Science.gov

Sample records for generation metal production

  1. Recovering metals from red mud generated during alumina production

    NASA Astrophysics Data System (ADS)

    Piga, Luigi; Pochetti, Fausto; Stoppa, Luisa

    1993-11-01

    There is growing interest in processing and utilizing the red mud by-product of the Bayer process for alumina extraction from bauxite. This interest stems largely from the environmental impacts associated with red mud and the storage costs involved. Furthermore, complete utilization of the raw materials, in this case bauxite, meets an ecological concept while ensuring raw material conservation. To prepare this article, the authors perused approximately 100 patents and articles in order to provide a concise description of the methods of storing red mud and its uses as a flocculant or construction material and in other minor applications. Special attention has been given to the methods developed for recovering metals contained in the red mud.

  2. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  3. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  4. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  5. Pneumatic drop-on-demand generation for production of metal oxide microspheres by internal gelation

    NASA Astrophysics Data System (ADS)

    de Almeida, Valmor F.; Hunt, Rodney D.; Collins, Jack L.

    2010-09-01

    Drop-on-demand generation is an alternative approach to the traditional vibrating nozzle used for the production of nuclear fuel microspheres via the internal gelation method. We integrated a low-cost pneumatic setup and demonstrated that the drop-on-demand approach has some advantages, such as low inventory of feed solution (attractive for laboratory-scale research), improved drop diameter control, reproducibility, scale-up to desired throughput by simple multiplication of the number of dispensing units, and simple remote operation. However, limitations on reproducibility and drop diameter control still exist due to the intrinsic variation of physical properties, viscosity, and dispensing-tip wettability during the internal gelation process. These adverse effects can be mitigated, to a certain extent, by carefully controlling the temperature of the feed as uniformly as possible. We validated the drop-on-demand generation method by producing solid kernels of yttrium-stabilized zirconia and soft gel microspheres of iron hydroxide. In addition, we have measured the diameter change at each principal process stage. Based on the observed gas entrainment/absorption in the gel spheres, we conjectured that aging and washing are likely the critical stages determining the final precision to which microspheres can be made. Finally, we comment on potential improvements that add robustness to the method for handling other metal precursors in aqueous solutions.

  6. Metals production

    NASA Astrophysics Data System (ADS)

    Beck, Theodore S.

    1992-02-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  7. Metals production

    NASA Technical Reports Server (NTRS)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  8. Laser generating metallic components

    NASA Astrophysics Data System (ADS)

    McLean, Marc A.; Shannon, G. J.; Steen, William M.

    1997-04-01

    Recent developments in rapid prototyping have led to the concept of laser generating, the first additive manufacturing technology. This paper presents an innovative process of depositing multi-layer tracks, by fusing successive powder tracks, to generate three dimensional components, thereby offering an alternative to casting for small metal component manufacture. A coaxial nozzle assembly has been designed and manufactured enabling consistent omni-directional multi-layer deposition. In conjunction with this the software route from a CAD drawing to machine code generation has been established. The part is manufactured on a six axes machining center incorporating a 1.8 kW carbon-dioxide laser, providing an integrated opto-mechanical workstation. The part build-up program is controlled by a P150 host computer, linked directly to the DNC machining center. The direct manufacturing route is shown, including initial examples of simple objects (primitives -- cube, cylinder, cone) leading to more complex turbine blade generation, incorporating build-up techniques and the associated mechanical properties.

  9. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  10. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  11. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1981-05-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  12. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.

    1981-01-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  13. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  14. METAL PRODUCTION AND CASTING

    DOEpatents

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  15. PRODUCTION OF METALS

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1961-09-19

    A process is described producing metallic thorium, titanium, zirconium, or hafnium from the fluoride. In the process, the fluoride is reduced with alkali or alkaline earth metal and a booster compound (e.g. iodine or a decomposable oxysalt) in a sealed bomb at superatmospheric pressure and a temperature above the melting point of the metal to be produced.

  16. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  17. Production of magnesium metal

    DOEpatents

    Blencoe, James G.; Anovitz, Lawrence M.; Palmer, Donald A.; Beard, James S.

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  18. PRODUCTION OF HAFNIUM METAL

    DOEpatents

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  19. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  20. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  1. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  2. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  3. Globally sustainable manganese metal production and use.

    PubMed

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  4. Theory of sum frequency generation from metal surfaces

    NASA Astrophysics Data System (ADS)

    Liebsch, A.

    The time-dependent density functional approach is used to evaluate the optical sum frequency generation from metal surfaces. Attention is focussed on the magnitude and frequency variation of the element χzzz(ω1,ω2). Four types of metal surfaces are considered: simple metals, alkali metal overlayers, noble metals, and charged metal surfaces. Differences and similarities with respect to second harmonic generation from these surfaces are pointed out.

  5. Motion Generated Static Electricity in Metals

    NASA Astrophysics Data System (ADS)

    Liao Feng, Chung

    2004-03-01

    The charge state of a metallic object, neutral when stationary, is observed to become positive when in motion. This phenomenon was discovered while testing a hypothesis which expects atoms to be more positive when moving faster. The same hypothesis has also led to the discovery of the phenomena of static electric charges being produced by thermal changes during vaporization, condensation and heating of water. The phenomena due to thermal changes were reported at the American Physical Society meetings of MAR02 (W30 4: Electricity of Vaporization and Condensation) and MAR03 (J1 206: Static Electricity from Heating and Cooling). The phenomenon of charges generated by motion can be seen in simple experiments, by the difference in the charge state of a metal rotor between motionless and spinning. The hypothesis and the phenomenon will be discussed. Some of the experiments will be demonstrated.

  6. Revision and product generation software

    USGS Publications Warehouse

    ,

    1997-01-01

    The U.S. Geological Survey (USGS) developed revision and product generation (RevPG) software for updating digital line graph (DLG) data and producing maps from such data. This software is based on ARC/INFO, a geographic information system from Environmental Systems Resource Institute (ESRI). RevPG consists of ARC/INFO Arc Macro Language (AML) programs, C routines, and interface menus that permit operators to collect vector data using aerial images, to symbolize the data on-screen, and to produce plots and color-separated files for use in printing maps.

  7. Revision and Product Generation Software

    USGS Publications Warehouse

    ,

    1999-01-01

    The U.S. Geological Survey (USGS) developed revision and product generation (RevPG) software for updating digital line graph (DLG) data and producing maps from such data. This software is based on ARC/INFO, a geographic information system from Environmental Systems Resource Institute (ESRI). RevPG consists of ARC/INFO Arc Macro Language (AML) programs, C routines, and interface menus that permit operators to collect vector data using aerial images, to symbolize the data onscreen, and to produce plots and color-separated files for use in printing maps.

  8. Thermophotovoltaic Generators Using Selective Metallic Emitters

    NASA Technical Reports Server (NTRS)

    Fraas, Lewis M.; Samaras, John E.; Avery, James E.; Ewell, Richard

    1995-01-01

    In the literature to date on thermophotovoltaic (TPV) generators, two types of infrared emitter's have been emphasized : gray body emitters and rare earth oxide selective emitters. The gray body emitter is defined as an emitter with a spectral emissivity independent of wavelength whereas the rare earth oxide selective emitter is idealized as a delta function emitter with a high emissivity at a select wavelength and a near zero emissivity at all other wavelengths. Silicon carbide is an example of a gray body emitter and ER-YAG is an example of a selective emitter. The Welsbach mantle in a common lantern is another example of an oxide selective emitter. Herein, we describe an alternative type of selective emitter, a selective metallic emitter. These metallic emitters are characterized by a spectral emissivity curve wherein the emissivity monotonically increases with shorter infrared wavelengths as is shown. The metal of curve "A", tungsten, typifies this class of selective metallic emitter's. In a thermophotovoltaic generator, a photovoltaic cell typically converts infrared radiation to electricity out to some cut-off wavelength. For example, Gallium Antimonide (GaSb) TPV cells respond out to 1.7 microns. The problem with gray body emitters is that they emit at all wavelengths. Therefore, a large fraction of the energy emitted will be outside of the response band of the TPV cell. The argument for the selective emitter is that, ideally, all the emitted energy can be in the cells response band. Unfortunately, rare earth oxide emitters are not ideal. In order to suppress the emissivity toward zero away from the select wavelength, the use of thin fiber's is necessary. This leads to a fragile emitter typical of a lantern mantle. Even given a thin ER-YAG emitter, the measured emissivity at the select wavelength of 1.5 microns has been reported to be 0.6 while the off wavelength background emissivity falls to only 0.2 at 5 microns. This gives a selectivity ratio of only 3

  9. Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming

    ERIC Educational Resources Information Center

    Azad, Abdul-Majeed; Kesavan, Sathees

    2006-01-01

    An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…

  10. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  11. Metallic anodes for next generation secondary batteries.

    PubMed

    Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk; Kim, Jae-Hun; Park, Cheol-Min; Sohn, Hun-Joon

    2013-12-01

    Li-air(O2) and Li-S batteries have gained much attention recently and most relevant research has aimed to improve the electrochemical performance of air(O2) or sulfur cathode materials. However, many technical problems associated with the Li metal anode have yet to be overcome. This review mainly focuses on the electrochemical behaviors and technical issues related to metallic Li anode materials as well as other metallic anode materials such as alkali (Na) and alkaline earth (Mg) metals, including Zn and Al when these metal anodes were employed for various types of secondary batteries.

  12. Guiding New Product Idea Generation

    ERIC Educational Resources Information Center

    Park, Y.

    2003-01-01

    The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…

  13. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  14. Goos-Hänchen shifts in harmonic generation from metals.

    PubMed

    Yallapragada, V J; Gopal, Achanta Venu; Agarwal, G S

    2013-05-01

    We present the first calculation of the Goos-Hänchen shifts in the context of the nonlinear generation of fields. We specifically concentrate on shifts of second harmonic generated at metallic surfaces. At metallic surfaces the second harmonic primarily arises from discontinuities of the field at surfaces which not only result in large harmonic generation but also in significant Goos-Hänchen shifts of the generated second harmonic. Our results can be extended to other shifts like angular shifts and Fedorov-Imbert shifts.

  15. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  16. Modulation of photoacoustic signal generation from metallic surfaces.

    PubMed

    Mitcham, Trevor; Homan, Kimberly; Frey, Wolfgang; Chen, Yun-Sheng; Emelianov, Stanislav; Hazle, John; Bouchard, Richard

    2013-05-01

    The ability to image metallic implants is important for medical applications ranging from diagnosis to therapy. Photoacoustic (PA) imaging has been recently pursued as a means to localize metallic implants in soft tissue. The work presented herein investigates different mechanisms to modulate the PA signal generated by macroscopic metallic surfaces. Wires of five different metals are tested to simulate medical implants/tools, while surface roughness is altered or physical vapor deposition (PVD) coatings are added to change the wires' overall optical absorption. PA imaging data of the wires are acquired at 970 nm. Results indicate that PA signal generation predominately occurs in a wire's metallic surface and not its aqueous surroundings. PA signal generation is similar for all metals tested, while addition of PVD coatings offers significant modulations (i.e., 4-dB enhancement and 26-dB reduction achieved) in PA signal generation. Results also suggest that PA signal increases with increasing surface roughness. Different coating and roughness schemes are then successfully utilized to generate spatial PA signal patterns. This work demonstrates the potential of surface modifications to enhance or reduce PA signal generation to permit improved PA imaging of implants/tools (i.e., providing location/orientation information) or to allow PA imaging of surrounding tissue.

  17. Generative inspection process planner for integrated production

    SciTech Connect

    Brown, C.W. . Kansas City Div.); Gyorog, D.A. . Dept. of Mechanical Engineering)

    1990-04-01

    This work describes the design prototype development of a generative process planning system for dimensional inspection. The system, IPPEX (Inspection Process Planning EXpert), is a rule-based expert system for integrated production. Using as advanced product modeler, relational databases, and artificial intelligence techniques, IPPEX generates the process plan and part program for the dimensional inspection of products using CMMs. Through an application interface, the IPPEX system software accesses product definition from the product modeler. The modeler is a solid geometric modeler coupled with a dimension and tolerance modeler. Resource data regarding the machines, probes, and fixtures are queried from databases. IPPEX represents inspection process knowledge as production rules and incorporates an embedded inference engine to perform decision making. The IPPEX system, its functional architecture, system architecture, system approach, product modeling environment, inspection features, inspection knowledge, hierarchical planning strategy, user interface formats, and other fundamental issues related to inspection planning and part programming for CMMs are described. 27 refs., 16 figs., 4 tabs.

  18. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  19. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOEpatents

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  20. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  1. Towards an automated intelligence product generation capability

    NASA Astrophysics Data System (ADS)

    Smith, Alison M.; Hawes, Timothy W.; Nolan, James J.

    2015-05-01

    Creating intelligence information products is a time consuming and difficult process for analysts faced with identifying key pieces of information relevant to a complex set of information requirements. Complicating matters, these key pieces of information exist in multiple modalities scattered across data stores, buried in huge volumes of data. This results in the current predicament analysts find themselves; information retrieval and management consumes huge amounts of time that could be better spent performing analysis. The persistent growth in data accumulation rates will only increase the amount of time spent on these tasks without a significant advance in automated solutions for information product generation. We present a product generation tool, Automated PrOduct Generation and Enrichment (APOGEE), which aims to automate the information product creation process in order to shift the bulk of the analysts' effort from data discovery and management to analysis. APOGEE discovers relevant text, imagery, video, and audio for inclusion in information products using semantic and statistical models of unstructured content. APOGEEs mixed-initiative interface, supported by highly responsive backend mechanisms, allows analysts to dynamically control the product generation process ensuring a maximally relevant result. The combination of these capabilities results in significant reductions in the time it takes analysts to produce information products while helping to increase the overall coverage. Through evaluation with a domain expert, APOGEE has been shown the potential to cut down the time for product generation by 20x. The result is a flexible end-to-end system that can be rapidly deployed in new operational settings.

  2. Process for production of a metal hydride

    SciTech Connect

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  3. Production of sintered porous metal fluoride pellets

    DOEpatents

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  4. Classical theory for second-harmonic generation from metallic nanoparticles

    SciTech Connect

    Zeng Yong; Liu Jinjie; Moloney, Jerome V.; Hoyer, Walter; Koch, Stephan W.

    2009-06-15

    In this paper, we develop a classical electrodynamic theory to study the optical nonlinearities of metallic nanoparticles. The quasi free electrons inside the metal are approximated as a classical Coulomb-interacting electron gas, and their motion under the excitation of an external electromagnetic field is described by the plasma equations. This theory is further tailored to study second-harmonic generation. Through detailed experiment-theory comparisons, we validate this classical theory as well as the associated numerical algorithm. It is demonstrated that our theory not only provides qualitative agreement with experiments but it also reproduces the overall strength of the experimentally observed second-harmonic signals.

  5. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  6. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    SciTech Connect

    Bannochie, C

    2005-09-01

    ) The peak hydrogen generation rate occurred three to five hours later for the regular and heat-treated co-precipitated noble metal slurries than for the slurries with trimmed noble metals. (B) The peak hydrogen generation rate was lower during processing of the co-precipitated noble metal simulant relative to the trimmed noble metal simulant data. (C) Trimmed noble metals appeared to be conservative relative to co-precipitated noble metals under the conditions of these tests as long as the peak hydrogen generation rate occurred early in the SRAT boiling period. (2) If the peak hydrogen generation rate with trimmed noble metals is near or above the DWPF limit, and if the peak occurs late in the SRAT cycle, then a potential SME cycle hydrogen generation rate issue could be anticipated when using co-precipitated noble metals, since the peak is expected to be delayed relative to trimmed noble metals. (3) The peak hydrogen generation rate increased from about 1.3 to about 3.7 lbs H{sub 2}/hr on the range of 170-190% stoichiometry, or about 0.1 lbs. H{sub 2}/hr per % change in the stoichiometric factor at DWPF scale. (4) The peak generation rate was slightly higher during processing of the heat-treated coprecipitated noble metal simulant relative to the trimmed noble metal heat-treated simulant, but this probably due to somewhat more excess acid being added to the co-precipitated noble metal test than intended. (5) The variations in the peak hydrogen generation rate appeared to track the quantity of dissolved rhodium in the SRAT product. (6) A noble metal apparently activated and then de-activated during the final hour of formic acid addition. The associated peak generation rate was <3% of the maximum rate seen in each test. Palladium may have been responsible based on literature data. (7) Planned comparisons between heat-treated and un-heat-treated simulants were complicated by the significantly altered base equivalents following heat-treatment. This necessitated making

  7. Anisotropic porous metals production by melt processing

    SciTech Connect

    Shapovalov, V.; Boiko, L.; Baldwin, M.D.; Maguire, M.C.; Zanner, F.J.

    1997-02-01

    The collapse of the Soviet Union has left many of its scientific institutes and technical universities without their traditional backbone of financial support. In an effort to stem the export of science to nations advocating nuclear proliferation, and to acquire potentially useful technology, several US government-sponsored programs have arise to mine the best of former USSR scientific advances. In the field of metallurgy, the earliest institutes to be investigated by Sandia National Laboratories are located in Ukraine. In particular, scientists at the State Metallurgical Academy have developed unique porous metals, resembling what could be described as gas-solid ``eutectic``. While porous metals are available in the US and other western countries, none have the remarkable structure and properties of these materials. Sandia began a collaborative program with the Ukrainian scientists to bring this technology to the US, verify the claims regarding these materials, and begin production of the so-called Gasars. This paper will describe the casting process technology and metallurgy associated with the production of Gasars, and will review the progress of the collaborative project.

  8. In-situ generation of oxygen-releasing metal peroxides

    DOEpatents

    Looney, Brian B.; Denham, Miles E.

    2007-01-09

    A method for remediation of contaminants in soil and groundwater is disclosed. The method generates oxygen releasing solids in groundwater or soil by injecting an aqueous energetic oxidant solution containing free radicals, oxidative conditions can be created within or ahead of a contaminant plume. Some contaminants may be remediated directly by reaction with the free radicals. Additionally and more importantly, the free radicals create an oxidative condition whereby native or injected materials, especially metals, are converted to peroxides. These peroxides provide a long-term oxygen reservoir, releasing oxygen relatively slowly over time. The oxygen can enhance microbial metabolism to remediate contaminants, can react with contaminant metals either to form immobile precipitants or to mobilize other metals to permit remediation through leaching techniques. Various injection strategies for injecting the energetic oxidant solution are also disclosed.

  9. Photocurrent generation in semiconducting and metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barkelid, Maria; Zwiller, Val

    2014-01-01

    The fundamental mechanism underlying photocurrent generation in carbon nanotubes has long been an open question. In photocurrent generation, the temperature of the photoexcited charge carriers determines the transport regime by which the electrons and holes are conducted through the nanotube. Here, we identify two different photocurrent mechanisms for metallic and semiconducting carbon nanotube devices with induced p-n junctions. Our photocurrent measurements as a function of charge carrier doping demonstrate a thermal origin for metallic nanotubes, where photo-excited hot carriers give rise to a current. For semiconducting nanotubes we demonstrate a photovoltaic mechanism, where a built-in electric field results in electron-hole separation. Our results provide an understanding of the photoresponse in carbon nanotubes, which is not only of fundamental interest but also of importance for designing carbon-based, high-efficiency photodetectors and energy-harvesting devices.

  10. Transition metal catalysis in the generation of natural gas

    SciTech Connect

    Mango, F.D.

    1995-12-31

    The view that natural gas is thermolytic, coming from decomposing organic debris, has remained almost unchallenged for nearly half a century. Disturbing contradictions exist, however: Oil is found at great depth, at temperatures where only gas should exist and oil and gas deposits show no evidence of the thermolytic debris indicative of oil decomposing to gas. Moreover, laboratory attempts to duplicate the composition of natural gas, which is typically between 60 and 95+ wt% methane in C{sub 1}-C{sub 4}, have produced insufficient amounts of methane (10 to 60%). It has been suggested that natural gas may be generated catalytically, promoted by the transition metals in carbonaceous sedimentary rocks. This talk will discuss experimental results that support this hypothesis. Various transition metals, as pure compounds and in source rocks, will be shown to generate a catalytic gas that is identical to natural gas. Kinetic results suggest robust catalytic activity under moderate catagenetic conditions.

  11. Semisolid Metal Processing Techniques for Nondendritic Feedstock Production

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Salleh, M. S.; Alhawari, K. S.; Kapranos, P.

    2013-01-01

    Semisolid metal (SSM) processing or thixoforming is widely known as a technology that involves the formation of metal alloys between solidus and liquidus temperatures. For the procedure to operate successfully, the microstructure of the starting material must consist of solid near-globular grains surrounded by a liquid matrix and a wide solidus-to-liquidus transition area. Currently, this process is industrially successful, generating a variety of products with high quality parts in various industrial sectors. Throughout the years since its inception, a number of technologies to produce the appropriate globular microstructure have been developed and applied worldwide. The main aim of this paper is to classify the presently available SSM technologies and present a comprehensive review of the potential mechanisms that lead to microstructural alterations during the preparation of feedstock materials for SSM processing. PMID:24194689

  12. Generation of metal ions in the beam plasma produced by a forevacuum-pressure electron beam source

    SciTech Connect

    Tyunkov, A. V.; Yushkov, Yu. G. Zolotukhin, D. B.; Klimov, A. S.; Savkin, K. P.

    2014-12-15

    We report on the production of metal ions of magnesium and zinc in the beam plasma formed by a forevacuum-pressure electron source. Magnesium and zinc vapor were generated by electron beam evaporation from a crucible and subsequently ionized by electron impact from the e-beam itself. Both gaseous and metallic plasmas were separately produced and characterized using a modified RGA-100 quadrupole mass-spectrometer. The fractional composition of metal isotopes in the plasma corresponds to their fractional natural abundance.

  13. Generation of metal ions in the beam plasma produced by a forevacuum-pressure electron beam source

    NASA Astrophysics Data System (ADS)

    Tyunkov, A. V.; Yushkov, Yu. G.; Zolotukhin, D. B.; Savkin, K. P.; Klimov, A. S.

    2014-12-01

    We report on the production of metal ions of magnesium and zinc in the beam plasma formed by a forevacuum-pressure electron source. Magnesium and zinc vapor were generated by electron beam evaporation from a crucible and subsequently ionized by electron impact from the e-beam itself. Both gaseous and metallic plasmas were separately produced and characterized using a modified RGA-100 quadrupole mass-spectrometer. The fractional composition of metal isotopes in the plasma corresponds to their fractional natural abundance.

  14. The Next Generation of HLA Image Products

    NASA Astrophysics Data System (ADS)

    Gaffney, N. I.; Casertano, S.; Ferguson, B.

    2012-09-01

    We present the re-engineered pipeline based on existing and improved algorithms with the aim of improving processing quality, cross-instrument portability, data flow management, and software maintenance. The Hubble Legacy Archive (HLA) is a project to add value to the Hubble Space Telescope data archive by producing and delivering science-ready drizzled data products and source lists derived from these products. Initially, ACS, NICMOS, and WFCP2 data were combined using instrument-specific pipelines based on scripts developed to process the ACS GOODS data and a separate set of scripts to generate source extractor and DAOPhot source lists. The new pipeline, initially designed for WFC3 data, isolates instrument-specific processing and is easily extendable to other instruments and to generating wide-area mosaics. Significant improvements have been made in image combination using improved alignment, source detection, and background equalization routines. It integrates improved alignment procedures, better noise model, and source list generation within a single code base. Wherever practical, PyRAF based routines have been replaced with non-IRAF based python libraries (e.g. NumPy and PyFITS). The data formats have been modified to handle better and more consistent propagation of information from individual exposures to the combined products. A new exposure layer stores the effective exposure time for each pixel in the sky which is key in properly interpreting combined images from diverse data that were not initially planned to be mosaiced. We worked to improve the validity of the metadata within our FITS headers for these products relative to standard IRAF/PyRAF processing. Any keywords that pertain to individual exposures have been removed from the primary and extension headers and placed in a table extension for more direct and efficient perusal. This mechanism also allows for more detailed information on the processing of individual images to be stored and propagated

  15. Plant productivity and heavy metal contamination

    SciTech Connect

    Guidi, G.V.; Petruzzelli, G.; Vallini, G.; Pera, A.

    1990-06-01

    This article describes the potential for use of composts from green waste and from municipal solid wastes for agricultural use in Italy. The accumulation of heavy metals in compost-amended soils and crops was evaluated and the influence of these composts on plant productivity was studied. Green compost was obtained from vegetable organic residues; municipal solid waste derived compost was obtained from the aerobic biostabilization of a mixture of the organic biodegradable fraction of municipal solid waste and sewage sludge. The two composts had good chemical characteristics and their use caused no pollution to soil and plants. The overall fertilizing effect was higher for green compost even though green compost and municipal solid waste derived compost had similar contents of primary elements of fertility.

  16. The production of metal mirrors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Brooks, David

    This thesis demonstrates the possibility of manufacturing larger mirrors from nickel coated aluminium with a considerable cost and risk benefits compared to zero expansion glass ceramic or borosilicate. Constructing large mirrors from aluminium could cut the cost of production by one third. A new generation of very large telescopes is being designed, on the order of 100 meters diameter. The proposed designs are of mosaic type mirrors similar to the Keck Telescope primary. The enormous mass of glass required inhibits the construction, simply by its cost and production time. Very little research has been done on the processes involved in the production of large metal mirrors. However the thermal efficiency and potential improved mirror seeing benefits are documented. Space telescopes and optical telecommunications could also benefit with the application of metal mirrors. Presented here are the processes and results that culminated in the rebirth of the Birr Telescope. The main section concerns the material selection and processes in the construction of a 1.83 meter diameter 1.4 tonne aluminium primary mirror. The aluminium mirror technology developed was also applied to the construction of an aspheric thin meniscus deformable mirror. Methods employed in its production are described. Documented are the advanced computer controlled polishing methods employed in producing a one third scale model of the hyperbolic secondary mirror for the Gemini Telescopes. These were developed using an active polishing lap.

  17. Production of metal waste forms from spent fuel treatment

    SciTech Connect

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-02-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

  18. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  19. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  20. Metal Hydrides for High-Temperature Power Generation

    DOE PAGESBeta

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  1. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  2. Generation and characterization of gas bubbles in liquid metals

    SciTech Connect

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empirical nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.

  3. Ultrafast laser driven spin generation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Choi, Gyung-Min

    This dissertation presents experimental studies of spin generation in metallic ferromagnets (FM) driven by ultrafast laser light using a pump-probe technique. The pump light gives a driving force for spin generation by depositing energy or spin angular momentum on FM. The probe light measures spin responses by magneto-optical Kerr effect or temperature responses by time-domain thermoreflectance. I find that ultrafast laser light generates spins in FM in three distinct mechanisms: (i) demagnetization; (ii) spin-dependent Seebeck effect (SDSE); (iii) optical helicity. The demagnetization-driven spin generation is due to energy transport between electrons and magnons of FM and conservation of angular momentum for electron-magnon coupling. Ultrafast laser light deposits its energy in electrons of metallic layers and leads to a sharp increase of the electron temperature. The excited electrons transport energy to magnons of FM by the electron-magnon coupling. The magnon excitation results in ultrafast demagnetization of FM. I find that the spin loss by magnon excitations during the demagnetization process is converted to the spin generation in electrons of FM by the conservation of angular momentum for electron-magnon coupling. The generated spins diffuse to other layers and leads to spin accumulation in nonmagnetic metals (NM) or spin transfer torque on other FMs. I measure the demagnetization-driven spin accumulation in a NM/FM1/NM structure and spin transfer torque in a NM/FM1/NM/FM2 structure. The SDSE-driven spin generation is due to a heat current at FM/NM interfaces and spin-dependent Seebeck coefficient of FM. Ultrafast laser light deposits its energy in a heat absorbing layer of a multilayer structure and leads to a heat current from the heat absorbing layer to heat sinking layer. When an FM is incorporated in the multilayer structure, the spin-dependent Seebeck coefficient of FM converts the heat current to spin generation at interfaces between FM and NM. The

  4. Generation of Subwavelength Plasmonic Nanovortices via Helically Corrugated Metallic Nanowires.

    PubMed

    Huang, Changming; Chen, Xianfeng; Oladipo, Abiola O; Panoiu, Nicolae C; Ye, Fangwei

    2015-01-01

    We demonstrate that plasmonic helical gratings consisting of metallic nanowires imprinted with helical grooves or ridges can be used efficiently to generate plasmonic vortices with radius much smaller than the operating wavelength. In our proposed approach, these helical surface gratings are designed so that plasmon modes with different azimuthal quantum numbers (topological charge) are phase-matched, thus allowing one to generate optical plasmonic vortices with arbitrary topological charge. The general principles for designing plasmonic helical gratings that facilitate efficient generation of such plasmonic vortices are derived and their applicability to the conversion of plasmonic vortices with zero angular momentum into plasmonic vortices with arbitrary angular momentum is illustrated in several particular cases. Our analysis, based both on the exact solutions for the electromagnetic field propagating in the helical plasmonic grating and a coupled-mode theory, suggests that even in the presence of metal losses the fundamental mode with topological charge m = 0 can be converted to plasmon vortex modes with topological charge m = 1 and m = 2 with a conversion efficiency as large as 60%. The plasmonic nanovortices introduced in this study open new avenues for exciting applications of orbital angular momentum in the nanoworld. PMID:26278619

  5. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    SciTech Connect

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    2005-05-24

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  6. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    NASA Astrophysics Data System (ADS)

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    2005-05-01

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  7. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  8. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  9. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  10. Generation of hydroxyl radicals from metal-loaded humic acids

    SciTech Connect

    Paciolla, M.D.; Jansen, S.A.; Davies, G.

    1999-06-01

    Humic acids (HAs) are naturally occurring biopolymers that are ubiquitous in the environment. They are most commonly found in the soil, drinking water, and a variety of plants. Pharmacological and therapeutic studies involving humic acids have been reported to some extent. However, when certain transition metals are bound to humic acids, e.g., iron and copper, they can be harmful to biological organisms. For this study, humic acids were extracted from German, Irish, and New Hampshire soils that were selectively chosen because of their reich abundance in humic material. Each sample was treated at room temperature with 0.1 M ferric and cupric solutions for 48 h. The amount of iron and copper adsorbed by humic acid was accurately quantitated using atomic absorption spectroscopy. The authors further demonstrate that these metal-loaded humic acids can produce deleterious oxidizing species such as the hydroxyl radical (HO*) through the metal-driven Fenton reaction. Electron paramagnetic resonance (EPR) employing spin trapping techniques with 5,5-dimethylpyrroline N-oxide (DMPO) is used to confirm the generation of hydroxyl radicals. The DMPO-OH adduct with hyperfine splitting constants A{sub N} = A{sub H} = 14.9 G is observed upon the addition of exogenous hydrogen peroxide. The concentration of hydroxyl radical was determined using 4-hydroxytempo (TEMPO-OH) as a spin standard. The presence of another oxidizing species, Fe{double_bond}O{sup 2+}, is also proposed in the absence of hydrogen peroxide.

  11. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  12. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    PubMed

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  13. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    PubMed Central

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  14. Transition metal catalysis in the generation of petroleum and natural gas. Final report

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  15. Production and use of metals and oxygen for lunar propulsion

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.; Groth, Mary F.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  16. Electricity in the production of metals: From aluminum to zinc

    NASA Astrophysics Data System (ADS)

    Evans, J. W.

    1995-04-01

    This article treats some electrometallurgical and electromagnetic aspects of the production of metals, but it opens with an examination of whether there is ldelectricity” (i.e., vitality) in the primary metals industries, particularly within the United States of America. That question is examined in terms of the economics of two examples: aluminum and zinc. Then, three examples are provided of potential improvements in the production of metals arising from industrial and university research: use of new electrode materials in Hall-Héroult cells to reduce energy consumption in aluminum smelting, the fluidized bed electrowinning of copper and other metals, and the employment of electromagnetic forces in metals processing, particularly electromagnetic casting. The article concludes with observations on the paucity of United States support for research and development (R & D) in primary metals production, compared with that of other industrial activities and of other nations, and suggests a prognosis for the future of academic research and teaching in extractive and process metallurgy.

  17. Charge generation layers comprising transition metal-oxide/organic interfaces. Electronic structure and charge generation mechanism

    SciTech Connect

    Meyer, Jens; Kröger, M.; Hamwi, S.; Gnam, F.; Riedl, T.; Kowalsky, W.; Kahn, Antoine

    2010-01-01

    The energetics of an archetype charge generation layer (CGL) architecture comprising of 4,4' ,4 '' -tris(N -carbazolyl)triphenylamine (TCTA), tungsten oxide (WO3 ) , and bathophenanthroline (BPhen) n-doped with cesium carbonate (Cs2 CO3 ) are determined by ultraviolet and inverse photoemissionspectroscopy. We show that the charge generation process occurs at the interface between the hole-transport material (TCTA) and WO3 and not, as commonly assumed, at the interface between WO3 and the n-doped electron-transport material (BPhen:Cs2 CO3 ) . However, the n-doped layer is also essential to the realization of an efficient CGL structure. The charge generation mechanism occurs via electron transfer from the TCTA highest occupied molecular orbital level to the transition metal-oxide conduction band.

  18. Generation of copper rich metallic phases from waste printed circuit boards

    SciTech Connect

    Cayumil, R.; Khanna, R.; Ikram-Ul-Haq, M.; Rajarao, R.; Hill, A.; Sahajwalla, V.

    2014-10-15

    Highlights: • Recycling and material recovery from waste printed circuit boards is very complex. • Thermoset polymers, ceramics and metals are present simultaneously in waste PCBs. • Heat treatment of PCBs was carried out at 1150 °C under inert conditions. • Various metallic phases could be segregated out as copper based metallic droplets. • Carbon and ceramics residues can be further recycled in a range of applications. - Abstract: The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150 °C under argon gas flowing at 1 L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the

  19. Risk assessment of allergen metals in cosmetic products.

    PubMed

    Sipahi, Hande; Charehsaz, Mohammad; Güngör, Zerrin; Erdem, Onur; Soykut, Buğra; Akay, Cemal; Aydin, Ahmet

    2015-01-01

    Cosmetics are one of the most common reasons for hospital referrals with allergic contact dermatitis. Because of the increased use of cosmetics within the population and an increase in allergy cases, monitoring of heavy metals, especially allergen metals, is crucial. The aim of this study was to investigate the concentration of allergen metals, nickel (Ni), cobalt (Co), and chromium (Cr), in the most commonly used cosmetic products including mascara, eyeliner, eye shadow, lipstick, and nail polish. In addition, for safety assessment of cosmetic products, margin of safety of the metals was evaluated. Forty-eight makeup products were purchased randomly from local markets and large cosmetic stores in Istanbul, Turkey, and an atomic absorption spectrometer was used for metal content determination. Risk assessment of the investigated cosmetic products was performed by calculating the systemic exposure dosage (SED) using Scientific Committee on Consumer Safety guideline. According to the results of this investigation in all the samples tested, at least two of the allergen metals, Ni and/or Co and/or Cr were detected. Moreover, 97% of the Ni-detected products, 96% of Cr- and 54% of Co-detected products, contained over 1 μg/g of this metals, which is the suggested ultimate target value for sensitive population and thereby can be considered as the possible allergen. On the basis of the results of this study, SED of the metals was negligible; however, contact dermatitis caused by cosmetics is most probably due to the allergen metal content of the products. In conclusion, to assess the safety of the finished products, postmarketing vigilance and routine monitoring of allergen metals are very important to protect public health.

  20. Risk assessment of allergen metals in cosmetic products.

    PubMed

    Sipahi, Hande; Charehsaz, Mohammad; Güngör, Zerrin; Erdem, Onur; Soykut, Buğra; Akay, Cemal; Aydin, Ahmet

    2015-01-01

    Cosmetics are one of the most common reasons for hospital referrals with allergic contact dermatitis. Because of the increased use of cosmetics within the population and an increase in allergy cases, monitoring of heavy metals, especially allergen metals, is crucial. The aim of this study was to investigate the concentration of allergen metals, nickel (Ni), cobalt (Co), and chromium (Cr), in the most commonly used cosmetic products including mascara, eyeliner, eye shadow, lipstick, and nail polish. In addition, for safety assessment of cosmetic products, margin of safety of the metals was evaluated. Forty-eight makeup products were purchased randomly from local markets and large cosmetic stores in Istanbul, Turkey, and an atomic absorption spectrometer was used for metal content determination. Risk assessment of the investigated cosmetic products was performed by calculating the systemic exposure dosage (SED) using Scientific Committee on Consumer Safety guideline. According to the results of this investigation in all the samples tested, at least two of the allergen metals, Ni and/or Co and/or Cr were detected. Moreover, 97% of the Ni-detected products, 96% of Cr- and 54% of Co-detected products, contained over 1 μg/g of this metals, which is the suggested ultimate target value for sensitive population and thereby can be considered as the possible allergen. On the basis of the results of this study, SED of the metals was negligible; however, contact dermatitis caused by cosmetics is most probably due to the allergen metal content of the products. In conclusion, to assess the safety of the finished products, postmarketing vigilance and routine monitoring of allergen metals are very important to protect public health. PMID:26753435

  1. Photoacoustic-pulse generation and propagation in a metal vapor.

    PubMed

    Tam, A C; Zapka, W; Chiang, K; Imaino, W

    1982-01-01

    Photoacoustic-pulse generation by breakdown is achieved in dense cesium metal vapors of vapor pressures ranging from 2 to 130 Torr by using a dye laser pulse of energy variable from 10(-6) to 10(-3) J, tuned to the Cs transition at 6010 A. The acoustic-pulse propagation is detected by the transient photorefractive deflection of a cw probe laser beam that is displaced from but parallel to the pulsed laser beam. The temperature-dependent velocity of infinitesimal ultrasonic waves in a corrosive metal vapor is measured for the first time. The supersonic propagation of finite amplitude acoustic pulses (blast waves) obtained with a higher pulse energy is also studied. Our data, with Mach numbers ranging from 2.1 down to below 1.01, agree surprisingly well with the prediction of Vlases and Jones for cylindrical blast waves. This provides a new experimental support for their theoretical trajectory formula for blast waves in the extremely weak amplitude limit. PMID:20372402

  2. Ultra-smooth metal surfaces generated by pressure-induced surface deformation of thin metal films

    NASA Astrophysics Data System (ADS)

    Logeeswaran, V. J.; Chan, M.-L.; Bayam, Y.; Saif Islam, M.; Horsley, D. A.; Li, X.; Wu, W.; Wang, S. Y.; Williams, R. S.

    2007-05-01

    We present a mechanical pressing technique for generating ultra-smooth surfaces on thin metal films by flattening the bumps, asperities, rough grains and spikes of a freshly vacuum deposited metal film. The method was implemented by varying the applied pressure from 100 MPa to 600 MPa on an e-beam evaporated silver film of thickness 1000 Å deposited on double-polished (100)-oriented silicon surfaces, resulting in a varying degree of film smoothness. The surface morphology of the thin film was studied using atomic force microscopy. Notably, at a pressure of ˜600 MPa an initial silver surface with 13-nm RMS roughness was plastically deformed and transformed to an ultra-flat plane with better than 0.1 nm RMS. Our demonstration with the e-beam evaporated silver thin film exhibits the potential for applications in decreasing the scattering-induced losses in optical metamaterials, plasmonic nanodevices and electrical shorts in molecular-scale electronic devices.

  3. Electricity in the production of metals: From aluminum to zinc

    SciTech Connect

    Evans, J.W.

    1995-04-01

    This article treats some electrometallurgical and electromagnetic metals. but it opens with an examination of whether there is ``electricity`` (i.e., vitality) in the primary metals industries, particularly within the United States of America. That question is examined in terms of the economics of two examples: aluminum and zinc. Then, three examples are provided of potential improvements in the production of metals arising front industrial and university research: use of new electrode materials in Hall-Heroult cells to reduce energy consumption in aluminum smelting, the fluidized bed electrowinning of copper and other metals, and the employment of electromagnetic forces in metals processing, particularly electromagnetic casting. The article concludes with observations on the paucity of United States support for research and development (R and D) in primary metals production, compared with that of the industrial activities and of other nations. and suggests a prognosis for the future of arcade research and teaching in extractive and process metallurgy.

  4. Molecular metal-Oxo catalysts for generating hydrogen from water

    SciTech Connect

    Long, Jeffrey R; Chang, Christopher J; Karunadasa, Hemamala I

    2015-02-24

    A composition of matter suitable for the generation of hydrogen from water is described, the positively charged cation of the composition having the general formula [(PY5W.sub.2)MO].sup.2+, wherein PY5W.sub.2 is (NC.sub.5XYZ)(NC.sub.5H.sub.4).sub.4C.sub.2W.sub.2, M is a transition metal, and W, X, Y, and Z can be H, R, a halide, CF.sub.3, or SiR.sub.3, where R can be an alkyl or aryl group. The two accompanying counter anions, in one embodiment, can be selected from the following Cl.sup.-, I.sup.-, PF.sub.6.sup.-, and CF.sub.3SO.sub.3.sup.-. In embodiments of the invention, water, such as tap water containing electrolyte or straight sea water can be subject to an electric potential of between 1.0 V and 1.4 V relative to the standard hydrogen electrode, which at pH 7 corresponds to an overpotential of 0.6 to 1.0 V, with the result being, among other things, the generation of hydrogen with an optimal turnover frequency of ca. 1.5 million mol H.sub.2/mol catalyst per h.

  5. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  6. Does Generating Examples Aid Proof Production?

    ERIC Educational Resources Information Center

    Iannone, Paola; Inglis, Matthew; Mejia-Ramos, Juan Pablo; Simpson, Adrian; Weber, Keith

    2011-01-01

    Many mathematics education researchers have suggested that asking learners to generate examples of mathematical concepts is an effective way of learning about novel concepts. To date, however, this suggestion has limited empirical support. We asked undergraduate students to study a novel concept by either tackling example generation tasks or…

  7. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  8. Inclusion Optimization for Next Generation Steel Products

    SciTech Connect

    Dr. Sridar Seetharaman: Dr. Alan Cramb

    2006-04-06

    The project objective is to determine the conditions under which the inclusions in liquid steel can act as heterogeneous nucleants for solidification. The experimental approach consisted of measuring the undercooling of a pure iron droplet in contact with different oxides to determine which oxides promote iron solidification by providing a suitable surface for nucleation and which oxides and under which conditions the metal can be deeply undercooled. The conclusions suggest that deep undercoolings are possible at low oxygen content provided the oxygen potential is such that substrate decomposition does not occur. If the oxygen content increases the undercooling decreases.

  9. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY...

  10. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY...

  11. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY...

  12. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY...

  13. 41 CFR 109-27.5011 - Identification marking of metals and metal products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Identification marking of metals and metal products. 109-27.5011 Section 109-27.5011 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY...

  14. Laser thermoelastic generation in metals above the melt threshold

    SciTech Connect

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2013-11-28

    An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

  15. Laser thermoelastic generation in metals above the melt threshold

    NASA Astrophysics Data System (ADS)

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2013-11-01

    An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

  16. Generation of copper rich metallic phases from waste printed circuit boards.

    PubMed

    Cayumil, R; Khanna, R; Ikram-Ul-Haq, M; Rajarao, R; Hill, A; Sahajwalla, V

    2014-10-01

    The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally

  17. Generation of copper rich metallic phases from waste printed circuit boards.

    PubMed

    Cayumil, R; Khanna, R; Ikram-Ul-Haq, M; Rajarao, R; Hill, A; Sahajwalla, V

    2014-10-01

    The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally

  18. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products.

    PubMed

    Limmatvapirat, C; Limmatvapirat, S; Charoenteeraboon, J; Wessapan, C; Kumsum, A; Jenwithayaamornwech, S; Luangthuwapranit, P

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  19. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    PubMed Central

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; Luangthuwapranit, P.

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  20. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products.

    PubMed

    Limmatvapirat, C; Limmatvapirat, S; Charoenteeraboon, J; Wessapan, C; Kumsum, A; Jenwithayaamornwech, S; Luangthuwapranit, P

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health.

  1. A novel inexpensive device for the electrochemical generation of metallic emitters for field desorption.

    PubMed

    Rechsteiner, C E; Mathis, D E; Bursey, M M; Buck, R P

    1977-02-01

    Details for the construction of a novel, inexpensive device for the electrochemical generation of metallic emitters for field desorption mass spectrometry are described. Use of the device for the generation of cobalt and nickel emitters is demonstrated. PMID:836944

  2. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  3. Products of combustion of non-metallic materials

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1995-01-01

    The objective of this project is to evaluate methodologies for the qualitative and quantitative determination of the gaseous products of combustion of non-metallic materials of interest to the aerospace community. The goal is to develop instrumentation and analysis procedures which qualitatively and quantitatively identify gaseous products evolved by thermal decomposition and provide NASA a detailed system operating procedure.

  4. The Geostationary Operational Environmental Satellite (GOES) Product Generation System

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.

    2004-01-01

    The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.

  5. First Generation ASCI Production Visualization Environments

    SciTech Connect

    Heermann, P.D.

    1999-04-08

    The delivery of the first one tera-operations/sec computer has significantly impacted production data visualization, affecting data transfer, post processing, and rendering. Terascale computing has motivated a need to consider the entire data visualization system; improving a single algorithm is not sufficient. This paper presents a systems approach to decrease by a factor of four the time required to prepare large data sets for visualization.For daily production use, all stages in the processing pipeline from physics simulation code to pixels on a screen, must be balanced to yield good overall performance. Also, to complete the data path from screen to the analyst's eye, user display systems for individuals and teams are examined. Performance of the initial visualization system is compared with recent improvements. Lessons learned from the coordinated deployment of improved algorithms are also discussed, including the need for 64 bit addressing and a fully parallel data visualization pipeline.

  6. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  7. The structure of deposited metal clusters generated by laser evaporation

    NASA Astrophysics Data System (ADS)

    Faust, P.; Brandstättner, M.; Ding, A.

    1991-09-01

    Metal clusters have been produced using a laser evaporation source. A Nd-YAG laser beam focused onto a solid silver rod was used to evaporate the material, which was then cooled to form clusters with the help of a pulsed high pressure He beam. TOF mass spectra of these clusters reveal a strong occurrence of small and medium sized clusters ( n<100). Clusters were also deposited onto grid supported thin layers of carbon-films which were investigated by transmission electron microscopy. Very high resolution pictures of these grids were used to analyze the size distribution and the structure of the deposited clusters. The diffraction pattern caused by crystalline structure of the clusters reveals 3-and 5-fold symmetries as well as fcc bulk structure. This can be explained in terms of icosahedron and cuboctahedron type clusters deposited on the surface of the carbon layer. There is strong evidence that part of these cluster geometries had already been formed before the depostion process. The non-linear dependence of the cluster size and the cluster density on the generating conditions is discussed. Therefore the samples were observed in HREM in the stable DEEKO 100 microscope of the Fritz-Haber-Institut operating at 100 KV with the spherical aberration c S =0.5 mm. The quality of the pictures was improved by using the conditions of minimum phase contrast hollow cone illumination. This procedure led to a minimum of phase contrast artefacts. Among the well-crystallized particles were a great amount of five- and three-fold symmetries, icosahedra and cuboctahedra respectively. The largest clusters with five- and three-fold symmetries have been found with diameters of 7 nm; the smallest particles displaying the same undistorted symmetries were of about 2 mm. Even smaller ones with strong distortions could be observed although their classification is difficult. The quality of the images was improved by applying Fourier filtering techniques.

  8. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  9. Product Release Rather than Chelation Determines Metal Specificity for Ferrochelatase

    SciTech Connect

    Medlocka, Amy E.; Cartera, Michael; Daileya, Tamara A.; Daileya, Harry A.; Lanzilotta, William N.

    2009-11-16

    Ferrochelatase (protoheme ferrolyase, E.C. 4.99.1.1) is the terminal enzyme in heme biosynthesis and catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme IX (heme). Within the past two years, X-ray crystallographic data obtained with human ferrochelatase have clearly shown that significant structural changes occur during catalysis that are predicted to facilitate metal insertion and product release. One unanswered question about ferrochelatase involves defining the mechanism whereby some metals, such as divalent Fe, Co, Ni, and Zn, can be used by the enzyme in vitro to produce the corresponding metalloporphyrins, while other metals, such as divalent Mn, Hg, Cd, or Pb, are inhibitors of the enzyme. Through the use of high-resolution X-ray crystallography along with characterization of metal species via their anomalous diffraction, the identity and position of Hg, Cd, Ni, or Mn in the center of enzyme-bound porphyrin macrocycle were determined. When Pb, Hg, Cd, or Ni was present in the macrocycle, the conserved {pi} helix was in the extended, partially unwound 'product release' state. Interestingly, in the structure of ferrochelatase with Mn-porphyrin bound, the {pi} helix is not extended or unwound and is in the 'substrate-bound' conformation. These findings show that at least in the cases of Mn, Pb, Cd, and Hg, metal 'inhibition' of ferrochelatase is not due to the inability of the enzyme to insert the metal into the macrocycle or by binding to a second metal binding site as has been previously proposed. Rather, inhibition occurs after metal insertion and results from poor or diminished product release. Possible explanations for the lack of product release are proposed herein.

  10. Disposal of heavy metal waste sludges in ceramic products

    SciTech Connect

    Wolfe, T.D.

    1990-06-01

    The report gives the results of a laboratory investigation of the feasibility of incorporating heavy metal waste sludges into ceramic products. Samples were fabricated by combining heavy metal waste sludges with bricks, roof tile, or vitrified clay pipe. The samples were then tested, using standard leaching tests. Test methods and results are presented and large scale process details are given. Detailed cost data were given for using waste and not using waste in the process to enable a comparison.

  11. Informativeness Improvement of Hardness Test Methods for Metal Product Assessment

    NASA Astrophysics Data System (ADS)

    Osipov, S.; Podshivalov, I.; Osipov, O.; Zhantybaev, A.

    2016-06-01

    The paper presents a combination of theoretical suggestions, results, and observations allowing to improve the informativeness of hardness testing process in solving problems of metal product assessment while in operation. The hardness value of metal surface obtained by a single measurement is considered to be random. Various measures of location and scattering of the random variable were experimentally estimated for a number of test samples using the correlation analysis, and their close interaction was studied. It was stated that in metal assessment, the main informative characteristics of hardness testing process are its average value and mean-square deviation for measures of location and scattering, respectively.

  12. Limitation of productivity by trace metals in the sea

    SciTech Connect

    Morel, F.M.M.; Price, N.M. ); Hudson, R.J.M. )

    1991-12-01

    Some trace metals such as Fe, Ni, Cu, and Zn are essential for the growth of phytoplankton. The concentrations of these essential trace elements in seawater are so low as to limit their availability to aquatic microbiota. Trace element uptake is ultimately limited by kinetics of reaction with transport ligands or by diffusion to the cell. From what the authors know of the characteristics of the uptake systems of phytoplankton and their trace metal requirements they can estimate that Fe and Zn may at some times in some place limit phytoplankton productivity, which is in accord with available field data on trace metal enrichments.

  13. Concentrations and Potential Health Risks of Metals in Lip Products

    PubMed Central

    Liu, Sa; Rojas-Cheatham, Ann

    2013-01-01

    Background: Metal content in lip products has been an issue of concern. Objectives: We measured lead and eight other metals in a convenience sample of 32 lip products used by young Asian women in Oakland, California, and assessed potential health risks related to estimated intakes of these metals. Methods: We analyzed lip products by inductively coupled plasma optical emission spectrometry and used previous estimates of lip product usage rates to determine daily oral intakes. We derived acceptable daily intakes (ADIs) based on information used to determine public health goals for exposure, and compared ADIs with estimated intakes to assess potential risks. Results: Most of the tested lip products contained high concentrations of titanium and aluminum. All examined products had detectable manganese. Lead was detected in 24 products (75%), with an average concentration of 0.36 ± 0.39 ppm, including one sample with 1.32 ppm. When used at the estimated average daily rate, estimated intakes were > 20% of ADIs derived for aluminum, cadmium, chromium, and manganese. In addition, average daily use of 10 products tested would result in chromium intake exceeding our estimated ADI for chromium. For high rates of product use (above the 95th percentile), the percentages of samples with estimated metal intakes exceeding ADIs were 3% for aluminum, 68% for chromium, and 22% for manganese. Estimated intakes of lead were < 20% of ADIs for average and high use. Conclusions: Cosmetics safety should be assessed not only by the presence of hazardous contents, but also by comparing estimated exposures with health-based standards. In addition to lead, metals such as aluminum, cadmium, chromium, and manganese require further investigation. PMID:23674482

  14. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  15. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  16. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    SciTech Connect

    TURICK, CHARLES

    2004-09-21

    Biogeochemical activity is an ongoing and dynamic process due to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. As basic science reveals more information about specific mechanisms of bacterial-metal reduction, an even greater contribution of bacteria to biogeochemical activities is realized. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. Most bacteria are capable of biogeochemical transformation as a result of meeting nutrient requirements. These assimilatory mechanisms for metals transformation include production of small molecules that serve as electron shuttles for metal reduction. This contribution to biogeochemistry is small however due to only trace requirements for minerals by bacteria. Dissimilatory metal reducing bacteria (DMRB) reduce oxidized metals and insoluble mineral oxides as a means for biological energy production during growth. These types of bacteria offer considerable potential for bioremediation of environments contaminated with toxic metals and radionuclides because of the relatively large amount of metal biotransformation they require for growth. One of the mechanisms employed by some DMRB for electron transfer to insoluble metal oxides is melanin production. The electrochemical properties of melanin provide this polymeric, humic-type compound with electron shuttling properties. Melanin, specifically, pyomelanin, increases the rate and degree of metal reduction in DMRB as a function of pyomelanin concentration. Due to its electron shuttling behavior, only low femtogram quantities per cell are required to significantly increase metal reduction capacity of DMRB. Melanin production is not limited to DMRB. In fact melanin is one of the most common pigments produced by biological systems. Numerous soil microorganisms produce melanin, contributing

  17. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    SciTech Connect

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  18. Four-piston double-duct liquid metal MHD engine and AC generator

    SciTech Connect

    Haaland, C.M.

    1995-12-31

    Operating principles, features and applications of the Liquid Metal (LM) engine are presented. This engine combines a free-piston internal combustion engine with an MHD AC power generator. Liquid metal (LM) oscillates back-and-forth in two separate channels, driven by free pistons coupled magnetically to pistons driven by internal combustion. One of the principal breakthroughs is the concept of using double ducts in a Hartmann configuration for MHD production of alternating current. The LM flows in opposing directions in the two adjacent Hartmann ducts, thus eliminating magnetic-induced instabilities, eliminating vibration, and providing an ideal setup for attaching an output transformer on one side provide to provide useful ranges of current and voltage. Because LM is used, the length of the piston stroke can be easily varied over a large range, thus making possible an engine that, changes size, according to variation in output load requirements. Increasing the stroke length results in increased compression ratio, which requires computer controlled modification of the fuel injection mixture. Higher fuel efficiencies will result, whether the engine is idling or operating at maximum power. Because of viscous dissipation losses in the LM, this engine will be more efficient for larger engines. Applications include any power generation where variable load is required, such as stationary electric generators for remote towns and cities, temporary military encampments, and mobile primary power generators for off-road and on-road automotive equipment, including caterpillars, cars, military vehicles, trucks, and trains. The advantages for automotive propulsion will be described in comparisons with current and developmental vehicles using internal combustion engines. Because the LM-engine generates electricity, an LM-engine vehicle is readily adaptable to hybrid concepts. An R&D program will be outlined for bringing the concept of the LM engine to commercial application.

  19. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract. PMID:26775006

  20. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract.

  1. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  2. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    NASA Astrophysics Data System (ADS)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  3. Metals accelerate production of the aberrant splicing isoform of the presenilin-2.

    PubMed

    Matsuzaki, Shinsuke; Manabe, Takayuki; Katayama, Taiichi; Nishikawa, Atsuko; Yanagita, Takeshi; Okuda, Hiroaki; Yasuda, Yuichi; Miyata, Shingo; Meshitsuka, Shunsuke; Tohyama, Masaya

    2004-03-01

    Oxidative stress is a major risk factor for Alzheimer's disease (AD) and other neurodegenerative disorders. Metals are known to be one of the factors that contribute to oxidative stress. Recently, we reported that the aberrant splicing isoform (PS2V) generated by skipping exon5 of the presenilin-2 (PS2) gene is a diagnostic feature of sporadic AD (SAD). PS2V is inducible by exposure of human neuroblastoma to hypoxia. We examined whether this aberrant splicing was caused by metal-induced oxidative stress, such as exposure to aluminum. As a result, we demonstrated that exposure to aluminum accelerated PS2V production induced by hypoxia. This acceleration of the production of PS2V to hypoxia was caused by chronic aluminum exposure, but was not related to the intracellular content of aluminum. HMGA1a is a mediator of PS2V production, and it was induced by aluminum as well as by hypoxia. Induction of HMGA1a was increased by chronic exposure to aluminum, and a nuclear extract containing HMGA1a bound to a specific sequence on exon5 of PS2 pre-mRNA, as reported previously. Finally, the acceleration of PS2V production induced by aluminum under hypoxic conditions reflected, but has not yet been directly shown to cause, vulnerability to endoplasmic reticulum stress. These results suggest that exposure to some metals can accelerate and enhance PS2V generation, and that hypoxia plus chronic exposure to metals may promote the development of AD. PMID:15009634

  4. Magnetohydrodynamic generators using two-phase liquid-metal flows

    NASA Technical Reports Server (NTRS)

    Petrick, M.

    1969-01-01

    Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.

  5. Metal Dichalcogenides Monolayers: Novel Catalysts for Electrochemical Hydrogen Production

    PubMed Central

    Pan, Hui

    2014-01-01

    Catalyst-driven electrolysis of water is considered as a “cleanest” way for hydrogen production. Finding cheap and abundant catalysts is critical to the large-scale implementation of the technology. Two-dimensional metal dichalcogenides nanostructures have attracted increasing attention because of their catalytic performances in water electrolysis. In this work, we systematically investigate the hydrogen evolution reduction of metal dichalcogenides monolayers based on density-functional-theory calculations. We find that metal disulfide monolayers show better catalytic performance on hydrogen production than other metal dichalcogenides. We show that their hydrogen evolution reduction strongly depends on the hydrogen coverage and the catalytic performance reduces with the increment of coverage because of hydrogenation-induced lower conductivity. We further show that the catalytic performance of vanadium disulfide monolayer is comparable to that of Pt at lower hydrogen coverage and the performance at higher coverage can be improved by hybridizing with conducting nanomaterials to enhance conductivity. These metal disulfide monolayers with lower overpotentials may apply to water electrolysis for hydrogen production. PMID:24967679

  6. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOEpatents

    Marchant, D.D.

    1983-06-10

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  7. Defect production and annealing kinetics in elemental metals and semiconductors

    NASA Astrophysics Data System (ADS)

    de la Rubia, T. Diaz; Soneda, N.; Caturla, M. J.; Alonso, E. A.

    1997-11-01

    We present a review of recent results of molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations of defect production and annealing in irradiated metals and semiconductors. The MD simulations describe the primary damage state in elemental metals Fe, V and Au, and in an elemental semiconductor Si. We describe the production of interstitial and vacancy clusters in the cascades and highlight the differences among the various materials. In particular, we discuss how covalent bonding in Si affects defect production and amorphization resulting in a very different primary damage state from the metals. We also use MD simulations to extract prefactors and activation energies for migration of point defects, as well as to investigate the energetics, geometry and diffusivity of small vacancy and interstitial clusters. We show that, in the metals, small interstitial clusters are highly mobile and glide in one dimension along the direction of the Burger's vector. In silicon, we show that, in contrast to the metals, the neutral vacancy diffuses faster than the neutral self-interstitial. The results for the primary damage state and for the defect energetics and kinetics are then combined and used in a kinetic Monte Carlo simulation to investigate the escape efficiency of defects from their nascent cascade in metals, and the effect of dose rate on damage accumulation and amorphization in silicon. We show that in fee metals Au and Pb at or above stage V the escape probability is approximately 40% for 30 keV recoils so that the freely migrating defect fraction is approximately 10% of the dpa standard. In silicon, we show that damage accumulation at room temperature during light ion implantation can be significantly reduced by decreasing the dose rate. The results are compared to scanning tunneling microscopy experiments.

  8. Levels of metals in canned meat products: Intermetallic correlations

    SciTech Connect

    Brito, G. ); Diaz, C.; Galindo, L.; Hardisson, A.; Montelongo, F.G. ); Santiago, D. )

    1990-02-01

    The analytical control of heavy metals in food is particularly important, since these pollutants are notably cumulative in nature and, therefore, can be toxic to humans. Their determination in foods of animal origin is of interest. In this study analyses of seven heavy metals in semipreserved ham and shoulder pork, preserved lunch pork and pork liver paste were performed to determine the possible influence of the container itself on the levels of metals in such products. Not only were the toxic elements cadmium and lead studied, but also copper, zinc, iron, nickel and manganese which, although not essentially toxic, could, in high concentration, cause public health hazards or a decrease in the organoleptic quality of the canned product, with resultant economic effect.

  9. Integrating hydrogen generation and storage in a novel compact electrochemical system based on metal hydrides

    NASA Astrophysics Data System (ADS)

    Rangel, C. M.; Fernandes, V. R.; Slavkov, Y.; Bozukov, L.

    The development of efficient and reliable energy storage systems based on hydrogen technology represents a challenge to seasonal storage based on renewable hydrogen. State of the art renewable energy generation systems include separate units such as electrolyzer, hydrogen storage vessel and a fuel cell system for the conversion of H 2 back into electricity, when required. In this work, a novel electrochemical system has been developed which integrates hydrogen production, storage and compression in only one device, at relatively low cost and high efficiency. The developed prototype comprises a six-electrode cell assembly using an AB 5-type metal hydride and Ni plates as counter electrodes, in a 35-wt% KOH solution. Metal hydride electrodes with chemical composition LaNi 4.3Co 0.4Al 0.3 were prepared by high frequency vacuum melting followed by high temperature annealing. X-ray phase analysis showed typical hexagonal structure and no traces of other intermetallic compounds belonging to the La-Ni phase diagram. Thermodynamic study has been performed in a Sieverts type of apparatus produced by Labtech Int. During cycling, the charging/discharging process was studied in situ using a gas chromatograph from Agilent. It is anticipated that the device will be integrated as a combined hydrogen generator and storage unit in a stand-alone system associated to a 1-kW fuel cell.

  10. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  11. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  12. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    EPA Science Inventory

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  13. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOEpatents

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  14. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  15. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    NASA Astrophysics Data System (ADS)

    Lewan, M. D.; Kotarba, M. J.; Więcław, D.; Piestrzyński, A.

    2008-08-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977-984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ 13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  16. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  17. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  18. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  19. Sequential generation of matrix-product states in cavity QED

    SciTech Connect

    Schoen, C.; Hammerer, K.; Wolf, M. M.; Cirac, J. I.; Solano, E.

    2007-03-15

    We study the sequential generation of entangled photonic and atomic multiqubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multiqubit states sequentially generated at the cavity output of a single-photon source and atomic multiqubit states generated by their sequential interaction with the same cavity mode.

  20. Scalability of Continuous Flow Production of Metal-Organic Frameworks.

    PubMed

    Rubio-Martinez, Marta; Hadley, Trevor D; Batten, Michael P; Constanti-Carey, Keri; Barton, Tim; Marley, Dylan; Mönch, Andreas; Lim, Kok-Seng; Hill, Matthew R

    2016-05-10

    Achieving the large-scale production of metal-organic frameworks (MOFs) is crucial for their utilization in applied settings. For many MOFs, quality suffers from large-scale, batch reaction systems. We have developed continuous processes for their production which showed promise owing to their versatility and the high quality of the products. Here, we report the successful upscaling of this concept by more than two orders of magnitude to deliver unprecedented production rates and space-time-yields (STYs) while maintaining the product quality. Encouragingly, no change in the reaction parameters, obtained at small scale, was required. The production of aluminium fumarate was achieved at an STY of 97 159 kg m(-3)  day(-1) and a rate of 5.6 kg h(-1) . PMID:27075923

  1. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  2. Production of negative hydrogen ions on metal grids

    NASA Astrophysics Data System (ADS)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-01

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  3. APECS: A family of optimization products for least cost generation

    SciTech Connect

    Petrill, E.; Stallings, J.; Shea, S.

    1996-05-01

    Reducing costs of power generation is the primary focus of many power generators today in efforts to prepare for competition in a deregulated market, to increase profitability, or to retain customers. To help power generators track and manage power generation costs, the Electric Power Research Institute (EPRI) offers APECS{sup plus}, one of EPRI`s APECS - Advisory Plant and Environmental Control System - family of optimization products for fossil power plants. The APECS family of products provides tools and techniques to optimize costs, as well as NO{sub x} emissions and performance, in fossil power plants. These products include APECS{sup plus}, GNOCIS, and ULTRAMAX{reg_sign}. The products have varying degrees of functionality and their application at a power plant will depend on the site-specific needs and resources in each case. This paper describes APECS{sup plus}, the cost management product of the APECS family of optimization products. The other key products in this family, GNOCIS and ULTRAMAX{reg_sign}, are mentioned here and described in more detail in the literature.

  4. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  5. Topology-generating interfacial pattern formation during liquid metal dealloying

    PubMed Central

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  6. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGESBeta

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  7. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  8. Topology-generating interfacial pattern formation during liquid metal dealloying

    SciTech Connect

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  9. MODIS Land Data Products: Generation, Quality Assurance and Validation

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Wolfe, Robert; Morisette, Jeffery; Sinno, Scott; Teague, Michael; Saleous, Nazmi; Devadiga, Sadashiva; Justice, Christopher; Nickeson, Jaime

    2008-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described.

  10. The mechanism of metals precipitation by biologically generated alkalinity in biofilm reactors.

    PubMed

    Remoudaki, E; Hatzikioseyian, A; Kousi, P; Tsezos, M

    2003-09-01

    Microbial strains, characterized by increased tolerance and ability to grow in metal bearing wastewaters as well as by effective metal sequestering capability by both active (bioaccumulative) and passive (biosorptive) processes, were tested as inoculum for metal laden wastewater treatment systems. Their capacity to grow in metal bearing wastewater, using an easily available and inexpensive carbon source such as acetate, was studied in batch experiments. Two principal conclusions were drawn: (1). Growth was observed for all the strains examined suggesting that the strains can be acclimated to metals bearing wastewaters. (2). Solution pH increased from neutral to alkaline values during growth (pH(initial)=7, pH(final)=10). The later was observed systematically for all strains. Metal precipitation, due to the metabolically generated alkalinity is expected as a result.Supporting evidence for this hypothesis was provided during the operation of two pilot moving bed sand filters treating two different metal bearing wastewaters. Acetate was used as carbon source to support the growth and maintenance of microbial biomass on the sand grains of the filters. The characteristics of the sludge produced from the operation of the pilot plants were subsequently studied in the laboratory. Both sludges were significantly loaded with large amounts of metals.A mechanism of metal precipitation induced by the metabolically generated alkalinity, when acetate is used as carbon source, could be proposed as the main process responsible for the metals sequestering inside the moving bed sandfilter reactor. PMID:12909102

  11. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  12. Process for the production of fuels and metal values

    SciTech Connect

    Audeh, C.A.

    1983-06-28

    A process for producing liquid fuels and for recovering metal values from crude petroleum by vis-breaking the reduced crude petroleum and dealkylating the vis-broken, reduced crude by treatment with an aromatic compound and an acidic transalkylation catalyst. The liquid product from the dealkylation step is separated and the residue fraction thermally processed with coal to solubilize the coal in the aromatic residue and demetallate the residue with the coal. The coal is partly liquefied in this step and the liquefaction products, together with liquids derived from the petroleum, may be hydrotreated prior to further processing e.g., in an fcc unit. The solid residue from this step may be treated to recover the metal values, especially nickel and vanadium.

  13. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells*

    PubMed Central

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Chakrabarti, Buddhapriya; Foster, Andrew W.; Lurie-Luke, Elena; Huggins, Thomas G.; Robinson, Nigel J.

    2015-01-01

    FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells. PMID:26109070

  14. Transition metal catalysis in the generation of petroleum and natural gas. Final report, September 1, 1992--October 31, 1995

    SciTech Connect

    Mango, F.D.

    1997-01-21

    This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalytically robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process. The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.

  15. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.

    PubMed

    Strong, P J; Kalyuzhnaya, M; Silverman, J; Clarke, W P

    2016-09-01

    Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation.

  16. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.

    PubMed

    Strong, P J; Kalyuzhnaya, M; Silverman, J; Clarke, W P

    2016-09-01

    Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation. PMID:27146469

  17. Defining next-generation products: an inside look.

    PubMed

    Tabrizi, B; Walleigh, R

    1997-01-01

    The continued success of technology-based companies depends on their proficiency in creating next-generation products and their derivatives. So getting such products out the door on schedule must be routine for such companies, right? Not quite. The authors recently engaged in a detailed study--in which they had access to sensitive internal information and to candid interviews with people at every level--of 28 next-generation product-development projects in 14 leading high-tech companies. They found that most of the companies were unable to complete such projects on schedule. And the companies also had difficulty developing the derivative products needed to fill the gaps in the market that their next-generation products would create. The problem in every case, the authors discovered, was rooted in the product definition phase. And not coincidentally, the successful companies in the study had all learned how to handle the technical and marketplace uncertainties in their product definition processes. The authors have discerned from the actions of those companies a set of best practices that can measurably improve the definition phase of any company's product-development process. They have grouped the techniques into three categories and carefully lay out the steps that companies need to take as they work through each stage. The best practices revealed here are not a magic formula for rapid, successful new-product definition. But they can help companies capture new markets without major delays. And that is good news for any manager facing the uncertainty that goes with developing products for a global marketplace.

  18. Defining next-generation products: an inside look.

    PubMed

    Tabrizi, B; Walleigh, R

    1997-01-01

    The continued success of technology-based companies depends on their proficiency in creating next-generation products and their derivatives. So getting such products out the door on schedule must be routine for such companies, right? Not quite. The authors recently engaged in a detailed study--in which they had access to sensitive internal information and to candid interviews with people at every level--of 28 next-generation product-development projects in 14 leading high-tech companies. They found that most of the companies were unable to complete such projects on schedule. And the companies also had difficulty developing the derivative products needed to fill the gaps in the market that their next-generation products would create. The problem in every case, the authors discovered, was rooted in the product definition phase. And not coincidentally, the successful companies in the study had all learned how to handle the technical and marketplace uncertainties in their product definition processes. The authors have discerned from the actions of those companies a set of best practices that can measurably improve the definition phase of any company's product-development process. They have grouped the techniques into three categories and carefully lay out the steps that companies need to take as they work through each stage. The best practices revealed here are not a magic formula for rapid, successful new-product definition. But they can help companies capture new markets without major delays. And that is good news for any manager facing the uncertainty that goes with developing products for a global marketplace. PMID:10174793

  19. Metal-centered polymers: Using controlled polymerization methodologies for the generation of responsive materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert Matthew

    Controlled polymerization methods were used to prepare highly modular polymeric metal complexes via convergent and divergent strategies. In these materials, the metal center provides a versatile hub for preparing diverse architectures through coordinative bonds. Moreover, the metal complex introduces various properties to the polymer such as luminescence, magnetism, or electroactivity. Suitably functionalized metal complexes have been used for the atom transfer radical polymerization of acrylate and methacrylate monomers by metalloinitiation to generate luminescent biocompatible materials through a divergent synthesis. By cleaving the tert-butyl groups from poly(tert -butyl acrylate), water soluble [Ru(bpyPAA2)3] 2+ has been prepared as well as the amphiphilic star block copolymer [Ru{bpy(PLA-PAA)2}3]2+ (PLA = poly(lactic acid), PAA = poly(acrylic acid) Bipyridine-centered polymeric macroligands may be chelated to a variety of metal salts. The polymer size greatly influences the formation of [Fe(bpy) 3]2+ centered polymers. As the molecular weight increases (> ˜25 kDa) tris complex formation decreases. Tris(bpy) synthesis is also impacted by chemical composition. BpyPtBA2 (PtBA = poly(tert-butyl acrylate) generates an iron mono(bpy) complex before giving rise to the bis(bpy) iron complex; no tris complex is observed. In contrast, the combination of bpyPEG2 (3 equiv) (PEG = (poly(ethylene glycol)) results in the formation of some iron tris(bpy) compound; however, complete tris(bpy) product formation is suppressed, presumably because of the chelating ability of the PEG chains. These examples contrast with other polymeric macroligands such as bpyPS2, bpyPMMA2, bpyPCL2 and bpyPLA 2 (PS = polystyrene; PMMA = poly(methyl methacrylate); PCL = poly(epsilon-caprolactone); PLA = poly(DL-lactic acid)) for which chelation reactions are facile for low molecular weight macroligands (<15 kDa), with chelation efficiencies (defined as (epsilonPMC/epsilonbpy) x 100%) only declining

  20. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    NASA Astrophysics Data System (ADS)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms

  1. Recent developments in high purity niobium metal production at CBMM

    SciTech Connect

    Abdo, Gustavo Giovanni Ribeiro Sousa, Clovis Antonio de Faria Guimarães, Rogério Contato Ribas, Rogério Marques Vieira, Alaércio Salvador Martins Menezes, Andréia Duarte Fridman, Daniel Pallos Cruz, Edmundo Burgos

    2015-12-04

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  2. Recent developments in high purity niobium metal production at CBMM

    NASA Astrophysics Data System (ADS)

    Abdo, Gustavo Giovanni Ribeiro; Sousa, Clovis Antonio de Faria; Guimarães, Rogério Contato; Ribas, Rogério Marques; Vieira, Alaércio Salvador Martins; Menezes, Andréia Duarte; Fridman, Daniel Pallos; Cruz, Edmundo Burgos

    2015-12-01

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM's position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM's ingots is for the manufacture of particle accelerators (superconducting radio frequency - SRF - cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world's largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  3. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.

    PubMed

    Archambeau, Alexis; Miege, Frédéric; Meyer, Christophe; Cossy, Janine

    2015-04-21

    incorporating an eight-membered ring. The reactivity of rhodium(II) carbenoids generated from 3,3-dimethylcyclopropenylcarbinols was also investigated in intramolecular C(sp(3))-H insertions. Despite their low electrophilic character, these purely donor rhodium(II) carbenoids underwent remarkably efficient diastereoselective 1,5- or 1,6-C-H insertions allowing access to a wide variety of substituted cyclopentanols, cyclohexanols, bicycloalkanols, and tetrahydropyrans with high level of diastereoselectivity and with complete tolerance of a free hydroxyl group. The products arising from the gold(I)- or rhodium(II)-catalyzed ring-opening/intramolecular cyclopropanation or C-H insertion of 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines always incorporate an isopropylidene moiety, which can potentially undergo subsequent oxidative cleavage into a carbonyl group without epimerization. By virtue of this operation, the 3,3-dimethylcyclopropenyl group formally behaves as a valuable surrogate for an α-diazoketone, with obvious advantages considering the ease of access to the corresponding substrates and that no hazardous reagents are involved in their preparation. These studies have set a useful basis for the development of other reaction pathways involving metal carbenoids generated from these readily available families of substituted cyclopropenes, including the investigation of the yet underexploited synthetic potential of purely donor rhodium(II) carbenoids. PMID:25763601

  4. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.

  5. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-06-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  6. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals.

    PubMed

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B; Louie, Steven G

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  7. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    PubMed Central

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  8. Next-generation biomass feedstocks for biofuel production

    PubMed Central

    Simmons, Blake A; Loque, Dominique; Blanch, Harvey W

    2008-01-01

    The development of second-generation biofuels - those that do not rely on grain crops as inputs - will require a diverse set of feedstocks that can be grown sustainably and processed cost-effectively. Here we review the outlook and challenges for meeting hoped-for production targets for such biofuels in the United States. PMID:19133109

  9. Second harmonic generation from multilayers of oriented metal bisphosphonates

    SciTech Connect

    Neff, G.A.; Mahon, T.M.; Abshere, T.A.; Page, C.J.

    1996-12-31

    Second order nonlinear optical properties (NLO) require the presence of a polarizable moiety situated in an anharmonic potential. The approach to incorporating such properties into self-assembled multilayers involves use of asymmetric {alpha},{omega} bisphosphonates which meet this requirement by virtue of their chemical structure and binding properties. The authors have developed and optimized protection and deprotection schemes to allow for oriented layering of these molecules. Characterization by optical ellipsometry and grazing angle X-ray diffraction provides insight on average layer thicknesses and bulk film densities. Second harmonic generation (SHG) intensity from the bulk film is measured to verify NLO activity.

  10. Engineering cyanobacteria to generate high-value products

    SciTech Connect

    Ducat, DC; Way, JC; Silver, PA

    2011-02-01

    Although many microorganisms have been used for the bioindustrial generation of valuable metabolites, the productive potential of cyanobacterial species has remained largely unexplored. Cyanobacteria possess several advantages as organisms for bioindustrial processes, including simple input requirements, tolerance of marginal agricultural environments, rapid genetics, and carbon-neutral applications that could be leveraged to address global climate change concerns. Here, we review recent research involving the engineering of cyanobacterial species for the production of valuable bioindustrial compounds, including natural cyanobacterial products (e.g. sugars and isoprene), biofuels (e.g. alcohols, alkanes and hydrogen), and other commodity chemicals. Biological and economic obstacles to scaled cyanobacterial production are highlighted, and methods for increasing cyanobacterial production efficiencies are discussed.

  11. Heavy metal analysis in commercial Spirulina products for human consumption

    PubMed Central

    Al-Dhabi, Naif Abdullah

    2013-01-01

    For consumption of health foods of Spirulina, by the general public, health food stores are increasingly offering more exotic products. Though Spirulina consumption is growing worldwide, relatively few studies have reported on the quantities of heavy metals/minerals they contain and/or their potential effects on the population’s health. This study reveals the concentrations of six typical heavy metals/minerals (Ni, Zn, Hg, Pt, Mg, and Mn) in 25 Spirulina products commercialized worldwide for direct human consumption. Samples were ground, digested and quantified by Coupled Plasma Mass Spectroscopy (ICP–MS). The concentrations (mg/kg d.w.) were range from 0.001 to 0.012 (Pt) followed by 0.002–0.028 (Hg), 0.002–0.042 (Mg), 0.005–2.248 (Mn), 0.211–4.672 (Ni) and 0.533–6.225 (Zn). The inorganic elements of the present study were significantly lower than the recommended daily intake (RDI) level of heavy metal elements (mg/daily) Ni (0.4), Zn (13), Hg (0.01), Pt (0.002), Mg (400) and Mn (4). Based on this study the concentration of inorganic elements was not found to exceed the present regulation levels, and they can be considered as safe food. PMID:24235875

  12. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  13. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  14. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  15. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  16. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  17. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  18. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to...

  19. Titanium Metal Powder Production by the Plasma Quench Process

    SciTech Connect

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  20. GOES-R GS Product Generation Infrastructure Operations

    NASA Astrophysics Data System (ADS)

    Blanton, M.; Gundy, J.

    2012-12-01

    GOES-R GS Product Generation Infrastructure Operations: The GOES-R Ground System (GS) will produce a much larger set of products with higher data density than previous GOES systems. This requires considerably greater compute and memory resources to achieve the necessary latency and availability for these products. Over time, new algorithms could be added and existing ones removed or updated, but the GOES-R GS cannot go down during this time. To meet these GOES-R GS processing needs, the Harris Corporation will implement a Product Generation (PG) infrastructure that is scalable, extensible, extendable, modular and reliable. The primary parts of the PG infrastructure are the Service Based Architecture (SBA), which includes the Distributed Data Fabric (DDF). The SBA is the middleware that encapsulates and manages science algorithms that generate products. The SBA is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. The SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DDF to provide this data communication layer between algorithms. The DDF provides an abstract interface over a distributed and persistent multi-layered storage system (memory based caching above disk-based storage) and an event system that allows algorithm services to know when data is available and to get the data that they need to begin processing when they need it. Together, the SBA and the DDF provide a flexible, high performance architecture that can meet

  1. Control of the electrode metal transfer by means of the welding current pulse generator

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  2. New generation of medium wattage metal halide lamps and spectroscopic tools for their diagnostics

    NASA Astrophysics Data System (ADS)

    Dunaevsky, A.; Tu, J.; Gibson, R.; Steere, T.; Graham, K.; van der Eyden, J.

    2010-11-01

    A new generation of ceramic metal halide high intensity discharge (HID) lamps has achieved high efficiencies by implementing new design concepts. The shape of the ceramic burner is optimized to withstand high temperatures with minimal thermal stress. Corrosion processes with the ceramic walls are slowed down via adoption of non-aggressive metal halide chemistry. Light losses over life due to tungsten deposition on the walls are minimized by maintaining a self-cleaning chemical process, known as tungsten cycle. All these advancements have made the new ceramic metal halide lamps comparable to high pressure sodium lamps for luminous efficacy, life, and maintenance while providing white light with high color rendering. Direct replacement of quartz metal halide lamps and systems results in the energy saving from 18 up to 50%. High resolution spectroscopy remains the major non-destructive tool for the ceramic metal halide lamps. Approaches to reliable measurements of relative partial pressures of the arc species are discussed.

  3. Transition metal catalysis in the generation of petroleum and natural gas. Progress report, [1992--1993

    SciTech Connect

    Mango, F.

    1993-08-01

    A new hypothesis is introduced for the generation of petroleum and natural gas. The transition metals, activated under the reducing conditions of diagenesis, are proposed as catalysts in the generation of light hydrocarbons. The objective of this proposal is to test that hypothesis. Transition metals (Ni, V, Ti, Co, Fe), in kerogen, porphyrins, and as pure compounds, will be tested under catagenic conditions for catalytic activity in the conversion of normal paraffins and hydrogen into light hydrocarbons. If the hypothesis is correct, kerogenous transition metals should become catalytically active under the reducing conditions of diagenesis and catalyze the conversion of paraffins into the light hydrocarbons seen in petroleum. Moreover, the C{sub 1}-C{sub 4} hydrocarbons generated catalytically should be similar in molecular and isotopic compositions to natural gas.

  4. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  5. Surface plasma wave assisted second harmonic generation of laser over a metal film

    SciTech Connect

    Chauhan, Santosh; Parashar, J.

    2015-01-15

    Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metal–vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave.

  6. Bubble production mechanism in a microfluidic foam generator.

    PubMed

    Stoffel, M; Wahl, S; Lorenceau, E; Höhler, R; Mercier, B; Angelescu, D E

    2012-05-11

    We present the design and characterization of a microfluidic bubble generator that has the potential of producing monodisperse bubbles in 256 production channels that can operate in parallel. For a single production channel we demonstrate a production rate of up to 4 kHz with a coefficient of variation of less than 1%. We observe a two-stage bubble production mechanism: initially the gas spreads onto a shallow terrace, and then overflows into a larger foam collection channel; pinning of the liquid-gas meniscus is observed at the terrace edge, the result being an asymmetric pinch-off. A semiempirical physical model predicts the scaling of bubble size with fluid viscosity and gas pressure from measurements of the pinned meniscus width.

  7. Mineralogy and metals speciation in Mo rich mineral sludges generated at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Joussein, E; Labanowski, J; Lens, P N L; van Hullebusch, E D

    2015-04-01

    In France, more than 250 million metric tons of sludges need to be treated each year. These sludges are either dumped on the landfills or reused as secondary resources in order to preserve natural resources. A large portions of these sludges are mineral sludges, originating from metal recycling plants. In order to estimate their metal recovery potential, these mineral sludges were characterized. Four types of mineral sludge samples were collected from a metal recycling plant (3 from the recycling plant storage areas (bulk storage, barrel storage and storage shed) and 1 from the collection basin). The sludges were characterized, wherein the Mo, Ni, Cr, Co, Zn and W content and speciation were quantified. The samples had pH values between 5.9 and 10.3 with organic matter contents varying between 6.3% (storage shed) and 29.5% (bulk storage) (loss on ignition at 500 °C). Based on their leaching properties, the four mineral sludge samples (in the case of Mo) and the bulk storage sludge (in the case of Ni and Zn) were classified as potentially hazardous regarding the EN 12457-1 and EN 12457-2 method. Mineralogical results reveal that both bulk storage and the storage shed give the highest contributions to the metal content of the collection basin sample. Sequential extraction of the collection basin samples indicated that Mo is bound to the oxidizable and residual fraction, while Ni, Cr and Co were bound to the residual fraction, and Zn to the soluble acid fraction, respectively. W tends to be equally distributed among all extracted fractions. A strong correlation existed between Mo and Co, as well as between Ni, Zn and Cr, respectively. PMID:25623002

  8. Mineralogy and metals speciation in Mo rich mineral sludges generated at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Joussein, E; Labanowski, J; Lens, P N L; van Hullebusch, E D

    2015-04-01

    In France, more than 250 million metric tons of sludges need to be treated each year. These sludges are either dumped on the landfills or reused as secondary resources in order to preserve natural resources. A large portions of these sludges are mineral sludges, originating from metal recycling plants. In order to estimate their metal recovery potential, these mineral sludges were characterized. Four types of mineral sludge samples were collected from a metal recycling plant (3 from the recycling plant storage areas (bulk storage, barrel storage and storage shed) and 1 from the collection basin). The sludges were characterized, wherein the Mo, Ni, Cr, Co, Zn and W content and speciation were quantified. The samples had pH values between 5.9 and 10.3 with organic matter contents varying between 6.3% (storage shed) and 29.5% (bulk storage) (loss on ignition at 500 °C). Based on their leaching properties, the four mineral sludge samples (in the case of Mo) and the bulk storage sludge (in the case of Ni and Zn) were classified as potentially hazardous regarding the EN 12457-1 and EN 12457-2 method. Mineralogical results reveal that both bulk storage and the storage shed give the highest contributions to the metal content of the collection basin sample. Sequential extraction of the collection basin samples indicated that Mo is bound to the oxidizable and residual fraction, while Ni, Cr and Co were bound to the residual fraction, and Zn to the soluble acid fraction, respectively. W tends to be equally distributed among all extracted fractions. A strong correlation existed between Mo and Co, as well as between Ni, Zn and Cr, respectively.

  9. CARBON-RICH DUST PRODUCTION IN METAL-POOR GALAXIES IN THE LOCAL GROUP

    SciTech Connect

    Sloan, G. C.; Matsuura, M.; Lagadec, E.; Van Loon, J. Th.; Kraemer, K. E.; McDonald, I.; Zijlstra, A. A.; Groenewegen, M. A. T.; Wood, P. R.; Bernard-Salas, J.

    2012-06-20

    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.

  10. Gelation Mechanisms and Characterization of Electrochemically Generated Protein Films at Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Martin, Elizabeth J.

    Although the electrochemical behavior of metals used in orthopedic implants has been studied extensively, the material interactions with proteins during corrosion processes remains poorly understood. Some studies suggest that metal-protein interactions accelerate corrosion, while others suggest that proteins protect the material from degradation. Corrosion of implant materials is a major concern due to the metal ion release that can sometimes cause adverse local tissue reactions and ultimately, failure of the implant. The initial purpose of this research was therefore to study the corrosion behavior of CoCrMo, an alloy commonly used in hip replacements, with a quartz crystal microbalance (QCM) in physiologically relevant media. The QCM enables in situ characterization of surface changes accompanying corrosion and is sensitive to viscoelastic effects at its surface. Results of QCM studies in proteinaceous media showed film deposition on the alloy surface under electrochemical conditions that otherwise produced mass loss if proteins were not present in the electrolyte. Additional studies on pure Co, Cr, and Mo demonstrated that the protein films also form on Mo surfaces after a release of molybdate ions, suggesting that these ions are essential for film formation. The electrochemically generated protein films are reminiscent of carbonaceous films that form on implant surfaces in vivo, therefore a second goal of the research was to delineate mechanisms that cause the films to form. In the second stage of this research, electrochemical QCM tests were conducted on models of the CoCrMo system consisting of Cr electrodes in proteinaceous or polymeric media containing dissolved molybdate ions. Studies indicated that films can be generated through electrochemical processes so long as both amine functional groups and molybdate ions are present in the electrolyte solution. These results suggest that the films form due to an ionic cross-linking reaction between the positively

  11. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.

    PubMed

    Saunders, Richard J; Paul, Nicholas A; Hu, Yi; de Nys, Rocky

    2012-01-01

    Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg(-1) DW and 137 mg.kg(-1) DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation.

  12. Production of aggregate from non-metallic automotive shredder residues.

    PubMed

    Rossetti, Vito Alunno; Di Palma, Luca; Medici, Franco

    2006-09-21

    In this paper, the results of an experimentation on the production of granules suitable to be used as aggregates in cementitious or asphalt mixes are presented and discussed. The granules were obtained by granulating the non-metallic fraction of automotive shredder residues. In a preliminary separation step the fluff fraction containing mainly inert and non-metallic materials was sieved and analyzed for the metal content. In the following granulation step, the sieved fraction was mixed with binding materials, fly ash and a densifier agent, to produce granules of 5-30 mm of diameter and up to 1400 kg/m3 of specific weight. The granulation was carried out at room temperature in a rotating tank. Concrete samples prepared using as aggregates the produced granules showed a specific weight up to 1800 kg/m3 and a compressive strength up to about 55% of reference samples prepared using a calcareous aggregate, depending on the fluff content of the mixes, and on the nature of the binder and of the other components used.

  13. Ambient spark generation to synthesize carbon-encapsulated metal nanoparticles in continuous aerosol manner

    NASA Astrophysics Data System (ADS)

    Byeon, Jeong Hoon; Park, Jae Hong; Yoon, Ki Young; Hwang, Jungho

    2009-11-01

    We report the use of spark generation in an inert gas atmosphere to synthesize carbon-encapsulated metal nanoparticles (CEMNs) in a continuous aerosol manner using a metal (nickel, cobalt, iron)-graphite carbon electrode configuration without the use of a vacuum. The spark-generated particles consisted of CEMNs and carbonaceous aggregated debris. The outer layer of the CEMNs showed parallel fringes (ordered graphitic nanostructures) while the debris consisted of disordered nanostructures. Electron and X-ray diffraction showed that both metal and graphite in the CEMNs were the pure elements except for iron-carbon, which contained a carbide phase. Based on the order of the activation energies for carbon diffusion into a metal: iron-carbon (10.5-16.5 kcal mol-1) < cobalt-carbon (34.7 kcal mol-1) ~ nickel-carbon (33.0-34.8 kcal mol-1), it was concluded that carbide particles form more easily from elemental iron than nickel or cobalt. The metal-to-carbon mass fractions of the spark-generated particles from nickel (anode)-carbon (cathode), cobalt-carbon, and iron-carbon spark configurations were 18.7, 28.3, and 11.2%, respectively, while the mass fractions for the configurations of metal (cathode)-carbon (anode) were 6.4, 9.1, and 4.3%, respectively. Similarly, the yield of CEMNs from the metal (anode)-carbon (cathode) electrodes was higher (54, 61, and 53%) than that of metal (cathode)-carbon (anode) electrodes (18, 30, and 18%).

  14. Heavy Metals in the Vegetables Collected from Production Sites

    PubMed Central

    Taghipour, Hassan; Mosaferi, Mohammad

    2013-01-01

    Background: Contamination of vegetable crops (as an important part of people's diet) with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz) on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20) (Allium ampeloprasumssp. Persicum), onion (n=20) (Allium cepa) and tomato (n=18) (Lycopersiconesculentum var. esculentum), were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS) after extraction by aqua regia method (drying, grounding and acid diges­tion). Results: Mean ± SD (mg/kg DW) concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respec­tively. Cr, Cu and Zn were present in all the samples and the highest concentra­tions were observed in kurrat (leek). Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05) and Zn (P<0.001) among the studied vegetables. Positive correlation was observed be­tween Cd:Cu (R=0.659, P<0.001) Cr:Ni (R=0.326, P<0.05) and Cr:Zn (R=0.308, P<0.05).   Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possi­ble health outcomes due to the consumption of contaminated vegetables, it is re­quired to take proper actions for avoiding people's chronic exposure. PMID:24688968

  15. Detoxification and generation of useful products from coal combustion wastes

    SciTech Connect

    Not Available

    1990-11-21

    Electric utilities are on the brink of a new era in waste disposal problems. This research project addresses the issue of how to effectively dispose of flyash, bottom ash, desulfurization sludge through the generation of chemically-hardened material that could potentially be used as a cement or as a synthetic aggregate. The specific goals of this study were: (1) to study the hardness of mixtures of flyash, bottom ash, and DSG treated with lime and other hardening agents; (2) to determine the optimum solids content, setting time, moisture content, and post setting treatments that will yield the greatest strength and hardness out of these mixtures; and (3) to determine the leachability of the synthetic material as a measure of its ability to retain absorbed and/or entrained toxic metals. 50 refs., 15 figs., 8 tabs.

  16. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  17. Broadband terahertz generation using the semiconductor-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Kim, Heungsoo; Mathews, Scott A.; Piqué, Alberto

    2016-01-01

    We report the design, fabrication, and characterization of broadband terahertz emitters based on the semiconductor-metal transition in thin film VO2 (vanadium dioxide). With the appropriate geometry, picosecond electrical pulses are generated by illuminating 120 nm thick VO2 with 280 fs pulses from a femtosecond laser. These ultrafast electrical pulses are used to drive a simple dipole antenna, generating broadband terahertz radiation.

  18. A products generator for testing the performance of disassembly procedures

    NASA Astrophysics Data System (ADS)

    Adenso-Díaz, Belarmino; González Torre, Beatriz

    2004-12-01

    In recent decades, regulations and markets have been exerting pressure on designers and manufacturers to take more responsibility for the environmental impacts of their products throughout their life cycles. The problem of finding the disassembly sequence represents one of the major challenges when attempting to close product life cycles by carrying out reuse, recycling and remanufacturing practices. Many different techniques have been used to deal with this problem, varying from exact to heuristic solutions. So far, however, not much effort has gone into measuring and comparing the efficiency of this wide set of techniques. This is partly due to the difficulties of getting a wide population of real products, belonging to different industries and with different degree of complexity that might constitute a representative population for carrying out this kind of task. In this paper, a generator of complex products is presented that is able to build up products with hundreds of components joined by different kinds of joints in such a way that a theoretical "good" disassembly sequence is always known. The efficiency of different methods for general products can thus be easily compared. The performance of a Scatter Search algorithm is tested as an example of its application in this case.

  19. Effects of current on droplet generation and arc plasma in gas metal arc welding

    SciTech Connect

    Hu, J.; Tsai, H. L.

    2006-09-01

    In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the molten metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.

  20. Landsat Data Continuity Mission (LDCM) Standard Product Generation and Characteristics

    NASA Astrophysics Data System (ADS)

    Micijevic, E.; Hayes, R.

    2012-12-01

    The LDCM's Landsat 8 (L8), planned for launch in February 2013, is the latest satellite in the 40 year history of the Landsat program. The satellite will have two imagers: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The data from both sensors will be processed and combined into the final Level 1 Terrain (L1T) standard product by the Landsat Product Generation System (LPGS) at the USGS Earth Resources Observation and Science (EROS). Landsat 8 products will nominally have 11 image bands; however, products will still be created if OLI only, or TIRS only collections are acquired. The LPGS is designed to create L1T products from Level 0 data by merging OLI and TIRS outputs and performing systematic radiometric and geometric corrections, followed by precision and terrain corrections that include Ground Control Points (GCP), and a Digital Elevation Model (DEM) for topographic accuracy. Scenes that have a quality score of 9 or greater and a percent cloud cover less than 40 will be automatically processed. In addition, any archived scene, regardless of cloud cover, can be requested for processing through USGS EROS clients, GloVis or Earth Explorer. While most data will be processed as Level L1T, some scenes will not have ground control or elevation data necessary for precision or terrain correction, respectively. In these cases, the best level of correction will be applied (Level 1G-systematic or Level 1Gt-systematic terrain). The standard Level 1T products will contain scaled Top of Atmosphere (TOA) reflectance data, only for OLI. The conversion between radiance and reflectance within radiometric processing (L1R) will be performed using the band specific coefficients that are proportional to the respective exoatmospheric solar irradiances and the Earth-Sun distance for the scene's acquisition day. The TIRS data will contain scaled at-sensor radiances and no at-sensor brightness temperature or emissivity conversions are planned. For users that

  1. Generation and applications of monoclonal antibodies for livestock production.

    PubMed

    Van Der Lende, T

    1994-01-01

    Monoclonal antibodies (MCAs) have found widespread applications in livestock production. Although the generation of murine MCAs is at present a routine, the production of homologous MCAs, especially important for in vivo applications, is still hampered by the lack of efficient homologous fusion partners for immortalization of antibody producing lymphocytes of livestock species. At present, MCAs are used in immunodiagnostic tests e.g. to monitor livestock reproduction and quality of livestock products. In the future MCAs will also be used in immunosensors for real-time and on-site applications in the same areas. The commercial application of MCAs for the immunomodulation of (pharmacologically induced) physiological processes underlying important (re)production traits is at present limited to the use of anti-PMSG MCAs in PMSG-induced superovulation. However, many potentially interesting applications are under investigation (e.g. immunopotentiation of growth hormone to enhance growth; immunocytolysis of adipocytes to increase lean meat production; immunoneutralization of GnRH for immunocastration; immunoimitation of hormone activity with anti-idiotype antibodies). Attempts to use specific MCAs for the sexing of embryos have been disappointing, mainly because of the relatively low accuracy. In the future, MCAs against membrane proteins which are specific for X- or Y-chromosome bearing spermatozoa might be used for bulk separation of livestock sperm. In general, it is expected that engineered (homologous) recombinant MCAs will largely contribute to the development of a new generation of rapid immunodiagnostic tests and effective immunomodulation applications. They will further increase the use of MCAs in livestock production.

  2. Novel layout of a bi-metallic nanoring for magnetic field pulse generation from light

    NASA Astrophysics Data System (ADS)

    Vienne, Guillaume; Chen, Xiaoye; Shi Teh, Ying; Jye Ng, Ying; Oon Chia, Nyap; Ooi, Ching Pin

    2015-01-01

    Recently Tsiatmas et al proposed using a nanoring made of two different metallic sectors to generate a magnetic pulse from a laser pulse [1]. Non-uniform heating of the ring creates very large temperature gradients, which drive thermoelectric currents, and this creates a localized magnetic field. However, heat from the laser pulse may result in the melting of the nanoring. We propose a symmetric structure made of four metallic sectors, which results in a higher magnetic field generation together with a lower lattice temperature. We also show that the magnetic field depends strongly on the size of the metallic sectors and interpret the results with the help of the electromotive forces, the overall ring resistance, and Biot-Savart law.

  3. Ultrafast Hot Carrier Scattering and Generation from Surface Plasmons in Noble Metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-03-01

    Non-equilibrium ``hot''carriers in materials are challenging to study experimentally as they thermalize at subpicosecond time and nanometer length scale. Recent experiments employed hot carriers generated by light absorption or surface plasmon annihilation in noble metals (e.g., Au and Ag) for catalysis and solar cells. The energy distribution and transport of the generated hot carriers play a key role in these experiments. We present ab initio calculations of the energy distribution of hot carriers generated by surface plasmons in noble metals, and the relaxation time and mean free path of the hot carriers along different crystal directions within 5 eV of the Fermi energy. Our calculations show the interplay of the noble metal s and d bands in determining the damping rate of the plasmon and the mean free path of the hot carriers. The trends we find as a function of surface plasmon momentum and frequency allow us to define optimal experimental conditions for hot carrier generation and extraction. Our approach combines density functional theory, GW, and electron-phonon calculations. Our work provides microscopic insight into hot carriers in noble metals, and their ultrafast dynamics in the presence of surface plasmons.

  4. Tritium Generation from the Interaction of a Glow Discharge Plasma with Metals and with a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Romodanov, V. A.

    2005-12-01

    We present results of our research on tritium generation through the bombardment of the surface of various metals by accelerated ions of hydrogen isotopes from a glow discharge plasma, with and without a magnetic field. The introduction of a magnetic field perpendicular to the sample surface results in an increase in the tritium activity, and in the tritium generation rate, of almost two orders of magnitude as compared to similar experiments run with no magnetic field. The largest tritium generation rates observed were obtained with the glow discharge operating in a magnetic field, and were in the range 109-1010 atom/s. This is higher than our background by three to four orders of magnitude. The use of a magnetic field has resulted in good reproducibility, and the development of a reliable tritium generation rate of about 1010 atom/s for tantalum, tungsten, and platinum. A new technique for the generation and measurement of excess heat is presented based on the transfusion of hydrogen isotopes through the metal wall of a hollow sample electrode toward the glow discharge. In the case of a vanadium cathode, the maximum excess thermal power is about 30% of the absorbed power. The generation of excess power is found to be maximized in the temperature 600-700 K for relative power, and 800-1000K for absolute power. The results of measurements support a nuclear origin for the tritium generation, as opposed to a conventional thermal activation explanation. Mass spectroscopic measurements show an increase in species with deuterium in discharge experiments with hydrogen gas and with deuterium gas. The tritium generation rate is found to increase with the addition of deuterium, but by an amount not commensurate with the amount of deuterium added. Measurements of the gamma spectrum indicate that positrons are not generated in the course of tritium generation. These observations allow us to assert that modified versions of p+p and p+d reactions are responsible for the

  5. Metal cation inhibitors for controlling denting corrosion in steam generators. Final report. [PWR

    SciTech Connect

    Leidheiser, H. Jr.; Granata, R.D.; Simmons, G.W.; Music, S.; Vedage, H.L.

    1982-12-01

    Metal cations of arsenic, antimony, tin, manganese, zinc, cadmium, indium, and thallium have been evaluated in a preliminary way as possible3 inhibitors for controlling denting corrision observed in steam generators used with pressurized water reactors (PWR). The rationale for this approach was based upon the well-known inhibition effects of metal cations on corrosion rates in electrolyte/metal systems. A review of corrosion inhibition by metal cations (H. Leidheiser, Jr., Corrosion 36, 339 (1982)) has identified eleven inhibition mechanisms. The major test methods used for this evaluation were: (1) Isothermal capsule tests of carbon/steel/Inconel 600 tube bulging rates at temperatures up to 288/sup 0/C in seawater/copper-nickel chloride bulge-accelerating solutions. (2) Immersion weight-loss tests of steel coupled to Inconel 600 in boiling (102/sup 0/C) 3% sodium chloride solutions. In addition, electrochemical measuremens and surface analyses were performed. The major findings of this investigation are presented.

  6. Toxic combustion by-products: Generation, separation, cleansing, containment

    SciTech Connect

    Kephart, W.; Eger, K.; Angelo, F.; Clemens, M.K.

    1995-12-31

    Focus of this paper is on diagnosis, control, and containment of potentially toxic combustion byproducts when mixed wastes are treated at elevated temperatures. Such byproducts fall into several categories: acid gases, particulates, metals, organics. Radionuclides are treated as a subset of metals, while organics are divided into two subclasses: products of incomplete combustion, and principal organic hazardous constituents. An extended flue gas cleaning system is described which can be used to contain potentially toxic organic emissions and recycle the hazrdous materials for further treatment; it uses oxygen rather than air to reduce total quantities of emissions, improve efficiency of oxidation, and minimize NOx emissions. Flue gas recycling is used for cooling and for containing all potentially toxic emissions. Three thermal treatment unit operations are used in series for more effective process control; three emission separation and containment unit operations are also used in series in the toxic emission containment system. Real time diagnostic hardware/software are used. Provision is made for automatic storage, separation of hazardous materials, commodity regeneration, and recycling of potentially harmful constituents. The greenhouse gas CO2 is recovered and not emitted to the atmosphere.

  7. Aerosol production by high-velocity molten-metal droplets

    SciTech Connect

    Rader, D J; Benson, D A

    1988-06-01

    This report presents the results of an experimental study of the aerosol produced by high-velocity molten-metal droplets. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. The primary droplets are produced by the heating and electromagnetic launch of metal wires; velocities approaching Mach 1 can be obtained at present. Size distributions obtained tungsten and zirconium droplets burning in air. Lognormal size distributions were observed in both cases with DMPS-equivalent mean diameters of about 0.4 ..mu..m and geometric standard deviations of about two. SEM and TEM analysis of aerosol samples collected by a point-to-plane electrostatic precipitator showed that the majority of these particles were web-like chain agglomerates. Tests performed in argon atmospheres produced several orders-of-magnitude less aerosol mass than in equivalent air tests, supporting the key role combustion plays in secondary aerosol generation. 26 refs., 14 figs., 2 tabs.

  8. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  9. Characteristics of products generated by selective sintering and stereolithography rapid prototyping processes

    NASA Technical Reports Server (NTRS)

    Cariapa, Vikram

    1993-01-01

    The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.

  10. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, Gary P.; Gavasto, Thomas M.; Ray, Siba P.

    1986-01-01

    An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

  11. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  12. The Live Access Server Scientific Product Generation Through Workflow Orchestration

    NASA Astrophysics Data System (ADS)

    Hankin, S.; Calahan, J.; Li, J.; Manke, A.; O'Brien, K.; Schweitzer, R.

    2006-12-01

    The Live Access Server (LAS) is a well-established Web-application for display and analysis of geo-science data sets. The software, which can be downloaded and installed by anyone, gives data providers an easy way to establish services for their on-line data holdings, so their users can make plots; create and download data sub-sets; compare (difference) fields; and perform simple analyses. Now at version 7.0, LAS has been in operation since 1994. The current "Armstrong" release of LAS V7 consists of three components in a tiered architecture: user interface, workflow orchestration and Web Services. The LAS user interface (UI) communicates with the LAS Product Server via an XML protocol embedded in an HTTP "get" URL. Libraries (APIs) have been developed in Java, JavaScript and perl that can readily generate this URL. As a result of this flexibility it is common to find LAS user interfaces of radically different character, tailored to the nature of specific datasets or the mindset of specific users. When a request is received by the LAS Product Server (LPS -- the workflow orchestration component), business logic converts this request into a series of Web Service requests invoked via SOAP. These "back- end" Web services perform data access and generate products (visualizations, data subsets, analyses, etc.). LPS then packages these outputs into final products (typically HTML pages) via Jakarta Velocity templates for delivery to the end user. "Fine grained" data access is performed by back-end services that may utilize JDBC for data base access; the OPeNDAP "DAPPER" protocol; or (in principle) the OGC WFS protocol. Back-end visualization services are commonly legacy science applications wrapped in Java or Python (or perl) classes and deployed as Web Services accessible via SOAP. Ferret is the default visualization application used by LAS, though other applications such as Matlab, CDAT, and GrADS can also be used. Other back-end services may include generation of Google

  13. Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

    SciTech Connect

    SAAD, MAX P.; RICHARDSON, ANASTASIA DAWN

    2003-03-01

    The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

  14. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  15. Production of the next-generation library virtual tour.

    PubMed

    Duncan, J M; Roth, L K

    2001-10-01

    While many libraries offer overviews of their services through their Websites, only a small number of health sciences libraries provide Web-based virtual tours. These tours typically feature photographs of major service areas along with textual descriptions. This article describes the process for planning, producing, and implementing a next-generation virtual tour in which a variety of media elements are integrated: photographic images, 360-degree "virtual reality" views, textual descriptions, and contextual floor plans. Hardware and software tools used in the project are detailed, along with a production timeline and budget, tips for streamlining the process, and techniques for improving production. This paper is intended as a starting guide for other libraries considering an investment in such a project. PMID:11837254

  16. The production of oxygen and metal from lunar regolith

    NASA Astrophysics Data System (ADS)

    Schwandt, Carsten; Hamilton, James A.; Fray, Derek J.; Crawford, Ian A.

    2012-12-01

    The present article summarises the various methods that have been, and still are, explored for the production of oxygen from lunar materials. These include the classical concepts based on chemical reduction with hydrogen or methane, vapour phase pyrolysis, sulphuric acid treatment, and molten oxide electrolysis. Our main focus in this paper is on a novel approach developed at the University of Cambridge that employs molten salt electrochemistry to achieve the combined winning of oxygen and metal from solid lunar materials of varying composition. This makes the Cambridge process attractive because it will work equally well in mare as in highland regions. We also discuss the implications of the recent apparent discovery of water ice at the poles of the Moon and conclude that, even if this discovery is confirmed, it will nevertheless be desirable to provide oxygen at non-polar localities, and the Cambridge process is a strong candidate for achieving this.

  17. Transition metal catalysis in the generation of petroleum and natural gas

    SciTech Connect

    Mango, F.D. )

    1992-01-01

    Certain ratios of light hydrocarbons remain virtually invariant over the course of petroleum generation, indicating steady-state catalysis rather than thermal cracking as the central feature to the mechanism of petroleum generation. Although the evidence for catalytic intervention is now compelling, the nature of the catalytic agent, its mode of activation and action are not clear. The author proposes that the transition metals, activated in the lipophilic domains of kerogen, are the catalytic agents in the conversion of normal paraffins into light hydrocarbons and natural gas. The process proceeds through specific catalytic steps involving 3-, 5-, and 6-carbon ring-closures and the cleavage of carbon-carbon bonds in the key steps. This hypothesis is analyzed in the context of published literature on catalysis by Ni, V, Ti, Co, and related transition metals. Activated under anaerobic conditions, these metals express extraordinary catalytic activity in each of the postulated steps. Moreover, metal-catalysis provides a reasonable kinetic pathway through which hydrogen and normal paraffins may combine to form a methane-enriched a natural gas. Given the anaerobic conditions of diagenesis and a kerogenous source of hydrogen, it is concluded that the transition metals, under catagenic conditions, are potentially active catalysts in the conversion of hydrogen and paraffins into light hydrocarbons and natural gas.

  18. Laser-assisted sheet metal working in series production

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    2013-02-01

    Based on the demand for a responsible use of natural resources and energy the need for lightweight materials is increasing. The most common materials for lightweight production are high and highest strength steel. These materials are difficult to machine using conventional sheet metal working processes because the high strength leads to a limited formability and high tool wear. The Fraunhofer IPT developed the laser-assisted sheet metal working. Selective laser based heating of the part directly before machining softens the material locally. Thus the quality of the following cut can be increased, for example for shearing 1.4310 the clear cut surface ratio can be increased from 20% up to 100% using a shearing gap of 10% of the sheet thickness. Because of the softening of the material and thus the increased formability, parts with a higher complexity can be produced. For example 1.4310 can be bent laser-assisted with a radius of 0.25 mm instead of 2-3 mm using the conventional process. For the first time spring steel can be embossed with conventional tools up to 50% of the sheet thickness. For the implementation in series production a modular system upgrade "hy-PRESS" has been developed to include laser and scanner technology into existing presses. For decoupling the sensitive optical elements of the machine vibrations an active-passive damping system has been developed. The combination of this new hybrid process and the system technology allows to produce parts of high strength steel with a high complexity and quality.

  19. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  20. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  1. Energy Harvesting Thermoelectric Generators Manufactured Using the Complementary Metal Oxide Semiconductor Process

    PubMed Central

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-01-01

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 μW at a temperature difference of 15 K. PMID:23396193

  2. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process.

    PubMed

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-02-08

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K.

  3. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process.

    PubMed

    Yang, Ming-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang; Tsai, Wen-Jung

    2013-01-01

    This paper presents the fabrication and characterization of energy harvesting thermoelectric micro generators using the commercial complementary metal oxide semiconductor (CMOS) process. The micro generator consists of 33 thermocouples in series. Thermocouple materials are p-type and n-type polysilicon since they have a large Seebeck coefficient difference. The output power of the micro generator depends on the temperature difference in the hot and cold parts of the thermocouples. In order to increase this temperature difference, the hot part of the thermocouples is suspended to reduce heat-sinking. The micro generator needs a post-CMOS process to release the suspended structures of hot part, which the post-process includes an anisotropic dry etching to etch the sacrificial oxide layer and an isotropic dry etching to remove the silicon substrate. Experiments show that the output power of the micro generator is 9.4 mW at a temperature difference of 15 K. PMID:23396193

  4. Atmospheric thermometry for metallic surfaces by laser-induced second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Pedanekar, Niranjan R.; Yin, Huiqi; Laurendeau, Normand M.

    1996-07-01

    To the best of our knowledge we report the first demonstration of surface thermometry using laser-induced second-harmonic generation (SHG) on a realistic metallic surface at atmospheric pressure. The surface is probed with a pulsed infrared laser beam and the SHG signal is monitored in reflection. For metallic silver, the SHG signal is found to be temperature dependent in the 25-120 degrees C range. The current accuracy of the method is +/-5 degrees C. Future work with platinum should permit the application of SHG thermometry to much higher surface temperatures.

  5. Metal concentrations and distribution in paint waste generated during bridge rehabilitation in New York State.

    PubMed

    Shu, Zhan; Axe, Lisa; Jahan, Kauser; Ramanujachary, Kandalam V; Kochersberger, Carl

    2015-09-01

    Between 1950 and 1980, lead and chromium along with other metals have been used in paint coatings to protect bridges from corrosion. In New York State with 4500 bridges in 11 Regions 2385 of the bridges have been rehabilitated and subsequently repainted after 1989 when commercial use of lead based paint was prohibited. The purpose of this research was to address the concentration and distribution of trace metals in the paint waste generated during bridge rehabilitation. Using hypothesis testing and stratified sampling theory, a representative sample size of 24 bridges from across the state was selected that resulted in 117 paint waste samples. Field portable X-ray fluorescence (FP-XRF) analysis revealed metal concentrations ranged from 5 to 168,090 mg kg(-1) for Pb, 49,367 to 799,210 mg kg(-1) for Fe, and 27 to 425,510 mg kg(-1) for Zn. Eighty percent of the samples exhibited lead concentrations greater than 5000 mg kg(-1). The elevated iron concentrations may be attributed to the application of steel grit as an abrasive blasting material routinely used by state Departments of Transportation in the paint removal process. Other metals including Ba and Cr were observed in the paint waste as well. As a result of the paint formulation, metals were found to be associated in the paint waste (Pb correlated with Cr (r=0.85)). The elevated metal concentrations observed raises concern over the potential impact of leaching from this waste stream.

  6. Enhanced Product Generation at NASA Data Centers Through Grid Technology

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Hinke, Thomas H.; Gavali, Shradha; Seufzer, William J.

    2003-01-01

    This paper describes how grid technology can support the ability of NASA data centers to provide customized data products. A combination of grid technology and commodity processors are proposed to provide the bandwidth necessary to perform customized processing of data, with customized data subsetting providing the initial example. This customized subsetting engine can be used to support a new type of subsetting, called phenomena-based subsetting, where data is subsetted based on its association with some phenomena, such as mesoscale convective systems or hurricanes. This concept is expanded to allow the phenomena to be detected in one type of data, with the subsetting requirements transmitted to the subsetting engine to subset a different type of data. The subsetting requirements are generated by a data mining system and transmitted to the subsetter in the form of an XML feature index that describes the spatial and temporal extent of the phenomena. For this work, a grid-based mining system called the Grid Miner is used to identify the phenomena and generate the feature index. This paper discusses the value of grid technology in facilitating the development of a high performance customized product processing and the coupling of a grid mining system to support phenomena-based subsetting.

  7. Search for pair production of second generation scalar leptoquarks

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.; Alexeev, G.D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Northeastern U.

    2008-08-01

    We report on a search for the pair production of second generation scalar leptoquarks (LQ) in p{bar p} collisions at the center of mass energy {radical}s = 1.96TeV using a data set corresponding to an integrated luminosity of 1.0 fb{sup -1} collected with the D0 experiment at the Fermilab Tevatron Collider. Topologies arising from the LQ{ovr LQ} {yields} {mu}q{nu}q and LQ{ovr LQ} {yields} {mu}q{mu}q decay modes are investigated. No excess of data over the standard model prediction is observed and upper limits on the leptoquark pair production cross section are derived at the 95% C.L. as a function of the leptoquark mass and the branching fraction {beta} for the decay LQ {yields} {mu}q. These are interpreted as lower limits on the leptoquark mass as a function of {beta}. For {beta} = 1 (0.5), scalar second generation leptoquarks with masses up to 316GeV (270GeV) are excluded.

  8. Off-line production of transition-metal ions at BECOLA

    NASA Astrophysics Data System (ADS)

    Ryder, Caleb; Asberry, Hillary; Harris, Justin; Mantica, Paul; Minamisono, Kei; Rossi, Dominic; Strum, Ryan; Smith, April

    2014-09-01

    Collinear laser spectroscopy (CLS) of stable reference beams produced using off-line methods is critical in CLS experiments for calibrating the beam energy during experimental runs, developing atomic laser excitation schemes and reliably deducing nuclear properties from hyperfine spectra collected from on-line beams of radioisotopes. The BEam COoler and LAser Spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University employs several ion sources for off-line stable beam production, each specializing in ion generation from specific materials. The focus of this talk will be on the Penning Ionization Gauge (PIG) ion source, a plasma sputtering source that has been recently implemented at BECOLA to readily produce transition metal ion beams. Collinear laser spectroscopy (CLS) of stable reference beams produced using off-line methods is critical in CLS experiments for calibrating the beam energy during experimental runs, developing atomic laser excitation schemes and reliably deducing nuclear properties from hyperfine spectra collected from on-line beams of radioisotopes. The BEam COoler and LAser Spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University employs several ion sources for off-line stable beam production, each specializing in ion generation from specific materials. The focus of this talk will be on the Penning Ionization Gauge (PIG) ion source, a plasma sputtering source that has been recently implemented at BECOLA to readily produce transition metal ion beams. This work was supported in part by NSF Grant No. PHY-11-02511.

  9. An integrally shielded transportable generator system for thallium-201 production.

    PubMed

    Lagunas-Solar, M C; Little, F E; Goodart, C D

    1982-12-01

    An integrally shielded transportable 201Pb leads to 201Tl generator system for the production of 201Tl has been developed at the Crocker Nuclear Laboratory, University of California, Davis. The present generator design allows for processing of up to 4 Ci of 201Pb parent radioactivity yielding approximately 400 mCi of 201Tl in a chemical form easily converted to radiopharmaceutical quality. Larger capacity generator systems can be constructed since the use of depleted uranium for shielding purposes is becoming readily available. While the parent 201Pb radioactivity decays to the daughter 201Tl, the combination depleted uranium-lead shielded system (approximately 33 kg) can be transported to distant locations for final processing. In this manner, decay losses (approximately 25%) associated with transportation of bulk 201Tl can be avoided since transportation would occur during the time (approximately 32 h) needed for the growth of 201Tl via 201Pb(9.4 h) leads to 201Tl (73.5 h). Single small-volume elutions (15-20 ml) provide more than 95% of the 201Tl radioactivity with no detectable radioactive Pb breakthrough and less than 20 micrograms/ml of carrier Tl.

  10. Accumulation in liver and spleen of metal particles generated at nonbearing surfaces in hip arthroplasty.

    PubMed

    Urban, Robert M; Tomlinson, Michael J; Hall, Deborah J; Jacobs, Joshua J

    2004-12-01

    Systemic migration of metal particles generated at nonbearing surfaces rather than the intended primary bearing was studied in postmortem specimens from 30 patients with total hip arthroplasty. Using light and electron microscopy with x-ray microanalysis, submicrometer metal particles were identified within macrophages in the liver and/or the spleen in 11 of 15 patients with a revised arthroplasty and in 2 of 15 patients with primary hip arthroplasty. The macrophages formed focal aggregates in the organs without apparent toxicity. Fretting at ancillary fixation devices, loose components, and modular connections can generate a substantial volume of debris. These particles are in addition to those generated at the bearing surfaces, further increasing both the local and systemic particulate burdens. While all components can be associated with the distant spread of particles and metal ions, it is the environment of revision arthroplasty that provides the greatest potential for the generation and systemic dissemination of wear debris. The long-term effects of accumulated wear particles in the liver and spleen are unknown. PMID:15578561

  11. Helium and hydrogen generation in pure metals irradiated with high-energy protons and spallation neutrons in LANSCE

    NASA Astrophysics Data System (ADS)

    Oliver, B. M.; James, M. R.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    High-power spallation neutron sources will require accurate estimates of cross-sections for generation of He and H in structural materials. At high-proton energies, very high levels of gas atoms are generated in all constituents of typical iron-based and nickel-based structural alloys, with He typically ˜150 appm/dpa and H at levels ˜3-5 times higher. Improved estimates of these cross-sections have been derived from a series of irradiations conducted at relatively low temperatures (<100 °C) in the Los Alamos Neutron Science Center as part of a test program supporting the Accelerator Production of Tritium Program. Pure metal dosimetry foils were irradiated in two different spectra ranging from ˜800 MeV protons to a mixed distribution of both protons and spallation neutrons. Most of the gas production was due to spallation reactions with the proton beam, although gas and especially damage production from lower-energy spallation neutrons became more significant at the mixed proton/neutron location. The measured He concentrations are similar to those derived in other proton environments, but larger by about a factor of two than those calculated using the LAHET/MCNPX code system. Unlike He, the measured H retention levels are affected by diffusional losses, but H is still retained at rather high concentrations, allowing a lower bound estimate of the H generation cross-sections.

  12. Neutron generator production mission in a national laboratory.

    SciTech Connect

    Pope, Larry E.

    2007-08-01

    In the late 1980's the Department of Energy (DOE) faced a future budget shortfall. By the spring of 1991, the DOE had decided to manage this problem by closing three production plants and moving production capabilities to other existing DOE sites. As part of these closings, the mission assignment for fabrication of War Reserve (WR) neutron generators (NGs) was transferred from the Pinellas Plant (PP) in Florida to Sandia National Laboratories, New Mexico (SNL/NM). The DOE directive called for the last WR NG to be fabricated at the PP before the end of September 1994 and the first WR NG to be in bonded stores at SNL/NM by October 1999. Sandia National Laboratories successfully managed three significant changes to project scope and schedule and completed their portion of the Reconfiguration Project on time and within budget. The PP was closed in October 1995. War Reserve NGs produced at SNL/NM were in bonded stores by October 1999. The costs of the move were recovered in just less than five years of NG production at SNL/NM, and the annual savings today (in 1995 dollars) is $47 million.

  13. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub

  14. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  15. Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition.

    PubMed

    Dasog, Mita; Carim, Azhar I; Yalamanchili, Sisir; Atwater, Harry A; Lewis, Nathan S

    2016-08-10

    Au was photoelectrochemically deposited onto cylindrical or tapered p-Si microwires on Si substrates to profile the photoinduced charge-carrier generation in individual wires in a photoactive semiconductor wire array. Similar experiments were repeated for otherwise identical Si microwires doped to be n-type. The metal plating profile was conformal for n-type wires, but for p-type wires was a function of distance from the substrate and was dependent on the illumination wavelength. Spatially resolved charge-carrier generation profiles were computed using full-wave electromagnetic simulations, and the localization of the deposition at the p-type wire surfaces observed experimentally correlated well with the regions of enhanced calculated carrier generation in the volumes of the microwires. This technique could potentially be extended to determine the spatially resolved carrier generation profiles in a variety of mesostructured, photoactive semiconductors. PMID:27322391

  16. Low-order harmonic generation in metal ablation plasmas in nanosecond and picosecond laser regimes

    SciTech Connect

    Lopez-Arias, M.; Oujja, M.; Sanz, M.; Castillejo, M.; Ganeev, R. A.; Boltaev, G. S.; Satlikov, N. Kh.; Tugushev, R. I.; Usmanov, T.

    2012-02-15

    Low-order harmonics, third and fifth, of IR (1064 nm) laser emission have been produced in laser ablation plasmas of the metals manganese, copper and silver. The harmonics were generated in a process triggered by laser ablation followed by frequency up-conversion of a fundamental laser beam that propagates parallel to the target surface. These studies were carried out in two temporal regimes by creating the ablation plasma using either nanosecond or picosecond pulses and then probing the plasma plume with pulses of the same duration. The spatiotemporal behavior of the generated harmonics was characterized and reveals the distinct composition and dynamics of the plasma species that act as nonlinear media, allowing the comparison of different processes that control the generation efficiency. These results serve to guide the choice of laser ablation plasmas to be used for efficient high harmonic generation of laser radiation.

  17. Generation and subwavelength focusing of longitudinal magnetic fields in a metallized fiber tip.

    PubMed

    Ploss, Daniel; Kriesch, Arian; Pfeifer, Hannes; Banzer, Peter; Peschel, Ulf

    2014-06-01

    We demonstrate experimentally and numerically that in fiber tips as they are used in NSOMs azimuthally polarized electrical fields (|E(azi)|2 / |E(tot)|2 ≈55% ± 5% for λ0 = 1550 nm), respectively subwavelength confined (FWHM ≈450 nm ≈λ0/3.5) magnetic fields, are generated for a certain tip aperture diameter (d = 1.4 μm). We attribute the generation of this field distribution in metal-coated fiber tips to symmetry breaking in the bend and subsequent plasmonic mode filtering in the truncated conical taper. PMID:24921567

  18. Photochromic metal-organic frameworks: reversible control of singlet oxygen generation.

    PubMed

    Park, Jihye; Feng, Dawei; Yuan, Shuai; Zhou, Hong-Cai

    2015-01-01

    The controlled generation of singlet oxygen is of great interest owing to its potential applications including industrial wastewater treatment, photochemistry, and photodynamic therapy. Two photochromic metal-organic frameworks, PC-PCN and SO-PCN, have been developed. A photochromic reaction has been successfully realized in PC-PCN while maintaining its single crystallinity. In particular, as a solid-state material which inherently integrates the photochromic switch and photosensitizer, SO-PCN has demonstrated reversible control of (1)O2 generation. Additionally, SO-PCN shows catalytic activity towards photooxidation of 1,5-dihydroxynaphthalene.

  19. Stress waves generated in thin metallic films by a Q-switched ruby laser

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1974-01-01

    Investigation results on stress waves generated by Q-switched ruby laser irradiated thin metal films under confinement, studied over a wide range of film materials and film thicknesses, are reviewed. The results indicate that the dependence on these parameters is much weaker than is predicted by heat transfer estimations commonly used to describe the interaction of laser irradiation with unconfined bulk-solid surfaces.

  20. Towards New Generations of Metathesis Metal-Carbene Pre-catalysts

    NASA Astrophysics Data System (ADS)

    Allaert, Bart; Dieltiens, Nicolai; Stevens, Chris; Drozdzak, Renata; Dragutan, Ileana; Dragutan, Valerian; Verpoort, Francis

    : A short general introduction combined with some historical milestones in the field of olefin metathesis is presented followed by an overview of recent representatives of metal carbene initiators. This paper attempts to relief the many superb contributions and overwhelming work invested in intelligent design and innovative synthesis in this area. Despites of recent advances there is still a great interest in the generation of new, better performing, and more environment friendly metathesis.

  1. Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.

    PubMed

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi

    2015-01-14

    Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF.

  2. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis

    PubMed Central

    2014-01-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At −600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm–3 d–1) and the highest biotic methane production rate (250 ± 90 nmol cm–3 d–1). At −550 mV, plain graphite (76 nmol cm–3 d–1) performed similarly to platinum (73 nmol cm–3 d–1). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production. PMID:24741468

  3. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    PubMed

    Siegert, Michael; Yates, Matthew D; Call, Douglas F; Zhu, Xiuping; Spormann, Alfred; Logan, Bruce E

    2014-04-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production.

  4. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    PubMed

    Siegert, Michael; Yates, Matthew D; Call, Douglas F; Zhu, Xiuping; Spormann, Alfred; Logan, Bruce E

    2014-04-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production. PMID:24741468

  5. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition.

    PubMed

    Kozen, Alexander C; Lin, Chuan-Fu; Pearse, Alexander J; Schroeder, Marshall A; Han, Xiaogang; Hu, Liangbing; Lee, Sang-Bok; Rubloff, Gary W; Noked, Malachi

    2015-06-23

    Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles. PMID:25970127

  6. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition.

    PubMed

    Kozen, Alexander C; Lin, Chuan-Fu; Pearse, Alexander J; Schroeder, Marshall A; Han, Xiaogang; Hu, Liangbing; Lee, Sang-Bok; Rubloff, Gary W; Noked, Malachi

    2015-06-23

    Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.

  7. Nanoparticle production in arc generated fireballs of granular silicon powder

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Cappelli, Mark A.

    2012-03-01

    Recently we observed buoyant fireballs by arc igniting silicon that drift in air for several seconds and postulated that the low aggregate density was attributed to the formation of a network of nanoparticles that must completely surround the burning silicon core, trapping the heated vapor generated as a result of particle combustion [Ito et al. Phys Rev E 80, 067401 (2009)]. In this paper, we describe the capturing of several of these fireballs in flight, and have characterized their nanostructure by high resolution microscopy. The nanoparticle network is found to have an unusually high porosity (> 99%), suggesting that this arc-ignition of silicon can be a novel method of producing ultra-porous silica. While we confirm the presence of a nanoparticle network within the fireballs, the extension of this mechanism to the production of ball lightning during atmospheric lightning strikes in nature is still the subject of ongoing debate.

  8. Apparatus and method for making metal chloride salt product

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt; Richmann, Michael K.

    2007-05-15

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  9. A Covariance Generation Methodology for Fission Product Yields

    NASA Astrophysics Data System (ADS)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  10. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    SciTech Connect

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  11. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  12. Guided torsional wave generation of a linear in-plane shear piezoelectric array in metallic pipes.

    PubMed

    Zhou, Wensong; Yuan, Fuh-Gwo; Shi, Tonglu

    2016-02-01

    Cylindrical guided waves based techniques are effective and promising tools for damage detection in long pipes. The essential operations are generation and reception of guided waves in the structures utilizing transducers. A novel in-plane shear (d36 type) PMNT wafer is proposed to generate and receive the guided wave, especially the torsional waves, in metallic pipes. In contrast to the traditional wafer, this wafer will directly introduce in-plane shear deformation when electrical field is conveniently applied through its thickness direction. A single square d36 PMNT wafer is bonded on the surface of the pipe positioned collinearly with its axis, when actuated can predominantly generate torsional (T) waves along the axial direction, circumferential shear horizontal (C-SH) waves along circumferential direction, and other complex cylindrical Lamb-like wave modes along other helical directions simultaneously. While a linear array of finite square size d36 PMNT wafers was equally spaced circumferentially, when actuated simultaneously can nearly uniform axisymmetric torsional waves generate in pipes and non-symmetric wave modes can be suppressed greatly if the number of the d36 PMNT wafer is sufficiently large. This paper first presents the working mechanism of the linear d36 PMNT array from finite element analysis (FEA) by examining the constructive and destructive displacement wavefield phenomena in metallic pipes. Furthermore, since the amplitude of the received fundamental torsional wave signal strongly depends on frequency, a series of experiments are conducted to determine the frequency tuning curve for the torsional wave mode. All results indicate the linear d36 PMNT array has potential for efficiently generating uniform torsional wavefield of the fundamental torsional wave mode, which is more effective in monitoring structural health in metallic pipes. PMID:26548525

  13. Toward a new generation of satellite surface products?

    NASA Astrophysics Data System (ADS)

    Aires, F.; Prigent, C.

    2006-11-01

    Despite the abundance and variety of remote sensing measurements, land surface characterization from satellite observations is still very challenging. The links between the three sources of surface information, namely the satellite observations, the in situ measurements, and the land surface model outputs, are complex. Innovative techniques have to be developed to merge these information sources and optimize the use of satellite measurements for better surface products and more predictability. Concepts such as multi-instrument/multiparameter retrieval algorithms are discussed, as well as the synergetic use of satellite observations, model outputs, and in situ data. The need for careful satellite calibration is stressed, and the scaling problem is emphasized. Recent results are reviewed to indicate what the land surface remote sensing problems are and how they might be attacked. Two concrete applications are presented: an "all weather" retrieval of surface skin temperature from combined microwave and infrared observations and a soil moisture analysis from the merging of multisatellite observations and land surface model outputs. This paper is intended to stimulate debates and collaborations between the land surface modelers and the satellite remote sensing community for the design of the next generation of land surface products.

  14. Human milk kills Giardia lamblia by generating toxic lipolytic products.

    PubMed

    Reiner, D S; Wang, C S; Gillin, F D

    1986-11-01

    This study supports our previous hypotheses that normal human milk kills Giardia lamblia trophozoites in vitro and that this killing is due to the release of free fatty acids (FFAs) from milk triglycerides by action of the bile salt-stimulated lipase (BSL) of human milk. Heat-stable killing of G. lamblia was generated when normal human milk was preincubated with sodium cholate, which activates BSL. Moreover, both the skim-milk (containing BSL) and cream (containing mainly triglycerides) fractions were required to kill G. lamblia. We measured the toxicity of FFA and other products of lipolysis to G. lamblia. cis-Unsaturated FFAs (LD50 less than 12 microM), three of four monoglycerides, and four of five lysophosphatidylcholines were toxic to the parasites (LD50 less than 100 microM). In contrast, the parasites were not harmed by the corresponding diglycerides, phosphatidylcholines, triolein, or glycerol. Thus, products of lipid hydrolysis in the normal digestive tract are toxic to G. lamblia. We also demonstrated that albumin and conjugated bile salts, which bind FFA, partially protected trophozoites from killing by oleic acid.

  15. Nonlinear Metal-Insulator-Metal (MIM) Nanoplasmonic Waveguides Based on Electron Tunneling for Optical Rectification and Frequency Generation

    NASA Astrophysics Data System (ADS)

    Lei, Xiaoqin

    Metal-Insulator-Metal (MIM) electron tunneling diodes have recently emerged as an attractive alternative to semiconductor photodiodes for THz and optical detection due to their fast response time and relative ease of fabrication. However, current antenna-coupled MIM diode detectors are still limited by poor responsivity and low detection bandwidth due to impedance mismatch between the diode and antenna, large RC time constant of lumped MIM junctions, and narrow bandwidth of traditional antenna designs. In this thesis we address these issues by considering traveling-wave MIM detector designs which exhibit enhanced responsivity and low impedance that can be more easily matched to planar antennas. We also propose new antenna geometries based on surface modification of traditional bowtie antennas that are capable of receiving ultra-wideband THz signals. The concept of traveling-wave MIM detectors is then extended to the investigation of nonlinear MIM nanoplasmonic waveguides for on-chip single-cycle THz pulse generation, frequency conversion, as well as plasmonic switching and modulation.

  16. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.

    PubMed

    Yuan, Yong-Jun; Lu, Hong-Wei; Yu, Zhen-Tao; Zou, Zhi-Gang

    2015-12-21

    Photocatalytic water splitting using powered semiconductors as photocatalysts represents a promising strategy for clean, low-cost, and environmentally friendly production of H2 utilizing solar energy. The loading of noble-metal cocatalysts on semiconductors can significantly enhance the solar-to-H2 conversion efficiency. However, the high cost and scarcity of noble metals counter their extensive utilization. Therefore, the use of alternative cocatalysts based on non-precious metal materials is pursued. Nanosized MoS2 cocatalysts have attracted considerable attention in the last decade as a viable alternative to improve solar-to-H2 conversion efficiency because of its superb catalytic activity, excellent stability, low cost, availability, environmental friendliness, and chemical inertness. In this perspective, the design, structures, synthesis, and application of MoS2 -based composite photocatalysts for solar H2 generation are summarized, compared, and discussed. Finally, this Review concludes with a summary and remarks on some challenges and opportunities for the future development of MoS2 -based photocatalysts.

  17. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.

    PubMed

    Yuan, Yong-Jun; Lu, Hong-Wei; Yu, Zhen-Tao; Zou, Zhi-Gang

    2015-12-21

    Photocatalytic water splitting using powered semiconductors as photocatalysts represents a promising strategy for clean, low-cost, and environmentally friendly production of H2 utilizing solar energy. The loading of noble-metal cocatalysts on semiconductors can significantly enhance the solar-to-H2 conversion efficiency. However, the high cost and scarcity of noble metals counter their extensive utilization. Therefore, the use of alternative cocatalysts based on non-precious metal materials is pursued. Nanosized MoS2 cocatalysts have attracted considerable attention in the last decade as a viable alternative to improve solar-to-H2 conversion efficiency because of its superb catalytic activity, excellent stability, low cost, availability, environmental friendliness, and chemical inertness. In this perspective, the design, structures, synthesis, and application of MoS2 -based composite photocatalysts for solar H2 generation are summarized, compared, and discussed. Finally, this Review concludes with a summary and remarks on some challenges and opportunities for the future development of MoS2 -based photocatalysts. PMID:26586523

  18. Transition metal catalysis in the generation of petroleum: A genetic anomaly in Ordovician oils

    SciTech Connect

    Mango, F.D. )

    1992-10-01

    The transition metals, captured from sedimentary waters by chlorophyll, have been proposed as the catalytic agents that convert n-alkane biolipids into the rearranged light hydrocarbons in petroleum. Certain ancient oils (Ordovician) display a depletion in chlorophyll, suggesting that they may have been derived from sedimentary rocks also depleted in transition metals. These oils show anomalously high concentrations of n-heptane relative to their respective rearranged isoalkane and cycloalkane products. This extraordinary enrichment in light n-alkanes appears unique to the chlorophyll-deficient Ordovician oils. The high concentrations of n-heptane may have resulted from the thermal cracking of higher n-alkanes, which are known to be dominant components of the kerogenous precursors to the Ordovician oils. However, the methylhexanes, which have no thermolytic precursors enriched in the kerogenous source, show a proportionate increase in concentration. The contention, therefore, that thermal cracking might explain the n-heptane anomaly is untenable since a kerogenous starting material enriched in n-alkanes and depleted in isoalkanes cannot reasonably crack to a light hydrocarbon product enriched in both n-alkanes and isoalkanes. According to a postulated catalytic cycle, n-alkane and isoalkane concentrations are controlled by the relative rates of two divergent pathways. If the various transition metals that may catalyze these reactions differ in activity, then a unique distribution of metals created by a chlorophyll deficiency could explain the Ordovician anomaly.

  19. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  20. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  1. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  2. Second harmonic generation in nanoscale films of transition metal chalcogenides: Taking into account multibeam interference

    NASA Astrophysics Data System (ADS)

    Lavrov, S. D.; Kudryavtsev, A. V.; Shestakova, A. P.; Kulyuk, L.; Mishina, E. D.

    2016-05-01

    Second harmonic generation is studied in structures containing nanoscale layers of transition metal chalcogenides that are two-dimensional semiconductors and deposited on a SiO2/Si substrate. The second harmonic generation intensity is calculated with allowance for multibeam interference in layers of dichalcogenide and silicon oxide. The coefficient of reflection from the SiO2-layer-based Fabry-Perot cavity is subsequently calculated for pump wave fields initiating nonlinear polarization at every point of dichalcogenide, which is followed by integration of all second harmonic waves generated by this polarization. Calculated second harmonic intensities are presented as functions of dichalcogenide and silicon oxide layer thicknesses. The dependence of the second harmonic intensity on the MoS2 layer thickness is studied experimentally in the layer of 2-140 nm. A good coincidence of the experimental data and numerical simulation results has been obtained.

  3. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  4. Effects of Dopant Metal Variation and Material Synthesis Method on the Material Properties of Mixed Metal Ferrites in Yttria Stabilized Zirconia for Solar Thermochemical Fuel Production

    DOE PAGESBeta

    Leonard, Jeffrey; Reyes, Nichole; Allen, Kyle M.; Randhir, Kelvin; Li, Like; AuYeung, Nick; Grunewald, Jeremy; Rhodes, Nathan; Bobek, Michael; Klausner, James F.

    2015-01-01

    Mixed metal ferrites have shown much promise in two-step solar-thermochemical fuel production. Previous work has typically focused on evaluating a particular metal ferrite produced by a particular synthesis process, which makes comparisons between studies performed by independent researchers difficult. A comparative study was undertaken to explore the effects different synthesis methods have on the performance of a particular material during redox cycling using thermogravimetry. This study revealed that materials made via wet chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry methods were minimal andmore » these demonstrated much better performance than those synthesized via the solid state method. Subsequently, various metal ferrite samples (NiFe 2 O 4 , MgFe 2 O 4 , CoFe 2 O 4 , and MnFe 2 O 4 ) in yttria stabilized zirconia (8YSZ) were synthesized via coprecipitation and tested to determine the most promising metal ferrite combination. It was determined that 10 wt.% CoFe 2 O 4 in 8YSZ produced the highest and most consistent yields of O 2 and CO. By testing the effects of synthesis methods and dopants in a consistent fashion, those aspects of ferrite preparation which are most significant can be revealed. More importantly, these insights can guide future efforts in developing the next generation of thermochemical fuel production materials.« less

  5. REMOVAL OF CERTAIN FISSION PRODUCT METALS FROM LIQUID BISMUTH COMPOSITIONS

    DOEpatents

    Dwyer, O.E.; Howe, H.E.; Avrutik, E.R.

    1959-11-24

    A method is described for purifying a solution of urarium in liquid bismuth containing at least one metal from the group consisting of selenium, tellurium, palladium, ruthenium, rhodium, niobium, and zirconium. The solution is contacted with zinc in an inert atmosphere to form a homogeneous melt, a solid zinc phase is formed, and the zinc phase containing the metal is separated from the melt.

  6. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.

    PubMed

    Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio

    2012-01-01

    Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included.

  7. Interactive influences of bioactive trace metals on biological production in oceanic waters

    SciTech Connect

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A. )

    1991-12-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals.

  8. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.

    PubMed

    Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S

    2015-09-01

    Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment. PMID:26049203

  9. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.

    PubMed

    Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S

    2015-09-01

    Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment.

  10. Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces.

    PubMed

    Huber, Monika; Reinisch, Georg; Trettenhahn, Günter; Zweymüller, Karl; Lintner, Felix

    2009-01-01

    Aseptic loosening of articular implants is frequently associated with tissue reactions to wear particles. Some patients, who had received metal-on-metal articulations, present early symptoms including persistent pain and implant failure. These symptoms raise the suspicion about the development of an immunological response. Furthermore, the generation of rare corrosion products in association with metallic implants has been observed. Corrosion products are known to enhance third-body wear and contribute to the loss of the implant. The purpose of this study was to investigate periprosthetic tissue containing solid corrosion products after aseptic loosening of second-generation metal-on-metal total hip replacements made of low-carbon cobalt-chromium-molybdenum alloy for the presence of immunologically determined tissue changes. Periprosthetic tissue of 11 cases containing uncommon solid deposits was investigated by light microscopy. In order to confirm the presence of corrosion products, additional methods including scanning electron microscopy (SEM) investigation, energy dispersive X-ray (EDX) and Fourier transform infrared microspectroscopy (FTIR) analysis were used. All investigated cases revealed solid chromium orthophosphate corrosion products as well as metallic wear particles to a various extent. Moreover, various intense tissue reactions characteristic of immune response were observed in all cases. The simultaneous presence of corrosion products and hypersensitivity-associated tissue reaction indicates that a relationship between corrosion development and implant-related hypersensitivity may exist. PMID:18725188

  11. By-product metals are technologically essential but have problematic supply.

    PubMed

    Nassar, N T; Graedel, T E; Harper, E M

    2015-04-01

    The growth in technological innovation that has occurred over the past decades has, in part, been possible because an increasing number of metals of the periodic table are used to perform specialized functions. However, there have been increasing concerns regarding the reliability of supply of some of these metals. A main contributor to these concerns is the fact that many of these metals are recovered only as by-products from a limited number of geopolitically concentrated ore deposits, rendering their supplies unable to respond to rapid changes in demand. Companionality is the degree to which a metal is obtained largely or entirely as a by-product of one or more host metals from geologic ores. The dependence of companion metal availability on the production of the host metals introduces a new facet of supply risk to modern technology. We evaluated companionality for 62 different metals and metalloids, and show that 61% (38 of 62) have companionality greater than 50%. Eighteen of the 38-including such technologically essential elements as germanium, terbium, and dysprosium-are further characterized as having geopolitically concentrated production and extremely low rates of end-of-life recycling. It is this subset of companion metals-vital in current technologies such as electronics, solar energy, medical imaging, energy-efficient lighting, and other state-of-the-art products-that may be at the greatest risk of supply constraints in the coming decades. PMID:26601159

  12. Generation of chlorine by-products in simulated wash water.

    PubMed

    Shen, Cangliang; Norris, Pauline; Williams, Olivia; Hagan, Stephanie; Li, KaWang

    2016-01-01

    Free chlorine (FC) reacting with organic matter in wash water promotes the formation of chlorine by-products. This study aims to evaluate the dynamic impact of FC and organic load on the generation of haloacetic acids (HAAs) and trihalomethanes (THMs) in simulated wash water. Lettuce juice was sequentially added into FC solution with FC periodically replenished. Water samples were collected after each lettuce juice addition to measure water qualities and determine HAAs and THMs using US-Environmental-Protection-Agency (EPA) methods. Concentrations of 88-2103 μg/l of total HAAs and 20.79-859.47 μg/l of total THMs were detected during the study. Monobromoacetic, tribromoacetic, chlorodibromoacetic and trichloroacetic acid were the major HAAs components. Chloroform (trichloromethane) was the primary THMs present. A significant correlation of HAAs with chemical oxygen demand and THMs with FC was observed. Results indicated that optimizing wash water sanitizing systems to limit organic matters and maintain minimal effective FC concentration is critical.

  13. Generation of chlorine by-products in simulated wash water.

    PubMed

    Shen, Cangliang; Norris, Pauline; Williams, Olivia; Hagan, Stephanie; Li, KaWang

    2016-01-01

    Free chlorine (FC) reacting with organic matter in wash water promotes the formation of chlorine by-products. This study aims to evaluate the dynamic impact of FC and organic load on the generation of haloacetic acids (HAAs) and trihalomethanes (THMs) in simulated wash water. Lettuce juice was sequentially added into FC solution with FC periodically replenished. Water samples were collected after each lettuce juice addition to measure water qualities and determine HAAs and THMs using US-Environmental-Protection-Agency (EPA) methods. Concentrations of 88-2103 μg/l of total HAAs and 20.79-859.47 μg/l of total THMs were detected during the study. Monobromoacetic, tribromoacetic, chlorodibromoacetic and trichloroacetic acid were the major HAAs components. Chloroform (trichloromethane) was the primary THMs present. A significant correlation of HAAs with chemical oxygen demand and THMs with FC was observed. Results indicated that optimizing wash water sanitizing systems to limit organic matters and maintain minimal effective FC concentration is critical. PMID:26212946

  14. Advanced liquid fuel production from biomass for power generation

    SciTech Connect

    Grassi, G.; Palmarocchi, M.; Joeler, J.

    1995-11-01

    In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

  15. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  16. Method of making metal-doped organic foam products

    DOEpatents

    Rinde, James A.

    1981-01-01

    Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  17. Current Production and Metal Oxide Reduction by Shewanella Oneidensis MR-1 Wild Type and Mutants.

    SciTech Connect

    Bretschger, Orianna; Obraztsova, Anna; Sturm, Carter A.; Chang, In Seop; Gorby, Yuri A.; Reed, Samantha B.; Culley, David E.; Reardon, Catherine L.; Barua, Soumitra; Romine, Margaret F.; Zhou, Jizhong; Beliaev, Alex S.; Bouhenni, Rachida; Saffarini, Daad; Mansfeld, Florian; Kim, Byung Hong; Fredrickson, Jim K.; Nealson, Kenneth H.

    2007-11-01

    Shewanella oneidensis MR-1 is a Gram negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides, and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal-oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degree of participation in each process is very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.

  18. Mineral phases and metals in baghouse dust from secondary aluminum production

    EPA Science Inventory

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  19. Advanced oxidation protein products are generated by bovine neutrophils and inhibit free radical production in vitro.

    PubMed

    Bordignon, Milena; Da Dalt, Laura; Marinelli, Lieta; Gabai, Gianfranco

    2014-01-01

    Despite the recognised importance of oxidative stress in the health and immune function of dairy cows, protein oxidation markers have been poorly studied in this species. The current study aimed to characterise markers of protein oxidation generated by activated bovine neutrophils and investigate the biological effects of advanced oxidation protein products (AOPP) on bovine neutrophils. Markers of protein oxidation (AOPP, dityrosines and carbonyls) were measured in culture medium containing bovine serum albumin (BSA) exposed to neutrophils. The effect of AOPP-BSA on generation of reactive oxygen species (ROS) was assessed by chemiluminescence. Activation of caspases-3, -8 and -9 and the presence of DNA laddering were used as apoptosis markers. Greater amounts of AOPP were generated by phorbol myristate acetate (PMA)-activated than non-activated neutrophils (1.46 ± 0.13 vs. 0.75 ± 0.13 nmol/mg protein, respectively; P<0.05). Activated neutrophils and hypochlorous acid generated slightly different patterns of oxidized protein markers. Exposure to AOPP-BSA did not stimulate ROS production. Activated neutrophils generated a lesser amount of ROS when incubated with AOPP-BSA (P<0.001). Activation with PMA induced a loss of viable neutrophils after 3h, which was greater with AOPP-BSA incubation (P<0.05). Detectable amounts of active caspases-3, -8 and -9 were found in nearly all samples but differences in caspase activation or DNA laddering were not observed comparing treatment groups. Apoptosis was unlikely to be responsible for the greater loss of PMA-activated neutrophils cultured in AOPP-BSA and it is possible that primary necrosis occurred. The results suggest that accumulation of oxidized proteins at an inflammatory site might result in a progressive reduction of neutrophil viability.

  20. Self-sputtering far above the runaway threshold: an extraordinary metal ion generator

    SciTech Connect

    Andersson, Joakim; Anders, Andre

    2008-12-16

    When self-sputtering is driven far above the runaway threshold voltage, energetic electrons are made available to produce"excess plasma" far from the magnetron target. Ionization balance considerations show that the secondary electrons deliver the necessary energy to the"remote" zone. Thereby, such a system can be an extraordinarily prolific generator of useable metal ions. Contrary to other known sources, the ion current to a substrate can exceed the discharge current. For gasless self-sputtering of copper, the useable ion current scales exponentially with the discharge voltage.

  1. Generation and annihilation of traps in metal-oxide-semiconductor devices after negative air corona charging

    NASA Astrophysics Data System (ADS)

    Prasad, Ila; Srivastava, R. S.

    1993-07-01

    Surface and bulk traps along with positive oxide charge accumulation have been found to be generated in metal-oxide-semiconductor capacitors, when subjected to negative air corona discharge at slightly reduced pressure (≂10-1 Torr). The effects are neutralized and device quality improved when annealed at 200 °C in air. The bulk traps and a fraction of oxide charges were annealable when kept at room temperature for several months. The results have been analyzed by Nicollian-Goetzberger's conductance technique and a plausible explanation is given.

  2. Nanoscale optical properties of metal nanoparticles probed by Second Harmonic Generation microscopy.

    PubMed

    Shen, Hong; Nguyen, Ngoc; Gachet, David; Maillard, Vincent; Toury, Timothée; Brasselet, Sophie

    2013-05-20

    We report spatial and vectorial imaging of local fields' confinement properties in metal nanoparticles with branched shapes, using Second Harmonic Generation (SHG) microscopy. Taking advantage of the coherent nature of this nonlinear process, the technique provides a direct evidence of the coupling between the excitation polarization and both localization and polarization specificities of local fields at the sub-diffraction scale. These combined features, which are governed by the nanoparticles' symmetry, are not accessible using other contrasts such as linear optical techniques or two-photon luminescence.

  3. Experimental Hydrogen Plant with Metal Hydrides to Store and Generate Electrical Power

    NASA Astrophysics Data System (ADS)

    Gonzatti, Frank; Nizolli, Vinícius; Ferrigolo, Fredi Zancan; Farret, Felix Alberto; de Mello, Marcos Augusto Silva

    2016-02-01

    Generation of electrical energy with renewable sources is interruptible due to the primary energy characteristics (sun, wind, hydro, etc.). In these cases, it is necessary to use energy storage so increasing penetrability of these sources connected to the distribution system. This paper discusses in details some equipment and accessories of an integrated power plant using fuel cell stack, electrolyzer and metal hydrides. During the plant operation were collected the power consumption data and established the efficiency of each plant component. These data demonstrated an overall efficiency of about 11% due to the low efficiencies of the commercial electrolyzers and power inverters used in the experiments.

  4. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    DOEpatents

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  5. DETERMINATION OF HEAVY METALS AND PESTICIDES IN GINSENG PRODUCTS

    EPA Science Inventory

    Medicinal plants may carry residuals of environmentally persistent pesticides or assimilate heavy metals in varying degrees. Several factors may influence contaminant accumulation, including species, level and duration of contaminant exposure, and topography. As part of a progra...

  6. METAL PRODUCTION IN GALAXY CLUSTERS: THE NON-GALACTIC COMPONENT

    SciTech Connect

    Bregman, Joel N.; Anderson, Michael E.; Dai Xinyu E-mail: michevan@umich.ed

    2010-06-10

    The metallicity in galaxy clusters is expected to originate from the stars in galaxies, with a population dominated by high-mass stars likely being the most important stellar component, especially in rich clusters. We examine the relationship between the metallicity and the prominence of galaxies as measured by the star-to-baryon ratio, M{sub *}/M{sub bary}. Counter to expectations, we rule out a metallicity that is proportional to M{sub *}/M{sub bary}, where the best fit has the gas-phase metallicity decreasing with M{sub *}/M{sub bary}, or the metallicity of the gas plus the stars being independent of M{sub *}/M{sub bary}. This implies that the population of stars responsible for the metals is largely proportional to the total baryonic mass of the cluster, not to the galaxy mass within the cluster. If generally applicable, most of the heavy elements in the universe were not produced within galaxies.

  7. Alloy waste forms for metal fission products and actinides isolated by spent nuclear fuel treatment

    SciTech Connect

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-10-01

    Waste form alloys are being developed at Argonne National Laboratory for the disposal of remnant metallic wastes from an electrometallurgical process developed to treat spent nuclear fuel. This metal waste form consists of the fuel cladding (stainless steel or Zircaloy), noble metal fission products (e.g., Ru, Pd, Mo and Tc), and other metallic wastes. The main constituents of the metal waste stream are the cladding hulls (85 to 90 wt%); using the hulls as the dominant alloying component minimizes the overall waste volume as compared to vitrification or metal encapsulation. Two nominal compositions for the waste form are being developed: (1) stainless steel-15 wt% zirconium for stainless steel-clad fuels and (2) zirconium-8 wt% stainless steel for Zircaloy-clad fuels. The noble metal fission products are the primary source of radiation in the metal waste form. However, inclusion of actinides in the metal waste form is being investigated as an option for interim or ultimate storage. Simulated waste form alloys were prepared and analyzed to determine the baseline alloy microstructures and the microstructural distribution of noble metals and actinides. Corrosion tests of the metal waste form alloys indicate that they are highly resistant to corrosion.

  8. Measurement of current-generated torques in transition metal dichalcogenide / ferromagnet bilayers

    NASA Astrophysics Data System (ADS)

    Stiehl, Gregory M.; MacNeill, David; Guimarães, Marcos H. D.; Gao, Hui; Park, Jiwoong; Ralph, Daniel C.

    We present measurements of current-generated torques in ferromagnet / transition metal dichalcogenide (TMD) bilayers for a wide range of semi-conducting TMDs, including MoS2, MoSe2, WS2 and WSe2. TMDs present a unique opportunity to study interfacial spin-orbit torques at the two dimensional limit due to a wide range in material properties and large spin-orbit coupling. Thin TMD films are either grown by chemical vapor deposition or exfoliated from readily available TMD crystals and are incorporated into ferromagnet / TMD bilayers by either evaporation or off-axis sputtering of the ferromagnet to avoid damage to the TMD surface. Measurements of the current-generated torque are made by spin transfer ferromagnetic resonance and the magneto-optical Kerr effect. Dependence on layer number, spin-orbit coupling strength, mobility and gate dependence will be explored.

  9. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure

    PubMed Central

    Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo

    2016-01-01

    Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374

  10. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure

    NASA Astrophysics Data System (ADS)

    Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo

    2016-10-01

    Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ~0.1 TW cm-2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ~60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics.

  11. Dissolution of Uranium Metal Without Hydride Formation or Hydrogen Gas Generation

    SciTech Connect

    Soderquist, Chuck Z.; Oliver, Brian M.; McNamara, Bruce K.

    2008-09-01

    This study shows that metallic uranium will cleanly dissolve in carbonate-peroxide solution without generation of hydrogen gas or uranium hydride. Metallic uranium shot, 0.5 to 1 mm diameter, were reacted with ammonium carbonate - hydrogen peroxide solution ranging in concentration from 0.13M to 1.0M carbonate and 0.50M to 2.0M peroxide. The uranium beads were weighed before and after reacting with the etch solution, and from the weights of the beads, their diameters were calculated, before and after the etch. The etch rate on the beads was then calculated from the reduction in bead diameter, and independently by uranium analysis of the solution. The calculated etch rate ranged from about 4 x 10-4 to 8 x 10-4 cm per hour, dependent primarily on the peroxide concentration. A hydrogen analysis of the etched beads showed that no detectable hydrogen was introduced into the uranium metal by the etching process.

  12. Looking for imprints of the first stellar generations in metal-poor bulge field stars

    NASA Astrophysics Data System (ADS)

    Siqueira-Mello, C.; Chiappini, C.; Barbuy, B.; Freeman, K.; Ness, M.; Depagne, E.; Cantelli, E.; Pignatari, M.; Hirschi, R.; Frischknecht, U.; Meynet, G.; Maeder, A.

    2016-09-01

    Context. Efforts to look for signatures of the first stars have concentrated on metal-poor halo objects. However, the low end of the bulge metallicity distribution has been shown to host some of the oldest objects in the Milky Way and hence this Galactic component potentially offers interesting targets to look at imprints of the first stellar generations. As a pilot project, we selected bulge field stars already identified in the ARGOS survey as having [Fe/H] ≈-1 and oversolar [α/Fe] ratios, and we used FLAMES-UVES to obtain detailed abundances of key elements that are believed to reveal imprints of the first stellar generations. Aims: The main purpose of this study is to analyse selected ARGOS stars using new high-resolution (R ~ 45 000) and high-signal-to-noise (S/N> 100) spectra. We aim to derive their stellar parameters and elemental ratios, in particular the abundances of C, N, the α-elements O, Mg, Si, Ca, and Ti, the odd-Z elements Na and Al, the neutron-capture s-process dominated elements Y, Zr, La, and Ba, and the r-element Eu. Methods: High-resolution spectra of five field giant stars were obtained at the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. Spectroscopic parameters were derived based on the excitation and ionization equilibrium of Fe i and Fe ii. The abundance analysis was performed with a MARCS LTE spherical model atmosphere grid and the Turbospectrum spectrum synthesis code. Results: We confirm that the analysed stars are moderately metal-poor (-1.04 ≤ [Fe/H] ≤-0.43), non-carbon-enhanced (non-CEMP) with [C/Fe] ≤ + 0.2, and α-enhanced. We find that our three most metal-poor stars are nitrogen enhanced. The α-enhancement suggests that these stars were formed from a gas enriched by core-collapse supernovae, and that the values are in agreement with results in the literature for bulge stars in the same metallicity range. No abundance anomalies (Na - O, Al - O, Al - Mg anti-correlations) were

  13. Novel Two-Dimensional Mechano-Electric Generators and Sensors Based on Transition Metal Dichalcogenides

    PubMed Central

    Yu, Sheng; Eshun, Kwesi; Zhu, Hao; Li, Qiliang

    2015-01-01

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, provide two-dimensional atomic crystals with semiconductor band gap. In this work, we present a design of new mechano-electric generators and sensors based on transition metal dichalcogenide nanoribbon PN junctions and heterojunctions. The mechano-electric conversion was simulated by using a first-principle calculation. The output voltage of MoS2 nanoribbon PN junction increases with strain, reaching 0.036 V at 1% strain and 0.31 V at 8% strain, much larger than the reported results. Our study indicates that the length, width and layer number of TMDC nanoribbon PN junctions have an interesting but different impact on the voltage output. Also, the results indicate that doping position and concentration only cause a small fluctuation in the output voltage. These results have been compared with the mechano-electric conversion of TMDC heterojunctions. Such novel mechano-electric generators and sensors are very attractive for applications in future self-powered, wearable electronics and systems. PMID:26238461

  14. Second generation ethanol in Brazil: can it compete with electricity production?

    PubMed

    Dias, Marina O S; Cunha, Marcelo P; Jesus, Charles D F; Rocha, George J M; Pradella, José Geraldo C; Rossell, Carlos E V; Filho, Rubens Maciel; Bonomi, Antonio

    2011-10-01

    Much of the controversy surrounding second generation ethanol production arises from the assumed competition with first generation ethanol production; however, in Brazil, where bioethanol is produced from sugarcane, sugarcane bagasse and trash will be used as feedstock for second generation ethanol production. Thus, second generation ethanol production may be primarily in competition with electricity production from the lignocellulosic fraction of sugarcane. A preliminary technical and economic analysis of the integrated production of first and second generation ethanol from sugarcane in Brazil is presented and different technological scenarios are evaluated. The analysis showed the importance of the integrated use of sugarcane including the biomass represented by surplus bagasse and trash that can be taken from the field. Second generation ethanol may favorably compete with bioelectricity production when sugarcane trash is used and when low cost enzyme and improved technologies become commercially available. PMID:21795041

  15. Electrolytic production of neodymium metal from a molten chloride electrolyte

    SciTech Connect

    Chambers, M.F.; Murphy, J.E.

    1991-01-01

    This paper reports that the U.S. Bureau of Mines conducted experiments on electrowinning of neodymium metal by using a molten-metal cathode at 650{degrees} C and an electrolyte of 50 mol pet NdCl, (neodymium chloride) and 50 mol pet KCl (potassium chloride). The molten-metal cathodes were alloys of magnesium and zinc or magnesium and cadmium. Current efficiencies were 90 pct with a Mg-Zn cathode and 80 pct with a Mg-Cd cathode. The Mg-Cd cathode was easily separated from the electrolyte. In contrast, the Mg-Zn cathode tended to mix with the electrolyte, making separation difficult. The cathode metals were separated from the neodymium by distillation at 1,100{degrees} C under a vacuum of 10{sup {minus}4} torr. Neodymium metal of 99.9 + purity was recovered from the Mg-Cd alloy cathode after 30 min distillation time. The neodymium recovered from the Mg-Zn system contained almost 2 pct Zn after vacuum distillation. Continuous operation using the Mg-Cd alloy cathode was demonstrated.

  16. The mineral base and productive capacities of metals and non-metals of Kosovo

    SciTech Connect

    Rizaj, M.; Beqiri, E.; McBow, I.; O'Brien, E.Z.; Kongoli, F.

    2008-08-15

    All historical periods of Kosovo - Ilirik, Roman, Medieval, Turkish, and former Yugoslavian - are linked with the intensive development of mining and metallurgy. This activity influenced and still is influencing the overall position of Kosovo as a country. For example, according to a 2006 World Bank report as well as other studies, Kosovo has potential lignite resources (geological reserves) of about 1.5 billion tonnes, which are ranked fifth in the world in importance. Other significant Kosovan mineral resources include lead, zinc, gold, silver, bauxite, and uranium, and rare metals accompanying those minerals, including indium, cadmium, thallium, gallium, and bismuth. These rare metals are of particular importance in developing advanced industrial technologies. Kosovo also has reserves of high-quality non-metals, including magnesite, quartz grit, bentonite, argil, talc, and asbestos. No database exists for these non-metal reserves, and further research and studies are needed.

  17. By-product metals are technologically essential but have problematic supply

    PubMed Central

    Nassar, N. T.; Graedel, T. E.; Harper, E. M.

    2015-01-01

    The growth in technological innovation that has occurred over the past decades has, in part, been possible because an increasing number of metals of the periodic table are used to perform specialized functions. However, there have been increasing concerns regarding the reliability of supply of some of these metals. A main contributor to these concerns is the fact that many of these metals are recovered only as by-products from a limited number of geopolitically concentrated ore deposits, rendering their supplies unable to respond to rapid changes in demand. Companionality is the degree to which a metal is obtained largely or entirely as a by-product of one or more host metals from geologic ores. The dependence of companion metal availability on the production of the host metals introduces a new facet of supply risk to modern technology. We evaluated companionality for 62 different metals and metalloids, and show that 61% (38 of 62) have companionality greater than 50%. Eighteen of the 38—including such technologically essential elements as germanium, terbium, and dysprosium—are further characterized as having geopolitically concentrated production and extremely low rates of end-of-life recycling. It is this subset of companion metals—vital in current technologies such as electronics, solar energy, medical imaging, energy-efficient lighting, and other state-of-the-art products—that may be at the greatest risk of supply constraints in the coming decades. PMID:26601159

  18. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  19. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    PubMed

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  20. 75 FR 75694 - Certain Semiconductor Integration Circuits Using Tungsten Metallization and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Semiconductor Integration Circuits Using Tungsten Metallization and Products Containing... United States after importation of certain semiconductor integrated circuits using tungsten...

  1. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOEpatents

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  2. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  3. RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi

    DOEpatents

    Wiswall, R.H.

    1960-05-10

    Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

  4. Generate rigorous pyrolysis models for olefins production by computer

    SciTech Connect

    Klein, M.T.; Broadbelt, L.J.; Grittman, D.H.

    1997-04-01

    With recent advances in the automation of the model-building process for large networks of kinetic equations, it may become feasible to generate computer pyrolysis models for naphthas and gas oil feedstocks. The potential benefit of a rigorous mechanistic model for these relatively complex liquid feedstocks is great, due to diverse characterizations and yield spectrums. An ethane pyrolysis example is used to illustrate the computer generation of reaction mechanism models.

  5. Direct generation of superhydrophobic microstructures in metals by UV laser sources in the nanosecond regime

    NASA Astrophysics Data System (ADS)

    Ocaña, Jose L.; Jagdheesh, R.; García-Ballesteros, J. J.

    2016-02-01

    The current availability of new advanced fiber and DPSS lasers with characteristic pulse lengths ranging from ns to fs has provided a unique frame in which the development of laser-generated microstructures has been made possible for very diverse kinds of materials and applications. At the same time, the development of the appropriate laser-processing workstations granting the appropriate precision and repeatability of the respective laser interaction processes in line with the characteristic dimension features required in the microstructured samples has definitively consolidated laser surface microstructuring as a reference domain, nowadays, unavoidable for the design and manufacturing of current use microsystem: MEMSs, fluidic devices, advanced sensors, biomedical devices and instruments, etc., are all among the most well-known developments of the micromanufacturing technology. Completing the broad spectrum of applications developed mostly involving the generation of geometrical features on a subtrate with specific functional purposes, a relatively new, emerging class of laser-microstructuring techniques is finding an important niche of application in the generation of physically structured surfaces (particularly of metallic materials) with specific contact, friction, and wear functionalities, for whose generation the concourse of different types of laser sources is being found as an appropriate tool. In this paper, the application of laser sources with emission in the UV and at ns time regime to the surface structuration of metal surfaces (specifically Al) for the modification of their wettability properties is described as an attractive application basis for the generation of self-cleaning properties of extended functional surfaces. Flat aluminum sheets of thickness 100 μm were laser machined with ultraviolet laser pulses of 30 ns with different laser parameters to optimize the process parameters. The samples produced at the optimum conditions with respect to

  6. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Xiao, Jun; Wang, Hailong; Ye, Ziliang; Zhu, Hanyu; Zhao, Mervin; Wang, Yuan; Zhao, Jianhua; Yin, Xiaobo; Zhang, Xiang

    2016-07-01

    Electrically controlling the flow of charge carriers is the foundation of modern electronics. By accessing the extra spin degree of freedom (DOF) in electronics, spintronics allows for information processes such as magnetoresistive random-access memory. Recently, atomic membranes of transition metal dichalcogenides (TMDCs) were found to support unequal and distinguishable carrier distribution in different crystal momentum valleys. This valley polarization of carriers enables a new DOF for information processing. A variety of valleytronic devices such as valley filters and valves have been proposed, and optical valley excitation has been observed. However, to realize its potential in electronics it is necessary to electrically control the valley DOF, which has so far remained a significant challenge. Here, we experimentally demonstrate the electrical generation and control of valley polarization. This is achieved through spin injection via a diluted ferromagnetic semiconductor and measured through the helicity of the electroluminescence due to the spin–valley locking in TMDC monolayers. We also report a new scheme of electronic devices that combine both the spin and valley DOFs. Such direct electrical generation and control of valley carriers opens up new dimensions in utilizing both the spin and valley DOFs for next-generation electronics and computing.

  7. Singlet-Oxygen Generation From Individual Semiconducting and Metallic Nanostructures During Near-Infrared Laser Trapping

    SciTech Connect

    Smith, Bennett E.; Roder, Paden B.; Hanson, Jennifer L.; Manandhar, Sandeep; Devaraj, Arun; Perea, Daniel E.; Kim, Woo-Joong; Kilcoyne, Arthur L.; Pauzauskie, Peter J.

    2015-03-13

    Photodynamic therapy has been used for several decades in the treatment of solid tumors through the generation of reactive singlet-oxygen species (1O2). Recently, nanoscale metallic and semiconducting materials have been reported to act as photosensitizing agents with additional diagnostic and therapeutic functionality. To date there have been no reports of observing the generation of singlet-oxygen at the level of single nanostructures, particularly at near infrared (NIR) wavelengths. Here we demonstrate that NIR laser-tweezers can be used to observe the formation of singlet-oxygen produced from individual silicon and gold nanowires via use of a commercially available reporting dye. The laser trap also induces 2-photon photoexcitation of the dye following a chemical reaction with singlet oxygen. Corresponding 2-photon emission spectra confirms the generation of singlet oxygen from individual silicon nanowires at room temperature (30°C), suggesting a range of applications in understanding the impact of 1O2 on individual cancer cells.

  8. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Xiao, Jun; Wang, Hailong; Ye, Ziliang; Zhu, Hanyu; Zhao, Mervin; Wang, Yuan; Zhao, Jianhua; Yin, Xiaobo; Zhang, Xiang

    2016-07-01

    Electrically controlling the flow of charge carriers is the foundation of modern electronics. By accessing the extra spin degree of freedom (DOF) in electronics, spintronics allows for information processes such as magnetoresistive random-access memory. Recently, atomic membranes of transition metal dichalcogenides (TMDCs) were found to support unequal and distinguishable carrier distribution in different crystal momentum valleys. This valley polarization of carriers enables a new DOF for information processing. A variety of valleytronic devices such as valley filters and valves have been proposed, and optical valley excitation has been observed. However, to realize its potential in electronics it is necessary to electrically control the valley DOF, which has so far remained a significant challenge. Here, we experimentally demonstrate the electrical generation and control of valley polarization. This is achieved through spin injection via a diluted ferromagnetic semiconductor and measured through the helicity of the electroluminescence due to the spin-valley locking in TMDC monolayers. We also report a new scheme of electronic devices that combine both the spin and valley DOFs. Such direct electrical generation and control of valley carriers opens up new dimensions in utilizing both the spin and valley DOFs for next-generation electronics and computing.

  9. Effects of electron relaxation on multiple harmonic generation from metal surfaces with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Karatzas, N. E.; Georges, A. T.

    2006-11-01

    Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm 2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 10 11 W/cm 2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10 -9, while for the 5th-harmonic it is 10 -10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ˜30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.

  10. Field cryofocussing hydride generation applied to the simultaneous multi-elemental determination of alkyl-metal(loid) species in natural waters using ICP-MS detection.

    PubMed

    Tseng, C M; Amouroux, D; Brindle, I D; Donard, O F

    2000-12-01

    Two hydride generation manifold systems, utilizing flow injection and cryotrapping techniques for alkyl-metal(loid) speciation analysis in natural waters, are described in this paper. They provide shipboard capacity for simultaneous derivatization of analytes with NaBH4 and cryotrapping of the generated products in a field packed column at -196 degrees C. The first system is a large-volume hydride generator, using a reagent-injection flow technique as a flow batch type, that has been fully optimized and applied to the simultaneous detection of alkylated species in estuarine waters. The technique permits the analysis of a large volume sample (0.5-11) at a sampling rate of 3 h-1. The second is an online continuous flow hydride generator. A sampling rate of 3-12 h-1 can be achieved with samples of 0.1-0.51. In addition, shipboard operation eliminates major problems related to sample pretreatment, transport and storage. Ultra-trace multi-element determination is finally performed in the laboratory by cryogenic GC hyphenated with ICP-MS. Routine detection limits of 0.5-10 pg (as metal) for 0.51 water samples were achieved for the selected alkyl-metal(loid) species of arsenic, germanium, mercury and tin. Concentrations of various species, obtained from water samples taken from the Rhine estuary, are also presented. These species include alkylated arsenic compounds, other than methyl derivatives, that have been tentatively identified and are reported here for the first time.

  11. Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2

    PubMed Central

    Joo, Ji Bong; Dillon, Robert; Lee, Ilkeun; Yin, Yadong; Bardeen, Christopher J.; Zaera, Francisco

    2014-01-01

    The production of hydrogen from water with semiconductor photocatalysts can be promoted by adding small amounts of metals to their surfaces. The resulting enhancement in photocatalytic activity is commonly attributed to a fast transfer of the excited electrons generated by photon absorption from the semiconductor to the metal, a step that prevents deexcitation back to the ground electronic state. Here we provide experimental evidence that suggests an alternative pathway that does not involve electron transfer to the metal but requires it to act as a catalyst for the recombination of the hydrogen atoms made via the reduction of protons on the surface of the semiconductor instead. PMID:24843154

  12. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  13. Atomic scale modelling of hexagonal structured metallic fission product alloys.

    PubMed

    Middleburgh, S C; King, D M; Lumpkin, G R

    2015-04-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)-making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance.

  14. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  15. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.

    PubMed

    Xu, Yu-Shang; Zheng, Tao; Yong, Xiao-Yu; Zhai, Dan-Dan; Si, Rong-Wei; Li, Bing; Yu, Yang-Yang; Yong, Yang-Chun

    2016-07-01

    Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1μgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1μgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs.

  16. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature.

    PubMed

    Safonova, E V; Mitrofanov, Yu P; Konchakov, R A; Yu Vinogradov, A; Kobelev, N P; Khonik, V A

    2016-06-01

    The only intrinsic point defects of simple crystalline metals known from solid state physics are vacancies and interstitials. It is widely believed that while vacancies play a major role in crystal properties and their concentration reaches relatively big values near the melting temperature T m, interstitials essentially do not occur in thermodynamic equilibrium and their influence on properties is minor. Here, taking aluminum single crystals as an example, we present compelling experimental evidence for rapid thermoactivated growth of interstitial concentration upon approaching T m. Using high precision measurements of the shear modulus we found a diaelastic effect of up to [Formula: see text] near T m. It is argued that this effect is mostly due to the generation of dumbbell (split) interstitials. The interstitial concentration c i rapidly increases upon approaching T m and becomes only 2-3 times smaller than that of vacancies just below T m. The reason for this c i -increase is conditioned by a decrease of the Gibbs free energy with temperature, which in turn originates from the high formation entropy of dumbbell interstitials and a decrease of their formation enthalpy at high c i . Special molecular dynamic simulation confirmed all basic aspects of the proposed interpretation. The results obtained (i) demonstrate the significance of interstitial concentration near T m that could lead to the revaluation of vacancy concentration at high temperatures, (ii) suggest that dumbbell interstitials play a major role in the melting mechanism of monatomic metallic crystals and (iii) support a new avenue for in-depth understanding of glassy metals. PMID:27143564

  17. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature

    NASA Astrophysics Data System (ADS)

    Safonova, E. V.; Mitrofanov, Yu P.; Konchakov, R. A.; Vinogradov, A. Yu; Kobelev, N. P.; Khonik, V. A.

    2016-06-01

    The only intrinsic point defects of simple crystalline metals known from solid state physics are vacancies and interstitials. It is widely believed that while vacancies play a major role in crystal properties and their concentration reaches relatively big values near the melting temperature T m, interstitials essentially do not occur in thermodynamic equilibrium and their influence on properties is minor. Here, taking aluminum single crystals as an example, we present compelling experimental evidence for rapid thermoactivated growth of interstitial concentration upon approaching T m. Using high precision measurements of the shear modulus we found a diaelastic effect of up to -1.5% near T m. It is argued that this effect is mostly due to the generation of dumbbell (split) interstitials. The interstitial concentration c i rapidly increases upon approaching T m and becomes only 2-3 times smaller than that of vacancies just below T m. The reason for this c i -increase is conditioned by a decrease of the Gibbs free energy with temperature, which in turn originates from the high formation entropy of dumbbell interstitials and a decrease of their formation enthalpy at high c i . Special molecular dynamic simulation confirmed all basic aspects of the proposed interpretation. The results obtained (i) demonstrate the significance of interstitial concentration near T m that could lead to the revaluation of vacancy concentration at high temperatures, (ii) suggest that dumbbell interstitials play a major role in the melting mechanism of monatomic metallic crystals and (iii) support a new avenue for in-depth understanding of glassy metals.

  18. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

    PubMed

    Anastasopol, Anca; Pfeiffer, Tobias V; Middelkoop, Joost; Lafont, Ugo; Canales-Perez, Roger J; Schmidt-Ott, Andreas; Mulder, Fokko M; Eijt, Stephan W H

    2013-05-29

    Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.

  19. EXTREMELY METAL-POOR STARS IN THE MILKY WAY: A SECOND GENERATION FORMED AFTER REIONIZATION

    SciTech Connect

    Trenti, Michele; Shull, J. Michael E-mail: michael.shull@colorado.ed

    2010-03-20

    Cosmological simulations of Population III star formation suggest an initial mass function (IMF) biased toward very massive stars (M {approx}> 100 M{sub sun}) formed in minihalos at redshift z {approx}> 20, when the cooling is driven by molecular hydrogen. However, this result conflicts with observations of extremely metal-poor (EMP) stars in the Milky Way (MW) halo, whose r-process elemental abundances appear to be incompatible with those expected from very massive Population III progenitors. We propose a new solution to the problem in which the IMF of second-generation stars formed at z {approx}> 10, before reionization, is deficient in sub-solar mass stars, owing to the high cosmic microwave background temperature floor. The observed EMP stars are formed preferentially at z {approx}< 10 in pockets of gas enriched to metallicity Z {approx}> 10{sup -3.5} Z{sub sun} by winds from Population II stars. Our cosmological simulations of dark matter halos like the MW show that current samples of EMP stars can only constrain the IMF of late-time Population III stars, formed at z {approx}< 13 in halos with virial temperature T{sub vir} {approx} 10{sup 4} K. This suggests that pair instability supernovae were not produced primarily by this population. To begin probing the IMF of Population III stars formed at higher redshift will require a large survey, with at least 500 and probably several thousand EMP stars of metallicities Z {approx} 10{sup -3.5} Z{sub sun}.

  20. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature

    NASA Astrophysics Data System (ADS)

    Safonova, E. V.; Mitrofanov, Yu P.; Konchakov, R. A.; Vinogradov, A. Yu; Kobelev, N. P.; Khonik, V. A.

    2016-06-01

    The only intrinsic point defects of simple crystalline metals known from solid state physics are vacancies and interstitials. It is widely believed that while vacancies play a major role in crystal properties and their concentration reaches relatively big values near the melting temperature T m, interstitials essentially do not occur in thermodynamic equilibrium and their influence on properties is minor. Here, taking aluminum single crystals as an example, we present compelling experimental evidence for rapid thermoactivated growth of interstitial concentration upon approaching T m. Using high precision measurements of the shear modulus we found a diaelastic effect of up to -1.5% near T m. It is argued that this effect is mostly due to the generation of dumbbell (split) interstitials. The interstitial concentration c i rapidly increases upon approaching T m and becomes only 2–3 times smaller than that of vacancies just below T m. The reason for this c i -increase is conditioned by a decrease of the Gibbs free energy with temperature, which in turn originates from the high formation entropy of dumbbell interstitials and a decrease of their formation enthalpy at high c i . Special molecular dynamic simulation confirmed all basic aspects of the proposed interpretation. The results obtained (i) demonstrate the significance of interstitial concentration near T m that could lead to the revaluation of vacancy concentration at high temperatures, (ii) suggest that dumbbell interstitials play a major role in the melting mechanism of monatomic metallic crystals and (iii) support a new avenue for in-depth understanding of glassy metals.

  1. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature.

    PubMed

    Safonova, E V; Mitrofanov, Yu P; Konchakov, R A; Yu Vinogradov, A; Kobelev, N P; Khonik, V A

    2016-06-01

    The only intrinsic point defects of simple crystalline metals known from solid state physics are vacancies and interstitials. It is widely believed that while vacancies play a major role in crystal properties and their concentration reaches relatively big values near the melting temperature T m, interstitials essentially do not occur in thermodynamic equilibrium and their influence on properties is minor. Here, taking aluminum single crystals as an example, we present compelling experimental evidence for rapid thermoactivated growth of interstitial concentration upon approaching T m. Using high precision measurements of the shear modulus we found a diaelastic effect of up to [Formula: see text] near T m. It is argued that this effect is mostly due to the generation of dumbbell (split) interstitials. The interstitial concentration c i rapidly increases upon approaching T m and becomes only 2-3 times smaller than that of vacancies just below T m. The reason for this c i -increase is conditioned by a decrease of the Gibbs free energy with temperature, which in turn originates from the high formation entropy of dumbbell interstitials and a decrease of their formation enthalpy at high c i . Special molecular dynamic simulation confirmed all basic aspects of the proposed interpretation. The results obtained (i) demonstrate the significance of interstitial concentration near T m that could lead to the revaluation of vacancy concentration at high temperatures, (ii) suggest that dumbbell interstitials play a major role in the melting mechanism of monatomic metallic crystals and (iii) support a new avenue for in-depth understanding of glassy metals.

  2. Electric energy production by particle thermionic-thermoelectric power generators

    NASA Technical Reports Server (NTRS)

    Oettinger, P. E.

    1980-01-01

    Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.

  3. Liquid drop technique for generation of organic glass and metal shells

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    It was found that liquid drop techniques are very useful in several diverse areas. For producing very uniform metallic, organic, inorganic and, on particular, glassy shells, the liquid jet method is the most reproducible and exceptionally useful of all the techniques studied. The technique of capillary wave synchronization of the break-up of single and multiple component jets was utilized to produce uniform sized liquid drops and solid particles, and hollow liquid and solid shells. The technique was also used to encapsulate a number of liquids in impermeable spherical shells. Highly uniform glass shells were made by generating uniform drops of glass forming materials in an aqueous solution, subsequently evaporating the water, and then fusing and blowing the remaining solids in a high temperature vertical tube furnace. Experimental results are presented and the critical problems in further research in this field are discussed.

  4. Generating tunable white light by resonance energy transfer in transparent dye-conjugated metal oxide nanocrystals.

    PubMed

    Wang, Ting; Chirmanov, Vadim; Chiu, Wan Hang M; Radovanovic, Pavle V

    2013-10-01

    We report the design and properties of hybrid white-light-emitting nanophosphors obtained by electronic coupling of defect states in colloidal Ga2O3 nanocrystals emitting in blue-green with selected organic molecules emitting in orange-red. Coupling between the two components is enabled by the nanocrystal's size-dependent resonance energy transfer, allowing the photoluminescence chromaticity to be precisely tuned by changing the nanocrystal size and selecting the complementary organic dye molecule. Using this approach, we demonstrate the generation of pure white light with quantum yield of ~30%, color rendering index up to 95, and color temperature of 5500 K. These results provide a guideline for the design of a new class of hybrid white-light-emitting nanophosphors and other multifunctional nanostructures based on transparent metal oxides.

  5. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2014-12-02

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  6. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2015-04-21

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  7. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  8. An all-metallic microburner for a millimeter-scale thermophotovoltaic generator

    NASA Astrophysics Data System (ADS)

    Chan, Walker R.; Wilhite, Benjamin A.; Senkevich, Jay J.; Soljacic, Marin; Joannopoulos, John; Celanovic, Ivan

    2013-12-01

    Thermophotovoltaics (TPVs) is the conversion of heat to electricity via the thermal emission of photons and their subsequent absorption and conversion to electricity by infrared photovoltaic cells. One of the key challenges is designing a robust microburner with an integrated selective emitter—and having the system operate at 1000°C for thousands of hours. Previous attempts at TPV system demonstrations tend to be large, inefficient, and have limited lifetimes. Here we present a novel all metallic microburner design and experimental results in the context of a proposed small, robust, and efficient TPV generator. Fabricated entirely by machining and welding, the microburner is comprised of a serpentine channel in a 20 × 20 mm slab of Inconel with inlet and outlet capillaries that double as mechanical supports. The microburner has a thermal power input of 50 to 100 W and reaches temperatures of 700 to 1100°C. The metallic microburner is robust under high temperature operation and a 2D tantalum photonic crystal can be attached by welding for high fuel-to-electricity conversion efficiency. We characterized the microburner's exhaust composition and temperature distribution which matched well with CFD simulations. We operated the microburner at 60 W of input power (reaching about 1000°C) for 135 hours before it failed.

  9. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. PMID:27364359

  10. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    DOEpatents

    Narayan, Jagdish; Chen, Yok

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  11. Numerical assessment of residual formability in sheet metal products: towards design for sustainability

    NASA Astrophysics Data System (ADS)

    Falsafi, Javad; Demirci, Emrah; Silberschmidt, Vadim. V.

    2016-08-01

    A new computational scheme is presented to addresses cold recyclability of sheet- metal products. Cold recycling or re-manufacturing is an emerging area studied mostly empirically; in its current form, it lacks theoretical foundation especially in the area of sheet metals. In this study, a re-formability index was introduced based on post-manufacture residual formability in sheet metal products. This index accounts for possible levels of deformation along different strain paths based on Polar Effective Plastic Strain (PEPS) technique. PEPS is strain-path independent, hence provides a foundation for residual formability analysis. A user- friendly code was developed to implement this assessment in conjunction with advanced finite- element (FE) analysis. The significance of this approach is the advancement towards recycling of sheet metal products without melting them.

  12. Catalytic conversion of alcohols. 28. Product selectivities for 2-methylcyclohexanol conversion with metal oxide catalysts

    SciTech Connect

    Dabbagh, H.A.; Hughes, C.G.; Davis, B.H. )

    1992-02-01

    Metal oxides exhibit a range of selectivities (dehydration percentage, alkene distribution and alcohol isomerization) for the conversion of a 2-methylcyclohexanol isomer. For many metal oxide catalysts, trans-2-methylcyclohexanol produces a predominance of the less stable 3-methylcyclohexene isomer. The grouping of metal oxides based on the production of the less stable alkene isomers from 2-octanol is similar to that for trans-2-methlycyclohexanol. It is proposed that the same catalytic properties determine the selectivity for both reactants: for smaller metal cations the product selectivity is determined by steric crowding in the transition state, and for the larger cations the product selectivity is determined by the basicity of the oxygen anion and the relative acidity of the {beta}-hydrogens that are eliminated to produce water.

  13. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Dominques, Jesus A.

    2012-01-01

    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.

  14. A modern solid waste management strategy--the generation of new by-products.

    PubMed

    Fudala-Ksiazek, Sylwia; Pierpaoli, Mattia; Kulbat, Eliza; Luczkiewicz, Aneta

    2016-03-01

    To benefit the environment and society, EU legislation has introduced a 'zero waste' strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms for residual bulk disposal. However, each of the aforementioned facilities generates by-products that must be treated. This project focuses on the leachates from landfill prisms, including modern prism (MP) that meet EU requirements and previous prism (PP) that provide for the storage of permitted biodegradable waste as well as technological wastewaters from sorting unit (SU) and composting unit (CU), which are usually overlooked. The physico-chemical parameters of the liquid by-products collected over 38 months were supported by quantitative real-time PCR (qPCR) amplifications of functional genes transcripts and a metagenomic approach that describes the archaeal and bacterial community in the MP. The obtained data show that SU and especially CU generate wastewater that is rich in nutrients, organic matter and heavy metals. Through their on-site pre-treatment and recirculation via landfill prisms, the landfill waste decomposition process may be accelerated because of the introduction of organic matter and greenhouse gas emissions may be increased. These results have been confirmed by the progressive abundance of both archaeal community and the methyl coenzyme M reductase (mcrA) gene. The resulting multivariate data set, supported by a principal component analysis, provides useful information for the design, operation and risk assessment of modern MSWPs. PMID:26851170

  15. A modern solid waste management strategy--the generation of new by-products.

    PubMed

    Fudala-Ksiazek, Sylwia; Pierpaoli, Mattia; Kulbat, Eliza; Luczkiewicz, Aneta

    2016-03-01

    To benefit the environment and society, EU legislation has introduced a 'zero waste' strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms for residual bulk disposal. However, each of the aforementioned facilities generates by-products that must be treated. This project focuses on the leachates from landfill prisms, including modern prism (MP) that meet EU requirements and previous prism (PP) that provide for the storage of permitted biodegradable waste as well as technological wastewaters from sorting unit (SU) and composting unit (CU), which are usually overlooked. The physico-chemical parameters of the liquid by-products collected over 38 months were supported by quantitative real-time PCR (qPCR) amplifications of functional genes transcripts and a metagenomic approach that describes the archaeal and bacterial community in the MP. The obtained data show that SU and especially CU generate wastewater that is rich in nutrients, organic matter and heavy metals. Through their on-site pre-treatment and recirculation via landfill prisms, the landfill waste decomposition process may be accelerated because of the introduction of organic matter and greenhouse gas emissions may be increased. These results have been confirmed by the progressive abundance of both archaeal community and the methyl coenzyme M reductase (mcrA) gene. The resulting multivariate data set, supported by a principal component analysis, provides useful information for the design, operation and risk assessment of modern MSWPs.

  16. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    SciTech Connect

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  17. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  18. The IMF in galaxy clusters: What is needed to account for high metal production?

    NASA Astrophysics Data System (ADS)

    Morsony, Brian; Heath, Caitlin; Workman, Jared

    2015-08-01

    The gas in galaxy clusters is enriched in metal, typically to about 30% of solar metallicity. However, stars a relatively rare in clusters, meaning that the amount of metal produced per star is about 3 times as much as in the Milky Way. We set out to determine what changes to standard star formation are needed to reproduce the observed metal enhancement. Modifications include expanding the IMF to high mass (>130 M_sun) stars and including metal production from pair-instability supernovae, using an enhanced type-Ia SN rate, and using various modifications of the IMF to make it more top-heavy. For each set of assumptions, we use theoretical nucleosynthesis models to calculate the expected total metal yield per mass of star formation, and to predict the relative abundances of different elements. Including pair-instability supernovae will dramatically increase the amount of metal produced, and, combined with a slightly flatter IMF, can lead to 3 times the metal production per solar mass of star formation, along with an increase abundance of intermediate-mass elements.

  19. Molecular identification of isolated fungi, microbial and heavy metal contamination of canned meat products sold in Riyadh, Saudi Arabia

    PubMed Central

    Nasser, Laila A.

    2014-01-01

    Several studies have shown that canned meat products may be contaminated with fungal elements, bacteria and even heavy metals which may occur during the transportation, storage and handling processes. We conducted this study to determine the fungal, microbial and heavy metal contents of canned meats in Saudi Arabia. Of the 13 canned meat samples studied, Aspergillus and Penicillium were found in more than 70% of the total samples. Sequences of Penicillium species isolated from meat samples generated a phylogenetic tree which shows that the studied isolates were clustered in four groups. No bacterial contamination was noted in all of the samples. Nine of the 13 samples had iron concentrations above the permissible limit. All samples had zinc and copper levels below the maximum permissible limit. Four samples had cadmium levels above the maximum permissible level. All samples had levels of lead above the maximum permissible levels. These results indicate that fungal elements and higher levels of heavy metals such as lead and cadmium can be found in canned meat products. This may pose as a real danger to consumers, since canned meat products are readily accessible and convenient in Saudi Arabia. PMID:26288552

  20. Second harmonic generation in nanoscale films of transition metal dichalcogenide: Accounting for multipath interference

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. V.; Lavrov, S. D.; Shestakova, A. P.; Kulyuk, L. L.; Mishina, E. D.

    2016-09-01

    The transfer matrix method has been widely used to calculate wave propagation through the layered structures consisting entirely of either linear or nonlinear optical materials. In the present work, we develop the transfer matrix method for structures consisting of alternating layers of linear and nonlinear optical materials. The result is presented in a form that allows one to directly substitute the values of material constants, refractive index and absorption coefficient, into the expressions describing the second harmonic generation (SHG) field. The model is applied to the calculation of second harmonic (SH) field generated in nano-thin layers of transition metal dichalcogenides exfoliated on top of silicon oxide/silicon Fabry-Perot cavity. These structures are intensively studied both in view of their unique properties and perspective applications. A good agreement between experimental and numerical results can be achieved by small modification of optical constants, which may arise in an experiment due to a strong electric field of an incident focused pump laser beam. By considering the SHG effect, this paper completes the series of works describing the role of Fabry-Perot cavity in different optical effects (optical reflection, photoluminescence and Raman scattering) in 2D semiconductors that is extremely important for characterization of these unique materials.

  1. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    PubMed

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature. PMID:26737365

  2. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    PubMed

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature.

  3. Near Net Shape production of metal components using LENS

    SciTech Connect

    Schlienger, E.; Dimos, D.; Griffith, M.; Michael, J.; Oliver, M.; Romero, T.; Smugeresky, J.

    1998-03-01

    Rapid Prototyping and Near Net Shape manufacturing technologies are the subject of considerable attention and development efforts. At Sandia National Laboratories, one such effort is LENS (Laser Engineered Net Shaping). The LENS process utilizes a stream of powder and a focused Nd YAG laser to build near net shape fully dense metal parts. In this process, a 3-D solid model is sliced, then an X-Y table is rastered under the beam to build each slice. The laser 1 powder head is incremented upward with each slice and the deposition process is controlled via shuttering of the laser. At present, this process is capable of producing fully dense metal parts of iron, nickel and titanium alloys including tool steels and aluminides. Tungsten components have also been produced. A unique aspect of this process is the ability to produce components wherein the composition varies at differing locations in the part. Such compositional variations may be accomplished in either a stepped or graded fashion. In this paper, the details of the process will be described. The deposition mechanism will be characterized and microstructures and their associated properties will be discussed. Examples of parts which have been produced will be shown and issues regarding dimensional control and surface finish will be addressed.

  4. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions.

    PubMed

    Thoi, V Sara; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J

    2013-03-21

    Growing global energy demands and climate change motivate the development of new renewable energy technologies. In this context, water splitting using sustainable energy sources has emerged as an attractive process for carbon-neutral fuel cycles. A key scientific challenge to achieving this overall goal is the invention of new catalysts for the reductive and oxidative conversions of water to hydrogen and oxygen, respectively. This review article will highlight progress in molecular electrochemical approaches for catalytic reduction of protons to hydrogen, focusing on complexes of earth-abundant metals that can function in pure aqueous or mixed aqueous-organic media. The use of water as a reaction medium has dual benefits of maintaining high substrate concentration as well as minimizing the environmental impact from organic additives and by-products.

  5. Semi-automatic simulation model generation of virtual dynamic networks for production flow planning

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2016-08-01

    Computer modelling, simulation and visualization of production flow allowing to increase the efficiency of production planning process in dynamic manufacturing networks. The use of the semi-automatic model generation concept based on parametric approach supporting processes of production planning is presented. The presented approach allows the use of simulation and visualization for verification of production plans and alternative topologies of manufacturing network configurations as well as with automatic generation of a series of production flow scenarios. Computational examples with the application of Enterprise Dynamics simulation software comprising the steps of production planning and control for manufacturing network have been also presented.

  6. Energy requirements for metals production: comparison between ocean nodules and land-based resources. Final report

    SciTech Connect

    Not Available

    1980-09-01

    A methodology was developed to compare the energy requirements of technologies for production of metals from ocean nodules with production of same metals from land based ores using conventional processes. The energy requirements for production of copper, nickel, cobalt, and manganese from ocean nodules are based on an ocean mining operation of 3 million tons per year of dry nodules. A linear relationship exists between the amount of nodules processed and the total energy so that the energy can be easily converted to other processing rates if desired.

  7. Contributions for the next generation of 3D metal printing machines

    NASA Astrophysics Data System (ADS)

    Pereira, M.; Thombansen, U.

    2015-03-01

    The 3D metal printing processes are key technologies for the new industry manufacturing requirements, as small lot production associated with high design complexity and high flexibility are needed towards personalization and customization. The main challenges for these processes are associated to increasing printing volumes, maintaining the relative accuracy level and reducing the global manufacturing time. Through a review on current technologies and solutions proposed by global patents new design solutions for 3D metal printing machines can be suggested. This paper picks up current technologies and trends in SLM and suggests some design approaches to overcome these challenges. As the SLM process is based on laser scanning, an increase in printing volume requires moving the scanner over the work surface by motion systems if printing accuracy has to be kept constant. This approach however does not contribute to a reduction in manufacturing time, as only one laser source will be responsible for building the entire work piece. With given technology limits in galvo based laser scanning systems, the most obvious solution consists in using multiple beam delivery systems in series, in parallel or both. Another concern is related to the weight of large work pieces. A new powder recoater can control the layer thickness and uniformity and eliminate or diminish fumes. To improve global accuracy, the use of a pair of high frequency piezoelectric actuators can help in positioning the laser beam. The implementation of such suggestions can contribute to SLM productivity. To do this, several research activities need to be accomplished in areas related to design, control, software and process fundamentals.

  8. Trace metal concentration in different Indian tobacco products and related health implications.

    PubMed

    Verma, S; Yadav, S; Singh, I

    2010-01-01

    Concentrations of seven heavy metals, viz. Cd, Ni, Pb, Cr, Cu, Fe and Zn were determined in 30 samples of various brands of five different tobacco product types easily available in Indian markets. Three product types cigarettes, cigars and biri (tobacco rolled in dry leaf and smoked without filter) are consumed by smoking while chewing tobacco and snuff are consumed by chewing and sniffing, respectively. The metal content showed smoking and non-smoking type, brand and element specific variations. In the non-smoking type, chewing tobacco samples contained more heavy metals compared to snuff samples. Biri showed minimum metal content compared to cigarettes and cigars among the smoking types. This could be due to the metal enrichment during both chemical and physical processing in finished product; biri being the most raw and cheap product. The intra brand variations also indicate the same as the processing technologies are exclusive and different for each brand. The results are nearly comparable to the existing data with limited exceptions. We suggest that the smoke and ash produced could be significant contributor to metal load in the soil, air and water systems in addition to the adverse human health effects via direct tobacco consumption.

  9. OCCURRENCE OF A NEW GENERATION OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    A survey of disinfection by-product (DBP) occurrence in the United States was conducted at 12 drinking water treatment plants. In addition to currently regulated DBPs, more than 50 DBPs that rated a high priority for potential toxicity were studied. These priority DBPs included...

  10. A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji

    2016-03-01

    A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.

  11. Evaluation of HWVP feed preparation chemistry for an NCAW simulant -- Fiscal year 1993: Effect of noble metals concentration on offgas generation and ammonia formation

    SciTech Connect

    Patello, G.K.; Wiemers, K.D.; Bell, R.D.; Smith, H.D.; Williford, R.E.; Clemmer, R.G.

    1995-03-01

    The High-Level Waste Vitrification Program is developing technology for the Department of Energy to immobilize high-level and transuranic wastes as glass for permanent disposal. Pacific Northwest Laboratory (PNL) is conducting laboratory-scale melter feed preparation studies using a HWVP simulated waste slurry, Neutralized Current Acid Waste (NCAW). A FY 1993 laboratory-scale study focused on the effects of noble metals (Pd, Rh, and Ru) on feed preparation offgas generation and NH{sub 3} production. The noble metals catalyze H{sub 2} and NH{sub 3} production, which leads to safety concerns. The information gained from this study is intended to be used for technology development in pilot scale testing and design of the Hanford High-Level Waste Vitrification Facility. Six laboratory-scale feed preparation tests were performed as part of the FY 1993 testing activities using nonradioactive NCAW simulant. Tests were performed with 10%, 25%, 50% of nominal noble metals content. Also tested were 25% of the nominal Rh and a repeat of 25% nominal noble metals. The results of the test activities are described. 6 refs., 28 figs., 12 tabs.

  12. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes.

    PubMed

    Gadd, G M

    1999-01-01

    The production of organic acids by fungi has profound implications for metal speciation, physiology and biogeochemical cycles. Biosynthesis of oxalic acid from glucose occurs by hydrolysis of oxaloacetate to oxalate and acetate catalysed by cytosolic oxaloacetase, whereas on citric acid, oxalate production occurs by means of glyoxylate oxidation. Citric acid is an intermediate in the tricarboxylic acid cycle, with metals greatly influencing biosynthesis: growth limiting concentrations of Mn, Fe and Zn are important for high yields. The metal-complexing properties of these organic acids assist both essential metal and anionic (e.g. phosphate) nutrition of fungi, other microbes and plants, and determine metal speciation and mobility in the environment, including transfer between terrestrial and aquatic habitats, biocorrosion and weathering. Metal solubilization processes are also of potential for metal recovery and reclamation from contaminated solid wastes, soils and low-grade ores. Such 'heterotrophic leaching' can occur by several mechanisms but organic acids occupy a central position in the overall process, supplying both protons and a metal-complexing organic acid anion. Most simple metal oxalates [except those of alkali metals, Fe(III) and Al] are sparingly soluble and precipitate as crystalline or amorphous solids. Calcium oxalate is the most important manifestation of this in the environment and, in a variety of crystalline structures, is ubiquitously associated with free-living, plant symbiotic and pathogenic fungi. The main forms are the monohydrate (whewellite) and the dihydrate (weddelite) and their formation is of significance in biomineralization, since they affect nutritional heterogeneity in soil, especially Ca, P, K and Al cycling. The formation of insoluble toxic metal oxalates, e.g. of Cu, may confer tolerance and ensure survival in contaminated environments. In semi-arid environments, calcium oxalate formation is important in the formation and

  13. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Dominguez, Jesus A.

    2012-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.

  14. Theoretical analysis of hard x-ray generation by nonperturbative interaction of ultrashort light pulses with a metal

    PubMed Central

    Weisshaupt, Jannick; Juvé, Vincent; Holtz, Marcel; Woerner, Michael; Elsaesser, Thomas

    2015-01-01

    The interaction of intense femtosecond pulses with metals allows for generating ultrashort hard x-rays. In contrast to plasma theories, tunneling from the target into vacuum is introduced as electron generation step, followed by vacuum acceleration in the laser field and re-entrance into the target to generate characteristic x-rays and Bremsstrahlung. For negligible space charge in vacuum, the Kα flux is proportional to the incident intensity and the wavelength squared, suggesting a strong enhancement of the x-ray flux by mid-infrared driving pulses. This prediction is in quantitative agreement with experiments on femtosecond Cu Kα generation. PMID:26798790

  15. Facility for generating crew waste water product for ECLSS testing

    NASA Technical Reports Server (NTRS)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  16. Potential metal impurities in active pharmaceutical substances and finished medicinal products - A market surveillance study.

    PubMed

    Wollein, Uwe; Bauer, Bettina; Habernegg, Renate; Schramek, Nicholas

    2015-09-18

    A market surveillance study has been established by using different atomic spectrometric methods for the determination of selected elemental impurities of particular interest, to gain an overview about the quality of presently marketed drug products and their bulk drug substances. The limit tests were carried out with respect to the existing EMA guideline on the specification limits for residuals of metal catalysts or metal reagents. Also attention was given to the future implementation of two new chapters of the United States Pharmacopoeia (USP) stating limit concentrations of elemental impurities. The methods used for determination of metal residues were inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES), and atomic absorption spectrometry technologies (GFAAS, CVAAS, HGAAS). This article presents the development and validation of the methods used for the determination of 21 selected metals in 113 samples from drug products and their active pharmaceutical ingredients.

  17. Potential metal impurities in active pharmaceutical substances and finished medicinal products - A market surveillance study.

    PubMed

    Wollein, Uwe; Bauer, Bettina; Habernegg, Renate; Schramek, Nicholas

    2015-09-18

    A market surveillance study has been established by using different atomic spectrometric methods for the determination of selected elemental impurities of particular interest, to gain an overview about the quality of presently marketed drug products and their bulk drug substances. The limit tests were carried out with respect to the existing EMA guideline on the specification limits for residuals of metal catalysts or metal reagents. Also attention was given to the future implementation of two new chapters of the United States Pharmacopoeia (USP) stating limit concentrations of elemental impurities. The methods used for determination of metal residues were inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES), and atomic absorption spectrometry technologies (GFAAS, CVAAS, HGAAS). This article presents the development and validation of the methods used for the determination of 21 selected metals in 113 samples from drug products and their active pharmaceutical ingredients. PMID:26036232

  18. Production of aluminium metal matrix composites by liquid processing methods

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Kumar, R.; Tharmaraj, R.; Velu, P. Shenbaga

    2016-05-01

    Owing to high strength to low weight ratio, Aluminium matrix composites are widely used in diverse applications of many industries. This lucrative property is achieved by reinforcing the brittle ceramic particles in the aluminium matrix. Aluminium matrix composites are produced by liquid processing methods and solid processing methods. Nevertheless, liquidprocessing techniques stand out because of its simplicity and its suitability for mass production. In this review article, the production of aluminium matrix composites by different liquid processing technique is discussed and a comparative study is carried out.

  19. Non-Noble-Metal Nanoparticle Supported on Metal-Organic Framework as an Efficient and Durable Catalyst for Promoting H2 Production from Ammonia Borane under Visible Light Irradiation.

    PubMed

    Wen, Meicheng; Cui, Yiwen; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2016-08-24

    In this work, we propose a straightforward method to enhance the catalytic activity of AB dehydrogenation by using non-noble-metal nanoparticle supported on chromium-based metal-organic framework (MIL-101). It was demonstrated to be effective for hydrogen generation from ammonia borane under assistance of visible light irradiation as a noble-metal-free catalyst. The catalytic activity of metal nanoparticles supported on MIL-101 under visible light irradiation is remarkably higher than that without light irradiation. The TOFs of Cu/MIL-101, Co/MIL-101, and Ni/MIL-101 are 1693, 1571, and 3238 h(-1), respectively. The enhanced activity of catalysts can be primarily attributed to the cooperative promoting effects from both non-noble-metal nanoparticles and photoactive metal-organic framework in activating the ammonia borane molecule and strong ability in the photocatalytic production of hydroxyl radicals, superoxide anions, and electron-rich non-noble-metal nanoparticle. This work sheds light on the exploration of active non-noble metals supported on photoactive porous materials for achieving high catalytic activity of various redox reactions under visible light irradiation. PMID:27478964

  20. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    SciTech Connect

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng E-mail: cxue@ntu.edu.sg; Zhang, Ming-Yi; Xue, Can E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x} particles are durable and active catalysts for photocatalytic H{sub 2} generation.

  1. Analysis of the inhibition of PAI-1 by metal theaflavin complexes and their degradation products.

    PubMed

    Jankun, Jerzy; Kondray, Victor; Skrzypczak-Jankun, Ewa

    2013-05-01

    The inhibition of elements of the plasminogen activator system [urokinase (uPA), tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1)] plays an important role in human diseases. PAI-1 is overexpressed in obesity and diabetes, and the inhibition of this protein has been postulated to alleviate the symptoms of both disorders. We found that two theaflavins (TFs) from black tea inhibit PAI-1 and we suggest that the beneficial effects of drinking tea may be associated with the suppression of PAI-1 activity by theaflavins. Epidemiological studies are controversial; some studies show the beneficial effects of drinking black tea on obesity and diabetes, while others do not. TFs, a family of compounds that can comprise up to 40% the dry weight of black tea, are responsible for the characteristic color, and they are known to chelate metals. We hypothesized that the content/variety of metals present in drinking water may be one of the reasons for such controversies in the population studies. TFs are excellent chelating compounds by trapping metals into complexes; thus, the quality of water used for tea preparation may influence changes in the formation of new products according to TF affinity for different metals, as well as their high molecular weight oxidation products. Our modeling and docking studies suggest that TF/metal complexes have similar affinity to PAI-1 as native TFs. However, analyses using liquid chromatography-mass spectroscopy (LC-MS) revealed the presence of TF degradation products in tea brewed using water containing metal salts. These can further form high molecular weight oxidation products. Thus, metals present in tea could diminish the beneficial effects of black tea by reducing TF concentration via metal-induced degradation and precipitation.

  2. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  3. s-process production in rotating massive stars at solar and low metallicities

    NASA Astrophysics Data System (ADS)

    Frischknecht, Urs; Hirschi, Raphael; Pignatari, Marco; Maeder, André; Meynet, George; Chiappini, Cristina; Thielemann, Friedrich-Karl; Rauscher, Thomas; Georgy, Cyril; Ekström, Sylvia

    2016-02-01

    Rotation was shown to have a strong impact on the structure and light element nucleosynthesis in massive stars. In particular, models including rotation can reproduce the primary nitrogen observed in halo extremely metal poor (EMP) stars. Additional exploratory models showed that rotation may enhance s-process production at low metallicity. Here we present a large grid of massive star models including rotation and a full s-process network to study the impact of rotation on the weak s-process. We explore the possibility of producing significant amounts of elements beyond the strontium peak, which is where the weak s-process usually stops. We used the Geneva stellar evolution code coupled to an enlarged reaction network with 737 nuclear species up to bismuth to calculate 15-40 M⊙ models at four metallicities (Z = 0.014, 10-3, 10-5 and 10-7) from the main sequence up to the end of oxygen burning. We confirm that rotation-induced mixing between the convective H-shell and He-core enables an important production of primary 14N and 22Ne and s-process at low metallicity. At low metallicity, even though the production is still limited by the initial number of iron seeds, rotation enhances the s-process production, even for isotopes heavier than strontium, by increasing the neutron-to-seed ratio. The increase in this ratio is a direct consequence of the primary production of 22Ne. Despite nuclear uncertainties affecting the s-process production and stellar uncertainties affecting the rotation-induced mixing, our results show a robust production of s-process at low metallicity when rotation is taken into account. Considering models with a distribution of initial rotation rates enables us to reproduce the observed large range of the [Sr/Ba] ratios in (carbon-enhanced and normal) EMP stars.

  4. Implementing Provenance Collection in a Legacy Data Product Generation System

    NASA Astrophysics Data System (ADS)

    Conover, H.; Ramachandran, R.; Kulkarni, A.; Beaumont, B.; McEniry, M.; Graves, S. J.; Goodman, H.

    2012-12-01

    NASA has been collecting, storing, archiving and distributing vast amounts of Earth science data derived from satellite observations for several decades now. The raw data collected from the different sensors undergoes many different transformations before it is distributed to the science community as climate-research-quality data products. These data transformations include calibration, geolocation, and conversion of the instrument counts into meaningful geophysical parameters, and may include reprojection and/or spatial and temporal averaging as well. In the case of many Earth science data systems, the science algorithms and any ancillary data files used for these transformations are delivered as a "black box" to be integrated into the data system's processing framework. In contrast to an experimental workflow that may vary with each iteration, such systems use consistent, well-engineered processes to apply the same science algorithm to each well-defined set of inputs in order to create standard data products. Even so, variability is inevitably introduced. There may be changes made to the algorithms, different ancillary datasets may be used, underlying hardware and software may get upgraded, etc. Furthermore, late-arriving input data, operator error, or other processing anomalies may necessitate regeneration and replacement of a particular set of data files and any downstream products. These variations need to be captured, documented and made accessible to the scientific community so they can be properly accounted for in analyses. This presentation describes an approach to provenance capture, storage and dissemination implemented at the NASA Science Investigator-led Processing System (SIPS) for the AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) instrument. Key considerations in adding provenance capabilities to this legacy data system include: (1) granularity of provenance information captured, (2) additional context information needed

  5. Emotions generated by meat and other food products in women.

    PubMed

    Rousset, S; Deiss, V; Juillard, E; Schlich, P; Droit-Volet, S

    2005-10-01

    Eating behaviour depends partly on food preference, which is itself determined by different types of emotions. Among the emotions generated by food, disgust with red meat is common in women and can lead to reduced meat consumption. We tested the hypothesis that low meat intake is related to different negative emotions towards meat but does not affect the emotions expressed towards other food categories. Food intake of sixty women was followed throughout each day for 1 week and allowed us to assign women to two groups (low v. high meat-eating women). They were then invited to assess the intensity of twenty-six emotions described by words and induced by thirty food pictures. We determined the number of necessary dimensions to describe the space created by the twenty-six words. The results showed differences in emotions between the low and high meat-eating women. As expected, there were overall differences in the emotions generated by the thirty food pictures. Six clusters of emotions were necessary and sufficient to summarise the emotional space. These dimensions were described by 'disappointment', 'satisfaction', 'guilt', 'doubt', 'amused' and 'indifference'. As expected, the low meat-eating women felt more 'disappointment', 'indifference' and less 'satisfaction' towards meat than did the high meat-eating women. However, the low meat-eating women also stated other negative emotions such as 'doubt' towards some starchy foods. The only foods that they liked more than high meat-eating women were pears and French beans. In conclusion, low meat consumption was associated with specific negative emotions regarding meat and other foods.

  6. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001.

    PubMed

    Yusuf, Ibrahim; Ahmad, Siti Aqlima; Phang, Lai Yee; Syed, Mohd Arif; Shamaan, Nor Aripin; Abdul Khalil, Khalilah; Dahalan, Farrah Aini; Shukor, Mohd Yunus

    2016-12-01

    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes. PMID:27591845

  7. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001.

    PubMed

    Yusuf, Ibrahim; Ahmad, Siti Aqlima; Phang, Lai Yee; Syed, Mohd Arif; Shamaan, Nor Aripin; Abdul Khalil, Khalilah; Dahalan, Farrah Aini; Shukor, Mohd Yunus

    2016-12-01

    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.

  8. Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils.

    PubMed

    Hussein, Khalid A; Joo, Jin Ho

    2014-06-01

    Recently, heavy metals have been shown to have a stimulating effect on siderophore biosynthesis in various bacteria. In addition, several studies have found that siderophore production is greater in bacteria isolated from soil near plant roots. The aim of this study was to compare the production of siderophores by bacterial strains isolated from heavy metal-contaminated and uncontaminated soils. Chrome azurol sulphonate was used to detect siderophore secretion by several bacterial strains isolated from heavy metal-contaminated and rhizosphere-uncontaminated soils with both a qualitative disc diffusion method and a quantitative ultraviolet spectrophotometric method. Siderophore production by rhizosphere bacteria was significantly greater than by bacteria isolated from contaminated soil. The Pearson's correlation test indicated a positive correlation between the amount of siderophore produced by bacteria isolated from the rhizosphere using the quantitative and qualitative detection methods and the amount of heavy metal in the soil. However, a significant negative correlation was observed between the amount of siderophore produced by bacteria isolated from heavy metal-contaminated soil and the amount of heavy metal (r value of -0.775, P < 0.001).

  9. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    NASA Astrophysics Data System (ADS)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  10. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). PMID:25898346

  11. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities).

  12. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.

    PubMed

    Tai, Yi-Shu; Xiong, Mingyong; Jambunathan, Pooja; Wang, Jingyu; Wang, Jilong; Stapleton, Cole; Zhang, Kechun

    2016-04-01

    Conversion of lignocellulosic biomass into value-added products provides important environmental and economic benefits. Here we report the engineering of an unconventional metabolism for the production of tricarboxylic acid (TCA)-cycle derivatives from D-xylose, L-arabinose and D-galacturonate. We designed a growth-based selection platform to identify several gene clusters functional in Escherichia coli that can perform this nonphosphorylative assimilation of sugars into the TCA cycle in less than six steps. To demonstrate the application of this new metabolic platform, we built artificial biosynthetic pathways to 1,4-butanediol (BDO) with a theoretical molar yield of 100%. By screening and engineering downstream pathway enzymes, 2-ketoacid decarboxylases and alcohol dehydrogenases, we constructed E. coli strains capable of producing BDO from D-xylose, L-arabinose and D-galacturonate. The titers, rates and yields were higher than those previously reported using conventional pathways. This work demonstrates the potential of nonphosphorylative metabolism for biomanufacturing with improved biosynthetic efficiencies. PMID:26854668

  13. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.

    PubMed

    Tai, Yi-Shu; Xiong, Mingyong; Jambunathan, Pooja; Wang, Jingyu; Wang, Jilong; Stapleton, Cole; Zhang, Kechun

    2016-04-01

    Conversion of lignocellulosic biomass into value-added products provides important environmental and economic benefits. Here we report the engineering of an unconventional metabolism for the production of tricarboxylic acid (TCA)-cycle derivatives from D-xylose, L-arabinose and D-galacturonate. We designed a growth-based selection platform to identify several gene clusters functional in Escherichia coli that can perform this nonphosphorylative assimilation of sugars into the TCA cycle in less than six steps. To demonstrate the application of this new metabolic platform, we built artificial biosynthetic pathways to 1,4-butanediol (BDO) with a theoretical molar yield of 100%. By screening and engineering downstream pathway enzymes, 2-ketoacid decarboxylases and alcohol dehydrogenases, we constructed E. coli strains capable of producing BDO from D-xylose, L-arabinose and D-galacturonate. The titers, rates and yields were higher than those previously reported using conventional pathways. This work demonstrates the potential of nonphosphorylative metabolism for biomanufacturing with improved biosynthetic efficiencies.

  14. Search for resonant second generation slepton production at the Tevatron

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota

    2006-05-01

    The authors present a search for supersymmetry in the R-parity violating resonant production and decay of smuons and muon-sneutrinos in the channels {tilde {mu}} {yields} {tilde {chi}}{sub 1}{sup 0} {mu}, {tilde {mu}} {yields} {tilde {chi}}{sub 2,3,4}{sup 0} {mu}, and {tilde {nu}}{sub {mu}} {yields} {tilde {chi}}{sub 1,2}{sup {+-}} {mu}. They analyzed 0.38 fb{sup -1} of integrated luminosity collected between April 2002 and August 2004 with the D0 detector at the Fermilab Tevatron Collider. The observed number of events is in agreement with the standard model expectation, and we calculate 95% C.L. limits on the slepton production cross section times branching fraction to gaugino plus muon, as a function of slepton and gaugino masses. In the framework of minimal supergravity, we set limits on the coupling parameter {lambda}'{sub 211}, extending significantly previous results obtained in Run I of the Tevatron and at the CERN LEP collider.

  15. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel

    2012-08-30

    As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected. PMID:22717063

  16. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. PMID:27309129

  17. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    PubMed

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications.

  18. Attainable region analysis for continuous production of second generation bioethanol

    PubMed Central

    2013-01-01

    Background Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. Results We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. Conclusions In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum

  19. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE PAGESBeta

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highlymore » active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).« less

  20. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    SciTech Connect

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).

  1. Commercial herbal slimming products: concern for the presence of heavy metals and bacteria.

    PubMed

    Zin, Noraziah Mohamad; Chit, Yong Mei; Abu Bakar, Nur Faizah

    2014-02-01

    The increment of rate in obesity, the phenomenon of fat phobia as well as the increased use of herbal medicine had lead to the emergence of herbal slimming products. However, numerous bacteria and heavy metal contaminations are often found in herbal products due to irregular handling practices. Ten different brands of products (labeled as A-J) were investigated. Seven heavy metals content such as As, Cd, Pb, Co, Cr, Cu and Zn were analyzed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and bacterial presence was determined by counting the total aerobic count. The identification of isolates was carried out by macroscopic and microscopic observation, biochemical tests and confirmation using commercial kits of Microgen GN-ID A+B and API 20 E. The heavy metal contents in the samples were below the limit of the standard limitation by WHO and Health Canada. However, sample A contained the highest total daily intake of heavy metals. Total aerobic count was highest in sample H followed by G, A, B, C, F, D, E, I and J in which G and H exceeded the standard total aerobic count (10(5) CFU g(-1)) as given by WHO. A total of nine isolates of Bacillus spp. and ten gram-negative bacteria were isolated in which Bacillus cereus and Pseudomonas aeruginosa were found in samples C and F, respectively. Considering the fact that the herbal sliming products contained low concentration of heavy metals and bacteria count, it should be consumed with caution.

  2. Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Lee, Wook-Hyun; Hwang, Hyun-Chang; Lee, Ji-Su; Kim, Pan-Jo; Lim, Sang-Hyuk; Rhi, Seok-Ho; Lee, Kye-Bock; Lee, Ki-Woo

    2015-10-01

    In the present study, a numerical simulation and experimental studies of an alkali-metal thermoelectric energy converter (AMTEC) system were carried out. The present, unique AMTEC model consists of an evaporator, a β-alumina solid electrolyte (BASE) tube, a condenser, and an artery cable wick. The key points for operation of the present AMTEC were 1100 K in the evaporator and 600 K in the condenser. A numerical model based on sodium-saturated porous wicks was developed and shown to be able to simulate the AMTEC system. The simulation results show that the AMTEC system can generate up to 100 W with a given design. The AMTEC system developed in the present work and used in the practical investigations could generate an electromotive force of 7 V. Artery wick and evaporator wick structures were simulated for the optimum design. Both sodium-saturated wicks were affected by numerous variables, such as the input heat power, cooling temperature, sodium mass flow rate, and capillary-driven fluid flow. Based on an effective thermal conductivity model, the presented simulation could successfully predict the system performance. Based on the numerical simulation, the AMTEC system operates with efficiency near 10% to 15%. In the case of an improved BASE design, the system could reach efficiency of over 30%. The system was designed for 0.6 V power, 25 A current, and 100 W power input. In addition, in this study, the temperature effects in each part of the AMTEC system were analyzed using a heat transfer model in porous media to apply to the computational fluid dynamics at a predetermined temperature condition for the design of a 100-W AMTEC prototype. It was found that a current density of 0.5 A/cm2 to 0.9 A/cm2 for the BASE is suitable when the temperatures of the evaporator section and condenser section are 1100 K and 600 K, respectively.

  3. Expectation formation in an overlapping generation model with production

    NASA Astrophysics Data System (ADS)

    Cavalli, Fausto; Naimzada, Ahmad

    2016-03-01

    In this paper, we investigate the dynamic properties of an overlapping generations' model with capital accumulation, in which agents work in both periods of life. We compare three different expectation mechanisms: perfect foresight, myopic foresight, and adaptive expectations, focusing, in particular, on this last one. We show that the steady state is the same under each mechanism, and we prove its global stability for perfectly foresighted agents. After investigating local stability conditions under myopic expectations, we study in detail the case of adaptive expectations. We show that, under both reduced rationality mechanisms, if the share of time devoted to labor in the second period of life is large enough, periodic and complex dynamics can occur. Moreover, deepening the investigation through numerical simulations, we study the global stability behavior under adaptive expectations. Such complex scenarios also include the coexistence between the stable steady state and a periodic or chaotic attractor, giving rise to multistability, which does not arise under myopic expectations. Finally, we provide some considerations about the possibility for the agents to improve their forecasts by observing the forecasting error time series.

  4. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory.

  5. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory. PMID:24097365

  6. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  7. 40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Parts AIRCRAFT Aircraft Engines & Engine Parts Aircraft Frames Manufacturing Aircraft Parts & Equipment..., & Surgical Supplies Pens, Mechanical Pencils, & Parts Process Control Instruments Search & Navigation... Combustion Engines Measuring & Dispensing Pumps Mechanical Power Transmission Equipment Metal...

  8. 40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Aircraft Engines & Engine Parts Aircraft Frames Manufacturing Aircraft Parts & Equipment Airports, Flying..., & Surgical Supplies Pens, Mechanical Pencils, & Parts Process Control Instruments Search & Navigation... Combustion Engines Measuring & Dispensing Pumps Mechanical Power Transmission Equipment Metal...

  9. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production

    SciTech Connect

    Franz, A.; Burgstaller, W.; Schinner, F. )

    1991-03-01

    In the presence of insoluble metal oxides (industrial filter dust, zinc oxide, synthetic mixture of metal oxides), Penicillium simplicissimum developed the ability to excrete considerable amounts of citric acid (>100 mM). Parallel with the increase of citric acid concentration in the culture broth, zinc was solubilized from zinc oxide. The adsorption of filter dust onto the mycelium (the pellets formed were less than 1 mm in diameter) was required for not only the citric acid excretion but also the leaching of zinc. When the filter dust was replaced with a synthetic mixture of metal oxides or with zinc oxide in combination with trace elements, levels of adsorption and citric acid production were observed to be similar to those in experiments where industrial filter dust was used. The two most important properties of the filter dust were its heavy-metal content and its buffering capacity. These properties were simulated by adding heavy metals in soluble form (as chlorides, sulfates, or nitrates) or soluble buffers to the medium. Both heavy metals and buffers were not able to induce a citric acid efflux. As with citric acid production by Aspergillus niger, the addition of manganese lowered citric acid excretion (by 40% with metal oxide-induced citric acid efflux and by 100% with urea-induced citric acid efflux). Copper antagonized the effect of manganese. The mechanism for the bulk of citric acid excretion by P. simplicissimum, however, seemed to be different from that described for citric acid accumulation by A. niger. Because of the inefficiency of metals in solubilized form and of soluble buffers to induce a strong citric acid efflux, adsorption of an insoluble metal compound (zinc oxide) turned out to be essential.

  10. Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds

    SciTech Connect

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2015-03-31

    The generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation, is treated. Consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the evolution of the melt pool, and thermal conduction in the melt and surrounding solid. The excitation of the ultrasound takes place over a few nanoseconds, and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. Because of this, the output of the thermal simulations can be represented as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response at the opposite surface to these forces is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method, and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported of the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold. Comparison is made between results obtained using available temperature dependent thermophysical data, and room temperature materials constants except near the melting point.

  11. Quantitative Assessment of Fatigue Damage Accumulation in Wavy Slip Metals from Acoustic Harmonic Generation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    A comprehensive, analytical treatment is presented of the microelastic-plastic nonlinearities resulting from the interaction of a stress perturbation with dislocation substructures (veins and persistent slip bands) and cracks that evolve during high-cycle fatigue of wavy slip metals. The nonlinear interaction is quantified by a material (acoustic) nonlinearity parameter beta extracted from acoustic harmonic generation measurements. The contribution to beta from the substructures is obtained from the analysis of Cantrell [Cantrell, J. H., 2004, Proc. R. Soc. London A, 460, 757]. The contribution to beta from cracks is obtained by applying the Paris law for crack propagation to the Nazarov-Sutin crack nonlinearity equation [Nazarov, V. E., and Sutin, A. M., 1997, J. Acoust. Soc. Am. 102, 3349]. The nonlinearity parameter resulting from the two contributions is predicted to increase monotonically by hundreds of percent during fatigue from the virgin state to fracture. The increase in beta during the first 80-90 percent of fatigue life is dominated by the evolution of dislocation substructures, while the last 10-20 percent is dominated by crack growth. The model is applied to the fatigue of aluminium alloy 2024-T4 in stress-controlled loading at 276MPa for which experimental data are reported. The agreement between theory and experiment is excellent.

  12. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle.

    PubMed

    Fang, Zheyu; Zhen, Yu-Rong; Neumann, Oara; Polman, Albert; García de Abajo, F Javier; Nordlander, Peter; Halas, Naomi J

    2013-04-10

    When an Au nanoparticle in a liquid medium is illuminated with resonant light of sufficient intensity, a nanometer scale envelope of vapor-a "nanobubble"-surrounding the particle, is formed. This is the nanoscale onset of the well-known process of liquid boiling, occurring at a single nanoparticle nucleation site, resulting from the photothermal response of the nanoparticle. Here we examine bubble formation at an individual metallic nanoparticle in detail. Incipient nanobubble formation is observed by monitoring the plasmon resonance shift of an individual, illuminated Au nanoparticle, when its local environment changes from liquid to vapor. The temperature on the nanoparticle surface is monitored during this process, where a dramatic temperature jump is observed as the nanoscale vapor layer thermally decouples the nanoparticle from the surrounding liquid. By increasing the intensity of the incident light or decreasing the interparticle separation, we observe the formation of micrometer-sized bubbles resulting from the coalescence of nanoparticle-"bound" vapor envelopes. These studies provide the first direct and quantitative analysis of the evolution of light-induced steam generation by nanoparticles from the nanoscale to the macroscale, a process that is of fundamental interest for a growing number of applications.

  13. Automated Flight Dynamics Product Generation for the EOS AM-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Matusow, Carla

    1999-01-01

    As part of NASA's Earth Science Enterprise, the Earth Observing System (EOS) AM-1 spacecraft is designed to monitor long-term, global, environmental changes. Because of the complexity of the AM-1 spacecraft, the mission operations center requires more than 80 distinct flight dynamics products (reports). To create these products, the AM-1 Flight Dynamics Team (FDT) will use a combination of modified commercial software packages (e.g., Analytical Graphic's Satellite ToolKit) and NASA-developed software applications. While providing the most cost-effective solution to meeting the mission requirements, the integration of these software applications raises several operational concerns: (1) Routine product generation requires knowledge of multiple applications executing on variety of hardware platforms. (2) Generating products is a highly interactive process requiring a user to interact with each application multiple times to generate each product. (3) Routine product generation requires several hours to complete. (4) User interaction with each application introduces the potential for errors, since users are required to manually enter filenames and input parameters as well as run applications in the correct sequence. Generating products requires some level of flight dynamics expertise to determine the appropriate inputs and sequencing. To address these issues, the FDT developed an automation software tool called AutoProducts, which runs on a single hardware platform and provides all necessary coordination and communication among the various flight dynamics software applications. AutoProducts, autonomously retrieves necessary files, sequences and executes applications with correct input parameters, and deliver the final flight dynamics products to the appropriate customers. Although AutoProducts will normally generate pre-programmed sets of routine products, its graphical interface allows for easy configuration of customized and one-of-a-kind products. Additionally, AutoProducts

  14. Photoelectrochemical water splitting for hydrogen production with metal oxide (hematite and cupric oxide) based photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Houwen

    Solar hydrogen is one ideal energy source to replace fossil fuel, as it is sustainable and environmentally friendly. Solar hydrogen can be generated in a number of ways. Photoelectrochemical (PEC) water splitting is one of the most promising methods for solar-to-chemical energy conversion. In this research project, metal oxide-based photocatalysts, especially hematite (α-Fe 2O3) and cupric oxide (CuO), were investigated for use as electrodes in PEC water splitting for solar hydrogen production. In our research project of hematite-based electrodes, we started with the incorporation of transition metal, particularly titanium (Ti), in hematite thin films to modify the valence and conduction band edges of hematite. We found that Ti impurities improve the electron conductivity of hematite and consequently lead to significantly enhanced photocurrents. We further investigated the Ti and Mg co-alloyed hematite. In this case, Ti is the donor and Mg is the acceptor in hematite. The co-alloying approach enhanced the solubility of Mg and Ti, which led to reduced electron effective mass and therefore increased electron mobility. Also, co-alloying tunes the carrier density and therefore allows the optimization of electrical conductivity. The densities of charged defects were found to be reduced, and therefore carrier recombinations were reduced. As a result, the Ti and Mg co-alloyed hematite thin films exhibited much improved performance in PEC water splitting as compared to pure hematite thin films. For the study of cupric oxide-based electrodes, we first investigated the possibility of reducing the electrode corrosion of cupric oxide in aqueous solutions by incorporating Ti as an electrode corrosion inhibitor. We found that Ti alloying can enhance the stability of cupric oxide in base solutions at the cost of reducing its crystallinity and optical absorption, and consequently lowering its photon-to-electron conversion efficiency. In order to balance the stability and the

  15. Commercial Production of Heavy Metal Fluoride Glass Fiber in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  16. Source and health implications of high toxic metal concentrations in illicit tobacco products.

    PubMed

    Stephens, W Edryd; Calder, Angus; Newton, Jason

    2005-01-15

    A significant flux of heavy metals, among other toxins, reaches the lungs through smoking. Consequently, contaminated soil is usually avoided for tobacco cultivation. Here we compare the heavy metal concentrations in tobacco from a sample of 47 counterfeit products, representative of the substantial market for these products in the U.K., with their genuine equivalents and find significantly higher concentrations of heavy metals in the counterfeits. Trace element patterns suggest that over-application of fertilizers (phosphate and/or nitrate) is the most likely cause. Nitrogen isotopes showed no significant enrichment in 15N (delta15N range from +1.1 to +4.6% in counterfeits and from +2.5 to +3.3% in genuine tobaccos) as might be expected from a sewage or manure source of nitrate, and a mineral phosphate source is considered the more likely source of metals. Stable carbon isotopes in the same tobaccos have a wide range (delta13C -18.3 to -26.4%), indicating the influence of multiple controls during cultivation and possibly post-harvesting. A review of the health effects of heavy metal transfer from tobacco via smoke to the lungs indicates that habitual smokers of counterfeits may be risking additional harm from high levels of cadmium and possibly other metals. PMID:15707047

  17. [Concentrations and safety evaluation of heavy metals in aquatic products of Yancheng, Jiangsu Province].

    PubMed

    Liu, Yang; Fu, Qiang; Gao, Jun; Xu, Wang-Gu; Yin, Bo; Cao, Ya-Qiao; Qin, Wei-Hua

    2013-10-01

    Current status and intake risk of heavy metal pollution in aquatic products were studied in Yancheng, Jiangsu Province. Twenty-two kinds of aquatic products were sampled in May 2012, and the concentrations of Cd, Cu, Zn, Pb and Cr in muscles were measured using atomic absorption spectroscopy. Single factor pollution index (Pg) and metal pollution index (MPI) were used to evaluate the degree of pollution, and provisional tolerable weekly intake (PTWI) and carcinogenic risks were used to assess the edible safety and health risk, respectively. We found all the aquatic products were contaminated, and the pollutions by Cd, Pb and Cr were more serious, with the exceeding rates of 31.8% , 31.8% and 40.9% , respectively. Pi indices indicated the contents of Cd, Pb and Cr exceeded the allowable criteria of " Light Pollution", while Cd and Pb in freshwater fish, Pb and Cr in shellfish, and Cr in cephalopoda reached the criteria of " Heavy Pollution". The MPI results showed that heavy metal pollution in shellfish was the most severe, followed by crustacean, freshwater fish, and cephalopoda, while it was slight in marine fish. At present, the edible safety of heavy metals in aquatic products was acceptable in Yancheng, but the Cr intake of shellfish and cephalopoda was approaching PTWI and that of a minority of marine fishes even exceeded the PTWI value. The model estimation for health risk indicated that the health risk value of heavy metal ingestion was still below the maximal acceptable level (5.0 x 10(-5) a-1), recommended by International Commission on Radiation Protection (ICRP) , but the values of Cr for shellfish and cephalopoda were approaching the criterion. In summary, heavy metal pollution in aquatic products in Yancheng is rather severe, especially for Cr pollution, and more attention should be paid to the pollution status, edible safety and health risk.

  18. Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases

    SciTech Connect

    Husakou, A.; Im, S.-J.; Herrmann, J.

    2011-04-15

    We present a semiclassical model for plasmon-enhanced high-order harmonic generation (HHG) in the vicinity of metal nanostructures. We show that, besides the field enhancement, both the inhomogeneity of the enhanced local fields and electron absorption by the metal surface play an important role in the HHG process and lead to the generation of even harmonics and a significantly increased cutoff. For the examples of silver-coated nanocones and bowtie antennas, we predict that the required intensity reduces by up to three orders of magnitude due to plasmonic field enhancement. The study of the enhanced high-order harmonic generation is connected with a finite-element simulation of the electric field enhancement due to the excitation of the plasmonic modes.

  19. Characteristics of EMI generated by negative metal-positive dielectric voltage stresses due to spacecraft charging

    NASA Astrophysics Data System (ADS)

    Chaky, R. C.; Inouye, G. T.

    1985-03-01

    Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.

  20. Characteristics of EMI generated by negative metal-positive dielectric voltage stresses due to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Chaky, R. C.; Inouye, G. T.

    1985-01-01

    Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.

  1. Thin metal film-polymer composite for efficient optoacoustic generation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Guo, L. Jay

    2016-03-01

    Photoacoustic (PA) conversion of metal film absorbers is known to be inefficient because of their low thermal expansion and high light reflectance, as compared to polymeric materials containing light absorbing fillers. Specifically, the PA signal for metal films is typically an order of magnitude lower than those for PDMS-based composites consisting of carbon materials such as carbon blacks, carbon nanotubes, and carbon fibers. However, the carbon-PDMS composites have several disadvantages, e.g., difficulty in controlling film thickness, aggregation of the carbon fillers, and poor patternablility. To overcome these issues and achieve comparable PA amplitudes, a polymer-metal film composite was developed consisting of a thin metal absorber and adjacent transparent polymer layers. The proposed structure shows efficient PA conversion. The measured PA amplitude of the metal film composite is an order of magnitude higher than that of metal-only samples, and comparable to those of the carbon-PDMS composites. The enhanced PA conversion is accomplished by using metal film of a few tens of nanometers, which greatly facilitates heat transfer from the metal film to the surrounding polymers. Moreover, integrating the metal film composite with a photonic cavity can compensate light absorption loss of the thinner metal film. Theoretical and experimental analysis is conducted for understanding the mechanism behind such improvement. This strategy could be implemented for spatial PA signal patterns, especially for deep tissue PA imaging of implants or image-guiding tools. Furthermore, this approach also provides a guideline for designing photoacoustic transmitters and contrast agents.

  2. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China.

    PubMed

    Xu, Li; Lu, Anxiang; Wang, Jihua; Ma, Zhihong; Pan, Ligang; Feng, Xiaoyuan; Luan, Yunxia

    2015-12-01

    The accumulation status, sources and phytoavailability of selected metals in greenhouse vegetable production systems in peri-urban areas of Beijing were investigated. The mean concentrations of As, Cd, Cr, Hg and Pb in greenhouse soils were 8.44, 0.25, 69.0, 0.09 and 22.0 mg kg(-1), dw, respectively. According to principal component analysis, As, Cd, Cr and Hg are mainly from anthropogenic source, but Pb is likely from natural source. Metal concentrations in all vegetable samples were decreased in the order of Cr>As>Pb>Cd>Hg. Compared with root and fruit vegetables, leaf vegetables had relatively high concentrations and transfer factors of heavy metals, except for Cd. By including soil pH, OM and greenhouse soil metals, 10 empirical models were derived using stepwise multiple linear regression analysis to predict heavy metal concentrations in the edible parts of different vegetables. Among the different vegetable groups, the highest intakes of metals occurred through consumption of leaf vegetables for the two age groups, except for Cd. The HI value of the studied metals were all below 1, indicating that consumption of vegetables grown in greenhouse soils was of low risk to consumers in our study area.

  3. Effects of the turn-back primer on intermediate product generation in isothermal DNA amplification.

    PubMed

    Tanaka, Yuki; Kimura, Yasumasa; Mitani, Yasumasa; Kawai, Yuki; Lezhava, Alexander; Noma, Shohei; Tagami, Michihira; Kawai, Jun; Hayashizaki, Yoshihide; Usui, Kengo

    2010-12-01

    In DNA amplification, the initial step of copying a target sequence from the template DNA--the so-called intermediate product generation step--is very important. In examining the turn-back primer (TP)-dependent isothermal DNA amplification (TIA) method, we determined the actual time point of intermediate product generation by extrapolating dsDNA amplification curves. Our results indicate that intermediate product creation is the rate-limiting step in TIA, and good TP design is advantageous for improving the intermediate production process.

  4. Association of metals with plastic production pellets in the marine environment.

    PubMed

    Ashton, Karen; Holmes, Luke; Turner, Andrew

    2010-11-01

    Plastic production pellets sampled from four beaches along a stretch of coastline (south Devon, SW England) and accompanying, loosely adhered and entrapped material removed ultrasonically have been analysed for major metals (Al, Fe, Mn) and trace metals (Cu, Zn, Pb, Ag, Cd, Co, Cr, Mo, Sb, Sn, U) following acid digestion. In most cases, metal concentrations in composite pellet samples from each site were less than but within an order of magnitude of corresponding concentrations in the pooled extraneous materials. However, normalisation of data with respect to Al revealed enrichment of Cd and Pb in plastic pellets at two sites. These observations are not wholly due to the association of pellets with fine material that is resistant to ultrasonication since new polyethylene pellets suspended in a harbour for 8 weeks accumulated metals from sea water through adsorption and precipitation. The environmental implications and potential applications of these findings are discussed.

  5. Comparision between different metal oxide nanostructures and nanocomposites for sensing, energy generation, and energy harvesting

    NASA Astrophysics Data System (ADS)

    Willander, Magnus; Alnoor, Hatim; Elhag, Sami; Ibupoto, Zafar Hussain; Nour, Eiman Satti; Nur, Omer

    2016-02-01

    Highlights from research on different nanocomposites and nanostructures for sensing and other energy related applications will be presented. The synthesized nanostructures and nanocomposites presented here were all obtained using the low temperature (< 100 °C) chemical approach. Nanostructures featured by small foot-print and synthesized by the low temperature aqueous chemical approach allows the utilization of non-conventional solid and soft substrates like e.g. glass, plastic, textile and paper. We here present results from different metal oxide nanostructures employed for chemical sensing and some innovative energy related applications. Efficient sensitive and selective sensing of dopamine, melamine, and glucose are presented as some examples of self-powered sensors utilizing the electrochemical phenomenon i.e. transferring chemical energy into electrical signal. Further the use of nanomaterials for developing selfpowered devices utilizing mechanical ambient energy is presented via piezoelectric and triboelectric effects. Here the self-powered devices and systems were relying on utilizing the electormechanical phenomenon i.e. transferring ambient mechanical energy into useful electrical energy. Finally the visibility of nanomaterials prepared by the low temperature chemical synthesis as possible low cost replacement of Pt electrodes for hydrogen production is briefly presented and discussed.

  6. Analysis of Alternative Extensions of the Existing Production Tax Credit for Wind Generators

    EIA Publications

    2007-01-01

    Requestor: Ms. Janice Mays, Chief Counsel, Committee on Ways & Means, U.S. House of Representatives This is a letter response requesting analysis of alternative extensions of the existing production tax credit (PTC) that would apply to wind generators only.

  7. Techniques for Unifying Disparate Elements in an EOS Instrument's Product Generation System Development Environment

    NASA Technical Reports Server (NTRS)

    Murray, Alex; Eng, Bjorn; Leff, Craig; Schwarz, Arnold

    1997-01-01

    In the development environment for ASTER level II product generation system, techniques have been incorporated to allow automated information sharing among all system elements, and to enable the use of sound software engineering techniques in the scripting languages.

  8. Production and Refining of Magnesium Metal from Turkey Originating Dolomite

    NASA Astrophysics Data System (ADS)

    Demiray, Yeliz; Yücel, Onuralp

    2012-06-01

    In this study crown magnesium produced from Turkish calcined dolomite by the Pigeon Process was refined and corrosion tests were applied. By using factsage thermodynamic program metalothermic reduction behavior of magnesium oxide and silicate formation structure during this reaction were investigated. After thermodynamic studies were completed, calcination of dolomite and it's metalothermic reduction at temperatures of 1473 K, 1523 K and within a vacuum (varied from 20 to 200 Pa) and refining of crown magnesium was studied. Different flux compositions consisting of MgCl2, KCl, CaCl2, MgO, CaF2, NaCl, and SiO2 with and without B2O3 additions were selected for the refining process. These tests were carried out at 963 K for 15, 30 and 45 minutes setting time. Considerable amount of iron was transferred into the sludge phase and its amount decreased from 0.08% to 0.027%. This refined magnesium was suitable for the production of various magnesium alloys. As a result of decreasing iron content, minimum corrosion rate of refined magnesium was obtained 2.35 g/m2/day. The results are compared with previous studies.

  9. Effects of heavy metals on methane production in tropical rice soils.

    PubMed

    Mishra, S R; Bharati, K; Sethunathan, N; Adhya, T K

    1999-09-01

    In a laboratory incubation study, the effect of select heavy metals on methane (CH(4)) production in three rice soils was investigated under flooded conditions. Heavy metals behaved differently in their effect on methanogenesis in different soils and methane-producing bacteria. Cd, Cu, and Pb inhibited CH(4) production in all the soils. Zn stimulated CH(4) production in the alluvial soil, but inhibited it in laterite and acid sulfate soils. Cr effectively inhibited CH(4) production in the alluvial soil, but stimulated it in laterite and acid sulfate soils. The stimulatory effect of Zn and the inhibitory effect of Cr on methanogenesis in alluvial soil were attributed to their stimulation or inhibition of methanogenic bacterial population. PMID:10499999

  10. Effects of heavy metals on methane production in tropical rice soils.

    PubMed

    Mishra, S R; Bharati, K; Sethunathan, N; Adhya, T K

    1999-09-01

    In a laboratory incubation study, the effect of select heavy metals on methane (CH(4)) production in three rice soils was investigated under flooded conditions. Heavy metals behaved differently in their effect on methanogenesis in different soils and methane-producing bacteria. Cd, Cu, and Pb inhibited CH(4) production in all the soils. Zn stimulated CH(4) production in the alluvial soil, but inhibited it in laterite and acid sulfate soils. Cr effectively inhibited CH(4) production in the alluvial soil, but stimulated it in laterite and acid sulfate soils. The stimulatory effect of Zn and the inhibitory effect of Cr on methanogenesis in alluvial soil were attributed to their stimulation or inhibition of methanogenic bacterial population.

  11. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  12. Chemistry in Acetone Complexes of Metal Dications: A Remarkable Ethylene Production Pathway

    SciTech Connect

    Wu, Jianhua; Liu, Dan; Zhou, Jian-Ge; Hagelberg, Frank; Park, Sung S.; Shvartsburg, Alexandre A.

    2007-05-16

    Electrospray ionization can generate microsolvated multiply charged metal ions for various metals and ligands, allowing exploration of chemistry within such clusters. The finite size of these systems permits comparing experimental results with accurate calculations, creating a natural laboratory to research ion solvation. Mass spectrometry has provided much insight into the stability and dissociation of ligated metal cations. While solvated singly charged ions tend to shrink by ligand evaporation, solvated polycations below a certain size exhibit charge reduction and/or ligand fragmentation due to organometallic reactions. Here we investigate the acetone complexes of typical divalent metals (Ca, Mn, Fe, Co, Ni, Zn, and Cu), comparing the results of collision-induced dissociation with the predictions from density functional theory. As for other solvated dications, dissociation channels involving proton or electron transfer compete with ligand loss and become dominant for smaller complexes. The heterolytic C-C bond cleavage is common, as one would expect from previous work on DMSO and acetonitrile complexes. Of primary interest is the highly unintuitive neutral ethylene loss, found for all metals studied except Cu and particularly intense for Ca, Mn, and Fe. We focus on understanding that process in the context of competing dissociation channels, as a function of metal identity and number of ligands. According to first-principles modeling, ethylene elimination proceeds along a complex path involving a rearrangement of two acetone ligands and multiple transition states.

  13. Chemistry in acetone complexes of metal dications: a remarkable ethylene production pathway.

    PubMed

    Wu, Jianhua; Liu, Dan; Zhou, Jian-Ge; Hagelberg, Frank; Park, Sung Soo; Shvartsburg, Alexandre A

    2007-06-01

    Electrospray ionization can generate microsolvated multiply charged metal ions for various metals and ligands, allowing exploration of chemistry within such clusters. The finite size of these systems permits comparing experimental results with accurate calculations, creating a natural laboratory to research ion solvation. Mass spectrometry has provided much insight into the stability and dissociation of ligated metal cations. While solvated singly charged ions tend to shrink by ligand evaporation, solvated polycations below a certain size exhibit charge reduction and/or ligand fragmentation due to organometallic reactions. Here we investigate the acetone complexes of representative divalent metals (Ca, Mn, Co, Ni, and Cu), comparing the results of collision-induced dissociation with the predictions of density functional theory. As for other solvated dications, channels involving proton or electron transfer compete with ligand loss and become dominant for smaller complexes. The heterolytic C-C bond cleavage is common, like in DMSO and acetonitrile complexes. Of primary interest is the unanticipated neutral ethylene loss, found for all metals studied except Cu and particularly intense for Ca and Mn. We focus on understanding that process in the context of competing dissociation pathways, as a function of metal identity and number of ligands. According to first-principles modeling, ethylene elimination proceeds along a complex path involving two intermediates. These results suggest that chemistry in microsolvated multiply charged ions may still hold major surprises. PMID:17503788

  14. ASSESSING SPECIATION AND RELEASE OF HEAVY METALS FROM COAL COMBUSTION PRODUCTS

    EPA Science Inventory

    In this study, the speciation of heavy metals such as arsenic, selenium, lead, zinc and mercury in coal combustion products (CCPs) was evaluated using sequential extraction procedures. Coal fly ash, bottom ash and flue gas desulphurization (FGD) sludge samples were used in the ex...

  15. Connecting small ligands to generate large tubular metal-organic architectures

    SciTech Connect

    Goforth, Andrea M.; Su, Cheng-Yong; Hipp, Rachael; Macquart, Rene B.; Smith, Mark D.; Loye, Hans-Conrad zur . E-mail: zurloye@mail.chem.sc.edu

    2005-08-15

    The new metal-organic framework materials, ZnF(Am{sub 2}TAZ).solvents and ZnF(TAZ).solvents (Am{sub 2}TAZ=3,5-diamino-1,2,4-triazole, TAZ=1,2,4-triazole), have been synthesized solvothermally and structurally characterized by either Rietveld refinement from powder XRD data or by single crystal X-ray diffraction. The three-dimensional structures of the compounds display open-ended, tubular channels, which are constituted of covalently bonded hexanuclear metallamacrocycles (Zn{sub 6}F{sub 6}(ligand){sub 6}). The tubular channels are subsequently covalently joined into a honeycomb-like hexagonal array to generate the three-dimensional porous framework. In the case of ZnF(Am{sub 2}TAZ).solvents, hydrophilic -NH{sub 2} groups point into the channels, effectively reducing their inner diameter relative to ZnF(TAZ).solvents. The present compounds are isostructural to one another and to the previously reported ZnF(AmTAZ).solvents (AmTAZ=3-amino-1,2,4-triazole), illustrative of the fact that the internal size and chemical properties of the framework may be altered by modification of the small, heterocyclic ligand. In addition to demonstrating the ability to modify the basic framework, ZnF(TAZ).solvents and ZnF(Am{sub 2}TAZ).solvents are two of the most thermally stable coordination frameworks known to date. - Graphical abstract: Top view of the open-ended, honeycomb tubular architecture of ZnF(Am{sub 2}TAZ)

  16. Defense by-products production and utilization program: noble metal recovery screening experiments

    SciTech Connect

    Hazelton, R.F.; Jensen, G.A.; Raney, P.J.

    1986-03-01

    Isotopes of the platinum metals (rutheium, rhodium, and palladium) are produced during uranium fuel fission in nuclear reactors. The strategic values of these noble metals warrant considering their recovery from spent fuel should the spent fuel be processed after reactor discharge. A program to evaluate methods for ruthenium, rhodium, and palladium recovery from spent fuel reprocessing liquids was conducted at Pacific Northwest Laboratory (PNL). The purpose of the work reported in this docuent was to evaluate several recovery processes revealed in the patent and technical literature. Beaker-scale screening tests were initiated for three potential recovery processes: precipitation during sugar denitration of nitric acid reprocessing solutions after plutonium-uranium solvent extraction, adsorption using nobe metal selective chelates on active carbon, and reduction forming solid noble metal deposits on an amine-borane reductive resin. Simulated reprocessing plant solutions representing typical nitric acid liquids from defense (PUREX) or commercial fuel reprocessing facilities were formulated and used for evaluation of the three processes. 9 refs., 3 figs., 9 tabs.

  17. Multiphysics Modeling for Dimensional Analysis of a Self-Heated Molten Regolith Electrolysis Reactor for Oxygen and Metals Production on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus; Sibille, Laurent

    2010-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath.

  18. Quantitative Analysis of Language Production in Parkinson's Disease Using a Cued Sentence Generation Task

    ERIC Educational Resources Information Center

    Vanhoutte, Sarah; De Letter, Miet; Corthals, Paul; Van Borsel, John; Santens, Patrick

    2012-01-01

    The present study examined language production skills in Parkinson's disease (PD) patients. A unique cued sentence generation task was created in order to reduce demands on memory and attention. Differences in sentence production abilities according to disease severity and cognitive impairments were assessed. Language samples were obtained from 20…

  19. Lifetime of combustion-generated environmentally persistent free radicals on Zn(II)O and other transition metal oxides

    PubMed Central

    Vejerano, Eric; Dellinger, Barry

    2014-01-01

    Previous studies indicated that Environmentally Persistent Free Radicals (EPFRs) are formed in the post-flame, cool zone of combustion. They result from the chemisorption of gas-phase products of incomplete combustion (particularly hydroxyl- and chlorine-substituted aromatics) on Cu(II)O, Fe(III)2O3, and Ni(II)O domains of particulate matter (fly ash or soot particles). This study reports our detailed laboratory investigation on the lifetime of EPFRs on Zn(II)O/silica surface. Similarly, as in the case of other transition metals, chemisorption of the adsorbate on the Zn(II)O surface and subsequent transfer of electron from the adsorbate to the metal forms a surface-bound EPFR and a reduced metal ion center. The EPFRs are stabilized by their interaction with the metal oxide domain surface. The half-lives of EPFRs formed on Zn(II)O domains were the longest observed among the transition metal oxides studied and ranged from 3 to 73 days. These half-lives were an order of magnitude longer than those formed on nickel and iron oxides, and were 2 orders of magnitude longer compared to the EPFRs on copper oxide which have half-lives only on the order of hours. The longest-lived radicals on Zn(II)O correspond to the persistency in ambient air particles of almost a year. The half-life of EPFRs was found to correlate with the standard reduction potential of the associated metal. PMID:22990982

  20. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  1. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  2. Removal of PCR Error Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography

    PubMed Central

    Kanakaraj, Indhu; Jewell, David L.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2011-01-01

    Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and “histidine tags” genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu2+-iminodiacetic acid (IDA) agarose spin column, 94–99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu2+-IDA agarose) can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs. PMID:21264292

  3. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  4. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan

    2015-09-01

    This study aimed to obtain the maximum possible gas yield and the high quality syngas production from microwave pyrolysis of rice husk with rice husk char and rice husk char-supported metallic (Ni, Fe and Cu) catalysts. The rice husk char-supported metallic catalysts had developed pore structure and catalytic activity for gas productions and tar conversion. The temperature-rising characteristic, product yields, properties of gas products and tar conversion mechanisms were investigated. It was found that three rice husk char-supported metallic catalysts improved the microwave absorption capability and increased heating rate and final temperature. Rice husk char-supported Ni catalyst presented most effective effects on gas production, e.g. the gas yield is 53.9%, and the volume concentration of desired syngas is 69.96%. Rice husk char-supported Ni and Fe catalysts played pivotal roles in tar conversion that less heavy compounds can be detected along with the reduction of organic compound number.

  5. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa

    PubMed Central

    Das, Theerthankar; Manefield, Mike

    2013-01-01

    In Pseudomonas aeruginosa eDNA is a crucial component essential for biofilm formation and stability. In this study we report that release of eDNA is influenced by the production of phenazine in P. aeruginosa. A ∆phzA-G mutant of P. aeruginosa PA14 deficient in phenazine production generated significantly less eDNA in comparison with the phenazine producing strains. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. PMID:23710274

  6. Preliminary investigation of a technique to separate fission noble metals from fission product mixtures

    SciTech Connect

    Mellinger, G.B.; Jensen, G.A.

    1982-08-01

    A variation of the gold-ore fire assay technique was examined as a method for recovering Pd, Rh and Ru from fission products. The mixture of fission product oxides is combined with glass-forming chemicals, a metal oxide such as PbO (scavenging agent), and a reducing agent such as charcoal. When this mixture is melted, a metal button is formed which extracts the noble metals. The remainder cools to form a glass for nuclear waste storage. Recovery depended only on reduction of the scavenger oxide to metal. When such reduction was achieved, no difference in noble metal recovery efficiency was found among the scavengers studied (PbO, SnO, CuO, Bi/sub 2/O/sub 3/, Sb/sub 2/O/sub 3/). Not all reducing agents studied, however, were able to reduce all scavenger oxides to metal. Only graphite would reduce SnO and CuO and allow noble metal recovery. The scavenger oxides Sb/sub 2/O/sub 3/, Bi/sub 2/O/sub 3/, and PbO, however, were reduced by all of the reducing agents tested. Similar noble metal recovery was found with each. Lead oxide was found to be the most promising of the potential scavengers. It was reduced by all of the reducing agents tested, and its higher density may facilitate the separation. Use of lead oxide also appeared to have no deterimental effect on the glass quality. Charcoal was identified as the preferred reducing agent. As long as a separable metal phase was formed in the melt, noble metal recovery was not dependent on the amount of reducing agent and scavenger oxide. High glass viscosities inhibited separation of the molten scavenger, while low viscosities allowed volatile loss of RuO/sub 4/. A viscosity of approx. 20 poise at the processing temperature offered a good compromise between scavenger separation and Ru recovery. Glasses in which PbO was used as the scavenging agent were homogeneous in appearance. Resistance to leaching was close to that of certain waste glasses reported in the literature. 12 figures. 7 tables.

  7. A New Process for Hot Metal Production at Low Fuel Rate - Phase 1 Feasibility Study

    SciTech Connect

    Dr. Wei-Kao Lu

    2006-02-01

    The project is part of the continuing effort by the North American steel industry to develop a coal-based, cokeless process for hot metal production. The objective of Phase 1 is to determine the feasibility of designing and constructing a pilot scale facility with the capacity of 42,000 mtpy of direct reduced iron (DRI) with 95% metallization. The primary effort is performed by Bricmont, Inc., an international engineering firm, under the supervision of McMaster University. The study focused on the Paired Straight Hearth furnace concept developed previously by McMaster University, The American Iron and Steel Institute and the US Department of Energy.

  8. Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis

    NASA Astrophysics Data System (ADS)

    King, Rebecca L.; Botte, Gerardine G.

    It has been shown that urea electrolysis is a viable method for wastewater remediation and simultaneous production of valuable hydrogen. Inexpensive nickel catalyst is optimal for the oxidation of urea in alkaline media but improvements are needed to minimize surface blockage and increase current density. Multi-metal catalysts were investigated by depositing platinum group metals on a nickel substrate. Rhodium and nickel proved synergistic to reduce surface blockage and increase catalyst stability. Rh-Ni electrodes reduced the overpotential for the electro-oxidation of urea and improved the current density by a factor of 200 compared to a Ni catalyst.

  9. Fission product release phenomena during core melt accidents in metal fueled heavy water reactors

    SciTech Connect

    Ellison, P G; Hyder, M L; Monson, P R; Randolph, H W; Hagrman, D L; McClure, P R; Leonard, M T

    1990-01-01

    The phenomena that determine fission product release rates from a core melting accident in a metal-fueled, heavy water reactor are described in this paper. This information is obtained from the analysis of the current metal fuel experimental data base and from the results of analytical calculations. Experimental programs in place at the Savannah River Site are described that will provide information to resolve uncertainties in the data base. The results of the experiments will be incorporated into new severe accident computer codes recently developed for this reactor design. 47 refs., 4 figs.

  10. Theoretical study of the nonlinear response function describing optical second-harmonic generation in nonlocal metal optics

    NASA Astrophysics Data System (ADS)

    Keller, O.

    1985-04-01

    Optical second-harmonic generation from the bulk of centrosymmetric metals stems from non- local electronic transport effects. So far, the nonlinear bulk response has been described within the framework of magnetic dipole and electric quadrupole interactions. In the present work a nonlinear conductivity response function incorporating nonlocal effects in all orders is presented. Through a multipole expansion, contact with previous analysis is established. The nonlinear responses stemming from the electric and magnetic field of the fundamental wave, respectively, are separated and analyzed. Plasmon effects usually neglected in bulk studies are retained. It is demonstrated that the polarization selection rules on which several conclusions about the relative strength of magnetic and electric effects have been drawn previously are violated in a fully nonlocal treatment. The most general polarization selection rules for nonlocal second-harmonic generation in centrosymmetric metals are established.

  11. Progressive Powder Coating: New Infrared Curing Oven at Metal Finishing Plant Increases Production by 50%

    SciTech Connect

    2003-05-01

    Progressive Powder Coating in Mentor, Ohio, is a metal finishing plant that uses a convection oven in its manufacturing process. In an effort to save energy and improve production, the company installed an infrared oven in between the powder coating booth and the convection oven on its production line. This installation allowed the plant to increase its conveyor line speed and increase production by 50 percent. In addition, the plant reduced its natural gas consumption, yielding annual energy savings of approximately $54,000. With a total project cost of $136,000, the simple payback is 2.5 years.

  12. Direct optical detection of current induced spin accumulation in metals by magnetization-induced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Pattabi, A.; Gu, Z.; Gorchon, J.; Yang, Y.; Finley, J.; Lee, O. J.; Raziq, H. A.; Salahuddin, S.; Bokor, J.

    2015-10-01

    Strong spin-orbit coupling in non-magnetic heavy metals has been shown to lead to large spin currents flowing transverse to a charge current in such a metal wire. This in turn leads to the buildup of a net spin accumulation at the lateral surfaces of the wire. Spin-orbit torque effects enable the use of the accumulated spins to exert useful magnetic torques on adjacent magnetic layers in spintronic devices. We report the direct detection of spin accumulation at the free surface of nonmagnetic metal films using magnetization-induced optical surface second harmonic generation. The technique is applied to probe the current induced surface spin accumulation in various heavy metals such as Pt, β-Ta, and Au with high sensitivity. The sensitivity of the technique enables us to measure the time dynamics on a sub-ns time scale of the spin accumulation arising from a short current pulse. The ability of optical surface second harmonic generation to probe interfaces suggests that this technique will also be useful for studying the dynamics of spin accumulation and transport across interfaces between non-magnetic and ferromagnetic materials, where spin-orbit torque effects are of considerable interest.

  13. Direct optical detection of current induced spin accumulation in metals by magnetization-induced second harmonic generation

    SciTech Connect

    Pattabi, A. Gu, Z.; Yang, Y.; Finley, J.; Lee, O. J.; Raziq, H. A.; Gorchon, J.; Salahuddin, S.; Bokor, J.

    2015-10-12

    Strong spin-orbit coupling in non-magnetic heavy metals has been shown to lead to large spin currents flowing transverse to a charge current in such a metal wire. This in turn leads to the buildup of a net spin accumulation at the lateral surfaces of the wire. Spin-orbit torque effects enable the use of the accumulated spins to exert useful magnetic torques on adjacent magnetic layers in spintronic devices. We report the direct detection of spin accumulation at the free surface of nonmagnetic metal films using magnetization-induced optical surface second harmonic generation. The technique is applied to probe the current induced surface spin accumulation in various heavy metals such as Pt, β-Ta, and Au with high sensitivity. The sensitivity of the technique enables us to measure the time dynamics on a sub-ns time scale of the spin accumulation arising from a short current pulse. The ability of optical surface second harmonic generation to probe interfaces suggests that this technique will also be useful for studying the dynamics of spin accumulation and transport across interfaces between non-magnetic and ferromagnetic materials, where spin-orbit torque effects are of considerable interest.

  14. Review of Dissimilar Metal Welding for the NGNP Helical-Coil Steam Generator

    SciTech Connect

    John N. DuPont

    2010-03-01

    The U.S. Department of Energy (DOE) is currently funding research and development of a new high temperature gas cooled reactor (HTGR) that is capable of providing high temperature process heat for industry. The steam generator of the HTGR will consist of an evaporator economizer section in the lower portion and a finishing superheater section in the upper portion. Alloy 800H is expected to be used for the superheater section, and 2.25Cr 1Mo steel is expected to be used for the evaporator economizer section. Dissimilar metal welds (DMW) will be needed to join these two materials. It is well known that failure of DMWs can occur well below the expected creep life of either base metal and well below the design life of the plant. The failure time depends on a wide range of factors related to service conditions, welding parameters, and alloys involved in the DMW. The overall objective of this report is to review factors associated with premature failure of DMWs operating at elevated temperatures and identify methods for extending the life of the 2.25Cr 1Mo steel to alloy 800H welds required in the new HTGR. Information is provided on a variety of topics pertinent to DMW failures, including microstructural evolution, failure mechanisms, creep rupture properties, aging behavior, remaining life estimation techniques, effect of environment on creep rupture properties, best practices, and research in progress to improve DMW performance. The microstructure of DMWs in the as welded condition consists of a sharp chemical concentration gradient across the fusion line that separates the ferritic and austenitic alloys. Upon cooling from the weld thermal cycle, a band of martensite forms within this concentration gradient due to high hardenability and the relatively rapid cooling rates associated with welding. Upon aging, during post weld heat treatment (PWHT), and/or during high temperature service, C diffuses down the chemical potential gradient from the ferritic 2.25Cr 1Mo steel

  15. Efficient Electrochemical and Photoelectrochemical H2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal-Organic Surface.

    PubMed

    Downes, Courtney A; Marinescu, Smaranda C

    2015-11-01

    Solar-driven hydrogen evolution from water has emerged as an important methodology for the storage of renewable energy in chemical bonds. Efficient and practical clean-energy devices for electrochemical or photoelectrochemical splitting of water require the immobilization of stable and active hydrogen-evolving catalysts onto electrode or photocathode materials, which remains a significant challenge. Here we show that cobalt(II) reacts with benzene-1,2,4,5-tetrathiol in the presence of base to form a cobalt dithiolene polymer 1. The generated polymer is immobilized onto glassy carbon electrodes (GCE) to generate a metal-organic surface (MOS 1|GCE), which displays efficient H2-evolving activity and stability in acidic aqueous solutions. Moreover, the generated polymer is integrated with planar p-type Si to generate very efficient photocathode materials (MOS 1|Si) for solar-driven hydrogen production from water. Photocurrents up to 3.8 mA/cm(2) at 0 V vs RHE were achieved under simulated 1 Sun illumination. MOS 1|Si photocathodes operate at potentials 550 mV more positive than MOS 1|GCE cathodes to reach the same activity for H2 evolution from water (1 mA/cm(2)).

  16. Aspects related to productivity for four generations of a Lutzomyia longipalpis laboratory colony.

    PubMed

    Luitgards-Moura, J F; Castellón Bermúdez, E G; Rosa-Freitas, M G

    2000-01-01

    A closed colony of Lutzomyia longipalpis was established with specimens collected in the Raposa - Serra do Sol indian reservoir, one of the main foci of visceral leishmaniasis in the State of Roraima, Brazil. Biological observations were made on four generations of a L. longipalpis colony with emphasis on productivity. Aspects studied were the number of laid and retained eggs, and the number of adults (male and female) per generation. During the four generations the percentage of engorged females that laid eggs varied from 64.2% (third generation-F3) to 90.3% (second generation-F2). The mean number of eggs laid per female varied from 23.6 (F3) to 39. 9 (first generation-F1). The maximum number of eggs laid per female varied from 84 (F3) to 124 (F1). The mean number of retained eggs per female was 12.7 (parental generation-P and F1) to 22.1 (F2). The number of females exceeded the number of males in all generations. However, significant difference for male/female ratio was found only for F3. Fecundity rates were between 42.1 (F3) and 58.3 (F2). From a total of 439 blood-fed females, 355 females laid 12,257 eggs that yield 5,354 adults (2,525 males and 2,829 females) in four generations. F2 presented maximum productivity and fecundity rates.

  17. Mass-productive fabrication of a metal-insulator-metal plasmon waveguide with a linear taper for nanofocusing

    NASA Astrophysics Data System (ADS)

    Wongpanya, Kruawan; Kasaya, Takeshi; Miyazaki, Hideki T.; Oosato, Hirotaka; Sugimoto, Yoshimasa; Pijitrojana, Wanchai

    2016-09-01

    The fabrication of a metal-insulator-metal plasmon waveguide with a linear taper is reported. Highly efficient nanofocusing of light with a Au-SiO2-Au waveguide with a three-dimensional taper had been demonstrated. However, conventional vertical taper structures were fabricated with a low-throughput process based on electron beam scanning. We propose an efficient, mass-productive fabrication process using a standard dry etching technique. A key improvement is the employment of a mixed gas of CHF3 and O2. By optimizing the gas composition and the cooling process of the substrate, a SiO2 vertical taper with an angle of 19°, which is very close to the optimum 20°, was successfully produced. At the tip section, an ultra-thin waveguide as thin as 5.6 nm, only one-third of the conventional demonstration, is reproducibly realized by the employment of an atomic layer deposition of Al2O3. Coupling efficiency as high as 72 % numerically demonstrated.

  18. Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Biomonitors

    SciTech Connect

    Yantasee, Wassana; Lin, Yuehe; Hongsirikarn, Kitiya; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Chuck

    2007-12-01

    To support the development and implementation of biological monitoring programs, accurate and quantitative technologies for measuring xenobiotic exposure are needed. Micro-analytical based sensors that work with complex biomatrices such as blood, urine or saliva are being developed and validated. These sensor platforms will improve our ability to make definitive associations between chemical exposures and disease. Among toxic heavy metals, lead (Pb) continues to be one of the most problematic. Despite a considerable effort to identify and eliminate Pb exposure sources, this metal still remains a significant health concern, particularly for young children. Ongoing research is focused on the development and validation of portable metal analyzers that have many advantages over current available technologies, thus having the potential to become the next-generation of toxic metal analyzers. This review will highlight the development and validation of two classes of metal analyzers for the voltammetric detection of Pb, this includes: (1) a metal analyzer based on flow injection analysis and anodic stripping voltammetry (ASV) at a Hg-film electrode, and (2) mercury-free metal analyzers employing adsorptive stripping voltammetry (AdSV) and novel nanostructure materials which include the self-assembled monolayers on mesoporous supports (SAMMS) and carbon nanotubes (CNTs). These sensors have been optimized to detect Pb in urine, blood, and saliva as accurately as the state-of-the-art-ICP-MS with high reproducibility, and sensitivity, while being much more portable, field-deployable and less expensive than conventional analytical methods. It is anticipated that these improved and portable analytical sensor platforms will facilitate our ability to conduct a meaningful biological monitoring program that will enable us to have a greater understanding of the relationship between chemical exposure assessment and disease outcomes. Keywords: biomonitoring, lead (Pb), sensors

  19. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    NASA Astrophysics Data System (ADS)

    Rao, C. N. R.; Dey, Sunita

    2016-10-01

    Generation of H2 and CO by splitting H2O and CO2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H2O or CO2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H2O or CO2. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln1-xAxMn1-yMyO3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y0.5Sr0.5MnO3 which releases 483 μmol/g of O2 at 1673 K and produces 757 μmol/g of CO from CO2 at 1173 K. The production of H2 from H2O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H2 based on the Mn3O4/NaMnO2 cycle briefly.

  20. Efforts to control the errant products of a targeted in vivo generator.

    PubMed

    Jaggi, Jaspreet Singh; Kappel, Barry J; McDevitt, Michael R; Sgouros, George; Flombaum, Carlos D; Cabassa, Catalina; Scheinberg, David A

    2005-06-01

    Alpha-particle immunotherapy by targeted alpha-emitters or alpha-emitting isotope generators is a novel form of extraordinarily potent cancer therapy. A major impediment to the clinical use of targeted actinium-225 (225Ac) in vivo generators may be the radiotoxicity of the systemically released daughter radionuclides. The daughters, especially bismuth-213 (213Bi), tend to accumulate in the kidneys. We tested the efficacy of various pharmacologic agents and the effect of tumor burden in altering the pharmacokinetics of the 225Ac daughters to modify their renal uptake. Pharmacologic treatments in animals were started before i.v. administration of the HuM195-225Ac generator. 225Ac, francium-221 (221Fr), and 213Bi biodistributions were calculated in each animal at different time points after 225Ac generator injection. Oral metal chelation with 2,3-dimercapto-1-propanesulfonic acid (DMPS) or meso-2,3-dimercaptosuccinic acid (DMSA) caused a significant reduction (P < 0.0001) in the renal 213Bi uptake; however, DMPS was more effective than DMSA (P < 0.001). The results with DMPS were also confirmed in a monkey model. The renal 213Bi and 221Fr activities were significantly reduced by furosemide and chlorothiazide treatment (P < 0.0001). The effect on renal 213Bi activity was further enhanced by the combination of DMPS with either chlorothiazide or furosemide (P < 0.0001). Competitive antagonism by bismuth subnitrate moderately reduced the renal uptake of 213Bi. The presence of a higher target-tumor burden significantly prevented the renal 213Bi accumulation (P = 0.003), which was further reduced by DMPS treatment (P < 0.0001). Metal chelation, diuresis with furosemide or chlorothiazide, and competitive metal blockade may be used as adjuvant therapies to modify the renal accumulation of 225Ac daughters. PMID:15930310

  1. Efforts to control the errant products of a targeted in vivo generator.

    PubMed

    Jaggi, Jaspreet Singh; Kappel, Barry J; McDevitt, Michael R; Sgouros, George; Flombaum, Carlos D; Cabassa, Catalina; Scheinberg, David A

    2005-06-01

    Alpha-particle immunotherapy by targeted alpha-emitters or alpha-emitting isotope generators is a novel form of extraordinarily potent cancer therapy. A major impediment to the clinical use of targeted actinium-225 (225Ac) in vivo generators may be the radiotoxicity of the systemically released daughter radionuclides. The daughters, especially bismuth-213 (213Bi), tend to accumulate in the kidneys. We tested the efficacy of various pharmacologic agents and the effect of tumor burden in altering the pharmacokinetics of the 225Ac daughters to modify their renal uptake. Pharmacologic treatments in animals were started before i.v. administration of the HuM195-225Ac generator. 225Ac, francium-221 (221Fr), and 213Bi biodistributions were calculated in each animal at different time points after 225Ac generator injection. Oral metal chelation with 2,3-dimercapto-1-propanesulfonic acid (DMPS) or meso-2,3-dimercaptosuccinic acid (DMSA) caused a significant reduction (P < 0.0001) in the renal 213Bi uptake; however, DMPS was more effective than DMSA (P < 0.001). The results with DMPS were also confirmed in a monkey model. The renal 213Bi and 221Fr activities were significantly reduced by furosemide and chlorothiazide treatment (P < 0.0001). The effect on renal 213Bi activity was further enhanced by the combination of DMPS with either chlorothiazide or furosemide (P < 0.0001). Competitive antagonism by bismuth subnitrate moderately reduced the renal uptake of 213Bi. The presence of a higher target-tumor burden significantly prevented the renal 213Bi accumulation (P = 0.003), which was further reduced by DMPS treatment (P < 0.0001). Metal chelation, diuresis with furosemide or chlorothiazide, and competitive metal blockade may be used as adjuvant therapies to modify the renal accumulation of 225Ac daughters.

  2. Modification of base-side {sup 99}MO production processes for LEU metal-foil targets.

    SciTech Connect

    Vandegrift, G. F.; Leonard, R. A.; Aase, S.; Sedlet, J.; Koma, Y.; Conner, C.; Clark, C. R.; Meyer, M. K.

    1999-09-30

    Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their {sup 99}Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU), The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although {sup 99}Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that up to this point in our study, conversion of the CNEA process to LEU appears viable.

  3. Higgs production cross-section in a Standard Model with four generations at the LHC

    SciTech Connect

    Furlan E.; Anastasiou, C.; Buehler, S.; Herzog, F.; Lazopoulos, A.

    2011-07-12

    We present theoretical predictions for the Higgs boson production cross-section via gluon fusion at the LHC in a Standard Model with four generations. We include QCD corrections through NLO retaining the full dependence on the quark masses, and the NNLO corrections in the heavy quark effective theory approximation. We also include electroweak corrections through three loops. Electroweak and bottom-quark contributions are suppressed in comparison to the Standard Model with three generations.

  4. Removal Of Phenol From Wastewater By Using Low-Cost Catalyst From Metal Production

    NASA Astrophysics Data System (ADS)

    Galbičková, Blanka; Soldán, Maroš; Belčík, Michal; Balog, Karol

    2014-12-01

    Utilization of AOPs (Advanced oxidation processes) as an emerging technology for removing of pollutants from wastewater is developed. In this paper, UV photodegradation was used for removing of phenol from wastewater. As a source of UV radiation medium pressure mercury lamp with output 400W was used. The influence of low-cost catalysts on this process was also monitored. Wastes from metal production, red mud and black nickel mud, were used as catalysts.

  5. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Comte, S; Joussein, E; Lens, P N L; Van Hullebusch, E D

    2016-01-01

    This study investigated the leaching yields of Mo, Ni and Co from a mineral sludge of a metal recycling plant generated by rainfalls. The investigated mineral sludge had a complex heterogeneous composition, consisting of particles of settled soil combined with metal-bearing particles (produced by catalysts, metallic oxides and battery recycling). The leaching potential of different leaching reagents (stand-alone strong acids (HNO3 (68%), H2SO4 (98%) and HCl (36%)) and acid mixtures (aqua regia (nitric + hydrochloric (1:3)), nitric + sulphuric (1:1) and nitric + sulphuric + hydrochloric (2:1:1)) was investigated at changing operational parameters (solid-liquid (S/L) ratio, leaching time and temperature), in order to select the leaching reagent which achieves the highest metal leaching yields. Sulphuric acid (98% H2SO4) was found to be the leachant with the highest metal leaching potential. The optimal leaching conditions were a three-stage successive leaching at 80 °C with a leaching time of 2 h and S/L ratio of 0.25 g L(-1). Under these conditions, the achieved mineral sludge sample leaching yields were 85.5%, 40.5% and 93.8% for Mo, Ni and Co, respectively. The higher metal leaching potential of H2SO4 in comparison with the other strong acids/acid mixtures is attributed to the fact that H2SO4 is a diacidic compound, thus it has more H(+) ions, resulting in its stronger oxidizing power and corrosiveness.

  6. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Comte, S; Joussein, E; Lens, P N L; Van Hullebusch, E D

    2016-01-01

    This study investigated the leaching yields of Mo, Ni and Co from a mineral sludge of a metal recycling plant generated by rainfalls. The investigated mineral sludge had a complex heterogeneous composition, consisting of particles of settled soil combined with metal-bearing particles (produced by catalysts, metallic oxides and battery recycling). The leaching potential of different leaching reagents (stand-alone strong acids (HNO3 (68%), H2SO4 (98%) and HCl (36%)) and acid mixtures (aqua regia (nitric + hydrochloric (1:3)), nitric + sulphuric (1:1) and nitric + sulphuric + hydrochloric (2:1:1)) was investigated at changing operational parameters (solid-liquid (S/L) ratio, leaching time and temperature), in order to select the leaching reagent which achieves the highest metal leaching yields. Sulphuric acid (98% H2SO4) was found to be the leachant with the highest metal leaching potential. The optimal leaching conditions were a three-stage successive leaching at 80 °C with a leaching time of 2 h and S/L ratio of 0.25 g L(-1). Under these conditions, the achieved mineral sludge sample leaching yields were 85.5%, 40.5% and 93.8% for Mo, Ni and Co, respectively. The higher metal leaching potential of H2SO4 in comparison with the other strong acids/acid mixtures is attributed to the fact that H2SO4 is a diacidic compound, thus it has more H(+) ions, resulting in its stronger oxidizing power and corrosiveness. PMID:26369315

  7. Production and verification of a 2nd generation clonal group of Japanese flounder, Paralichthys olivaceus

    PubMed Central

    Hou, Jilun; Zhang, Xiaoyan; Wang, Yufen; Sun, Zhaohui; Si, Fei; Jiang, Xiufeng; Liu, Haijin

    2016-01-01

    Clonal fishes are useful tools in biology and aquaculture studies due to their isogenicity. In Japanese flounder (Paralichthys olivaceus), a group of homozygous clones was created by inducing meiogynogenesis in eggs from a mitogynogenetic homozygous diploid. As the clones reached sexual maturity, meiogynogenesis was again induced in order to produce a 2nd generation clonal group of Japanese flounder. After 3 months, there were 611 healthy, surviving individuals. Twenty-four microsatellite markers, that covered all the linkage groups of Japanese flounder, were used to identify the homozygosity of the 2nd generation clones; no heterozygous locus was detected. This indicates that the production of a 2nd generation clonal group of Japanese flounder was successful. Restriction-site DNA associated sequencing at the genomic level also confirmed the homozygosity and clonality of the 2nd generation clonal group. Furthermore, these 2nd generation clones had a small coefficient of variation for body shape indices at 210 days of age and showed a high degree of similarity in body characteristics among individuals. The successful production of 2nd generation clones has laid the foundation for the large-scale production of clonal Japanese flounder. PMID:27767055

  8. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination

  9. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    PubMed

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  10. Computer generated animation and movie production at LARC: A case study

    NASA Technical Reports Server (NTRS)

    Gates, R. L.; Matthews, C. G.; Vonofenheim, W. H.; Randall, D. P.; Jones, K. H.

    1984-01-01

    The process of producing computer generated 16mm movies using the MOVIE.BYU software package developed by Brigham Young University and the currently available hardware technology at the Langley Research Center is described. A general overview relates the procedures to a specific application. Details are provided which describe the data used, preparation of a storyboard, key frame generation, the actual animation, title generation, filming, and processing/developing the final product. Problems encountered in each of these areas are identified. Both hardware and software problems are discussed along with proposed solutions and recommendations.

  11. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    NASA Astrophysics Data System (ADS)

    Saptono Duryat, Rahmat; Kim, Choong-Un

    2016-04-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces.

  12. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser.

    PubMed

    Zhou, Pei; Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2016-08-01

    A scheme for photonic generation of linearly chirped microwave waveforms (LCMWs) with a large time-bandwidth product (TBWP) is proposed and demonstrated based on an optically injected semiconductor laser. In the proposed system, the optically injected semiconductor laser is operated in period-one (P1) oscillation state. After optical-to-electrical conversion, a microwave signal can be generated with its frequency determined by the injection strength. By properly controlling the injection strength, an LCMW with a large TBWP can be generated. The proposed system has a simple and compact structure. Besides, the center frequency, bandwidth, as well as the temporal duration of the generated LCMWs can be easily adjusted. An experiment is carried out. LCMWs with TBWPs as large as 1.2x105 (bandwidth 12 GHz; temporal duration 10 μs) are successfully generated. The flexibility for tuning the center frequency, bandwidth and temporal duration is also demonstrated. PMID:27505809

  13. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    PubMed

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  14. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    NASA Astrophysics Data System (ADS)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  15. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    PubMed Central

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  16. Burning characteristics and emission products related to metallic content in incense.

    PubMed

    Lin, Ta-Chang; Yang, Chi-Ru; Chang, Feng-Hsiang

    2007-02-01

    This study mainly compared particulate emission factors of nine popular incense. The influence of metallic contents upon the burning rate, ash and particulate emission factors of combustion was discussed. The contents of Ca and K were the highest among all metallic elements in the raw materials of the incense (the geometric mean contents 8.7 and 2.5mgg(-1), respectively), followed by Al, Mg, Fe, Na (0.1-1.0mgg(-1)) and Ba, then Sr, Mn, Cu and Zn (<0.01-0.1mgg(-1)). Most calcium existed as inorganic salts, such as CaCO(3). Under the same burning conditions, the particulate generation rates are similar (0.50mgmin(-1)+/-9%) among different types of incense-the shorter the combustion duration of a stick, the lower the total suspended particulate emission. Additionally, with the same incense weight burned, the greater the emission of ash is, the lower the emission of suspended particulate. It is recommended that consumers select incense which produces more ash, hence less particulate, to minimize the threat to their' health. Additionally, when the total metallic content (with Ca as the major component) was lower than 2% of the raw materials, properly increasing the total metallic content (from 0.5 to 2.0%) can effectively reduce the level of particulates (about 40%) during the combustion.

  17. Potential mechanism for pentachlorophenol-induced carcinogenicity: a novel mechanism for metal-independent production of hydroxyl radicals.

    PubMed

    Zhu, Ben-Zhan; Shan, Guo-Qiang

    2009-06-01

    The hydroxyl radical ((*)OH) has been considered to be one of the most reactive oxygen species produced in biological systems. It has been shown that (*)OH can cause DNA, protein, and lipid oxidation. One of the most widely accepted mechanisms for (*)OH production is through the transition metal-catalyzed Fenton reaction. Pentachlorophenol (PCP) was one of the most widely used biocides, primarily for wood preservation. PCP is now ubiquitously present in our environment and even found in people who are not occupationally exposed to it. PCP has been listed as a priority pollutant by the U.S. Environmental Protection Agency (EPA) and classified as a group 2B environmental carcinogen by the International Association for Research on Cancer (IARC). The genotoxicity of PCP has been attributed to its two major quinoid metabolites: tetrachlorohydroquinone and tetrachloro-1,4-benzoquinone (TCBQ). Although the redox cycling of PCP quinoid metabolites to generate reactive oxygen species is believed to play an important role, the exact molecular mechanism underlying PCP genotoxicity is not clear. Using the salicylate hydroxylation assay and electron spin resonance (ESR) secondary spin-trapping methods, we found that (*)OH can be produced by TCBQ and H(2)O(2) independent of transition metal ions. Further studies showed that TCBQ, but not its corresponding semiquinone radical, the tetrachlorosemiquinone radical (TCSQ(*)), is essential for (*)OH production. The major reaction product between TCBQ and H(2)O(2) was identified to be trichloro-hydroxy-1,4-benzoquinone (TrCBQ-OH), and H(2)O(2) was found to be the source and origin of the oxygen atom inserted into this reaction product. On the basis of these data, we propose that (*)OH production by TCBQ and H(2)O(2) is not through a semiquinone-dependent organic Fenton reaction but rather through the following novel mechanism: a nucleophilic attack of H(2)O(2) to TCBQ, leading to the formation of an unstable trichloro-hydroperoxyl-1

  18. Potential mechanism for pentachlorophenol-induced carcinogenicity: a novel mechanism for metal-independent production of hydroxyl radicals.

    PubMed

    Zhu, Ben-Zhan; Shan, Guo-Qiang

    2009-06-01

    The hydroxyl radical ((*)OH) has been considered to be one of the most reactive oxygen species produced in biological systems. It has been shown that (*)OH can cause DNA, protein, and lipid oxidation. One of the most widely accepted mechanisms for (*)OH production is through the transition metal-catalyzed Fenton reaction. Pentachlorophenol (PCP) was one of the most widely used biocides, primarily for wood preservation. PCP is now ubiquitously present in our environment and even found in people who are not occupationally exposed to it. PCP has been listed as a priority pollutant by the U.S. Environmental Protection Agency (EPA) and classified as a group 2B environmental carcinogen by the International Association for Research on Cancer (IARC). The genotoxicity of PCP has been attributed to its two major quinoid metabolites: tetrachlorohydroquinone and tetrachloro-1,4-benzoquinone (TCBQ). Although the redox cycling of PCP quinoid metabolites to generate reactive oxygen species is believed to play an important role, the exact molecular mechanism underlying PCP genotoxicity is not clear. Using the salicylate hydroxylation assay and electron spin resonance (ESR) secondary spin-trapping methods, we found that (*)OH can be produced by TCBQ and H(2)O(2) independent of transition metal ions. Further studies showed that TCBQ, but not its corresponding semiquinone radical, the tetrachlorosemiquinone radical (TCSQ(*)), is essential for (*)OH production. The major reaction product between TCBQ and H(2)O(2) was identified to be trichloro-hydroxy-1,4-benzoquinone (TrCBQ-OH), and H(2)O(2) was found to be the source and origin of the oxygen atom inserted into this reaction product. On the basis of these data, we propose that (*)OH production by TCBQ and H(2)O(2) is not through a semiquinone-dependent organic Fenton reaction but rather through the following novel mechanism: a nucleophilic attack of H(2)O(2) to TCBQ, leading to the formation of an unstable trichloro-hydroperoxyl-1

  19. Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria.

    PubMed

    Mohanty, Anee; Liu, Yang; Yang, Liang; Cao, Bin

    2015-02-01

    Anthropogenic activities such as mining, smelting, and industrial use have caused serious problems of metal(loid) pollution in nearly every country in the world. A wide range of environmental microorganisms are capable of transforming metal(loid)s into nanomaterials, i.e., biogenic nanomaterials (bio-NMs), in the environment. Although the impacts of various metal(loid)s on the ecosystems have been extensively studied, the potential influence of the bio-NMs generated in the environment to environmental organisms is largely unexplored. Using tellurium nanomaterials transformed from tellurite by a metal-reducing bacterium as model bio-NMs, we demonstrated that the bio-NMs significantly decreased siderophore production in an environmental bacterium Pseudomonas aeruginosa in both planktonic cultures and biofilms. Transcriptomic analysis revealed that the bio-NMs inhibited the expression of genes involved in biosynthesis and transport of siderophores. Siderophores secreted by certain bacteria in microbial communities can be considered as public goods that can be exploited by local communities, playing an important role in shaping microbial communities. The inhibition of siderophore production by the bio-NMs implies that bio-NMs may have an important influence on the ecosystems through altering specific functions of environmental bacteria. Taken together, this study provides a novel insight into the environmental impacts of metal(loid)s. PMID:25273177

  20. Subharmonic Wave Generation at Interfaces of a Thin Layer between Metal Blocks

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Biwa, Shiro

    2013-07-01

    Subharmonic waves were significantly generated at the interfaces of aluminum blocks and an aluminum foil subjected to a 6 MHz burst incident wave. Although the fundamental wave amplitude was linearly varied with input voltage, the subharmonic waves generated at the interfaces indicated strong nonlinearity. Analyzing the relationship of the subharmonic wave generation, the applied contact pressure, and the stress of the ultrasonic wave has revealed that subharmonic components can be generated when the incident ultrasonic wave has sufficiently large stress to separate the contacting interfaces. At rough surfaces, the subharmonic peak could not be observed because a large true contact pressure prevented the interfaces from separating.

  1. A simple biosynthetic pathway for large product generation from small substrate amounts

    NASA Astrophysics Data System (ADS)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  2. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  3. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  4. Method for generating a crystalline {sup 99}MoO{sub 3} product and the isolation {sup 99m}Tc compositions therefrom

    DOEpatents

    Bennett, R.G.; Christian, J.D.; Kirkham, R.J.; Tranter, T.J.

    1998-09-01

    An improved method is described for producing {sup 99m}Tc compositions. {sup 100}Mo metal is irradiated with photons in a particle (electron) accelerator to produce {sup 99}Mo metal which is dissolved in a solvent. A solvated {sup 99}Mo product is then dried to generate a supply of {sup 99}MoO{sub 3} crystals. The crystals are thereafter heated at a temperature which will sublimate the crystals and form a gaseous mixture containing vaporized {sup 99m}TcO{sub 3} and vaporized {sup 99m}TcO{sub 2} but will not cause the production of vaporized {sup 99}MoO{sub 3}. The mixture is then combined with an oxidizing gas to generate a gaseous stream containing vaporized {sup 99m}Tc{sub 2}O{sub 7}. Next, the gaseous stream is cooled to a temperature sufficient to convert the vaporized {sup 99m}Tc{sub 2}O{sub 7} into a condensed {sup 99m}Tc-containing product. The product has high purity levels resulting from the use of reduced temperature conditions and ultrafine crystalline {sup 99}MoO{sub 3} starting materials with segregated {sup 99m}Tc compositions therein which avoid the production of vaporized {sup 99}MoO{sub 3} contaminants. 1 fig.

  5. Method for generating a crystalline .sup.99 MoO.sub.3 product and the isolation .sup.99m Tc compositions therefrom

    DOEpatents

    Bennett, Ralph G.; Christian, Jerry D.; Kirkham, Robert J.; Tranter, Troy J.

    1998-01-01

    An improved method for producing .sup.99m Tc compositions. .sup.100 Mo metal is irradiated with photons in a particle (electron) accelerator to produce .sup.99 Mo metal which is dissolved in a solvent. A solvated .sup.99 Mo product is then dried to generate a supply of .sup.99 MoO.sub.3 crystals. The crystals are thereafter heated at a temperature which will sublimate the crystals and form a gaseous mixture containing vaporized .sup.99m TcO.sub.3 and vaporized .sup.99m TcO.sub.2 but will not cause the production of vaporized .sup.99 MoO.sub.3. The mixture is then combined with an oxidizing gas to generate a gaseous stream containing vaporized .sup.99m Tc.sub.2 O.sub.7. Next, the gaseous stream is cooled to a temperature sufficient to convert the vaporized .sup.99m Tc.sub.2 O.sub.7 into a condensed .sup.99m Tc-containing product. The product has high purity levels resulting from the use of reduced temperature conditions and ultrafine crystalline .sup.99 MoO.sub.3 starting materials with segregated .sup.99m Tc compositions therein which avoid the production of vaporized .sup.99 MoO.sub.3 contaminants.

  6. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2005-01-01

    1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously

  7. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  8. First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star.

    PubMed

    Umeda, Hideyuki; Nomoto, Ken'ichi

    2003-04-24

    It has been proposed theoretically that the first generation of stars in the Universe (population III) would be as massive as 100 solar masses (100 M(O)), because of inefficient cooling of the precursor gas clouds. Recently, the most iron-deficient (but still carbon-rich) low-mass star--HE0107-5240--was discovered. If this is a population III star that gained its metals (elements heavier than helium) after its formation, it would challenge the theoretical picture of the formation of the first stars. Here we report that the patterns of elemental abundance in HE0107-5240 (and other extremely metal-poor stars) are in good accord with the nucleosynthesis that occurs in stars with masses of 20-130 M(O) when they become supernovae if, during the explosions, the ejecta undergo substantial mixing and fallback to form massive black holes. Such supernovae have been observed. The abundance patterns are not, however, consistent with enrichment by supernovae from stars in the range 130-300 M(O). We accordingly infer that the first-generation supernovae came mostly from explosions of approximately 20-130 M(O) stars; some of these produced iron-poor but carbon- and oxygen-rich ejecta. Low-mass second-generation stars, like HE0107-5240, could form because the carbon and oxygen provided pathways for the gas to cool.

  9. Coherent control of high-order-harmonic generation via tunable plasmonic bichromatic near fields in a metal nanoparticle

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Xing; Xie, Xiao-Tao; Chen, Ai-Xi; Huang, Ziwen; Lee, Ray-Kuang

    2016-05-01

    We present a theoretical investigation of high-order-harmonic generation (HHG) via bichromatic plasmonic near fields with metal nanoparticles. Bichromatic plasmonic near fields, which depend on temporal waveform synthesis, are generated when a metallic nanoparticle subjected to a moderate-intensity (<1012W /cm2 ) bichromatic few-cycle pulse. By means of a windowed Fourier transform of the time-dependent acceleration, we show that the differences in energies and level crossing between the adiabatic states of a two-level Hamiltonian are responsible for the cutoff energy of harmonics. Thus, we can manipulate the adiabatic states, and consequently the HHG spectra, by means of the bichromatic plasmonic near fields. In contrast to the case of a monochromatic field alone, a significant cutoff extension can be achieved via optimization of the bichromatic few-cycle pulse. Moreover, the supercontinuum in the bichromatic field shows a higher energy spectrum along with a broader bandwidth, which is beneficial for the efficient generation of broadband-isolated ultrashort extreme ultraviolet pulses from few-cycle laser fields.

  10. [Release amount of heavy metals in cement product from co-processing waste in cement kiln].

    PubMed

    Yang, Yu-Fei; Huang, Qi-Fei; Zhang, Xia; Yang, Yu; Wang, Qi

    2009-05-15

    Clinker was produced by Simulating cement calcination test, and concrete samples were also prepared according to national standard GB/T 17671-1999. Long-term cumulative release amount of heavy metals in cement product from co-processing waste in cement kiln was researched through leaching test which refers to EA NEN 7371 and EA NEN 7375, and one-dimensional diffusion model which is on the base of Fick diffusion law. The results show that availabilities of heavy metals are lower than the total amounts in concrete. The diffusion coefficients of heavy metals are different (Cr > As > Ni > Cd). During 30 years service, the cumulative release amounts of Cr, As, Ni and Cd are 4.43 mg/kg, 0.46 mg/kg, 1.50 mg/kg and 0.02 mg/kg, respectively, and the ratios of release which is the division of cumulative release amount and availability are 27.0%, 18.0%, 3.0% and 0.2%, respectively. The most important influence factor of cumulative release amount of heavy metal is the diffusion coefficient, and it is correlative to cumulative release amount. The diffusion coefficient of Cr and As should be controlled exactly in the processing of input the cement-kiln.

  11. Early diagenesis of trace metals used as an indicator of past productivity changes in coastal sediments

    SciTech Connect

    Lapp, B. ); Balzer, W. )

    1993-10-01

    In sediments of Kiel Bight, which differ significantly in their redox-states and the rates of C[sub org] degradation, depth profiles of both dissolved and solid-phase Fe, Mn, Cd, Cu, Ni, and Co were measured. Porewater fluxes of Cd, Cu and Ni were significantly higher at shallower (more oxic) stations as compared to highly reducing deeper subthermocline sediments, while Mn fluxes behaved the opposite way. When normalized to Fe for grain size correction the measured solid-phase metal contents revealed that the high porewater flux has led to near surface depletion of Mn from more anoxic sediments and to a reduced rate of accumulation of anthropogenic Cd in more oxic sediments. This difference in early diagenetic behaviour suggests the use of these metals as a proxy for the redox state and the intensity of carbon recycling. Contrary to the recent sediment layers the normalized metal contents of preindustrially deposited sediment layers were similar for both metals at all stations. Thus, at stations having highly anoxic sediments today, the preindustrial benthic flux must have been lower for Mn and higher for Cd, reflecting a shift from more oxic to more reducing conditions in subthermocline sediments during the last 100 years. This change of the redox state in subthermocline sediments reflects an increase of primary production and of subsequent C[sub org] input to the sediment due to eutrophication which accompanied industrialization.

  12. Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations

    SciTech Connect

    Li Qiang; Spira, Michael; Gao, Jun; Li Chongsheng

    2011-05-01

    Higgs bosons can be produced copiously at the LHC via gluon fusion induced by top and bottom quark loops, and can be enhanced strongly if extra heavy quarks exist. We present results for Higgs+zero-, one- and two-jet production at the LHC operating at 7 and 14 TeV collision energy, in both the standard model and the 4th generation model, by evaluating the corresponding heavy quark triangle, box, and pentagon Feynman diagrams. We compare the results by using the effective Higgs-gluon interactions in the limit of heavy quarks with the cross sections including the full mass dependences. NLO effects on Higgs+zero-jet production rate with full mass dependence are presented for the first time consistently in the 4th generation model. Our results improve the theoretical basis for fourth generation effects on the Higgs boson search at the LHC.

  13. Use of in-process EDM truing to generate complex contours on metal-bond, superabrasive grinding wheels for precision grinding structural ceramics

    SciTech Connect

    Piscotty, M. A., LLNL

    1997-08-01

    This paper presents recent work performed at Lawrence Livermore National Laboratory to develop cost-effective, versatile and robust manufacturing methods for grinding precision features in structural ceramics using metal-bond, superabrasive grinding wheels. The developed processes include utilizing specialized, on-machine hardware to generate precision profiles onto grinding wheels using electrical-discharge machining (EDM) and a contoured rotating electrode. The production grinding processes are described, which were developed and used to grind various precision details into a host of structural ceramics such as Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4}, and BeO. The methodologies, hardware and results of both creep-feed and cylindrical grinding are described. A discussion of imparted grinding damage and wheel wear is also presented.

  14. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production

    PubMed Central

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; Wang, Hui; Xie, Song-Hai; Xu, Da-Wen; Ren, Yuan-Hang; Wang, Hao; Liu, Yi; Li, Zhan-Ting

    2016-01-01

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3]2+-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells−Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3]2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials. PMID:27161853

  15. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production.

    PubMed

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; Wang, Hui; Xie, Song-Hai; Xu, Da-Wen; Ren, Yuan-Hang; Wang, Hao; Liu, Yi; Li, Zhan-Ting

    2016-01-01

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3](2+)-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3](2+) units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials. PMID:27161853

  16. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; Wang, Hui; Xie, Song-Hai; Xu, Da-Wen; Ren, Yuan-Hang; Wang, Hao; Liu, Yi; Li, Zhan-Ting

    2016-05-01

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3]2+-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3]2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.

  17. Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil.

    PubMed

    Schütze, Eileen; Ahmed, Engy; Voit, Annekatrin; Klose, Michael; Greyer, Matthias; Svatoš, Aleš; Merten, Dirk; Roth, Martin; Holmström, Sara J M; Kothe, Erika

    2015-12-01

    Heavy metal-contaminated soil derived from a former uranium mining site in Ronneburg, Germany, was used for sterile mesocosms inoculated with the extremely metal-resistant Streptomyces mirabilis P16B-1 or the sensitive control strain Streptomyces lividans TK24. The production and fate of bacterial hydroxamate siderophores in soil was analyzed, and the presence of ferrioxamines E, B, D, and G was shown. While total ferrioxamine concentrations decreased in water-treated controls after 30 days of incubation, the sustained production by the bacteria was seen. For the individual molecules, alteration between neutral and cationic forms and linearization of hydroxamates was observed for the first time. Mesocosms inoculated with biomass of either strain showed changes of siderophore contents compared with the non-treated control indicating for auto-alteration and consumption, respectively, depending on the vital bacteria present. Heat stability and structural consistency of siderophores obtained from sterile culture filtrate were shown. In addition, low recovery (32 %) from soil was shown, indicating adsorption to soil particles or soil organic matter. Fate and behavior of hydroxamate siderophores in metal-contaminated soils may affect soil properties as well as conditions for its inhabiting (micro)organisms.

  18. Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil.

    PubMed

    Schütze, Eileen; Ahmed, Engy; Voit, Annekatrin; Klose, Michael; Greyer, Matthias; Svatoš, Aleš; Merten, Dirk; Roth, Martin; Holmström, Sara J M; Kothe, Erika

    2015-12-01

    Heavy metal-contaminated soil derived from a former uranium mining site in Ronneburg, Germany, was used for sterile mesocosms inoculated with the extremely metal-resistant Streptomyces mirabilis P16B-1 or the sensitive control strain Streptomyces lividans TK24. The production and fate of bacterial hydroxamate siderophores in soil was analyzed, and the presence of ferrioxamines E, B, D, and G was shown. While total ferrioxamine concentrations decreased in water-treated controls after 30 days of incubation, the sustained production by the bacteria was seen. For the individual molecules, alteration between neutral and cationic forms and linearization of hydroxamates was observed for the first time. Mesocosms inoculated with biomass of either strain showed changes of siderophore contents compared with the non-treated control indicating for auto-alteration and consumption, respectively, depending on the vital bacteria present. Heat stability and structural consistency of siderophores obtained from sterile culture filtrate were shown. In addition, low recovery (32 %) from soil was shown, indicating adsorption to soil particles or soil organic matter. Fate and behavior of hydroxamate siderophores in metal-contaminated soils may affect soil properties as well as conditions for its inhabiting (micro)organisms. PMID:25414032

  19. Mechanistic and synthetic studies aimed at the development of single-site metal alkoxide catalysts for the generation of polyesters and polycarbonates

    SciTech Connect

    Chisholm, Malcolm

    2010-06-30

    The work proposed herein focuses on the chemistry of metal-oxygen bonds with respect to insertion/enchainment reactions involving epoxides, cyclic esters and carbonates, acid anhydrides and carbon dioxide leading to the formation of polyethers, polyesters and polycarbonates from renewable resources. Particular emphasis is placed on the use of the biologically benign metals magnesium and calcium and the M(3+) ions of aluminum, chromium and cobalt that have a similar ionic radii but different coordination properties arising from their respective d0, d3 and d6 valence shell configurations. The work emphasizes the design and use of single-site metal catalysis involving LMOR initiating and propagating species. For M = Mg and Ca, L is a pyrazolyl borate ligand specifically tailored to the coordination properties of the metal. In addition the ligand is inert with respect to reactions of the substrates under consideration. For the M(3+) ions, L is a substituted porphyrin, namely 5,10,15,20-tetraphenylporphyrin, TPP, 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, TFPP or 2,3,7,8,12,13,17,18-octaethylporphyrin, which together with Lewis base co-catalysts will allow the elucidation of factors leading to polyethers, polycarbonates and cyclic carbonates in reactions involving epoxides and CO2. Specific attention is given to reactions involving propylene oxide and styrene oxide which commonly show competitive formation of products. Electronic structure calculations employing Density Functional Theory will be carried out to elucidate the ring opening of the epoxide by alkylcarbonate and alkoxide ligands and the chain growth mechanism. Polymerization of lactide will be investigated using inexpensive solid supports and catalytic routes to cyclic esters are proposed wherein complexation to metal ions may allow chemical amplification of specific rings. With an understanding of mechanisms involving the reactions of M-OR bonds the development of single-site catalysis for the

  20. THE EFFECT OF LOWER MANTLE METALLIZATION ON MAGNETIC FIELD GENERATION IN ROCKY EXOPLANETS

    SciTech Connect

    Vilim, R.; Stanley, S.; Elkins-Tanton, L.

    2013-05-10

    Recent theoretical and experimental evidence indicates that many of the materials that are thought to exist in the mantles of terrestrial exoplanets will metallize and become good conductors of electricity at mantle pressures. This allows for strong electromagnetic coupling of the core and the mantle in these planets. We use a numerical dynamo model to study the effect of a metallized lower mantle on the dynamos of terrestrial exoplanets using several inner core sizes and mantle conductivities. We find that the addition of an electrically conducting mantle results in stronger core-mantle boundary fields because of the increase in magnetic field stretching. We also find that a metallized mantle destabilizes the dynamo resulting in less dipolar, less axisymmetric poloidal magnetic fields at the core-mantle boundary. The conducting mantle efficiently screens these fields to produce weaker surface fields. We conclude that a conducting mantle will make the detection of extrasolar terrestrial magnetic fields more difficult while making the magnetic fields in the dynamo region stronger.

  1. Performance and cycle life test results of a PEVE first-generation prismatic nickel/metal-hydride battery pack

    NASA Astrophysics Data System (ADS)

    Potter, B. G.; Duong, T. Q.; Bloom, I.

    A first-generation, prismatic, nickel/metal-hydride battery pack from Panasonic EV Energy Company Ltd. (PEVE) was characterized following the standard PNGV test procedures and then cycle life tested at 25 °C. The pack met, or exceeded, PNGV power and energy goals at the beginning of life. After more than 500,000 cycles, the data for capacity and discharge pulse power capability showed no measurable fade; similarly, discharge pulse resistance at 60% DOD also showed no measurable change. After the same pack was tested with two size factors, it still met or exceeded the PNGV goals.

  2. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production

    SciTech Connect

    Li, Q.S.; Chen, J.J.; Li, Y.C.

    2008-02-15

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 {mu} g per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  3. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production.

    PubMed

    Li, Qiansheng; Chen, Jianjun; Li, Yuncong

    2008-02-01

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 microg per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  4. Solar-Driven H2 O2 Generation From H2 O and O2 Using Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts.

    PubMed

    Wang, Ruirui; Pan, Kecheng; Han, Dandan; Jiang, Jingjing; Xiang, Chengxiang; Huang, Zhuangqun; Zhang, Lu; Xiang, Xu

    2016-09-01

    Light-driven generation of H2 O2 only from water and molecular oxygen could be an ideal pathway for clean production of solar fuels. In this work, a mixed metal oxide/graphitic-C3 N4 (MMO@C3 N4 ) composite was synthesized as a dual-functional photocatalyst for both water oxidation and oxygen reduction to generate H2 O2 . The MMO was derived from a NiFe-layered double hydroxide (LDH) precursor for obtaining a high dispersion of metal oxides on the surface of the C3 N4 matrix. The C3 N4 is in the graphitic phase and the main crystalline phase in MMO is cubic NiO. The XPS analyses revealed the doping of Fe(3+) in the dominant NiO phase and the existence of surface defects in the C3 N4 matrix. The formation and decomposition kinetics of H2 O2 on the MMO@C3 N4 and the control samples, including bare MMO, C3 N4 matrix, Ni- or Fe-loaded C3 N4 and a simple mixture of MMO and C3 N4 , were investigated. The MMO@C3 N4 composite produced 63 μmol L(-1) of H2 O2 in 90 min in acidic solution (pH 3) and exhibited a significantly higher rate of production for H2 O2 relative to the control samples. The positive shift of the valence band in the composite and the enhanced water oxidation catalysis by incorporating the MMO improved the light-induced hole collection relative to the bare C3 N4 and resulted in the enhanced H2 O2 formation. The positively shifted conduction band in the composite also improved the selectivity of the two-electron reduction of molecular oxygen to H2 O2 . PMID:27484581

  5. Radiochemical Separation and Quantification of Tritium in Metallic Radwastes Generated from CANDU Type NPP - 13279

    SciTech Connect

    Ahn, H.J.; Choi, K.C.; Choi, K.S.; Park, T.H.; Park, Y.J.; Song, K.

    2013-07-01

    As a destructive quantification method of {sup 3}H in low and intermediate level radwastes, bomb oxidation, sample oxidation, and wet oxidation methods have been introduced. These methods have some merits and demerits in the radiochemical separation of {sup 3}H radionuclides. That is, since the bomb oxidation and sample oxidation methods are techniques using heating at high temperature, the separation methods of the radionuclides are relatively simple. However, since {sup 3}H radionuclide has a property of being diffused deeply into the inside of metals, {sup 3}H which is distributed on the surface of the metals can only be extracted if the methods are applied. As an another separation method, the wet oxidation method makes {sup 3}H oxidized with an acidic solution, and extracted completely to an oxidized HTO compound. However, incomplete oxidized {sup 3}H compounds, which are produced by reactions of acidic solutions and metallic radwastes, can be released into the air. Thus, in this study, a wet oxidation method to extract and quantify the {sup 3}H radionuclide from metallic radwastes was established. In particular, a complete extraction method and complete oxidation method of incomplete chemical compounds of {sup 3}H using a Pt catalyst were studied. The radioactivity of {sup 3}H in metallic radwastes is extracted and measured using a wet oxidation method and liquid scintillation counter. Considering the surface dose rate of the sample, the appropriate size of the sample was determined and weighed, and a mixture of oxidants was added to a 200 ml round flask with 3 tubes. The flask was quickly connected to the distilling apparatus. 20 mL of 16 wt% H{sub 2}SO{sub 4} was given into the 200-ml round flask through a dropping funnel while under stirring and refluxing. After dropping, the temperature of the mixture was raised to 96 deg. C and the sample was leached and oxidized by refluxing for 3 hours. At that time, the incomplete oxidized {sup 3}H compounds were

  6. Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  7. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Weirauch, Jr., Douglas A.; Liu, Xinghua

    2002-01-01

    An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

  8. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  9. "A New Class od Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors"

    SciTech Connect

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose; Mrs. Judith Maro, Nuclear Reactor Laboratory, MIT

    2008-05-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  10. Structures of the dehydrogenation products of methane activation by 5d transition metal cations.

    PubMed

    Lapoutre, V J F; Redlich, B; van der Meer, A F G; Oomens, J; Bakker, J M; Sweeney, A; Mookherjee, A; Armentrout, P B

    2013-05-23

    The activation of methane by gas-phase transition metal cations (M(+)) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H](+) and H2. However, the structure of the dehydrogenation product has not been established unambiguously. Two types of structures have been considered: a carbene structure where an intact CH2 fragment is bound to the metal (M(+)-CH2) and a carbyne (hydrido-methylidyne) structure with both a CH and a hydrogen bound to the metal separately (H-M(+)-CH). For metal ions with empty d-orbitals, an agostic interaction can occur that could influence the competition between carbene and carbyne structures. In this work, the gas phase [M,C,2H](+) (M = Ta, W, Ir, Pt) products are investigated by infrared multiple-photon dissociation (IR-MPD) spectroscopy using the Free-Electron Laser for IntraCavity Experiments (FELICE). Metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream. IR-MPD spectra of the [M,C,2H](+) species are measured in the 300-3500 cm(-1) spectral range by monitoring the loss of H (2H in the case of [Ir,C,2H](+)). For each system, the experimental spectrum closely resembles the calculated spectrum of the lowest energy structure calculated using DFT: for Pt, a classic C(2v) carbene structure; for Ta and W, carbene structures that are distorted by agostic interactions; and a carbyne structure for the Ir complex. The Ir carbyne structure was not considered previously. To obtain this agreement, the calculated harmonic frequencies are scaled with a scaling factor of 0.939, which is fairly low and can be attributed to the strong redshift induced by the IR multiple-photon excitation process of these small molecules. These four-atomic species are among the smallest systems studied by IR-FEL based IR-MPD spectroscopy, and their spectra demonstrate the power of IR

  11. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites.

    PubMed

    González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O

    2014-11-01

    The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites. PMID:25081852

  12. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites.

    PubMed

    González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O

    2014-11-01

    The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  13. High-harmonic generation by nonlinear resonant excitation of surface plasmon modes in metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hurst, Jérôme; Haas, Fernando; Manfredi, Giovanni; Hervieux, Paul-Antoine

    2014-04-01

    The nonlinear electron dynamics in metallic nanoparticles is studied using a hydrodynamic model that incorporates most quantum many-body features, including spill-out and nonlocal effects as well as electron exchange and correlations. We show that, by irradiating the nanoparticle with a chirped laser pulse of modest intensity (autoresonance), it is possible to drive the electron dynamics far into the nonlinear regime, leading to enhanced energy absorption and complete ionization of the nanoparticle on a time scale of the order of 100 fs. The accompanying radiated power spectrum is rich in high-order harmonics.

  14. Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion

    DOEpatents

    Baker, L. Robert; Seo, Hyungtak; Hervier, Antoine; Somorjai, Gabor A.

    2016-04-12

    A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3 % oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO.sub.2 composition.

  15. Generation of superparamagnetism in metallic α-iron by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Stichleutner, S.; Homonnay, Z.; Havancsák, K.; Chisholm, C. U.; El-Sharif, M.; Skuratov, V. A.; Nakanishi, A.; Nomura, K.

    2016-10-01

    57Fe conversion electron Mössbauer spectroscopy was used to study the effect of swift heavy ion irradiation on electrochemically deposited metallic pure α-iron. We succeeded in preparing superparamagnetic iron by irradiating the electrochemically prepared thin α-iron films using 247 MeV Kr ions with a fluence of 1×1013 ion cm-2 which converted 50% of crystalline α-iron into amorphous and superparamagnetic phases, the latter being >20%. The results are discussed in terms of the thermal spike model for the formation of the amorphous phase which could be essential for the formation of superparamagnetic iron.

  16. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.

    PubMed

    Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Mohan, S Venkata

    2015-04-01

    Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition.

  17. Toxic metals (Hg, Cd, and Pb) in fishery products imported into Italy: suitability for human consumption.

    PubMed

    Storelli, Maria M; Normanno, Giovanni; Barone, Grazia; Dambrosio, Angela; Errico, Luigi; Garofalo, Rita; Giacominelli-Stuffler, Roberto

    2012-01-01

    Mercury, cadmium, and lead concentrations were determined in various fishery products (fishes, cephalopod molluscs, and crustaceans) imported into Italy from many European and non-European coastal countries. Considerable differences were found in the concentrations of these metals among the products tested. The highest mean Hg concentration was found in fishes (0.21 μg g(-1) wet weight), whereas cephalopods had the highest mean Cd concentration (0.35 μg g(-1) wet weight). Swordfish (0.80 μg g(-1) wet weight), longtail tuna (0.53 μg g(-1) wet weight), and thornback ray (0.52 μg g(-1) wet weight) had the highest concentrations of Hg, whereas maximum Cd concentrations were found in samples of common cuttlefish (0.85 μg g(-1) wet weight) and common octopus (0.64 μg g(-1) wet weight). The majority of the samples analyzed were in compliance with European Union legislation, except for a few cases. The calculated mean weekly intakes of Hg, Cd, and Pb through consumption of the fishery products tested were all below the legislated respective provisional tolerable weekly intakes. In general, the samples analyzed were considered safe to eat with regard to the metal concentrations found and the allowable intakes based on legislation. Nevertheless, the consumption of some species may be of significant importance for consumer health. PMID:22221377

  18. Integrating photobiological hydrogen production with dye-metal bioremoval from simulated textile wastewater.

    PubMed

    Kaushik, Anubha; Mona, Sharma; Kaushik, C P

    2011-11-01

    The study reports production of hydrogen in photobioreactors with free (PBR(Fr)) and immobilized (PBR(Imm)) Nostoc biomass at enhanced and sustained rates. Before running the photobioreactors, effects of different immobilization matrices and cyanobacterial dose on hydrogen production were studied in batch mode. As hydrogen production in the PBRs declined spent biomass from the photobioreactors were collected and utilized further for column biosorption of highly toxic dyes (Reactive Red 198+Crystal Violet) and metals (hexavalent chromium and bivalent cobalt) from simulated textile wastewater. Breakthrough time, adsorption capacity and exhaustion time of the biosorption column were studied. The photobioreactors with free and immobilized cyanobacterium produced hydrogen at average rates of 101 and 151 μmol/h/mg Chl a, respectively over 15 days, while the adsorption capacity of the spent biomass was up to 1.4 and 0.23 mg/g for metals and 15 and 1.75 mg/g for the dyes, respectively in continuous column mode.

  19. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    PubMed

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  20. Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection.

    PubMed

    Dixon, S; Burrows, S E; Dutton, B; Fan, Y

    2011-01-01

    A pulsed Nd:YAG laser with an approximately Gaussian beam shape is directed onto the surface of an aluminium sheet at an energy density below which damage by laser ablation occurs, generating Lamb waves in the sheet. The laser beam is raster scanned across the surface of the sample. The Lamb waves travel radially outwards from the generation point and are detected some distance away by an electromagnetic acoustic transducer with sensitivity to in-plane displacements of the sheet. A number of static EMATs are located around the edges of the sheet, some distance from the generation point. The presence of a crack-like defect on the sheet can be detected by either a sudden change in the ultrasonic waveform or by an enhancement in the frequency content of the waveform when the laser beam illuminates directly onto the crack.