2018-03-26
The National Institute of Allergy and Infectious Diseases recently published a strategic plan for the development of a universal influenza vaccine. This plan focuses on improving understanding of influenza infection, the development of influenza immunity, and rational design of new vaccines. Epidemiological studies such as prospective, longitudinal cohort studies are essential to the completion of these objectives. In this review, we discuss the contributions of epidemiological studies to our current knowledge of vaccines and correlates of immunity, and how they can contribute to the development and evaluation of the next generation of influenza vaccines. These studies have been critical in monitoring the effectiveness of current influenza vaccines, identifying issues such as low vaccine effectiveness, reduced effectiveness among those who receive repeated vaccination, and issues related to egg adaptation during the manufacturing process. Epidemiological studies have also identified population-level correlates of protection that can inform the design and development of next generation influenza vaccines. Going forward, there is an enduring need for epidemiological studies to continue advancing knowledge of correlates of protection and the development of immunity, to evaluate and monitor the effectiveness of next generation influenza vaccines, and to inform recommendations for their use.
The utility of an automated electronic system to monitor and audit transfusion practice.
Grey, D E; Smith, V; Villanueva, G; Richards, B; Augustson, B; Erber, W N
2006-05-01
Transfusion laboratories with transfusion committees have a responsibility to monitor transfusion practice and generate improvements in clinical decision-making and red cell usage. However, this can be problematic and expensive because data cannot be readily extracted from most laboratory information systems. To overcome this problem, we developed and introduced a system to electronically extract and collate extensive amounts of data from two laboratory information systems and to link it with ICD10 clinical codes in a new database using standard information technology. Three data files were generated from two laboratory information systems, ULTRA (version 3.2) and TM, using standard information technology scripts. These were patient pre- and post-transfusion haemoglobin, blood group and antibody screen, and cross match and transfusion data. These data together with ICD10 codes for surgical cases were imported into an MS ACCESS database and linked by means of a unique laboratory number. Queries were then run to extract the relevant information and processed in Microsoft Excel for graphical presentation. We assessed the utility of this data extraction system to audit transfusion practice in a 600-bed adult tertiary hospital over an 18-month period. A total of 52 MB of data were extracted from the two laboratory information systems for the 18-month period and together with 2.0 MB theatre ICD10 data enabled case-specific transfusion information to be generated. The audit evaluated 15,992 blood group and antibody screens, 25,344 cross-matched red cell units and 15,455 transfused red cell units. Data evaluated included cross-matched to transfusion ratios and pre- and post-transfusion haemoglobin levels for a range of clinical diagnoses. Data showed significant differences between clinical units and by ICD10 code. This method to electronically extract large amounts of data and linkage with clinical databases has provided a powerful and sustainable tool for monitoring transfusion practice. It has been successfully used to identify areas requiring education, training and clinical guidance and allows for comparison with national haemoglobin-based transfusion guidelines.
Students as Citizen Scientists - Earth Conservation Corps
This document has an overview of the student workshops on water quality monitoring used to generate citizen scientists. It also includes the main components of the curriculum and contact information for the Earth Conservation Corps to interested parties.
Toyomaki, Atsuhito; Hashimoto, Naoki; Kako, Yuki; Murohashi, Harumitsu; Kusumi, Ichiro
2017-01-01
Several studies of self-monitoring dysfunction in schizophrenia have focused on the sense of agency to motor action using behavioral and psychophysiological techniques. So far, no study has ever tried to investigate whether the sense of agency or causal attribution for external events produced by self-generated decision-making is abnormal in schizophrenia. The purpose of this study was to investigate neural responses to feedback information produced by self-generated or other-generated decision-making in a multiplayer gambling task using even-related potentials and electroencephalogram synchronization. We found that the late positive component and theta/alpha synchronization were increased in response to feedback information in the self-decision condition in normal controls, but that these responses were significantly decreased in patients with schizophrenia. These neural activities thus reflect the self-reference effect that affects the cognitive appraisal of external events following decision-making and their impairment in schizophrenia.
Research on snow cover monitoring of Northeast China using Fengyun Geostationary Satellite
NASA Astrophysics Data System (ADS)
Wu, Tong; Gu, Lingjia; Ren, Ruizhi; Zhou, TIngting
2017-09-01
Snow cover information has great significance for monitoring and preventing snowstorms. With the development of satellite technology, geostationary satellites are playing more important roles in snow monitoring. Currently, cloud interference is a serious problem for obtaining accurate snow cover information. Therefore, the cloud pixels located in the MODIS snow products are usually replaced by cloud-free pixels around the day, which ignores snow cover dynamics. FengYun-2(FY-2) is the first generation of geostationary satellite in our country which complements the polar orbit satellite. The snow cover monitoring of Northeast China using FY-2G data in January and February 2016 is introduced in this paper. First of all, geometric and radiometric corrections are carried out for visible and infrared channels. Secondly, snow cover information is extracted according to its characteristics in different channels. Multi-threshold judgment methods for the different land types and similarity separation techniques are combined to discriminate snow and cloud. Furthermore, multi-temporal data is used to eliminate cloud effect. Finally, the experimental results are compared with the MOD10A1 and MYD10A1 (MODIS daily snow cover) product. The MODIS product can provide higher resolution of the snow cover information in cloudless conditions. Multi-temporal FY-2G data can get more accurate snow cover information in cloudy conditions, which is beneficial for monitoring snowstorms and climate changes.
A monitoring system based on electric vehicle three-stage wireless charging
NASA Astrophysics Data System (ADS)
Hei, T.; Liu, Z. Z.; Yang, Y.; Hongxing, CHEN; Zhou, B.; Zeng, H.
2016-08-01
An monitoring system for three-stage wireless charging was designed. The vehicle terminal contained the core board which was used for battery information collection and charging control and the power measurement and charging control core board was provided at the transmitting terminal which communicated with receiver by Bluetooth. A touch-screen display unit was designed based on MCGS (Monitor and Control Generated System) to simulate charging behavior and to debug the system conveniently. The practical application shown that the system could be stable and reliable, and had a favorable application foreground.
Strekalova, Yulia A; James, Vaughan S
2017-09-01
User-generated information on the Internet provides opportunities for the monitoring of health information consumer attitudes. For example, information about cancer prevention may cause decisional conflict. Yet posts and conversations shared by health information consumers online are often not readily actionable for interpretation and decision-making due to their unstandardized format. This study extends prior research on the use of natural language as a predictor of consumer attitudes and provides a link to decision-making by evaluating the predictive role of uncertainty indicators expressed in natural language. Analyzed data included free-text comments and structured scale responses related to information about skin cancer prevention options. The study identified natural language indicators of uncertainty and showed that it can serve as a predictor of decisional conflict. The natural indicators of uncertainty reported here can facilitate the monitoring of health consumer perceptions about cancer prevention recommendations and inform education and communication campaign planning and evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakafuji, Dora; Gouveia, Lauren
This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timelinessmore » metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities« less
EPA Biofuels Research: Biofuel Vapor Generation and Monitoring Methods
The interest in renewable fuels and alternative energy sources has stimulated development of alternatives to traditional petroleum-based fuels. The EPA's Office of Transportation Air Quality (OTAQ) requires information regarding the potential health hazards ofthese fuels regardin...
Classifying elephant behaviour through seismic vibrations.
Mortimer, Beth; Rees, William Lake; Koelemeijer, Paula; Nissen-Meyer, Tarje
2018-05-07
Seismic waves - vibrations within and along the Earth's surface - are ubiquitous sources of information. During propagation, physical factors can obscure information transfer via vibrations and influence propagation range [1]. Here, we explore how terrain type and background seismic noise influence the propagation of seismic vibrations generated by African elephants. In Kenya, we recorded the ground-based vibrations of different wild elephant behaviours, such as locomotion and infrasonic vocalisations [2], as well as natural and anthropogenic seismic noise. We employed techniques from seismology to transform the geophone recordings into source functions - the time-varying seismic signature generated at the source. We used computer modelling to constrain the propagation ranges of elephant seismic vibrations for different terrains and noise levels. Behaviours that generate a high force on a sandy terrain with low noise propagate the furthest, over the kilometre scale. Our modelling also predicts that specific elephant behaviours can be distinguished and monitored over a range of propagation distances and noise levels. We conclude that seismic cues have considerable potential for both behavioural classification and remote monitoring of wildlife. In particular, classifying the seismic signatures of specific behaviours of large mammals remotely in real time, such as elephant running, could inform on poaching threats. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Zein-Sabatto, Saleh; Mikhail, Maged; Bodruzzaman, Mohammad; DeSimio, Martin; Derriso, Mark; Behbahani, Alireza
2012-06-01
It has been widely accepted that data fusion and information fusion methods can improve the accuracy and robustness of decision-making in structural health monitoring systems. It is arguably true nonetheless, that decision-level is equally beneficial when applied to integrated health monitoring systems. Several decisions at low-levels of abstraction may be produced by different decision-makers; however, decision-level fusion is required at the final stage of the process to provide accurate assessment about the health of the monitored system as a whole. An example of such integrated systems with complex decision-making scenarios is the integrated health monitoring of aircraft. Thorough understanding of the characteristics of the decision-fusion methodologies is a crucial step for successful implementation of such decision-fusion systems. In this paper, we have presented the major information fusion methodologies reported in the literature, i.e., probabilistic, evidential, and artificial intelligent based methods. The theoretical basis and characteristics of these methodologies are explained and their performances are analyzed. Second, candidate methods from the above fusion methodologies, i.e., Bayesian, Dempster-Shafer, and fuzzy logic algorithms are selected and their applications are extended to decisions fusion. Finally, fusion algorithms are developed based on the selected fusion methods and their performance are tested on decisions generated from synthetic data and from experimental data. Also in this paper, a modeling methodology, i.e. cloud model, for generating synthetic decisions is presented and used. Using the cloud model, both types of uncertainties; randomness and fuzziness, involved in real decision-making are modeled. Synthetic decisions are generated with an unbiased process and varying interaction complexities among decisions to provide for fair performance comparison of the selected decision-fusion algorithms. For verification purposes, implementation results of the developed fusion algorithms on structural health monitoring data collected from experimental tests are reported in this paper.
Production and use of estimates for monitoring progress in the health sector: the case of Bangladesh
Ahsan, Karar Zunaid; Tahsina, Tazeen; Iqbal, Afrin; Ali, Nazia Binte; Chowdhury, Suman Kanti; Huda, Tanvir M.; Arifeen, Shams El
2017-01-01
ABSTRACT Background: In order to support the progress towards the post-2015 development agenda for the health sector, the importance of high-quality and timely estimates has become evident both globally and at the country level. Objective and Methods: Based on desk review, key informant interviews and expert panel discussions, the paper critically reviews health estimates from both the local (i.e. nationally generated information by the government and other agencies) and the global sources (which are mostly modeled or interpolated estimates developed by international organizations based on different sources of information), and assesses the country capacity and monitoring strategies to meet the increasing data demand in the coming years. Primarily, this paper provides a situation analysis of Bangladesh in terms of production and use of health estimates for monitoring progress towards the post-2015 development goals for the health sector. Results: The analysis reveals that Bangladesh is data rich, particularly from household surveys and health facility assessments. Practices of data utilization also exist, with wide acceptability of survey results for informing policy, programme review and course corrections. Despite high data availability from multiple sources, the country capacity for providing regular updates of major global health estimates/indicators remains low. Major challenges also include limited human resources, capacity to generate quality data and multiplicity of data sources, where discrepancy and lack of linkages among different data sources (local sources and between local and global estimates) present emerging challenges for interpretation of the resulting estimates. Conclusion: To fulfill the increased data requirement for the post-2015 era, Bangladesh needs to invest more in electronic data capture and routine health information systems. Streamlining of data sources, integration of parallel information systems into a common platform, and capacity building for data generation and analysis are recommended as priority actions for Bangladesh in the coming years. In addition to automation of routine health information systems, establishing an Indicator Reference Group for Bangladesh to analyze data; building country capacity in data quality assessment and triangulation; and feeding into global, inter-agency estimates for better reporting would address a number of mentioned challenges in the short- and long-run. PMID:28532305
Soil moisture monitoring for crop management
NASA Astrophysics Data System (ADS)
Boyd, Dale
2015-07-01
The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts
Engine health monitoring: An advanced system
NASA Technical Reports Server (NTRS)
Dyson, R. J. E.
1981-01-01
The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.
Yeung, Edward S.; Chen, Guoying
1990-05-01
A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.
ERIC Educational Resources Information Center
Denton, Carolyn A.; Enos, Mischa; York, Mary J.; Francis, David J.; Barnes, Marcia A.; Kulesz, Paulina A.; Fletcher, Jack M.; Carter, Suzanne
2015-01-01
Based on the analysis of 620 think-aloud verbal protocols from students in grades 7, 9, and 11, we examined students' conscious engagement in inference generation, paraphrasing, verbatim text repetition, and monitoring while reading narrative or informational texts that were either at or above the students' current reading levels. Students were…
A Forest Fire Sensor Web Concept with UAVSAR
NASA Astrophysics Data System (ADS)
Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.
2008-12-01
We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.
How much can a single webcam tell to the operation of a water system?
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero
2017-04-01
Recent advances in environmental monitoring are making a wide range of hydro-meteorological data available with a great potential to enhance understanding, modelling and management of environmental processes. Despite this progress, continuous monitoring of highly spatiotemporal heterogeneous processes is not well established yet, especially in inaccessible sites. In this context, the unprecedented availability of user-generated data on the web might open new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this work, we focus on snow and contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. The operational value of the obtained virtual snow indexes is then assessed for a real-world water-management problem, where we use these indexes for informing the daily control of a regulated lake supplying water for multiple purposes. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available.
Optoacoustic Monitoring of Physiologic Variables
Esenaliev, Rinat O.
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964
Optoacoustic Monitoring of Physiologic Variables.
Esenaliev, Rinat O
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.
CHRONIOUS: a wearable platform for monitoring and management of patients with chronic disease.
Bellos, Christos; Papadopoulos, Athanassios; Rosso, Roberto; Fotiadis, Dimitrios I
2011-01-01
The CHRONIOUS system has been developed based on an open architecture design that consists of a set of subsystems which interact in order to provide all the needed services to the chronic disease patients. An advanced multi-parametric expert system is being implemented that fuses information effectively from various sources using intelligent techniques. Data are collected by sensors of a body network controlling vital signals while additional tools record dietary habits and plans, drug intake, environmental and biochemical parameters and activity data. The CHRONIOUS platform provides guidelines and standards for the future generations of "chronic disease management systems" and facilitates sophisticated monitoring tools. In addition, an ontological information retrieval system is being delivered satisfying the necessities for up-to-date clinical information of Chronic Obstructive pulmonary disease (COPD) and Chronic Kidney Disease (CKD). Moreover, support tools are being embedded in the system, such as the Mental Tools for the monitoring of patient mental health status. The integrated platform provides real-time patient monitoring and supervision, both indoors and outdoors and represents a generic platform for the management of various chronic diseases.
Methods of Measuring and Mapping of Landslide Areas
NASA Astrophysics Data System (ADS)
Skrzypczak, Izabela; Kokoszka, Wanda; Kogut, Janusz; Oleniacz, Grzegorz
2017-12-01
The problem of attracting new investment areas and the inability of current zoning areas, allows us to understand why it is impossible to completely rule out building on landslide areas. Therefore, it becomes important issue of monitoring areas at risk of landslides. Only through appropriate monitoring and proper development of measurements resulting as maps of areas at risk of landslides enables us to estimate the risk and the relevant economic calculation for the realization of the anticipated investment in such areas. The results of monitoring of the surface and in-depth of the landslides are supplemented with constant observation of precipitation. The previous analyses and monitoring of landslides show that some of them are continuously active. GPS measurements, especially with laser scanning provide a unique activity data acquired on the surface of each individual landslide. The development of high resolution numerical models of terrain and the creation of differential models based on subsequent measurements, informs us about the size of deformation, both in units of distance (displacements) and volume. The compatibility of the data with information from in-depth monitoring allows the generation of a very reliable in-depth model of landslide, and as a result proper calculation of the volume of colluvium. Programs presented in the article are a very effective tool to generate in-depth model of landslide. In Poland, the steps taken under the SOPO project i.e. the monitoring and description of landslides are absolutely necessary for social and economic reasons and they may have a significant impact on the economy and finances of individual municipalities and also a whole country economy.
Measuring Snow Precipitation in New Zealand- Challenges and Opportunities.
NASA Astrophysics Data System (ADS)
Renwick, J. A.; Zammit, C.
2015-12-01
Monitoring plays a pivotal role in determining sustainable strategy for efficient overall management of the water resource. Though periodic monitoring provides some information, only long-term monitoring can provide data sufficient in quantity and quality to determine trends and develop predictive models. These can support informed decisions about sustainable and efficient use of water resources in New Zealand. However the development of such strategies is underpinned by our understanding and our ability to measure all inputs in headwaters catchments, where most of the precipitation is falling. Historically due to the harsh environment New Zealand has had little to no formal high elevation monitoring stations for all climate and snow related parameters outside of ski field climate and snow stations. This leads to sparse and incomplete archived datasets. Due to the importance of these catchments to the New Zealand economy (eg irrigation, hydro-electricity generation, tourism) NIWA has developed a climate-snow and ice monitoring network (SIN) since 2006. This network extends existing monitoring by electricity generator and ski stations and it is used by a number of stakeholders. In 2014 the network comprises 13 stations located at elevation above 700masl. As part of the WMO Solid Precipitation Intercomparison Experiment (SPICE), NIWA is carrying out an intercomparison of precipitation data over the period 2013-2015 at Mueller Hut. The site was commissioned on 11 July 2013, set up on the 17th September 2013 and comprises two Geonor weighing bucket raingauges, one shielded and the other un-shielded, in association with a conventional tipping bucket raingauge and conventional climate and snow measurements (temperature, wind, solar radiation, relative humidity, snow depth and snow pillow). The presentation aims to outline the state of the current monitoring network in New Zealand, as well as the challenge and opportunities for measurement of precipitation in alpine environment.
Aung, Naing Naing; Crowe, Edward; Liu, Xingbo
2015-03-01
Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.
Sentinel-1 data exploitation for geohazard activity map generation
NASA Astrophysics Data System (ADS)
Barra, Anna; Solari, Lorenzo; Béjar-Pizarro, Marta; Monserrat, Oriol; Herrera, Gerardo; Bianchini, Silvia; Crosetto, Michele; María Mateos, Rosa; Sarro, Roberto; Moretti, Sandro
2017-04-01
This work is focused on geohazard mapping and monitoring by exploiting Sentinel-1 (A and B) data and the DInSAR (Differential interferometric SAR (Synthetic Aperture Radar)) techniques. Sometimes the interpretation of the DInSAR derived product (like the velocity map) can be complex, mostly for a final user who do not usually works with radar. The aim of this work is to generate, in a rapid way, a clear product to be easily exploited by the authorities in the geohazard management: intervention planning and prevention activities. Specifically, the presented methodology has been developed in the framework of the European project SAFETY, which is aimed at providing Civil Protection Authorities (CPA) with the capability of periodically evaluating and assessing the potential impact of geohazards (volcanic activity, earthquakes, landslides and subsidence) on urban areas. The methodology has three phases, the interferograms generation, the activity map generation, in terms of velocity and accumulated deformation (with time-series), and the Active Deformation Area (ADA) map generation. The last one is the final product, derived from the original activity map by analyzing the data in a Geographic Information System (GIS) environment, which isolate only the true deformation areas over the noise. This product can be more easily read by the authorities than the original activity map, i.e. can be better exploited to integrate other information and analysis. This product also permit an easy monitoring of the active areas.
RadWorks Project. ISS REM - to - BIRD - to - HERA: The Evolution of a Technology
NASA Technical Reports Server (NTRS)
McLeod, Catherine D.
2015-01-01
The advancement of particle detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. One such device, the TimePix, is being developed at CERN, and is providing the technology basis for the most recent line of radiation detection devices being developed by the NASA AES RadWorks project. The most fundamental of these devices, an ISS-Radiation Environment Monitor (REM), is installed as a USB device on ISS where it is monitoring the radiation environment on a perpetual basis. The second generation of this TimePix technology, the BIRD (Battery-operated Independent Radiation Detector), was flown on the NASA EFT-1 flight in December 2014. Data collected by BIRD was the first data made available from the Trapped Belt region of the Earth's atmosphere in over 40 years. The 3rdgeneration of this technology, the HERA (Hybrid Electronic Radiation Assessor), is planned to be integrated into the Orion EM-1, and EM-2 vehicles where it will monitor the radiation environment. For the EM-2 flight, HERA will provide Caution and Warning notification for SPEs as well as real time dose measurements for crew members. The development of this line of radiation detectors provide much greater information and characterization of charged particles in the space radiation environment than has been collected in the past, and in the process provide greater information to inform crew members of radiation related risks, while being very power and mass efficient.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; Fellows, Katie; King, Galatea; Lugo, Humberto; Jerrett, Michael; Meltzer, Dan; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-03-15
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; King, Galatea; Lugo, Humberto; Jerrett, Michael; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-01-01
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach. PMID:29543726
Monitoring and regulation of learning in medical education: the need for predictive cues.
de Bruin, Anique B H; Dunlosky, John; Cavalcanti, Rodrigo B
2017-06-01
Being able to accurately monitor learning activities is a key element in self-regulated learning in all settings, including medical schools. Yet students' ability to monitor their progress is often limited, leading to inefficient use of study time. Interventions that improve the accuracy of students' monitoring can optimise self-regulated learning, leading to higher achievement. This paper reviews findings from cognitive psychology and explores potential applications in medical education, as well as areas for future research. Effective monitoring depends on students' ability to generate information ('cues') that accurately reflects their knowledge and skills. The ability of these 'cues' to predict achievement is referred to as 'cue diagnosticity'. Interventions that improve the ability of students to elicit predictive cues typically fall into two categories: (i) self-generation of cues and (ii) generation of cues that is delayed after self-study. Providing feedback and support is useful when cues are predictive but may be too complex to be readily used. Limited evidence exists about interventions to improve the accuracy of self-monitoring among medical students or trainees. Developing interventions that foster use of predictive cues can enhance the accuracy of self-monitoring, thereby improving self-study and clinical reasoning. First, insight should be gained into the characteristics of predictive cues used by medical students and trainees. Next, predictive cue prompts should be designed and tested to improve monitoring and regulation of learning. Finally, the use of predictive cues should be explored in relation to teaching and learning clinical reasoning. Improving self-regulated learning is important to help medical students and trainees efficiently acquire knowledge and skills necessary for clinical practice. Interventions that help students generate and use predictive cues hold the promise of improved self-regulated learning and achievement. This framework is applicable to learning in several areas, including the development of clinical reasoning. © 2017 The Authors Medical Education published by Association for the Study of Medical Education and John Wiley & Sons Ltd.
DOT National Transportation Integrated Search
2011-01-01
Inductive loops are widely used nationwide for traffic monitoring as a data source for a variety of : needs in generating traffic information for operation and planning analysis, validations of travel : demand models, freight studies, pavement design...
Johnson, Rachel C.; Windell, Sean; Brandes, Patricia L.; Conrad, J. Louise; Ferguson, John; Goertler, Pascale A. L.; Harvey, Brett N.; Heublein, Joseph; Isreal, Joshua A.; Kratville, Daniel W.; Kirsch, Joseph E.; Perry, Russell W.; Pisciotto, Joseph; Poytress, William R.; Reece, Kevin; Swart, Brycen G.
2017-01-01
A robust monitoring network that provides quantitative information about the status of imperiled species at key life stages and geographic locations over time is fundamental for sustainable management of fisheries resources. For anadromous species, management actions in one geographic domain can substantially affect abundance of subsequent life stages that span broad geographic regions. Quantitative metrics (e.g., abundance, movement, survival, life history diversity, and condition) at multiple life stages are needed to inform how management actions (e.g., hatcheries, harvest, hydrology, and habitat restoration) influence salmon population dynamics. The existing monitoring network for endangered Sacramento River winterrun Chinook Salmon (SRWRC, Oncorhynchus tshawytscha) in California’s Central Valley was compared to conceptual models developed for each life stage and geographic region of the life cycle to identify relevant SRWRC metrics. We concluded that the current monitoring network was insufficient to diagnose when (life stage) and where (geographic domain) chronic or episodic reductions in SRWRC cohorts occur, precluding within- and among-year comparisons. The strongest quantitative data exist in the Upper Sacramento River, where abundance estimates are generated for adult spawners and emigrating juveniles. However, once SRWRC leave the upper river, our knowledge of their identity, abundance, and condition diminishes, despite the juvenile monitoring enterprise. We identified six system-wide recommended actions to strengthen the value of data generated from the existing monitoring network to assess resource management actions: (1) incorporate genetic run identification; (2) develop juvenile abundance estimates; (3) collect data for life history diversity metrics at multiple life stages; (4) expand and enhance real-time fish survival and movement monitoring; (5) collect fish condition data; and (6) provide timely public access to monitoring data in open data formats. To illustrate how updated technologies can enhance the existing monitoring to provide quantitative data on SRWRC, we provide examples of how each recommendation can address specific management issues.
NASA Technical Reports Server (NTRS)
Srivatsan, Raghavachari; Downing, David R.
1987-01-01
Discussed are the development and testing of a real-time takeoff performance monitoring algorithm. The algorithm is made up of two segments: a pretakeoff segment and a real-time segment. One-time imputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data for that takeoff. The real-time segment uses the scheduled performance data generated in the pretakeoff segment, runway length data, and measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. An important feature of this algorithm is the one-time estimation of the runway rolling friction coefficient. The algorithm was tested using a six-degree-of-freedom airplane model in a computer simulation. Results from a series of sensitivity analyses are also included.
An integrated Diet Monitoring Solution for nutrigenomic research.
Conti, Costanza; Rossi, Elena; Marceglia, Sara; Tauro, Vittorio; Rizzi, Federica; Lazzaroni, Monica; Barlassina, Cristina; Soldati, Laura; Cusi, Daniele
2015-01-01
The emergence of evidence pointing at diet as key risk factor for chronic diseases and at gene-diet interactions as key elements in the interplay between an individual genetic background and his/her lifestyle, pave the way for studies in nutrigenomics. Such studies need an integrated solution to collect, monitor and analyse a large set of data. In the frame of ATHENA, a European Commission FP7 project, we developed an integrated platform, called Dietary Monitoring Solution enabling the collection of phenotypic, genetic and lifestyle information, linked to a mHealth application tool. The data collection solution allows maintaining anonymized information and supports a number of features making it particularly suited for multicentre studies. The mHealth application was designed to translate the knowledge generated from research into a personalised prevention programme and to support the patient adherence to the programme.
Silicon Sheet Quality is Improved By Meniscus Control
NASA Technical Reports Server (NTRS)
Yates, D. A.; Hatch, A. E.; Goldsmith, J. M.
1983-01-01
Better quality silicon crystals for solar cells are possible with instrument that monitors position of meniscus as sheet of solid silicon is drawn from melt. Using information on meniscus height, instrument generates feedback signal to control melt temperature. Automatic control ensures more uniform silicon sheets.
The role of vocal individuality in conservation
Terry, Andrew MR; Peake, Tom M; McGregor, Peter K
2005-01-01
Identifying the individuals within a population can generate information on life history parameters, generate input data for conservation models, and highlight behavioural traits that may affect management decisions and error or bias within census methods. Individual animals can be discriminated by features of their vocalisations. This vocal individuality can be utilised as an alternative marking technique in situations where the marks are difficult to detect or animals are sensitive to disturbance. Vocal individuality can also be used in cases were the capture and handling of an animal is either logistically or ethically problematic. Many studies have suggested that vocal individuality can be used to count and monitor populations over time; however, few have explicitly tested the method in this role. In this review we discuss methods for extracting individuality information from vocalisations and techniques for using this to count and monitor populations over time. We present case studies in birds where vocal individuality has been applied to conservation and we discuss its role in mammals. PMID:15960848
Yeung, E.S.; Chen, G.
1990-05-01
A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.
Analytical chemistry in water quality monitoring during manned space missions
NASA Astrophysics Data System (ADS)
Artemyeva, Anastasia A.
2016-09-01
Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.
NASA Technical Reports Server (NTRS)
Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II
2005-01-01
On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.
An ontological system for interoperable spatial generalisation in biodiversity monitoring
NASA Astrophysics Data System (ADS)
Nieland, Simon; Moran, Niklas; Kleinschmit, Birgit; Förster, Michael
2015-11-01
Semantic heterogeneity remains a barrier to data comparability and standardisation of results in different fields of spatial research. Because of its thematic complexity, differing acquisition methods and national nomenclatures, interoperability of biodiversity monitoring information is especially difficult. Since data collection methods and interpretation manuals broadly vary there is a need for automatised, objective methodologies for the generation of comparable data-sets. Ontology-based applications offer vast opportunities in data management and standardisation. This study examines two data-sets of protected heathlands in Germany and Belgium which are based on remote sensing image classification and semantically formalised in an OWL2 ontology. The proposed methodology uses semantic relations of the two data-sets, which are (semi-)automatically derived from remote sensing imagery, to generate objective and comparable information about the status of protected areas by utilising kernel-based spatial reclassification. This automatised method suggests a generalisation approach, which is able to generate delineation of Special Areas of Conservation (SAC) of the European biodiversity Natura 2000 network. Furthermore, it is able to transfer generalisation rules between areas surveyed with varying acquisition methods in different countries by taking into account automated inference of the underlying semantics. The generalisation results were compared with the manual delineation of terrestrial monitoring. For the different habitats in the two sites an accuracy of above 70% was detected. However, it has to be highlighted that the delineation of the ground-truth data inherits a high degree of uncertainty, which is discussed in this study.
Recommending personally interested contents by text mining, filtering, and interfaces
Xu, Songhua
2015-10-27
A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.
A Hydrogen Leak Detection System for Aerospace and Commercial Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.
1995-01-01
Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.
Enabling end-user network monitoring via the multicast consolidated proxy monitor
NASA Astrophysics Data System (ADS)
Kanwar, Anshuman; Almeroth, Kevin C.; Bhattacharyya, Supratik; Davy, Matthew
2001-07-01
The debugging of problems in IP multicast networks relies heavily on an eclectic set of stand-alone tools. These tools traditionally neither provide a consistent interface nor do they generate readily interpretable results. We propose the ``Multicast Consolidated Proxy Monitor''(MCPM), an integrated system for collecting, analyzing and presenting multicast monitoring results to both the end user and the network operator at the user's Internet Service Provider (ISP). The MCPM accesses network state information not normally visible to end users and acts as a proxy for disseminating this information. Functionally, through this architecture, we aim to a) provide a view of the multicast network at varying levels of granularity, b) provide end users with a limited ability to query the multicast infrastructure in real time, and c) protect the infrastructure from overwhelming amount of monitoring load through load control. Operationally, our scheme allows scaling to the ISPs dimensions, adaptability to new protocols (introduced as multicast evolves), threshold detection for crucial parameters and an access controlled, customizable interface design. Although the multicast scenario is used to illustrate the benefits of consolidated monitoring, the ultimate aim is to scale the scheme to unicast IP networks.
Noh, Yun Hong; Jeong, Do Un
2014-07-15
In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
1996-05-01
The Network Information System (NWIS) was initially implemented in May 1996 as a system in which computing devices could be recorded so that unique names could be generated for each device. Since then the system has grown to be an enterprise wide information system which is integrated with other systems to provide the seamless flow of data through the enterprise. The system Iracks data for two main entities: people and computing devices. The following are the type of functions performed by NWIS for these two entities: People Provides source information to the enterprise person data repository for select contractors andmore » visitors Generates and tracks unique usernames and Unix user IDs for every individual granted cyber access Tracks accounts for centrally managed computing resources, and monitors and controls the reauthorization of the accounts in accordance with the DOE mandated interval Computing Devices Generates unique names for all computing devices registered in the system Tracks the following information for each computing device: manufacturer, make, model, Sandia property number, vendor serial number, operating system and operating system version, owner, device location, amount of memory, amount of disk space, and level of support provided for the machine Tracks the hardware address for network cards Tracks the P address registered to computing devices along with the canonical and alias names for each address Updates the Dynamic Domain Name Service (DDNS) for canonical and alias names Creates the configuration files for DHCP to control the DHCP ranges and allow access to only properly registered computers Tracks and monitors classified security plans for stand-alone computers Tracks the configuration requirements used to setup the machine Tracks the roles people have on machines (system administrator, administrative access, user, etc...) Allows systems administrators to track changes made on the machine (both hardware and software) Generates an adjustment history of changes on selected fields« less
NASA Astrophysics Data System (ADS)
Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.
2013-10-01
The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.
Yilmaz, Ozge; Can, Zehra S; Toroz, Ismail; Dogan, Ozgur; Oncel, Salim; Alp, Emre; Dilek, Filiz B; Karanfil, Tanju; Yetis, Ulku
2014-08-01
Hazardous waste (HW) generation information is an absolute necessity for ensuring the proper planning, implementation, and monitoring of any waste management system. Unfortunately, environmental agencies in developing countries face difficulties in gathering data directly from the creators of such wastes. It is possible, however, to construct theoretical HW inventories using the waste generation factors (WGFs). The objective of this study was to develop a complete nationwide HW inventory of Turkey that relies on nation-specific WGFs to support management activities of the Turkish Ministry of Environment and Urbanization (MoEU). Inventory studies relied on WGFs from: (a) the literature and (b) field studies and analysis of waste declarations reflecting country-specific industrial practices. Moreover, new tools were introduced to the monitoring infrastructure of MoEU to obtain a comprehensive waste generation data set. Through field studies and a consideration of country specific conditions, it was possible to more thoroughly elucidate HW generation trends in Turkey, a method that was deemed superior to other alternatives. Declaration and literature based WGFs also proved most helpful in supplementing field observations that could not always be conducted. It was determined that these theoretical inventories could become valuable assets in supporting regulating agencies in developing countries for a more thorough implementation of HW management systems. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuracko, K. L.; Parang, M.; Landguth, D. C.
2004-09-13
TOADS (Total On-line Access Data System) is a new generation of real-time monitoring and information management system developed to support unattended environmental monitoring and long-term stewardship of U.S. Department of Energy facilities and sites. TOADS enables project managers, regulators, and stakeholders to view environmental monitoring information in realtime over the Internet. Deployment of TOADS at government facilities and sites will reduce the cost of monitoring while increasing confidence and trust in cleanup and long term stewardship activities. TOADS: Reliably interfaces with and acquires data from a wide variety of external databases, remote systems, and sensors such as contaminant monitors, areamore » monitors, atmospheric condition monitors, visual surveillance systems, intrusion devices, motion detectors, fire/heat detection devices, and gas/vapor detectors; Provides notification and triggers alarms as appropriate; Performs QA/QC on data inputs and logs the status of instruments/devices; Provides a fully functional data management system capable of storing, analyzing, and reporting on data; Provides an easy-to-use Internet-based user interface that provides visualization of the site, data, and events; and Enables the community to monitor local environmental conditions in real time. During this Phase II STTR project, TOADS has been developed and successfully deployed for unattended facility, environmental, and radiological monitoring at a Department of Energy facility.« less
Noninvasive oxygen monitoring techniques.
Wahr, J A; Tremper, K K
1995-01-01
As this article demonstrates, tremendous progress has been made in the techniques of oxygen measurement and monitoring over the past 50 years. From the early developments during and after World War II, to the most recent applications of solid state and microprocessor technology today, every patient in a critical care situation will have several continuous measurements of oxygenation applied simultaneously. Information therefore is available readily to alert personnel of acute problems and to guide appropriate therapy. The majority of effort to date has been placed on measuring oxygenation of arterial or venous blood. The next generation of devices will attempt to provide information about living tissue. Unlike the devices monitoring arterial or venous oxygen content, no "gold standards" exist for tissue oxygenation, so calibration will be difficult, as will interpretation of the data provided. The application of these devices ultimately may lead to a much better understanding of how disease (and the treatment of disease) alters the utilization of oxygen by the tissues.
Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract.
Burnham, Philip; Dadhania, Darshana; Heyang, Michael; Chen, Fanny; Westblade, Lars F; Suthanthiran, Manikkam; Lee, John Richard; De Vlaminck, Iwijn
2018-06-20
Urinary tract infections are one of the most common infections in humans. Here we tested the utility of urinary cell-free DNA (cfDNA) to comprehensively monitor host and pathogen dynamics in bacterial and viral urinary tract infections. We isolated cfDNA from 141 urine samples from a cohort of 82 kidney transplant recipients and performed next-generation sequencing. We found that urinary cfDNA is highly informative about bacterial and viral composition of the microbiome, antimicrobial susceptibility, bacterial growth dynamics, kidney allograft injury, and host response to infection. These different layers of information are accessible from a single assay and individually agree with corresponding clinical tests based on quantitative PCR, conventional bacterial culture, and urinalysis. In addition, cfDNA reveals the frequent occurrence of pathologies that remain undiagnosed with conventional diagnostic protocols. Our work identifies urinary cfDNA as a highly versatile analyte to monitor infections of the urinary tract.
NASA Astrophysics Data System (ADS)
Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Maunahan, A. A.; Gatti, L.; Quicho, E. D.; Pazhanivelan, S.; Campos-Taberner, M.; Collivignarelli, F.; Haro, J. G.; Intrman, A.; Phuong, D.; Boschetti, M.; Prasadini, P.; Busetto, L.; Minh, V. Q.; Tuan, V. Q.
2017-12-01
This study uses multi-temporal SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations in South and South Asian countries and assimilate the information into ORYZA Crop Growth Simulation Model (CGSM) to monitor rice yield. The study demonstrates examples of operational application of this rice monitoring system in: (1) detecting drought impact on rice planting in Central Thailand and Tamil Nadu, India, (2) mapping heat stress impact on rice yield in Andhra Pradesh, India, and (3) generating historical rice yield data for districts in Red River Delta, Vietnam.
1999-12-01
GENERATION AIRCRAFT CARRIER (CVNX) 6. AUTHOR(S) Watt, Michael R. 5. FUNDING NUMBERS Contract Number 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND... ORGANIZATION OF STUDY 5 H. BACKGROUND INFORMATION 9 A. CURRENT MILITARY USERS OF MOBILE FACILITIES 10 1. United States Marine Corps (USMC) 11 2
Initial Evaluation of Signal-Based Bayesian Monitoring
NASA Astrophysics Data System (ADS)
Moore, D.; Russell, S.
2016-12-01
We present SIGVISA (Signal-based Vertically Integrated Seismic Analysis), a next-generation system for global seismic monitoring through Bayesian inference on seismic signals. Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a network of stations. We report results from an evaluation of SIGVISA monitoring the western United States for a two-week period following the magnitude 6.0 event in Wells, NV in February 2008. During this period, SIGVISA detects more than twice as many events as NETVISA, and three times as many as SEL3, while operating at the same precision; at lower precisions it detects up to five times as many events as SEL3. At the same time, signal-based monitoring reduces mean location errors by a factor of four relative to detection-based systems. We provide evidence that, given only IMS data, SIGVISA detects events that are missed by regional monitoring networks, indicating that our evaluations may even underestimate its performance. Finally, SIGVISA matches or exceeds the detection rates of existing systems for de novo events - events with no nearby historical seismicity - and detects through automated processing a number of such events missed even by the human analysts generating the LEB.
Bahri, Priya; Fogd, Julianna; Morales, Daniel; Kurz, Xavier
2017-05-02
The benefit-risk balance of vaccines is regularly debated by the public, but the utility of media monitoring for regulatory bodies is unclear. A media monitoring study was conducted at the European Medicines Agency (EMA) concerning human papillomavirus (HPV) vaccines during a European Union (EU) referral procedure assessing the potential causality of complex regional pain syndrome (CRPS) and postural orthostatic tachycardia syndrome (POTS) reported to the authorities as suspected adverse reactions. To evaluate the utility of media monitoring in real life, prospective real-time monitoring of worldwide online news was conducted from September to December 2015 with inductive content analysis, generating 'derived questions'. The evaluation was performed through the validation of the predictive capacity of these questions against journalists' queries, review of the EMA's public statement and feedback from EU regulators. A total of 4230 news items were identified, containing personal stories, scientific and policy/process-related topics. Explicit and implicit concerns were identified, including those raised due to lack of knowledge or anticipated once more information would be published. Fifty derived questions were generated and categorised into 12 themes. The evaluation demonstrated that providing the media monitoring findings to assessors and communicators resulted in (1) confirming that public concerns regarding CRPS and POTS would be covered by the assessment; (2) meeting specific information needs proactively in the public statement; (3) predicting all queries from journalists; and (4) altering the tone of the public statement with respectful acknowledgement of the health status of patients with CRSP or POTS. The study demonstrated the potential utility of media monitoring for regulatory bodies to support communication proactivity and preparedness, intended to support trusted safe and effective vaccine use. Derived questions seem to be a familiar and effective format for presenting media monitoring results in the scientific-regulatory environment. It is suggested that media monitoring could form part of regular surveillance for medicines of high public interest. Future work is recommended to develop efficient monitoring strategies for that purpose.
The outlook of innovative optical-electronic technologies implementation in transportation
NASA Astrophysics Data System (ADS)
Shilina, Elena V.; Ryabichenko, Roman B.
2005-06-01
Information and telecommunication technologies (ITT) are already tool economic development of society and their role will grow. The first task is providing of information security of ITT that is necessary for it distribution in "information" society. The state policy of the leading world countries (USA, France, Japan, Great Britain and China) is focused on investment huge funds in innovative technologies development. Within the next 4-6 years the main fiber-optic transfer lines will have data transfer speed 40 Gbit/s, number of packed channels 60-200 that will provide effective data transfer speed 2,4-8 Tbit/s. Photonic-crystalline fibers will be promising base of new generation fiber-optic transfer lines. The market of information imaging devices and digital photo cameras will be grown in 3-5 times. Powerful lasers based on CO2 and Nd:YAG will be actively used in transport machinery construction when producing aluminum constructions of light rolling-stock. Light-emitting diodes (LEDs) will be base for energy saving and safety light sources used for vehicles and indoor lighting. For example, in the USA cost reducing for lighting will be 200 billion dollars. Implementation analysis of optic electronic photonic technologies (OPT) in ground and aerospace systems shows that they provide significant increasing of traffic safety, crew and passengers comfort with help of smart vehicles construction and non-contact dynamic monitoring both transport facilities (for example, wheel flanges) and condition of rail track (road surface), equipping vehicles with night vision equipment. Scientific-technical programs of JSC "RZD" propose application of OPT in new generation systems: axle-box units for coaches and freight cars monitoring when they are moved, track condition analysis, mechanical stress and permanent way irregularity detection, monitoring geometric parameters of aerial contact wire, car truck, rail and wheel pair roll surface, light signals automatic detection from locomotive, video monitoring, gyroscopes based on fiber optic.
Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde
2015-02-01
Duplicate carefully-characterized municipal solid waste (MSW) specimens were reconstituted with waste constituents obtained from a MSW landfill and biodegraded in large-scale landfill simulators for about a year. Repeatability and relationships between changes in physical, chemical, and microbial characteristics taking place during the biodegradation process were evaluated. Parameters such as rate of change of soluble chemical oxygen demand in the leachate (rsCOD), rate of methane generation (rCH4), rate of specimen volume reduction (rVt), DNA concentration in the leachate, and archaeal community structures in the leachate and solid waste were monitored during operation. The DNA concentration in the leachate was correlated to rCH4 and rVt. The rCH4 was related to rsCOD and rVt when waste biodegradation was intensive. The structures of archaeal communities in the leachate and solid waste of both simulators were very similar and Methanobacteriaceae were the dominant archaeal family throughout the testing period. Monitoring the chemical and microbial characteristics of the leachate was informative of the biodegradation process and volume reduction in the simulators, suggesting that leachate monitoring could be informative of the extent of biodegradation in a full-scale landfill. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Loschetter, Annick; Rohmer, Jérémy
2016-04-01
Standard and new generation of monitoring observations provide in almost real-time important information about the evolution of the volcanic system. These observations are used to update the model and contribute to a better hazard assessment and to support decision making concerning potential evacuation. The framework BET_EF (based on Bayesian Event Tree) developed by INGV enables dealing with the integration of information from monitoring with the prospect of decision making. Using this framework, the objectives of the present work are i. to propose a method to assess the added value of information (within the Value Of Information (VOI) theory) from monitoring; ii. to perform sensitivity analysis on the different parameters that influence the VOI from monitoring. VOI consists in assessing the possible increase in expected value provided by gathering information, for instance through monitoring. Basically, the VOI is the difference between the value with information and the value without additional information in a Cost-Benefit approach. This theory is well suited to deal with situations that can be represented in the form of a decision tree such as the BET_EF tool. Reference values and ranges of variation (for sensitivity analysis) were defined for input parameters, based on data from the MESIMEX exercise (performed at Vesuvio volcano in 2006). Complementary methods for sensitivity analyses were implemented: local, global using Sobol' indices and regional using Contribution to Sample Mean and Variance plots. The results (specific to the case considered) obtained with the different techniques are in good agreement and enable answering the following questions: i. Which characteristics of monitoring are important for early warning (reliability)? ii. How do experts' opinions influence the hazard assessment and thus the decision? Concerning the characteristics of monitoring, the more influent parameters are the means rather than the variances for the case considered. For the parameters that concern expert setting, the weight attributed to monitoring measurement ω, the mean of thresholds, the economic context and the setting of the decision threshold are very influential. The interest of applying the VOI theory (more precisely the value of imperfect information) in the BET framework was demonstrated as support for helping experts in the setting of the monitoring system or for helping managers to decide the installation of additional monitoring systems. Acknowledgments: This work was carried out in the framework of the project MEDSUV. This project is funded under the call FP7 ENV.2012.6.4-2: Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept. Grant agreement n°308665.
Data analytics approach to create waste generation profiles for waste management and collection.
Niska, Harri; Serkkola, Ari
2018-04-30
Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Höbel, M.; Haffner, K.
1999-05-01
Instrumentation that allows the behaviour of a hydro-generator thrust bearing to be monitored during operation is described. The measurement system was developed at the Asea Brown Boveri corporate research centre in Switzerland and was tested under realistic operating conditions at the Harbin Electric Machinery Company bearing-testing facility in the People's Republic of China. Newly developed fibre-optical proximity probes were used for the on-line monitoring of the thin oil film between the static and rotating parts of the bearing. These sensors are based on a back-reflection technique and can be used for various target materials such as Babbitt and Teflon. The monitoring system comprises about 120 temperature sensors, four pressure sensors and five optical oil-film thickness sensors. Temperature sensors are installed at specific static locations, whereas pressure and oil-film sensors are positioned in the runner and generate data during rotation. A special feature of the monitoring equipment is its on-line processing capability. Digital signal processors operating in parallel handle pressure and oil-film thickness data. Important measurement parameters such as the maximum pressure, maximum temperature and minimum oil-film thickness are displayed on-line. Detailed three-dimensional temperature information on one of the load segments can be obtained from subsequent off-line data analysis. The system also calculates two-dimensional plots of the oil-film thickness and pressure for most of the 12 load segments.
Historic Bim: a New Repository for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F.
2017-05-01
Recent developments in Building Information Modelling (BIM) technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM), with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM) data (Fig. 1). The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc.) with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD). Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy), in which multi-temporal vertical movements during load testing were integrated into H-BIM.
Next generation of global land cover characterization, mapping, and monitoring
Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.
2013-01-01
Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).
Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.
1994-01-01
Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Rollins, Katherine E.
2016-11-01
Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000more » survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.« less
Brown, Eric W.; Detter, Chris; Gerner-Smidt, Peter; Gilmour, Matthew W.; Harmsen, Dag; Hendriksen, Rene S.; Hewson, Roger; Heymann, David L.; Johansson, Karin; Ijaz, Kashef; Keim, Paul S.; Koopmans, Marion; Kroneman, Annelies; Wong, Danilo Lo Fo; Lund, Ole; Palm, Daniel; Sawanpanyalert, Pathom; Sobel, Jeremy; Schlundt, Jørgen
2012-01-01
The rapid advancement of genome technologies holds great promise for improving the quality and speed of clinical and public health laboratory investigations and for decreasing their cost. The latest generation of genome DNA sequencers can provide highly detailed and robust information on disease-causing microbes, and in the near future these technologies will be suitable for routine use in national, regional, and global public health laboratories. With additional improvements in instrumentation, these next- or third-generation sequencers are likely to replace conventional culture-based and molecular typing methods to provide point-of-care clinical diagnosis and other essential information for quicker and better treatment of patients. Provided there is free-sharing of information by all clinical and public health laboratories, these genomic tools could spawn a global system of linked databases of pathogen genomes that would ensure more efficient detection, prevention, and control of endemic, emerging, and other infectious disease outbreaks worldwide. PMID:23092707
[Development and clinical evaluation of an anesthesia information management system].
Feng, Jing-yi; Chen, Hua; Zhu, Sheng-mei
2010-09-21
To study the design, implementation and clinical evaluation of an anesthesia information management system. To record, process and store peri-operative patient data automatically, all kinds of bedside monitoring equipments are connected into the system based on information integrating technology; after a statistical analysis of those patient data by data mining technology, patient status can be evaluated automatically based on risk prediction standard and decision support system, and then anesthetist could perform reasonable and safe clinical processes; with clinical processes electronically recorded, standard record tables could be generated, and clinical workflow is optimized, as well. With the system, kinds of patient data could be collected, stored, analyzed and archived, kinds of anesthesia documents could be generated, and patient status could be evaluated to support clinic decision. The anesthesia information management system is useful for improving anesthesia quality, decreasing risk of patient and clinician, and aiding to provide clinical proof.
Linear models to perform treaty verification tasks for enhanced information security
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.; ...
2016-11-12
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensionalmore » vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.« less
Linear models to perform treaty verification tasks for enhanced information security
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensionalmore » vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.« less
Linear models to perform treaty verification tasks for enhanced information security
NASA Astrophysics Data System (ADS)
MacGahan, Christopher J.; Kupinski, Matthew A.; Brubaker, Erik M.; Hilton, Nathan R.; Marleau, Peter A.
2017-02-01
Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensional vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve.
Three-dimensional information extraction from GaoFen-1 satellite images for landslide monitoring
NASA Astrophysics Data System (ADS)
Wang, Shixin; Yang, Baolin; Zhou, Yi; Wang, Futao; Zhang, Rui; Zhao, Qing
2018-05-01
To more efficiently use GaoFen-1 (GF-1) satellite images for landslide emergency monitoring, a Digital Surface Model (DSM) can be generated from GF-1 across-track stereo image pairs to build a terrain dataset. This study proposes a landslide 3D information extraction method based on the terrain changes of slope objects. The slope objects are mergences of segmented image objects which have similar aspects; and the terrain changes are calculated from the post-disaster Digital Elevation Model (DEM) from GF-1 and the pre-disaster DEM from GDEM V2. A high mountain landslide that occurred in Wenchuan County, Sichuan Province is used to conduct a 3D information extraction test. The extracted total area of the landslide is 22.58 ha; the displaced earth volume is 652,100 m3; and the average sliding direction is 263.83°. The accuracies of them are 0.89, 0.87 and 0.95, respectively. Thus, the proposed method expands the application of GF-1 satellite images to the field of landslide emergency monitoring.
Study of Disseminating Landslide Early Warning Information in Malaysia
NASA Astrophysics Data System (ADS)
Koay, Swee Peng; Lateh, Habibah; Tien Tay, Lea; Ahamd, Jamilah; Chan, Huah Yong; Sakai, Naoki; Jamaludin, Suhaimi
2015-04-01
In Malaysia, rain induced landslides are occurring more often than before. The Malaysian Government allocates millions of Malaysian Ringgit for slope monitoring and slope failure remedial measures in the budget every year. In rural areas, local authorities also play a major role in monitoring the slope to prevent casualty by giving information to the residents who are staying near to the slopes. However, there are thousands of slopes which are classified as high risk slopes in Malaysia. Implementing site monitoring system in these slopes to monitor the movement of the soil in the slopes, predicting the occurrence of slopes failure and establishing early warning system are too costly and almost impossible. In our study, we propose Accumulated Rainfall vs. Rainfall Intensity prediction method to predict the slope failure by referring to the predicted rainfall data from radar and the rain volume from rain gauges. The critical line which determines if the slope is in danger, is generated by simulator with well-surveyed the soil property in the slope and compared with historical data. By establishing such predicting system, the slope failure warning information can be obtained and disseminated to the surroundings via SMS, internet and siren. However, establishing the early warning dissemination system is not enough in disaster prevention, educating school children and the community by giving knowledge on landslides, such as landslide's definition, how and why does the slope failure happen and when will it fail, to raise the risk awareness on landslides will reduce landslides casualty, especially in rural area. Moreover, showing video on the risk and symptom of landslides in school will also help the school children gaining the knowledge of landslides. Generating hazard map and landslides historical data provides further information on the occurrence of the slope failure. In future, further study on fine tuning of landslides prediction method, applying IT technology to educate school children and disseminate warning information will assist the government authorities to reduce landslide casualty by disseminating prompt slope failure warning and improving the community's awareness of disaster prevention.
Information Quality Challenges of Patient-Generated Data in Clinical Practice
West, Peter; Van Kleek, Max; Giordano, Richard; Weal, Mark; Shadbolt, Nigel
2017-01-01
A characteristic trend of digital health has been the dramatic increase in patient-generated data being presented to clinicians, which follows from the increased ubiquity of self-tracking practices by individuals, driven, in turn, by the proliferation of self-tracking tools and technologies. Such tools not only make self-tracking easier but also potentially more reliable by automating data collection, curation, and storage. While self-tracking practices themselves have been studied extensively in human–computer interaction literature, little work has yet looked at whether these patient-generated data might be able to support clinical processes, such as providing evidence for diagnoses, treatment monitoring, or postprocedure recovery, and how we can define information quality with respect to self-tracked data. In this article, we present the results of a literature review of empirical studies of self-tracking tools, in which we identify how clinicians perceive quality of information from such tools. In the studies, clinicians perceive several characteristics of information quality relating to accuracy and reliability, completeness, context, patient motivation, and representation. We discuss the issues these present in admitting self-tracked data as evidence for clinical decisions. PMID:29209601
Kerr, Cicely; Murray, Elizabeth; Burns, Jo; Turner, Indra; Westwood, Mark A; Macadam, Catherine; Nazareth, Irwin; Patterson, David
2008-01-01
Internet interventions can help people to self-manage chronic disease. However, they are only likely to be used if they meet patients' perceived needs. We have developed an Internet intervention in two stages to meet the needs of patients with coronary heart disease (CHD). First, user-generated criteria were applied to an existing US-based intervention called 'CHESS Living with Heart Disease' which provides information, emotional and social support, self-assessment and monitoring tools, and behavioural change support. This identified the development work required. Then we conducted a user evaluation with a panel of five patients with CHD. Overall, users generally made positive comments about the information content. However they were critical of presentation, ease of navigation through the content, understanding what was offered in the different services and finding the information they were after. Applying user-generated quality criteria proved useful in developing an intervention to meet the needs of UK patients with CHD.
Patino, Eduardo
2014-01-01
From 2007 to 2013, the U.S. Geological Survey (USGS), in cooperation with the Florida Department of Environmental Protection (FDEP) and the South Florida Water Management District (SFWMD), operated a flow and salinity monitoring network at tributaries flowing into and at key locations within the tidal Caloosahatchee River. This network was designed to supplement existing long-term monitoring stations, such as W.P. Franklin Lock, also known as S–79, which are operated by the USGS in cooperation with the U.S. Army Corps of Engineers, Lee County, and the City of Cape Coral. Additionally, a monitoring station was operated on Sanibel Island from 2010 to 2013 as part of the USGS Greater Everglades Priority Ecosystem Science initiative and in partnership with U.S. Fish and Wildlife Service (J.N. Ding Darling National Wildlife Refuge). Moving boat water-quality surveys throughout the tidal Caloosahatchee River and downstream estuaries began in 2011 and are ongoing. Information generated by these monitoring networks has proved valuable to the FDEP for developing total maximum daily load criteria, and to the SFWMD for calibrating and verifying a hydrodynamic model. The information also supports the Caloosahatchee River Watershed Protection Plan.
NASA Astrophysics Data System (ADS)
Petrosyan, V. G.; Yeghoyan, E. A.; Grigoryan, A. D.; Petrosyan, A. P.; Movsisyan, M. R.
2018-02-01
One of the main objectives of severe accident management at a nuclear power plant is to protect the integrity of the containment, for which the most serious threat is possible ignition of the generated hydrogen. There should be a monitoring system providing information support of NPP personnel, ensuring data on the current state of a containment gaseous environment and trends in its composition changes. Monitoring systems' requisite characteristics definition issues are considered by the example of a particular power unit. Major characteristics important for proper information support are discussed. Some features of progression of severe accident scenarios at considered power unit are described and a possible influence of the hydrogen concentration monitoring system performance on the information support reliability in a severe accident is analyzed. The analysis results show that the following technical characteristics of the combustible gas monitoring systems are important for the proper information support of NPP personnel in the event of a severe accident at a nuclear power plant: measured parameters, measuring ranges and errors, update rate, minimum detectable concentration of combustible gas, monitoring reference points, environmental qualification parameters of the system components. For NPP power units with WWER-440/270 (230) type reactors, which have a relatively small containment volume, the update period for measurement results is a critical characteristic of the containment combustible gas monitoring system, and the choice of monitoring reference points should be focused not so much on the definition of places of possible hydrogen pockets but rather on the definition of places of a possible combustible mixture formation. It may be necessary for the above-mentioned power units to include in the emergency operating procedures measures aimed at a timely heat removal reduction from the containment environment if there are signs of a severe accident phase approaching to prevent a combustible mixture formation in the containment.
Jacomin, Anne-Claire; Nezis, Ioannis P
2016-01-01
Oogenesis is a fundamental biological process for the transmission of genetic information to the next generations. Drosophila has proven to be a valuable model for elucidating the molecular and cellular mechanisms involved in this developmental process. It has been shown that autophagy participates in the maturation of the egg chamber. Here we provide a protocol for monitoring and quantification of the autophagic process in the Drosophila germline cells using the fluorescent reporters mCherry-DmAtg8a and GFP-mCherry-DmAtg8a.
NASA Astrophysics Data System (ADS)
Danilin, A. I.; Neverov, V. V.; Danilin, S. A.; Shimanov, A. A.; Tsapkova, A. B.
2018-01-01
The article describes a noncontact operational control method based on the processing of a microwave signal reflected from the controlled teeth of the wheel. In this paper describes the influence of wear patterns on the characteristic information parameters of the analyzed signals. The block diagram in section 3 shows the experimental system for monitoring the operating state of the gear wheels of the steam compressor torque multiplier. The design of the primary converter is briefly described.
Scalable Telemonitoring Model in Cloud for Health Care Analysis
NASA Astrophysics Data System (ADS)
Sawant, Yogesh; Jayakumar, Naveenkumar, Dr.; Pawar, Sanket Sunil
2017-08-01
Telemonitoring model is health observations model that going to surveillance patients remotely. Telemonitoring model is suitable for patients to avoid high operating expense to get Emergency treatment. Telemonitoring gives the path for monitoring the medical device that generates a complete profile of patient’s health through assembling essential signs as well as additional health information. Telemonitoring model is relying on four differential modules which is capable to generate realistic synthetic electrocardiogram (ECG) signals. Telemonitoring model shows four categories of chronic disease: pulmonary state, diabetes, hypertension, as well as cardiovascular diseases. On the other hand, the results of this application model recommend facilitating despite of their nationality, socioeconomic grade, or age, patients observe amid tele-monitoring programs as well as the utilization of technologies. Patient’s multiple health status is shown in the result such as beat-to-beat variation in morphology and timing of the human ECG, including QT dispersion and R-peak amplitude modulation. This model will be utilized to evaluate biomedical signal processing methods that are utilized to calculate clinical information from the ECG.
Analysis of the Transport and Fate of Metals Released From ...
This project’s objectives were to provide analysis of water quality following the release of acid mine drainage in the Animas and San Juan Rivers in a timely manner to 1) generate a comprehensive picture of the plume at the river system level, 2) help inform future monitoring efforts and 3) to predict potential secondary effects that could occur from materials that may remain stored within the system. The project focuses on assessing metals contamination during the plume and in the first month following the event. This project’s objectives were to provide analysis of water quality following the release of acid mine drainage from the Gold King Mine in the Animas and San Juan Rivers in a timely manner to 1) generate a comprehensive picture of the plume at the river system level, 2) help inform future monitoring efforts and 3) to predict potential secondary effects that could occur from materials that may remain stored within the system. The project focuses on assessing metals contamination during the plume and in the first month following the event.
Garrison, Jane R; Bond, Rebecca; Gibbard, Emma; Johnson, Marcia K; Simons, Jon S
2017-02-01
Reality monitoring refers to processes involved in distinguishing internally generated information from information presented in the external world, an activity thought to be based, in part, on assessment of activated features such as the amount and type of cognitive operations and perceptual content. Impairment in reality monitoring has been implicated in symptoms of mental illness and associated more widely with the occurrence of anomalous perceptions as well as false memories and beliefs. In the present experiment, the cognitive mechanisms of reality monitoring were probed in healthy individuals using a task that investigated the effects of stimulus modality (auditory vs visual) and the type of action undertaken during encoding (thought vs speech) on subsequent source memory. There was reduced source accuracy for auditory stimuli compared with visual, and when encoding was accompanied by thought as opposed to speech, and a greater rate of externalization than internalization errors that was stable across factors. Interpreted within the source monitoring framework (Johnson, Hashtroudi, & Lindsay, 1993), the results are consistent with the greater prevalence of clinically observed auditory than visual reality discrimination failures. The significance of these findings is discussed in light of theories of hallucinations, delusions and confabulation. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Gould, A Lawrence
2016-12-30
Conventional practice monitors accumulating information about drug safety in terms of the numbers of adverse events reported from trials in a drug development program. Estimates of between-treatment adverse event risk differences can be obtained readily from unblinded trials with adjustment for differences among trials using conventional statistical methods. Recent regulatory guidelines require monitoring the cumulative frequency of adverse event reports to identify possible between-treatment adverse event risk differences without unblinding ongoing trials. Conventional statistical methods for assessing between-treatment adverse event risks cannot be applied when the trials are blinded. However, CUSUM charts can be used to monitor the accumulation of adverse event occurrences. CUSUM charts for monitoring adverse event occurrence in a Bayesian paradigm are based on assumptions about the process generating the adverse event counts in a trial as expressed by informative prior distributions. This article describes the construction of control charts for monitoring adverse event occurrence based on statistical models for the processes, characterizes their statistical properties, and describes how to construct useful prior distributions. Application of the approach to two adverse events of interest in a real trial gave nearly identical results for binomial and Poisson observed event count likelihoods. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Traffic-Light-Preemption Vehicle-Transponder Software Module
NASA Technical Reports Server (NTRS)
Bachelder, Aaron; Foster, Conrad
2005-01-01
A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically
NASA Astrophysics Data System (ADS)
Kim, H.; Lee, J.; Choi, K.; Lee, I.
2012-07-01
Rapid responses for emergency situations such as natural disasters or accidents often require geo-spatial information describing the on-going status of the affected area. Such geo-spatial information can be promptly acquired by a manned or unmanned aerial vehicle based multi-sensor system that can monitor the emergent situations in near real-time from the air using several kinds of sensors. Thus, we are in progress of developing such a real-time aerial monitoring system (RAMS) consisting of both aerial and ground segments. The aerial segment acquires the sensory data about the target areas by a low-altitude helicopter system equipped with sensors such as a digital camera and a GPS/IMU system and transmits them to the ground segment through a RF link in real-time. The ground segment, which is a deployable ground station installed on a truck, receives the sensory data and rapidly processes them to generate ortho-images, DEMs, etc. In order to generate geo-spatial information, in this system, exterior orientation parameters (EOP) of the acquired images are obtained through direct geo-referencing because it is difficult to acquire coordinates of ground points in disaster area. The main process, since the data acquisition stage until the measurement of EOP, is discussed as follows. First, at the time of data acquisition, image acquisition time synchronized by GPS time is recorded as part of image file name. Second, the acquired data are then transmitted to the ground segment in real-time. Third, by processing software for ground segment, positions/attitudes of acquired images are calculated through a linear interpolation using the GPS time of the received position/attitude data and images. Finally, the EOPs of images are obtained from position/attitude data by deriving the relationships between a camera coordinate system and a GPS/IMU coordinate system. In this study, we evaluated the accuracy of the EOP decided by direct geo-referencing in our system. To perform this, we used the precisely calculated EOP through the digital photogrammetry workstation (DPW) as reference data. The results of the evaluation indicate that the accuracy of the EOP acquired by our system is reasonable in comparison with the performance of GPS/IMU system. Also our system can acquire precise multi-sensory data to generate the geo-spatial information in emergency situations. In the near future, we plan to complete the development of the rapid generation system of the ground segment. Our system is expected to be able to acquire the ortho-image and DEM on the damaged area in near real-time. Its performance along with the accuracy of the generated geo-spatial information will also be evaluated and reported in the future work.
Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information
NASA Astrophysics Data System (ADS)
Spegazzini, Nicolas; Barman, Ishan; Dingari, Narahara Chari; Pandey, Rishikesh; Soares, Jaqueline S.; Ozaki, Yukihiro; Dasari, Ramachandra Rao
2014-11-01
Vibrational spectroscopy has emerged as a promising tool for non-invasive, multiplexed measurement of blood constituents - an outstanding problem in biophotonics. Here, we propose a novel analytical framework that enables spectroscopy-based longitudinal tracking of chemical concentration without necessitating extensive a priori concentration information. The principal idea is to employ a concentration space transformation acquired from the spectral information, where these estimates are used together with the concentration profiles generated from the system kinetic model. Using blood glucose monitoring by Raman spectroscopy as an illustrative example, we demonstrate the efficacy of the proposed approach as compared to conventional calibration methods. Specifically, our approach exhibits a 35% reduction in error over partial least squares regression when applied to a dataset acquired from human subjects undergoing glucose tolerance tests. This method offers a new route at screening gestational diabetes and opens doors for continuous process monitoring without sample perturbation at intermediate time points.
Geovisualization for Smart Video Surveillance
NASA Astrophysics Data System (ADS)
Oves García, R.; Valentín, L.; Serrano, S. A.; Palacios-Alonso, M. A.; Sucar, L. Enrique
2017-09-01
Nowadays with the emergence of smart cities and the creation of new sensors capable to connect to the network, it is not only possible to monitor the entire infrastructure of a city, including roads, bridges, rail/subways, airports, communications, water, power, but also to optimize its resources, plan its preventive maintenance and monitor security aspects while maximizing services for its citizens. In particular, the security aspect is one of the most important issues due to the need to ensure the safety of people. However, if we want to have a good security system, it is necessary to take into account the way that we are going to present the information. In order to show the amount of information generated by sensing devices in real time in an understandable way, several visualization techniques are proposed for both local (involves sensing devices in a separated way) and global visualization (involves sensing devices as a whole). Taking into consideration that the information is produced and transmitted from a geographic location, the integration of a Geographic Information System to manage and visualize the behavior of data becomes very relevant. With the purpose of facilitating the decision-making process in a security system, we have integrated the visualization techniques and the Geographic Information System to produce a smart security system, based on a cloud computing architecture, to show relevant information about a set of monitored areas with video cameras.
NASA Astrophysics Data System (ADS)
Pahlavani, Parham; Sheikhian, Hossein; Bigdeli, Behnaz
2017-10-01
Air pollution assessment is an imperative part of megacities planning and control. Hence, a new comprehensive approach for air pollution monitoring and assessment was introduced in this research. It comprises of three main sections: optimizing the existing air pollutant monitoring network, locating new stations to complete the coverage of the existing network, and finally, generating an air pollution map. In the first section, Shannon information index was used to find less informative stations to be candidate for removal. Then, a methodology was proposed to determine the areas which are not sufficiently covered by the current network. These areas are candidates for establishing new monitoring stations. The current air pollution monitoring network of Tehran was used as a case study, where the air pollution issue has been worsened due to the huge population, considerable commuters' absorption and topographic barriers. In this regard, O3, NO, NO2, NOx, CO, PM10, and PM2.5 were considered as the main pollutants of Tehran. Optimization step concluded that all the 16 active monitoring stations should be preserved. Analysis showed that about 35% of the Tehran's area is not properly covered by monitoring stations and about 30% of the area needs additional stations. The winter period in Tehran always faces the most severe air pollution in the year. Hence, to produce the air pollution map of Tehran, three-month of winter measurements of the mentioned pollutants, repeated for five years in the same period, were selected and extended to the entire area using the kriging method. Experts specified the contribution of each pollutant in overall air pollution. Experts' rankings aggregated by a fuzzy-overlay process. Resulted maps characterized the study area with crucial air pollution situation. According to the maps, more than 45% of the city area faced high pollution in the study period, while only less than 10% of the area showed low pollution. This situation confirms the need for effective plans to mitigate the severity of the problem. In addition, an effort made to investigate the rationality of the acquired air pollution map respect to the urban, cultural, and environmental characteristics of Tehran, which also confirmed the results.
Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C
2014-01-01
Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patients pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (SBM), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or QCP) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patients physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patients condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. predictive analytics, hemodynamic, monitoring.
Ramírez-Miquet, Evelio E; Cabrera, Humberto; Grassi, Hilda C; de J Andrades, Efrén; Otero, Isabel; Rodríguez, Dania; Darias, Juan G
2017-08-01
This paper reports on the biospeckle processing of biological activity using a visualization scheme based upon the digital imaging information technology. Activity relative to bacterial growth in agar plates and to parasites affected by a drug is monitored via the speckle patterns generated by a coherent source incident on the microorganisms. We present experimental results to demonstrate the potential application of this methodology for following the activity in time. The digital imaging information technology is an alternative visualization enabling the study of speckle dynamics, which is correlated to the activity of bacteria and parasites. In this method, the changes in Red-Green-Blue (RGB) color component density are considered as markers of the growth of bacteria and parasites motility in presence of a drug. The RGB data was used to generate a two-dimensional surface plot allowing an analysis of color distribution on the speckle images. The proposed visualization is compared to the outcomes of the generalized differences and the temporal difference. A quantification of the activity is performed using a parameterization of the temporal difference method. The adopted digital image processing technique has been found suitable to monitor motility and morphological changes in the bacterial population over time and to detect and distinguish a short term drug action on parasites.
Mission-Oriented Sensor Arrays and UAVs - a Case Study on Environmental Monitoring
NASA Astrophysics Data System (ADS)
Figueira, N. M.; Freire, I. L.; Trindade, O.; Simões, E.
2015-08-01
This paper presents a new concept of UAV mission design in geomatics, applied to the generation of thematic maps for a multitude of civilian and military applications. We discuss the architecture of Mission-Oriented Sensors Arrays (MOSA), proposed in Figueira et Al. (2013), aimed at splitting and decoupling the mission-oriented part of the system (non safety-critical hardware and software) from the aircraft control systems (safety-critical). As a case study, we present an environmental monitoring application for the automatic generation of thematic maps to track gunshot activity in conservation areas. The MOSA modeled for this application integrates information from a thermal camera and an on-the-ground microphone array. The use of microphone arrays technology is of particular interest in this paper. These arrays allow estimation of the direction-of-arrival (DOA) of the incoming sound waves. Information about events of interest is obtained by the fusion of the data provided by the microphone array, captured by the UAV, fused with information from the termal image processing. Preliminary results show the feasibility of the on-the-ground sound processing array and the simulation of the main processing module, to be embedded into an UAV in a future work. The main contributions of this paper are the proposed MOSA system, including concepts, models and architecture.
A simple graphical approach to quantitative monitoring of rangelands
Riginos, C.; Herrick, J.E.; Sundaresan, S.R.; Farley, C.; Belnap, J.
2011-01-01
The article reviews graphical interpretation of the four monitoring methods that can be used to generate a variety of indicators of rangeland ecosystem function. Data for all four of the monitoring methods can be recorded on a single data sheet that is designed to be usable by somebody with minimal literacy. Indicators of plant and ground cover are central to most long-term monitoring systems. Plant and ground-cover data inform managers about forage availability, plant community composition and structure, and risk of runoff and erosion. The spatial arrangement of plants at a site in addition to the percent of the ground that is covered by plants is an important determinant of erosion potential. Vertical vegetation structure can be monitored by capturing data on maximum plant height at each stick location. Plant density method can provide an early indicator of future changes in plant cover, forage, quality, and habitat structure.
Monitoring of computing resource use of active software releases at ATLAS
NASA Astrophysics Data System (ADS)
Limosani, Antonio; ATLAS Collaboration
2017-10-01
The LHC is the world’s most powerful particle accelerator, colliding protons at centre of mass energy of 13 TeV. As the energy and frequency of collisions has grown in the search for new physics, so too has demand for computing resources needed for event reconstruction. We will report on the evolution of resource usage in terms of CPU and RAM in key ATLAS offline reconstruction workflows at the TierO at CERN and on the WLCG. Monitoring of workflows is achieved using the ATLAS PerfMon package, which is the standard ATLAS performance monitoring system running inside Athena jobs. Systematic daily monitoring has recently been expanded to include all workflows beginning at Monte Carlo generation through to end-user physics analysis, beyond that of event reconstruction. Moreover, the move to a multiprocessor mode in production jobs has facilitated the use of tools, such as “MemoryMonitor”, to measure the memory shared across processors in jobs. Resource consumption is broken down into software domains and displayed in plots generated using Python visualization libraries and collected into pre-formatted auto-generated Web pages, which allow the ATLAS developer community to track the performance of their algorithms. This information is however preferentially filtered to domain leaders and developers through the use of JIRA and via reports given at ATLAS software meetings. Finally, we take a glimpse of the future by reporting on the expected CPU and RAM usage in benchmark workflows associated with the High Luminosity LHC and anticipate the ways performance monitoring will evolve to understand and benchmark future workflows.
A personalized health-monitoring system for elderly by combining rules and case-based reasoning.
Ahmed, Mobyen Uddin
2015-01-01
Health-monitoring system for elderly in home environment is a promising solution to provide efficient medical services that increasingly interest by the researchers within this area. It is often more challenging when the system is self-served and functioning as personalized provision. This paper proposed a personalized self-served health-monitoring system for elderly in home environment by combining general rules with a case-based reasoning approach. Here, the system generates feedback, recommendation and alarm in a personalized manner based on elderly's medical information and health parameters such as blood pressure, blood glucose, weight, activity, pulse, etc. A set of general rules has used to classify individual health parameters. The case-based reasoning approach is used to combine all different health parameters, which generates an overall classification of health condition. According to the evaluation result considering 323 cases and k=2 i.e., top 2 most similar retrieved cases, the sensitivity, specificity and overall accuracy are achieved as 90%, 97% and 96% respectively. The preliminary result of the system is acceptable since the feedback; recommendation and alarm messages are personalized and differ from the general messages. Thus, this approach could be possibly adapted for other situations in personalized elderly monitoring.
EMODnet MedSea Checkpoint for sustainable Blue Growth
NASA Astrophysics Data System (ADS)
Moussat, Eric; Pinardi, Nadia; Manzella, Giuseppe; Blanc, Frederique
2016-04-01
The EMODNET checkpoint is a wide monitoring system assessment activity aiming to support the sustainable Blue Growth at the scale of the European Sea Basins by: 1) Clarifying the observation landscape of all compartments of the marine environment including Air, Water, Seabed, Biota and Human activities, pointing out to the existing programs, national, European and international 2) Evaluating fitness for use indicators that will show the accessibility and usability of observation and modeling data sets and their roles and synergies based upon selected applications by the European Marine Environment Strategy 3) Prioritizing the needs to optimize the overall monitoring Infrastructure (in situ and satellite data collection and assembling, data management and networking, modeling and forecasting, geo-infrastructure) and release recommendations for evolutions to better meet the application requirements in view of sustainable Blue Growth The assessment is designed for : - Institutional stakeholders for decision making on observation and monitoring systems - Data providers and producers to know how their data collected once for a given purpose could fit other user needs - End-users interested in a regional status and possible uses of existing monitoring data Selected end-user applications are of paramount importance for: (i) the blue economy sector (offshore industries, fisheries); (ii) marine environment variability and change (eutrophication, river inputs and ocean climate change impacts); (iii) emergency management (oil spills); and (iv) preservation of natural resources and biodiversity (Marine Protected Areas). End-user applications generate innovative products based on the existing observation landscape. The fitness for use assessment is made thanks to the comparison of the expected product specifications with the quality of the product derived from the selected data. This involves the development of checkpoint information and indicators based on Data quality and Metadata standards for geographic information (ISO 19157 and ISO 19115 respectively). The fitness for use of the input datasets are assessed using 2 categories of criteria to determine how these datasets fits the user requirements which drive them to select a data source rather than another one and to show performance and gaps of the present monitoring systems : • Data appropriateness : what is made available to the user ?. • Data availability : how it is made available to the user? All information are stored in a GIS platform and made available with two types of interfaces: - Front-end interfaces with users, to present the input data used by all challenges, the innovative products generated by challenges and the assessment indicators. - Back-end interfaces to partners, to store the checkpoint descriptors of input data, specification to generate targeted products, catalogue information of products with associated checkpoint indicators linked to the input data The validation of the records is done at three levels, at technical level (GIS), at challenge level (use), and at sea basin level (synthesis of monitoring data adequacy including expert comments) to end with the production of a yearly Data Adequacy Report.
Kazi, A M; Ali, M; K, Ayub; Kalimuddin, H; Zubair, K; Kazi, A N; A, Artani; Ali, S A
2017-11-01
The addition of Global Positioning System (GPS) to a mobile phone makes it a very powerful tool for surveillance and monitoring coverage of health programs. This technology enables transfer of data directly into computer applications and cross-references to Geographic Information Systems (GIS) maps, which enhances assessment of coverage and trends. Utilization of these systems in low and middle income countries is currently limited, particularly for immunization coverage assessments and polio vaccination campaigns. We piloted the use of this system and discussed its potential to improve the efficiency of field-based health providers and health managers for monitoring of the immunization program. Using "30×7" WHO sampling technique, a survey of children less than five years of age was conducted in random clusters of Karachi, Pakistan in three high risk towns where a polio case was detected in 2011. Center point of the cluster was calculated by the application on the mobile. Data and location coordinates were collected through a mobile phone. This data was linked with an automated mHealth based monitoring system for monitoring of Supplementary Immunization Activities (SIAs) in Karachi. After each SIA, a visual report was generated according to the coordinates collected from the survey. A total of 3535 participants consented to answer to a baseline survey. We found that the mobile phones incorporated with GIS maps can improve efficiency of health providers through real-time reporting and replacing paper based questionnaire for collection of data at household level. Visual maps generated from the data and geospatial analysis can also give a better assessment of the immunization coverage and polio vaccination campaigns. The study supports a model system in resource constrained settings that allows routine capture of individual level data through GPS enabled mobile phone providing actionable information and geospatial maps to local public health managers, policy makers and study staff monitoring immunization coverage. Copyright © 2017 Elsevier B.V. All rights reserved.
Monitoring Change Through Hierarchical Segmentation of Remotely Sensed Image Data
NASA Technical Reports Server (NTRS)
Tilton, James C.; Lawrence, William T.
2005-01-01
NASA's Goddard Space Flight Center has developed a fast and effective method for generating image segmentation hierarchies. These segmentation hierarchies organize image data in a manner that makes their information content more accessible for analysis. Image segmentation enables analysis through the examination of image regions rather than individual image pixels. In addition, the segmentation hierarchy provides additional analysis clues through the tracing of the behavior of image region characteristics at several levels of segmentation detail. The potential for extracting the information content from imagery data based on segmentation hierarchies has not been fully explored for the benefit of the Earth and space science communities. This paper explores the potential of exploiting these segmentation hierarchies for the analysis of multi-date data sets, and for the particular application of change monitoring.
Industrial implementation of spatial variability control by real-time SPC
NASA Astrophysics Data System (ADS)
Roule, O.; Pasqualini, F.; Borde, M.
2016-10-01
Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.
The Use of Gamma-Ray Imaging to Improve Portal Monitor Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Klaus-Peter; Collins, Jeff; Fabris, Lorenzo
2008-01-01
We have constructed a prototype, rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. Our Roadside Tracker uses automated target acquisition and tracking (TAT) software to identify and track vehicles in visible light images. The field of view of the visible camera overlaps with and is calibrated to that of a one-dimensional gamma-ray imager. The TAT code passes information on when vehicles enter and exit the system field of view and when they cross gamma-ray pixel boundaries. Based on this in-formation, the gamma-ray imager "harvests"more » the gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. In this fashion we are able to generate vehicle-specific radiation signatures and avoid source confusion problems that plague nonimaging approaches to the same problem.« less
NASA Astrophysics Data System (ADS)
Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.
Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.
Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James
2015-01-01
Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at http://earlywarning.usgs.gov. The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.
Fors, Uno; Tedre, Matti; Nouri, Jalal
2018-01-01
To ensure online collaborative learning meets the intended pedagogical goals (is actually collaborative and stimulates learning), mechanisms are needed for monitoring the efficiency of online collaboration. Various studies have indicated that social network analysis can be particularly effective in studying students’ interactions in online collaboration. However, research in education has only focused on the theoretical potential of using SNA, not on the actual benefits they achieved. This study investigated how social network analysis can be used to monitor online collaborative learning, find aspects in need of improvement, guide an informed intervention, and assess the efficacy of intervention using an experimental, observational repeated-measurement design in three courses over a full-term duration. Using a combination of SNA-based visual and quantitative analysis, we monitored three SNA constructs for each participant: the level of interactivity, the role, and position in information exchange, and the role played by each participant in the collaboration. On the group level, we monitored interactivity and group cohesion indicators. Our monitoring uncovered a non-collaborative teacher-centered pattern of interactions in the three studied courses as well as very few interactions among students, limited information exchange or negotiation, and very limited student networks dominated by the teacher. An intervention based on SNA-generated insights was designed. The intervention was structured into five actions: increasing awareness, promoting collaboration, improving the content, preparing teachers, and finally practicing with feedback. Evaluation of the intervention revealed that it has significantly enhanced student-student interactions and teacher-student interactions, as well as produced a collaborative pattern of interactions among most students and teachers. Since efficient and communicative activities are essential prerequisites for successful content discussion and for realizing the goals of collaboration, we suggest that our SNA-based approach will positively affect teaching and learning in many educational domains. Our study offers a proof-of-concept of what SNA can add to the current tools for monitoring and supporting teaching and learning in higher education. PMID:29566058
Saqr, Mohammed; Fors, Uno; Tedre, Matti; Nouri, Jalal
2018-01-01
To ensure online collaborative learning meets the intended pedagogical goals (is actually collaborative and stimulates learning), mechanisms are needed for monitoring the efficiency of online collaboration. Various studies have indicated that social network analysis can be particularly effective in studying students' interactions in online collaboration. However, research in education has only focused on the theoretical potential of using SNA, not on the actual benefits they achieved. This study investigated how social network analysis can be used to monitor online collaborative learning, find aspects in need of improvement, guide an informed intervention, and assess the efficacy of intervention using an experimental, observational repeated-measurement design in three courses over a full-term duration. Using a combination of SNA-based visual and quantitative analysis, we monitored three SNA constructs for each participant: the level of interactivity, the role, and position in information exchange, and the role played by each participant in the collaboration. On the group level, we monitored interactivity and group cohesion indicators. Our monitoring uncovered a non-collaborative teacher-centered pattern of interactions in the three studied courses as well as very few interactions among students, limited information exchange or negotiation, and very limited student networks dominated by the teacher. An intervention based on SNA-generated insights was designed. The intervention was structured into five actions: increasing awareness, promoting collaboration, improving the content, preparing teachers, and finally practicing with feedback. Evaluation of the intervention revealed that it has significantly enhanced student-student interactions and teacher-student interactions, as well as produced a collaborative pattern of interactions among most students and teachers. Since efficient and communicative activities are essential prerequisites for successful content discussion and for realizing the goals of collaboration, we suggest that our SNA-based approach will positively affect teaching and learning in many educational domains. Our study offers a proof-of-concept of what SNA can add to the current tools for monitoring and supporting teaching and learning in higher education.
Prevalence and Prediction of Overweight and Obesity among Elementary School Students
ERIC Educational Resources Information Center
Moreno, Geraldine; Johnson-Shelton, Deb; Boles, Shawn
2013-01-01
Background: The high rates of childhood overweight and obesity in the United States have generated interest in schools as sites for monitoring body mass index (BMI) information. This study established baseline values for a 5-year longitudinal assessment of BMI of elementary school children and examined variation across the schools, because little…
ERIC Educational Resources Information Center
Traphagan, Tomoko; Traphagan, John; Dickens, Linda Neavel; Resta, Paul
2014-01-01
Motivated by the need to facilitate Net Generation students' information literacy (IL), or more specifically, to promote student understanding of legitimate, effective use of Web-based resources, this exploratory study investigated how analyzing, writing, posting, and monitoring Wikipedia entries might help students develop critical…
Dynamic Scheduling for Web Monitoring Crawler
2009-02-27
researches on static scheduling methods , but they are not included in this project, because this project mainly focuses on the event-driven...pages from public search engines. This research aims to propose various query generation methods using MCRDR knowledge base and evaluates them to...South Wales Professor Hiroshi Motoda/Osaka University Dr. John Salerno, Air Force Research Laboratory/Information Directorate Report
Design and operation of internal dosimetry programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaBone, T.R.
1991-01-01
The proposed revision to USNRC 10 CFR 20 and the USDOE Order 5480.11 require intakes of radioactive material to be evaluated. Radiation dose limits are based on the sum of effective dose equivalent from intakes and the whole body dose from external sources. These significant changes in the regulations will require, at a minimum, a complete review of personnel monitoring programs to determine their adequacy. In this session we will review a systematic method of designing a routine personnel monitoring program that will comply with the requirements of the new regulations. Specific questions discussed are: (a) What are the goalsmore » and objectives of a routine personnel monitoring program (b) When is a routine personnel monitoring program required (c) What are the required capabilities of the routine personnel monitoring program (d) What should be done with the information generated in a personnel monitoring program Specific recommendations and interpretations are given in the session. 5 refs., 3 figs., 33 tabs.« less
Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.
Wang, Xuewen; Liu, Zheng; Zhang, Ting
2017-07-01
Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Managing aging in nuclear power plants: Insights from NRC maintenance team inspection reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fresco, A.; Subudhi, M.; Gunther, W.
1993-12-01
A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of 67 of the reports issued on these in-depth team inspections were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant systems, structures, and components. Relevant information was extracted from these inspection reports and sorted into several categories, including Specific Aging Insights, Preventive Maintenance,more » Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified. The information also was sorted according to systems and components, including: Auxiliary Feedwater, Main Feedwater, High Pressure Injection for both BWRs and PWRs, Service Water, Instrument Air, and Emergency Diesel Generator Air Start Systems, and Emergency Diesel Generators Air Start Systems, emergency diesel generators, electrical components such as switchgear, breakers, relays, and motor control centers, motor operated valves and check valves. This information was compared to insights gained from the Nuclear Plant Aging Research (NPAR) Program. Attributes of plant maintenance programs where the NRC inspectors felt that improvement was needed to properly address the aging issue also are discussed.« less
Citizen Science to Support Community-based Flood Early Warning and Resilience Building
NASA Astrophysics Data System (ADS)
Paul, J. D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J. A.; Bhusal, J.; Cieslik, K.; Clark, J.; Dewulf, A.; Dhital, M. R.; Hannah, D. M.; Liu, W.; Nayaval, J. L.; Schiller, A.; Smith, P. J.; Stoffel, M.; Supper, R.
2017-12-01
In Disaster Risk Management, an emerging shift has been noted from broad-scale, top-down assessments towards more participatory, community-based, bottom-up approaches. Combined with technologies for robust and low-cost sensor networks, a citizen science approach has recently emerged as a promising direction in the provision of extensive, real-time information for flood early warning systems. Here we present the framework and initial results of a major new international project, Landslide EVO, aimed at increasing local resilience against hydrologically induced disasters in western Nepal by exploiting participatory approaches to knowledge generation and risk governance. We identify three major technological developments that strongly support our approach to flood early warning and resilience building in Nepal. First, distributed sensor networks, participatory monitoring, and citizen science hold great promise in complementing official monitoring networks and remote sensing by generating site-specific information with local buy-in, especially in data-scarce regions. Secondly, the emergence of open source, cloud-based risk analysis platforms supports the construction of a modular, distributed, and potentially decentralised data processing workflow. Finally, linking data analysis platforms to social computer networks and ICT (e.g. mobile phones, tablets) allows tailored interfaces and people-centred decision- and policy-support systems to be built. Our proposition is that maximum impact is created if end-users are involved not only in data collection, but also over the entire project life-cycle, including the analysis and provision of results. In this context, citizen science complements more traditional knowledge generation practices, and also enhances multi-directional information provision, risk management, early-warning systems and local resilience building.
Mertz, Leslie
2015-01-01
It seems as if many of us are getting used to the idea of wearing sensors, whether they are counting the number of steps we take each day with an iPhone-connected pedometer or keeping track of heart rate while we are doing an exercise routine or out riding a bicycle. That's probably good preparation, because a new generation of wearable sensors and smart textiles are coming to the fore to provide extended biomedical monitoring of heart, brain, muscle, and other physiological activity.
Airplane takeoff and landing performance monitoring system
NASA Technical Reports Server (NTRS)
Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)
1994-01-01
The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.
Airplane takeoff and landing performance monitoring system
NASA Technical Reports Server (NTRS)
Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)
1996-01-01
The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.
International Radiation Monitoring and Information System (IRMIS)
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Baciu, Florian; Stowisek, Jan; Saluja, Gurdeep; Kenny, Patrick; Albinet, Franck
2017-09-01
This article describes the International Radiation Monitoring Information System (IRMIS) which was developed by the International Atomic Energy Agency (IAEA) with the goal to provide Competent Authorities, the IAEA and other international organizations with a client server based web application to share and visualize large quantities of radiation monitoring data. The data maps the areas of potential impact that can assist countries to take appropriate protective actions in an emergency. Ever since the Chernobyl nuclear power plant accident in April of 19861 European Community (EC) has worked towards collecting routine environmental radiological monitoring data from national networked monitoring systems. European Radiological Data Exchange Platform (EURDEP) was created in 19952 to that end - to provide radiation monitoring data from most European countries reported in nearly real-time. During the response operations for the Fukushima Dai-ichi nuclear power plant accident (March 2011) the IAEA Incident and Emergency Centre (IEC) managed, harmonized and shared the large amount of data that was being generated from different organizations. This task underscored the need for a system which allows sharing large volumes of radiation monitoring data in an emergency. In 2014 EURDEP started the submission of the European radiological data to the International Radiation Monitoring Information System (IRMIS) as a European Regional HUB for IRMIS. IRMIS supports the implementation of the Convention on Early Notification of a Nuclear Accident by providing a web application for the reporting, sharing, visualizing and analysing of large quantities of environmental radiation monitoring data during nuclear or radiological emergencies. IRMIS is not an early warning system that automatically reports when there are significant deviations in radiation levels or when values are detected above certain levels. However, the configuration of the visualization features offered by IRMIS may help Member States to determine where elevated gamma dose rate measurements during a radiological or nuclear emergency indicate that actions to protect the public are necessary. The data can be used to assist emergency responders determine where and when to take necessary actions to protect the public. This new web online tool supports the IAEA's Unified System for Information Exchange in Incidents and Emergencies (USIE)3, an online tool where competent authorities can access information about all emergency situations, ranging from a lost radioactive source to a full-scale nuclear emergency.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
1991-01-01
The next generation of space propulsion systems will be designed to incorporate advanced health monitoring and nondestructive inspection capabilities. As a guide to help the nondestructive evaluation (NDE) community impact the development of these space propulsion systems, several questions should be addressed. An overview of background and current information on space propulsion systems at both the programmatic and technical levels is provided. A framework is given that will assist the NDE community in addressing key questions raised during the 2 to 5 April 1990 meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Nondestructive Evaluation Subcommittee (NDES).
Dose assessment of aircraft crew in The Netherlands.
Van Dijk, J W E
2003-01-01
As the operator of the National Dose Registration and Information System, NRG has implemented a system for radiation exposure monitoring for the Dutch airlines. The system is based on the use of computer generated flight plans together with dose calculations using the CARI-6M program. Before installing the system a study was performed to estimate the uncertainty in the assessment of the annual dose of the crew members. It was concluded that the proposed system complies with international recommendations on the uncertainty in dose assessments in individual monitoring and that the operational costs of the system are low.
The Potential of Small Satellites for Crop Monitoring in Emerging Economies
NASA Astrophysics Data System (ADS)
Bydekerke, L.; Meuleman, K.
2008-08-01
The use of low resolution data for monitoring of the overall vegetation condition and crops is nowadays wide spread in emerging economies. Various initiatives, global and local, have promoted the use of this type of imagery for assessing the progress of the growing season since the eighties. The normalized difference vegetation Index (NDVI), from various sensors with 250m to 8 km resolution, are used to identify potential anomalies in vegetation development which, in combination with other data, are used to identify emerging crisis situations in crop development and production before harvest time. Satellite data is analyzed by specialized centers and crop / vegetation assessments are summarized into bulletins, which are then used for communication with non-remote sensing specialists at the policy level. Satellite data is currently provided by large expensive space infrastructures and centrally distributed to the users. In this paper the current flow of information from satellite to information for agriculture is analyzed and the potential contribution of low cost small satellite in addressing the needs of the users is discussed. Two scenario's are presented: i. a centralized system whereby a few institutes have access to data generated by small satellites which process and analyze the data for use by analysts; ii. a decentralized system whereby a variety of users have direct access to data generated by small satellites who are capable of extracting, processing and analyzing information relevant for crop monitoring. The work shows that with affordable space infrastructure, as small satellites, the second scenario may become possible, but the complexity and the cost of the ground segment service remain limiting factors. Expertise and knowledge for processing, analysis and maintenance of IT/infrastructure is currently not enough, specifically in Institutions whose mandate is dealing with crop monitoring, such as the Ministries of Agriculture. However, in the short term, a limited number of specialized centers, can play a key role in gradually facilitating the integration of remote sensing information into the daily workflow, and gradually optimizing costs and efforts. The potential use of future small satellite missions such as e.g. SPOT-Vegetation continuity mission (Proba-V) is also addressed.
Zhao, Chuanchuan; Yang, Ninggui; Wang, Zhen; Liu, Sili; Dong, Xu; Xin, Wenrong
2013-01-01
The information of slope and vegetation coverage of the monitoring region were extracted, based on DEM (Digital Evaluation Model) and Spot5 Satellite data images, and fishnet grid was generated using GIS (Geographic Information System) and RS (Remote Sensing) technique. Applying the information of slop and vegetation coverage layers into the corresponding space grid by using the function of zonal statistics and analysis, it can realize overlay analysis based on Standards for Classification and Gradation of Soil Erosion (SL190-2007), and obtains the map of soil erosion intensity of the monitoring region. Finally, according to Specifications for Assessment of Forest Ecosystem Services (LY/T1721-2008) and monitoring data of typical plot, the soil and water conservation value from cropland to forest was evaluated quantitatively in 2009. The results showed that the area, on and below the moderate level, was 93600 ha, taking up 50.03% of total conversion of farmland to forest area (185100 ha), which indicates a 14.64 million (t/a) of soil conversion, and a 1520 million Yuan for erosion control. The results of the study showed that the soil and water conservation was very effective.
Analysis of Hospital Processes with Process Mining Techniques.
Orellana García, Arturo; Pérez Alfonso, Damián; Larrea Armenteros, Osvaldo Ulises
2015-01-01
Process mining allows for discovery, monitoring, and improving processes identified in information systems from their event logs. In hospital environments, process analysis has been a crucial factor for cost reduction, control and proper use of resources, better patient care, and achieving service excellence. This paper presents a new component for event logs generation in the Hospital Information System or HIS, developed at University of Informatics Sciences. The event logs obtained are used for analysis of hospital processes with process mining techniques. The proposed solution intends to achieve the generation of event logs in the system with high quality. The performed analyses allowed for redefining functions in the system and proposed proper flow of information. The study exposed the need to incorporate process mining techniques in hospital systems to analyze the processes execution. Moreover, we illustrate its application for making clinical and administrative decisions for the management of hospital activities.
Citizen Science: Participatory Monitoring of Water Resources Management in Mustang District, Nepal
NASA Astrophysics Data System (ADS)
Regmi, S.; Bhusal, J.; Gurung, P.; Ochoa-Tocachi, B. F.; Buytaert, W.
2016-12-01
Abstract The Mustang region of the Himalayas has unique geographical and climatic features. This region is characterized by a cold-arid climate with total annual precipitation of less than 300mm. Agriculture and livestock grazing lands are the major ecosystem services, which support directly the livelihoods of local populations yet, are strongly determined by low water availability. As a result, optimizing water resources management is paramount to support local development, but this is severely complicated by the lack of information about water availability. This problem is further aggravated by increasing pressure on the social, physical and climatic environments. In order to support the management of scarce water in irrigation and domestic uses, stream flow and precipitation monitoring networks were established using a participatory approach under the principle of citizen science. Data collection, and the following interpretation and application of the co-generated knowledge relies on local users, whereas the establishment of the system, knowledge co-generation, and development of application tools particularly is part of a collaboration of members of the general public with professional scientists. We show how the resulting data enable local users to quantify the water balance in the area and reduce the uncertainty associated to data-scarcity, which leads to the generation of useable information about water availability for irrigation, livestock grazing, and domestic demand. We contrast the current scenario of water use, under different conditions of natural variability and environmental change, with an optimized water management strategy generated and agreed with local users. This approach contributes to an optimal use of water, to an improvement in ecosystem services supporting to livelihood development and economic progress of local populations. Key words: ecosystem services, climate change, water balance, knowledge generation, irrigation
Evaluation of the AirNow Satellite Data Processor for 2010-2012
NASA Astrophysics Data System (ADS)
Pasch, A. N.; DeWinter, J. L.; Dye, T.; Haderman, M.; Zahn, P. H.; Szykman, J.; White, J. E.; Dickerson, P.; van Donkelaar, A.; Martin, R.
2013-12-01
The U.S. Environmental Protection Agency's (EPA) AirNow program provides the public with real-time and forecasted air quality conditions. Millions of people each day use information from AirNow to protect their health. The AirNow program (http://www.airnow.gov) reports ground-level ozone (O3) and fine particulate matter (PM2.5) with a standardized index called the Air Quality Index (AQI). AirNow aggregates information from over 130 state, local, and federal air quality agencies and provides tools for over 2,000 agency staff responsible for monitoring, forecasting, and communicating local air quality. Each hour, AirNow systems generate thousands of maps and products. The usefulness of the AirNow air quality maps depends on the accuracy and spatial coverage of air quality measurements. Currently, the maps use only ground-based measurements, which have significant gaps in coverage in some parts of the United States. As a result, contoured AQI levels have high uncertainty in regions far from monitors. To improve the usefulness of air quality maps, scientists at EPA, Dalhousie University, and Sonoma Technology, Inc., in collaboration with the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA), have completed a project to incorporate satellite-estimated surface PM2.5 concentrations into the maps via the AirNow Satellite Data Processor (ASDP). These satellite estimates are derived using NASA/NOAA satellite aerosol optical depth (AOD) retrievals and GEOS-Chem modeled ratios of surface PM2.5 concentrations to AOD. GEOS-Chem is a three-dimensional chemical transport model for atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GEOS). The ASDP can fuse multiple PM2.5 concentration data sets to generate AQI maps with improved spatial coverage. The goals of ASDP are to provide more detailed AQI information in monitor-sparse locations and to augment monitor-dense locations with more information. The ASDP system uses a weighted-average approach using uncertainty information about each data set. Recent improvements in the estimation of the uncertainty of interpolated ground-based monitor data have allowed for a more complete characterization of the uncertainty of the surface measurements. We will present a statistical analysis for 2010-2012 of the ASDP predictions of PM2.5 focusing on performance at validation sites. In addition, we will present several case studies evaluating the ASDP's performance for multiple regions and seasons, focusing specifically on days when large spatial gradients in AQI and wildfire smoke impacts were observed.
A model of human event detection in multiple process monitoring situations
NASA Technical Reports Server (NTRS)
Greenstein, J. S.; Rouse, W. B.
1978-01-01
It is proposed that human decision making in many multi-task situations might be modeled in terms of the manner in which the human detects events related to his tasks and the manner in which he allocates his attention among his tasks once he feels events have occurred. A model of human event detection performance in such a situation is presented. An assumption of the model is that, in attempting to detect events, the human generates the probability that events have occurred. Discriminant analysis is used to model the human's generation of these probabilities. An experimental study of human event detection performance in a multiple process monitoring situation is described and the application of the event detection model to this situation is addressed. The experimental study employed a situation in which subjects simulataneously monitored several dynamic processes for the occurrence of events and made yes/no decisions on the presence of events in each process. Input to the event detection model of the information displayed to the experimental subjects allows comparison of the model's performance with the performance of the subjects.
Visual exploration and analysis of ionospheric scintillation monitoring data: The ISMR Query Tool
NASA Astrophysics Data System (ADS)
Vani, Bruno César; Shimabukuro, Milton Hirokazu; Galera Monico, João Francisco
2017-07-01
Ionospheric Scintillations are rapid variations on the phase and/or amplitude of a radio signal as it passes through ionospheric plasma irregularities. The ionosphere is a specific layer of the Earth's atmosphere located approximately between 50 km and 1000 km above the Earth's surface. As Global Navigation Satellite Systems (GNSS) - such as GPS, Galileo, BDS and GLONASS - use radio signals, these variations degrade their positioning service quality. Due to its location, Brazil is one of the places most affected by scintillation in the world. For that reason, ionosphere monitoring stations have been deployed over Brazilian territory since 2011 through cooperative projects between several institutions in Europe and Brazil. Such monitoring stations compose a network that generates a large amount of monitoring data everyday. GNSS receivers deployed at these stations - named Ionospheric Scintillation Monitor Receivers (ISMR) - provide scintillation indices and related signal metrics for available satellites dedicated to satellite-based navigation and positioning services. With this monitoring infrastructure, more than ten million observation values are generated and stored every day. Extracting the relevant information from this huge amount of data was a hard process and required the expertise of computer and geoscience scientists. This paper describes the concepts, design and aspects related to the implementation of the software that has been supporting research on ISMR data - the so-called ISMR Query Tool. Usability and other aspects are also presented via examples of application. This web based software has been designed and developed aiming to ensure insights over the huge amount of ISMR data that is fetched every day on an integrated platform. The software applies and adapts time series mining and information visualization techniques to extend the possibilities of exploring and analyzing ISMR data. The software is available to the scientific community through the World Wide Web, therefore constituting an analysis infrastructure that complements the monitoring one, providing support for researching ionospheric scintillation in the GNSS context. Interested researchers can access the functionalities without cost at http://is-cigala-calibra.fct.unesp.br/, under online request to the Space Geodesy Study Group from UNESP - Univ Estadual Paulista at Presidente Prudente.
Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity
NASA Astrophysics Data System (ADS)
Dacome, M. C.; Miandro, R.; Vettorel, M.; Roncari, G.
2015-11-01
According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: - Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. - Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole) pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an acceptable exploitation programme in which the actual risk connected with the field production is evaluated in advance, shared and agreed among all the involved subjects: oil company, stakeholders and local community (with interests in the affected area).
Mattfeldt, S.D.; Bailey, L.L.; Grant, E.H.C.
2009-01-01
Monitoring programs have the potential to identify population declines and differentiate among the possible cause(s) of these declines. Recent criticisms regarding the design of monitoring programs have highlighted a failure to clearly state objectives and to address detectability and spatial sampling issues. Here, we incorporate these criticisms to design an efficient monitoring program whose goals are to determine environmental factors which influence the current distribution and measure change in distributions over time for a suite of amphibians. In designing the study we (1) specified a priori factors that may relate to occupancy, extinction, and colonization probabilities and (2) used the data collected (incorporating detectability) to address our scientific questions and adjust our sampling protocols. Our results highlight the role of wetland hydroperiod and other local covariates in the probability of amphibian occupancy. There was a change in overall occupancy probabilities for most species over the first three years of monitoring. Most colonization and extinction estimates were constant over time (years) and space (among wetlands), with one notable exception: local extinction probabilities for Rana clamitans were lower for wetlands with longer hydroperiods. We used information from the target system to generate scenarios of population change and gauge the ability of the current sampling to meet monitoring goals. Our results highlight the limitations of the current sampling design, emphasizing the need for long-term efforts, with periodic re-evaluation of the program in a framework that can inform management decisions.
Past observable dynamics of a continuously monitored qubit
NASA Astrophysics Data System (ADS)
García-Pintos, Luis Pedro; Dressel, Justin
2017-12-01
Monitoring a quantum observable continuously in time produces a stochastic measurement record that noisily tracks the observable. For a classical process, such noise may be reduced to recover an average signal by minimizing the mean squared error between the noisy record and a smooth dynamical estimate. We show that for a monitored qubit, this usual procedure returns unusual results. While the record seems centered on the expectation value of the observable during causal generation, examining the collected past record reveals that it better approximates a moving-mean Gaussian stochastic process centered at a distinct (smoothed) observable estimate. We show that this shifted mean converges to the real part of a generalized weak value in the time-continuous limit without additional postselection. We verify that this smoothed estimate minimizes the mean squared error even for individual measurement realizations. We go on to show that if a second observable is weakly monitored concurrently, then that second record is consistent with the smoothed estimate of the second observable based solely on the information contained in the first observable record. Moreover, we show that such a smoothed estimate made from incomplete information can still outperform estimates made using full knowledge of the causal quantum state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were: (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less
Monitoring pathogens from irradiated agriculture products
NASA Astrophysics Data System (ADS)
Butterweck, Joseph S.
The final food and environmental safety assessment of agriculture product irradiation can only be determined by product history. Product history will be used for future research and development, regulations, commercial practices and implementation of agriculture and food irradiation on a regional basis. The commercial irradiator treats large varieties and amounts of products that are used in various environments. It, in time, will generate a large data base of product history. Field product monitoring begins when food irradiation progresses from the pilot/demonstration phase to the commercial phase. At that time, it is important that there be in place a monitoring system to collect and analyze field data. The systems managers, public health authorities and exotic disease specialists will use this information to assess the reduction of food pathogens on the populace and the environment. The common sources of monitoring data are as follows: 1) Host Monitoring a) Medical Diagnosis b) Autopsy c) Serology Surveys 2) Environmental Monitoring a) Sentinel b) Pest Surveys/Microbial Counts c) Sanitary Inspections 3) Food Industries Quality Assurance Monitoring a) End Product Inspection b) Complaints c) Continual Use of the Product
Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.
Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa
2018-04-01
Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.
Monitoring landscape change for LANDFIRE using multi-temporal satellite imagery and ancillary data
James E. Vogelmann; Jay R. Kost; Brian Tolk; Stephen Howard; Karen Short; Xuexia Chen; Chengquan Huang; Kari Pabst; Matthew G. Rollins
2011-01-01
LANDFIRE is a large interagency project designed to provide nationwide spatial data for fire management applications. As part of the effort, many 2000 vintage Landsat Thematic Mapper and Enhanced Thematic Mapper plus data sets were used in conjunction with a large volume of field information to generate detailed vegetation type and structure data sets for the entire...
Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Ken Brewer; Evan Brooks; Noel Gorelick; Mathew Gregory; Alexander Hernandez; Chengquan Huang; Joseph Hughes; Robert Kennedy; Thomas Loveland; Kevin Megown; Gretchen Moisen; Todd Schroeder; Brian Schwind; Stephen Stehman; Daniel Steinwand; James Vogelmann; Curtis Woodcock; Limin Yang; Zhe Zhu
2015-01-01
Forest change information is critical in forest planning, ecosystem modeling, and in updating forest condition maps. The Landsat satellite platform has provided consistent observations of the worldâs ecosystems since 1972. A number of innovative change detection algorithms have been developed to use the Landsat archive to identify and characterize forest change. The...
This project’s objectives were to provide analysis of water quality following the release of acid mine drainage in the Animas and San Juan Rivers in a timely manner to 1) generate a comprehensive picture of the plume at the river system level, 2) help inform future monitoring eff...
A Communications Modeling System for Swarm-Based Sensors
2003-09-01
6-10 6.6. Digital and Swarm System Performance Measures . . . . . . . . . . 6-21 7.1. Simulation computing hardware...detection and monitoring, and advances in computational capabilities have provided for embedded data analysis and the generation of information from raw... computing and manufacturing technology have made such systems possible. In order to harness this potential for Air Force applica- tions, a method of
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... Application for a Pilot Project a. Type of Application: Draft Pilot License Application. b. Project No.: 13015... either a 3.5-mile-long, or a 5- mile-long submarine cable with two 13.8-kilovolt (kv) transmission lines and a 4.0-kv transmission line connecting the turbine generation units to an onshore substation...
Brenn, B Randall; Kim, Margaret A; Hilmas, Elora
2015-08-15
Development of an operational reporting dashboard designed to correlate data from multiple sources to help detect potential drug diversion by automated dispensing cabinet (ADC) users is described. A commercial business intelligence platform was used to create a dashboard tool for rapid detection of unusual patterns of ADC transactions by anesthesia service providers at a large pediatric hospital. By linking information from the hospital's pharmacy information management system (PIMS) and anesthesia information management system (AIMS) in an associative data model, the "narcotic reconciliation dashboard" can generate various reports to help spot outlier activity associated with ADC dispensing of controlled substances and documentation of medication waste processing. The dashboard's utility was evaluated by "back-testing" the program with historical data on an actual episode of diversion by an anesthesia provider that had not been detected through traditional methods of PIMS and AIMS data monitoring. Dashboard-generated reports on key metrics (e.g., ADC transaction counts, discrepancies in dispensed versus reconciled amounts of narcotics, PIMS-AIMS documentation mismatches) over various time frames during the period of known diversion clearly indicated the diverter's outlier status relative to other authorized ADC users. A dashboard program for correlating ADC transaction data with pharmacy and patient care data may be an effective tool for detecting patterns of ADC use that suggest drug diversion. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Power generator driven by Maxwell's demon
NASA Astrophysics Data System (ADS)
Chida, Kensaku; Desai, Samarth; Nishiguchi, Katsuhiko; Fujiwara, Akira
2017-05-01
Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.; Johnson, Edward J.; Domino, David A.
2008-01-01
A concept focusing on wind dependent departure operations has been developed the current version of this concept is called the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage the fact that cross winds of sufficient velocity blow wakes generated by "heavy" and B757 category aircraft on the downwind runway away from the upwind runway. Supervisory Air Traffic Controllers would be responsible for authorization of the Procedure. An investigation of the information requirements necessary to for Supervisors to approve monitor and terminate the Procedure was conducted. Results clearly indicated that the requisite information is currently available in air traffic control towers and that additional information was not required.
Triggers and monitoring in intelligent personal health record.
Luo, Gang
2012-10-01
Although Web-based personal health records (PHRs) have been widely deployed, the existing ones have limited intelligence. Previously, we introduced expert system technology and Web search technology into the PHR domain and proposed the concept of an intelligent PHR (iPHR). iPHR provides personalized healthcare information to facilitate users' daily activities of living. The current iPHR is passive and follows the pull model of information distribution. This paper introduces triggers and monitoring into iPHR to make iPHR become active. Our idea is to let medical professionals pre-compile triggers and store them in iPHR's knowledge base. Each trigger corresponds to an abnormal event that may have potential medical impact. iPHR keeps collecting, processing, and analyzing the user's medical data from various sources such as wearable sensors. Whenever an abnormal event is detected from the user's medical data, the corresponding trigger fires and the related personalized healthcare information is pushed to the user using natural language generation technology, expert system technology, and Web search technology.
Performance Metrics for Monitoring Parallel Program Executions
NASA Technical Reports Server (NTRS)
Sarukkai, Sekkar R.; Gotwais, Jacob K.; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Existing tools for debugging performance of parallel programs either provide graphical representations of program execution or profiles of program executions. However, for performance debugging tools to be useful, such information has to be augmented with information that highlights the cause of poor program performance. Identifying the cause of poor performance necessitates the need for not only determining the significance of various performance problems on the execution time of the program, but also needs to consider the effect of interprocessor communications of individual source level data structures. In this paper, we present a suite of normalized indices which provide a convenient mechanism for focusing on a region of code with poor performance and highlights the cause of the problem in terms of processors, procedures and data structure interactions. All the indices are generated from trace files augmented with data structure information.. Further, we show with the help of examples from the NAS benchmark suite that the indices help in detecting potential cause of poor performance, based on augmented execution traces obtained by monitoring the program.
The Next Generation of Interoperability Agents in Healthcare
Cardoso, Luciana; Marins, Fernando; Portela, Filipe; Santos, Manuel ; Abelha, António; Machado, José
2014-01-01
Interoperability in health information systems is increasingly a requirement rather than an option. Standards and technologies, such as multi-agent systems, have proven to be powerful tools in interoperability issues. In the last few years, the authors have worked on developing the Agency for Integration, Diffusion and Archive of Medical Information (AIDA), which is an intelligent, agent-based platform to ensure interoperability in healthcare units. It is increasingly important to ensure the high availability and reliability of systems. The functions provided by the systems that treat interoperability cannot fail. This paper shows the importance of monitoring and controlling intelligent agents as a tool to anticipate problems in health information systems. The interaction between humans and agents through an interface that allows the user to create new agents easily and to monitor their activities in real time is also an important feature, as health systems evolve by adopting more features and solving new problems. A module was installed in Centro Hospitalar do Porto, increasing the functionality and the overall usability of AIDA. PMID:24840351
Kang, Xu; Liu, Liang; Ma, Huadong
2017-01-01
Monitoring the status of urban environments, which provides fundamental information for a city, yields crucial insights into various fields of urban research. Recently, with the popularity of smartphones and vehicles equipped with onboard sensors, a people-centric scheme, namely “crowdsensing”, for city-scale environment monitoring is emerging. This paper proposes a data correlation based crowdsensing approach for fine-grained urban environment monitoring. To demonstrate urban status, we generate sensing images via crowdsensing network, and then enhance the quality of sensing images via data correlation. Specifically, to achieve a higher quality of sensing images, we not only utilize temporal correlation of mobile sensing nodes but also fuse the sensory data with correlated environment data by introducing a collective tensor decomposition approach. Finally, we conduct a series of numerical simulations and a real dataset based case study. The results validate that our approach outperforms the traditional spatial interpolation-based method. PMID:28054968
Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.
Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier
2018-06-06
As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.
NASA Astrophysics Data System (ADS)
Pastres, Roberto; Solidoro, Cosimo
2012-01-01
In this paper, we show how the integration of monitoring data and mathematical model can generate valuable information by using a few examples taken from a well studied but complex ecosystem, namely the Lagoon of Venice. We will focus on three key issues, which are of concern also for many other coastal ecosystems, namely: (1) Nitrogen and Phosphorus annual budgets; (2) estimation of Net Ecosystem Metabolism and early warnings for anoxic events; (3) assessment of ecosystem status. The results highlight the importance of framing monitoring activities within the "DPSIR" conceptual model, thus going far beyond the monitoring of major biogeochemical variables and including: (1) the estimation of the fluxes of the main constituents at the boundaries; (2) the use of appropriate mathematical models. These tools can provide quantitative links among Pressures and State/Impacts, thus enabling decision makers and stakeholders to evaluate the effects of alternative management scenarios.
NASA Astrophysics Data System (ADS)
Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre
2010-05-01
This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize the type of vegetation and its state of development in a more accurate way than using the ECOCLIMAP database. Finally, the CASA method was applied using the evapotranspiration images with FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) images from LSA-SAF to obtain Dry Matter Productivity (DMP) and crop yield. The potential of using evapotranspiration obtained from remote sensing in crop growth modeling is studied and discussed. Results of comparing the evapotranspiration obtained with ground truth data are shown as well as the influence of using high resolution information to characterize the vegetation in the evapotranspiration estimation. The values of DMP and yield obtained with the CASA method are compared with those obtained using crop growth modeling and field data, showing the potential of using this simplified remote sensing method for crop monitoring and yield forecasting. This methodology could be applied in an operative way to the entire MSG disk, allowing the continuous crop growth monitoring.
Quantifying the Value of Satellite Imagery in Agriculture and other Sectors
NASA Astrophysics Data System (ADS)
Brown, M. E.; Abbott, P. C.; Escobar, V. M.
2013-12-01
This study focused on quantifying the commercial value of satellite remote sensing for agriculture. Commercial value from satellite imagery arises when improved information leads to better economic decisions. We identified five areas of application of remote sensing to agriculture where there is this potential: crop management (precision agriculture), insurance, real estate assessment, crop forecasting, and environmental monitoring. These applications can be divided between public information (crop forecasting) and those that may generate private commercial value (crop management), with both public and private information dimensions in some categories. Public information applications of remote sensing have been more successful in the past, and are likely to generate more economic value in the future. It was found that several issues have limited realization of the potential to generate private value from remote sensing in agriculture. The scale of use is small to the high cost of acquiring and interpreting large images has limited the cost effectiveness to individual farmers. Insurance, environmental monitoring, and crop management services by cooperatives or consultants may be cases overcoming this limitation. The greatest opportunities for potential commercial value from agriculture are probably in the crop forecasting area, especially where agricultural statistics services are not as well developed, since public market information benefits a broad range of economic actors, not limited to countries where forecasts are made. We estimate here the value from components of USDA's World Agricultural Supply and Demand Estimates (WASDE) forecasts for corn, indicating potential value increasing in the range of 60 to 240 million if improved satellite based information enhances those forecasts. The research was conducted by agricultural economists at Purdue University, and will be the basis for further evaluation of the use of satellite data within the NASA Carbon Monitoring System (CMS). A general evaluation framework to determine the usefulness of the CMS products to various users and to the broader community interested in managing carbon is shown in Figure 2. The first step in conducting such an analysis is to develop an understanding of the history, institutions, behaviors and other factors setting the context of an application which CMS data products inform. Decision makers are identified (who may become early adopters), and the alternative decisions they might take are elaborated. Economic models informed by biophysical models would then predict the outcome of the engagement. The new information must then be linked to a revised decision, and that decision in turn must lead to better economic or social outcomes on average. The value of the information is estimated as the predicted increase in economic surplus (profit, cost, consumer welfare) or social outcome that is a direct result of that revised decision. Alternative Monte Carlo simulations would estimate averages of key outcomes under alternative circumstances, such as differing regulations or better data, hence capturing consequences of the changes induced. These approaches will be described in the context of NASA and satellite data.
Corrosion probe. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less
OLAM: A wearable, non-contact sensor for continuous heart-rate and activity monitoring.
Albright, Ryan K; Goska, Benjamin J; Hagen, Tory M; Chi, Mike Y; Cauwenberghs, G; Chiang, Patrick Y
2011-01-01
A wearable, multi-modal sensor is presented that can non-invasively monitor a patient's activity level and heart function concurrently for more than a week. The 4 in(2) sensor incorporates both a non-contact heartrate sensor and a 5-axis inertial measurement unit (IMU), allowing simultaneous heart, respiration, and movement monitoring without requiring physical contact with the skin [1]. Hence, this Oregon State University Life and Activity Monitor (OLAM) provides the unique opportunity to combine motion data with heart-rate information, enabling assessment of actual physical activity beyond conventional movement sensors. OLAM also provides a unique platform for non-contact sensing, enabling the filtering of movement artifacts generated by the non-contact capacitive interface, using the IMU data as a movement noise channel. Intended to be used in clinical trials for weeks at a time with no physician intervention, the OLAM allows continuous non-invasive monitoring of patients, providing the opportunity for long-term observation into a patient's physical activity and subtle longitudinal changes.
Smart-Home Architecture Based on Bluetooth mesh Technology
NASA Astrophysics Data System (ADS)
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
Microfluidics for food, agriculture and biosystems industries.
Neethirajan, Suresh; Kobayashi, Isao; Nakajima, Mitsutoshi; Wu, Dan; Nandagopal, Saravanan; Lin, Francis
2011-05-07
Microfluidics, a rapidly emerging enabling technology has the potential to revolutionize food, agriculture and biosystems industries. Examples of potential applications of microfluidics in food industry include nano-particle encapsulation of fish oil, monitoring pathogens and toxins in food and water supplies, micro-nano-filtration for improving food quality, detection of antibiotics in dairy food products, and generation of novel food structures. In addition, microfluidics enables applications in agriculture and animal sciences such as nutrients monitoring and plant cells sorting for improving crop quality and production, effective delivery of biopesticides, simplified in vitro fertilization for animal breeding, animal health monitoring, vaccination and therapeutics. Lastly, microfluidics provides new approaches for bioenergy research. This paper synthesizes information of selected microfluidics-based applications for food, agriculture and biosystems industries. © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Calderone, G. M.
2006-12-01
A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.
Laboratory information management system: an example of international cooperation in Namibia.
Colangeli, Patrizia; Ferrilli, Monica; Quaranta, Fabrizio; Malizia, Elio; Mbulu, Rosa-Stella; Mukete, Esther; Iipumbu, Lukas; Kamhulu, Anna; Tjipura-Zaire, Georgina; Di Francesco, Cesare; Lelli, Rossella; Scacchia, Massimo
2012-01-01
The authors describe the project undertaken by the Istituto G. Caporale to provide a laboratory information management system (LIMS) to the Central Veterinary Laboratory (CVL) in Windhoek, Namibia. This robust laboratory management tool satisfies Namibia's information obligations under international quality standard ISO 17025:2005. The Laboratory Information Management System (LIMS) for Africa was designed to collect and manage all necessary information on samples, tests and test results. The system involves the entry of sample data on arrival, as required by Namibian sampling plans, the tracking of samples through the various sections of the CVL, the collection of test results, generation of test reports and monitoring of outbreaks through data interrogation functions, eliminating multiple registrations of the same data on paper records. It is a fundamental component of the Namibian veterinary information system.
Regional input to joint European space weather service
NASA Astrophysics Data System (ADS)
Stanislawska, I.; Belehaki, A.; Jansen, F.; Heynderickx, D.; Lilensten, J.; Candidi, M.
The basis for elaborating within COST 724 Action Developing the scientific basis for monitoring modeling and predicting Space Weather European space weather service is rich by many national and international activities which provide instruments and tools for global as well as regional monitoring and modeling COST 724 stimulates coordinates and supports Europe s goals of development and global cooperation by providing standards for timely and high quality information and knowledge in space weather Existing local capabilities are taken into account to develop synergies and avoid duplication The enhancement of environment monitoring networks and associated instruments technology yields mutual advantages for European service and regional services specialized for local users needs It structurally increases the integration of limited-area services generates a platform employing the same approach to each task differing mostly in input and output data In doing so it also provides complementary description of the environmental state within issued information A general scheme of regional services concept within COST 724 activity can be the processing chain from measurements trough algorithms to operational knowledge It provides the platform for interaction among the local end users who define what kind of information they need system providers who elaborate tools necessary to obtain required information and local service providers who do the actual processing of data and tailor it to specific user s needs Such initiative creates a unique possibility for small
Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan
2015-06-01
This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed.
Tools in a clinical information system supporting clinical trials at a Swiss University Hospital.
Weisskopf, Michael; Bucklar, Guido; Blaser, Jürg
2014-12-01
Issues concerning inadequate source data of clinical trials rank second in the most common findings by regulatory authorities. The increasing use of electronic clinical information systems by healthcare providers offers an opportunity to facilitate and improve the conduct of clinical trials and the source documentation. We report on a number of tools implemented into the clinical information system of a university hospital to support clinical research. In 2011/2012, a set of tools was developed in the clinical information system of the University Hospital Zurich to support clinical research, including (1) a trial registry for documenting metadata on the clinical trials conducted at the hospital, (2) a patient-trial-assignment-tool to tag patients in the electronic medical charts as participants of specific trials, (3) medical record templates for the documentation of study visits and trial-related procedures, (4) online queries on trials and trial participants, (5) access to the electronic medical records for clinical monitors, (6) an alerting tool to notify of hospital admissions of trial participants, (7) queries to identify potentially eligible patients in the planning phase as trial feasibility checks and during the trial as recruitment support, and (8) order sets to facilitate the complete and accurate performance of study visit procedures. The number of approximately 100 new registrations per year in the voluntary trial registry in the clinical information system now matches the numbers of the existing mandatory trial registry of the hospital. Likewise, the yearly numbers of patients tagged as trial participants as well as the use of the standardized trial record templates increased to 2408 documented trial enrolments and 190 reports generated/month in the year 2013. Accounts for 32 clinical monitors have been established in the first 2 years monitoring a total of 49 trials in 16 clinical departments. A total of 15 months after adding the optional feature of hospital admission alerts of trial participants, 107 running trials have activated this option, including 48 out of 97 studies (49.5%) registered in the year 2013, generating approximately 85 alerts per month. The popularity of the presented tools in the clinical information system illustrates their potential to facilitate the conduct of clinical trials. The tools also allow for enhanced transparency on trials conducted at the hospital. Future studies on monitoring and inspection findings will have to evaluate their impact on quality and safety. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borth, F.C. III; Thompson, J.W.; Mishaga, J.M.
1996-11-01
Through ComEd Fossil (Generating) Division`s Competitive Action Plan (CAP) evaluation changes have been identified which are necessary to improve generating station performance. These changes are intended to improve both station reliability and financial margins, and are essential for stations to be successful in a competitive marketplace. Plant upgrades, advanced equipment stewardship, and personnel reductions have been identified as necessary steps in achieving industry leadership and competitive advantage. To deal effectively with plant systems and contend in the competitive marketplace Information Technology (IT) solutions to business problems are being developed. Data acquisition, storage, and retrieval are being automated through use ofmore » state-of-the-art Data Historians. Total plant, high resolution, long term process information will be accessed through Local/Wide Area Networks (LAN/WAN) connections from desktop PC`s. Generating unit Thermal Performance Monitors accessing the Data Historian will analyze plant and system performance enabling reductions in operating costs, and improvements in process control. As inputs to proactive maintenance toolsets this data allows anticipation of equipment service needs, advanced service scheduling, and cost/benefit analysis. The ultimate goal is to optimize repair needs with revenue generation. Advanced applications building upon these foundations will bring knowledge of the costs associated with all the products a generating station offers its customer(s). An overall design philosophy along with preliminary results is presented; these results include shortfalls, lessons learned, and future options.« less
WEBGIS based CropWatch online agriculture monitoring system
NASA Astrophysics Data System (ADS)
Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.
2015-12-01
CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked together. All the three visualization methods are applied to four scales including 65 monitoring and reporting units (MRUs), 7 major production zones (MPZs), 173 countries and sub-countries for 9 large countries. Agro-Climatic information, Agronomic information and indicators related with crop area, crop yield and crop production are provided.
An Intelligent CAI Monitor and Generative Tutor. Interim Report.
ERIC Educational Resources Information Center
Koffman, Elliot B.; And Others
Design techniques for generative computer-assisted-instructional (CAI) systems are described in this report. These are systems capable of generating problems for students and of deriving and monitoring solutions; problem difficulty, instructional pace, and depth of monitoring are all individually tailored and parts of the solution algorithms can…
Recommended methods for monitoring change in bird populations by counting and capture of migrants
David J. T. Hussell; C. John Ralph
2005-01-01
Counts and banding captures of spring or fall migrants can generate useful information on the status and trends of the source populations. To do so, the counts and captures must be taken and recorded in a standardized and consistent manner. We present recommendations for field methods for counting and capturing migrants at intensively operated sites, such as bird...
Remote Sensing of Soils for Environmental Assessment and Management.
NASA Technical Reports Server (NTRS)
DeGloria, Stephen D.; Irons, James R.; West, Larry T.
2014-01-01
The next generation of imaging systems integrated with complex analytical methods will revolutionize the way we inventory and manage soil resources across a wide range of scientific disciplines and application domains. This special issue highlights those systems and methods for the direct benefit of environmental professionals and students who employ imaging and geospatial information for improved understanding, management, and monitoring of soil resources.
A flight expert system (FLES) for on-board fault monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Ali, Moonis; Scharnhorst, D. A.; Ai, C. S.; Feber, H. J.
1987-01-01
The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher workloads for the pilot and tend to induce a higher probability of errors. Therefore, an architecture for a flight expert system (FLES) is developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with airplane status information during the diagnostic process. The simulator is based on the Lockheed Advanced Concept System (ACS), a future generation airplane, and on the Boeing 737. A distinction between two types of faults, maladjustments and malfunctions, has led to two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to access abnormal situations during airplane flight. Malfunctions and maladjustments are handled separately, diagnosed using domain knowledge.
Participatory monitoring to connect local and global priorities for forest restoration.
Evans, Kristen; Guariguata, Manuel R; Brancalion, Pedro H S
2018-06-01
New global initiatives to restore forest landscapes present an unparalleled opportunity to reverse deforestation and forest degradation. Participatory monitoring could play a crucial role in providing accountability, generating local buy in, and catalyzing learning in monitoring systems that need scalability and adaptability to a range of local sites. We synthesized current knowledge from literature searches and interviews to provide lessons for the development of a scalable, multisite participatory monitoring system. Studies show that local people can collect accurate data on forest change, drivers of change, threats to reforestation, and biophysical and socioeconomic impacts that remote sensing cannot. They can do this at one-third the cost of professionals. Successful participatory monitoring systems collect information on a few simple indicators, respond to local priorities, provide appropriate incentives for participation, and catalyze learning and decision making based on frequent analyses and multilevel interactions with other stakeholders. Participatory monitoring could provide a framework for linking global, national, and local needs, aspirations, and capacities for forest restoration. © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Designing for Wide-Area Situation Awareness in Future Power Grid Operations
NASA Astrophysics Data System (ADS)
Tran, Fiona F.
Power grid operation uncertainty and complexity continue to increase with the rise of electricity market deregulation, renewable generation, and interconnectedness between multiple jurisdictions. Human operators need appropriate wide-area visualizations to help them monitor system status to ensure reliable operation of the interconnected power grid. We observed transmission operations at a control centre, conducted critical incident interviews, and led focus group sessions with operators. The results informed a Work Domain Analysis of power grid operations, which in turn informed an Ecological Interface Design concept for wide-area monitoring. I validated design concepts through tabletop discussions and a usability evaluation with operators, earning a mean System Usability Scale score of 77 out of 90. The design concepts aim to support an operator's complete and accurate understanding of the power grid state, which operators increasingly require due to the critical nature of power grid infrastructure and growing sources of system uncertainty.
Airplane takeoff and landing performance monitoring system
NASA Technical Reports Server (NTRS)
Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)
1991-01-01
The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system.
Demonstrating the viability and value of community-based monitoring schemes in catchment science
NASA Astrophysics Data System (ADS)
Starkey, Eleanor; Parkin, Geoff; Quinn, Paul; Large, Andy
2016-04-01
Hydrological catchments are complex systems which need to be monitored over time in order to characterise their behaviour on a local level, model, implement mitigation measures and meet policy targets. Despite hydrometric monitoring techniques being well developed, data is often inadequate within rural areas. Local knowledge and experiences are also vital sources of information in this sector but they are not routinely harvested. Long-term evidence is required to provide stakeholders with confidence and innovation is required to fully engage with and inform the public. Citizen science and volunteered geographical information (VGI) projects are encouraging volunteers to participate in crowdsourcing activities and generate new knowledge, but they have not been fully investigated within catchment science. A citizen science approach has therefore been implemented within the 42km2 Haltwhistle Burn catchment (northern England) using effective engagement techniques. This catchment responds rapidly, experiences flash flood events, and like many, it does not benefit from any traditional monitoring equipment. Participation levels confirm that members of the public do want to monitor their local water environment, with flooding being a key driver. Regular 'River Watch' volunteers and passers-by are sharing their knowledge and monitoring rainfall, river levels, water quality parameters, sediment issues, flood events and performance of flood risk management features. This has enabled a variety of low-cost data collection and submission tools to be tested over a two year period. Training has encouraged good quality data to be collected and volunteers are ready to capture meaningful information during unexpected flood events. Although volunteers are capable of collecting quantitative information, photographs and videos are submitted more readily. Twitter has also been used to share real-time observations successfully. A traditional monitoring network has been running in parallel for the purpose of assessing the quality of citizen science observations. It has been found that citizen science observations are essential for capturing localised convective storms. Citizen scientists want their observations to be used to gain meaningful information and tackle local issues. Data has therefore been utilised to build, calibrate and validate hydrological models and support a range of catchment management applications. This has further demonstrated the value of citizen science, along with the social benefits it has to offer. Other communities are also beginning to source funding and implement their own monitoring schemes, indicating that they are both capable and self-motivated. Citizen science makes use of evolving and more readily available technology, providing catchment stakeholders with vital information. Although these types of observations present various challenges, it is argued that a citizen science approach is not intending to replace traditional techniques, rather they can be used to complement them, fill the gaps and/or provide an indication of catchment behaviour across space and through time.
Sirvent, Mariola; Victoria Calvo, María; Sagalés, María; Rodríguez-Penin, Isaura; Cervera, Mercedes; Piñeiro, Guadalupe; García-Rodicio, Sonsoles; Gomis, Pilar; Caba, Isabel; Vazquez, Amparo; Gomez, María E; Pedraza, Luis
2013-01-01
To identify and develop monitoring indicators of the process of specialized nutritional support that will allow measuring the level of adherence to the established practice standards. Those practice standards considered to be key elements of the process were selected to develop performance indicators. The construction of these indicators combined the scientific evidence with expert opinion. Key goals were identified within each standard provided that its consecution would allow increasing the achievement of the standard. Particular improvement initiatives associated to each key goal were generated. Lastly, monitoring indicators were defined allowing undertaking a follow-up of the implementation of the improvement initiatives or either to assess the level of achievement of the key goals identified. Nineteen practice standards were selected representative of the critical points of the process. The strategic map for each standard has been defined, with the identification of 43 key goals. In order to achieve these key goals, a portfolio of improvements has been generated comprising 56 actions. Finally, 44 monitoring indicators have been defined grouped into three categories: 1. Numeric: they assess the level of goal achievement; 2. Dichotomic (yes/no): they inform on the execution of the improvement actions; 3. Results of the practice audits. We have made available monitoring indicators that allow assessing the level of adherence to the practice standards of the process of specialized nutritional support and the impact of the implementation of improvement actions within this process. Copyright © 2013 SEFH. Published by AULA MEDICA. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard Angello
2005-09-30
Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performancemore » to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.« less
NASA Astrophysics Data System (ADS)
Buytaert, W.; Ochoa-Tocachi, B. F.; De Bièvre, B.
2017-12-01
Many watershed interventions in remote data-scarce areas respond to information gaps by extrapolating conventional approaches based on very limited local evidence. However, most interventions, including conservation strategies and adaptation measures, have not been evaluated properly for their hydrological benefits. This is particularly the case for the Andean region, where the complex climatic and hydrological characteristics combined with a very dynamic anthropogenic disturbance, require better monitoring. Here, we present the experience of a partnership of academic and non-governmental institutions who pioneered participatory hydrological monitoring in the Andes. Established in 2009, the Regional Initiative for Hydrological Monitoring of Andean Ecosystems (iMHEA), is a bottom-up initiative that complements the national monitoring networks and more conventional scientific observatories. Using a design based on a trading-space-for-time approach, over 30 paired catchments with a variety of watershed interventions are currently being monitored by 18 local stakeholders in 15 sites in the tropical Andes. Pooling these data into a hydrological impact model allowed the consortium to make more robust predictions about the effectiveness of catchment interventions to improve water resources management and to reduce risks. The collaborative nature of iMHEA has several strengths. We identify as most important of those the ability to: (i) standardize monitoring practices; (ii) ensure quality and technical support; (iii) share responsibility of monitoring activities; (iv) obtain project co-funding and complementarity; and, (v) promote decision maker-scientist engagement. As a result, this network has started to deliver useful information to multi-scale and multi-stakeholder decision making arenas. For example, in the context of growing investment in hydrological ecosystem services in Peru, the sites provide a new generation of hydrological information that allows for evidence-based, cost-benefit comparisons. However, some challenges still remain in the scientific, technological and social domains, opening wide perspectives for future collaborative work.
NASA Astrophysics Data System (ADS)
Ochoa-Tocachi, B. F.; Buytaert, W.; De Bièvre, B.
2016-12-01
Many watershed interventions in remote data-scarce areas respond to information gaps by extrapolating conventional approaches based on very limited local evidence. However, most interventions, including conservation strategies and adaptation measures, have not been evaluated properly for their hydrological benefits. This is particularly the case for the Andean region, where the complex climatic and hydrological characteristics combined with a very dynamic anthropogenic disturbance, require better monitoring. Here, we present the experience of a partnership of academic and non-governmental institutions who pioneered participatory hydrological monitoring in the Andes. Established in 2009, the Regional Initiative for Hydrological Monitoring of Andean Ecosystems (iMHEA), is a bottom-up initiative that complements the national monitoring networks and more conventional scientific observatories. Using a design based on a trading-space-for-time approach, over 30 paired catchments with a variety of watershed interventions are currently being monitored by 18 local stakeholders in 15 sites in the tropical Andes. Pooling these data into a hydrological impact model allowed the consortium to make more robust predictions about the effectiveness of catchment interventions to improve water resources management and to reduce risks. The collaborative nature of iMHEA has several strengths. We identify as most important of those the ability to: (i) standardize monitoring practices; (ii) ensure quality and technical support; (iii) share responsibility of monitoring activities; (iv) obtain project co-funding and complementarity; and, (v) promote decision maker-scientist engagement. As a result, this network has started to deliver useful information to multi-scale and multi-stakeholder decision making arenas. For example, in the context of growing investment in hydrological ecosystem services in Peru, the sites provide a new generation of hydrological information that allows for evidence-based, cost-benefit comparisons. However, some challenges still remain in the scientific, technological and social domains, opening wide perspectives for future collaborative work.
This asset includes hazardous waste information, which is mostly contained in the Resource Conservation and Recovery Act Information (RCRAInfo) System, a national program management and inventory system addressing hazardous waste handlers. In general, all entities that generate, transport, treat, store, and dispose of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies pass on that information to regional and national EPA offices. This regulation is governed by the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984. RCRAInfo Search can be used to determine identification and location data for specific hazardous waste handlers and to find a wide range of information on treatment, storage, and disposal facilities regarding permit/closure status, compliance with Federal and State regulations, and cleanup activities. Categories of information in this asset include:-- Handlers-- Permit Information-- GIS information on facility location-- Financial Assurance-- Corrective Action-- Compliance Monitoring and Enforcement (CM&E)
Modeled occupational exposures to gas-phase medical laser-generated air contaminants.
Lippert, Julia F; Lacey, Steven E; Jones, Rachael M
2014-01-01
Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.
GENASIS national and international monitoring networks for persistent organic pollutants
NASA Astrophysics Data System (ADS)
Brabec, Karel; Dušek, Ladislav; Holoubek, Ivan; Hřebíček, Jiří; Kubásek, Miroslav; Urbánek, Jaroslav
2010-05-01
Persistent organic pollutants (POPs) remain in the centre of scientific attention due to their slow rates of degradation, their toxicity, and potential for both long-range transport and bioaccumulation in living organisms. This group of compounds covers large number of various chemicals from industrial products, such as polychlorinated biphenyls, etc. The GENASIS (Global Environmental Assessment and Information System) information system utilizes data from national and international monitoring networks to obtain as-complete-as-possible set of information and a representative picture of environmental contamination by persistent organic pollutants (POPs). There are data from two main datasets on POPs monitoring: 1.Integrated monitoring of POPs in Košetice Observatory (Czech Republic) which is a long term background site of the European Monitoring and Evaluation Programme (EMEP) for the Central Europe; the data reveals long term trends of POPs in all environmental matrices. The Observatory is the only one in Europe where POPs have been monitored not only in ambient air, but also in wet atmospheric deposition, surface waters, sediments, soil, mosses and needles (integrated monitoring). Consistent data since the year 1996 are available, earlier data (up to 1998) are burdened by high variability and high detection limits. 2.MONET network is ambient air monitoring activities in the Central and Eastern European region (CEEC), Central Asia, Africa and Pacific Islands driven by RECETOX as the Regional Centre of the Stockholm Convention for the region of Central and Eastern Europe under the common name of the MONET networks (MONitoring NETwork). For many of the participating countries these activities generated first data on the atmospheric levels of POPs. The MONET network uses new technologies of air passive sampling, which was developed, tested, and calibrated by RECETOX in cooperation with Environment Canada and Lancaster University, and was originally launched as a model monitoring network providing public administration, private subject, and general public information about air pollution by POPs that had not been previously regularly monitored and whose measurement is further required by global monitoring plan of the Stockholm Convention. The MONET network is international project with many participants. Monitoring in the MONET-CZ network started in 2004 with the pilot project and continues to the current days, MONET CEEC started in 2006 and continues nowadays, MONET Africa started in 2008. The database of the GENASIS systems currently covers MONET-CZ data until the year 2008. The MONET network currently covers 37 countries in the Europe, Asia and Africa with more than 350 sampling sites. The paper will discuss about following topics * Data Fusion in GENASIS: how can GENASIS maximize the value and accuracy of the information gathered from heterogeneous data sources? * Sensor types in GENASIS: which POPs can be measured; what are the physical limitations to achievable accuracy, reliability, and long-term stability of miniaturized sensors; which applications can (not) be realized within these limitations?
Learning energy literacy concepts from energy-efficient homes
NASA Astrophysics Data System (ADS)
Paige, Frederick Eugene
The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity generation. • Utility bill limits and constraints exemplify the ability to conserve energy resources. • Replicable examples teach lessons on conservation. • Via an understanding of the water-energy nexus, water conservation lessons transfer to energy saving lessons. • Passive design exemplifies how a shift in thinking can conserve energy resources through informed efficient decision-making. • Societal shifts in energy consumption are evident at home. • Efficient homes provide applicable examples of social and technological innovations. • The home is the environment in which memorable lessons on energy are passed through cultures. • Home energy consumption comparisons are a popular and effective social innovation, but people have mixed emotions about their usefulness. • A utility bill communicates that utility companies are monitoring energy use to calculate cost. • Interactivity enhances feedback from energy monitors. • Calculating and monitoring energy use is perceived as a complex mathematical process. • Energy consumption feedback at the appliance level is desired to inform decisions. • There is a separation between personal energy monitoring and public monitoring. Implications of this research are that an energy literate society will have the knowledge that is a prerequisite for the motivation to address energy and climate issues. Educators, policy makers, engineers, and designers all play a role in creating a built environment that encourages energy saving behavior.
PersonA: Persuasive social network for physical Activity.
Ayubi, Soleh U; Parmanto, Bambang
2012-01-01
Advances in physical activity (PA) monitoring devices provide ample opportunities for innovations in the way the information produced by these devices is used to encourage people to have more active lifestyles. One such innovation is expanding the current use of the information from self-management to social support. We developed a Persuasive social network for physical Activity (PersonA) that combines automatic input of physical activity data, a smartphone, and a social networking system (SNS). This paper describes the motivation for and overarching design of the PersonA and its functional and non-functional features. PersonA is designed to intelligently and automatically receive raw PA data from the sensors in the smartphone, calculate the data into meaningful PA information, store the information on a secure server, and show the information to the users as persuasive and real-time feedbacks or publish the information to the SNS to generate social support. The implementation of self-monitoring, social support, and persuasive concepts using currently available technologies has the potential for promoting healthy lifestyle, greater community participation, and higher quality of life. We also expect that PersonA will enable health professionals to collect in situ data related to physical activity. The platform is currently being used and tested to improve PA level of three groups of users in Pittsburgh, PA, USA.
Emerging technologies for pediatric and adult trauma care.
Moulton, Steven L; Haley-Andrews, Stephanie; Mulligan, Jane
2010-06-01
Current Emergency Medical Service protocols rely on provider-directed care for evaluation, management and triage of injured patients from the field to a trauma center. New methods to quickly diagnose, support and coordinate the movement of trauma patients from the field to the most appropriate trauma center are in development. These methods will enhance trauma care and promote trauma system development. Recent advances in machine learning, statistical methods, device integration and wireless communication are giving rise to new methods for vital sign data analysis and a new generation of transport monitors. These monitors will collect and synchronize exponentially growing amounts of vital sign data with electronic patient care information. The application of advanced statistical methods to these complex clinical data sets has the potential to reveal many important physiological relationships and treatment effects. Several emerging technologies are converging to yield a new generation of smart sensors and tightly integrated transport monitors. These technologies will assist prehospital providers in quickly identifying and triaging the most severely injured children and adults to the most appropriate trauma centers. They will enable the development of real-time clinical support systems of increasing complexity, able to provide timelier, more cost-effective, autonomous care.
Monitoring environmental burden reduction from household waste prevention.
Matsuda, Takeshi; Hirai, Yasuhiro; Asari, Misuzu; Yano, Junya; Miura, Takahiro; Ii, Ryota; Sakai, Shin-Ichi
2018-01-01
In this study, the amount of prevented household waste in Kyoto city was quantified using three methods. Subsequently, the greenhouse gas (GHG) emission reduction by waste prevention was calculated in order to monitor the impact of waste prevention. The methods of quantification were "relative change from baseline year (a)," "absolute change from potential waste generation (b)," and "absolute amount of activities (c)." Method (a) was popular for measuring waste prevention, but method (b) was the original approach to determine the absolute amount of waste prevention by estimating the potential waste generation. Method (c) also provided the absolute value utilizing the information of activities. Methods (b) and (c) enable the evaluation of the waste prevention activities with a similar baseline for recycling. Methods (b) and (c) gave significantly higher GHG reductions than method (a) because of the difference in baseline between them. Therefore, setting a baseline is very important for evaluating waste prevention. In practice, when focusing on the monitoring of a specific policy or campaign, method (a) is an appropriate option. On the other hand, when comparing the total impact of waste prevention to that of recycling, methods (b) and (c) should be applied. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Qi, Junjian; Kang, Wei
2016-08-01
Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accuratelymore » estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.« less
Callahan, Tiffany; Schmiege, Sarah J.; Feldstein Ewing, Sarah W.
2016-01-01
Objective In the United States, Hispanic adolescents are at elevated risk for negative outcomes related to risky sexual behavior. To evaluate potential protective factors for this group, we examined the fit of the Hispanic Paradox for sexual behavior among high-risk youth and the moderating role of parent monitoring. Method We enrolled 323 justice-involved Hispanic youth (73% male; mean age 16 years), and measured generational status, parent monitoring (monitoring location, who children spend time with outside of school, family dinner frequency), and sexual risk behavior. Results There were no main effects for generational status on sexual behavior. Parent monitoring of location moderated the relationship between generational status and sexual behavior, such that greater monitoring of location was associated with less risky sexual behavior, but only for youth second generation and above. Conclusions Rather than direct evidence supporting the Hispanic Paradox, we found a more nuanced relationship for generational status in this sample. PMID:25972373
Using Bayesian networks to support decision-focused information retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehner, P.; Elsaesser, C.; Seligman, L.
This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base thatmore » are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.« less
NASA Astrophysics Data System (ADS)
Kropf, M.; Pedrick, M.; Wang, X.; Tittmann, B. R.
2005-05-01
As per the recent advances in remote in situ monitoring of industrial equipment using long wire waveguides (~10m), novel applications of existing wave generation techniques and new acoustic modeling software have been used to advance waveguide technology. The amount of attainable information from an acoustic signal in such a system is limited by transmission through the waveguide along with frequency content of the generated waves. Magnetostrictive, and Electromagnetic generation techniques were investigated in order to maximize acoustic transmission along the waveguide and broaden the range of usable frequencies. Commercial EMAT, Magnetostrictive and piezoelectric disc transducers (through the innovative use of an acoustic horn) were utilized to generate waves in the wire waveguide. Insertion loss, frequency bandwidth and frequency range were examined for each technique. Electromagnetic techniques are shown to allow for higher frequency wave generation. This increases accessibility of dispersion curves providing further versatility in the selection of guided wave modes, thus increasing the sensitivity to physical characteristics of the specimen. Both electromagnetic and magnetostrictive transducers require the use of a ferromagnetic waveguide, typically coupled to a steel wire when considering long transmission lines (>2m). The interface between these wires introduces an acoustic transmission loss. Coupling designs were examined with acoustic finite element software (Coupled-Acoustic Piezoelectric Analysis). Simulations along with experimental results aided in the design of a novel joint which minimizes transmission loss. These advances result in the increased capability of remote sensing using wire waveguides.
Griffiths, Paul; Mounteney, Jane; Lopez, Dominique; Zobel, Frank; Götz, Wolfgang
2012-02-01
The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) is the designated hub for drug-related information in the European Union. The organization's role is to provide the European Union (EU) and its Member States with a factual overview of European drug problems and a common information framework to support the drugs debate. In order to achieve its mission, the EMCDDA coordinates and relies on a network of 30 national monitoring centres, the Reitox National Focal Points. The Centre publishes on a wide range of drug-related topics, across epidemiology, interventions, laws and policies. Every November, the EMCDDA publishes its Annual Report, providing a yearly update on the European drug situation, translated into 23 EU languages. In line with its founding regulation, the EMCDDA has a role acting as an interface between the worlds of science and policy. While not a research centre in the formal sense, the results the Centre generates serve as catalysts for new research questions and help to identify priorities. Current challenges facing the agency include continuing to increase scientific standards while maintaining a strong institutional role, as well as supporting European efforts to identify, share and codify best practice in the drugs field. © 2011 EMCDDA.
Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists.
Ruiz, María Herrojo; Jabusch, Hans-Christian; Altenmüller, Eckart
2009-11-01
Music performance is an extremely rapid process with low incidence of errors even at the fast rates of production required. This is possible only due to the fast functioning of the self-monitoring system. Surprisingly, no specific data about error monitoring have been published in the music domain. Consequently, the present study investigated the electrophysiological correlates of executive control mechanisms, in particular error detection, during piano performance. Our target was to extend the previous research efforts on understanding of the human action-monitoring system by selecting a highly skilled multimodal task. Pianists had to retrieve memorized music pieces at a fast tempo in the presence or absence of auditory feedback. Our main interest was to study the interplay between auditory and sensorimotor information in the processes triggered by an erroneous action, considering only wrong pitches as errors. We found that around 70 ms prior to errors a negative component is elicited in the event-related potentials and is generated by the anterior cingulate cortex. Interestingly, this component was independent of the auditory feedback. However, the auditory information did modulate the processing of the errors after their execution, as reflected in a larger error positivity (Pe). Our data are interpreted within the context of feedforward models and the auditory-motor coupling.
A novel framework for the use of remote sensing for monitoring catchments at continental scales.
Bugnot, A B; Lyons, M B; Scanes, P; Clark, G F; Fyfe, S K; Lewis, A; Johnston, E L
2018-07-01
Historical ecology can teach us valuable lessons on the processes and drivers of environmental change that can inform future monitoring priorities and management strategies. Environmental data to study environmental history, however, is often absent or of low quality. Even when studying changes occurring during the last few decades, monitoring efforts are scarce due to logistical and cost limitations, leaving large areas unassessed. The aim of this study is to evaluate the use of estuarine water colour as an indicator of historical environmental change in catchments. Water colour change was assessed in estuaries in Australia from 1987 to 2015 using satellite remote sensing. Random points were selected for each estuary and applied to the Australian Geoscience Data Cube (based on Landsat images) to obtain reflectance data through time. We propose a framework where (i) water colour is used to detect historical changes in catchments using generalised additive models, (ii) possible stressors and pressures driving those changes are evaluated using other available historical data, and (iii) lessons learned inform appropriate monitoring and management actions. This framework represents a novel approach to generate historical data for large-scale assessments of environmental change at catchment level, even in poorly studied areas. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hybrid monitoring scheme for end-to-end performance enhancement of multicast-based real-time media
NASA Astrophysics Data System (ADS)
Park, Ju-Won; Kim, JongWon
2004-10-01
As real-time media applications based on IP multicast networks spread widely, end-to-end QoS (quality of service) provisioning for these applications have become very important. To guarantee the end-to-end QoS of multi-party media applications, it is essential to monitor the time-varying status of both network metrics (i.e., delay, jitter and loss) and system metrics (i.e., CPU and memory utilization). In this paper, targeting the multicast-enabled AG (Access Grid) a next-generation group collaboration tool based on multi-party media services, the applicability of hybrid monitoring scheme that combines active and passive monitoring is investigated. The active monitoring measures network-layer metrics (i.e., network condition) with probe packets while the passive monitoring checks both application-layer metrics (i.e., user traffic condition by analyzing RTCP packets) and system metrics. By comparing these hybrid results, we attempt to pinpoint the causes of performance degradation and explore corresponding reactions to improve the end-to-end performance. The experimental results show that the proposed hybrid monitoring can provide useful information to coordinate the performance improvement of multi-party real-time media applications.
NASA Astrophysics Data System (ADS)
Becker-Reshef, I.; Justice, C. O.
2012-12-01
Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through leveraging advances in the research domain and in satellite technologies, and integrating these into the existing operational monitoring systems.
1990-12-01
DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release; distribution unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING...Technical Paper 20, US Bureau of Sport Fisheries and Wildlife, Washington,_DC. 10 Helwig, P. C. 1969. An Experimental Study of Ship-generated Water Waves...1974. Stream Drift as a Chronobiological Phenomenon in Running Water Ecosystems, Annual Review of Ecology and Systematics, Vol 5, pp 309-323. Muncy, R
1998-12-01
failure detection, monitoring, and decision making.) moderator function. Originally, the output from these One of the best known OCM implementations, the...imposed by the tasks themselves, the information and equipment provided, the task environment, operator skills and experience, operator strategies , the...problem-solving situation, including the toward failure.) knowledge necessary to generate the right problem- solving strategies , the attention that
Short-term monitoring of aridland lichen cover and biomass using photography and fatty acids
Bowker, M.A.; Johnson, N.C.; Belnap, J.; Koch, G.W.
2008-01-01
Biological soil crust (BSC) communities (composed of lichens, bryophytes, and cyanobacteria) may be more dynamic on short-time scales than previously thought, requiring new and informative short-term monitoring techniques. We used repeat digital photography and image analysis, which revealed a change in area of a dominant BSC lichen, Collema tenax. The data generated correlated well with gross photosynthesis (r=0.57) and carotenoid content (r=0.53), two variables that would be expected to be positively related to lichen area. We also extracted fatty acids from lichen samples and identified useful phospholipid fatty acid (PLFA) indicators for the Collema mycobiont (20:1, 15:0, 23:0), and the Collema photobiont (18:3??3). The 18:3??3 correlated well with chlorophyll a (r=0.66), a more traditional proxy for cyanobacterial biomass. We also compared total PLFA as a proxy for total Collema biomass with our photographically generated areal change data, and found them to be moderately correlated (r=0.44). Areal change proved to be responsive on short-time scales, while fatty acid techniques were information-rich, providing data on biomass of lichens, and both photo- and mycobionts separately, in addition to the physiological status of the mycobiont. Both techniques should be refined and tested in field situations. ?? 2007 Elsevier Ltd. All rights reserved.
Next-generation air monitoring
Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...
NASA Astrophysics Data System (ADS)
Testan, Peter R.
1987-04-01
A number of Color Hard Copy (CHC) market drivers are currently indicating strong growth in the use of CHC technologies for the business graphics marketplace. These market drivers relate to product, software, color monitors and color copiers. The use of color in business graphics allows more information to be relayed than is normally the case in a monochrome format. The communicative powers of full-color computer generated output in the business graphics application area will continue to induce end users to desire and require color in their future applications. A number of color hard copy technologies will be utilized in the presentation graphics arena. Thermal transfer, ink jet, photographic and electrophotographic technologies are all expected to be utilized in the business graphics presentation application area in the future. Since the end of 1984, the availability of color application software packages has grown significantly. Sales revenue generated by business graphics software is expected to grow at a compound annual growth rate of just over 40 percent to 1990. Increased availability of packages to allow the integration of text and graphics is expected. Currently, the latest versions of page description languages such as Postscript, Interpress and DDL all support color output. The use of color monitors will also drive the demand for color hard copy in the business graphics market place. The availability of higher resolution screens is allowing color monitors to be easily used for both text and graphics applications in the office environment. During 1987, the sales of color monitors are expected to surpass the sales of monochrome monitors. Another major color hard copy market driver will be the color copier. In order to take advantage of the communications power of computer generated color output, multiple copies are required for distribution. Product introductions of a new generation of color copiers is now underway with additional introductions expected during 1987. The color hard copy market continues to be in a state of constant change, typical of any immature market. However, much of the change is positive. During 1985, the color hard copy market generated 1.2 billion. By 1990, total market revenue is expected to exceed 5.5 billion. The business graphics CHC application area is expected to grow at a compound annual growth rate greater than 40 percent to 1990.
A fence line noble gas monitoring system for nuclear power plants.
Grasty, R L; Hovgaard, J; LaMarre, J R
2001-01-01
A noble gas monitoring system has been installed at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) near Toronto, Canada. This monitoring system allows a direct measure of air kerma from external radiation instead of calculating this based on plant emission data and meteorological models. This has resulted in a reduction in the reported effective dose from external radiation by a factor of at least ten. The system consists of nine self-contained units, each with a 7.6 cm x 7.6 cm (3 inch x 3 inch) NaI(TI) detector that is calibrated for air kerma. The 512-channel gamma ray spectral information is downloaded daily from each unit to a central computer where the data are stored and processed. A spectral stripping procedure is used to remove natural background variations from the spectral windows used to monitor xenon-133 (133Xe), xenon-135 (135Xe), argon-41 (41Ar), and skyshine radiation from the use of radiography sources. Typical monthly minimum detection limits in air kerma are 0.3 nGy for 133Xe, 0.7 nGy for 35Xe, 3 nGy for 41Ar and 2 nGy for skyshine radiation. Based on 9 months of continuous operation, the annualised air kerma due to 133Xe, 135Xe and 41Ar and skyshine radiation were 7 nGy, 8 nGy, 26 nGy and 107 nGy respectively.
Synergy of Optical and SAR Data for Mapping and Monitoring Mangroves
NASA Astrophysics Data System (ADS)
Monzon, A. K.; Reyes, S. R.; Veridiano, R. K.; Tumaneng, R.; De Alban, J. D.
2016-06-01
Quantitative information on mangrove cover extents is essential in producing relevant resource management plans and conservation strategies. In the Philippines, mangrove rehabilitation was made a priority in relation to disaster risk response and mitigation following the calamities in the coastal communities during typhoon Haiyan/Yolanda; hence, baseline information on the extent of remaining mangrove cover was essential for effective site interventions. Although mangrove cover maps for the country already exists, analysis of mangrove cover changes were limited to the application of fixed annual deforestation rates due to the challenge of acquiring consistent temporal cloud-free optical satellite data over large landscapes. This study presents an initial analysis of SAR and optical imagery combined with field-based observations for detecting mangrove cover extent and changes through a straightforward graphical approach. The analysis is part of a larger study evaluating the synergistic use of time-series L-band SAR and optical data for mapping and monitoring of mangroves. Image segmentation was implemented on the 25-meter ALOS/PALSAR image mosaics, in which the generated objects were subjected to statistical analysis using the software R. In combination with selected Landsat bands, the class statistics from the image bands were used to generate decision trees and thresholds for the hierarchical image classification. The results were compared with global mangrove cover dataset and validated using collected ground truth data. This study developed an integrated replicable approach for analyzing future radar and optical datasets, essential in national level mangrove cover change monitoring and assessment for long-term conservation targets and strategies.
Classification of cardiac arrhythmias using competitive networks.
Leite, Cicilia R M; Martin, Daniel L; Sizilio, Glaucia R A; Dos Santos, Keylly E A; de Araujo, Bruno G; Valentim, Ricardo A M; Neto, Adriao D D; de Melo, Jorge D; Guerreiro, Ana M G
2010-01-01
Information generated by sensors that collect a patient's vital signals are continuous and unlimited data sequences. Traditionally, this information requires special equipment and programs to monitor them. These programs process and react to the continuous entry of data from different origins. Thus, the purpose of this study is to analyze the data produced by these biomedical devices, in this case the electrocardiogram (ECG). Processing uses a neural classifier, Kohonen competitive neural networks, detecting if the ECG shows any cardiac arrhythmia. In fact, it is possible to classify an ECG signal and thereby detect if it is exhibiting or not any alteration, according to normality.
The IRS and the Internet: new issues for tax-exempt organizations.
Griffith, Gerald M
2002-01-01
Tax-exempt healthcare organizations increasingly are using the Internet to provide an inexpensive, easily accessible forum for information exchange, organization publicity, and community-relations programs. A tax-exempt organization that engages in certain activities on its Web site, however, risks losing its tax-exempt status. Such activities may include political messages and lobbying, substantial advertising and other revenue-generating programs, and inappropriate solicitation of charitable contributions. Therefore, providers should carefully monitor all information on their Web sites, including hyperlinks to other Web sites, chat-room and bulletin-board content, and advertisements, to make certain they comply with IRS rules.
Bogaert, Petronille; Van Oyen, Herman
2017-01-01
Although sound data and health information are at the basis of evidence-based policy-making and research, still no single, integrated and sustainable EU-wide public health monitoring system or health information system exists. BRIDGE Health is working towards an EU health information and data generation network covering major EU health policy areas. A stakeholder consultation with national public health institutes was organised to identify the needs to strengthen the current EU health information system and to identify its possible benefits. Five key issues for improvement were identified: (1) coherence, coordination and sustainability; (2) data harmonization, collection, processing and reporting; (3) comparison and benchmarking; (4) knowledge sharing and capacity building; and (5) transferability of health information into evidence-based policy making. The vision of an improved EU health information system was formulated and the possible benefits in relation to six target groups. Through this consultation, BRIDGE Health has identified the continuous need to strengthen the EU health information system. A better system is about sustainability, better coordination, governance and collaboration among national health information systems and stakeholders to jointly improve, harmonise, standardise and analyse health information. More and better sharing of this comparable health data allows for more and better comparative health research, international benchmarking, national and EU-wide public health monitoring. This should be developed with the view to provide the tools to fight both common and individual challenges faced by the Members States and their politicians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzies, K.T.; Randel, M.A.; Quill, A.L.
1989-01-01
The U.S. Army Biomedical Research and Development Laboratory defined an extensive research program to address the generation of potentially toxic propellant combustion products in crew compartments of armored vehicles during weapons firing. The major objectives of the research were (1) to determine the presence and concentration of propellant combustion products, (2) to determine potential crew exposure to these combustion products, and (3) to assess the efficacy of field monitoring in armored vehicles. To achieve these goals, air monitoring was conducted in selected armored vehicle types, i.e., M109, M60, M3, M1, at several Army installations. Auxiliary information concerning the specific munitionsmore » fired and the Training and Doctrine Command (TRADOC) or Forces Command (FORSCOM) firing scenarios was collected so that a comparison of pollutant concentrations generated by specific weapons both within vehicle types and between vehicle types could be made.« less
NASA Astrophysics Data System (ADS)
Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.
2012-10-01
New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.
Monitoring landscape change for LANDFIRE using multi-temporal satellite imagery and ancillary data
Vogelmann, James E.; Kost, Jay R.; Tolk, Brian; Howard, Stephen M.; Short, Karen; Chen, Xuexia; Huang, Chengquan; Pabst, Kari; Rollins, Matthew G.
2011-01-01
LANDFIRE is a large interagency project designed to provide nationwide spatial data for fire management applications. As part of the effort, many 2000 vintage Landsat Thematic Mapper and Enhanced Thematic Mapper plus data sets were used in conjunction with a large volume of field information to generate detailed vegetation type and structure data sets for the entire United States. In order to keep these data sets current and relevant to resource managers, there was strong need to develop an approach for updating these products. We are using three different approaches for these purposes. These include: 1) updating using Landsat-derived historic and current fire burn information derived from the Monitoring Trends in Burn Severity project; 2) incorporating vegetation disturbance information derived from time series Landsat data analysis using the Vegetation Change Tracker; and 3) developing data products that capture subtle intra-state disturbance such as those related to insects and disease using either Landsat or the Moderate Resolution Imaging Spectroradiometer (MODIS). While no one single approach provides all of the land cover change and update information required, we believe that a combination of all three captures most of the disturbance conditions taking place that have relevance to the fire community.
NASA Astrophysics Data System (ADS)
Arndt, D. S.
2014-12-01
In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.
Program Helps Generate And Manage Graphics
NASA Technical Reports Server (NTRS)
Truong, L. V.
1994-01-01
Living Color Frame Maker (LCFM) computer program generates computer-graphics frames. Graphical frames saved as text files, in readable and disclosed format, easily retrieved and manipulated by user programs for wide range of real-time visual information applications. LCFM implemented in frame-based expert system for visual aids in management of systems. Monitoring, diagnosis, and/or control, diagrams of circuits or systems brought to "life" by use of designated video colors and intensities to symbolize status of hardware components (via real-time feedback from sensors). Status of systems can be displayed. Written in C++ using Borland C++ 2.0 compiler for IBM PC-series computers and compatible computers running MS-DOS.
Armanini, D G; Monk, W A; Carter, L; Cote, D; Baird, D J
2013-08-01
Evaluation of the ecological status of river sites in Canada is supported by building models using the reference condition approach. However, geography, data scarcity and inter-operability constraints have frustrated attempts to monitor national-scale status and trends. This issue is particularly true in Atlantic Canada, where no ecological assessment system is currently available. Here, we present a reference condition model based on the River Invertebrate Prediction and Classification System approach with regional-scale applicability. To achieve this, we used biological monitoring data collected from wadeable streams across Atlantic Canada together with freely available, nationally consistent geographic information system (GIS) environmental data layers. For the first time, we demonstrated that it is possible to use data generated from different studies, even when collected using different sampling methods, to generate a robust predictive model. This model was successfully generated and tested using GIS-based rather than local habitat variables and showed improved performance when compared to a null model. In addition, ecological quality ratio data derived from the model responded to observed stressors in a test dataset. Implications for future large-scale implementation of river biomonitoring using a standardised approach with global application are presented.
Advances in recreational water quality monitoring at Indiana Dunes National Lakeshore
Smith, Wendy; Nevers, Meredith; Whitman, Richard L.
2006-01-01
Indiana Dunes has improved its ability to protect the health of swimmers through better science-based management and increased understanding of contaminants. Most research has focused on Escherichia coli and its nature, sources, and distribution because it is widely accepted as an indicator of potential pathogens. Though research on E. coli and recreational water quality is continually generating new information, public beach managers may gain valuable insight into this management issue from our experience at Indiana Dunes. This article reviews one of the longest maintained indicator bacteria monitoring programs in the National Park System, highlights lessons learned, and summarizes research findings that may be of interest to public beach managers.
Web-Accessible Scientific Workflow System for Performance Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roelof Versteeg; Roelof Versteeg; Trevor Rowe
2006-03-01
We describe the design and implementation of a web accessible scientific workflow system for environmental monitoring. This workflow environment integrates distributed, automated data acquisition with server side data management and information visualization through flexible browser based data access tools. Component technologies include a rich browser-based client (using dynamic Javascript and HTML/CSS) for data selection, a back-end server which uses PHP for data processing, user management, and result delivery, and third party applications which are invoked by the back-end using webservices. This environment allows for reproducible, transparent result generation by a diverse user base. It has been implemented for several monitoringmore » systems with different degrees of complexity.« less
Combined phosphorescence-holographic approach for singlet oxygen detection in biological media
NASA Astrophysics Data System (ADS)
Semenova, I. V.; Belashov, A. V.; Beltukova, D. M.; Petrov, N. V.; Vasyutinskii, O. S.
2015-06-01
The paper presents a novel combined approach aimed to detect and monitor singlet oxygen molecules in biological specimens by means of the simultaneous recording and monitoring of their deactivation dynamics in the two complementary channels: radiative and nonradiative. The approach involves both the direct registration of phosphorescence at the wavelength of about 1270 nm caused by radiative relaxation of excited singlet oxygen molecules and holographic recording of thermal disturbances in the medium produced by their nonradiative relaxation. The data provides a complete set of information on singlet oxygen location and dynamics in the medium. The approach was validated in the case study of photosensitized generation of singlet oxygen in onion cell structures.
Embedded sensor systems for health - providing the tools in future healthcare.
Lindén, Maria; Björkman, Mats
2014-01-01
Wearable, embedded sensor systems for health applications are foreseen to be enablers in the future healthcare. They will provide ubiquitous monitoring of multiple parameters without restricting the person to stay at home or in the hospital. By following trend changes in the health status, early deteriorations will be detected and treatment can start earlier. Also health prevention will be supported. Such future healthcare requires technology development, including miniaturized sensors, smart textiles and wireless communication. The tremendous amount of data generated by these systems calls for both signal processing and decision support to guarantee the quality of data and avoid overflow of information. Safe and secure communications have to protect the integrity of the persons monitored.
Britton, Katherine E; Britton-Colonnese, Jennifer D
2017-03-01
Being able to track, analyze, and use data from continuous glucose monitors (CGMs) and through platforms and apps that communicate with CGMs helps achieve better outcomes and can advance the understanding of diabetes. The risks to patients' expectation of privacy are great, and their ability to control how their information is collected, stored, and used is virtually nonexistent. Patients' physical security is also at risk if adequate cybersecurity measures are not taken. Currently, data privacy and security protections are not robust enough to address the privacy and security risks and stymies the current and future benefits of CGM and the platforms and apps that communicate with them.
Britton, Katherine E.; Britton-Colonnese, Jennifer D.
2017-01-01
Being able to track, analyze, and use data from continuous glucose monitors (CGMs) and through platforms and apps that communicate with CGMs helps achieve better outcomes and can advance the understanding of diabetes. The risks to patients’ expectation of privacy are great, and their ability to control how their information is collected, stored, and used is virtually nonexistent. Patients’ physical security is also at risk if adequate cybersecurity measures are not taken. Currently, data privacy and security protections are not robust enough to address the privacy and security risks and stymies the current and future benefits of CGM and the platforms and apps that communicate with them. PMID:28264188
NASA Technical Reports Server (NTRS)
Rediess, Herman A.; Ramnath, Rudrapatna V.; Vrable, Daniel L.; Hirvo, David H.; Mcmillen, Lowell D.; Osofsky, Irving B.
1991-01-01
The results are presented of a study to identify potential real time remote computational applications to support monitoring HRV flight test experiments along with definitions of preliminary requirements. A major expansion of the support capability available at Ames-Dryden was considered. The focus is on the use of extensive computation and data bases together with real time flight data to generate and present high level information to those monitoring the flight. Six examples were considered: (1) boundary layer transition location; (2) shock wave position estimation; (3) performance estimation; (4) surface temperature estimation; (5) critical structural stress estimation; and (6) stability estimation.
NASA Astrophysics Data System (ADS)
Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc
2018-04-01
We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.
Airplane takeoff and landing performance monitoring system
NASA Technical Reports Server (NTRS)
Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H. (Inventor)
1989-01-01
The invention is a real-time takeoff and landing performance monitoring system which provides the pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V sub R) within the safe zone of the runway or stopping the aircraft on the runway after landing or take off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. An important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in headwind occurring as the takeoff roll progresses. The system displays the position of the airplane on the runway, indicating runway used and runway available, summarizes the critical information into a situation advisory flag, flags engine failures and off-nominal acceleration performance, and indicates where on the runway particular events such as decision speed (V sub 1), rotation speed (V sub R) and expected stop points will occur based on actual or predicted performance. The display also indicates airspeed, wind vector, engine pressure ratios, second segment climb speed, and balanced field length (BFL). The system detects performance deficiencies by comparing the airplane's present performance with a predicted nominal performance based upon the given conditions.
Information-reality complementarity: The role of measurements and quantum reference frames
NASA Astrophysics Data System (ADS)
Dieguez, P. R.; Angelo, R. M.
2018-02-01
Recently, a measure has been put forward which allows for the quantification of the degree of reality of an observable for a given preparation [Bilobran and Angelo, Europhys. Lett. 112, 40005 (2015), 10.1209/0295-5075/112/40005]. Here we employ this quantifier to establish, on formal grounds, relations among the concepts of measurement, information, and physical reality. After introducing mathematical objects that unify weak and projective measurements, we study scenarios showing that an arbitrary-intensity unrevealed measurement of a given observable generally leads to an increase of its reality and also of its incompatible observables. We derive a complementarity relation connecting an amount of information associated with the apparatus with the degree of irreality of the monitored observable. Specifically for pure states, we show that the entanglement with the apparatus precisely determines the amount by which the reality of the monitored observable increases. We also point out some mechanisms whereby the irreality of an observable can be generated. Finally, using the aforementioned tools, we construct a consistent picture to address the measurement problem.
An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data
NASA Technical Reports Server (NTRS)
Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan
2005-01-01
Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.
NASA Astrophysics Data System (ADS)
Dunn, Jocelyn T.
Integrative and unobtrusive approaches to monitoring health and stress can assist in preventative medicine and disease management, and provide capabilities for complex work environments, such as military deployments and long-duration human space exploration missions. With many data streams that could potentially provide critical information about the health, behavior, and psychosocial states of individuals or small groups, the central question of this research is how to reliably measure health and stress states over time. This integrative approach to health and stress monitoring has implemented biological metabolite profiling, wearables data analysis, and survey assessment for comparing biological, behavioral, and psychological perspectives. Health monitoring technologies aim to provide objective data about health status. Providing objective information can help mitigate biases or blind spots in an individual's perception. Consider an individual who is unwilling to openly admit to psychosocial distress and unhealthy habits, or an individual who has habituated to long-term stressors and is unable to recognize a chronic state of high stress. Both honesty and self-awareness are required for accurate self-reporting. Digital health technologies, such as wearable devices, provide objective data for health monitoring. Compared to surveys, wearables are less influenced by participant openness, and compared to biological samples, wearables require less equipment and less labor for analysis. However, inherent to every data stream are limitations due to uncertainty and sensitivity. This research has been conducted in collaboration with Hawaii Space Exploration Analog and Simulation (HI-SEAS), which is a Mars analog research site on the slopes on Mauna Loa volcano in Hawaii. During 8-month and 12-month HI-SEAS missions in the 2014-2016 timeframe, twelve individuals provided hair and urine samples for metabolite profiling, utilized consumer-grade wearables to monitor sleep and activity behaviors, and responded to surveys for recording perceived health and stress levels. This work has developed a self-report instrument for stress characterization, efficient protocols for metabolite profiling, novel measures of sleep quality and activity levels, and has evaluated performance differences of JawboneRTM and FitbitRTM wearable devices that were worn in tandem. There is considerable debate about the accuracy of data collected from wearable devices. Therefore, the success of next-generation wearable devices is hinging on the ability to reliably process wearables data into meaningful health information. By simultaneously quantifying biological metabolites, sleep and activity behaviors, and psychological perceptions of health, this research is evaluating possible predictors of health and stress, such as evaluating if activity and sleep behaviors recorded by wearables can be predictive of biological metabolites and perceived health. This research has developed data-driven insights for advancing the next-generation of biological, behavioral, and psychological health monitoring capabilities.
Monitoring urban air quality using a high-density network of low-cost sensor nodes in Oslo, Norway.
NASA Astrophysics Data System (ADS)
Castell, Nuria; Schneider, Philipp; Vogt, Matthias; Dauge, Franck R.; Lahoz, William; Bartonova, Alena
2017-04-01
Urban air quality represents a major public health burden and is a long-standing concern to citizens. Air pollution is associated with a range of diseases, symptoms and conditions that impair health and quality of life. In Oslo, traffic, especially exhaust from heavy-duty and private diesel vehicles and dust resuspension from studded tyres, together with wood burning in winter, are the main sources of pollution. Norway, as part of the European Economic Area, is obliged to comply with the European air quality regulations and ensure clean air. Despite this, Oslo has exceeded both the NO2 and PM10 thresholds for health protection defined in the Directive 2008/50/EC. The air quality in the Oslo area is continuously monitored in 12 compliance monitoring stations. These stations provide reliable and accurate data but their density is too low to provide a detailed spatial distribution of air quality. The emergence of low-cost nodes enables observations at high spatial resolution, providing the opportunity to enhance existing monitoring systems. However, the data generated by these nodes is significantly less accurate and precise than the data provided by reference equipment. We have conducted an evaluation of low-cost nodes to monitor NO2 and PM10, comparing the data collected with low-cost nodes against CEN (European Standardization Organization) reference analysers. During January and March 2016, a network of 24 nodes was deployed in Oslo. During January, high NO2 levels were observed for several days in a row coinciding with the formation of a thermal inversion. During March, we observed an episode with high PM10 levels due to road dust resuspension. Our results show that there is a major technical challenge associated with current commercial low-cost sensors, regarding the sensor robustness and measurement repeatability. Despite this, low-cost sensor nodes are able to reproduce the NO2 and PM10 variability. The data from the sensors was employed to generate detailed NO2 and PM10 air quality maps using a data fusion technique. This way we were able to offer localized air quality information for the city of Oslo. The outlook for commercial low-cost sensors is promising, and our results show that currently some sensors are already capable of providing coarse information about air quality, indicating if the air quality is good, moderate or if the air is heavily polluted. This type of information could be suitable for applications that aim to raise awareness, or engage the community by monitoring local air quality, as such applications do not require the same accuracy as scientific or regulatory monitoring.
NASA Technical Reports Server (NTRS)
1982-01-01
The QuadraScan Longterm Flow Monitoring System is a second generation sewer monitor developed by American Digital Systems, Inc.'s founder Peter Petroff. Petroff, a former spacecraft instrumentation designer at Marshall Space Flight Center, used expertise based on principles acquired in Apollo and other NASA programs. QuadraScan borrows even more heavily from space technology, for example in its data acquisition and memory system derived from NASA satellites. "One-time" measurements are often plagued with substantial errors due to the flow of groundwater absorbed into the system. These system sizing errors stem from a basic informational deficiency: accurate, reliable data on how much water flows through a sewer system over a long period of time is very difficult to obtain. City officials are turning to "permanent," or long-term sewer monitoring systems. QuadraScan offers many advantages to city officials such as the early warning capability to effectively plan for city growth in order to avoid the crippling economic impact of bans on new sewer connections in effect in many cities today.
Multiple sensor multifrequency eddy current monitor for solidification and growth
NASA Technical Reports Server (NTRS)
Wallace, John
1990-01-01
A compact cylindrical multisensor eddy current measuring system with integral furnace was develop to monitor II-VI crystal growth to provide interfacial information, solutal segregation, and conductivities of the growth materials. The use of an array of sensors surrounding the furnace element allows one to monitor the volume of interest. Coupling these data with inverse multifrequency analysis allows radial conductivity profiles to be generated at each sensor position. These outputs were incorporated to control the processes within the melt volume. The standard eddy current system functions with materials whose electric conductivities are as low as 2E2 Mhos/m. A need was seen to extend the measurement range to poorly conducting media so the unit was modified to allow measurement of materials conductivities 4 order of magnitude lower and bulk dielectric properties. Typically these included submicron thick films and semiinsulating GaAs. This system was used to monitor complex heat transfer in grey bodies as well as semiconductor and metallic solidification.
A design of wireless sensor networks for a power quality monitoring system.
Lim, Yujin; Kim, Hak-Man; Kang, Sanggil
2010-01-01
Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.
Dynamic Self-adaptive Remote Health Monitoring System for Diabetics
Suh, Myung-kyung; Moin, Tannaz; Woodbridge, Jonathan; Lan, Mars; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2016-01-01
Diabetes is the seventh leading cause of death in the United States. In 2010, about 1.9 million new cases of diabetes were diagnosed in people aged 20 years or older. Remote health monitoring systems can help diabetics and their healthcare professionals monitor health-related measurements by providing real-time feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the remote health monitoring. This paper presents a task optimization technique used in WANDA (Weight and Activity with Blood Pressure and Other Vital Signs); a wireless health project that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. WANDA applies data analytics in real-time to improving the quality of care. The developed algorithm minimizes the number of daily tasks required by diabetic patients using association rules that satisfies a minimum support threshold. Each of these tasks maximizes information gain, thereby improving the overall level of care. Experimental results show that the developed algorithm can reduce the number of tasks up to 28.6% with minimum support 0.95, minimum confidence 0.97 and high efficiency. PMID:23366365
Telecommunications end-to-end systems monitoring on TOPEX/Poseidon: Tools and techniques
NASA Technical Reports Server (NTRS)
Calanche, Bruno J.
1994-01-01
The TOPEX/Poseidon Project Satellite Performance Analysis Team's (SPAT) roles and responsibilities have grown to include functions that are typically performed by other teams on JPL Flight Projects. In particular, SPAT Telecommunication's role has expanded beyond the nominal function of monitoring, assessing, characterizing, and trending the spacecraft (S/C) RF/Telecom subsystem to one of End-to-End Information Systems (EEIS) monitoring. This has been accomplished by taking advantage of the spacecraft and ground data system structures and protocols. By processing both the received spacecraft telemetry minor frame ground generated CRC flags and NASCOM block poly error flags, bit error rates (BER) for each link segment can be determined. This provides the capability to characterize the separate link segments, determine science data recovery, and perform fault/anomaly detection and isolation. By monitoring and managing the links, TOPEX has successfully recovered approximately 99.9 percent of the science data with an integrity (BER) of better than 1 x 10(exp 8). This paper presents the algorithms used to process the above flags and the techniques used for EEIS monitoring.
Information Management Systems for Monitoring and Documenting World Heritage - the Silk Roads Chris
NASA Astrophysics Data System (ADS)
Vileikis, O.; Serruys, E.; Dumont, B.; van Balen, K.; Santana Quinterod, M.; de Maeyer, P.; Tigny, V.
2012-07-01
This paper discusses the application of Information Management Systems (IMS) for documenting and monitoring World Heritage (WH) properties. The application of IMS in WH can support all stakeholders involved in conservation, and management of cultural heritage by more easily inventorying, mining and exchanging information from multiple sources based on international standards. Moreover, IMS could assist in detecting damages and preparing management strategies to mitigate risks, and slowing down the deterioration of the integrity of WH properties. The case study of the Silk Roads Cultural Heritage Resource Information System (CHRIS), a Belgian Federal Science Policy Office funded project, illustrates the capabilities of IMS in the context of the nomination of the Central Asian Silk Roads on the WH List. This multi-lingual, web-based IMS will act as a collaborative platform allowing for the completion of improved transnational nomination dossiers and subsequent monitoring activities with all necessary baseline information to easily verify consistency and quality of the proposal. The Silk Roads CHRIS Geospatial Content Management System uses open source technologies and allows to georeference data from different scales and sources including data from field recording methods and combine it with historical and heritage features documented through various means such as textual descriptions, documents, photographs, 3D models or videos. Moreover, tailored maps can also be generated by overlaying a selection of available layers and then be exported to support the nomination dossier. Finally, by using this innovative information and decision support system, the State Parties and other interested stakeholders will have access to a complete nomination dossier and could therefore respond more effectively to hazards and disaster phenomena.
Path planning on cellular nonlinear network using active wave computing technique
NASA Astrophysics Data System (ADS)
Yeniçeri, Ramazan; Yalçın, Müstak E.
2009-05-01
This paper introduces a simple algorithm to solve robot path finding problem using active wave computing techniques. A two-dimensional Cellular Neural/Nonlinear Network (CNN), consist of relaxation oscillators, has been used to generate active waves and to process the visual information. The network, which has been implemented on a Field Programmable Gate Array (FPGA) chip, has the feature of being programmed, controlled and observed by a host computer. The arena of the robot is modelled as the medium of the active waves on the network. Active waves are employed to cover the whole medium with their own dynamics, by starting from an initial point. The proposed algorithm is achieved by observing the motion of the wave-front of the active waves. Host program first loads the arena model onto the active wave generator network and command to start the generation. Then periodically pulls the network image from the generator hardware to analyze evolution of the active waves. When the algorithm is completed, vectorial data image is generated. The path from any of the pixel on this image to the active wave generating pixel is drawn by the vectors on this image. The robot arena may be a complicated labyrinth or may have a simple geometry. But, the arena surface always must be flat. Our Autowave Generator CNN implementation which is settled on the Xilinx University Program Virtex-II Pro Development System is operated by a MATLAB program running on the host computer. As the active wave generator hardware has 16, 384 neurons, an arena with 128 × 128 pixels can be modeled and solved by the algorithm. The system also has a monitor and network image is depicted on the monitor simultaneously.
Karoly, Hollis C; Callahan, Tiffany; Schmiege, Sarah J; Ewing, Sarah W Feldstein
2016-05-01
In the United States, Hispanic adolescents are at elevated risk for negative outcomes related to risky sexual behavior. To evaluate potential protective factors for this group, we examined the fit of the Hispanic Paradox for sexual behavior among high-risk youth and the moderating role of parent monitoring. We enrolled 323 justice-involved Hispanic youth (73% male; mean age 16 years), and measured generational status, parent monitoring (monitoring location, who children spend time with outside of school, family dinner frequency), and sexual risk behavior. There were no main effects for generational status on sexual behavior. Parent monitoring of location moderated the relationship between generational status and sexual behavior, such that greater monitoring of location was associated with less risky sexual behavior, but only for youth second generation and above. Rather than direct evidence supporting the Hispanic Paradox, we found a more nuanced relationship for generational status in this sample. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-06-24
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-01-01
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961
Resilient Practices in Maintaining Safety of Health Information Technologies
Ash, Joan S.; Sittig, Dean F.; Singh, Hardeep
2014-01-01
Electronic health record systems (EHRs) can improve safety and reliability of health care, but they can also introduce new vulnerabilities by failing to accommodate changes within a dynamic EHR-enabled health care system. Continuous assessment and improvement is thus essential for achieving resilience in EHR-enabled health care systems. Given the rapid adoption of EHRs by many organizations that are still early in their experiences with EHR safety, it is important to understand practices for maintaining resilience used by organizations with a track record of success in EHR use. We conducted interviews about safety practices with 56 key informants (including information technology managers, chief medical information officers, physicians, and patient safety officers) at two large health care systems recognized as leaders in EHR use. We identified 156 references to resilience-related practices from 41 informants. Framework analysis generated five categories of resilient practices: (a) sensitivity to dynamics and interdependencies affecting risks, (b) basic monitoring and responding practices, (c) management of practices and resources for monitoring and responding, (d) sensitivity to risks beyond the horizon, and (e) reflecting on risks with the safety and quality control process itself. The categories reflect three functions that facilitate resilience: reflection, transcending boundaries, and involving sharp-end practitioners in safety management. PMID:25866492
NASA Astrophysics Data System (ADS)
Prasad, Balla Srinivasa; Prabha, K. Aruna; Kumar, P. V. S. Ganesh
2017-03-01
In metal cutting machining, major factors that affect the cutting tool life are machine tool vibrations, tool tip/chip temperature and surface roughness along with machining parameters like cutting speed, feed rate, depth of cut, tool geometry, etc., so it becomes important for the manufacturing industry to find the suitable levels of process parameters for obtaining maintaining tool life. Heat generation in cutting was always a main topic to be studied in machining. Recent advancement in signal processing and information technology has resulted in the use of multiple sensors for development of the effective monitoring of tool condition monitoring systems with improved accuracy. From a process improvement point of view, it is definitely more advantageous to proactively monitor quality directly in the process instead of the product, so that the consequences of a defective part can be minimized or even eliminated. In the present work, a real time process monitoring method is explored using multiple sensors. It focuses on the development of a test bed for monitoring the tool condition in turning of AISI 316L steel by using both coated and uncoated carbide inserts. Proposed tool condition monitoring (TCM) is evaluated in the high speed turning using multiple sensors such as Laser Doppler vibrometer and infrared thermography technique. The results indicate the feasibility of using the dominant frequency of the vibration signals for the monitoring of high speed turning operations along with temperatures gradient. A possible correlation is identified in both regular and irregular cutting tool wear. While cutting speed and feed rate proved to be influential parameter on the depicted temperatures and depth of cut to be less influential. Generally, it is observed that lower heat and temperatures are generated when coated inserts are employed. It is found that cutting temperatures are gradually increased as edge wear and deformation developed.
Metric Ranking of Invariant Networks with Belief Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Changxia; Ge, Yong; Song, Qinbao
The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A promising approach is to discover invariant relationships among the monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, because system faults usually propagate among the monitoring data and eventually leadmore » to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. Thus, a critical challenge is how to effectively and efficiently rank metrics (nodes) of invariant networks according to the anomaly levels of metrics. The ranked list of metrics will provide system experts with useful guidance for them to localize and diagnose the system faults. To this end, we propose to model the nodes and the broken links as a Markov Random Field (MRF), and develop an iteration algorithm to infer the anomaly of each node based on belief propagation (BP). Finally, we validate the proposed algorithm on both realworld and synthetic data sets to illustrate its effectiveness.« less
An autonomous structural health monitoring solution
NASA Astrophysics Data System (ADS)
Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew
2013-05-01
Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.
Poder, Thomas G; Godbout, Sylvie T; Bellemare, Christian
This paper describes a comparative study of clinical coding by Archivists (also known as Clinical Coders in some other countries) using single and dual computer monitors. In the present context, processing a record corresponds to checking the available information; searching for the missing physician information; and finally, performing clinical coding. We collected data for each Archivist during her use of the single monitor for 40 hours and during her use of the dual monitor for 20 hours. During the experimental periods, Archivists did not perform other related duties, so we were able to measure the real-time processing of records. To control for the type of records and their impact on the process time required, we categorised the cases as major or minor, based on whether acute care or day surgery was involved. Overall results show that 1,234 records were processed using a single monitor and 647 records using a dual monitor. The time required to process a record was significantly higher (p= .071) with a single monitor compared to a dual monitor (19.83 vs.18.73 minutes). However, the percentage of major cases was significantly higher (p= .000) in the single monitor group compared to the dual monitor group (78% vs. 69%). As a consequence, we adjusted our results, which reduced the difference in time required to process a record between the two systems from 1.1 to 0.61 minutes. Thus, the net real-time difference was only 37 seconds in favour of the dual monitor system. Extrapolated over a 5-year period, this would represent a time savings of 3.1% and generate a net cost savings of $7,729 CAD (Canadian dollars) for each workstation that devoted 35 hours per week to the processing of records. Finally, satisfaction questionnaire responses indicated a high level of satisfaction and support for the dual-monitor system. The implementation of a dual-monitor system in a hospital archiving department is an efficient option in the context of scarce human resources and has the strong support of Archivists.
NASA Astrophysics Data System (ADS)
Mattson, E.; Versteeg, R.; Ankeny, M.; Stormberg, G.
2005-12-01
Long term performance monitoring has been identified by DOE, DOD and EPA as one of the most challenging and costly elements of contaminated site remedial efforts. Such monitoring should provide timely and actionable information relevant to a multitude of stakeholder needs. This information should be obtained in a manner which is auditable, cost effective and transparent. Over the last several years INL staff has designed and implemented a web accessible scientific workflow system for environmental monitoring. This workflow environment integrates distributed, automated data acquisition from diverse sensors (geophysical, geochemical and hydrological) with server side data management and information visualization through flexible browser based data access tools. Component technologies include a rich browser-based client (using dynamic javascript and html/css) for data selection, a back-end server which uses PHP for data processing, user management, and result delivery, and third party applications which are invoked by the back-end using webservices. This system has been implemented and is operational for several sites, including the Ruby Gulch Waste Rock Repository (a capped mine waste rock dump on the Gilt Edge Mine Superfund Site), the INL Vadoze Zone Research Park and an alternative cover landfill. Implementations for other vadoze zone sites are currently in progress. These systems allow for autonomous performance monitoring through automated data analysis and report generation. This performance monitoring has allowed users to obtain insights into system dynamics, regulatory compliance and residence times of water. Our system uses modular components for data selection and graphing and WSDL compliant webservices for external functions such as statistical analyses and model invocations. Thus, implementing this system for novel sites and extending functionality (e.g. adding novel models) is relatively straightforward. As system access requires a standard webbrowser and uses intuitive functionality, stakeholders with diverse degrees of technical insight can use this system with little or no training.
Harvey, Catherine; Brewster, Jill; Bakerly, Nawar Diar; Elkhenini, Hanaa F.; Stanciu, Roxana; Williams, Claire; Brereton, Jacqui; New, John P.; McCrae, John; McCorkindale, Sheila; Leather, David
2016-01-01
Abstract Background The Salford Lung Study (SLS) programme, encompassing two phase III pragmatic randomised controlled trials, was designed to generate evidence on the effectiveness of a once‐daily treatment for asthma and chronic obstructive pulmonary disease in routine primary care using electronic health records. Objective The objective of this study was to describe and discuss the safety monitoring methodology and the challenges associated with ensuring patient safety in the SLS. Refinements to safety monitoring processes and infrastructure are also discussed. The study results are outside the remit of this paper. The results of the COPD study were published recently and a more in‐depth exploration of the safety results will be the subject of future publications. Achievements The SLS used a linked database system to capture relevant data from primary care practices in Salford and South Manchester, two university hospitals and other national databases. Patient data were collated and analysed to create daily summaries that were used to alert a specialist safety team to potential safety events. Clinical research teams at participating general practitioner sites and pharmacies also captured safety events during routine consultations. Confidence in the safety monitoring processes over time allowed the methodology to be refined and streamlined without compromising patient safety or the timely collection of data. The information technology infrastructure also allowed additional details of safety information to be collected. Conclusion Integration of multiple data sources in the SLS may provide more comprehensive safety information than usually collected in standard randomised controlled trials. Application of the principles of safety monitoring methodology from the SLS could facilitate safety monitoring processes for future pragmatic randomised controlled trials and yield important complementary safety and effectiveness data. © 2016 The Authors Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons Ltd. PMID:27804174
Comprehensive Seismological Monitoring of Geomorphic Processes in Taiwan
NASA Astrophysics Data System (ADS)
Chao, W. A.; Chen, C. H.
2016-12-01
Geomorphic processes such as hillslope mass wasting and river sediment transport are important for studying landscape dynamics. Mass movements induced from geomorphic events can generate seismic waves and be recorded by seismometers. Recent studies demonstrate that seismic monitoring techniques not only fully map the spatiotemporal patterns of geomorphic activity but also allow for exploration of the dynamic links between hillslope failures and channel processes, which may not be resolved by conventional techniques (e.g., optical remote sensing). We have recently developed a real-time landquake monitoring system (RLMS, here we use the term `landquake' to represent all hillslope failures such as rockfall, rock avalanche and landslide), which has been continuously monitoring landquake activities in Taiwan since June 2015 based on broadband seismic records, yielding source information (e.g., location, occurrence time, magnitude and mechanism) for large-sized events (http://140.112.57.117/main.html). Several seismic arrays have also been deployed over the past few years around the catchments and along the river channels in Taiwan for monitoring erosion processes at catchment scale, improving the spatiotemporal resolution in exploring the interaction between geomorphic events and specific meteorological conditions. Based on a forward model accounting for the impulsive impacts of saltating particles, we can further invert for the sediment load flux, a critical parameter in landscape evolution studies, by fitting the seismic observations only. To test the validity of the seismologically determined sediment load flux, we conduct a series of controlled dam breaking experiments that are advantageous in well constraining the spatiotemporal variations of the sediment transport. Incorporating the seismological constrains on geomorphic processes with the effects of tectonic and/or climate perturbations can provide valuable and quantitative information for more fully understanding and modeling of the dynamics of erosional mountain landscapes. Comprehensive seismic monitoring also yields important information for the evaluation, assessment and emergency response of hazardous geomorphic events.
Collier, Sue; Harvey, Catherine; Brewster, Jill; Bakerly, Nawar Diar; Elkhenini, Hanaa F; Stanciu, Roxana; Williams, Claire; Brereton, Jacqui; New, John P; McCrae, John; McCorkindale, Sheila; Leather, David
2017-03-01
The Salford Lung Study (SLS) programme, encompassing two phase III pragmatic randomised controlled trials, was designed to generate evidence on the effectiveness of a once-daily treatment for asthma and chronic obstructive pulmonary disease in routine primary care using electronic health records. The objective of this study was to describe and discuss the safety monitoring methodology and the challenges associated with ensuring patient safety in the SLS. Refinements to safety monitoring processes and infrastructure are also discussed. The study results are outside the remit of this paper. The results of the COPD study were published recently and a more in-depth exploration of the safety results will be the subject of future publications. The SLS used a linked database system to capture relevant data from primary care practices in Salford and South Manchester, two university hospitals and other national databases. Patient data were collated and analysed to create daily summaries that were used to alert a specialist safety team to potential safety events. Clinical research teams at participating general practitioner sites and pharmacies also captured safety events during routine consultations. Confidence in the safety monitoring processes over time allowed the methodology to be refined and streamlined without compromising patient safety or the timely collection of data. The information technology infrastructure also allowed additional details of safety information to be collected. Integration of multiple data sources in the SLS may provide more comprehensive safety information than usually collected in standard randomised controlled trials. Application of the principles of safety monitoring methodology from the SLS could facilitate safety monitoring processes for future pragmatic randomised controlled trials and yield important complementary safety and effectiveness data. © 2016 The Authors Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons Ltd. © 2016 The Authors Pharmacoepidemiology and Drug Safety Published by John Wiley & Sons Ltd.
Advances in physical activity monitoring and lifestyle interventions in obesity: a review.
Bonomi, A G; Westerterp, K R
2012-02-01
Obesity represents a strong risk factor for developing chronic diseases. Strategies for disease prevention often promote lifestyle changes encouraging participation in physical activity. However, determining what amount of physical activity is necessary for achieving specific health benefits has been hampered by the lack of accurate instruments for monitoring physical activity and the related physiological outcomes. This review aims at presenting recent advances in activity-monitoring technology and their application to support interventions for health promotion. Activity monitors have evolved from step counters and measuring devices of physical activity duration and intensity to more advanced systems providing quantitative and qualitative information on the individuals' activity behavior. Correspondingly, methods to predict activity-related energy expenditure using bodily acceleration and subjects characteristics have advanced from linear regression to innovative algorithms capable of determining physical activity types and the related metabolic costs. These novel techniques can monitor modes of sedentary behavior as well as the engagement in specific activity types that helps to evaluate the effectiveness of lifestyle interventions. In conclusion, advances in activity monitoring have the potential to support the design of response-dependent physical activity recommendations that are needed to generate effective and personalized lifestyle interventions for health promotion.
Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges
Bartram, Jamie; Brocklehurst, Clarissa; Fisher, Michael B.; Luyendijk, Rolf; Hossain, Rifat; Wardlaw, Tessa; Gordon, Bruce
2014-01-01
International monitoring of drinking water and sanitation shapes awareness of countries’ needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP) of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally-representative and internationally-comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation. PMID:25116635
Thoresen, Christian; Endestad, Tor; Sigvartsen, Niels Petter B; Server, Andres; Bolstad, Ingeborg; Johansson, Mikael; Andreassen, Ole A; Jensen, Jimmy
2014-01-01
Impaired monitoring of internally generated information has been proposed to be one component in the development and maintenance of delusions. The present study investigated the neural correlates underlying the monitoring processes and whether they were associated with delusions. Twenty healthy controls and 19 patients with schizophrenia spectrum disorders were administrated a reality monitoring paradigm during functional magnetic resonance imaging. During encoding participants were instructed to associate a statement with either a presented (viewed condition) or an imagined picture (imagined condition). During the monitoring session in the scanner, participants were presented with old and new statements and their task was to identify whether a given statement was associated with the viewed condition, imagined condition, or if it was new. Patients showed significantly reduced accuracy in the imagined condition with performance negatively associated with degree of delusions. This was accompanied with reduced activity in the left dorsolateral prefrontal cortex and left hippocampus in the patient group. The severity of delusions was negatively correlated with the blood-oxygenation-level dependent response in the left hippocampus. The results suggest that weakened monitoring is associated with delusions in patients with schizophrenia spectrum disorder, and that this may be mediated by a frontotemporal dysfunction.
A Model-based Analysis of First-Generation Service Discovery Systems
2005-10-01
NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION...NAME( S ) AND ADDRESS(ES) National Institute of Standards and Technology,Information Technology Laboratory,Gaithersburg,MD,20899 8. PERFORMING...ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER
NASA Astrophysics Data System (ADS)
Bognot, J. R.; Candido, C. G.; Blanco, A. C.; Montelibano, J. R. Y.
2018-05-01
Monitoring the progress of building's construction is critical in construction management. However, measuring the building construction's progress are still manual, time consuming, error prone, and impose tedious process of analysis leading to delays, additional costings and effort. The main goal of this research is to develop a methodology for building construction progress monitoring based on 3D as-built model of the building from unmanned aerial system (UAS) images, 4D as-planned model (with construction schedule integrated) and, GIS analysis. Monitoring was done by capturing videos of the building with a camera-equipped UAS. Still images were extracted, filtered, bundle-adjusted, and 3D as-built model was generated using open source photogrammetric software. The as-planned model was generated from digitized CAD drawings using GIS. The 3D as-built model was aligned with the 4D as-planned model of building formed from extrusion of building elements, and integration of the construction's planned schedule. The construction progress is visualized via color-coding the building elements in the 3D model. The developed methodology was conducted and applied from the data obtained from an actual construction site. Accuracy in detecting `built' or `not built' building elements ranges from 82-84 % and precision of 50-72 %. Quantified progress in terms of the number of building elements are 21.31% (November 2016), 26.84 % (January 2017) and 44.19 % (March 2017). The results can be used as an input for progress monitoring performance of construction projects and improving related decision-making process.
Muslim consumer trust in halal meat status and control in Belgium.
Bonne, Karijn; Verbeke, Wim
2008-05-01
This paper focuses on public trust of Belgian Muslims in information sources of halal meat and their confidence in key actors and institutions for monitoring and controlling the halal meat chain. Cross-sectional consumer data were collected through a survey with 367 Muslims during the summer of 2006 in Belgium. Findings reveal that Islamic institutions and especially the Islamic butcher receive in general most confidence for monitoring and controlling the halal status of meat, and for communicating about halal meat. However, based on Muslims' confidence, four distinct market segments were identified: indifferent (29.1%), concerned (9.7%), confident (33.1%) and Islamic idealist (26.7%). These segments differ significantly with respect to trust in information sources and institutions, health and safety perception of halal meat, perceived halal meat consumption barriers, behavioural variables (halal meat consumption frequency and place of purchase), and socio-cultural (acculturation and self-identity) and individual characteristics. Indifferent consumers are rather undecided about who should monitor the halal status of meat, and they are most open to purchasing halal meat in the supermarket. Concerned Muslim consumers display higher confidence in Belgian than in Islamic institutions, which associates with perceiving a lack of information, poor hygiene and safety concern as barriers to purchasing halal meat. Confident consumers display a clear preference for Islamic institutions to monitor and communicate about halal. Islamic idealists, who are typified by younger age, second generation and high Muslim self-identity, differ from the confident consumers through their very low confidence in local Belgian sources and institutions.
A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms
Torbick, Nathan; Corbiere, Megan
2015-01-01
Lake Champlain has bays undergoing chronic cyanobacterial harmful algal blooms that pose a public health threat. Monitoring and assessment tools need to be developed to support risk decision making and to gain a thorough understanding of bloom scales and intensities. In this research application, Landsat 8 Operational Land Imager (OLI), Rapid Eye, and Proba Compact High Resolution Imaging Spectrometer (CHRIS) images were obtained while a corresponding field campaign collected in situ measurements of water quality. Models including empirical band ratio regressions were applied to map chlorophyll-a and phycocyanin concentrations; all sensors performed well with R2 and root-mean-square error (RMSE) ranging from 0.76 to 0.88 and 0.42 to 1.51, respectively. The outcomes showed spatial patterns across the lake with problematic bays having phycocyanin concentrations >25 µg/L. An alert status metric tuned to the current monitoring protocol was generated using modeled water quality to illustrate how the remote sensing tools can inform a public health monitoring system. Among the sensors utilized in this study, Landsat 8 OLI holds the most promise for providing exposure information across a wide area given the resolutions, systematic observation strategy and free cost. PMID:26389930
Heiger-Bernays, Wendy J; Wegner, Susanna; Dix, David J
2018-01-16
The presence of industrial chemicals, consumer product chemicals, and pharmaceuticals is well documented in waters in the U.S. and globally. Most of these chemicals lack health-protective guidelines and many have been shown to have endocrine bioactivity. There is currently no systematic or national prioritization for monitoring waters for chemicals with endocrine disrupting activity. We propose ambient water bioactivity concentrations (AWBCs) generated from high throughput data as a health-based screen for endocrine bioactivity of chemicals in water. The U.S. EPA ToxCast program has screened over 1800 chemicals for estrogen receptor (ER) and androgen receptor (AR) pathway bioactivity. AWBCs are calculated for 110 ER and 212 AR bioactive chemicals using high throughput ToxCast data from in vitro screening assays and predictive pathway models, high-throughput toxicokinetic data, and data-driven assumptions about consumption of water. Chemical-specific AWBCs are compared with measured water concentrations in data sets from the greater Denver area, Minnesota lakes, and Oregon waters, demonstrating a framework for identifying endocrine bioactive chemicals. This approach can be used to screen potential cumulative endocrine activity in drinking water and to inform prioritization of future monitoring, chemical testing and pollution prevention efforts.
NASA Astrophysics Data System (ADS)
Nagel, David J.
2000-11-01
The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.
Monitoring bolt torque levels through signal processing of full-field ultrasonic data
NASA Astrophysics Data System (ADS)
Haynes, Colin; Yeager, Michael; Todd, Michael; Lee, Jung-Ryul
2014-03-01
Using full-field ultrasonic guided wave data can provide a wealth of information on the state of a structure through a detailed characterization of its wave propagation properties. However, the need for appropriate feature selection and quantified metrics for making rigorous assessments of the structural state is in no way lessened by the density of information. In this study, a simple steel bolted connection with two bolts is monitored for bolt loosening. The full-field data were acquired using a scanning-laser-generated ultrasound system with a single surface-mounted sensor. Such laser systems have many advantages that make them attractive for nondestructive evaluation, including their high-speed, high spatial resolution, and the ability to scan large areas of in-service structures. In order to characterize the relationship between bolt torque and the resulting wavefield in this specimen, the bolt torque in each of the bolts is independently varied from fully tightened to fully loosened in several steps. First, qualitative observations about the changes in the wavefield are presented. Next, an approach to quantifying the wave transmission through the bolted joint is discussed. Finally, a method of monitoring the bolt torque using the ultrasonic data is demonstrated.
Simpao, Allan F; Galvez, Jorge A; England, W Randall; Wartman, Elicia C; Scott, James H; Hamid, Michael M; Rehman, Mohamed A; Epstein, Richard H
2016-02-01
Surgical procedures performed at the bedside in the neonatal intensive care unit (NICU) at The Children's Hospital of Philadelphia were documented using paper anesthesia records in contrast to the operating rooms, where an anesthesia information management system (AIMS) was used for all cases. This was largely because of logistical problems related to connecting cables between the bedside monitors and our portable AIMS workstations. We implemented an AIMS for documentation in the NICU using wireless adapters to transmit data from bedside monitoring equipment to a portable AIMS workstation. Testing of the wireless AIMS during simulation in the presence of an electrosurgical generator showed no evidence of interference with data transmission. Thirty NICU surgical procedures were documented via the wireless AIMS. Two wireless cases exhibited brief periods of data loss; one case had an extended data gap because of adapter power failure. In comparison, in a control group of 30 surgical cases in which wired connections were used, there were no data gaps. The wireless AIMS provided a simple, unobtrusive, portable alternative to paper records for documenting anesthesia records during NICU bedside procedures.
False Memories for Affective Information in Schizophrenia.
Fairfield, Beth; Altamura, Mario; Padalino, Flavia A; Balzotti, Angela; Di Domenico, Alberto; Mammarella, Nicola
2016-01-01
Studies have shown a direct link between memory for emotionally salient experiences and false memories. In particular, emotionally arousing material of negative and positive valence enhanced reality monitoring compared to neutral material since emotional stimuli can be encoded with more contextual details and thereby facilitate the distinction between presented and imagined stimuli. Individuals with schizophrenia appear to be impaired in both reality monitoring and memory for emotional experiences. However, the relationship between the emotionality of the to-be-remembered material and false memory occurrence has not yet been studied. In this study, 24 patients and 24 healthy adults completed a false memory task with everyday episodes composed of 12 photographs that depicted positive, negative, or neutral outcomes. Results showed how patients with schizophrenia made a higher number of false memories than normal controls ( p < 0.05) when remembering episodes with positive or negative outcomes. The effect of valence was apparent in the patient group. For example, it did not affect the production causal false memories ( p > 0.05) resulting from erroneous inferences but did interact with plausible, script consistent errors in patients (i.e., neutral episodes yielded a higher degree of errors than positive and negative episodes). Affective information reduces the probability of generating causal errors in healthy adults but not in patients suggesting that emotional memory impairments may contribute to deficits in reality monitoring in schizophrenia when affective information is involved.
False Memories for Affective Information in Schizophrenia
Fairfield, Beth; Altamura, Mario; Padalino, Flavia A.; Balzotti, Angela; Di Domenico, Alberto; Mammarella, Nicola
2016-01-01
Studies have shown a direct link between memory for emotionally salient experiences and false memories. In particular, emotionally arousing material of negative and positive valence enhanced reality monitoring compared to neutral material since emotional stimuli can be encoded with more contextual details and thereby facilitate the distinction between presented and imagined stimuli. Individuals with schizophrenia appear to be impaired in both reality monitoring and memory for emotional experiences. However, the relationship between the emotionality of the to-be-remembered material and false memory occurrence has not yet been studied. In this study, 24 patients and 24 healthy adults completed a false memory task with everyday episodes composed of 12 photographs that depicted positive, negative, or neutral outcomes. Results showed how patients with schizophrenia made a higher number of false memories than normal controls (p < 0.05) when remembering episodes with positive or negative outcomes. The effect of valence was apparent in the patient group. For example, it did not affect the production causal false memories (p > 0.05) resulting from erroneous inferences but did interact with plausible, script consistent errors in patients (i.e., neutral episodes yielded a higher degree of errors than positive and negative episodes). Affective information reduces the probability of generating causal errors in healthy adults but not in patients suggesting that emotional memory impairments may contribute to deficits in reality monitoring in schizophrenia when affective information is involved. PMID:27965600
Social media use in emergency management.
Wukich, Clayton
2015-01-01
To identify and illustrate the range of strategies and tactics available for emergency managers using social media. This study uses content analysis of more than 80 related journal articles, research reports, and government documents as well as more than 120 newspaper articles, identified through LexisNexis search queries. Three strategies, information dissemination, monitoring real-time data, and engaging the public in a conversation and/or crowdsourcing, are available to emergency managers to augment communication practices via face-to-face contact and through traditional media outlets. Academic research has identified several message types disseminated during response operations.(1,2) Message types during other emergency phases have received less attention; however, news reporting and government reports provide best practices and inform this study. This article provides the foundation for a more complete typology of emergency management messages. Relatedly, despite limited attention in the academic research, monitoring social media feeds to accrue situational awareness and interacting with others to generate a conversation and/or to coordinate collective action also take place in various forms and are discussed. Findings integrate the fragmented body of knowledge into a more coherent whole and suggest that practitioners might maximize outcomes through a three-step process of information dissemination, data monitoring, and the direct engagement of diverse sets of actors to spur risk reduction efforts. However, these steps require time, personnel, and resources, which present obstacles for agencies operating under conditions of personnel and resource scarcity.
Itri, Jason N; Jones, Lisa P; Kim, Woojin; Boonn, William W; Kolansky, Ana S; Hilton, Susan; Zafar, Hanna M
2014-04-01
Monitoring complications and diagnostic yield for image-guided procedures is an important component of maintaining high quality patient care promoted by professional societies in radiology and accreditation organizations such as the American College of Radiology (ACR) and Joint Commission. These outcome metrics can be used as part of a comprehensive quality assurance/quality improvement program to reduce variation in clinical practice, provide opportunities to engage in practice quality improvement, and contribute to developing national benchmarks and standards. The purpose of this article is to describe the development and successful implementation of an automated web-based software application to monitor procedural outcomes for US- and CT-guided procedures in an academic radiology department. The open source tools PHP: Hypertext Preprocessor (PHP) and MySQL were used to extract relevant procedural information from the Radiology Information System (RIS), auto-populate the procedure log database, and develop a user interface that generates real-time reports of complication rates and diagnostic yield by site and by operator. Utilizing structured radiology report templates resulted in significantly improved accuracy of information auto-populated from radiology reports, as well as greater compliance with manual data entry. An automated web-based procedure log database is an effective tool to reliably track complication rates and diagnostic yield for US- and CT-guided procedures performed in a radiology department.
30 CFR 250.221 - What environmental monitoring information must accompany the EP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What environmental monitoring information must... monitoring information must accompany the EP? The following environmental monitoring information, as applicable, must accompany your EP: (a) Monitoring systems. A description of any existing and planned...
Scholz, Karoline; Dekant, Wolfgang; Völkel, Wolfgang; Pähler, Axel
2005-12-01
A sensitive and specific liquid chromatography-mass spectrometry (LC-MS) method based on the combination of constant neutral loss scans (CNL) with product ion scans was developed on a linear ion trap. The method is applicable for the detection and identification of analytes with identical chemical substructures (such as conjugates of xenobiotics formed in biological systems) which give common CNLs. A specific CNL was observed for thioethers of N-acetyl-L-cysteine (mercapturic acids, MA) by LC-MS/MS. MS and HPLC parameters were optimized with 16 MAs available as reference compounds. All of these provided a CNL of 129 Da in the negative-ion mode. To assess sensitivity, a multiple reaction monitoring (MRM) mode with 251 theoretical transitions using the CNL of 129 Da combined with a product ion scan (IDA thMRM) was compared with CNL combined with a product ion scan (IDA CNL). An information-dependent acquisition (IDA) uses a survey scan such as MRM (multiple reaction monitoring) to generate "informations" and starting a second acquisition experiment such as a product ion scan using these "informations." Th-MRM means calculated transitions and not transitions generated from an available standard in the tuning mode. The product ion spectra provide additional information on the chemical structure of the unknown analytes. All MA standards were spiked in low concentrations to rat urines and were detected with both methods with LODs ranging from 60 pmol/mL to 1.63 nmol/mL with IDA thMRM. The expected product ion spectra were observed in urine. Application of this screening method to biological samples indicated the presence of a number of MAs in urine of unexposed rats, and resulted in the identification of 1,4-dihydroxynonene mercapturic acid as one of these MAs by negative and positive product ion spectra. These results show that the developed methods have a high potential to serve as both a prescreen to detect unknown MAs and to identify these analytes in complex matrix.
NASA Astrophysics Data System (ADS)
Jayasinghe, S.; Dutta, R.; Basnayake, S. B.; Granger, S. L.; Andreadis, K. M.; Das, N.; Markert, K. N.; Cutter, P. G.; Towashiraporn, P.; Anderson, E.
2017-12-01
The Lower Mekong Region has been experiencing frequent and prolonged droughts resulting in severe damage to agricultural production leading to food insecurity and impacts on livelihoods of the farming communities. Climate variability further complicates the situation by making drought harder to forecast. The Regional Drought and Crop Yield Information System (RDCYIS), developed by SERVIR-Mekong, helps decision makers to take effective measures through monitoring, analyzing and forecasting of drought conditions and providing early warnings to farmers to make adjustments to cropping calendars. The RDCYIS is built on regionally calibrated Regional Hydrologic Extreme Assessment System (RHEAS) framework that integrates the Variable Infiltration Capacity (VIC) and Decision Support System for Agro-technology Transfer (DSSAT) models, allowing both nowcast and forecast of drought. The RHEAS allows ingestion of numerus freely available earth observation and ground observation data to generate and customize drought related indices, variables and crop yield information for better decision making. The Lower Mekong region has experienced severe drought in 2016 encompassing the region's worst drought in 90 years. This paper presents the simulation of the 2016 drought event using RDCYIS based on its hindcast and forecast capabilities. The regionally calibrated RDCYIS can help capture salient features of drought through a variety of drought indices, soil variables, energy balance variables and water balance variables. The RDCYIS is capable of assimilating soil moisture data from different satellite products and perform ensemble runs to further reduce the uncertainty of it outputs. The calibrated results have correlation coefficient around 0.73 and NSE between 0.4-0.5. Based on the acceptable results of the retrospective runs, the system has the potential to generate reliable drought monitoring and forecasting information to improve decision-makings at operational, technological and institutional level of mandated institutes of lower Mekong countries. This is turn would help countries to prepare for and respond to drought situations by taking short and long-term risk mitigation measures such as adjusting cropping calendars, rainwater harvesting, and so on.
The event notification and alarm system for the Open Science Grid operations center
NASA Astrophysics Data System (ADS)
Hayashi, S.; Teige and, S.; Quick, R.
2012-12-01
The Open Science Grid Operations (OSG) Team operates a distributed set of services and tools that enable the utilization of the OSG by several HEP projects. Without these services users of the OSG would not be able to run jobs, locate resources, obtain information about the status of systems or generally use the OSG. For this reason these services must be highly available. This paper describes the automated monitoring and notification systems used to diagnose and report problems. Described here are the means used by OSG Operations to monitor systems such as physical facilities, network operations, server health, service availability and software error events. Once detected, an error condition generates a message sent to, for example, Email, SMS, Twitter, an Instant Message Server, etc. The mechanism being developed to integrate these monitoring systems into a prioritized and configurable alarming system is emphasized.
Power monitoring and control for large scale projects: SKA, a case study
NASA Astrophysics Data System (ADS)
Barbosa, Domingos; Barraca, João. Paulo; Maia, Dalmiro; Carvalho, Bruno; Vieira, Jorge; Swart, Paul; Le Roux, Gerhard; Natarajan, Swaminathan; van Ardenne, Arnold; Seca, Luis
2016-07-01
Large sensor-based science infrastructures for radio astronomy like the SKA will be among the most intensive datadriven projects in the world, facing very high demanding computation, storage, management, and above all power demands. The geographically wide distribution of the SKA and its associated processing requirements in the form of tailored High Performance Computing (HPC) facilities, require a Greener approach towards the Information and Communications Technologies (ICT) adopted for the data processing to enable operational compliance to potentially strict power budgets. Addressing the reduction of electricity costs, improve system power monitoring and the generation and management of electricity at system level is paramount to avoid future inefficiencies and higher costs and enable fulfillments of Key Science Cases. Here we outline major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science and Smart power monitoring and control.
Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls
NASA Astrophysics Data System (ADS)
Horton, Kyle G.; Stepanian, Phillip M.; Wainwright, Charlotte E.; Tegeler, Amy K.
2015-10-01
Avian migration monitoring can take on many forms; however, monitoring active nocturnal migration of land birds is limited to a few techniques. Avian nocturnal flight calls are currently the only method for describing migrant composition at the species level. However, as this method develops, more information is needed to understand the sources of variation in call detection. Additionally, few studies examine how detection probabilities differ under varying atmospheric conditions. We use nocturnal flight call recordings from captive individuals to explore the dependence of flight call detection on atmospheric temperature and humidity. Height or distance from origin had the largest influence on call detection, while temperature and humidity also influenced detectability at higher altitudes. Because flight call detection varies with both atmospheric conditions and flight height, improved monitoring across time and space will require correction for these factors to generate standardized metrics of songbird migration.
A magnetostatic-coupling based remote query sensor for environmental monitoring
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Stoyanov, P. G.; Liu, Y.; Tong, C.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R.
1999-01-01
A new type of in situ, remotely monitored magnetism-based sensor is presented that is comprised of an array of magnetically soft, magnetostatically-coupled ferromagnetic thin-film elements or particles combined with a chemically responsive material that swells or shrinks in response to the analyte of interest. As the chemically responsive material changes size the distance between the ferromagnetic elements changes, altering the inter-element magnetostatic coupling. This in turn changes the coercive force of the sensor, the amplitude of the voltage spikes detected in nearby pick-up coils upon magnetization reversal and the number of higher-order harmonics generated by the flux reversal. Since the sensor is monitored through changes in magnetic flux, no physical connections such as wires or cables are needed to obtain sensor information, nor is line of sight alignment required as with laser telemetry; the sensors can be detected from within sealed, opaque or thin metallic enclosures.
Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael
2018-01-01
Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A review on architectures and communications technologies for wearable health-monitoring systems.
Custodio, Víctor; Herrera, Francisco J; López, Gregorio; Moreno, José Ignacio
2012-10-16
Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in "LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments", published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.
A mobile phone based remote patient monitoring system for chronic disease management.
Trudel, Mathieu; Cafazzo, Joseph A; Hamill, Melinda; Igharas, Walter; Tallevi, Kevin; Picton, Peter; Lam, Jack; Rossos, Peter G; Easty, Anthony C; Logan, Alexander
2007-01-01
Rising concern over the poor state of chronic disease management led to the user-informed design and development of a home tele-monitoring system. Focus groups with patients and primary care providers guided the research team towards a design that would accommodate the workflow and concerns of the healthcare providers and the low use and comfort with technology found among the patient population. The system was trialed in a before-and-after pilot study of 34 patients with diabetes and hypertension. Findings demonstrate a significant improvement in systolic and diastolic blood pressure. An RCT beginning in 2007 is being conducted to confirm these findings. It is hypothesized that this user-centred approach, utilizing focus groups, iterative design and human factors methods of evaluation, will lead to the next-generation of home tele-monitoring applications that are more intuitive, less cumbersome, and ultimately bring about greater patient compliance and better physician management.
Asare, A. L.; Huda, H.; Klimczak, J. C.; Caldwell, C. W.
1998-01-01
Studies have shown that monitoring HIV-infected patients undergoing antiretroviral therapy is best represented by combined measurement of plasma HIV-1 RNA and CD4+ T-lymphocytes [1]. This pilot study at the University of Missouri-Columbia integrates molecular diagnostic and flow cytometric data reporting to provide current and historical HIV-1 RNA levels and CD4+ T-cell counts. The development of a single database for storage and retrieval of these values facilitates composite report generation that includes longitudinal HIV-1 RNA levels and CD4+ T-cell counts for all patients. Results are displayed in tables and plotted graphically within a web browser. This method of data presentation converts individual data points to more useful medical information and could provide clinicians with decision support for improved monitoring of HIV patients undergoing antiretroviral therapy. Images Figure 2 Figure 3 Figure 4 PMID:9929359
A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems
Custodio, Víctor; Herrera, Francisco J.; López, Gregorio; Moreno, José Ignacio
2012-01-01
Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in “LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments”, published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications. PMID:23202028
Next-Generation Terrestrial Laser Scanning to Measure Forest Canopy Structure
NASA Astrophysics Data System (ADS)
Danson, M.
2015-12-01
Terrestrial laser scanners (TLS) are now capable of semi-automatic reconstruction of the structure of complete trees or forest stands and have the potential to provide detailed information on tree architecture and foliage biophysical properties. The trends for the next generation of TLS are towards higher resolution, faster scanning and full-waveform data recording, with mobile, multispectral laser devices. The convergence of these technological advances in the next generation of TLS will allow the production of information for forest and woodland mapping and monitoring that is far more detailed, more accurate, and more comprehensive than any available today. This paper describes recent scientific advances in the application of TLS for characterising forest and woodland areas, drawing on the authors' development of the Salford Advanced Laser Canopy Analyser (SALCA), the activities of the Terrestrial Laser Scanner International Interest Group (TLSIIG), and recent advances in laser scanner technology around the world. The key findings illustrated in the paper are that (i) a complete understanding of system measurement characteristics is required for quantitative analysis of TLS data, (ii) full-waveform data recording is required for extraction of forest biophysical variables and, (iii) multi-wavelength systems provide additional spectral information that is essential for classifying different vegetation components. The paper uses a range of recent experimental TLS measurements to support these findings, and sets out a vision for new research to develop an information-rich future-forest information system, populated by mobile autonomous multispectral TLS devices.
Three-Dimensional Maps for Disaster Management
NASA Astrophysics Data System (ADS)
Bandrova, T.; Zlatanova, S.; Konecny, M.
2012-07-01
Geo-information techniques have proven their usefulness for the purposes of early warning and emergency response. These techniques enable us to generate extensive geo-information to make informed decisions in response to natural disasters that lead to better protection of citizens, reduce damage to property, improve the monitoring of these disasters, and facilitate estimates of the damages and losses resulting from them. The maintenance and accessibility of spatial information has improved enormously with the development of spatial data infrastructures (SDIs), especially with second-generation SDIs, in which the original product-based SDI was improved to a process-based SDI. Through the use of SDIs, geo-information is made available to local, national and international organisations in regions affected by natural disasters as well as to volunteers serving in these areas. Volunteer-based systems for information collection (e.g., Ushahidi) have been created worldwide. However, the use of 3D maps is still limited. This paper discusses the applicability of 3D geo-information to disaster management. We discuss some important aspects of maps for disaster management, such as user-centred maps, the necessary components for 3D maps, symbols, and colour schemas. In addition, digital representations are evaluated with respect to their visual controls, i.e., their usefulness for the navigation and exploration of the information. Our recommendations are based on responses from a variety of users of these technologies, including children, geospecialists and disaster managers from different countries.
Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent
2013-09-01
Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician. Copyright © 2013 Elsevier Inc. All rights reserved.
Self-Monitoring and Reactivity in the Modification of Cigarette Smoking.
ERIC Educational Resources Information Center
Abrams, David B.; Wilson, G. Terence
1979-01-01
Subjects were assigned to conditions based on smoking rates: self-monitoring nicotine plus health hazard information; self-monitoring cigarettes plus health information; and self-monitoring cigarettes with no health information. Nicotine self-monitoring groups showed greater reactivity. Exposure to health hazard information had no effect. (Author)
Monitoring of Ritz modal generation
NASA Technical Reports Server (NTRS)
Chargin, Mladen; Butler, Thomas G.
1990-01-01
A scheme is proposed to monitor the adequacy of a set of Ritz modes to represent a solution by comparing the quantity generated with certain properties involving the forcing function. In so doing an attempt was made to keep this algorithm lean and efficient, so that it will be economical to apply. Using this monitoring scheme during Ritz Mode generation will automatically ensure that the k Ritz modes theta k that are generated are adequate to represent both the spatial and temporal behavior of the structure when forced under the given transient condition defined by F(s,t).
Hydrogen Peroxide Probes Directed to Different Cellular Compartments
Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.
2011-01-01
Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738
NASA Astrophysics Data System (ADS)
Qin, Rufu; Lin, Liangzhao
2017-06-01
Coastal seiches have become an increasingly important issue in coastal science and present many challenges, particularly when attempting to provide warning services. This paper presents the methodologies, techniques and integrated services adopted for the design and implementation of a Seiches Monitoring and Forecasting Integration Framework (SMAF-IF). The SMAF-IF is an integrated system with different types of sensors and numerical models and incorporates the Geographic Information System (GIS) and web techniques, which focuses on coastal seiche events detection and early warning in the North Jiangsu shoal, China. The in situ sensors perform automatic and continuous monitoring of the marine environment status and the numerical models provide the meteorological and physical oceanographic parameter estimates. A model outputs processing software was developed in C# language using ArcGIS Engine functions, which provides the capabilities of automatically generating visualization maps and warning information. Leveraging the ArcGIS Flex API and ASP.NET web services, a web based GIS framework was designed to facilitate quasi real-time data access, interactive visualization and analysis, and provision of early warning services for end users. The integrated framework proposed in this study enables decision-makers and the publics to quickly response to emergency coastal seiche events and allows an easy adaptation to other regional and scientific domains related to real-time monitoring and forecasting.
Evolution of a residue laboratory network and the management tools for monitoring its performance.
Lins, E S; Conceição, E S; Mauricio, A De Q
2012-01-01
Since 2005 the National Residue & Contaminants Control Plan (NRCCP) in Brazil has been considerably enhanced, increasing the number of samples, substances and species monitored, and also the analytical detection capability. The Brazilian laboratory network was forced to improve its quality standards in order to comply with the NRCP's own evolution. Many aspects such as the limits of quantification (LOQs), the quality management systems within the laboratories and appropriate method validation are in continuous improvement, generating new scenarios and demands. Thus, efficient management mechanisms for monitoring network performance and its adherence to the established goals and guidelines are required. Performance indicators associated to computerised information systems arise as a powerful tool to monitor the laboratories' activity, making use of different parameters to describe this activity on a day-to-day basis. One of these parameters is related to turnaround times, and this factor is highly affected by the way each laboratory organises its management system, as well as the regulatory requirements. In this paper a global view is presented of the turnaround times related to the type of analysis, laboratory, number of samples per year, type of matrix, country region and period of the year, all these data being collected from a computerised system called SISRES. This information gives a solid background to management measures aiming at the improvement of the service offered by the laboratory network.
Optimized Temporal Monitors for SystemC
NASA Technical Reports Server (NTRS)
Tabakov, Deian; Rozier, Kristin Y.; Vardi, Moshe Y.
2012-01-01
SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead.
Li, Xiang; Yang, Zhibo; Chen, Xuefeng
2014-01-01
The active structural health monitoring (SHM) approach for the complex composite laminate structures of wind turbine blades (WTBs), addresses the important and complicated problem of signal noise. After illustrating the wind energy industry's development perspectives and its crucial requirement for SHM, an improved redundant second generation wavelet transform (IRSGWT) pre-processing algorithm based on neighboring coefficients is introduced for feeble signal denoising. The method can avoid the drawbacks of conventional wavelet methods that lose information in transforms and the shortcomings of redundant second generation wavelet (RSGWT) denoising that can lead to error propagation. For large scale WTB composites, how to minimize the number of sensors while ensuring accuracy is also a key issue. A sparse sensor array optimization of composites for WTB applications is proposed that can reduce the number of transducers that must be used. Compared to a full sixteen transducer array, the optimized eight transducer configuration displays better accuracy in identifying the correct position of simulated damage (mass of load) on composite laminates with anisotropic characteristics than a non-optimized array. It can help to guarantee more flexible and qualified monitoring of the areas that more frequently suffer damage. The proposed methods are verified experimentally on specimens of carbon fiber reinforced resin composite laminates. PMID:24763210
[Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].
Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang
2017-07-27
To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.
Investigation on financial crises with the negative-information-propagation-induced model
NASA Astrophysics Data System (ADS)
Fan, Feng-Hua; Deng, Yanbin; Huang, Yong-Chang
2017-03-01
We first argue about the similarity between the propagation phenomenon of negative information about potential deterioration of economic situation in group of investors and the propagation phenomenon of infectious disease in crowd Applying the negative-information-propagation-induced model built based on above argument, we investigate the relationship between the generation of financial crises and propagation effects of negative information We introduce the discrimination parameter to distinguish whether or not negative information will be propagated extensively in group of investors. We also introduce the target critical value of financial crises. By comparing the theoretically predicted ratio of the long term projected number of total investors to the total number of investors at some time as initial time with target critical value of financial crises, the model can provide real-time monitoring of whether the curve of total number of investors is progressing toward the direction of generating financial crises or running on track of financial markets safety. If at some time this ratio is computed to be less than the target critical value of financial crises, governments can take relevant measures to prevent the generation of financial crises in advance Governments' interference helps to recover the confidence of investors so that they never will again believe in negative information to continue their investment. Results from theoretical and numerical analysis show that the number of investors who hold the belief of potential deterioration of economic situation, and the number of investors who withdraw capital and depart from financial markets for avoiding business loss when governments make appropriate interference are lowered compared to that without appropriate governments' interference. The results show the effectiveness of governments in preventing financial crises from the viewpoint of the negative information-propagation-induced model, namely governments' prevention against financial crises can reduce the possibility of the generation of financial crises.
A Hybrid-Cloud Science Data System Enabling Advanced Rapid Imaging & Analysis for Monitoring Hazards
NASA Astrophysics Data System (ADS)
Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Moore, A. W.; Fielding, E. J.; Radulescu, C.; Sacco, G.; Stough, T. M.; Mattmann, C. A.; Cervelli, P. F.; Poland, M. P.; Cruz, J.
2012-12-01
Volcanic eruptions, landslides, and levee failures are some examples of hazards that can be more accurately forecasted with sufficient monitoring of precursory ground deformation, such as the high-resolution measurements from GPS and InSAR. In addition, coherence and reflectivity change maps can be used to detect surface change due to lava flows, mudslides, tornadoes, floods, and other natural and man-made disasters. However, it is difficult for many volcano observatories and other monitoring agencies to process GPS and InSAR products in an automated scenario needed for continual monitoring of events. Additionally, numerous interoperability barriers exist in multi-sensor observation data access, preparation, and fusion to create actionable products. Combining high spatial resolution InSAR products with high temporal resolution GPS products--and automating this data preparation & processing across global-scale areas of interests--present an untapped science and monitoring opportunity. The global coverage offered by satellite-based SAR observations, and the rapidly expanding GPS networks, can provide orders of magnitude more data on these hazardous events if we have a data system that can efficiently and effectively analyze the voluminous raw data, and provide users the tools to access data from their regions of interest. Currently, combined GPS & InSAR time series are primarily generated for specific research applications, and are not implemented to run on large-scale continuous data sets and delivered to decision-making communities. We are developing an advanced service-oriented architecture for hazard monitoring leveraging NASA-funded algorithms and data management to enable both science and decision-making communities to monitor areas of interests via seamless data preparation, processing, and distribution. Our objectives: * Enable high-volume and low-latency automatic generation of NASA Solid Earth science data products (InSAR and GPS) to support hazards monitoring. * Facilitate NASA-USGS collaborations to share NASA InSAR and GPS data products, which are difficult to process in high-volume and low-latency, for decision-support. * Enable interoperable discovery, access, and sharing of NASA observations and derived actionable products, and between the observation and decision-making communities. * Enable their improved understanding through visualization, mining, and cross-agency sharing. Existing InSAR & GPS processing packages and other software are integrated for generating geodetic decision support monitoring products. We employ semantic and cloud-based data management and processing techniques for handling large data volumes, reducing end product latency, codifying data system information with semantics, and deploying interoperable services for actionable products to decision-making communities.
NASA Astrophysics Data System (ADS)
Gao, Feng; Dong, Junyu; Li, Bo; Xu, Qizhi; Xie, Cui
2016-10-01
Change detection is of high practical value to hazard assessment, crop growth monitoring, and urban sprawl detection. A synthetic aperture radar (SAR) image is the ideal information source for performing change detection since it is independent of atmospheric and sunlight conditions. Existing SAR image change detection methods usually generate a difference image (DI) first and use clustering methods to classify the pixels of DI into changed class and unchanged class. Some useful information may get lost in the DI generation process. This paper proposed an SAR image change detection method based on neighborhood-based ratio (NR) and extreme learning machine (ELM). NR operator is utilized for obtaining some interested pixels that have high probability of being changed or unchanged. Then, image patches centered at these pixels are generated, and ELM is employed to train a model by using these patches. Finally, pixels in both original SAR images are classified by the pretrained ELM model. The preclassification result and the ELM classification result are combined to form the final change map. The experimental results obtained on three real SAR image datasets and one simulated dataset show that the proposed method is robust to speckle noise and is effective to detect change information among multitemporal SAR images.
30 CFR 550.221 - What environmental monitoring information must accompany the EP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What environmental monitoring information must... Information Contents of Exploration Plans (ep) § 550.221 What environmental monitoring information must accompany the EP? The following environmental monitoring information, as applicable, must accompany your EP...
30 CFR 550.221 - What environmental monitoring information must accompany the EP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What environmental monitoring information must... Information Contents of Exploration Plans (ep) § 550.221 What environmental monitoring information must accompany the EP? The following environmental monitoring information, as applicable, must accompany your EP...
30 CFR 550.221 - What environmental monitoring information must accompany the EP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What environmental monitoring information must... Information Contents of Exploration Plans (ep) § 550.221 What environmental monitoring information must accompany the EP? The following environmental monitoring information, as applicable, must accompany your EP...
Measuring, managing and maximizing performance of mineral processing plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bascur, O.A.; Kennedy, J.P.
1995-12-31
The implementation of continuous quality improvement is the confluence of Total Quality Management, People Empowerment, Performance Indicators and Information Engineering. The supporting information technologies allow a mineral processor to narrow the gap between management business objectives and the process control level. One of the most important contributors is the user friendliness and flexibility of the personal computer in a client/server environment. This synergistic combination when used for real time performance monitoring translates into production cost savings, improved communications and enhanced decision support. Other savings come from reduced time to collect data and perform tedious calculations, act quickly with fresh newmore » data, generate and validate data to be used by others. This paper presents an integrated view of plant management. The selection of the proper tools for continuous quality improvement are described. The process of selecting critical performance monitoring indices for improved plant performance are discussed. The importance of a well balanced technological improvement, personnel empowerment, total quality management and organizational assets are stressed.« less
A haptic-inspired audio approach for structural health monitoring decision-making
NASA Astrophysics Data System (ADS)
Mao, Zhu; Todd, Michael; Mascareñas, David
2015-03-01
Haptics is the field at the interface of human touch (tactile sensation) and classification, whereby tactile feedback is used to train and inform a decision-making process. In structural health monitoring (SHM) applications, haptic devices have been introduced and applied in a simplified laboratory scale scenario, in which nonlinearity, representing the presence of damage, was encoded into a vibratory manual interface. In this paper, the "spirit" of haptics is adopted, but here ultrasonic guided wave scattering information is transformed into audio (rather than tactile) range signals. After sufficient training, the structural damage condition, including occurrence and location, can be identified through the encoded audio waveforms. Different algorithms are employed in this paper to generate the transformed audio signals and the performance of each encoding algorithms is compared, and also compared with standard machine learning classifiers. In the long run, the haptic decision-making is aiming to detect and classify structural damages in a more rigorous environment, and approaching a baseline-free fashion with embedded temperature compensation.
NASA Technical Reports Server (NTRS)
Hoebel, Louis J.
1993-01-01
The problem of plan generation (PG) and the problem of plan execution monitoring (PEM), including updating, queries, and resource-bounded replanning, have different reasoning and representation requirements. PEM requires the integration of qualitative and quantitative information. PEM is the receiving of data about the world in which a plan or agent is executing. The problem is to quickly determine the relevance of the data, the consistency of the data with respect to the expected effects, and if execution should continue. Only spatial and temporal aspects of the plan are addressed for relevance in this work. Current temporal reasoning systems are deficient in computational aspects or expressiveness. This work presents a hybrid qualitative and quantitative system that is fully expressive in its assertion language while offering certain computational efficiencies. In order to proceed, methods incorporating approximate reasoning using hierarchies, notions of locality, constraint expansion, and absolute parameters need be used and are shown to be useful for the anytime nature of PEM.
Enhancing source location protection in wireless sensor networks
NASA Astrophysics Data System (ADS)
Chen, Juan; Lin, Zhengkui; Wu, Di; Wang, Bailing
2015-12-01
Wireless sensor networks are widely deployed in the internet of things to monitor valuable objects. Once the object is monitored, the sensor nearest to the object which is known as the source informs the base station about the object's information periodically. It is obvious that attackers can capture the object successfully by localizing the source. Thus, many protocols have been proposed to secure the source location. However, in this paper, we examine that typical source location protection protocols generate not only near but also highly localized phantom locations. As a result, attackers can trace the source easily from these phantom locations. To address these limitations, we propose a protocol to enhance the source location protection (SLE). With phantom locations far away from the source and widely distributed, SLE improves source location anonymity significantly. Theory analysis and simulation results show that our SLE provides strong source location privacy preservation and the average safety period increases by nearly one order of magnitude compared with existing work with low communication cost.
Acoustic noise and pneumatic wave vortices energy harvesting on highways
NASA Astrophysics Data System (ADS)
Pogacian, S.; Bot, A.; Zotoiu, D.
2012-02-01
This paper is aimed to present the structure and the principle of a energy harvesting system that uses the air movement emanated from passing traffic to produce and accumulate electrical energy. Each of the system's elements consists of a inertial mass panel which oscillate when driving cars pass. The panel is attached to a linear electromagnetic mini generator (or/and some piezo electric micro generators) and at the time of passing, it produces energy which is store it in a supercapacitor or in a rechargeable battery. The concept can be applied to busy roads, and to high-frequented rail networks and it can work with street and road lighting, information panels and monitoring devices.
Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.
2003-01-01
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources
Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA
2007-03-13
A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Full-parallax 3D display from stereo-hybrid 3D camera system
NASA Astrophysics Data System (ADS)
Hong, Seokmin; Ansari, Amir; Saavedra, Genaro; Martinez-Corral, Manuel
2018-04-01
In this paper, we propose an innovative approach for the production of the microimages ready to display onto an integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating an integral image after projecting computationally the information through a virtual pinhole array. We illustrate this procedure with some imaging experiments that provide microimages with enhanced quality. After projection of such microimages onto the integral-imaging monitor, 3D images are produced with great parallax and viewing angle.
A Multi-Disciplinary Approach to Remote Sensing through Low-Cost UAVs.
Calvario, Gabriela; Sierra, Basilio; Alarcón, Teresa E; Hernandez, Carmen; Dalmau, Oscar
2017-06-16
The use of Unmanned Aerial Vehicles (UAVs) based on remote sensing has generated low cost monitoring, since the data can be acquired quickly and easily. This paper reports the experience related to agave crop analysis with a low cost UAV. The data were processed by traditional photogrammetric flow and data extraction techniques were applied to extract new layers and separate the agave plants from weeds and other elements of the environment. Our proposal combines elements of photogrammetry, computer vision, data mining, geomatics and computer science. This fusion leads to very interesting results in agave control. This paper aims to demonstrate the potential of UAV monitoring in agave crops and the importance of information processing with reliable data flow.
A Multi-Disciplinary Approach to Remote Sensing through Low-Cost UAVs
Calvario, Gabriela; Sierra, Basilio; Alarcón, Teresa E.; Hernandez, Carmen; Dalmau, Oscar
2017-01-01
The use of Unmanned Aerial Vehicles (UAVs) based on remote sensing has generated low cost monitoring, since the data can be acquired quickly and easily. This paper reports the experience related to agave crop analysis with a low cost UAV. The data were processed by traditional photogrammetric flow and data extraction techniques were applied to extract new layers and separate the agave plants from weeds and other elements of the environment. Our proposal combines elements of photogrammetry, computer vision, data mining, geomatics and computer science. This fusion leads to very interesting results in agave control. This paper aims to demonstrate the potential of UAV monitoring in agave crops and the importance of information processing with reliable data flow. PMID:28621740
Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C
2013-05-21
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.
2007-10-16
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Regulation Catches Up to Reality.
Edelman, Steven V
2017-01-01
The FDA recently conducted an Advisory Panel meeting to evaluate the safety, efficacy, and benefits of granting a nonadjunctive label claim for the DEXCOM G5 Mobile continuous glucose monitoring (CGM) system. If approved, this claim will allow users to make day-to-day treatment decisions, including insulin dosing directly from the glucose values and rate of changes arrows generated by the CGM device, without the requirement of a confirmatory measurement with a self-monitoring blood glucose (SMBG) meter. Sporadic SMBG testing gives limited data, while CGM gives a value every 5 minutes and has alerts, alarms, trending information and allows caregivers to follow the user in real time 24/7. This indication will lead to more wide spread use of CGM and improve overall care with protection of hypoglycemia.
Land use investigations in the central valley and central coastal test sites, California
NASA Technical Reports Server (NTRS)
Estes, J. E.
1973-01-01
The Geography Remote Sensing Unit (GRSU) at the University of California, Santa Barbara is responsible for investigations with ERTS-1 data in the Central Coastal Zone and West Side of the San Joaquin Valley. The nature of investigative effort involves the inventory, monitoring, and assessment of the natural and cultural resources of the two areas. Land use, agriculture, vegetation, landforms, geology, and hydrology are the principal subjects for attention. These parameters are the key indicators of the dynamically changing character of the areas. Monitoring of these parameters with ERTS-1 data will provide the techniques and methodologies required to generate the information needed by federal, state, county, and local agencies to assess change-related phenomena and plan for management and development.
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
40 CFR 60.46c - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.46c Emission monitoring for sulfur dioxide... the inlet to the steam generating unit and analyzed for sulfur content and heat content according the...
Semiautomated Management Of Arriving Air Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Nedell, William
1992-01-01
System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.
Lambert, N; Plumb, J; Looise, B; Johnson, I T; Harvey, I; Wheeler, C; Robinson, M; Rolfe, P
2005-08-01
The aim of the study was to test the feasibility of using smart card technology to track the eating behaviours of nearly a thousand children in a school cafeteria. Within a large boys' school a smart card based system was developed that was capable of providing a full electronic audit of all the individual transactions that occurred within the cafeteria. This dataset was interfaced to an electronic version of the McCance and Widdowson composition of foods dataset. The accuracy of the smart card generated data and the influence of portion size and wastage were determined empirically during two 5-day trials. The smart card system created succeeded in generating precise data on the food choices made by hundreds of children over an indefinite time period. The data was expanded to include a full nutrient analysis of all the foods chosen. The accuracy of this information was only constrained by the limitations facing all food composition research, e.g. variations in recipes, portion sizes, cooking practices, etc. Although technically possible to introduce wastage correction factors into the software, thereby providing information upon foods consumed, this was not seen as universally practical. The study demonstrated the power of smart card technology for monitoring food/nutrient choice over limitless time in environments such as school cafeterias. The strengths, limitations and applications of such technology are discussed.
Era-Planet the European Network for Observing Our Changing Planet
NASA Astrophysics Data System (ADS)
Pirrone, N.; Cinnirella, S.; Nativi, S.; Sprovieri, F.; Hedgecock, I. M.
2016-06-01
In the last decade a significant number of projects and programmes in different domains of Earth Observation and environmental monitoring have generated a substantial amount of data and knowledge on different aspects related to environmental quality and sustainability. Big data generated by in-situ or satellite platforms are being collected and archived with a plethora of systems and instruments making difficult the sharing of data and transfer of knowledge to stakeholders and policy makers to support key economic and societal sectors. The overarching goal of ERAPLANET is to strengthen the European Research Area in the domain of Earth Observation in coherence with the European participation in the Group on Earth Observation (GEO) and Copernicus. The expected impact is to strengthen European leadership within the forthcoming GEO 2015-2025 Work Plan. ERA-PLANET is designed to reinforce the interface with user communities, whose needs the Global Earth Observation System of Systems (GEOSS) intends to address. It will provide more accurate, comprehensive and authoritative information to policy and decision-makers in key societal benefit areas, such as Smart Cities and Resilient Societies; Resource efficiency and Environmental management; Global changes and Environmental treaties; Polar areas and Natural resources. ERA-PLANET will provide advanced decision-support tools and technologies aimed to better monitor our global environment and share the information and knowledge available in the different domains of Earth Observation.
Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry.
Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy
2017-11-01
The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown. Graphical Abstract ᅟ.
Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry
NASA Astrophysics Data System (ADS)
Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy
2017-07-01
The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown.
Method and apparatus for monitoring aircraft components
Dickens, Larry M.; Haynes, Howard D.; Ayers, Curtis W.
1996-01-01
Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components.
Method and apparatus for monitoring aircraft components
Dickens, L.M.; Haynes, H.D.; Ayers, C.W.
1996-01-16
Operability of aircraft mechanical components is monitored by analyzing the voltage output of an electrical generator of the aircraft. Alternative generators, for a turbine-driven rotor aircraft, include the gas producer turbine tachometer generator, the power turbine tachometer generator, and the aircraft systems power producing starter/generator. Changes in the peak amplitudes of the fundamental frequency and its harmonics are correlated to changes in condition of the mechanical components. 14 figs.
Application of pixel-cell detector technology for Advanced Neutron Beam Monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, Daniel M.
2011-01-11
Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and instrumented a 64-pixel-cell detector to specifications for the Cold-Neutron Chopper Spectrometer and POWGEN instruments, (3) investigated the general characteristics of this technology, (4) studied pixel-cell configurations and arrived at an optimized modular design, and (5) evaluated fabrication costs of mass production for these configurations. The resulting technology will enable a complete line of pixel-cell-based neutron detectors to be commercially under available. ORDELA, Inc has a good track history of application of innovative technology into the marketplace. Our commercialization record reflects this. For additional information, please contact Daniel Kopp at ORDELA, Inc. at +1 (865) 483-8675 or check our website at www.ordela.com.« less
Failure analysis in the identification of synergies between cleaning monitoring methods.
Whiteley, Greg S; Derry, Chris; Glasbey, Trevor
2015-02-01
The 4 monitoring methods used to manage the quality assurance of cleaning outcomes within health care settings are visual inspection, microbial recovery, fluorescent marker assessment, and rapid ATP bioluminometry. These methods each generate different types of information, presenting a challenge to the successful integration of monitoring results. A systematic approach to safety and quality control can be used to interrogate the known qualities of cleaning monitoring methods and provide a prospective management tool for infection control professionals. We investigated the use of failure mode and effects analysis (FMEA) for measuring failure risk arising through each cleaning monitoring method. FMEA uses existing data in a structured risk assessment tool that identifies weaknesses in products or processes. Our FMEA approach used the literature and a small experienced team to construct a series of analyses to investigate the cleaning monitoring methods in a way that minimized identified failure risks. FMEA applied to each of the cleaning monitoring methods revealed failure modes for each. The combined use of cleaning monitoring methods in sequence is preferable to their use in isolation. When these 4 cleaning monitoring methods are used in combination in a logical sequence, the failure modes noted for any 1 can be complemented by the strengths of the alternatives, thereby circumventing the risk of failure of any individual cleaning monitoring method. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Carvlin, Graeme N; Lugo, Humberto; Olmedo, Luis; Bejarano, Ester; Wilkie, Alexa; Meltzer, Dan; Wong, Michelle; King, Galatea; Northcross, Amanda; Jerrett, Michael; English, Paul B; Hammond, Donald; Seto, Edmund
2017-12-01
The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM 2.5 and PM 10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R 2 for converted hourly averaged Dylos mass measurements versus a PM 2.5 BAM was 0.79 and that versus a PM 10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM 2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R 2 = 0.35-0.81). The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.
Post-licensure rapid immunization safety monitoring program (PRISM) data characterization.
Baker, Meghan A; Nguyen, Michael; Cole, David V; Lee, Grace M; Lieu, Tracy A
2013-12-30
The Post-Licensure Rapid Immunization Safety Monitoring (PRISM) program is the immunization safety monitoring component of FDA's Mini-Sentinel project, a program to actively monitor the safety of medical products using electronic health information. FDA sought to assess the surveillance capabilities of this large claims-based distributed database for vaccine safety surveillance by characterizing the underlying data. We characterized data available on vaccine exposures in PRISM, estimated how much additional data was gained by matching with select state and local immunization registries, and compared vaccination coverage estimates based on PRISM data with other available data sources. We generated rates of computerized codes representing potential health outcomes relevant to vaccine safety monitoring. Standardized algorithms including ICD-9 codes, number of codes required, exclusion criteria and location of the encounter were used to obtain the background rates. The majority of the vaccines routinely administered to infants, children, adolescents and adults were well captured by claims data. Immunization registry data in up to seven states comprised between 5% and 9% of data for all vaccine categories with the exception of 10% for hepatitis B and 3% and 4% for rotavirus and zoster respectively. Vaccination coverage estimates based on PRISM's computerized data were similar to but lower than coverage estimates from the National Immunization Survey and Healthcare Effectiveness Data and Information Set. For the 25 health outcomes of interest studied, the rates of potential outcomes based on ICD-9 codes were generally higher than rates described in the literature, which are typically clinically confirmed cases. PRISM program's data on vaccine exposures and health outcomes appear complete enough to support robust safety monitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.
An economic analysis of five selected LANDSAT assisted information systems in Oregon
NASA Technical Reports Server (NTRS)
Solomon, S.; Maher, K. M.
1979-01-01
A comparative cost analysis was performed on five LANDSAT-based information systems. In all cases, the LANDSAT system was found to have cost advantages over its alternative. The information sets generated by LANDSAT and the alternative method are not identical but are comparable in terms of satisfying the needs of the sponsor. The information obtained from the LANDSAT system in some cases is said to lack precision and detail. On the other hand, it was found to be superior in terms of providing information on areas that are inaccessible and unobtainable through conventional means. There is therefore a trade-off between precision and detail, and considerations of costs. The projects examined were concerned with locating irrigation circles in Morrow County; monitoring tansy ragwort infestation; inventoring old growth Douglas fir near Spotted Owl habitats; inventoring vegetation and resources in all state-owned lands; and determining and use for Columbia River water policies.
New generation of meteorology cameras
NASA Astrophysics Data System (ADS)
Janout, Petr; Blažek, Martin; Páta, Petr
2017-12-01
A new generation of the WILLIAM (WIde-field aLL-sky Image Analyzing Monitoring system) camera includes new features such as monitoring of rain and storm clouds during the day observation. Development of the new generation of weather monitoring cameras responds to the demand for monitoring of sudden weather changes. However, new WILLIAM cameras are ready to process acquired image data immediately, release warning against sudden torrential rains, and send it to user's cell phone and email. Actual weather conditions are determined from image data, and results of image processing are complemented by data from sensors of temperature, humidity, and atmospheric pressure. In this paper, we present the architecture, image data processing algorithms of mentioned monitoring camera and spatially-variant model of imaging system aberrations based on Zernike polynomials.
On performing semantic queries in small devices
NASA Astrophysics Data System (ADS)
Costea, C.; Petrovan, A.; Neamţ, L.; Chiver, O.
2016-08-01
The sensors have a well-defined role in control or monitoring industrial processes; the data given by them can generate valuable information of the trend of the systems to which they belong, but to store a large volume of data and then analysis offline is not always practical. One solution is on-line analysis, preferably as close to the place where data have been generated (edge computing). An increasing amount of data generated by a growing number of devices connected to the Internet resulted in processing data sensors to the edge of the network, in a middle layer where smart entities should interoperate. Diversity of communication technologies outlined the idea of using intermediate devices such as gateways in sensor networks and for this reason the paper examines the functionality of a SPARQL endpoint in the Raspberry Pi device.
NASA Astrophysics Data System (ADS)
Manzano Muñoz, Fernando; Pouliquen, Sylvie; Petit de la Villeon, Loic; Carval, Thierry; Loubrieu, Thomas; Wedhe, Henning; Sjur Ringheim, Lid; Hammarklint, Thomas; Tamm, Susanne; De Alfonso, Marta; Perivoliotis, Leonidas; Chalkiopoulos, Antonis; Marinova, Veselka; Tintore, Joaquin; Troupin, Charles
2016-04-01
Copernicus, previously known as GMES (Global Monitoring for Environment and Security), is the European Programme for the establishment of a European capacity for Earth Observation and Monitoring. Copernicus aims to provide a sustainable service for Ocean Monitoring and Forecasting validated and commissioned by users. From May 2015, the Copernicus Marine Environment Monitoring Service (CMEMS) is working on an operational mode through a contract with services engagement (result is regular data provision). Within CMEMS, the In Situ Thematic Assembly Centre (INSTAC) distributed service integrates in situ data from different sources for operational oceanography needs. CMEMS INSTAC is collecting and carrying out quality control in a homogeneous manner on data from providers outside Copernicus (national and international networks), to fit the needs of internal and external users. CMEMS INSTAC has been organized in 7 regional Dissemination Units (DUs) to rely on the EuroGOOS ROOSes. Each DU aggregates data and metadata provided by a series of Production Units (PUs) acting as an interface for providers. Homogeneity and standardization are key features to ensure coherent and efficient service. All DUs provide data in the OceanSITES NetCDF format 1.2 (based on NetCDF 3.6), which is CF compliant, relies on SeaDataNet vocabularies and is able to handle profile and time-series measurements. All the products, both near real-time (NRT) and multi-year (REP), are available online for every CMEMS registered user through an FTP service. On top of the FTP service, INSTAC products are available through Oceanotron, an open-source data server dedicated to marine observations dissemination. It provides services such as aggregation on spatio-temporal coordinates and observed parameters, and subsetting on observed parameters and metadata. The accuracy of the data is checked on various levels. Quality control procedures are applied for the validity of the data and correctness tests for the metadata of each NetCDF file. The quality control procedures for the data include different routines for NRT and REP products. Key Performance Indicators (KPI) for monitoring purposes are also used in Copernicus. They allow a periodic monitoring of the availability, quantity and quality of the INSTAC data integrated in the NRT products. Statistical reports are generated on quarterly and yearly basis to provide more visibility on the coverage in space and time of the INSTAC NRT and REP products, as well as information on their quality. These reports are generated using Java and Python procedures developed within the INSTAC group. One of the most critical tasks for the DUs is to generate NetCDF files compliant with the agreed format. Many tools and programming libraries have been developed for that purpose, for instance Unidata Java Library. These tools provide NetCDF data management capabilities including creation, reading and modification. Some DUs have also developed regional data portals which offer useful information for the users including data charts, platforms availability through interactive maps, KPI and statistical figures and direct access to the FTP service. The proposed presentation will detail Copernicus in situ data service and the monitoring tools that have been developed by the INSTAC group.
DOT National Transportation Integrated Search
2009-09-01
The opening of a major traffic generator in the San Antonio area provided an opportunity to develop and : implement an extensive traffic monitoring system to analyze local, area, and regional traffic impacts from the : generator. Researchers reviewed...
Improving health aid for a better planet: The planning, monitoring and evaluation tool (PLANET)
Sridhar, Devi; Car, Josip; Chopra, Mickey; Campbell, Harry; Woods, Ngaire; Rudan, Igor
2015-01-01
Background International development assistance for health (DAH) quadrupled between 1990 and 2012, from US$ 5.6 billion to US$ 28.1 billion. This generates an increasing need for transparent and replicable tools that could be used to set investment priorities, monitor the distribution of funding in real time, and evaluate the impact of those investments. Methods In this paper we present a methodology that addresses these three challenges. We call this approach PLANET, which stands for planning, monitoring and evaluation tool. Fundamentally, PLANET is based on crowdsourcing approach to obtaining information relevant to deployment of large–scale programs. Information is contributed in real time by a diverse group of participants involved in the program delivery. Findings PLANET relies on real–time information from three levels of participants in large–scale programs: funders, managers and recipients. At each level, information is solicited to assess five key risks that are most relevant to each level of operations. The risks at the level of funders involve systematic neglect of certain areas, focus on donor’s interests over that of program recipients, ineffective co–ordination between donors, questionable mechanisms of delivery and excessive loss of funding to “middle men”. At the level of managers, the risks are corruption, lack of capacity and/or competence, lack of information and /or communication, undue avoidance of governmental structures / preference to non–governmental organizations and exclusion of local expertise. At the level of primary recipients, the risks are corruption, parallel operations / “verticalization”, misalignment with local priorities and lack of community involvement, issues with ethics, equity and/or acceptability, and low likelihood of sustainability beyond the end of the program’s implementation. Interpretation PLANET is intended as an additional tool available to policy–makers to prioritize, monitor and evaluate large–scale development programs. In this, it should complement tools such as LiST (for health care/interventions), EQUIST (for health care/interventions) and CHNRI (for health research), which also rely on information from local experts and on local context to set priorities in a transparent, user–friendly, replicable, quantifiable and specific, algorithmic–like manner. PMID:26322228
Improving health aid for a better planet: The planning, monitoring and evaluation tool (PLANET).
Sridhar, Devi; Car, Josip; Chopra, Mickey; Campbell, Harry; Woods, Ngaire; Rudan, Igor
2015-12-01
International development assistance for health (DAH) quadrupled between 1990 and 2012, from US$ 5.6 billion to US$ 28.1 billion. This generates an increasing need for transparent and replicable tools that could be used to set investment priorities, monitor the distribution of funding in real time, and evaluate the impact of those investments. In this paper we present a methodology that addresses these three challenges. We call this approach PLANET, which stands for planning, monitoring and evaluation tool. Fundamentally, PLANET is based on crowdsourcing approach to obtaining information relevant to deployment of large-scale programs. Information is contributed in real time by a diverse group of participants involved in the program delivery. PLANET relies on real-time information from three levels of participants in large-scale programs: funders, managers and recipients. At each level, information is solicited to assess five key risks that are most relevant to each level of operations. The risks at the level of funders involve systematic neglect of certain areas, focus on donor's interests over that of program recipients, ineffective co-ordination between donors, questionable mechanisms of delivery and excessive loss of funding to "middle men". At the level of managers, the risks are corruption, lack of capacity and/or competence, lack of information and /or communication, undue avoidance of governmental structures / preference to non-governmental organizations and exclusion of local expertise. At the level of primary recipients, the risks are corruption, parallel operations / "verticalization", misalignment with local priorities and lack of community involvement, issues with ethics, equity and/or acceptability, and low likelihood of sustainability beyond the end of the program's implementation. PLANET is intended as an additional tool available to policy-makers to prioritize, monitor and evaluate large-scale development programs. In this, it should complement tools such as LiST (for health care/interventions), EQUIST (for health care/interventions) and CHNRI (for health research), which also rely on information from local experts and on local context to set priorities in a transparent, user-friendly, replicable, quantifiable and specific, algorithmic-like manner.
Study on an agricultural environment monitoring server system using Wireless Sensor Networks.
Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun
2010-01-01
This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.
N-16 monitors: Almaraz NPP experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adrada, J.
1997-02-01
Almaraz Nuclear Power Plant has installed N-16 monitors - one per steam generator - to control the leakage rate through the steam generator tubes after the application of leak before break (LBB) criteria for the top tube sheet (TTS). After several years of operation with the N-16 monitors, Almaraz NPP experience may be summarized as follows: N-16 monitors are very useful to follow the steam generator leak rate trend and to detect an incipient tube rupture; but they do not provide an exact absolute leak rate value, mainly when there are small leaks. The evolution of the measured N-16 leakmore » rates varies along the fuel cycle, with the same trend for the 3 steam generators. This behaviour is associated with the primary water chemistry evolution along the cycle.« less
Evolution of the Copernicus Space Component: preparing for tomorrow
NASA Astrophysics Data System (ADS)
Aschbacher, Josef
2016-04-01
Copernicus, the ambitious and unique worldwide Earth Observation programme led by the EU, ensures the regular observation and monitoring of Earth's atmosphere, oceans, and continental surfaces, and provides reliable, timely and accurate information to support a broad range of environmental and security policies. The space component of Copernicus is composed of a fleet of satellite missions specifically developed to satisfy Copernicus user needs (the Sentinel families) and also of satellites from other space agencies or organisations, not designed originally for Copernicus, but contributing to the programme (Contributing Missions). The data from the Copernicus satellites, along with some in-situ data, feeds a range of information services in six thematic domains: ocean, land, atmosphere, emergency response, climate change and security. The first two Sentinel satellites (an imaging all-weather night-and-day radar mission, called Sentinel-1, and a high resolution multi-spectral optical mission, Sentinel-2) have already been launched in 2014 and 2015, respectively. The third one (a multi-instrument global sea/land monitoring mission, called Sentinel-3) will be launched in the next weeks. The remaining families will join in the following years and will cover all environmental domains: Sentinel-4, Sentinel-5 precursor and Sentinel-5 will be aimed at monitoring the air quality, stratospheric ozone and solar radiation at high temporal and spatial resolution, while Sentinel-6 will provide high precision ocean altimetry measurements. With two spacecraft of each Sentinel type flying simultaneously and two additional identical spacecraft in the making to replace the first couples at the end of their lifetimes, the provision of environmental information of our planet will be guaranteed until at least 2035. In the meantime, new priorities have been introduced in the EU policies arising from recent events in Europe and new societal needs; migration issue, better management of EU external borders, natural resources handling and climate change among others. Copernicus has therefore to respond to the dynamics of the EU policies' priorities with the required rapidity and flexibility, bringing concrete results in terms of information and growth (Sentinels' evolution) and, at the same time, taking account of the continuity of existing Sentinels data and Services (Second Generation). The Sentinels' evolution, more time stringent than the Second Generation, is a joint EU-ESA endeavour just started concerning a CO2 monitoring mission. Other domains/techniques under investigation for future missions are: polar ice/ocean interferometric altimetry, thermal Infrared, soil moisture or hyper-spectral land imaging. This presentation will therefore give an overview of the current status and future perspectives of the Copernicus space component.
Polanco, Carlos; Castañón-González, Jorge Alberto; Macías, Alejandro E; Samaniego, José Lino; Buhse, Thomas; Villanueva-Martínez, Sebastián
2013-01-01
A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008-2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts.
Irimia, Andrei; Goh, S.-Y. Matthew; Torgerson, Carinna M.; Stein, Nathan R.; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.
2013-01-01
Objective To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Methods Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. Results We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Conclusion Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. PMID:24011495
Irimia, Andrei; Goh, S-Y Matthew; Torgerson, Carinna M; Stein, Nathan R; Chambers, Micah C; Vespa, Paul M; Van Horn, John D
2013-10-01
To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. Published by Elsevier B.V.
Castañón-González, Jorge Alberto; Macías, Alejandro E.; Samaniego, José Lino; Buhse, Thomas; Villanueva-Martínez, Sebastián
2013-01-01
A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008–2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts. PMID:24069063
Sonification of network traffic flow for monitoring and situational awareness
2018-01-01
Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators’ situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen. PMID:29672543
Sonification of network traffic flow for monitoring and situational awareness.
Debashi, Mohamed; Vickers, Paul
2018-01-01
Maintaining situational awareness of what is happening within a computer network is challenging, not only because the behaviour happens within machines, but also because data traffic speeds and volumes are beyond human ability to process. Visualisation techniques are widely used to present information about network traffic dynamics. Although they provide operators with an overall view and specific information about particular traffic or attacks on the network, they often still fail to represent the events in an understandable way. Also, because they require visual attention they are not well suited to continuous monitoring scenarios in which network administrators must carry out other tasks. Here we present SoNSTAR (Sonification of Networks for SiTuational AwaReness), a real-time sonification system for monitoring computer networks to support network administrators' situational awareness. SoNSTAR provides an auditory representation of all the TCP/IP traffic within a network based on the different traffic flows between between network hosts. A user study showed that SoNSTAR raises situational awareness levels by enabling operators to understand network behaviour and with the benefit of lower workload demands (as measured by the NASA TLX method) than visual techniques. SoNSTAR identifies network traffic features by inspecting the status flags of TCP/IP packet headers. Combinations of these features define particular traffic events which are mapped to recorded sounds to generate a soundscape that represents the real-time status of the network traffic environment. The sequence, timing, and loudness of the different sounds allow the network to be monitored and anomalous behaviour to be detected without the need to continuously watch a monitor screen.
Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture
McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID
2012-05-08
Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.
40 CFR 60.47b - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...
40 CFR 60.47b - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...
40 CFR 60.47b - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...
40 CFR 60.47b - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...
40 CFR 60.47b - Emission monitoring for sulfur dioxide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission monitoring for sulfur dioxide... Industrial-Commercial-Institutional Steam Generating Units § 60.47b Emission monitoring for sulfur dioxide... generating unit and analyzing them for sulfur and heat content according to Method 19 of appendix A of this...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
Revill, Paul; Walker, Simon; Cambiano, Valentina; Phillips, Andrew; Sculpher, Mark J
2018-01-01
The WHO HIV Treatment Guidelines suggest routine viral-load monitoring can be used to differentiate antiretroviral therapy (ART) delivery and reduce the frequency of clinic visits for patients stable on ART. This recommendation was informed by economic analysis that showed the approach is very likely to be cost-effective, even in the most resource constrained of settings. The health benefits were shown to be modest but the costs of introducing and scaling up viral load monitoring can be offset by anticipated reductions in the costs of clinic visits, due to these being less frequent for many patients. The cost-effectiveness of introducing viral-load informed differentiated care depends upon whether cost reductions are possible if the number of clinic visits is reduced and/or how freed clinic capacity is used for alternative priorities. Where freed resources, either physical or financial, generate large health gains (e.g. if committed to patients failing ART or to other high value health care interventions), the benefits of differentiated care are expected to be high; if however these freed physical resources are already under-utilized or financial resources are used less efficiently and would not be put to as beneficial an alternative use, the policy may not be cost-effective. The implication is that the use of conventional unit costs to value resources may not well reflect the latter's value in contributing to health improvement. Analyses intended to inform resource allocated decisions in a number of settings may therefore have to be interpreted with due consideration to local context. In this paper we present methods of how economic analyses can reflect the real value of health care resources rather than simply applying their unit costs. The analyses informing the WHO Guidelines are re-estimated by implementing scenarios using this framework, informing how differentiated care can be prioritized to generate greatest gains in population health. The findings have important implications for how economic analyses should be undertaken and reported in HIV and other disease areas. Results provide guidance on conditions under which viral load informed differentiated care will more likely prove to be cost effective when implemented.
Chen, Yi-Ting; Wang, Fu-Shing; Li, Zhendong; Li, Liang; Ling, Yong-Chien
2012-07-29
Phthalocyanines (PCs), an important class of chemicals widely used in many industrial sectors, are macrocyclic compounds possessing a heteroaromatic π-electron system with optical properties influenced by chemical structures and impurities or by-products introduced during the synthesis process. Analytical tools allowing for rapid monitoring of the synthesis processes are of significance for the development of new PCs with improved performance in many application areas. In this work, we report a matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) method for rapid and convenient monitoring of PC synthesis reactions. For this class of compounds, intact molecular ions could be detected by MALDI using retinoic acid as matrix. It was shown that relative quantification results of two PC compounds could be generated by MALDI MS. This method was applied to monitor the bromination reactions of nickel- and copper-containing PCs. It was demonstrated that, compared to the traditional UV-visible method, the MALDI MS method offers the advantage of higher sensitivity while providing chemical species and relative quantification information on the reactants and products, which are crucial to process monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.
Crack Monitoring of Operational Wind Turbine Foundations
McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-01-01
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μm. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations. PMID:28825687
Crack Monitoring of Operational Wind Turbine Foundations.
Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-08-21
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.
NASA Astrophysics Data System (ADS)
Römer, H.; Kiefl, R.; Henkel, F.; Wenxi, C.; Nippold, R.; Kurz, F.; Kippnich, U.
2016-06-01
Enhancing situational awareness in real-time (RT) civil protection and emergency response scenarios requires the development of comprehensive monitoring concepts combining classical remote sensing disciplines with geospatial information science. In the VABENE++ project of the German Aerospace Center (DLR) monitoring tools are being developed by which innovative data acquisition approaches are combined with information extraction as well as the generation and dissemination of information products to a specific user. DLR's 3K and 4k camera system which allow for a RT acquisition and pre-processing of high resolution aerial imagery are applied in two application examples conducted with end users: a civil protection exercise with humanitarian relief organisations and a large open-air music festival in cooperation with a festival organising company. This study discusses how airborne remote sensing can significantly contribute to both, situational assessment and awareness, focussing on the downstream processes required for extracting information from imagery and for visualising and disseminating imagery in combination with other geospatial information. Valuable user feedback and impetus for further developments has been obtained from both applications, referring to innovations in thematic image analysis (supporting festival site management) and product dissemination (editable web services). Thus, this study emphasises the important role of user involvement in application-related research, i.e. by aligning it closer to user's requirements.
30 CFR 250.252 - What environmental monitoring information must accompany the DPP or DOCD?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What environmental monitoring information must... Development Operations Coordination Documents (docd) § 250.252 What environmental monitoring information must accompany the DPP or DOCD? The following environmental monitoring information, as applicable, must accompany...
30 CFR 550.252 - What environmental monitoring information must accompany the DPP or DOCD?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What environmental monitoring information must... Coordination Documents (docd) § 550.252 What environmental monitoring information must accompany the DPP or DOCD? The following environmental monitoring information, as applicable, must accompany your DPP or...
30 CFR 550.252 - What environmental monitoring information must accompany the DPP or DOCD?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What environmental monitoring information must... Coordination Documents (docd) § 550.252 What environmental monitoring information must accompany the DPP or DOCD? The following environmental monitoring information, as applicable, must accompany your DPP or...
30 CFR 550.252 - What environmental monitoring information must accompany the DPP or DOCD?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What environmental monitoring information must... Coordination Documents (docd) § 550.252 What environmental monitoring information must accompany the DPP or DOCD? The following environmental monitoring information, as applicable, must accompany your DPP or...
30 CFR 250.221 - What environmental monitoring information must accompany the EP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What environmental monitoring information must... Contents of Exploration Plans (ep) § 250.221 What environmental monitoring information must accompany the EP? The following environmental monitoring information, as applicable, must accompany your EP: (a...
30 CFR 250.252 - What environmental monitoring information must accompany the DPP or DOCD?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What environmental monitoring information must... Documents (docd) § 250.252 What environmental monitoring information must accompany the DPP or DOCD? The following environmental monitoring information, as applicable, must accompany your DPP or DOCD: (a...
Multi-Mission Automated Task Invocation Subsystem
NASA Technical Reports Server (NTRS)
Cheng, Cecilia S.; Patel, Rajesh R.; Sayfi, Elias M.; Lee, Hyun H.
2009-01-01
Multi-Mission Automated Task Invocation Subsystem (MATIS) is software that establishes a distributed data-processing framework for automated generation of instrument data products from a spacecraft mission. Each mission may set up a set of MATIS servers for processing its data products. MATIS embodies lessons learned in experience with prior instrument- data-product-generation software. MATIS is an event-driven workflow manager that interprets project-specific, user-defined rules for managing processes. It executes programs in response to specific events under specific conditions according to the rules. Because requirements of different missions are too diverse to be satisfied by one program, MATIS accommodates plug-in programs. MATIS is flexible in that users can control such processing parameters as how many pipelines to run and on which computing machines to run them. MATIS has a fail-safe capability. At each step, MATIS captures and retains pertinent information needed to complete the step and start the next step. In the event of a restart, this information is retrieved so that processing can be resumed appropriately. At this writing, it is planned to develop a graphical user interface (GUI) for monitoring and controlling a product generation engine in MATIS. The GUI would enable users to schedule multiple processes and manage the data products produced in the processes. Although MATIS was initially designed for instrument data product generation,
NASA Astrophysics Data System (ADS)
Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Quicho, E.; Collivignarelli, F.; Maunahan, A.; Gatti, L.; Romuga, G. C.
2017-01-01
Reliable and regular rice information is essential part of many countries’ national accounting process but the existing system may not be sufficient to meet the information demand in the context of food security and policy. Synthetic Aperture Radar (SAR) imagery is highly suitable for detecting lowland paddy rice, especially in tropical region where pervasive cloud cover in the rainy seasons limits the use of optical imagery. This study uses multi-temporal X-band and C-band SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations across Tropical Asia and assimilate the information into ORYZA Crop Growth Simulation model (CGSM) to generate high resolution yield maps. The resulting cultivated rice area maps had classification accuracies above 85% and yield estimates were within 81-93% agreement against district level reported yields. The study sites capture much of the diversity in water management, crop establishment and rice maturity durations and the study demonstrates the feasibility of rice detection, yield monitoring, and damage assessment in case of climate disaster at national and supra-national scales using multi-temporal SAR imagery combined with CGSM and automated methods.
Integrated Sustainable Planning for Industrial Region Using Geospatial Technology
NASA Astrophysics Data System (ADS)
Tiwari, Manish K.; Saxena, Aruna; Katare, Vivek
2012-07-01
The Geospatial techniques and its scope of applications have undergone an order of magnitude change since its advent and now it has been universally accepted as a most important and modern tool for mapping and monitoring of various natural resources as well as amenities and infrastructure. The huge and voluminous spatial database generated from various Remote Sensing platforms needs proper management like storage, retrieval, manipulation and analysis to extract desired information, which is beyond the capability of human brain. This is where the computer aided GIS technology came into existence. A GIS with major input from Remote Sensing satellites for the natural resource management applications must be able to handle the spatiotemporal data, supporting spatiotemporal quarries and other spatial operations. Software and the computer-based tools are designed to make things easier to the user and to improve the efficiency and quality of information processing tasks. The natural resources are a common heritage, which we have shared with the past generations, and our future generation will be inheriting these resources from us. Our greed for resource and our tremendous technological capacity to exploit them at a much larger scale has created a situation where we have started withdrawing from the future stocks. Bhopal capital region had attracted the attention of the planners from the beginning of the five-year plan strategy for Industrial development. However, a number of projects were carried out in the individual Districts (Bhopal, Rajgarh, Shajapur, Raisen, Sehore) which also gave fruitful results, but no serious efforts have been made to involve the entire region. No use of latest Geospatial technique (Remote Sensing, GIS, GPS) to prepare a well structured computerized data base without which it is very different to retrieve, analyze and compare the data for monitoring as well as for planning the developmental activities in future.
Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P
2017-08-24
This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.
NASA Astrophysics Data System (ADS)
Mosquera, G.; Lazo, P.; Crespo, P.; Célleri, R.
2014-12-01
Páramo ecosystems are widely recognized for their high water regulation capacity and as the main source of runoff generation in the Andean region. Understanding the hydrological functioning of the fragile wet Andean páramo ecosystems is critical in the mountainous regions of South America given their high susceptibility to global and local stressors such as land use change and climate change and variability . Despite this, most of the basins in the Andean mountain range are still ungauged, resulting in a currently hindered hydrologic analysis of the water sources contributing to runoff generation in the high-elevation páramo ecosystems. To improve this situation and provide a baseline for future tracer-based hydrologic studies, the isotopic signature of water samples collected within the Zhurucay River experimental basin (7.53 km2) was analyzed. The study area is located in the southern Ecuador and stretches over an altitudinal range of 3200 and 3900 m a.s.l. Water samples in rainfall, streamflow, and soils were collected between May 2011 and May 2013. Streamflow hydrometric and isotopic information within the study site was collected using a nested monitoring system. The main soils in the study site are the Andosols mainly located in the steep slopes, and the Histosols (Andean páramo wetlands) predominantly located at the bottom of the valley. Results reveal that the Andosols drain the infiltrated rainfall water to the Histosols. The Histosols on their turn feed creeks and small rivers. Pre-event water stored in the Histosols is the primary source of runoff generation throughout the year. Defining the water sources contributing to runoff generation is the first step towards the establishment of scientifically-based programs of management and conservation of water resources in the Andean region; and the monitoring of isotopic information has proven useful to improve the understanding of the ecosystem's hydrologic behavior.
Internal Electrostatic Discharge Monitor - IESDM
NASA Technical Reports Server (NTRS)
Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.
2011-01-01
A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).
Dynamic Task Optimization in Remote Diabetes Monitoring Systems.
Suh, Myung-Kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2012-09-01
Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %.
Dynamic Task Optimization in Remote Diabetes Monitoring Systems
Suh, Myung-kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2016-01-01
Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %. PMID:27617297
Power system monitoring and source control of the Space Station Freedom DC power system testbed
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Baez, Anastacio N.
1992-01-01
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.
Power system monitoring and source control of the Space Station Freedom dc-power system testbed
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.; Baez, Anastacio N.
1992-01-01
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.
Cowan, J; Michel, C; Manhiça, I; Mutaquiha, C; Monivo, C; Saize, D; Beste, J; Creswell, J; Codlin, A J; Gloyd, S
2016-03-01
Electronic diagnostic tests, such as the Xpert® MTB/RIF assay, are being implemented in low- and middle-income countries (LMICs). However, timely information from these tests available via remote monitoring is underutilized. The failure to transmit real-time, actionable data to key individuals such as clinicians, patients, and national monitoring and evaluation teams may negatively impact patient care. To describe recently developed applications that allow for real-time, remote monitoring of Xpert results, and initial implementation of one of these products in central Mozambique. In partnership with the Mozambican National Tuberculosis Program, we compared three different remote monitoring tools for Xpert and selected one, GxAlert, to pilot and evaluate at five public health centers in Mozambique. GxAlert software was successfully installed on all five Xpert computers, and test results are now uploaded daily via a USB internet modem to a secure online database. A password-protected web-based interface allows real-time analysis of test results, and 1200 positive tests for tuberculosis generated 8000 SMS result notifications to key individuals. Remote monitoring of diagnostic platforms is feasible in LMICs. While promising, this effort needs to address issues around patient data ownership, confidentiality, interoperability, unique patient identifiers, and data security.
Wang, Zhaoguo; Du, Xishihui
2016-07-01
Natural World Heritage Sites (NWHSs) are invaluable treasure due to the uniqueness of each site. Proper monitoring and management can guarantee their protection from multiple threats. In this study, geographic information system (GIS)-based multi-criteria decision analysis (GIS-MCDA) was used to assess criteria layers acquired from the data available in the literature. A conceptual model for determining the priority area for monitoring in Bogda, China, was created based on outstanding universal values (OUV) and expert knowledge. Weights were assigned to each layer using the analytic hierarchy process (AHP) based on group decisions, encompassing three experts: one being a heritage site expert, another a forest ranger, and the other a heritage site manager. Subsequently, evaluation layers and constraint layers were used to generate a priority map and to determine the feasibility of monitoring in Bogda. Finally, a monitoring suitability map of Bogda was obtained by referencing priority and feasibility maps.The high-priority monitoring area is located in the montane forest belt, which exhibits high biodiversity and is the main tourist area of Bogda. The northern buffer zone of Bogda comprises the concentrated feasible monitoring areas, and the area closest to roads and monitoring facilities is highly feasible for NWHS monitoring. The suitability of an area in terms of monitoring is largely determined by the monitoring priority in that particular area. The majority of planned monitoring facilities are well distributed in both suitable and less suitable areas. Analysis results indicate that the protection of Bogda will be more scientifically based due to its effective and all-around planned monitoring system proposed by the declaration text of Xinjiang Tianshan, which is the essential file submitted to World Heritage Centre to inscribe as a NWHS.
VAXCMS - VAX CONTINUOUS MONITORING SYSTEM, VERSION 2.2
NASA Technical Reports Server (NTRS)
Farkas, L.
1994-01-01
The VAX Continuous Monitoring System (VAXCMS) was developed at NASA Headquarters to aid system managers in monitoring the performance of VAX systems through the generation of graphic images which summarize trends in performance metrics over time. Since its initial development, VAXCMS has been extensively modified at the NASA Lewis Research Center. Data is produced by utilizing the VMS MONITOR utility to collect the performance data, and then feeding the data through custom-developed linkages to the Computer Associates' TELL-A-GRAF computer graphics software to generate the chart images for analysis by the system manager. The VMS ACCOUNTING utility is also utilized to gather interactive process information. The charts that are generated by VAXCMS are: 1) CPU modes for each node over the most recent four month period 2) CPU modes for the cluster as a whole using a weighted average of all the nodes in the cluster based on processing power 3) Percent of primary memory in use for each node over the most recent four month period 4) Interactive processes for all nodes over the most recent four month period 5) Daily, weekly, and monthly, performance summaries for CPU modes, percent of primary memory in use, and page fault rates for each node 6) Daily disk I/O performance data plotting Average Disk I/O Response Time based on I/O Operation Rate and Queue Length. VAXCMS is written in DCL and VAX FORTRAN for use with DEC VAX series computers running VMS 5.1 or later. This program requires the TELL-A-GRAF graphics package in order to generate plots of system data. A FORTRAN compiler is required. The standard distribution medium for VAXCMS is a 9-track 1600 BPI magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. An electronic copy of the documentation in ASCII format is included on the distribution medium. Portions of this code are copyrighted by Mr. David Lavery and are distributed with his permission. These portions of the code may not be redistributed commercially.
National photonics skills standards for technicians
NASA Astrophysics Data System (ADS)
Hull, Darrell M.
1995-10-01
Photonics is defined as the generation, manipulation, transport, detection, and use of light information and energy whose quantum unit is the photon. The range of applications of phonics extends from energy generation to detection to communication and information processing. Photonics is at the heart of today's communication systems, from the laser that generates the digital information transported along a fiber- optic cable to the detector that decodes the information. Whether the transmitted information is a phone call from across the street or across the globe, photonics brings it to you. Where your health is concerned, photonics allows physicians to do minimally invasive surgery using fiber-optic endoscopes and lasers. Researches using spectroscopy and microscopy are pushing the frontiers of biotechnology in activities as widespread as diagnosing disease and probing the mysteries of the genetic code. Advanced sensing and imaging techniques monitor the environment, gathering data on crops and forests, analyzing the ocean's currents and contents, and probing the atmosphere of pollutants. Transportation needs are being impacted by photonic sensors and laser rangefinders that will soon monitor and control the traffic on our nation's highways. In our factories, photonics provides machine vision systems that give a level of quality control human inspectors could never achieve. In manufacturing, lasers are replacing a variety of cutting, welding, and marking techniques, while imaging systems teamed with neural networks are producing intelligent robots. In short, photonics is paving our way into the new millennium. The skill standard is intended to define the knowledge and capabilities - the skills - that workers in the phonics industry need. Phonics will be one of the primary battlefields of the world economic conflict, and it is imperative that U.S. photonics technicians be skilled enough to allow the United States to remain competitive in a global marketplace. The focus of this standard is on the skills necessary for employment as a phonics technician and is not intended to be an analysis of those skills that are important for workers in all occupational areas. A comprehensive treatment of the skills necessary for all workers has been the subject of a number of studies, most notably, the work of the Secretary's Commission on the Achievement of Necessary Skills (SCANS). It is our hope at CORD that the work presented in the standard lends more detail and rational for the accomplishment of the broader skills that should be obtained by all students.
Read, Tania L; Joseph, Maxim B; Macpherson, Julie V
2016-01-31
Generator-detector electrodes can be used to both perturb and monitor pH dependant metal-ligand binding equilibria, in situ. In particular, protons generated at the generator locally influence the speciation of metal (Cu(2+)) in the presence of ligand (triethylenetetraamine), with the detector employed to monitor, in real time, free metal (Cu(2+)) concentrations.
SWANN: The Snow Water Artificial Neural Network Modelling System
NASA Astrophysics Data System (ADS)
Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.
2017-12-01
Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.
Intensive care unit without walls: seeking patient safety by improving the efficiency of the system.
Gordo, F; Abella, A
2014-10-01
The term "ICU without walls" refers to innovative management in Intensive Care, based on two key elements: (1) collaboration of all medical and nursing staff involved in patient care during hospitalization and (2) technological support for severity early detection protocols by identifying patients at risk of deterioration throughout the hospital, based on the assessment of vital signs and/or laboratory test values, with the clear aim of improving critical patient safety in the hospitalization process. At present, it can be affirmed that there is important work to be done in the detection of severity and early intervention in patients at risk of organ dysfunction. Such work must be adapted to the circumstances of each center and should include training in the detection of severity, multidisciplinary work in the complete patient clinical process, and the use of technological systems allowing intervention on the basis of monitored laboratory and physiological parameters, with effective and efficient use of the information generated. Not only must information be generated, but also efficient management of such information must also be achieved. It is necessary to improve our activity through innovation in management procedures that facilitate the work of the intensivist, in collaboration with other specialists, throughout the hospital environment. Innovation is furthermore required in the efficient management of the information generated in hospitals, through intelligent and directed usage of the new available technology. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
Marceglia, S; Fontelo, P; Rossi, E; Ackerman, M J
2015-01-01
Mobile health Applications (mHealth Apps) are opening the way to patients' responsible and active involvement with their own healthcare management. However, apart from Apps allowing patient's access to their electronic health records (EHRs), mHealth Apps are currently developed as dedicated "island systems". Although much work has been done on patient's access to EHRs, transfer of information from mHealth Apps to EHR systems is still low. This study proposes a standards-based architecture that can be adopted by mHealth Apps to exchange information with EHRs to support better quality of care. Following the definition of requirements for the EHR/mHealth App information exchange recently proposed, and after reviewing current standards, we designed the architecture for EHR/mHealth App integration. Then, as a case study, we modeled a system based on the proposed architecture aimed to support home monitoring for congestive heart failure patients. We simulated such process using, on the EHR side, OpenMRS, an open source longitudinal EHR and, on the mHealth App side, the iOS platform. The integration architecture was based on the bi-directional exchange of standard documents (clinical document architecture rel2 - CDA2). In the process, the clinician "prescribes" the home monitoring procedures by creating a CDA2 prescription in the EHR that is sent, encrypted and de-identified, to the mHealth App to create the monitoring calendar. At the scheduled time, the App alerts the patient to start the monitoring. After the measurements are done, the App generates a structured CDA2-compliant monitoring report and sends it to the EHR, thus avoiding local storage. The proposed architecture, even if validated only in a simulation environment, represents a step forward in the integration of personal mHealth Apps into the larger health-IT ecosystem, allowing the bi-directional data exchange between patients and healthcare professionals, supporting the patient's engagement in self-management and self-care.
1989-09-01
Guidelines Generation #2 b. Electronic Submission of Commerce Business Daily ( CBD ) Notices #6 c. On-line Debarred/Suspended List #5 d. On-Line Contract...a number of years. Reality of system differs from manual. One reference - easy to follow, block by block - is needed. -Imaging and CBD electronic...milestones are tracked - and those milestones should be monitored as a natural outcome of thc process - e.g. A milestone is noted when the RFP is
More About The Video Event Trigger
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1996-01-01
Report presents additional information about system described in "Video Event Trigger" (LEW-15076). Digital electronic system processes video-image data to generate trigger signal when image shows significant change, such as motion, or appearance, disappearance, change in color, brightness, or dilation of object. Potential uses include monitoring of hallways, parking lots, and other areas during hours when supposed unoccupied, looking for fires, tracking airplanes or other moving objects, identification of missing or defective parts on production lines, and video recording of automobile crash tests.
2006-11-01
Hampton, VA 23666 November 2006 Approved for public release: distribution is unlimited. 20070907323 ABERDEEN PROVING GROUND, MD 21010-5424 DISCLAIMER...REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION I AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY
A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops.
Bengochea-Guevara, José M; Andújar, Dionisio; Sanchez-Sardana, Francisco L; Cantuña, Karla; Ribeiro, Angela
2017-12-24
Crop monitoring is an essential practice within the field of precision agriculture since it is based on observing, measuring and properly responding to inter- and intra-field variability. In particular, "on ground crop inspection" potentially allows early detection of certain crop problems or precision treatment to be carried out simultaneously with pest detection. "On ground monitoring" is also of great interest for woody crops. This paper explores the development of a low-cost crop monitoring system that can automatically create accurate 3D models (clouds of coloured points) of woody crop rows. The system consists of a mobile platform that allows the easy acquisition of information in the field at an average speed of 3 km/h. The platform, among others, integrates an RGB-D sensor that provides RGB information as well as an array with the distances to the objects closest to the sensor. The RGB-D information plus the geographical positions of relevant points, such as the starting and the ending points of the row, allow the generation of a 3D reconstruction of a woody crop row in which all the points of the cloud have a geographical location as well as the RGB colour values. The proposed approach for the automatic 3D reconstruction is not limited by the size of the sampled space and includes a method for the removal of the drift that appears in the reconstruction of large crop rows.
Blåhed, Ida-Maria; Königsson, Helena; Ericsson, Göran; Spong, Göran
2018-01-01
Monitoring of wild animal populations is challenging, yet reliable information about population processes is important for both management and conservation efforts. Access to molecular markers, such as SNPs, enables population monitoring through genotyping of various DNA sources. We have developed 96 high quality SNP markers for individual identification of moose (Alces alces), an economically and ecologically important top-herbivore in boreal regions. Reduced representation libraries constructed from 34 moose were high-throughput de novo sequenced, generating nearly 50 million read pairs. About 50 000 stacks of aligned reads containing one or more SNPs were discovered with the Stacks pipeline. Several quality criteria were applied on the candidate SNPs to find markers informative on the individual level and well representative for the population. An empirical validation by genotyping of sequenced individuals and additional moose, resulted in the selection of a final panel of 86 high quality autosomal SNPs. Additionally, five sex-specific SNPs and five SNPs for sympatric species diagnostics are included in the panel. The genotyping error rate was 0.002 for the total panel and probability of identities were low enough to separate individuals with high confidence. Moreover, the autosomal SNPs were highly informative also for population level analyses. The potential applications of this SNP panel are thus many including investigations of population size, sex ratios, relatedness, reproductive success and population structure. Ideally, SNP-based studies could improve today's population monitoring and increase our knowledge about moose population dynamics.
Dynamic area telethermometry and its clinical applications
NASA Astrophysics Data System (ADS)
Anbar, Michael
1995-03-01
Dynamic area telethermometry (DAT) is a recent development in thermology, the science of biological heat generation and dissipation. DAT is based on monitoring changes in infrared emission, deriving from them information on the kinetics and mechanisms of biological thermoregulation. Remotely monitoring infrared emission is the most reliable technique to study bioenergetics, because it minimally perturbs the investigated system. Area monitoring of heat dissipating surfaces is needed because temporal changes in the spatial distribution of temperature conveys information on mechanisms of thermoregulation. DAT can be applied to biological systems ranging from single cells (microtelecalorimetry) to large areas of human skin (clinical thermology). DAT requires the accumulation of many (hundreds to thousands) thermal images followed by analysis of the thermokinetics of each pixel or group of pixels. In clinical thermology this analysis uses FFT to extract systemic, regional and local thermoregulatory frequencies (TRFs). DAT also extracts information on local thermoregulation from the temporal behavior of homogeneity of skin temperature (HST). Analysis of the relative contributions (FFT amplitudes) of the different frequencies allows distinction between vascular, neurological, and immunological thermoregulatory dysfunctions. This analysis, which can reveal the mechanism of the dysfunction, can be very useful in the diagnosis and staging of various disorders, ranging from diabetes mellitus and liver cirrhosis to breast cancer and malignant melanoma. From the engineering standpoint DAT requires highly stable imaging systems and effective display of the spatial distribution of TRFs to allow identification of thermoregulatory pathways and their dysfunction.
[Breast cancer screening process indicators in Mexico: a case study].
Uscanga-Sánchez, Santos; Torres-Mejía, Gabriela; Ángeles-Llerenas, Angélica; Domínguez-Malpica, Raúl; Lazcano-Ponce, Eduardo
2014-01-01
To identify, measure and compare the performance indicators of productivity, effective access and quality service for the early detection breast cancer program in Mexico. By means of a study case based on the 2011 Women Cancer Information System (SICAM), the indicators were measured and compared with the Mexican official standard NOM-041-SSA2-2011 and international standards. The analysis showed insufficient installed capacity (37%), low coverage in screening (15%), diagnostic evaluation (16%), biopsy (44%) and treatment (57%), and very low effectiveness in confirmed cases by the total number of screening mammograms performed (0.04%). There was no information available, from SICAM, to estimate the rest of the indicators proposed. Efficient health information systems are required in order to monitor indicators and generate performance observatories of screening programs.
Active Laplacian electrode for the data-acquisition system of EHG
NASA Astrophysics Data System (ADS)
Li, G.; Wang, Y.; Lin, L.; Jiang, W.; Wang, L. L.; C-Y Lu, Stephen; Besio, Walter G.
2005-01-01
EHG (electrohysterogram) is the recording of uterine electromyogram with external electrodes located on the abdomen of pregnant woman. Derived from the electrical activity generated at the muscle fiber lever, it provides complementary information from the muscle, and appears to be a very promising technique for clinical or physiologic investigation of uterine activity, compared with current monitoring which can't give us complementary phase information of uterine activity. In this article we have shown the disadvantages of the conventional electrodes for EHG data-acquisition system and put forward a new type of electrode that is called active Laplacian electrode. It integrates concentric rings electrode with a bioelectricity preamplifier and is capable of acquiring localized information. We can localise the EHG signals source more easily by using this new electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, T.; Brandt, C.; Calfee, J.
1994-03-01
The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementationmore » of a common information management strategy that benefits each program.« less
Body monitoring and imaging apparatus and method
McEwan, T.E.
1998-06-16
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator. 13 figs.
Body monitoring and imaging apparatus and method
McEwan, Thomas E.
1998-01-01
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator.
A Flight Expert System (FLES) For On-Board Fault Monitoring And Diagnosis
NASA Astrophysics Data System (ADS)
Ali, M.; Scharnhorst, D...; Ai, C. S.; Ferber, H. J.
1986-03-01
The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher work loads for the pilot and tend to induce a higher probability of errors. Therefore, we have developed an architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing and recovering from in-flight faults. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with the airplane status information during the diagnostic process. The simulator is based partly on the Lockheed Advanced Concept System (ACS), a future generation airplane, and partly on the Boeing 737, an existing airplane. A distinction between two types of faults, maladjustments and malfunctions, has led us to take two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to assess abnormal situations during airplane flight. This paper describes our reasons for handling malfunctions and maladjustments separately and the use of domain knowledge in the diagnosis of each.
A flight expert system (FLES) for on-board fault monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Ali, M.; Scharnhorst, D. A.; Ai, C. S.; Ferber, H. J.
1986-01-01
The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher work loads for the pilot and tend to induce a higher probability of errors. Therefore, an architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing and recovering from in-flight faults has been developed. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with the airplane status information during the diagnostic process. The simulator is based partly on the Lockheed Advanced Concept System (ACS), a future generation airplane, and partly on the Boeing 737, an existing airplane. A distinction between two types of faults, maladjustments and malfunctions, has led us to take two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to assess abnormal situations during airplane flight. This paper describes the reasons for handling malfunctions and maladjustments separately and the use of domain knowledge in the diagnosis of each.
Next generation information communication infrastructure and case studies for future power systems
NASA Astrophysics Data System (ADS)
Qiu, Bin
As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective is to shed the load in the limited area with minimum disturbance.
Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng
2017-08-09
Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.
An anesthesia information system for monitoring and record keeping during surgical anesthesia.
Klocke, H; Trispel, S; Rau, G; Hatzky, U; Daub, D
1986-10-01
We have developed an anesthesia information system (AIS) that supports the anesthesiologist in monitoring and recording during a surgical operation. In development of the system, emphasis was placed on providing an anesthesiologist-computer interface that can be adapted to typical situations during anesthesia and to individual user behavior. One main feature of this interface is the integration of the input and output of information. The only device for interaction between the anesthesiologist and the AIS is a touch-sensitive, high-resolution color display screen. The anesthesiologist enters information by touching virtual function keys displayed on the screen. A data window displays all data generated over time, such as automatically recorded vital signs, including blood pressure, heart rate, and rectal and esophageal temperatures, and manually entered variables, such as administered drugs, and ventilator settings. The information gathered by the AIS is presented on the cathode ray tube in several pages. A main distributor page gives an overall view of the content of every work page. A one-page record of the anesthesia is automatically plotted on a multicolor digital plotter during the operation. An example of the use of the AIS is presented from a field test of the system during which it was evaluated in the operating room without interfering with the ongoing operation. Medical staff who used the AIS imitated the anesthesiologist's recording and information search behavior but did not have responsibility for the conduct of the anesthetic.
Lahat, Ayelet; Lamm, Connie; Chronis-Tuscano, Andrea; Pine, Daniel S.; Henderson, Heather A.; Fox, Nathan A.
2014-01-01
Objective Behavioral inhibition (BI) is an early childhood temperament characterized by fearful responses to novelty and avoidance of social interactions. During adolescence, a subset of children with stable childhood BI develop social anxiety disorder and concurrently exhibit increased error monitoring. The current study examines whether increased error monitoring in seven-year-old behaviorally inhibited children prospectively predicts risk for symptoms of social phobia at age 9. Method Two hundred and ninety one children were characterized on BI at 24 and 36 months of age. Children were seen again at 7 years of age, where they performed a Flanker task, and event-related-potential (ERP) indices of response monitoring were generated. At age 9, self- and maternal-report of social phobia symptoms were obtained. Results Children high in BI, compared to those low in BI, displayed increased error monitoring at age 7, as indexed by larger (i.e., more negative) error-related negativity (ERN) amplitudes. Additionally, early BI was related to later childhood social phobia symptoms at age 9 among children with a large difference in amplitude between ERN and correct-response negativity (CRN) at age 7. Conclusions Heightened error monitoring predicts risk for later social phobia symptoms in children with high BI. Research assessing response monitoring in children with BI may refine our understanding of the mechanisms underlying risk for later anxiety disorders and inform prevention efforts. PMID:24655654
Blas, Erik; Ataguba, John E.; Huda, Tanvir M.; Bao, Giang Kim; Rasella, Davide; Gerecke, Megan R.
2016-01-01
Background Since the publication of the reports by the Commission on Social Determinants of Health (CSDH), many research papers have documented inequities, explaining causal pathways in order to inform policy and programmatic decision-making. At the international level, the sustainable development goals (SDGs) reflect an attempt to bring together these themes and the complexities involved in defining a comprehensive development framework. However, to date, much less has been done to address the monitoring challenges, that is, how data generation, analysis and use are to become routine tasks. Objective To test proposed indicators of social determinants of health (SDH), gender, equity, and human rights with respect to their relevance in tracking progress in universal health coverage and population health (level and distribution). Design In an attempt to explore these monitoring challenges, indicators covering a wide range of social determinants were tested in four country case studies (Bangladesh, Brazil, South Africa, and Vietnam) for their technical feasibility, reliability, and validity, and their communicability and usefulness to policy-makers. Twelve thematic domains with 20 core indicators covering different aspects of equity, human rights, gender, and SDH were tested through a review of data sources, descriptive analyses, key informant interviews, and focus group discussions. To test the communicability and usefulness of the domains, domain narratives that explained the causal pathways were presented to policy-makers, managers, the media, and civil society leaders. Results For most countries, monitoring is possible, as some data were available for most of the core indicators. However, a qualitative assessment showed that technical feasibility, reliability, and validity varied across indicators and countries. Producing understandable and useful information proved challenging, and particularly so in translating indicator definitions and data into meaningful lay and managerial narratives, and effectively communicating links to health and ways in which the information could improve decision-making. Conclusions This exercise revealed that for monitoring to produce reliable data collection, analysis, and discourse, it will need to be adapted to each national context and institutionalised into national systems. This will require that capacities and resources for this and subsequent communication of results are increased across countries for both national and international monitoring, including the successful implementation of the SDGs. PMID:26853897
A User Oriented Microcomputer and Monitor System.
1981-02-15
inhibit signal is generated by the Monitor to (1) prevent microcomputer bus timeout, and (2) suspend the micro- computer interval timers while the...PDPll is prevented until the user sets the BIT flag for the associated buffer memory. Completion of a buffer memory transfer generates monitor source...1553 NUX PIOU PRGRAMMED 10 IRECT MEMORY MONITOR 0I INTERAC JI LMEMOR COR POWER I J SUPPLIES 4 FIGURE 15. MICROCOMPUTER MAJOR AREAS 64 a uIu 1 ta 0 W o
Wildfire monitoring via the integration of remote sensing with innovative information technologies
NASA Astrophysics Data System (ADS)
Kontoes, C.; Papoutsis, I.; Michail, D.; Herekakis, Th.; Koubarakis, M.; Kyzirakos, K.; Karpathiotakis, M.; Nikolaou, C.; Sioutis, M.; Garbis, G.; Vassos, S.; Keramitsoglou, I.; Kersten, M.; Manegold, S.; Pirk, H.
2012-04-01
In the Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) volumes of Earth Observation images of different spectral and spatial resolutions are being processed on a systematic basis to derive thematic products that cover a wide spectrum of applications during and after wildfire crisis, from fire detection and fire-front propagation monitoring, to damage assessment in the inflicted areas. The processed satellite imagery is combined with auxiliary geo-information layers, including land use/land cover, administrative boundaries, road and rail network, points of interest, and meteorological data to generate and validate added-value fire-related products. The service portfolio has become available to institutional End Users with a mandate to act on natural disasters and that have activated Emergency Support Services at a European level in the framework of the operational GMES projects SAFER and LinkER. Towards the goal of delivering integrated services for fire monitoring and management, ISARS/NOA employs observational capacities which include the operation of MSG/SEVIRI and NOAA/AVHRR receiving stations, NOA's in-situ monitoring networks for capturing meteorological parameters to generate weather forecasts, and datasets originating from the European Space Agency and third party satellite operators. The qualified operational activity of ISARS/NOA in the domain of wildfires management is highly enhanced by the integration of state-of-the-art Information Technologies that have become available in the framework of the TELEIOS (EC/ICT) project. TELEIOS aims at the development of fully automatic processing chains reliant on a) the effective storing and management of the large amount of EO and GIS data, b) the post-processing refinement of the fire products using semantics, and c) the creation of thematic maps and added-value services. The first objective is achieved with the use of advanced Array Database technologies, such as MonetDB, to enable efficiency in accessing large archives of image data and metadata in a fully transparent way, without worrying for their format, size, and location, as well as efficiency in processing such data using state-of-the-art implementations of image processing algorithms expressed in a high-level Scientific Query Language (SciQL). The product refinement is realized through the application of update operations that incorporate human evidence and human logic, with semantic content extracted from thematic information coming from auxiliary geo-information layers and sources, for reducing considerably the number of false alarms in fire detection, and improving the credibility of the burnt area assessment. The third objective is approached via the combination of the derived fire-products with Linked Geospatial Data, structured accordingly and freely available in the web, using Semantic Web technologies. These technologies are built on top of a robust and modular computational environment, to facilitate several wildfire applications to run efficiently, such as real-time fire detection, fire-front propagation monitoring, rapid burnt area mapping, after crisis detailed burnt scar mapping, and time series analysis of burnt areas. The approach adopted allows ISARS/NOA to routinely serve requests from the end-user community, irrespective of the area of interest and its extent, the observation time period, or the data volume involved, granting the opportunity to combine innovative IT solutions with remote sensing techniques and algorithms for wildfire monitoring and management.
Pharmacovigilance in China: current situation, successes and challenges.
Zhang, Li; Wong, Lisa Y L; He, Ying; Wong, Ian C K
2014-10-01
With the integration of the global pharmaceutical economy and the gradual transformation of the healthcare insurance system in China, the legislative framework for a comprehensive regulatory system monitoring the whole process including drug development, manufacture, distribution and use has been established by the China Food and Drug Administration (CFDA) to ensure the safety and effectiveness of medication use. China has established a relatively comprehensive pharmacovigilance system covering regulation, organisation and technology from 1989 to 2014. As of 2013, one national centre, 34 provincial centres and more than 400 municipal centres for adverse drug reaction (ADR) monitoring were included in the four-level pharmacovigilance network (national, provincial, municipal and county) with more than 200,000 grassroot organisation users. The China Adverse Drug Reaction Monitoring System (CADRMS) is an online spontaneous reporting system which connects the four-level pharmacovigilance network. By 2013, CADRMS had received over 6.6 million ADR case reports. After integrating and analysing pharmacovigilance data, the National Centre for ADR Monitoring (NCADRM) publishes medication safety information by releasing ADR bulletins, National ADR Annual Reports and International Pharmacovigilance Newsletters. The NCADRM also routinely provides CADRMS data feedback to manufacturers. The CFDA implemented risk management through several approaches, including arranging 'manufacturer communication meetings', modification of medication package inserts, and restriction, suspension or withdrawal of marketing authorisations. Seamless information exchange with overseas regulatory authorities and organisations remains an area for improvement. Further development of the China pharmacovigilance system in terms of signal generation, post-marketing pharmacoepidemiology research and education is also needed.
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
Yang, Jie
2013-01-01
In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189
Brennan, Niall; Oelschlaeger, Allison; Cox, Christine; Tavenner, Marilyn
2014-07-01
As the largest single payer for health care in the United States, the Centers for Medicare and Medicaid Services (CMS) generates enormous amounts of data. Historically, CMS has faced technological challenges in storing, analyzing, and disseminating this information because of its volume and privacy concerns. However, rapid progress in the fields of data architecture, storage, and analysis--the big-data revolution--over the past several years has given CMS the capabilities to use data in new and innovative ways. We describe the different types of CMS data being used both internally and externally, and we highlight a selection of innovative ways in which big-data techniques are being used to generate actionable information from CMS data more effectively. These include the use of real-time analytics for program monitoring and detecting fraud and abuse and the increased provision of data to providers, researchers, beneficiaries, and other stakeholders. Project HOPE—The People-to-People Health Foundation, Inc.
Supplemental Information for New York State Standardized Interconnection Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Michael; Narang, David J.; Mather, Barry A.
This document is intended to aid in the understanding and application of the New York State Standardized Interconnection Requirements (SIR) and Application Process for New Distributed Generators 5 MW or Less Connected in Parallel with Utility Distribution Systems, and it aims to provide supplemental information and discussion on selected topics relevant to the SIR. This guide focuses on technical issues that have to date resulted in the majority of utility findings within the context of interconnecting photovoltaic (PV) inverters. This guide provides background on the overall issue and related mitigation measures for selected topics, including substation backfeeding, anti-islanding and considerationsmore » for monitoring and controlling distributed energy resources (DER).« less
Real-time new satellite product demonstration from microwave sensors and GOES-16 at NRL TC web
NASA Astrophysics Data System (ADS)
Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.
2017-12-01
The Naval Research Laboratory (NRL) Tropical Cyclone (TC) satellite webpage (https://www.nrlmry.navy.mil/TC.html) provides demonstration analyses of storm imagery to benefit operational TC forecast centers around the world. With the availability of new spectral information provided by GOES-16 satellite data and recent research into improved visualization methods of microwave data, experimental imagery was operationally tested to visualize the structural changes of TCs during the 2017 hurricane season. This presentation provides an introduction into these innovative satellite analysis methods, NRL's next generation satellite analysis system (the Geolocated Information Processing System, GeoIPSTM), and demonstration the added value of additional spectral frequencies when monitoring storms in near-realtime.
Method and system for monitoring and displaying engine performance parameters
NASA Technical Reports Server (NTRS)
Abbott, Terence S. (Inventor); Person, Lee H., Jr. (Inventor)
1988-01-01
The invention is believed a major improvement that will have a broad application in governmental and commercial aviation. It provides a dynamic method and system for monitoring and simultaneously displaying in easily scanned form the available, predicted, and actual thrust of a jet aircraft engine under actual operating conditions. The available and predicted thrusts are based on the performance of a functional model of the aircraft engine under the same operating conditions. Other critical performance parameters of the aircraft engine and functional model are generated and compared, the differences in value being simultaneously displayed in conjunction with the displayed thrust values. Thus, the displayed information permits the pilot to make power adjustments directly while keeping him aware of total performance at a glance of a single display panel.
NASA Astrophysics Data System (ADS)
Truckenbrodt, Sina C.; Gómez-Dans, José; Stelmaszczuk-Górska, Martyna A.; Chernetskiy, Maxim; Schmullius, Christiane C.
2017-04-01
Throughout the past decades various satellite sensors have been launched that record reflectance in the optical domain and facilitate comprehensive monitoring of the vegetation-covered land surface from space. The interaction of photons with the canopy, leaves and soil that determines the spectrum of reflected sunlight can be simulated with radiative transfer models (RTMs). The inversion of RTMs permits the derivation of state variables such as leaf area index (LAI) and leaf chlorophyll content from top-of-canopy reflectance. Space-borne data are, however, insufficient for an unambiguous derivation of state variables and additional constraints are required to resolve this ill-posed problem. Data assimilation techniques permit the conflation of various information with due allowance for associated uncertainties. The Earth Observation Land Data Assimilation System (EO-LDAS) integrates RTMs into a dynamic process model that describes the temporal evolution of state variables. In addition, prior information is included to further constrain the inversion and enhance the state variable derivation. In previous studies on EO-LDAS, prior information was represented by temporally constant values for all investigated state variables, while information about their phenological evolution was neglected. Here, we examine to what extent the implementation of prior information reflecting the phenological variability improves the performance of EO-LDAS with respect to the monitoring of crops on the agricultural Gebesee test site (Central Germany). Various routines for the generation of prior information are tested. This involves the usage of data on state variables that was acquired in previous years as well as the application of phenological models. The performance of EO-LDAS with the newly implemented prior information is tested based on medium resolution satellite imagery (e.g., RapidEye REIS, Sentinel-2 MSI, Landsat-7 ETM+ and Landsat-8 OLI). The predicted state variables are validated against in situ data from the Gebesee test site that were acquired with a weekly to fortnightly resolution throughout the growing seasons of 2010, 2013, 2014 and 2016. Furthermore, the results are compared with the outcome of using constant values as prior information. In this presentation, the EO-LDAS scheme and results obtained from different prior information are presented.
Morris, J A
1999-08-01
A model is proposed in which information from the environment is analysed by complex biological decision-making systems which are highly redundant. A correct response is intelligent behaviour which preserves health; incorrect responses lead to disease. Mutations in genes which code for the redundant systems will accumulate in the genome and impair decision-making. The number of mutant genes will depend upon a balance between the new mutation rate per generation and systems of elimination based on synergistic interaction in redundant systems. This leads to a polygenic pattern of inheritance for intelligence and the common diseases. The model also gives a simple explanation for some of the hitherto puzzling aspects of work on the genetic basis of intelligence including the recorded rise in IQ this century. There is a prediction that health, intelligence and socio-economic position will be correlated generating a health differential in the social hierarchy. Furthermore, highly competitive societies will place those least able to cope in the harshest environment and this will impair health overall. The model points to a need for population monitoring of somatic mutation in order to preserve the health and intelligence of future generations.
An Automated Web Diary System for TeleHomeCare Patient Monitoring
Ganzinger, Matthias; Demiris, George; Finkelstein, Stanley M.; Speedie, Stuart; Lundgren, Jan Marie
2001-01-01
The TeleHomeCare project monitors home care patients via the Internet. Each patient has a personalized homepage with an electronic diary for collecting the monitoring data with HTML forms. The web pages are generated dynamically using PHP. All data are stored in a MySQL database. Data are checked immediately by the system; if a value exceeds a predefined limit an alarm message is generated and sent automatically to the patient's case manager. Weekly graphical reports (PDF format) are also generated and sent by email to the same destination.
Expanding Scales and Applications for 2D Spatial Mapping of CO2 using GreenLITE
NASA Astrophysics Data System (ADS)
Erxleben, W. H.; Dobler, J. T.; Zaccheo, T. S.; Blume, N.; Braun, M.
2015-12-01
The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system is a new measurement approach originally developed under a cooperative agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL), Atmospheric Environmental Sciences (AER) and Exelis Inc. (now part of Harris Corp.). The original system design provides 24/7 monitoring of Ground Carbon Storage (GCS) sites, in order to help ensure worker safety and verify 99% containment. The first generation was designed to cover up to 1km2 area, and employs the Exelis Continuous Wave (CW) Intensity Modulated (IM) approach to measure differential transmission. A pair of scanning transceivers was built and combined with a series of retro reflectors, and a local weather station to provide the information required for producing estimates of the atmospheric CO2 concentration over a number of overlapping lines-of-site. The information from the transceivers, and weather station, are sent remotely to a web-based processing and storage tool, which in-turn uses the data to generate estimates of the 2D spatial distribution over the area of coverage and disseminate that information near real-time via a secure web interface. Recently, in 2015, Exelis and AER have invested in the expansion of the GreenLITE transceiver system to 5 km range, enabling areas up to 25 km2 to be evaluated with this technology, and opening new possibilities for applications such as urban scale monitoring. The 5 km system is being tested in conjunction with the National Institute of Standards and Technology at the Boulder Atmospheric Observatory in August of this year. This talk will review the initial GreenLITE system, testing and deployment of that system, and the more recent development, expansion and testing of the 5 km system.
Apparatus and method for data communication in an energy distribution network
Hussain, Mohsin; LaPorte, Brock; Uebel, Udo; Zia, Aftab
2014-07-08
A system for communicating information on an energy distribution network is disclosed. In one embodiment, the system includes a local supervisor on a communication network, wherein the local supervisor can collect data from one or more energy generation/monitoring devices. The system also includes a command center on the communication network, wherein the command center can generate one or more commands for controlling the one or more energy generation devices. The local supervisor can periodically transmit a data signal indicative of the data to the command center via a first channel of the communication network at a first interval. The local supervisor can also periodically transmit a request for a command to the command center via a second channel of the communication network at a second interval shorter than the first interval. This channel configuration provides effective data communication without a significant increase in the use of network resources.
NASA Astrophysics Data System (ADS)
Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Fielding, E. J.; Agram, P.; Manipon, G.; Stough, T. M.; Simons, M.; Rosen, P. A.; Wilson, B. D.; Poland, M. P.; Cervelli, P. F.; Cruz, J.
2013-12-01
Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR) and Continuous Global Positioning System (CGPS) are now important elements in our toolset for monitoring earthquake-generating faults, volcanic eruptions, hurricane damage, landslides, reservoir subsidence, and other natural and man-made hazards. Geodetic imaging's unique ability to capture surface deformation with high spatial and temporal resolution has revolutionized both earthquake science and volcanology. Continuous monitoring of surface deformation and surface change before, during, and after natural hazards improves decision-making from better forecasts, increased situational awareness, and more informed recovery. However, analyses of InSAR and GPS data sets are currently handcrafted following events and are not generated rapidly and reliably enough for use in operational response to natural disasters. Additionally, the sheer data volumes needed to handle a continuous stream of InSAR data sets also presents a bottleneck. It has been estimated that continuous processing of InSAR coverage of California alone over 3-years would reach PB-scale data volumes. Our Advanced Rapid Imaging and Analysis for Monitoring Hazards (ARIA-MH) science data system enables both science and decision-making communities to monitor areas of interest with derived geodetic data products via seamless data preparation, processing, discovery, and access. We will present our findings on the use of hybrid-cloud computing to improve the timely processing and delivery of geodetic data products, integrating event notifications from USGS to improve the timely processing for response, as well as providing browse results for quick looks with other tools for integrative analysis.
RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression
Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick
2013-01-01
Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, −206 and −1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications. PMID:24013565
RILES, a novel method for temporal analysis of the in vivo regulation of miRNA expression.
Ezzine, Safia; Vassaux, Georges; Pitard, Bruno; Barteau, Benoit; Malinge, Jean-Marc; Midoux, Patrick; Pichon, Chantal; Baril, Patrick
2013-11-01
Novel methods are required to investigate the complexity of microRNA (miRNA) biology and particularly their dynamic regulation under physiopathological conditions. Herein, a novel plasmid-based RNAi-Inducible Luciferase Expression System (RILES) was engineered to monitor the activity of endogenous RNAi machinery. When RILES is transfected in a target cell, the miRNA of interest suppresses the expression of a transcriptional repressor and consequently switch-ON the expression of the luciferase reporter gene. Hence, miRNA expression in cells is signed by the emission of bioluminescence signals that can be monitored using standard bioluminescence equipment. We validated this approach by monitoring in mice the expression of myomiRs-133, -206 and -1 in skeletal muscles and miRNA-122 in liver. Bioluminescence experiments demonstrated robust qualitative and quantitative data that correlate with the miRNA expression pattern detected by quantitative RT-PCR (qPCR). We further demonstrated that the regulation of miRNA-206 expression during the development of muscular atrophy is individual-dependent, time-regulated and more complex than the information generated by qPCR. As RILES is simple and versatile, we believe that this methodology will contribute to a better understanding of miRNA biology and could serve as a rationale for the development of a novel generation of regulatable gene expression systems with potential therapeutic applications.
NASA Astrophysics Data System (ADS)
Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Durbin, P. B.
2015-12-01
Near real time (NRT) SO2 and aerosol index (AI) imagery from Aura's Ozone Monitoring Instrument (OMI) has proven invaluable in mitigating the risk posed to air traffic by SO2 and ash clouds from volcanic eruptions. The OMI products, generated as part of NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) NRT system and available through LANCE and both NOAA's NESDIS and ESA's Support to Aviation Control Service (SACS) portals, are used to monitor the current location of volcanic clouds and to provide input into Volcanic Ash (VA) advisory forecasts. NRT products have recently been developed using data from the Ozone Mapping and Profiler Suite onboard the Suomi NPP platform; they are currently being made available through the SACS portal and will shortly be incorporated into the LANCE NRT system. We will show examples of the use of OMPS NRT SO2 and AI imagery to monitor recent volcanic eruption events. We will also demonstrate the usefulness of OMPS AI imagery to detect and track dust storms and smoke from fires, and how this information can be used to forecast their impact on air quality in areas far removed from their source. Finally, we will show SO2 and AI imagery generated from our OMPS Direct Broadcast data to highlight the capability of our real time system.
Source Monitoring in Alzheimer's Disease
ERIC Educational Resources Information Center
El Haj, Mohamad; Fasotti, Luciano; Allain, Philippe
2012-01-01
Source monitoring is the process of making judgments about the origin of memories. There are three categories of source monitoring: reality monitoring (discrimination between self- versus other-generated sources), external monitoring (discrimination between several external sources), and internal monitoring (discrimination between two types of…
NASA Technical Reports Server (NTRS)
1980-01-01
Twenty-four functional requirements were prepared under six categories and serve to indicate how to integrate dispersed storage generation (DSG) systems with the distribution and other portions of the electric utility system. Results indicate that there are no fundamental technical obstacles to prevent the connection of dispersed storage and generation to the distribution system. However, a communication system of some sophistication is required to integrate the distribution system and the dispersed generation sources for effective control. The large-size span of generators from 10 KW to 30 MW means that a variety of remote monitoring and control may be required. Increased effort is required to develop demonstration equipment to perform the DSG monitoring and control functions and to acquire experience with this equipment in the utility distribution environment.
NASA Astrophysics Data System (ADS)
Wurtzebach, Z.
2016-12-01
In 2012, the United States Forest Service promulgated new rules to guide Forest planning efforts in accordance with the National Forest Management Act (NFMA). One important component of the 2012 rule is a requirement for Regionally coordinated cross-boundary "broad scale" monitoring strategies that are designed to inform and facilitate Forest-level adaptive management and planning. This presentation will examine institutional challenges and opportunites for developing effective broad scale monitoring strategies identified in 90 interviews with USFS staff and partner organizations, and collaborative workshops held in Colorado, Wyoming, Arizona, and New Mexico. Internal barriers to development include funding and human resource constraints, organizational culture, problematic incentives and accountability structures, data management issues, and administrative barriers to collaboration. However, we also identify several opportunities for leveraging interagency collaboration, facilitating multi-level coordination, generating efficiencies in data collection and analysis, and improving strategies for reporting and communication to Forest level decision-makers and relevant stakeholders.
NASA Astrophysics Data System (ADS)
Deckard, Michael; Ratib, Osman M.; Rubino, Gregory
2002-05-01
Our project was to design and implement a ceiling-mounted multi monitor display unit for use in a high-field MRI surgical suite. The system is designed to simultaneously display images/data from four different digital and/or analog sources with: minimal interference from the adjacent high magnetic field, minimal signal-to-noise/artifact contribution to the MRI images and compliance with codes and regulations for the sterile neuro-surgical environment. Provisions were also made to accommodate the importing and exporting of video information via PACS and remote processing/display for clinical and education uses. Commercial fiber optic receivers/transmitters were implemented along with supporting video processing and distribution equipment to solve the video communication problem. A new generation of high-resolution color flat panel displays was selected for the project. A custom-made monitor mount and in-suite electronics enclosure was designed and constructed at UCLA. Difficulties with implementing an isolated AC power system are discussed and a work-around solution presented.
NASA Astrophysics Data System (ADS)
Lowry, B. W.; Schrock, G.; Werner, C. L.; Zhou, W.; Pugh, N.
2015-12-01
Displacement monitoring using Terrestrial Radar Interferometry (TRI) over an urban environment was conducted to monitor for potential movement of buildings, roadways, and urban infrastructure in Seattle, Washington for a 6 week deployment in March and April of 2015. A Gamma Portable Radar Interferometer was deployed on a the lower roof of the Smith Tower at an elevation of about 100 m, overlooking the historical district of Pioneer Square. Radar monitoring in this context provides wide area coverage, sub millimeter precision, near real time alarming, and reflectorless measurement. Image georectification was established using a previously collected airborne lidar scan which was used to map the radar image onto a 3D 1st return elevation model of downtown Seattle. Platform stability concerns were monitored using high rate GPS and a 3-axis accelerometer to monitor for building movement or platform instability. Displacements were imaged at 2 minute intervals and stacked into 2 hour averages to aid in noise characterization. Changes in coherence are characterized based on diurnal fluctuations of temperature, cultural noise, and target continuity. These informed atmospheric and image selection filters for optimizing interferogram generation and displacement measurement quality control. An urban monitoring workflow was established using point target interferometric analysis to create a monitoring set of approximately 100,000 stable monitoring points measured at 2 minute to 3 hour intervals over the 6 week deployment. Radar displacement measurements were verified using ongoing survey and GPS monitoring program and with corner reflector tests to verify look angle corrections to settlement motion. Insights from this monitoring program can be used to design TRI monitoring programs for underground tunneling, urban subsidence, and earthquake damage assessment applications.
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus
2017-04-01
We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse-resolution satellite products of air quality with the help of high-resolution model information. This will add value to existing earth observation products of air quality by bringing them to spatial scales that are more in line with what is generally required for studying urban and regional scale air quality. In a fifth activity, we implement robust and independent validation schemes for evaluating the quality of the generated products. Finally, in a sixth activity the consortium is working towards a pre-operational system for improved PM forecasts using observational (in situ and satellite) data assimilation. SAMIRA aims to maximize project benefits by liaison with national and regional environmental protection agencies and health institutions, as well as related ESA and European initiatives such as the Copernicus Atmosphere Monitoring Service (CAMS).
Water Quality Assessment of Ayeyarwady River in Myanmar
NASA Astrophysics Data System (ADS)
Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick
2015-04-01
Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which will take place during the low water season of March, 2015. The water quality information available for the Ayeyarwady as well as the baseline sampling of March 2015 will be presented. Furthermore, the specific scientific ideas but also organisational challenges for the future surface water quality monitoring network of the Ayeyarwady will be discussed.
NASA Astrophysics Data System (ADS)
Sabeur, Z. A.; Denis, H.; Nativi, S.
2012-04-01
The phenomenal advances in information and communication technologies over the last decade have led to offering unprecedented connectivity with real potentials for "Smart living" between large segments of human populations around the world. In particular, Voluntary Groups(VGs) and individuals with interest in monitoring the state of their local environment can be connected through the internet and collaboratively generate important localised environmental observations. These could be considered as the Community Observatories(CO) of the Future Internet(FI). However, a set of FI enablers are needed to be deployed for these communities to become effective COs in the Future Internet. For example, these communities will require access to services for the intelligent processing of heterogeneous data and capture of advancend situation awarness about the environment. This important enablement will really unlock the communities true potential for participating in localised monitoring of the environment in addition to their contribution in the creation of business entreprise. Among the eight Usage Areas(UA) projects of the FP7 FI-PPP programme, the ENVIROFI Integrated Project focuses on the specifications of the Future Internet enablers of the Environment UA. The specifications are developed under multiple environmental domains in context of users needs for the development of mash-up applications in the Future Internet. It will enable users access to real-time, on-demand fused information with advanced situation awareness about the environment at localised scales. The mash-up applications shall get access to rich spatio-temporal information from structured fusion services which aggregate COs information with existing environmental monitoring stations data, established by research organisations and private entreprise. These applications are being developed in ENVIROFI for the atmospheric, marine and biodiversity domains, together with a potential to be extended to other domains and scenarios concerning smart and safe living in the Future Internet.
Component Repair Times Obtained from MSPI Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eide, Steven A.; Cadwallader, Lee
Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performancemore » Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a “white” (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plant’s insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only unplanned outages associated with failures of the component of interest, and only unplanned outages associated with PRA failures of the component of interest. The paper will describe how component repair times can be generated from each set and which approach is most applicable. Repair time information will be summarized for MSPI pumps and diesel generators using data over 2003 – 2007. Also, trend information over 2003 – 2012 will be presented to indicate whether the 2003 – 2007 repair time information is still considered applicable. For certain types of pumps, mean repair times are significantly higher than the typically assumed 24 h duration.« less
Ambient Monitoring Technology Information Center (AMTIC)
This site contains information on ambient air quality monitoring programs, monitoring methods, quality assurance and control procedures, and federal regulations related to ambient air quality monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loparo, Kenneth; Kolacinski, Richard; Threeanaew, Wanchat
A central goal of the work was to enable both the extraction of all relevant information from sensor data, and the application of information gained from appropriate processing and fusion at the system level to operational control and decision-making at various levels of the control hierarchy through: 1. Exploiting the deep connection between information theory and the thermodynamic formalism, 2. Deployment using distributed intelligent agents with testing and validation in a hardware-in-the loop simulation environment. Enterprise architectures are the organizing logic for key business processes and IT infrastructure and, while the generality of current definitions provides sufficient flexibility, the currentmore » architecture frameworks do not inherently provide the appropriate structure. Of particular concern is that existing architecture frameworks often do not make a distinction between ``data'' and ``information.'' This work defines an enterprise architecture for health and condition monitoring of power plant equipment and further provides the appropriate foundation for addressing shortcomings in current architecture definition frameworks through the discovery of the information connectivity between the elements of a power generation plant. That is, to identify the correlative structure between available observations streams using informational measures. The principle focus here is on the implementation and testing of an emergent, agent-based, algorithm based on the foraging behavior of ants for eliciting this structure and on measures for characterizing differences between communication topologies. The elicitation algorithms are applied to data streams produced by a detailed numerical simulation of Alstom’s 1000 MW ultra-super-critical boiler and steam plant. The elicitation algorithm and topology characterization can be based on different informational metrics for detecting connectivity, e.g. mutual information and linear correlation.« less
Study on the multi-sensors monitoring and information fusion technology of dangerous cargo container
NASA Astrophysics Data System (ADS)
Xu, Shibo; Zhang, Shuhui; Cao, Wensheng
2017-10-01
In this paper, monitoring system of dangerous cargo container based on multi-sensors is presented. In order to improve monitoring accuracy, multi-sensors will be applied inside of dangerous cargo container. Multi-sensors information fusion solution of monitoring dangerous cargo container is put forward, and information pre-processing, the fusion algorithm of homogenous sensors and information fusion based on BP neural network are illustrated, applying multi-sensors in the field of container monitoring has some novelty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal
The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned bymore » Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.« less
Allan, Pamela; Bellamy, Luke J; Nordon, Alison; Littlejohn, David; Andrews, John; Dallin, Paul
2013-03-25
A 785nm diode laser and probe with a 6mm spot size were used to obtain spectra of stationary powders and powders mixing at 50rpm in a high shear convective blender. Two methods of assessing the effect of particle characteristics on the Raman sampling depth for microcrystalline cellulose (Avicel), aspirin or sodium nitrate were compared: (i) the information depth, based on the diminishing Raman signal of TiO(2) in a reference plate as the depth of powder prior to the plate was increased, and (ii) the depth at which a sample became infinitely thick, based on the depth of powder at which the Raman signal of the compound became constant. The particle size, shape, density and/or light absorption capability of the compounds were shown to affect the "information" and "infinitely thick" depths of individual compounds. However, when different sized fractions of aspirin were added to Avicel as the main component, the depth values of aspirin were the same and matched that of the Avicel: 1.7mm for the "information" depth and 3.5mm for the "infinitely thick" depth. This latter value was considered to be the minimum Raman sampling depth when monitoring the addition of aspirin to Avicel in the blender. Mixing profiles for aspirin were obtained non-invasively through the glass wall of the vessel and could be used to assess how the aspirin blended into the main component, identify the end point of the mixing process (which varied with the particle size of the aspirin), and determine the concentration of aspirin in real time. The Raman procedure was compared to two other non-invasive monitoring techniques, near infrared (NIR) spectrometry and broadband acoustic emission spectrometry. The features of the mixing profiles generated by the three techniques were similar for addition of aspirin to Avicel. Although Raman was less sensitive than NIR spectrometry, Raman allowed compound specific mixing profiles to be generated by studying the mixing behaviour of an aspirin-aspartame-Avicel mixture. Copyright © 2013 Elsevier B.V. All rights reserved.
The record of iceberg roll generated waves from sediments and seismics
NASA Astrophysics Data System (ADS)
Rosser, N. J.; Szczucinski, W.; Strzelecki, M.; Long, A. J.; Norman, E. C.; Dunning, S.; Drewniak, M.
2013-12-01
Iceberg-roll tsunamis in coastal settings have been observed to generate significant local waves, that hold potential to be recorded in coastal depositional records. Capturing the past magnitude and frequency of such events remains challenging, hindered by a lack of a good understanding of the nature, recurrence and scale of iceberg rolls, and more specifically those rolls that generate waves. Here we consider the sedimentary evidence for iceberg rolls in West Central Greenland, based upon survey of depositional environments in a range of open and confined coastal environments. We examine both an open 80 km fjord setting, and a series of confined ice-marginal beaches. We combine a detailed interpretation of sediment deposits from shore-normal transects with wider-scale high-resolution terrestrial laser scanning of sediments. Our sites - Vaigat, which separates Disko Island from the Nussuaq Peninsular, and the northern shore of Icefjord - both have a recent history of tsunamis, triggered variously by large rock avalanches, landslides and iceberg rolls. Icebergs in Vaigat and Icefjord are observed to undergo frequent failure and roll, generating - where circumstances permit - nearshore waves of meter-scale. To obtain a more detailed understanding of the likely recurrence of such iceberg roll waves and to consider their influence upon the preserved sedimentary record, we undertook an intensive 2-month monitoring campaign during sea-ice free conditions in summer 2013 to determine the patterns in the location, magnitude, frequency and timing of iceberg roll waves. Innovatively, using microseismic monitoring combined with time-lapse photography and weather monitoring, we derive a first-order model of the occurrence of iceberg roll waves. We then use this to inform our interpretation of deposits in these two environments, and consider the presence and absence of records of iceberg roll deposits in such settings. The study was funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553.
Kurhanewicz, John; Vigneron, Daniel B; Brindle, Kevin; Chekmenev, Eduard Y; Comment, Arnaud; Cunningham, Charles H; DeBerardinis, Ralph J; Green, Gary G; Leach, Martin O; Rajan, Sunder S; Rizi, Rahim R; Ross, Brian D; Warren, Warren S; Malloy, Craig R
2011-01-01
A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as 13C or 15N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism—poor sensitivity—while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care. PMID:21403835
NASA Astrophysics Data System (ADS)
Jayet, Baptiste; Ahmad, Junaid; Taylor, Shelley L.; Hill, Philip J.; Dehghani, Hamid; Morgan, Stephen P.
2017-03-01
Bioluminescence imaging (BLI) is a commonly used imaging modality in biology to study cancer in vivo in small animals. Images are generated using a camera to map the optical fluence emerging from the studied animal, then a numerical reconstruction algorithm is used to locate the sources and estimate their sizes. However, due to the strong light scattering properties of biological tissues, the resolution is very limited (around a few millimetres). Therefore obtaining accurate information about the pathology is complicated. We propose a combined ultrasound/optics approach to improve accuracy of these techniques. In addition to the BLI data, an ultrasound probe driven by a scanner is used for two main objectives. First, to obtain a pure acoustic image, which provides structural information of the sample. And second, to alter the light emission by the bioluminescent sources embedded inside the sample, which is monitored using a high speed optical detector (e.g. photomultiplier tube). We will show that this last measurement, used in conjunction with the ultrasound data, can provide accurate localisation of the bioluminescent sources. This can be used as a priori information by the numerical reconstruction algorithm, greatly increasing the accuracy of the BLI image reconstruction as compared to the image generated using only BLI data.
Choi, Qute; Kim, Ji-Eun; Hyun, Jungwon; Han, Kyou-Sup; Kim, Hyun Kyung
2013-07-01
The effects of warfarin are measured with the international normalized ratio (INR). However, the thrombin generation assay (TGA) may offer more information about global coagulation. We analyzed the monitoring performance of the TGA and INR and investigated the impact of procoagulants (fibrinogen, factor (F)II, FVII, FIX, and FX) and anticoagulants (proteins C, S, and Z) on them. The TGA was performed on a calibrated automated thrombogram, producing lag time, endogenous thrombin potential (ETP), and peak thrombin in 239 patients treated with warfarin. Pro- and anticoagulant levels were also measured. The INR was significantly and inversely correlated with ETP. The therapeutic range of ETP comparable to an INR range of 2.0-3.0 was 290.1-494.6. ETP showed comparable performance to the INR as a warfarin-monitoring parameter with respect to clinical complication rate. The median levels of FII, FVII, FIX, and FX and proteins C and Z tended to decrease gradually with increasing anticoagulation intensity according to the INR or ETP. Of note, protein Z levels decreased dramatically with increasing anticoagulation status. INRs were significantly determined by FII, FVII, and protein Z. ETP was significantly dependent on FVII, and proteins C and Z concentration. Protein Z significantly reduced the total amount of thrombin generation and prolonged PT value in vitro. The INR and ETP exhibit similar efficacy for warfarin monitoring according to the clinical complication rate. Protein Z is considered to be a significant determinant of INR and ETP in patients on warfarin therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bellazzi, Riccardo; Arcelloni, Marco; Ferrari, Pietro; Decata, Pasquale; Hernando, M Elena; García, Angel; Gazzaruso, Carmine; Gómez, Enrique J; Larizza, Cristiana; Fratino, Pietro; Stefanelli, Mario
2004-10-01
The junction of telemedicine home monitoring with multifaceted disease management programs seems nowadays a promising direction to combine the need for an intensive approach to deal with diabetes and the pressure to contain the costs of the interventions. Several projects in the European Union and the United States are implementing information technology-based services for diabetes management using a comprehensive approach. Within these systems, the role of tools for data analysis and automatic reminder generation seems crucial to deal with the information overload that may result from large home monitoring programs. The objective of this study was to describe the automatic reminder generation system and the summary indicators used in a clinical center within the telemedicine project M2DM, funded by the European Commission, and to show their usage during a 7-month on-field testing period. M2DM is a multi-access service for management of patients with diabetes. The basic functionality of the technical service includes a Web-based electronic medical record and messaging system, a computer telephony integration service, a smart-modem located at home, and a set of specialized software modules for automated data analysis. The information flow is regulated by a software scheduler, called the Organizer, that, on the basis of the knowledge on the health care organization, is able to automatically send e-mails and alerts notifications as well as to commit activities to software agents, such as data analysis. Thanks to this system, it was possible to define an automatic reminder system, which relies on a data analysis tool and on a number of technologies for communication. Within the M2DM system, we have also defined and implemented a number of indexes able to summarize the patients' day-by-day metabolic control. In particular, we have defined the global risk index (GRI) of developing microangiopathic complications. The system for generating automatic alarms and reminders coupled with the indexes for evaluating the patients' metabolic control has been used for 7 months at the Fondazione Salvatore Maugeri (FSM) in Pavia, Italy. Twenty-two patients (43 +/- 16 years old, 12 men and 10 women) have been involved; six dropped out from the study. The average number of monthly automatic messages was 29.44 +/- 9.83, i.e., about 1.8 messages per patient per month. The number of monthly alarm reminders generated by the system was 16.44 +/- 4.39, so that the number of alarms per patient was about 1. The number of messages sent by patients and physicians during the project was about 13 per month. The GRI analysis shows, during the last trimester, a slight improvement of the performance of the FSM clinic, with a decrease in the percentage of badly controlled values from 33% to 27%. Finally, we found the presence of a linear increasing correlation between the mean GRI values and the number of alarms generated by the system. A telemedicine system may incorporate features that make it a suitable technological backbone for implementing a disease management program. The availability of data analysis tools, automated messaging system, and summary indicators of the effectiveness of the health care program may help in defining efficient clinical interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Physical device safety is typically implemented locally using embedded controllers, while operations safety is primarily performed in control centers. Safe operations can be enhanced by correct design of device-level control algorithms, and protocols, procedures and operator training at the control-room level, but all can fail. Moreover, these elements exchange data and issue commands via vulnerable communication layers. In order to secure these gaps and enhance operational safety, we believe monitoring of command sequences must be combined with an awareness of physical device limitations and automata models that capture safety mechanisms. One way of doing this is by leveraging specification-based intrusionmore » detection to monitor for physical constraint violations. The method can also verify that physical infrastructure state is consistent with monitoring information and control commands exchanged between field devices and control centers. This additional security layer enhances protection from both outsider attacks and insider mistakes. We implemented specification-based SCADA command analyzers using physical constraint algorithms directly in the Bro framework and Broccoli APIs for three separate scenarios: a water heater, an automated distribution system, and an over-current protection scheme. To accomplish this, we added low-level analyzers capable of examining control system-specific protocol packets for both Modbus TCP and DNP3, and also higher-level analyzers able to interpret device command and data streams within the context of each device's physical capabilities and present operational state. Thus the software that we are making available includes the Bro/Broccoli scripts for these three scenarios, as well as simulators, written in C, of those scenarios that generate sample traffic that is monitored by the Bro/Broccoli scripts. In addition, we have also implemented systems to directly pull cyber-physical information from the OSIsoft PI historian system. We have included the Python scripts used to perform that monitoring.« less
Autonomous Multi-sensor Coordination: The Science Goal Monitor
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha; Jung, John; Geiger, Jenny; Grosvenor, Sandy
2004-01-01
Next-generation science and exploration systems will employ new observation strategies that will use multiple sensors in a dynamic environment to provide high quality monitoring, self-consistent analyses and informed decision making. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing of earth phenomenon. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe the dynamic phenomena. The SGM system enables users to specify events of interest and how to react when an event is detected. The system monitors streams of data to identify occurrences of the key events previously specified by the scientist/user. When an event occurs, the system autonomously coordinates the execution of the users desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems Aqua/Terra spacecrafts MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM is being used to investigate forest fires, floods and volcanic eruptions. We are now identifying new earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.
An Information Architect's View of Earth Observations for Disaster Risk Management
NASA Astrophysics Data System (ADS)
Moe, K.; Evans, J. D.; Cappelaere, P. G.; Frye, S. W.; Mandl, D.; Dobbs, K. E.
2014-12-01
Satellite observations play a significant role in supporting disaster response and risk management, however data complexity is a barrier to broader use especially by the public. In December 2013 the Committee on Earth Observation Satellites Working Group on Information Systems and Services documented a high-level reference model for the use of Earth observation satellites and associated products to support disaster risk management within the Global Earth Observation System of Systems context. The enterprise architecture identified the important role of user access to all key functions supporting situational awareness and decision-making. This paper focuses on the need to develop actionable information products from these Earth observations to simplify the discovery, access and use of tailored products. To this end, our team has developed an Open GeoSocial API proof-of-concept for GEOSS. We envision public access to mobile apps available on smart phones using common browsers where users can set up a profile and specify a region of interest for monitoring events such as floods and landslides. Information about susceptibility and weather forecasts about flood risks can be accessed. Users can generate geo-located information and photos of local events, and these can be shared on social media. The information architecture can address usability challenges to transform sensor data into actionable information, based on the terminology of the emergency management community responsible for informing the public. This paper describes the approach to collecting relevant material from the disasters and risk management community to address the end user needs for information. The resulting information architecture addresses the structural design of the shared information in the disasters and risk management enterprise. Key challenges are organizing and labeling information to support both online user communities and machine-to-machine processing for automated product generation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
...] Notice of Request for Approval of an Information Collection; National Animal Health Monitoring System... to support the National Animal Health Monitoring System Sheep 2011 Study. DATES: We will consider all... Coordinator, at (301) 851-2908. SUPPLEMENTARY INFORMATION: Title: National Animal Health Monitoring System...
A low-cost wireless system for autonomous generation of road safety alerts
NASA Astrophysics Data System (ADS)
Banks, B.; Harms, T.; Sedigh Sarvestani, S.; Bastianini, F.
2009-03-01
This paper describes an autonomous wireless system that generates road safety alerts, in the form of SMS and email messages, and sends them to motorists subscribed to the service. Drivers who regularly traverse a particular route are the main beneficiaries of the proposed system, which is intended for sparsely populated rural areas, where information available to drivers about road safety, especially bridge conditions, is very limited. At the heart of this system is the SmartBrick, a wireless system for remote structural health monitoring that has been presented in our previous work. Sensors on the SmartBrick network regularly collect data on water level, temperature, strain, and other parameters important to safety of a bridge. This information is stored on the device, and reported to a remote server over the GSM cellular infrastructure. The system generates alerts indicating hazardous road conditions when the data exceeds thresholds that can be remotely changed. The remote server and any number of designated authorities can be notified by email, FTP, and SMS. Drivers can view road conditions and subscribe to SMS and/or email alerts through a web page. The subscription-only form of alert generation has been deliberately selected to mitigate privacy concerns. The proposed system can significantly increase the safety of travel through rural areas. Real-time availability of information to transportation authorities and law enforcement officials facilitates early or proactive reaction to road hazards. Direct notification of drivers further increases the utility of the system in increasing the safety of the traveling public.
Liao, Yu-Chieh; Lin, Hsin-Hung; Lin, Chieh-Hua
2013-06-11
The World Health Organization (WHO) organizes consultations in February and September of each year, spearheaded by an advisory group of experts to analyze influenza surveillance data generated by the WHO Global Influenza Surveillance and Response System (GISRS). The purpose of these consultations is to recommend the composition on influenza virus vaccines for the northern and southern hemispheres, respectively. The latest news of influenza viruses is made available to the public and updated on the WHO website. Although WHO discloses the manner in which it has made the recommendation, usually by considering epidemiological and clinical information to analyze the antigenic and genetic characteristics of seasonal influenza viruses, most individuals do not possess an understanding of antigenic drift and when it occurs. We have constructed a web server, named Fluctrl, and implemented a pipeline whereby HA sequence data is downloaded from the Influenza Virus Resource at NCBI along with their isolation information including isolation year and location, which are parsed and managed in MySQL database. By analyzing the frequency of each amino acid residue of the HA1 domain expressed by the viruses on annual basis, users are able to obtain evolutionary dynamics of human influenza viruses corresponding with epidemics. Users are able to upload and analyze their HA1 sequences for generating evolutionary dynamics. In addition, a distribution of amino acid residues at a particular site is represented geographically to trace the location where antigenic variants are seeded. Fluctrl is constructed for monitoring the antigenic evolution of human influenza A viruses. This tool is intended to inform the general public how and when influenza viruses evade the human body's immunity. Furthermore, leveraging the geographic information, the original locations of emerging influenza viruses can be traced. Fluctrl is freely accessible at http://sb.nhri.org.tw/fluctrl.
Satellite image time series simulation for environmental monitoring
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-11-01
The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of costly high resolution data can be reduced as much as possible, and it presents an efficient solution with great cost performance to build up an economically operational monitoring service for environment, agriculture, forest, land use investigation, and other applications.
Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM).
Huang, Jincui; Kailemia, Muchena J; Goonatilleke, Elisha; Parker, Evan A; Hong, Qiuting; Sabia, Rocchina; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B
2017-01-01
Human milk plays a substantial role in the child growth, development and determines their nutritional and health status. Despite the importance of the proteins and glycoproteins in human milk, very little quantitative information especially on their site-specific glycosylation is known. As more functions of milk proteins and other components continue to emerge, their fine-detailed quantitative information is becoming a key factor in milk research efforts. The present work utilizes a sensitive label-free MRM method to quantify seven milk proteins (α-lactalbumin, lactoferrin, secretory immunoglobulin A, immunoglobulin G, immunoglobulin M, α1-antitrypsin, and lysozyme) using their unique peptides while at the same time, quantifying their site-specific N-glycosylation relative to the protein abundance. The method is highly reproducible, has low limit of quantitation, and accounts for differences in glycosylation due to variations in protein amounts. The method described here expands our knowledge about human milk proteins and provides vital details that could be used in monitoring the health of the infant and even the mother. Graphical Abstract The glycopeptides EICs generated from QQQ.
Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.
Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George
2010-09-01
Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.
Toward surface quantification of liver fibrosis progression
NASA Astrophysics Data System (ADS)
He, Yuting; Kang, Chiang Huen; Xu, Shuoyu; Tuo, Xiaoye; Trasti, Scott; Tai, Dean C. S.; Raja, Anju Mythreyi; Peng, Qiwen; So, Peter T. C.; Rajapakse, Jagath C.; Welsch, Roy; Yu, Hanry
2010-09-01
Monitoring liver fibrosis progression by liver biopsy is important for certain treatment decisions, but repeated biopsy is invasive. We envision redefinition or elimination of liver biopsy with surface scanning of the liver with minimally invasive optical methods. This would be possible only if the information contained on or near liver surfaces accurately reflects the liver fibrosis progression in the liver interior. In our study, we acquired the second-harmonic generation and two-photon excitation fluorescence microscopy images of liver tissues from bile duct-ligated rat model of liver fibrosis. We extracted morphology-based features, such as total collagen, collagen in bile duct areas, bile duct proliferation, and areas occupied by remnant hepatocytes, and defined the capsule and subcapsular regions on the liver surface based on image analysis of features. We discovered a strong correlation between the liver fibrosis progression on the anterior surface and interior in both liver lobes, where biopsy is typically obtained. The posterior surface exhibits less correlation with the rest of the liver. Therefore, scanning the anterior liver surface would obtain similar information to that obtained from biopsy for monitoring liver fibrosis progression.
Advanced data management for optimising the operation of a full-scale WWTP.
Beltrán, Sergio; Maiza, Mikel; de la Sota, Alejandro; Villanueva, José María; Ayesa, Eduardo
2012-01-01
The lack of appropriate data management tools is presently a limiting factor for a broader implementation and a more efficient use of sensors and analysers, monitoring systems and process controllers in wastewater treatment plants (WWTPs). This paper presents a technical solution for advanced data management of a full-scale WWTP. The solution is based on an efficient and intelligent use of the plant data by a standard centralisation of the heterogeneous data acquired from different sources, effective data processing to extract adequate information, and a straightforward connection to other emerging tools focused on the operational optimisation of the plant such as advanced monitoring and control or dynamic simulators. A pilot study of the advanced data manager tool was designed and implemented in the Galindo-Bilbao WWTP. The results of the pilot study showed its potential for agile and intelligent plant data management by generating new enriched information combining data from different plant sources, facilitating the connection of operational support systems, and developing automatic plots and trends of simulated results and actual data for plant performance and diagnosis.
NASA Astrophysics Data System (ADS)
Krell, N.; Evans, T. P.; Estes, L. D.; Caylor, K. K.
2017-12-01
While international metrics of food security and water availability are generated as spatial averages at the regional to national levels, climate variability impacts are differentially felt at the household level. This project investigated scales of variability of climate impacts on smallholder farmers using social and environmental data in central Kenya. Using sub-daily real-time environmental measurements to monitor smallholder agriculture, we investigated how changes in seasonal precipitation affected food security around Laikipia county from September 2015 to present. We also conducted SMS-based surveys of over 700 farmers to understand farmers' decision-making within the growing season. Our results highlight field-scale heterogeneity in biophysical and social factors governing crop yields using locally sensed real-time environmental data and weekly farmer-reported information about planting, harvesting, irrigation, and crop yields. Our preliminary results show relationships between changes in seasonal precipitation, NDVI, and soil moisture related to crop yields and decision-making at several scales. These datasets present a unique opportunity to collect highly spatially and temporally resolved information from data-poor regions at the household level.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... DEPARTMENT OF JUSTICE [OMB Number 1103-0100] Agency Information Collection Activities: Extension Requested; Comments Requested, Monitoring Information Collections ACTION: 60-day notice. The Department of.... (2) Title of the Form/Collection: Monitoring Information Collections. (3) Agency form number, if any...
DietPal: A Web-Based Dietary Menu-Generating and Management System
Abdullah, Siti Norulhuda; Shahar, Suzana; Abdul-Hamid, Helmi; Khairudin, Nurkahirizan; Yusoff, Mohamed; Ghazali, Rafidah; Mohd-Yusoff, Nooraini; Shafii, Nik Shanita; Abdul-Manaf, Zaharah
2004-01-01
Background Attempts in current health care practice to make health care more accessible, effective, and efficient through the use of information technology could include implementation of computer-based dietary menu generation. While several of such systems already exist, their focus is mainly to assist healthy individuals calculate their calorie intake and to help monitor the selection of menus based upon a prespecified calorie value. Although these prove to be helpful in some ways, they are not suitable for monitoring, planning, and managing patients' dietary needs and requirements. This paper presents a Web-based application that simulates the process of menu suggestions according to a standard practice employed by dietitians. Objective To model the workflow of dietitians and to develop, based on this workflow, a Web-based system for dietary menu generation and management. The system is aimed to be used by dietitians or by medical professionals of health centers in rural areas where there are no designated qualified dietitians. Methods First, a user-needs study was conducted among dietitians in Malaysia. The first survey of 93 dietitians (with 52 responding) was an assessment of information needed for dietary management and evaluation of compliance towards a dietary regime. The second study consisted of ethnographic observation and semi-structured interviews with 14 dietitians in order to identify the workflow of a menu-suggestion process. We subsequently designed and developed a Web-based dietary menu generation and management system called DietPal. DietPal has the capability of automatically calculating the nutrient and calorie intake of each patient based on the dietary recall as well as generating suitable diet and menu plans according to the calorie and nutrient requirement of the patient, calculated from anthropometric measurements. The system also allows reusing stored or predefined menus for other patients with similar health and nutrient requirements. Results We modeled the workflow of menu-suggestion activity currently adhered to by dietitians in Malaysia. Based on this workflow, a Web-based system was developed. Initial post evaluation among 10 dietitians indicates that they are comfortable with the organization of the modules and information. Conclusions The system has the potential of enhancing the quality of services with the provision of standard and healthy menu plans and at the same time increasing outreach, particularly to rural areas. With its potential capability of optimizing the time spent by dietitians to plan suitable menus, more quality time could be spent delivering nutrition education to the patients. PMID:15111270
DietPal: a Web-based dietary menu-generating and management system.
Noah, Shahrul A; Abdullah, Siti Norulhuda; Shahar, Suzana; Abdul-Hamid, Helmi; Khairudin, Nurkahirizan; Yusoff, Mohamed; Ghazali, Rafidah; Mohd-Yusoff, Nooraini; Shafii, Nik Shanita; Abdul-Manaf, Zaharah
2004-01-30
Attempts in current health care practice to make health care more accessible, effective, and efficient through the use of information technology could include implementation of computer-based dietary menu generation. While several of such systems already exist, their focus is mainly to assist healthy individuals calculate their calorie intake and to help monitor the selection of menus based upon a prespecified calorie value. Although these prove to be helpful in some ways, they are not suitable for monitoring, planning, and managing patients' dietary needs and requirements. This paper presents a Web-based application that simulates the process of menu suggestions according to a standard practice employed by dietitians. To model the workflow of dietitians and to develop, based on this workflow, a Web-based system for dietary menu generation and management. The system is aimed to be used by dietitians or by medical professionals of health centers in rural areas where there are no designated qualified dietitians. First, a user-needs study was conducted among dietitians in Malaysia. The first survey of 93 dietitians (with 52 responding) was an assessment of information needed for dietary management and evaluation of compliance towards a dietary regime. The second study consisted of ethnographic observation and semi-structured interviews with 14 dietitians in order to identify the workflow of a menu-suggestion process. We subsequently designed and developed a Web-based dietary menu generation and management system called DietPal. DietPal has the capability of automatically calculating the nutrient and calorie intake of each patient based on the dietary recall as well as generating suitable diet and menu plans according to the calorie and nutrient requirement of the patient, calculated from anthropometric measurements. The system also allows reusing stored or predefined menus for other patients with similar health and nutrient requirements. We modeled the workflow of menu-suggestion activity currently adhered to by dietitians in Malaysia. Based on this workflow, a Web-based system was developed. Initial post evaluation among 10 dietitians indicates that they are comfortable with the organization of the modules and information. The system has the potential of enhancing the quality of services with the provision of standard and healthy menu plans and at the same time increasing outreach, particularly to rural areas. With its potential capability of optimizing the time spent by dietitians to plan suitable menus, more quality time could be spent delivering nutrition education to the patients.
Franceschi, Frédéric; Koutbi, Linda; Gitenay, Edouard; Hourdain, Jérome; Maille, Baptiste; Trévisan, Lory; Deharo, Jean-Claude
2015-04-01
Electromyography-guided phrenic nerve (PN) monitoring using a catheter positioned in a hepatic vein can aid in preventing phrenic nerve palsy (PNP) during cryoballoon ablation for atrial fibrillation. We wanted to evaluate the feasibility and efficacy of PN monitoring during procedures using second-generation cryoballoons. This study included 140 patients (43 women) in whom pulmonary vein isolation was performed using a second-generation cryoballoon. Electromyography-guided PN monitoring was performed by pacing the right PN at 60 per minute and recording diaphragmatic compound motor action potential (CMAP) via a quadripolar catheter positioned in a hepatic vein. If a 30% decrease in CMAP amplitude was observed, cryoapplication was discontinued with forced deflation to avoid a PNP. Monitoring was unfeasible in 8 of 140 patients (5.7%), PNP occurred in 1. Stable CMAP amplitudes were achieved before ablation in 132 of 140 patients (94.3%). In 18 of 132 patients (13.6%), a 30% decrease in CMAP amplitude occurred and cryoablation was discontinued. Each time, recovery of CMAP amplitude took <60 s. In 9 of 18 cases, a second cryoapplication in the same pulmonary vein was safely performed. We observed no PNP or complication related to electromyography-guided PN monitoring. Electromyography-guided PN monitoring using a catheter positioned in a hepatic vein seems feasible and effective to prevent PNP during cryoballoon ablation using second-generation cryoballoon. © 2015 American Heart Association, Inc.
Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report
This report summarizes the results of next generation air monitor (NGAM) volatile organic compound (VOC) evaluations performed using both laboratory as well as field scale settings. These evaluations focused on challenging lower cost (<$2500) NGAM technologies to either controlle...
Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis;
2011-01-01
We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.
Space-assisted irrigation management: an operational perspective
NASA Astrophysics Data System (ADS)
Calera Belmonte, Alfonso; Jochum, Anne M.; Cuesta Garcia, Andres
2004-10-01
Irrigation Advisory Services (IAS) are the natural management instruments to achieve a better efficiency in the use of water for irrigation. IAS help farmers to apply water according to the actual crop water requirements and thus, to optimize production and cost-effectiveness. The project DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation advisory services) aims at assessing and demonstrating how the performance and cost-effectiveness of IAS is substantially improved by the incorporation of Earth observation (EO) techniques and Information Society Technology (IT) into their day-to-day operations. EO allows for efficiently monitoring crop water requirements of each field in extended areas. The incorporation of IT in the generation and distribution of information makes that information easily available to IAS and to its associated farmers (the end-users) in a personalized way. This paper describes the methodology and selected results.
A 3D photographic capsule endoscope system with full field of view
NASA Astrophysics Data System (ADS)
Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Kung, Yi-Chinn; Tao, Kuan-Heng
2013-09-01
Current capsule endoscope uses one camera to capture the surface image in the intestine. It can only observe the abnormal point, but cannot know the exact information of this abnormal point. Using two cameras can generate 3D images, but the visual plane changes while capsule endoscope rotates. It causes that two cameras can't capture the images information completely. To solve this question, this research provides a new kind of capsule endoscope to capture 3D images, which is 'A 3D photographic capsule endoscope system'. The system uses three cameras to capture images in real time. The advantage is increasing the viewing range up to 2.99 times respect to the two camera system. The system can accompany 3D monitor provides the exact information of symptom points, helping doctors diagnose the disease.
Ultrasonic wireless health monitoring
NASA Astrophysics Data System (ADS)
Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas
2006-03-01
The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data processing into an autonomous wireless receiver, in terms of reduction of the energy and memory costs.
NASA Astrophysics Data System (ADS)
Massabo, Marco; Molini, Luca; Kostic, Bojan; Campanella, Paolo; Stevanovic, Slavimir
2015-04-01
Disaster risk reduction has long been recognized for its role in mitigating the negative environmental, social and economic impacts of natural hazards. Flood Early Warning System is a disaster risk reduction measure based on the capacities of institutions to observe and predict extreme hydro-meteorological events and to disseminate timely and meaningful warning information; it is furthermore based on the capacities of individuals, communities and organizations to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss. An operational definition of an Early Warning System has been suggested by ISDR - UN Office for DRR [15 January 2009]: "EWS is the set of capacities needed to generate and disseminate timely and meaningful warning information to enable individuals, communities and organizations threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss.". ISDR continues by commenting that a people-centered early warning system necessarily comprises four key elements: 1-knowledge of the risks; 2-monitoring, analysis and forecasting of the hazards; 3-communication or dissemination of alerts and warnings; and 4- local capabilities to respond to the warnings received." The technological platform DEWETRA supports the strengthening of the first three key elements of EWS suggested by ISDR definition, hence to improve the capacities to build real-time risk scenarios and to inform and warn the population in advance The technological platform DEWETRA has been implemented for the Republic of Serbia. DEWETRA is a real time-integrate system that supports decision makers for risk forecasting and monitoring and for distributing warnings to end-user and to the general public. The system is based on the rapid availability of different data that helps to establish up-to-date and reliable risk scenarios. The integration of all relevant data for risk management significantly increases the value of available information and the level of knowledge of forecasters and disaster managers. Different data, forecast and monitoring products, which are generated by different national and international institution and organizations, can be visualized and processed in real-time within the platform. DEWETRA is a web application ensuring the capillary distribution of information among institutions. The system is used as an infrastructure for exchanging and sharing data, procedures, models and expertise among the Sector of Emergency Management (SEM), the Republic Hydro-Meteorological Service of Serbia (RHMSS) and the Serbian Public Water Companies (PWCs): Serbia Waters, Vojvodina Waters and Belgrade Waters.
[Source-monitoring deficits in schizophrenia: review and pharmacotherapeutic implications].
Juhász, Levente Zsolt; Bartkó, György
2007-03-01
The disturbance of source-monitoring is one of the various impairments in cognitive functioning observed in schizophrenic patients. The process of source-monitoring allows individuals to distinguish self generated thoughts and behaviours from those generated by others. The aim of the present study is to review the general psychological definition of source memory and source-monitoring and its neurological basis as well as the models for explanation of source-monitoring deficits. The relationship between source-monitoring-deficits and psychopathological symptoms as well as the effect of antipsychotic treatment on source-monitoring disturbances are introduced. There is evidence suggesting, that a selective source-monitoring deficit is in the occurrence of auditory hallucinations. The disturbance of prospective memory may influence unfavorably the compliance. Administration of antipsychotics in general can improve source-monitoring deficits. The neuropsychiatric perspective provides a more accurate and comprehensive understanding of schizophrenia.
Chien, T W; Chu, H; Hsu, W C; Tseng, T K; Hsu, C H; Chen, K Y
2003-08-01
The continuous emission monitoring system (CEMS) can monitor flue gas emissions continuously and instantaneously. However, it has the disadvantages of enormous cost, easily producing errors in sampling periods of bad weather, lagging response in variable ambient environments, and missing data in daily zero and span tests and maintenance. The concept of a predictive emission monitoring system (PEMS) is to use the operating parameters of combustion equipment through thermodynamic or statistical methods to construct a mathematic model that can predict emissions by a computer program. The goal of this study is to set up a PEMS in a gas-fired combined cycle power generation unit at the Hsinta station of Taiwan Power Co. The emissions to be monitored include nitrogen oxides (NOx) and oxygen (O2) in flue gas. The major variables of the predictive model were determined based on the combustion theory. The data of these variables then were analyzed to establish a regression model. From the regression results, the influences of these variables are discussed and the predicted values are compared with the CEMS data for accuracy. In addition, according to the cost information, the capital and operation and maintenance costs for a PEMS can be much lower than those for a CEMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao
In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a systemcentric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologiesmore » within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.« less
Infrared thermography for condition monitoring - A review
NASA Astrophysics Data System (ADS)
Bagavathiappan, S.; Lahiri, B. B.; Saravanan, T.; Philip, John; Jayakumar, T.
2013-09-01
Temperature is one of the most common indicators of the structural health of equipment and components. Faulty machineries, corroded electrical connections, damaged material components, etc., can cause abnormal temperature distribution. By now, infrared thermography (IRT) has become a matured and widely accepted condition monitoring tool where the temperature is measured in real time in a non-contact manner. IRT enables early detection of equipment flaws and faulty industrial processes under operating condition thereby, reducing system down time, catastrophic breakdown and maintenance cost. Last three decades witnessed a steady growth in the use of IRT as a condition monitoring technique in civil structures, electrical installations, machineries and equipment, material deformation under various loading conditions, corrosion damages and welding processes. IRT has also found its application in nuclear, aerospace, food, paper, wood and plastic industries. With the advent of newer generations of infrared camera, IRT is becoming a more accurate, reliable and cost effective technique. This review focuses on the advances of IRT as a non-contact and non-invasive condition monitoring tool for machineries, equipment and processes. Various conditions monitoring applications are discussed in details, along with some basics of IRT, experimental procedures and data analysis techniques. Sufficient background information is also provided for the beginners and non-experts for easy understanding of the subject.
MINERVA: An INSAR Monitoring Service for Volcanic Hazard
NASA Astrophysics Data System (ADS)
Tampellini, M. L.; Sansosti, E.; Usai, S.; Lanari, R.; Borgstrom, S.; van Persie, M.; Ricciardi, G. P.; Maddalena, V.; Cicero, L.; Pepe, A.
2004-06-01
MINERVA (Monitoring by Interferometric SAR of Environmental Risk in Volcanic Areas) is a small scale service demonstration project financed by ESA in the Data User Programme framework. The objective of the project is the design, development and assessment of a demonstrative information service based on the interferometric processing of images acquired from either the ASAR instrument on board ENVISAT-I or SAR instruments on board ERS1/2. The system is based on a new approach for the processing of INSAR data, which allows to optimize the quality of interferograms spanning from 35 days up to several years, and to merge them to generate a single solution describing the temporal evolution of the ground deformations in the examined risk area. The system allows to update this solution each time a new SAR image is available, and constitutes therefore an innovative tool for monitoring of the ground displacements in risk areas. The system has been implemented and demonstrated at Osservatorio Vesuviano (Naples, Italy), which is the institution responsible for monitoring the volcanic phenomena in the Neapolitan volcanic district, and for alerting the Italian civil authorities (''Protezione Civile'') in case such monitoring activity reveals signals of imminent eruptions. In particular, the MINERVA system has been used to monitor the ground deformations at the Phlegrean Fields, a densely populated, high-hazard zone which is subject to alternate phases of uplift and subsidence, accompanied often by seismic activity.
Madej, Mary Ann; Torregrosa, Alicia; Woodward, Andrea
2012-01-01
On Thursday, May 3, 2012, a science workshop was held at the Redwood National and State Parks (RNSP) office in Arcata, California, with researchers and resource managers working in RNSP to share data and expert opinions concerning salmon populations and habitat in the Redwood Creek watershed. The focus of the workshop was to discuss how best to synthesize physical and biological data related to the freshwater and estuarine phases of salmon life cycles in order to increase the understanding of constraints on salmon populations. The workshop was hosted by the U.S. Geological Survey (USGS) Status and Trends (S&T) Program National Park Monitoring Project (http://www.fort.usgs.gov/brdscience/ParkMonitoring.htm), which supports USGS research on priority topics (themes) identified by the National Park Service (NPS) Inventory and Monitoring Program (I&M) and S&T. The NPS has organized more than 270 parks with significant natural resources into 32 Inventory and Monitoring (I&M) Networks (http://science.nature.nps.gov/im/networks.cfm) that share funding and core professional staff to monitor the status and long-term trends of selected natural resources (http://science.nature.nps.gov/im/monitor). All 32 networks have completed vital signs monitoring plans (available at http://science.nature.nps.gov/im/monitor/MonitoringPlans.cfm), containing background information on the important resources of each park, conceptual models behind the selection of vital signs for monitoring the condition of natural resources, and the selection of high priority vital signs for monitoring. Vital signs are particular physical, chemical, and biological elements and processes of park ecosystems that represent the overall health or condition of the park, known or hypothesized effects of stressors, or elements that have important human values (Fancy and others, 2009). Beginning in 2009, the I&M program funded projects to analyze and synthesize the biotic and abiotic data generated by vital signs monitoring and previous in-park natural resource monitoring and inventories to provide useful information, models, and tools to park managers for addressing resource management issues. The workshop described in this report is an element of the project funded by USGS NPS-I&M program to conduct a synthesis of salmon-related datasets in the Klamath (KLMN) and San Francisco Bay Area (SFAN) networks of national parks. The synthesis focused on four park units: Redwood National Park (KLMN), Point Reyes National Seashore, Muir Woods National Monument, and Golden Gate National Recreation Area (SFAN).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
...] Notice of Request for Approval of an Information Collection; National Animal Health Monitoring System... information collection; comment request. SUMMARY: In accordance with the Paperwork Reduction Act of 1995, this... Epidemiologic Investigations, an information collection to support the National Animal Health Monitoring System...
Sun, Weifang; Yao, Bin; He, Yuchao; Zeng, Nianyin; He, Wangpeng
2017-01-01
Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages. PMID:28792453
Development of living body information monitoring system
NASA Astrophysics Data System (ADS)
Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko
2010-03-01
The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.
Development of living body information monitoring system
NASA Astrophysics Data System (ADS)
Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko
2009-12-01
The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.
Lahat, Ayelet; Lamm, Connie; Chronis-Tuscano, Andrea; Pine, Daniel S; Henderson, Heather A; Fox, Nathan A
2014-04-01
Behavioral inhibition (BI) is an early childhood temperament characterized by fearful responses to novelty and avoidance of social interactions. During adolescence, a subset of children with stable childhood BI develop social anxiety disorder and concurrently exhibit increased error monitoring. The current study examines whether increased error monitoring in 7-year-old, behaviorally inhibited children prospectively predicts risk for symptoms of social phobia at age 9 years. A total of 291 children were characterized on BI at 24 and 36 months of age. Children were seen again at 7 years of age, when they performed a Flanker task, and event-related potential (ERP) indices of response monitoring were generated. At age 9, self- and maternal-report of social phobia symptoms were obtained. Children high in BI, compared to those low in BI, displayed increased error monitoring at age 7, as indexed by larger (i.e., more negative) error-related negativity (ERN) amplitudes. In addition, early BI was related to later childhood social phobia symptoms at age 9 among children with a large difference in amplitude between ERN and correct-response negativity (CRN) at age 7. Heightened error monitoring predicts risk for later social phobia symptoms in children with high BI. Research assessing response monitoring in children with BI may refine our understanding of the mechanisms underlying risk for later anxiety disorders and inform prevention efforts. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. All rights reserved.
The Application of Lidar to Synthetic Vision System Integrity
NASA Technical Reports Server (NTRS)
Campbell, Jacob L.; UijtdeHaag, Maarten; Vadlamani, Ananth; Young, Steve
2003-01-01
One goal in the development of a Synthetic Vision System (SVS) is to create a system that can be certified by the Federal Aviation Administration (FAA) for use at various flight criticality levels. As part of NASA s Aviation Safety Program, Ohio University and NASA Langley have been involved in the research and development of real-time terrain database integrity monitors for SVS. Integrity monitors based on a consistency check with onboard sensors may be required if the inherent terrain database integrity is not sufficient for a particular operation. Sensors such as the radar altimeter and weather radar, which are available on most commercial aircraft, are currently being investigated for use in a real-time terrain database integrity monitor. This paper introduces the concept of using a Light Detection And Ranging (LiDAR) sensor as part of a real-time terrain database integrity monitor. A LiDAR system consists of a scanning laser ranger, an inertial measurement unit (IMU), and a Global Positioning System (GPS) receiver. Information from these three sensors can be combined to generate synthesized terrain models (profiles), which can then be compared to the stored SVS terrain model. This paper discusses an initial performance evaluation of the LiDAR-based terrain database integrity monitor using LiDAR data collected over Reno, Nevada. The paper will address the consistency checking mechanism and test statistic, sensitivity to position errors, and a comparison of the LiDAR-based integrity monitor to a radar altimeter-based integrity monitor.
Filipowska, Justyna; Łoziński, Tomasz
2014-01-01
Summary Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) is a noninvasive technique for ablation therapy for uterine myomas, where focused ultrasound energy beam generates localized high temperature in the selected area and coagulates chosen tissue, leaving the skin and tissues in between unharmed. Magnetic resonance imaging enables accurate targeting for HIFU as well as temperature monitoring during treatment. MR guidance with 3D anatomical imaging provides reference data for treatment planning, while real-time temperature monitoring aids in controlling ablation process. This review provides basic information regarding methodology, clinical indications for this kind of treatment, expected outcome and patient management during MR-HIFU procedure. The aim of this work is to introduce a new, noninvasive treatment method for uterine leiomyomas and to present a comparison with other currently used methods. PMID:25469176
Filipowska, Justyna; Loziński, Tomasz
2014-01-01
Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) is a noninvasive technique for ablation therapy for uterine myomas, where focused ultrasound energy beam generates localized high temperature in the selected area and coagulates chosen tissue, leaving the skin and tissues in between unharmed. Magnetic resonance imaging enables accurate targeting for HIFU as well as temperature monitoring during treatment. MR guidance with 3D anatomical imaging provides reference data for treatment planning, while real-time temperature monitoring aids in controlling ablation process. This review provides basic information regarding methodology, clinical indications for this kind of treatment, expected outcome and patient management during MR-HIFU procedure. The aim of this work is to introduce a new, noninvasive treatment method for uterine leiomyomas and to present a comparison with other currently used methods.