Sample records for generation plants development

  1. Partial automation of database processing of simulation outputs from L-systems models of plant morphogenesis.

    PubMed

    Chen, Yi- Ping Phoebe; Hanan, Jim

    2002-01-01

    Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly.

  2. Seasonal phenology of interactions involving short-lived annual plants, a multivoltine herbivore and its endoparasitoid wasp.

    PubMed

    Fei, Minghui; Gols, Rieta; Harvey, Jeffrey A

    2014-01-01

    Spatial-temporal realism is often missing in many studies of multitrophic interactions, which are conducted at a single time frame and/or involving interactions between insects with a single species of plant. In this scenario, an underlying assumption is that the host-plant species is ubiquitous throughout the season and that the insects always interact with it. We studied interactions involving three naturally occurring wild species of cruciferous plants, Brassica rapa, Sinapis arvensis and Brassica nigra, that exhibit different seasonal phenologies, and a multivoltine herbivore, the large cabbage white butterfly, Pieris brassicae, and its gregarious endoparasitoid wasp, Cotesia glomerata. The three plants have very short life cycles. In central Europe, B. rapa grows in early spring, S. arvensis in late spring and early summer, and B. nigra in mid to late summer. P. brassicae generally has three generations per year, and C. glomerata at least two. This means that different generations of the insects must find and exploit different plant species that may differ in quality and which may be found some distance from one another. Insects were either reared on each of the three plant species for three successive generations or shifted between generations from B. rapa to S. arvensis to B. nigra. Development time from neonate to pupation and pupal fresh mass were determined in P. brassicae and egg-to-adult development time and body mass in C. glomerata. Overall, herbivores performed marginally better on S. arvensis and B. nigra plants than on B. rapa plants. Parasitoids performance was closely tailored with that of the host. Irrespective as to whether the insects were shifted to a new plant in successive generations or not, development time of P. brassicae and C. glomerata decreased dramatically over time. Our results show that there were some differences in insect development on different plant species and when transferred from one species to another. However, all three plants were of generally high quality in terms of insect performance. We discuss ecological and evolutionary constraints on insects that must search in new habitats for different plant species over successive generations. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  3. A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan

    2017-07-01

    Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.

  4. The Role of Gravity on the Reproduction of Arabidopsis Plants

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1985-01-01

    The presence of gravity as a necessary environmental factor for higher plants to complete their life cycle was examined. Arabidopsis thalliana (L.) Heynh. Columbia strain plants were grown continuously for three generations in a simulated micro-g environment as induced by horizontal clinostats. Growth, development and reproduction were followed. The Arabidopsis plants were selected for three generations on clinostats because: (1) a short life cycle of around 35 days; (2) the cells of third generation plants would in theory be free of gravity imprint; and (3) a third generation plant would therefore more than likely grow and respond like a plant growing in a micro-g environment. It is found that gravity is not a required environmental factor for higher plants to complete their life cycle, at least as tested by a horizontal clinostat. Clinostatting does not prevent the completion of the plant life cycle. However, clinostatting does appear to slow down the reproductive process of Arabidopsis plants. Whether higher plants can continue to reproduce for many generations in a true micro-g environment of space can only be determined by long duration experiments in space.

  5. Modeling strategic competition in hydro-thermal electricity generation markets with cascaded reservoir-hydroelectric generation plants

    NASA Astrophysics Data System (ADS)

    Uluca, Basak

    This dissertation aims to achieve two goals. The first is to model the strategic interactions of firms that own cascaded reservoir-hydro plants in oligopolistic and mixed oligopolistic hydrothermal electricity generation markets. Although competition in thermal generation has been extensively modeled since the beginning of deregulation, the literature on competition in hydro generation is still limited; in particular, equilibrium models of oligopoly that study the competitive behavior of firms that own reservoir-hydro plants along the same river in hydrothermal electricity generation markets are still under development. In competitive markets, when the reservoirs are located along the same river, the water released from an upstream reservoir for electricity generation becomes input to the immediate downstream reservoir, which may be owned by a competitor, for current or future use. To capture the strategic interactions among firms with cascaded reservoir-hydro plants, the Upstream-Conjecture approach is proposed. Under the Upstream-Conjecture approach, a firm with an upstream reservoir-hydro plant assumes that firms with downstream reservoir-hydro plants will respond to changes in the upstream firm's water release by adjusting their water release by the same amount. The results of the Upstream Conjecture experiments indicate that firms that own upstream reservoirs in a cascade may have incentive to withhold or limit hydro generation, forcing a reduction in the utilization of the downstream hydro generation plants that are owned by competitors. Introducing competition to hydroelectricity generation markets is challenging and ownership allocation of the previously state-owned cascaded reservoir-hydro plants through privatization can have significant impact on the competitiveness of the generation market. The second goal of the dissertation is to extract empirical guidance about best policy choices for the ownership of the state-owned generation plants, including the cascaded reservoir-hydro plants. Specifically, an equilibrium model of oligopoly, where only private firms compete for electricity supply is proposed. Since some electricity generation markets are better characterized as mixed oligopolies, where the public firm coexists with the private firms for electricity supply, and not as oligopolies, another equilibrium model of mixed oligopoly is proposed. The proposed mixed oligopoly equilibrium model is the first implementation of such market structure in electricity markets. The mathematical models developed in this research are applied to the simplified representation of the Turkish electricity generation market to investigate the impact of various ownership allocation scenarios that may result from the privatization of the state owned generation plants, including the cascaded reservoir-hydro plants, on the competitive market outcomes.

  6. A conversation across generations: soma-germ cell crosstalk in plants.

    PubMed

    Feng, Xiaoqi; Zilberman, Daniel; Dickinson, Hugh

    2013-02-11

    Plants undergo alternation of generation in which reproductive cells develop in the plant body ("sporophytic generation") and then differentiate into a multicellular gamete-forming "gametophytic generation." Different populations of helper cells assist in this transgenerational journey, with somatic tissues supporting early development and single nurse cells supporting gametogenesis. New data reveal a two-way relationship between early reproductive cells and their helpers involving complex epigenetic and signaling networks determining cell number and fate. Later, the egg cell plays a central role in specifying accessory cells, whereas in both gametophytes, companion cells contribute non-cell-autonomously to the epigenetic landscape of the gamete genomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanvick, T.W.

    The Logan Generating Plant (formerly Keystone Cogeneration Project) is a 230 MW (gross) pulverized coal cogeneration facility located on the Delaware River in Logan Township, New Jersey, off Route 130. Owned and operated by U.S. Generating Company, the plant was built by Bechtel Corporation, which provided engineering, procurement, construction, and startup services. Power from the plant is furnished to Atlantic Electric, and approximately 50,000 pounds of process steam per hour is provided to Monsanto`s adjacent facility. U.S. Generating Company is committed to operating plants with close attention to the environment and has developed a specific Environmental Mission Statement. This papermore » addresses some of the key environmental features at the Logan Generating Plant.« less

  8. Oligonucleotide treatment causes flax β-glucanase up-regulation via changes in gene-body methylation.

    PubMed

    Wojtasik, Wioleta; Kulma, Anna; Boba, Aleksandra; Szopa, Jan

    2014-10-05

    Nowadays, the challenge for biotechnology is to develop tools for agriculture and industry to provide plants characterized by productivity and quality that will satisfy the growing demand for different kinds of natural products. To meet the challenge, the generation and application of genetically modified plants is justified. However, the strong social resistance to genetically modified organisms and restrictive regulations in European Union countries necessitated the development of a new technology for new plant types generation which uses the knowledge resulting from analysis of genetically modified plants to generate favourably altered plants while omitting the introduction of heterologous genes to their genome. Four-year experiments led to the development of a technology inducing heritable epigenetic gene activation without transgenesis. The method comprises the induction of changes in methylation/demethylation of the endogenous gene by the plant's treatment with short oligodeoxynucleotides antisense to the coding region. In vitro cultured plants and F3 generation flax plants overproducing the β-1,3-glucanase gene (EMO-βGlu flax) were characterized by up-regulation of β-glucanase and chitinase genes, decreases in the methylation of CCGG sequences in the β-glucanase gene and in total DNA methylation and, more importantly, reasonable resistance against Fusarium infection. In addition, EMO-βGlu flax obtained by this technology showed similar features as those obtained by genetic engineering. To our best knowledge, this is the first report on plant gene activation by treatment with oligodeoxynucleotides homologous to the coding region of the gene. Apart from the evident effectiveness, the most important issue is that the EMO method allows generation of favourably altered plants, whose cultivation makes the plant producer independent from the complicated procedure of obtaining an agreement on GMO release into the environment and whose products might be more easily introduced to the global market.

  9. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium

    PubMed Central

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses. PMID:26973673

  10. Use of circulating-fluidized-bed combustors in compressed-air energy storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Patel, M.

    1990-07-01

    This report presents the result of a study conducted by Energy Storage and Power Consultants (ESPC), with the objective to develop and analyze compressed air energy storage (CAES) power plant concepts which utilize coal-fired circulating fluidized bed combustors (CFBC) for heating air during generating periods. The use of a coal-fired CFBC unit for indirect heating of the compressed air, in lieu of the current turbomachinery combustors, would eliminate the need for expensive premium fuels by a CAES facility. The CAES plant generation heat rate is approximately one-half of that for a conventional steam condensing power plant. Therefore, the required CFBCmore » heat generation capacity and capital costs would be lower per kW of power generation capacity. Three CAES/CFBC concepts were identified as the most promising, and were optimized using specifically developed computerized procedures. These concepts utilize various configurations of reheat turbomachinery trains specifically developed for CAES application as parts of the integrated CAES/CFBC plant concepts. The project team concluded that the optimized CAES/CFBC integrated plant concepts present a potentially attractive alternative to conventional steam generation power plants using CFBC or pulverized coal-fired boilers. A comparison of the results from the economic analysis performed on three concepts suggests that one of them (Concept 3) is the preferred concept. This concept has a two shaft turbomachinery train arrangement, and provides for load management functions by the compressor-electric motor train, and continuous base load operation of the turboexpander-electric generator train and the CFBC unit. 6 refs., 30 figs., 14 tabs.« less

  11. Review: Genetically modified plants for the promotion of human health.

    PubMed

    Yonekura-Sakakibara, Keiko; Saito, Kazuki

    2006-12-01

    Plants are attractive biological resources because of their ability to produce a huge variety of chemical compounds, and the familiarity of production in even the most rural settings. Genetic engineering gives plants additional characteristics and value for cultivation and post-harvest. Genetically modified (GM) plants of the "first generation" were conferred with traits beneficial to producers, whereas GM plants in subsequent "generations" are intended to provide beneficial traits for consumers. Golden Rice is a promising example of a GM plant in the second generation, and has overcome a number of obstacles for practical use. Furthermore, consumer-acceptable plants with health-promoting properties that are genetically modified using native genes are being developed. The emerging technology of metabolomics will also support the commercial realization of GM plants by providing comprehensive analyzes of plant biochemical components.

  12. Comparison of L-system applications towards plant modelling, music rendering and score generation using visual language programming

    NASA Astrophysics Data System (ADS)

    Lim, Chen Kim; Tan, Kian Lam; Yusran, Hazwanni; Suppramaniam, Vicknesh

    2017-10-01

    Visual language or visual representation has been used in the past few years in order to express the knowledge in graphic. One of the important graphical elements is fractal and L-Systems is a mathematic-based grammatical model for modelling cell development and plant topology. From the plant model, L-Systems can be interpreted as music sound and score. In this paper, LSound which is a Visual Language Programming (VLP) framework has been developed to model plant to music sound and generate music score and vice versa. The objectives of this research has three folds: (i) To expand the grammar dictionary of L-Systems music based on visual programming, (ii) To design and produce a user-friendly and icon based visual language framework typically for L-Systems musical score generation which helps the basic learners in musical field and (iii) To generate music score from plant models and vice versa using L-Systems method. This research undergoes a four phases methodology where the plant is first modelled, then the music is interpreted, followed by the output of music sound through MIDI and finally score is generated. LSound is technically compared to other existing applications in the aspects of the capability of modelling the plant, rendering the music and generating the sound. It has been found that LSound is a flexible framework in which the plant can be easily altered through arrow-based programming and the music score can be altered through the music symbols and notes. This work encourages non-experts to understand L-Systems and music hand-in-hand.

  13. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Deangelis; Rich Depuy; Debashis Dey

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale upmore » strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.« less

  14. [Growth and development of plants in a row of generations under the conditions of space flight (experiment Greenhouse-5)

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Sychev, V. N.; Derendiaeva, T. A.; Signalova, O. B.; Podol'skii, I. G.; Avdeev, S. V.; Bingheim, G. E.; Campbell, W. F. (Principal Investigator)

    2001-01-01

    Results of the experiment aimed at harvesting a second space generation of wheat var. Apogee in Mir greenhouse Svet (experiment GREENHOUSE-5) are presented. In space flight, germination rate of space seeds from the first crop made up 89% against 100% of the ground seeds. The full biological ripeness was observed in 20 plants grown from the ground seeds and one plant grown from the space seeds following 80- to 90-d vegetation. The plant of the second space generation was morphologically different neither from the species in the first space crop nor from the ground controls. To study the biological characteristics of Apogee seeds gathered in the first and second crops in spaceflight experiment GREENHOUSE-5, the seeds were planted on their return to the laboratory. Morphometric analysis showed that they were essentially similar to the controls. Hence, the space experiments in Mir greenhouse Svet performed during 1998-1999 gave proof that plants cultivated in microgravity can pass the ontogenetic cycle more than once. However, initial results of the investigations into growth and development of plants through several generations are still in-sufficient to speak of possible delayed effects of the spaceflight factors (microgravity, multicomponent radiation, harmful trace contaminants etc.).

  15. Spanish approach to research and development applied to steam generator tubes structural integrity and life management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozano, J.; Bollini, G.J.

    1997-02-01

    The operating experience acquired from certain Spanish Nuclear Power Plant steam generators shows that the tubes, which constitute the second barrier to release of fission products, are susceptible to mechanical damage and corrosion as a result of a variety of mechanisms, among them wastage, pitting, intergranular attack (IGA), stress-corrosion cracking (SCC), fatigue-induced cracking, fretting, erosion/corrosion, support plate denting, etc. These problems, which are common in many plants throughout the world, have required numerous investments by the plants (water treatment plants, replacement of secondary side materials such as condensers and heaters, etc.), have meant costs (operation, inspection and maintenance) and havemore » led to the unavailability of the affected units. In identifying and implementing all these preventive and corrective measures, the Spanish utilities have moved through three successive stages: in the initial stage, the main source of information and of proposals for solutions was the Plant Vendor, whose participation in this respect was based on his own Research and Development programs; subsequently, the Spanish utilities participated jointly in the EPRI Steam Generator Owners Group, collaborating in financing; finally, the Spanish utilities set up their own Steam Generator Research and Development program, while maintaining relations with EPRI programs and those of other countries through information interchange.« less

  16. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet.

    PubMed

    Hema, Ramanna; Vemanna, Ramu S; Sreeramulu, Shivakumar; Reddy, Chandrasekhara P; Senthil-Kumar, Muthappa; Udayakumar, Makarla

    2014-01-01

    Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet.

  17. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 4.Technology and Material Research in Fusion Power Plant Development

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi

    Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.

  18. Generation of Resistance to the Diphenyl Ether Herbicide, Oxyfluorfen, via Expression of the Bacillus subtilis Protoporphyrinogen Oxidase Gene in Transgenic Tobacco Plants.

    PubMed

    Choi, K W; Han, O; Lee, H J; Yun, Y C; Moon, Y H; Kim, M; Kuk, Y I; Han, S U; Guh, J O

    1998-01-01

    In an effort to develop transgenic plants resistant to diphenyl ether herbicides, we introduced the protoporphyrinogen oxidase (EC 1.3.3.4) gene of Bacillus subtilis into tobacco plants. The results from a Northern analysis and leaf disc assay indicate that the expression of the B. subtilis protoporphyrinogen oxidase gene under the cauliflower mosaic virus 35S promoter generated resistance to the diphenyl ether herbicide, oxyfluorfen, in transgenic tobacco plants.

  19. Feasibility study for biomass power plants in Thailand. Volume 1. Main report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachoengsao, Suphan Buri, and Pichit in Thailand. The Main Report is divided into the following sections: (1.0) Executive Study; (2.0) Project Objectives; (3.0) Review of Combustion Technology for Biomass Fueled Steam Generator Units; (4.0) Conceptual Design; (5.0) Plant Descriptions; (6.0) Plant Operations Staffing; (7.0) Project Schedule; (8.0) Project Cost Estimate; (9.0) Financial Analysis; Appendix - Financial Analysis.

  20. Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology

    PubMed Central

    Barba, Marina; Czosnek, Henryk; Hadidi, Ahmed

    2014-01-01

    Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology. PMID:24399207

  1. Geothermal development in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizagaque, R.F.; Tolentino, B.S.

    1982-06-01

    The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985,more » additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)« less

  2. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  4. Black and Garlic Mustard Plants Are Highly Suitable for the Development of Two Native Pierid Butterflies.

    PubMed

    Heinen, Robin; Gols, Rieta; Harvey, Jeffrey A

    2016-04-22

    In multivoltine insects that oviposit and develop on short-lived plants, different herbivore generations across a growing season often exploit different plant species. Here, we compare the development time, pupal mass, and survival of two closely related oligophagous herbivore species on two species of brassicaceous plants that grow in different habitats and which exhibit little overlap in temporal growth phenology. In central Europe, the green-veined white butterfly, Pieris napi L., is bivoltine, whereas the small cabbage white butterfly, Pieris rapae L., has two to three generations a year. Moreover, P. napi is primarily found in moist, open (e.g., meadow), and forest habitats, whereas P. rapae prefers drier, open habitats. Both butterflies were reared on Garlic mustard (Alliaria petiolata), which is shade-tolerant and grows early in spring in forest undergrowth, and Black mustard (Brassica nigra), which prefers open disturbed habitats and is most common in summer. Both host plant species differ in other traits such as secondary chemistry. We hypothesized that, owing to habitat preference, P. napi would develop equally well on both plants but that P. rapae would perform better on B. nigra The results provide partial support for this hypothesis, as both herbivores performed equally well on A. petiolata and B. nigra However, there were differences in these parameters that were species-specific: on both plants P. rapae developed faster and had larger pupae than P. napi Our results show that specialized herbivores can exploit different species of related plants that grow at different times of the season, enabling them to have multiple generations. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Elzie Lynn

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less

  6. Layouts of trigeneration plants for centralized power supply

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.

    2016-06-01

    One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration plants designed to supply electricity, heat, and cold to the users are shown and the principles of their operation are described. The article presents results of qualitative analysis of different engineering solutions applied to select one combination of power- and heat-generating equipment and thermotransformers or another.

  7. Hockey-stick steam generator for LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallinan, G.J.; Svedlund, P.E.

    1981-01-01

    This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test resultsmore » to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.« less

  8. Stable Expression of mtlD Gene Imparts Multiple Stress Tolerance in Finger Millet

    PubMed Central

    Hema, Ramanna; Vemanna, Ramu S.; Sreeramulu, Shivakumar; Reddy, Chandrasekhara P.; Senthil-Kumar, Muthappa; Udayakumar, Makarla

    2014-01-01

    Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet. PMID:24922513

  9. Class III HD-Zip activity coordinates leaf development in Physcomitrella patens.

    PubMed

    Yip, Hoichong Karen; Floyd, Sandra K; Sakakibara, Keiko; Bowman, John L

    2016-11-01

    Land plant bodies develop from meristems, groups of pluripotent stem cells, which may persist throughout the life of a plant or, alternatively, have a transitory existence. Early diverging land plants exhibit indeterminate (persistent) growth in their haploid gametophytic generation, whereas later diverging lineages exhibit indeterminate growth in their diploid sporophytic generation, raising the question of whether genetic machinery directing meristematic functions was co-opted between generations. Class III HD-Zip (C3HDZ) genes are required for the establishment and maintenance of shoot apical meristems in flowering plants. We demonstrate that in the moss Physcomitrella patens, C3HDZ genes are expressed in transitory meristems in both the gametophytic and sporophytic generations, but not in the persistent shoot meristem of the gametyphyte. Loss-of-function of P. patens C3HDZ was engineered using ectopic expression of miR166, an endogenous regulator of C3HDZ gene activity. Loss of C3HDZ gene function impaired the function of gametophytic transitory meristematic activity but did not compromise the functioning of the persistent shoot apical meristem during the gametophyte generation. These results argue against a wholesale co-option of meristematic gene regulatory networks from the gametophyte to the sporophyte during land plant evolution, instead suggesting that persistent meristems with a single apical cell in P. patens and persistent complex meristems in flowering plants are regulated by different genetic programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.

    PubMed

    Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio

    2012-01-01

    Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Mitigating Community Impacts of Energy Development: Some Examples for Coal and Nuclear Generating Plants in the United States.

    ERIC Educational Resources Information Center

    Peelle, Elizabeth

    The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…

  12. Renewable Energy Generation and Storage Models | Grid Modernization | NREL

    Science.gov Websites

    -the-loop testing Projects Generator, Plant, and Storage Modeling, Simulation, and Validation NREL power plants. Power Hardware-in-the-Loop Testing NREL researchers are developing software-and-hardware -combined simulation testing methods known as power hardware-in-the-loop testing. Power hardware in the loop

  13. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction.

    PubMed

    Schmidt, Anja; Schmid, Marc W; Grossniklaus, Ueli

    2015-01-15

    The life cycle of flowering plants alternates between two heteromorphic generations: a diploid sporophytic generation and a haploid gametophytic generation. During the development of the plant reproductive lineages - the germlines - typically, single sporophytic (somatic) cells in the flower become committed to undergo meiosis. The resulting spores subsequently develop into highly polarized and differentiated haploid gametophytes that harbour the gametes. Recent studies have provided insights into the genetic basis and regulatory programs underlying cell specification and the acquisition of reproductive fate during both sexual reproduction and asexual (apomictic) reproduction. As we review here, these recent advances emphasize the importance of transcriptional, translational and post-transcriptional regulation, and the role of epigenetic regulatory pathways and hormonal activity. © 2015. Published by The Company of Biologists Ltd.

  14. Second Generation Crop Yield Models Review

    NASA Technical Reports Server (NTRS)

    Hodges, T. (Principal Investigator)

    1982-01-01

    Second generation yield models, including crop growth simulation models and plant process models, may be suitable for large area crop yield forecasting in the yield model development project. Subjective and objective criteria for model selection are defined and models which might be selected are reviewed. Models may be selected to provide submodels as input to other models; for further development and testing; or for immediate testing as forecasting tools. A plant process model may range in complexity from several dozen submodels simulating (1) energy, carbohydrates, and minerals; (2) change in biomass of various organs; and (3) initiation and development of plant organs, to a few submodels simulating key physiological processes. The most complex models cannot be used directly in large area forecasting but may provide submodels which can be simplified for inclusion into simpler plant process models. Both published and unpublished models which may be used for development or testing are reviewed. Several other models, currently under development, may become available at a later date.

  15. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    PubMed

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  16. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies.

    PubMed

    Gopal, Murali; Gupta, Alka

    2016-01-01

    " No plant is an island too …" Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbors in different plant tissues, i.e., the 'plant microbiome,' form the holobiome which is now considered as unit of selection: 'the holobiont.' The 'plant microbiome' not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding. In this perspective, we propose bottom-up approach to co-propagate the co-evolved, the plant along with the target microbiome, through - (i) reciprocal soil transplantation method, or (ii) artificial ecosystem selection method of synthetic microbiome inocula, or (iii) by exploration of microRNA transfer method - for realizing this next-generation plant breeding approach. Our aim, thus, is to bring closer the information accrued through the advanced nucleotide sequencing and bioinformatics in conjunction with conventional culture-dependent isolation method for practical application in plant breeding and overall agriculture.

  17. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants.

    PubMed

    Taheri, Sima; Lee Abdullah, Thohirah; Yusop, Mohd Rafii; Hanafi, Mohamed Musa; Sahebi, Mahbod; Azizi, Parisa; Shamshiri, Redmond Ramin

    2018-02-13

    Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.

  18. Separating parental environment from seed size effects on next generation growth and development in Arabidopsis.

    PubMed

    Elwell, Angela L; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P; Brooks, Tessa L Durham

    2011-02-01

    Plant growth and development is profoundly influenced by environmental conditions that laboratory experimentation typically attempts to control. However, growth conditions are not uniform between or even within laboratories and the extent to which these differences influence plant growth and development is unknown. Experiments with wild-type Arabidopsis thaliana were designed to quantify the influences of parental environment and seed size on growth and development in the next generation. A single lot of seed was planted in six environmental chambers and grown to maturity. The seed produced was mechanically sieved into small and large size classes then grown in a common environment and subjected to a set of assays spanning the life cycle. Analysis of variance demonstrated that seed size effects were particularly significant early in development, affecting primary root growth and gravitropism, but also flowering time. Parental environment affected progeny germination time, flowering and weight of seed the progeny produced. In some cases, the parental environment affected the magnitude of (interacted with) the observed seed size effects. These data indicate that life history circumstances of the parental generation can affect growth and development throughout the life cycle of the next generation to an extent that should be considered when performing genetic studies. © 2010 Blackwell Publishing Ltd.

  19. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    NASA Astrophysics Data System (ADS)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  20. Multi-Megawatt Gas Turbine Power Systems for Lunar Colonies

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2006-01-01

    A concept for development of second generation 10 MWe prototype lunar power plant utilizing a gas cooled fission reactor supplying heated helium working fluid to two parallel 5 MWe closed cycle gas turbines is presented. Such a power system is expected to supply the energy needs for an initial lunar colony with a crew of up to 50 persons engaged in mining and manufacturing activities. System performance and mass details were generated by an author developed code (BRMAPS). The proposed pilot power plant can be a model for future plants of the same capacity that could be tied to an evolutionary lunar power grid.

  1. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations.

    PubMed

    Jiang, WenZhi; Yang, Bing; Weeks, Donald P

    2014-01-01

    The newly developed CRISPR/Cas9 system for targeted gene knockout or editing has recently been shown to function in plants in both transient expression systems as well as in primary T1 transgenic plants. However, stable transmission of genes modified by the Cas9/single guide RNA (sgRNA) system to the T2 generation and beyond has not been demonstrated. Here we provide extensive data demonstrating the efficiency of Cas9/sgRNA in causing modification of a chromosomally integrated target reporter gene during early development of transgenic Arabidopsis plants and inheritance of the modified gene in T2 and T3 progeny. Efficient conversion of a nonfunctional, out-of-frame GFP gene to a functional GFP gene was confirmed in T1 plants by the observation of green fluorescent signals in leaf tissues as well as the presence of mutagenized DNA sequences at the sgRNA target site within the GFP gene. All GFP-positive T1 transgenic plants and nearly all GFP-negative plants examined contained mutagenized GFP genes. Analyses of 42 individual T2 generation plants derived from 6 different T1 progenitor plants showed that 50% of T2 plants inherited a single T-DNA insert. The efficiency of the Cas9/sgRNA system and stable inheritance of edited genes point to the promise of this system for facile editing of plant genes.

  2. Review of PREPA Technical Requirements for Interconnecting Wind and Solar Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; Booth, Sarah

    2013-11-01

    The Puerto Rico Electric Power Authority developed the minimum technical requirements for interconnection of wind turbine generation and photovoltaic power plants. NREL has conducted a review of these requirements based on generic technical aspects and electrical characteristics of wind and photovoltaic power plants, and on existing requirements from other utilities (both U.S. and European).

  3. Summary Report On Design And Development Of High Temperature Gas-Cooled Power Pile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, C. R.

    1947-09-15

    This report presents a description of a design for an experimental nuclear power plant utilizing a high temperature gas-cooled power pile as the energy source. The plant consists of the pile, a heat exchanger or boiler, a conventional steam turbine generator and their associated auxiliaries. Helium gas under pressure transfers heat from the pile to the boiler which generates steam for driving the generator. The plant is rated at a normal output of 12,000 kilowatts of heat and an electrical output of 2400 kilowatts. Provision is made for operation up to 20,000 kilowatts of heat (4000 kilowatts of electrical output)more » in the event operation of the plants proves this possible.« less

  4. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    NASA Astrophysics Data System (ADS)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  5. Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis.

    PubMed

    Zheng, Weiwen; Bergman, Birgitta; Chen, Bin; Zheng, Siping; Guan, Xiong; Xiang, Guan; Rasmussen, Ulla

    2009-01-01

    The nitrogen-fixing symbiosis between cyanobacteria and the water fern Azolla microphylla is, in contrast to other cyanobacteria-plant symbioses, the only one of a perpetual nature. The cyanobacterium is vertically transmitted between the plant generations, via vegetative fragmentation of the host or sexually within megasporocarps. In the latter process, subsets of the cyanobacterial population living endophytically in the Azolla leaves function as inocula for the new plant generations. Using electron microscopy and immunogold-labeling, the fate of the cyanobacterium during colonization and development of the megasporocarp was revealed. On entering the indusium chamber of the megasporocarps as small-celled motile cyanobacterial filaments (hormogonia), these differentiated into large thick-walled akinetes (spores) in a synchronized manner. This process was accompanied by cytoplasmic reorganizations and the release of numerous membrane vesicles, most of which contained DNA, and the formation of a highly structured biofilm. Taken together the data revealed complex adaptations in the cyanobacterium during its transition between plant generations.

  6. Space Age Spuds

    NASA Technical Reports Server (NTRS)

    2000-01-01

    American Ag-Tech International, Ltd. developed a system called Quantum Tubers through the Wisconsin Center for Space Automation and Robotics (a NASA-sponsored Commercial Space Center). Using computerization and technologies originally intended for growing plants in space, the company developed a growth chamber that accelerates plant growth and is free of plant pathogens. The chamber is used to grow minitubers, which serve as nuclear seed stock for potatoes. Using lighting technology, temperature and humidity controls, and automation technology, the minituber can be generated in one closed facility with out much labor handling. This means they can be grown year round in extreme environments. The system eliminates the need for multiple generations of seed and eliminates exposure to pathogens, disease and pests. The Quantum Tubers system can produce 10-20 million tubers throughout the year, about equal to the world's supply of this generation seed stock.

  7. Growth and Development of Three-Dimensional Plant Form.

    PubMed

    Whitewoods, Christopher D; Coen, Enrico

    2017-09-11

    Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Gene transfer and expression in plants.

    PubMed

    Lorence, Argelia; Verpoorte, Robert

    2004-01-01

    Until recently, agriculture and plant breeding relied solely on the accumulated experience of generations of farmers and breeders that is, on sexual transfer of genes between plant species. However, recent developments in plant molecular biology and genomics now give us access to knowledge and understanding of plant genomes and the possibility of modifying them. This chapter presents an updated overview of the two most powerful technologies for transferring genetic material (DNA) into plants: Agrobacterium-mediated transformation and microparticle bombardment (biolistics). Some of the topics that are discussed in detail are the main variables controlling the transformation efficiency that can be achieved using each one of these approaches; the advantages and limitations of each methodology; transient versus stable transformation approaches; the potential of some in planta transformation systems; alternatives to developing transgenic plants without selection markers; the availability of diverse genetic tools generated as part of the genome sequencing of different plant species; transgene expression, gene silencing, and their association with regulatory elements; and prospects and ways to possibly overcome some transgene expression difficulties, in particular the use of matrix-attachment regions (MARs).

  9. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Emmanuel

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less

  10. Geothermal FIT Design: International Experience and U.S. Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickerson, W.; Gifford, J.; Grace, R.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less

  11. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination withmore » shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.« less

  12. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  13. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  14. Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

    NASA Astrophysics Data System (ADS)

    Luo, Keqin

    1999-11-01

    The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained. This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner. The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and accurately what is going on in each tank, and (iii) identify all WM opportunities through process improvement. This work has formed a solid foundation for the further development of powerful WM technologies for comprehensive WM in the following decade.

  15. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    NASA Astrophysics Data System (ADS)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  16. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  17. [Growth and development of plants in a sequence of generations under the conditions of space flight (experiment Greenhouse-3)

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Sychev, V. N.; Signalova, O. B.; Derendiaeva, T. A.; Podol'skii, I. G.; Masgreiv, M. E.; Bingheim, G. E.; Musgrave, M. E. (Principal Investigator); Campbell, W. F. (Principal Investigator)

    2001-01-01

    The purpose was to study characteristic features of growth and development of several plant generations in space flight in experiment GREENHOUSE-3 as a part of the Russian-US space research program MIR/NASA in 1997. The experiment consisted of cultivation of Brassica rapa L. in board greenhouse Svet. Two vegetative cycles were fully completed and the third vegetation was terminated on day 13 on the phase of budding. The total duration of the space experiment was 122 days, i.e. same as in the ground controls. In the experiment with Brassica rapa L. viable seeds produced by the first crop were planted in space flight and yielded next crop. Crops raised from the ground and space seeds were found to differ in height and number of buds. Both parameters were lowered in the plants grown from the space seeds. The prime course for smaller size and reduced organogenic potential of plantTs reproductive system seems to be a less content of nutrients in seeds that had matured in the space flight. Experiment GREENHOUSE-3 demonstrated principle feasibility of plant reproduction in space greenhouse from seeds developed in microgravity.

  18. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  19. Retention of the ability to synthesize HIV-1 and HBV antigens in generations of tomato plants transgenic for the TBI-HBS gene

    USDA-ARS?s Scientific Manuscript database

    In development of new types of edible vaccines on the basis of transgenic plants, the ability of the latter to retain the synthesis of foreign antibodies in a series of generations is of great importance. For this purpose, the goal of this study was to investigate the ability of transgenic tomato pl...

  20. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.

    PubMed

    Jansen, Mickel L A; Bracher, Jasmine M; Papapetridis, Ioannis; Verhoeven, Maarten D; de Bruijn, Hans; de Waal, Paul P; van Maris, Antonius J A; Klaassen, Paul; Pronk, Jack T

    2017-08-01

    The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. © FEMS 2017.

  1. Plant Structure & Growth. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    What if you could build a machine that could make it's own fuel, adapt to changing conditions, and generate priceless products like air and water? Over millions of years, vascular plants have developed roots, stems and leaves that work together to perform these feats, as well as provide energy for every living thing on Earth! In Plant Structure…

  2. From genomics to functional markers in the era of next-generation sequencing.

    PubMed

    Salgotra, R K; Gupta, B B; Stewart, C N

    2014-03-01

    The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.

  3. JEDI: Jobs and Economic Development Impacts Model Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Hendrickson; S.Tegen

    2009-12-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local(usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels,concentrating solar power, coal, and natural gas power plants.

  4. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture

    PubMed Central

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-01-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm. PMID:25653418

  5. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    PubMed Central

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  6. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  7. Use of energy filtering transmission electron microscopy for image generation and element analysis in plant organisms.

    PubMed

    Lütz-Meindl, Ursula

    2007-01-01

    Energy filtering TEM (EFTEM) with modern spectrometers and software offers new possibilities for element analysis and image generation in plant cells. In the present review, applications of EFTEM in plant physiology, such as identification of light elements and ion transport, analyses of natural cell incrustations, determination of element exchange between fungi and rootlets during mycorrhiza development, heavy metal storage and detoxification, and employment in plant physiological experiments are summarized. In addition, it is demonstrated that EFTEM can be successfully used in more practical approaches, for example, in phytoremediation, food and wood industry, and agriculture. Preparation methods for plant material as prerequisites for EFTEM analysis are compared with respect to their suitability and technical problems are discussed.

  8. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive-based water and nutrient support systems and techniques, which can be used to minimize demands on power, mass, and operational complexity in space flight studies. This effort has direct application to the development of next-generation space flight plant chambers such as the Plant Research Unit (PRU). Work was also directed at the development of in-flight plant preservation techniques and protocols consistent with the interest in applying recent developments in gene chip micro array technologies. Cultivation technologies and protocols were evaluated in a 55 day space flight plant growth study, conducted on the ISS, mission 9A (10/7/02 - 12/7/02).

  9. Water withdrawal and consumption reduction analysis for electrical energy generation system

    NASA Astrophysics Data System (ADS)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  10. Combined-cycle plant built in record time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    This article reports that this low-cost cogeneration plant meets residential community`s environmental concerns with noise minimization, emissions control, and zero wastewater discharge. Supplying electricity to the local utility and steam to two hosts, the Auburndale cogeneration facility embodies the ``reference plant`` design approach developed by Westinghouse Power Generation (WPG), Orlando, Fla. With this approach customers meet their particular needs by choosing from a standard package of plant equipment and design options. Main goals of the concept are reduced construction time efficient and reliable power generation, minimal operating staff, and low cost. WPG built the plant on a turnkey basis formore » Auburndale Power Partners Limited Partnership (APP). APP is a partially owned subsidiary of Mission Energy, a California-based international developer and operator of independent-power facilities. The cogeneration facility supplies 150 MW of electric power to Florida Power Corp and exports 120,000 lb/hr of steam to Florida Distillers Co and Coca-Cola Foods.« less

  11. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  12. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  13. District heating and cooling systems for communities through power plant retrofit and distribution networks. Phase 1: identificaion and assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-09-01

    Appendix A, Utility Plant Characteristics, contains information describing the characteristics of seven utility plants that were considered during the final site selection process. The plants are: Valley Electric Generating Plant, downtown Milwaukee; Manitowoc Electric Generating Plant, downtown Manitowoc; Blount Street Electric Generating Plant, downtown Madison; Pulliam Electric Generating Plant, downtown Green Bay; Edgewater Electric Generating Plant, downtown Sheboygan; Rock River Electric Generating Plant, near Janesville and Beloit; and Black Hawk Electric Generating Plant, downtown Beloit. Additional appendices are: Future Loads; hvac Inventory; Load Calculations; Factors to Induce Potential Users; Turbine Retrofit/Distribution System Data; and Detailed Economic Analysis Results/Data.

  14. The development of a cisgenic apple plant.

    PubMed

    Vanblaere, Thalia; Szankowski, Iris; Schaart, Jan; Schouten, Henk; Flachowsky, Henryk; Broggini, Giovanni A L; Gessler, Cesare

    2011-07-20

    Cisgenesis represents a step toward a new generation of GM crops. The lack of selectable genes (e.g. antibiotic or herbicide resistance) in the final product and the fact that the inserted gene(s) derive from organisms sexually compatible with the target crop should rise less environmental concerns and increase consumer's acceptance. Here we report the generation of a cisgenic apple plant by inserting the endogenous apple scab resistance gene HcrVf2 under the control of its own regulatory sequences into the scab susceptible apple cultivar Gala. A previously developed method based on Agrobacterium-mediated transformation combined with a positive and negative selection system and a chemically inducible recombination machinery allowed the generation of apple cv. Gala carrying the scab resistance gene HcrVf2 under its native regulatory sequences and no foreign genes. Three cisgenic lines were chosen for detailed investigation and were shown to carry a single T-DNA insertion and express the target gene HcrVf2. This is the first report of the generation of a true cisgenic plant. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Within- and trans-generational plasticity: seed germination responses to light quantity and quality.

    PubMed

    Vayda, Katherine; Donohue, Kathleen; Auge, Gabriela Alejandra

    2018-06-01

    Plants respond not only to the environment in which they find themselves, but also to that of their parents. The combination of within- and trans-generational phenotypic plasticity regulates plant development. Plants use light as source of energy and also as a cue of competitive conditions, since the quality of light (ratio of red to far-red light, R:FR) indicates the presence of neighbouring plants. Light regulates many aspects of plant development, including seed germination. To understand how seeds integrate environmental cues experienced at different times, we quantified germination responses to changes in light quantity (irradiance) and quality (R:FR) experienced during seed maturation and seed imbibition in Arabidopsis thaliana genotypes that differ in their innate dormancy levels and after treatments that break or reinduce dormancy. In two of the genotypes tested, reduced irradiance as well as reduced R:FR during seed maturation induced higher germination; thus, the responses to light quantity and R:FR reinforced each other. In contrast, in a third genotype, reduced irradiance during seed maturation induced progeny germination, but response to reduced R:FR was in the opposite direction, leading to a very weak or no overall effect of a simulated canopy experienced by the mother plant. During seed imbibition, reduced irradiance and reduced R:FR caused lower germination in all genotypes. Therefore, responses to light experienced at different times (maturation vs. imbibition) can have opposite effects. In summary, seeds responded both to light resources (irradiance) and to cues of competition (R:FR), and trans-generational plasticity to light frequently opposed and was stronger than within-generation plasticity.

  16. Nuclear power generation and fuel cycle report 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  17. An Intelligent Crop Planning Tool for Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Laura O.; Leon, Jorge

    1996-01-01

    This paper describes a crop planning tool developed for the Controlled Ecological Life Support Systems (CELSS) project which is in the research phases at various NASA facilities. The Crop Planning Tool was developed to assist in the understanding of the long term applications of a CELSS environment. The tool consists of a crop schedule generator as well as a crop schedule simulator. The importance of crop planning tools such as the one developed is discussed. The simulator is outlined in detail while the schedule generator is touched upon briefly. The simulator consists of data inputs, plant and human models, and various other CELSS activity models such as food consumption and waste regeneration. The program inputs such as crew data and crop states are discussed. References are included for all nominal parameters used. Activities including harvesting, planting, plant respiration, and human respiration are discussed using mathematical models. Plans provided to the simulator by the plan generator are evaluated for their 'fitness' to the CELSS environment with an objective function based upon daily reservoir levels. Sample runs of the Crop Planning Tool and future needs for the tool are detailed.

  18. An Approach Towards Structure Based Antimicrobial Peptide Design for Use in Development of Transgenic Plants: A Strategy for Plant Disease Management.

    PubMed

    Ilyas, Humaira; Datta, Aritreyee; Bhunia, Anirban

    2017-01-01

    Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are ubiquitous and vital components of innate defense response that present themselves as potential candidates for drug design, and aim to control plant and animal diseases. Though their application for plant disease management has long been studied with natural AMPs, cytotoxicity and stability related shortcomings for the development of transgenic plants limit their usage. Newer technologies like molecular modelling, NMR spectroscopy and combinatorial chemistry allow screening for potent candidates and provide new avenues for the generation of rationally designed synthetic AMPs with multiple biological functions. Such AMPs can be used for the control of plant diseases that lead to huge yield losses of agriculturally important crop plants, via generation of transgenic plants. Such approaches have gained significant attention in the past decade as a consequence of increasing antibiotic resistance amongst plant pathogens, and the shortcomings of existing strategies that include environmental contamination and human/animal health hazards amongst others. This review summarizes the recent trends and approaches used for employing AMPs, emphasizing on designed/modified ones, and their applications toward agriculture and food technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Typical calculation and analysis of carbon emissions in thermal power plants

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-jie; Zhao, Jian-gang; Zhang, Gang

    2018-03-01

    On December 19, 2017, the national development and reform commission issued the national carbon emissions trading market construction plan (power generation industry), which officially launched the construction process of the carbon emissions trading market. The plan promotes a phased advance in carbon market construction, taking the power industry with a large carbon footprint as a breakthrough, so it is extremely urgent for power generation plants to master their carbon emissions. Taking a coal power plant as an example, the paper introduces the calculation process of carbon emissions, and comes to the fuel activity level, fuel emissions factor and carbon emissions data of the power plant. Power plants can master their carbon emissions according to this paper, increase knowledge in the field of carbon reserves, and make the plant be familiar with calculation method based on the power industry carbon emissions data, which can help power plants positioning accurately in the upcoming carbon emissions trading market.

  20. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less

  1. A Summary Description of a Computer Program Concept for the Design and Simulation of Solar Pond Electric Power Generation Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.

  2. Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.R.

    This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.

  3. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    NASA Astrophysics Data System (ADS)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  4. De novo generation of plant centromeres at tandem repeats.

    PubMed

    Teo, Chee How; Lermontova, Inna; Houben, Andreas; Mette, Michael Florian; Schubert, Ingo

    2013-06-01

    Artificial minichromosomes are highly desirable tools for basic research, breeding, and biotechnology purposes. We present an option to generate plant artificial minichromosomes via de novo engineering of plant centromeres in Arabidopsis thaliana by targeting kinetochore proteins to tandem repeat arrays at non-centromeric positions. We employed the bacterial lactose repressor/lactose operator system to guide derivatives of the centromeric histone H3 variant cenH3 to LacO operator sequences. Tethering of cenH3 to non-centromeric loci led to de novo assembly of kinetochore proteins and to dicentric carrier chromosomes which potentially form anaphase bridges. This approach will be further developed and may contribute to generating minichromosomes from preselected genomic regions, potentially even in a diploid background.

  5. Essential Roles of Local Auxin Biosynthesis in Plant Development and in Adaptation to Environmental Changes.

    PubMed

    Zhao, Yunde

    2018-04-29

    It has been a dominant dogma in plant biology that the self-organizing polar auxin transport system is necessary and sufficient to generate auxin maxima and minima that are essential for almost all aspects of plant growth and development. However, in the past few years, it has become clear that local auxin biosynthesis is required for a suite of developmental processes, including embryogenesis, endosperm development, root development, and floral initiation and patterning. Moreover, it was discovered that local auxin biosynthesis maintains optimal plant growth in response to environmental signals, including light, temperature, pathogens, and toxic metals. In this article, I discuss the recent progress in auxin biosynthesis research and the paradigm shift in recognizing the important roles of local auxin biosynthesis in plant biology.

  6. An Overview of Signaling Regulons During Cold Stress Tolerance in Plants

    PubMed Central

    Pareek, Amit; Khurana, Ashima; Sharma, Arun K.; Kumar, Rahul

    2017-01-01

    Plants, being sessile organisms, constantly withstand environmental fluctuations, including low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physiological and developmental levels to plants growing in tropical or sub-tropical regions, plants from temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The conventional breeding methods and marker assisted selection have helped in developing plant with improved cold tolerance, however, the development of freezing tolerant plants through cold acclimation remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how low temperature sensing strategies and corresponding signal transduction act during cold acclimation process. Herein, we synthesize the available information on the molecular mechanisms underlying cold sensing and signaling with an aim that the summarized literature will help develop efficient strategies to obtain cold tolerant plants. PMID:29204079

  7. Generic process design and control strategies used to develop a dynamic model and training software for an IGCC plant with CO2 sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provost, G.; Stone, H.; McClintock, M.

    2008-01-01

    To meet the growing demand for education and experience with the analysis, operation, and control of commercial-scale Integrated Gasification Combined Cycle (IGCC) plants, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is leading a collaborative R&D project with participants from government, academia, and industry. One of the goals of this project is to develop a generic, full-scope, real-time generic IGCC dynamic plant simulator for use in establishing a world-class research and training center, as well as to promote and demonstrate the technology to power industry personnel. The NETL IGCC dynamic plant simulator will combine for the first timemore » a process/gasification simulator and a power/combined-cycle simulator together in a single dynamic simulation framework for use in training applications as well as engineering studies. As envisioned, the simulator will have the following features and capabilities: A high-fidelity, real-time, dynamic model of process-side (gasification and gas cleaning with CO2 capture) and power-block-side (combined cycle) for a generic IGCC plant fueled by coal and/or petroleum coke Full-scope training simulator capabilities including startup, shutdown, load following and shedding, response to fuel and ambient condition variations, control strategy analysis (turbine vs. gasifier lead, etc.), representative malfunctions/trips, alarms, scenarios, trending, snapshots, data historian, and trainee performance monitoring The ability to enhance and modify the plant model to facilitate studies of changes in plant configuration and equipment and to support future R&D efforts To support this effort, process descriptions and control strategies were developed for key sections of the plant as part of the detailed functional specification, which will form the basis of the simulator development. These plant sections include: Slurry Preparation Air Separation Unit Gasifiers Syngas Scrubbers Shift Reactors Gas Cooling, Medium Pressure (MP) and Low Pressure (LP) Steam Generation, and Knockout Sour Water Stripper Mercury Removal Selexol™ Acid Gas Removal System CO2 Compression Syngas Reheat and Expansion Claus Plant Hydrogenation Reactor and Gas Cooler Combustion Turbine (CT)-Generator Assemblies Heat Recovery Steam Generators (HRSGs) and Steam Turbine (ST)-Generator In this paper, process descriptions, control strategies, and Process & Instrumentation Diagram (P&ID) drawings for key sections of the generic IGCC plant are presented, along with discussions of some of the operating procedures and representative faults that the simulator will cover. Some of the intended future applications for the simulator are discussed, including plant operation and control demonstrations as well as education and training services such as IGCC familiarization courses.« less

  8. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  9. Energy Diversity and Development in Kenya

    DTIC Science & Technology

    2013-01-01

    of the East African Community, and the viability of further political and economic integration, will depend on the development of a stronger...23 Hydropower currently generates 57 percent of national electricity.24 There are seven hydro- electric generating plants set along two major...begun to support the generation and efficient distribution of energy to rural areas. Where this has been done, there has been a positive economic

  10. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  11. Development of an ergonomics device for maintenance of hydraulic generators of Tucuruí hydropower plant.

    PubMed

    Batista, I C; Gomes, G J C; Teles, C S; Oliveira, P F; Santos, R M; Sassi, A C; Sá, B; V, B; Pardauil, A A

    2012-01-01

    This paper aims to present an ergonomic device to assist in the maintenance of the units of Tucuruí Hydropower Plant. The development of this ergonomic device made possible to reduce maintenance time, reduce losses caused by billing, improve performance and reduce the physical strain for labors during the execution of services.

  12. Thermal and nuclear power plants: Competitiveness in the new economic conditions

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2017-05-01

    In recent years, the conditions of development and functionality of power generating assets have notably changed. Considering the decline in the price of hydrocarbon fuel on the global market, the efficiency of combined-cycle gas-turbine plants in the European part of Russia is growing in comparison with nuclear power plants. Capital investments in the construction of nuclear power plants have also increased as a result of stiffening the safety requirements. In view of this, there has been an increasing interest in exploration of effective lines of development of generating assets in the European part of Russia, taking consideration of the conditions that may arise in the nearest long-term perspective. In particular, the assessment of comparative efficiency of developing combined-cycle gas-turbine plants (operating on natural gas) in the European part of Russia and nuclear power plants is of academic and practical interest. In this article, we analyze the trends of changes in the regional price of hydrocarbon fuel. Using the prognosis of net-weighted import prices of natural gas in Western European countries—prepared by the International Energy Agency (IEA) and the Energy Research Institute of the Russian Academy of Sciences (ERIRAS)—the prices of natural gas in the European part of Russia equilibrated with import prices of this heat carrier in Western Europe were determined. The methodology of determining the comparative efficiency of combined-cycle gas turbine plants (CCGT) and nuclear power plants (NPP) were described; based on this, the possible development of basic CCGTs and NPPs with regard to the European part of Russia for various scenarios in the prognosis of prices of gaseous fuel in a broad range of change of specific investments in the given generating sources were assessed, and the extents of their comparative efficiency were shown. It was proven that, at specific investments in the construction of new NPPs in the amount of 5000 dollars/kW, nuclear power plants in the European part of Russia become less efficient as compared to CCGTs operating on natural gas.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, J.O.

    This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world's first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC's CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodson, J.O.

    This is the first of three volumes which document the historical development of the first US compressed-air energy storage (CAES) Power-generation facility. Volume 1 is a background report and presents a chronicle of the development of the CAES facility from the early interest in CAES until inception of engineering/construction on August 11, 1988. The 110 MW - 26 hr CAES plant is owned and operated by Alabama Electric Cooperative, Inc. (AEC) of Andalusia, Alabama. The plant is the first CAES plant in the United States and the world`s first CAES facility incorporating a recuperator to improve efficiency. The plant suppliesmore » competitively priced peaking power to the AEC owner members. The economics of CAES-produced power is attractive because the energy-intensive air-compression mode is powered by relatively inexpensive base-load power external to the CAES plant. The compressed-air energy is stored underground until needed, and during the power-production mode, the only fuel required is that to heat the compressed air to expander-inlet temperature. The project development for AEC`s CAES plant involved much planning and preliminary design work. Specifically, this included load and generation-planning studies, power-supply selections, conceptual designs, project administration, air-storage cavern and turbomachinery specifications and design, contract requirements, environmental and licensing issues, and construction planning.« less

  15. A study on economic power dispatch grid connected PV power plant in educational institutes

    NASA Astrophysics Data System (ADS)

    Singh, Kuldip; Kumar, M. Narendra; Mishra, Satyasis

    2018-04-01

    India has main concerns on environment and escalation of fuel prices with respect to diminution of fossil fuel reserves and the major focus on renewable Energy sources for power generation to fulfill the present and future energy demand. Installation of PV power plants in the Educational Institutions has grown up drastically throughout India. More PV power plant are integrated with load and grid through net metering. Therefore, this paper is an analysis of the 75kWp PV plant at chosen buses, considering the need of minimum demand from the grid. The case study is carried out for different generation level throughout the day and year w.r.t load and climate changes, load sharing on grid. The economic dispatch model developed for PV plant integrated with Grid.

  16. Situation-Assessment And Decision-Aid Production-Rule Analysis System For Nuclear Plant Monitoring And Emergency Preparedness

    NASA Astrophysics Data System (ADS)

    Gvillo, D.; Ragheb, M.; Parker, M.; Swartz, S.

    1987-05-01

    A Production-Rule Analysis System is developed for Nuclear Plant Monitoring. The signals generated by the Zion-1 Plant are considered. A Situation-Assessment and Decision-Aid capability is provided for monitoring the integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems. A total of 41 signals are currently fed as facts to an Inference Engine functioning in the backward-chaining mode and built along the same structure as the E-Mycin system. The Goal-Tree constituting the Knowledge Base was generated using a representation in the form of Fault Trees deduced from plant procedures information. The system is constructed in support of the Data Analysis and Emergency Preparedness tasks at the Illinois Radiological Emergency Assessment Center (REAC).

  17. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  18. Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)

    ScienceCinema

    Somerville, Chris [Univ. of California, Berkeley, CA (United States)

    2018-05-23

    Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.

  19. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities

    PubMed Central

    Al-Zahrani, Ateeq Ahmed

    2018-01-01

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd PMID:29774137

  20. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities.

    PubMed

    Al-Zahrani, Ateeq Ahmed

    2018-01-30

    Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd.

  1. Energy Storage Opportunities and Capabilities in a Type 3 Wind Turbine Generator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy

    Wind power plants and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both governor and/or inertial response) to the grid by a control action; thus, the reduction of available online inertia as conventional power plants are retired can be compensated by designing renewable power plant controls to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation and control strategy chosen. The cost of energy storage is expected to drop over time, and global research activities on energy storage are very active, funded bothmore » by the private industry and governments. Different industry sectors (e.g., transportation, energy) are the major drivers of the recent storage research and development. This work investigates the opportunities and capabilities of deploying energy storage in renewable power plants. In particular, we focus on wind power plants with doubly-fed induction generators, or Type 3 wind turbine generator (WTGs). We find that the total output power of a system with Type 3 WTGs with energy storage can deliver a power boost during inertial response that is up to 45% higher than one without energy storage without affecting the torque limit, thus enabling an effective delivery of ancillary services to the grid.« less

  2. Advances in plant gene-targeted and functional markers: a review

    PubMed Central

    2013-01-01

    Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the potential to generate phenotypically linked functional markers, especially when fingerprints are generated from the transcribed or expressed region of the genome. It is to be expected that these recently developed techniques will generate larger datasets, but their shortcomings should also be acknowledged and carefully investigated. PMID:23406322

  3. Energy Economics of Farm Biogas in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillay, Pragasen; Grimberg, Stefan; Powers, Susan E

    Anaerobic digestion of farm and dairy waste has been shown to be capital intensive. One way to improve digester economics is to co-digest high-energy substrates together with the dairy manure. Cheese whey for example represents a high-energy substrate that is generated during cheese manufacture. There are currently no quantitative tools available that predict performance of co-digestion farm systems. The goal of this project was to develop a mathematical tool that would (1) predict the impact of co-digestion and (2) determine the best use of the generated biogas for a cheese manufacturing plant. Two models were developed that separately could bemore » used to meet both goals of the project. Given current pricing structures of the most economical use of the generated biogas at the cheese manufacturing plant was as a replacement of fuel oil to generate heat. The developed digester model accurately predicted the performance of 26 farm digesters operating in the North Eastern U.S.« less

  4. Disturbances in production of progesterone and their implications in plant studies.

    PubMed

    Janeczko, Anna; Oklestkova, Jana; Novak, Ondrej; Śniegowska-Świerk, Katarzyna; Snaczke, Zuzanna; Pociecha, Ewa

    2015-04-01

    Progesterone is a mammalian hormone that has also been discovered in plants but its physiological function in plants is not explained. Experiments using inhibitors of progesterone synthesis and binding would be useful in studies on the significance of this compound in plants. Until now, trilostane and mifepristone have been used in medical sciences as progesterone biosynthesis and binding inhibitors, respectively. We tested these synthetic steroids for the first time in plants and found that they reduced the content of progesterone in wheat. The aim of further experiments was to answer whether the potential disturbances in the production/binding of progesterone, influence resistance to environmental stress (drought) and the development of wheat. Inhibitors and progesterone were applied to plants via roots in a concentration of 0.25-0.5mg/l water. Both inhibitors lowered the activity of CO2 binding enzyme (Rubisco) in wheat exposed to drought stress and trilostane additionally lowered the chlorophyll content. However, trilostane-treated plants were rescued by treatment with exogenous progesterone. The inhibitors also modulated the development of winter wheat, which indicated the significance of steroid regulators and their receptors in this process. In this study, in addition to progesterone and its inhibitors, brassinosteroid (24-epibrassinolide) and an inhibitor of biosynthesis of brassinosteroids were also applied. Mifepristone inhibited the generative development of wheat (like 24-epibrassinolide), while trilostane (like progesterone and an inhibitor of biosynthesis of brassinosteroids) stimulated the development. We propose a model of steroid-induced regulation of the development of winter wheat, where brassinosteroids act as inhibitors of generative development, while progesterone or other pregnane derivatives act as stimulators. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Approaches to Plant Hydrogen and Oxygen Isoscapes Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Jason B.; Kreuzer-Martin, Helen W.; Ehleringer, James

    2009-12-01

    Plant hydrogen and oxygen isoscapes have been utilized to address important and somewhat disparate research goals. The isotopic composition of leaf water affects the isotopic composition of atmospheric CO2 and O2 and is a logical starting point for understanding the isotopic composition of plant organic compounds since photosynthesis occurs in the leaf water environment. Leaf water isoscapes have been produced largely as part of efforts to understand atmospheric gas isotopic composition. The isotopic composition of plant organic matter has also been targeted for its potential to serve as a proxy for past environmental conditions. Spatially distributed sampling and modeling ofmore » modern plant H & O isoscapes can improve our understanding of the controls of the isotope ratios of compounds such as cellulose or n-alkanes from plants and therefore their utility for paleoreconstructions. Spatially varying plant hydrogen and oxygen isotopes have promise for yielding geographic origin information for a variety of plant products, including objects of criminal forensic interest or food products. The future has rich opportunities for the continued development of mechanistic models, methodologies for the generation of hydrogen and oxygen isoscapes, and cross-disciplinary interactions as these tools for understanding are developed, shared, and utilized to answer large-scale questions.« less

  6. Compost in plant microbial fuel cell for bioelectricity generation.

    PubMed

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Optimization of plant mineral nutrition under growth-limiting conditions in a lunar greenhouse

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Voznyuk, T.; Kovalchuk, M.; Rogutskyy, I.; Lukashov, D.; Mytrokhyn, O.; Mashkovska, S.; Foing, B.; Kozyrovska, N.

    It may be assumed that the first plants in a lunar base will play a main role in forming a protosoil of acceptable fertility needed for purposively growing second generation plants like wheat, rice, tulips, etc. The residues of the first-generation plants could be composted and transformed by microorganisms into a soil-like substrate within a loop of regenerative life support system. The lunar regolith may be used as a substrate for plant growth at the very beginning of a mission to reduce its cost. The use of microbial communities for priming plants will allow one to facilitate adaption to stressful conditions and to support the plant development under growth limiting conditions. Well-defined plant-associated bacteria were used for growing three cultivars to colonize French marigold (Tagetes patula L.) in anorthosite, a substrate of low bioavailability, analogous to a lunar rock. The consortium was composed of plant growth promoting rhizobacteria and the bacterium Paenibacillus sp. IMBG156 which stimulated seed germination, better plant development, and finally, the flowering of inoculated tagetes. In contrast, control plants grew poorly in the anorthosite and practically did not survive until flowering. Analysis of bacterial community composition showed that all species colonized plant roots, however, the rate of colonization depended on the allelopatic characteristics of marigold varieties. Bacteria of consortium were able to liberate some elements (Ca, Fe, Mn, Si, Ni, Cu, Zn) from substrate anorthosite. Plant colonization by mixed culture of bacterial strains resulted in the increase of accumulation of K, Mg, Mn by the plant and in the lowering of the level of toxic metal accumulation. It was assumed that a rationally assembled consortium of bacterial strains promoted germination of marygold seeds and supported the plant development under growth limiting conditions by means of bioleaching plant essential nutritional elements and by protecting the plant against hyperaccumulation of some toxic metals.

  8. Study on key technologies of optimization of big data for thermal power plant performance

    NASA Astrophysics Data System (ADS)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  9. [Research progress on mutation by spaceflight in medicinal plants breeding].

    PubMed

    Yan, Shuo; Gao, Wenyuan; Lu, Fuping; Zhao, Runhuai

    2010-02-01

    Space breeding in medicinal plants is special characteristics in China. Compared with other plants, in spite of a relatively small number, Medicinal plants have more obvious characteristics and advantages. Research on medicinal plants has also been carried into all aspects, such as biological traits, physiology and biochemistry, genomics, as well as differences in chemical composition, and chemical composition analysis is also involved. However, compared with other plants, especially crops and vegetables, biological research is an obvious deficiency, that is mainly reflected in the insufficient genetics and breeding researches, the stability of genetic traits from generation to generation were not followed up and in-depth study in breeding areas was not carried out. If medicinal plants resources from space with the genetic stability good quality were selected, it would address the problem of lack of resources and ease the pressure on wild resources of medicinal plants. It would at the same time play an important role in promoting the development of medicinal botany space breeding and the implementation of modernization of traditional Chinese medicine.

  10. Why Assembling Plant Genome Sequences Is So Challenging

    PubMed Central

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy's 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less

  12. The 'dark matter' in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin.

    PubMed

    Jiang, Jiming

    2015-04-01

    Sequencing of complete plant genomes has become increasingly more routine since the advent of the next-generation sequencing technology. Identification and annotation of large amounts of noncoding but functional DNA sequences, including cis-regulatory DNA elements (CREs), have become a new frontier in plant genome research. Genomic regions containing active CREs bound to regulatory proteins are hypersensitive to DNase I digestion and are called DNase I hypersensitive sites (DHSs). Several recent DHS studies in plants illustrate that DHS datasets produced by DNase I digestion followed by next-generation sequencing (DNase-seq) are highly valuable for the identification and characterization of CREs associated with plant development and responses to environmental cues. DHS-based genomic profiling has opened a door to identify and annotate the 'dark matter' in sequenced plant genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Light emitting diodes as a plant lighting source

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Tennessen, D. J.; Morrow, R. C.; Tibbitts, T. W.

    1994-01-01

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. A number of LED characteristics are of considerable importance in selecting a light source for plant lighting in a controlled environment facility. Of particular importance is the characteristic that light is generated by an LED at a rate far greater than the corresponding thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation law. This is in sharp contrast to other light sources, such as an incandescent or high intensity discharge lamp. A plant lighting system for controlled environments must provide plants with an adequate flux of photosynthetically active radiation, plus providing photons in the spectral regions that are involved in the photomorphogenic and phototropic responses that result in normal plant growth and development. Use of light sources that emit photons over a broad spectral range generally meet these two lighting requirements. Since the LED's emit over specific spectral regions, they must be carefully selected so that the levels of photsynthetically active and photomorphogenic and phototropic radiation meet these plant requirements.

  14. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration.

    PubMed

    Gayen, Srimonta; Mandal, Chandi Charan; Samanta, Milan Kumar; Dey, Avishek; Sen, Soumitra Kumar

    2016-04-01

    Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW.

  15. Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less

  16. Love is a battlefield: programmed cell death during fertilization.

    PubMed

    Heydlauff, Juliane; Groß-Hardt, Rita

    2014-03-01

    Plant development and growth is sustained by the constant generation of tremendous amounts of cells, which become integrated into various types of tissues and organs. What is all too often overlooked is that this thriving life also requires the targeted degeneration of selected cells, which undergo cell death according to genetically encoded programmes or environmental stimuli. The side-by-side existence of generation and demise is particularly evident in the haploid phase of the flowering plants cycle. Here, the lifespan of terminally differentiated accessory cells contrasts with that of germ cells, which by definition live on to form the next generation. In fact, with research in recent years it is becoming increasingly clear that the gametophytes of flowering plants constitute an attractive and powerful system for investigating the molecular mechanisms underlying selective cell death.

  17. The Italian experience on T/H best estimate codes: Achievements and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemberti, A.; D`Auria, F.; Fiorino, E.

    1997-07-01

    Themalhydraulic system codes are complex tools developed to simulate the power plants behavior during off-normal conditions. Among the objectives of the code calculations the evaluation of safety margins, the operator training, the optimization of the plant design and of the emergency operating procedures, are mostly considered in the field of the nuclear safety. The first generation of codes was developed in the United States at the end of `60s. Since that time, different research groups all over the world started the development of their own codes. At the beginning of the `80s, the second generation codes were proposed; these differmore » from the first generation codes owing to the number of balance equations solved (six instead of three), the sophistication of the constitutive models and of the adopted numerics. The capabilities of available computers have been fully exploited during the years. The authors then summarize some of the major steps in the process of developing, modifying, and advancing the capabilities of the codes. They touch on the fact that Italian, and for that matter non-American, researchers have not been intimately involved in much of this work. They then describe the application of these codes in Italy, even though there are no operating or under construction nuclear power plants at this time. Much of this effort is directed at the general question of plant safety in the face of transient type events.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Chris

    Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmentalmore » and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.« less

  19. Development of the CCP-200 mathematical model for Syzran CHPP using the Thermolib software package

    NASA Astrophysics Data System (ADS)

    Usov, S. V.; Kudinov, A. A.

    2016-04-01

    Simplified cycle diagram of the CCP-200 power generating unit of Syzran CHPP containing two gas turbines PG6111FA with generators, two steam recovery boilers KUP-110/15-8.0/0.7-540/200, and one steam turbine Siemens SST-600 (one-cylinder with two variable heat extraction units of 60/75 MW in heatextraction and condensing modes, accordingly) with S-GEN5-100 generators was presented. Results of experimental guarantee tests of the CCP-200 steam-gas unit are given. Brief description of the Thermolib application for the MatLab Simulink software package is given. Basic equations used in Thermolib for modeling thermo-technical processes are given. Mathematical models of gas-turbine plant, heat-recovery steam generator, steam turbine and integrated plant for power generating unit CCP-200 of Syzran CHPP were developed with the help of MatLab Simulink and Thermolib. The simulation technique at different ambient temperature values was used in order to get characteristics of the developed mathematical model. Graphic comparison of some characteristics of the CCP-200 simulation model (gas temperature behind gas turbine, gas turbine and combined cycle plant capacity, high and low pressure steam consumption and feed water consumption for high and low pressure economizers) with actual characteristics of the steam-gas unit received at experimental (field) guarantee tests at different ambient temperature are shown. It is shown that the chosen degrees of complexity, characteristics of the CCP-200 simulation model, developed by Thermolib, adequately correspond to the actual characteristics of the steam-gas unit received at experimental (field) guarantee tests; this allows considering the developed mathematical model as adequate and acceptable it for further work.

  20. Screening for plant viruses by next generation sequencing using a modified double strand RNA extraction protocol with an internal amplification control.

    PubMed

    Kesanakurti, Prasad; Belton, Mark; Saeed, Hanaa; Rast, Heidi; Boyes, Ian; Rott, Michael

    2016-10-01

    The majority of plant viruses contain RNA genomes. Detection of viral RNA genomes in infected plant material by next generation sequencing (NGS) is possible through the extraction and sequencing of total RNA, total RNA devoid of ribosomal RNA, small RNA interference (RNAi) molecules, or double stranded RNA (dsRNA). Plants do not typically produce high molecular weight dsRNA, therefore the presence of dsRNA makes it an attractive target for plant virus diagnostics. The sensitivity of NGS as a diagnostic method demands an effective dsRNA protocol that is both representative of the sample and minimizes sample cross contamination. We have developed a modified dsRNA extraction protocol that is more efficient compared to traditional protocols, requiring reduced amounts of starting material, that is less prone to sample cross contamination. This was accomplished by using bead based homogenization of plant material in closed, disposable 50ml tubes. To assess the quality of extraction, we also developed an internal control by designing a real-time (quantitative) PCR (qPCR) assay that targets endornaviruses present in Phaseolus vulgaris cultivar Black Turtle Soup (BTS). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  1. Molecular farming on rescue of pharma industry for next generations.

    PubMed

    Moustafa, Khaled; Makhzoum, Abdullah; Trémouillaux-Guiller, Jocelyne

    2016-10-01

    Recombinant proteins expressed in plants have been emerged as a novel branch of the biopharmaceutical industry, offering practical and safety advantages over traditional approaches. Cultivable in various platforms (i.e. open field, greenhouses or bioreactors), plants hold great potential to produce different types of therapeutic proteins with reduced risks of contamination with human and animal pathogens. To maximize the yield and quality of plant-made pharmaceuticals, crucial factors should be taken into account, including host plants, expression cassettes, subcellular localization, post-translational modifications, and protein extraction and purification methods. DNA technology and genetic transformation methods have also contributed to great parts with substantial improvements. To play their proper function and stability, proteins require multiple post-translational modifications such as glycosylation. Intensive glycoengineering research has been performed to reduce the immunogenicity of recombinant proteins produced in plants. Important strategies have also been developed to minimize the proteolysis effects and enhance protein accumulation. With growing human population and new epidemic threats, the need for new medications will be paramount so that the traditional pharmaceutical industry will not be alone to answer medication demands for upcoming generations. Here, we review several aspects of plant molecular pharming and outline some important challenges that hamper these ambitious biotechnological developments.

  2. Utility-sized Madaras wind plants

    NASA Astrophysics Data System (ADS)

    Whitford, D. H.; Minardi, J. E.

    1981-01-01

    An analysis and technological updating were conducted for the Madaras Rotor Power Plant concept, to determine its ability to compete both technically and economically with horizontal axis wind turbine generators currently under development. The Madaras system uses large cylinders rotating vertically atop each regularly spaced flatcar of a train to propel them, by means of Magnus-effect interaction with the wind, along a circular or oval track. Alternators geared to the wheels of each car generate electrical power, which is transmitted to a power station by a trolley system. The study, consisting of electromechanical design, wind tunnel testing, and performance and cost analyses, shows that utility-sized plants greater than 228 MW in capacity and producing 975,000 kWh/year are feasible. Energy costs for such plants are projected to be between 22% lower and 12% higher than horizontal axis turbine plants of comparable output.

  3. Peculiarities of genital organ formation in Arabidopsis thaliana (L) Heynh. under spaceflight conditions

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Sytnik, K. M.; Chernyaeva, I. I.

    An experiment was carried out aboard the Salyut 6 research orbital station on Arabidopsis thaliana cultivations. The seeds were sprouted in the Svetoblok 1 device which provides for plant growth in the agar medium under sterile conditions and at 4000 lux illumination. The experimental plants, as well as the controls, reached approximately the same developmental stages: both flowered and began to bear fruit. A microscopic examination of the generative organs in the control and experimental plants shows that in normally formed (by appearance) flower buds and flowers of the experimental plants, as distinct from the controls, there were no fertile elements of the adroecium and gynoecium. Degeneration of the latter occurred at different stages of generative organ development. Possible reasons for this phenomenon in plants grown under weightless conditions are considered.

  4. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants

    PubMed Central

    Dasgupta-Schubert, Nabanita; Borjas-García, Salomón; Tiwari, DK; Paraguay-Delgado, Francisco; Jiménez-Sandoval, Sergio; Alonso-Nuñez, Gabriel; Gómez-Romero, Mariela; Lindig-Cisneros, Roberto; Reyes De la Cruz, Homero

    2017-01-01

    Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya, two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature. PMID:28828256

  5. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants.

    PubMed

    Lara-Romero, Javier; Campos-García, Jesús; Dasgupta-Schubert, Nabanita; Borjas-García, Salomón; Tiwari, D K; Paraguay-Delgado, Francisco; Jiménez-Sandoval, Sergio; Alonso-Nuñez, Gabriel; Gómez-Romero, Mariela; Lindig-Cisneros, Roberto; Reyes De la Cruz, Homero; Villegas, Javier A

    2017-01-01

    Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya , two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature.

  6. Modifying agricultural crops for improved nutrition.

    PubMed

    McGloughlin, Martina Newell

    2010-11-30

    The first generation of biotechnology products commercialized were crops focusing largely on input agronomic traits whose value was often opaque to consumers. The coming generations of crop plants can be grouped into four broad areas each presenting what, on the surface, may appear as unique challenges and opportunities. The present and future focus is on continuing improvement of agronomic traits such as yield and abiotic stress resistance in addition to the biotic stress tolerance of the present generation; crop plants as biomass feedstocks for biofuels and "bio-synthetics"; value-added output traits such as improved nutrition and food functionality; and plants as production factories for therapeutics and industrial products. From a consumer perspective, the focus on value-added traits, especially improved nutrition, is undoubtedly one of the areas of greatest interest. From a basic nutrition perspective, there is a clear dichotomy in demonstrated need between different regions and socioeconomic groups, the starkest being inappropriate consumption in the developed world and under-nourishment in Less Developed Countries (LDCs). Dramatic increases in the occurrence of obesity and related ailments in affluent regions are in sharp contrast to chronic malnutrition in many LDCs. Both problems require a modified food supply, and the tools of biotechnology have a part to play. Developing plants with improved traits involves overcoming a variety of technical, regulatory and indeed perception hurdles inherent in perceived and real challenges of complex traits modifications. Continuing improvements in molecular and genomic technologies are contributing to the acceleration of product development to produce plants with the appropriate quality traits for the different regions and needs. Crops with improved traits in the pipeline, the evolving technologies and the opportunities and challenges that lie ahead are covered. Copyright © 2010. Published by Elsevier B.V.

  7. Steam generator design for solar towers using solar salt as heat transfer fluid

    NASA Astrophysics Data System (ADS)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  8. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  9. Current Trends of Blanket Research and Deveopment in Japan 4.Blanket Technology Development Using ITER for Demonstration and Commercial Fusion Power Plant

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo

    This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.

  10. Integrating planning and design optimization for thermal power generation in developing economies: Designs for Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, John Dinh Chuong

    In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas turbine and a three-pressure heat recovery steam generator with reheat, for base load and load following operations. The oil-fired and gas-fired plants showed excellent gross thermal efficiency, 49.6 and 59.4 percent, respectively. Regarding the anthracite plant, based on a traditional subcritical pressure steam cycle, the unit gross efficiency was calculated at 42.3 percent. These efficiency values represent an increase of over 2 percent compared to the comparable plant class, operating today. This 2 percent efficiency gained translates into approximately 35,000 tonnes of greenhouse gas reduction, and a saving of 16,000 tonnes of coal, per year (based on 300MWe coal-fired plant). The positive results from the three simulations have demonstrated that by integrating planning and design optimization, significant gain of efficiency in thermal power plants is possible. This establishes the need for improved planning processes. It starts with a pre-planning process, before project tendering, to identify applicable operational issues and design features to enhance efficiency and reduce emissions. It should also include a pre-contract period to provide an opportunity for all OEM finalists to consolidate and fine-tune their designs for compatibility with those of others to achieve optimal performance. The inclusion of a period for final consolidation and integrated design enables the original goals of greater overall plant efficiency and greenhouse gas emissions reduction to be achieved beyond those available from current planning and contracting procedures.

  11. Did Convergent Protein Evolution Enable Phytoplasmas to Generate 'Zombie Plants'?

    PubMed

    Rümpler, Florian; Gramzow, Lydia; Theißen, Günter; Melzer, Rainer

    2015-12-01

    Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    PubMed

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  13. Trial application of reliability technology to emergency diesel generators at the Trojan Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.M.; Boccio, J.L.; Karimian, S.

    1986-01-01

    In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness.

  14. Phosphoric acid fuel cell platinum use study

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  15. Phosphoric acid fuel cell platinum use study

    NASA Astrophysics Data System (ADS)

    Lundblad, H. L.

    1983-05-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  16. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation

    PubMed Central

    Jansen, Mickel L. A.; Bracher, Jasmine M.; Papapetridis, Ioannis; Verhoeven, Maarten D.; de Bruijn, Hans; de Waal, Paul P.; van Maris, Antonius J. A.; Klaassen, Paul

    2017-01-01

    Abstract The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. PMID:28899031

  17. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  18. Osmolyte cooperation affects turgor dynamics in plants.

    PubMed

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-22

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  19. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  20. Alterations of leaf cell ultrastructures and AFLP DNA profiles in Earth-grown tomato plants propagated from long-term six years Mir-flown seeds

    NASA Astrophysics Data System (ADS)

    Liu, Min; Xue, Huai; Pan, Yi; Zhang, Chunhua; Lu, Jinying

    Leaf cell ultrastructures and DNA variations in the firstand the second-generation of Earthgrown tomato (Lycopersicon esculentun Mill) plants that had been endured a long-term six years spaceflight in the Mir were compared to their ground-based control plants, under observations with a Transmission Electron Microscope and the Amplification Fragment Length Polymorphism (AFLP) analysis. For alterations in the morphological ultrastructures, one plant among the 11 first-generation plants generated from 30 Mir-flown seeds had a three-layered palisade cell structure, while other 10 first-generation plants and all ground-based controls had one-layered palisade cell structure in leaves. Starch grains were larger and in clusters, numbers of starch grains increased in the chloroplasts in the Mir-flown plants. Leaf cells became contracted and deformed, and cell shape patterns were different in the Mir-flown plants. For the leaf genomic DNA alterations, 34 DNA bands were polymorphic with a 1.32% polymorphism among 2582 DNA bands in the first-generation Mir-flown plants. Band types in the spaceflight treated plants were also different from those in the ground-based control. Of 11 survived first-generation plants, 7 spaceflight treated plants (Plant Nos. 1-6 and No. 9) had a same 7 polymorphic bands and a same 0.27%DNA mutation. The DNA mutation rate was greatest in Plants No.10 and No.7 (0.90% and 0.94%), less in Plant No.11 (0.31%) and least in Plant No.8 (0.20%). For the 38 send-generation plants propagated from the No. 5 Mir-flown seed, 6 DNA bands were polymorphic with a 0.23% polymorphism among 2564 amplified DNA bands. Among those 38 second-generation plants amplified by primer pair (E4: ACC, M8: CTT), one DNA band disappeared in 29 second-generation plants and in the original Mir-flown No. 5 plant, compared to the ground-base controls. Among the 38 second-generation plants generated from the Mir-flown No. 5 seed, the DNA band types of 29 second-generation plants were different from that of the ground-base controls and had a same 6 polymorphic bands and a same 0.23% DNA mutation. For the 49 second-generation plants derived from the Mir-flown No. 6 seed, 7 DNA bands were polymorphic with 0.27% polymorphism among 2564 amplified DNA bands. With only one exception among those 49 second-generation plants amplified by primer pair (E3: ACA, M3: CAG), one DNA band disappeared in 48 second-generation plants and in the original Mir-flown No. 6 plant, compared to the ground-based controls. Among the 49 second-generation plants generated from the Mir-flown No. 6 seed, the DNA band types of 48 second-generation plants were different from that of the ground-base controls and had a same 7 polymorphic bands and a same 0.27% DNA mutation. Our results indicated that leaf cell ultrastructures had been altered and heredity variations had been induced by seeds being exposed to a long-term outer-space environment. Further research is needed to elucidate the dynamics and mechanisms resulting in such variations. Plant biology studies in the space environment may open potential approaches to induce mutations and to screen new plant varieties by ground-based selections among spaceflight treated seeds or seedlings.

  1. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    PubMed

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  2. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  3. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia.

    PubMed

    Hadidi, Laith A; Omer, Mohamed Mahmoud

    2017-01-01

    Municipal Solid Waste (MSW) generation in Saudi Arabia is increasingly growing at a fast rate, as it hurtles towards ever increasing urban development coupled with rapid developments and expanding population. Saudi Arabia's energy demands are also rising at a faster rate. Therefore, the importance of an integrated waste management system in Saudi Arabia is increasingly rising and introducing Waste to Energy (WTE) facilities is becoming an absolute necessity. This paper analyzes the current situation of MSW management in Saudi Arabia and proposes a financial model to assess the viability of WTE investments in Saudi Arabia in order to address its waste management challenges and meet its forecasted energy demands. The research develops a financial model to investigate the financial viability of WTE plants utilizing gasification and Anaerobic Digestion (AD) conversion technologies. The financial model provides a cost estimate of establishing both gasification and anaerobic digestion WTE plants in Saudi Arabia through a set of financial indicators, i.e. net present value (NPV), internal rate of return (IRR), modified internal rate of return (MIRR), profitability index (PI), payback period, discounted payback period, Levelized Cost of Electricity (LCOE) and Levelized Cost of Waste (LCOW). Finally, the analysis of the financial model reveals the main affecting factors of the gasification plants investment decision, namely: facility generation capacity, generated electricity revenue, and the capacity factor. Similarly, the paper also identifies facility waste capacity and the capacity factor as the main affecting factors on the AD plants' investment decision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Discussion on mass concrete construction of wind turbine generator foundation

    NASA Astrophysics Data System (ADS)

    Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong

    2018-04-01

    Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.

  5. Early anther ablation triggers parthenocarpic fruit development in tomato.

    PubMed

    Medina, Mónica; Roque, Edelín; Pineda, Benito; Cañas, Luis; Rodriguez-Concepción, Manuel; Beltrán, José Pío; Gómez-Mena, Concepción

    2013-08-01

    Fruit set and fruit development in tomato is largely affected by changes in environmental conditions, therefore autonomous fruit set independent of fertilization is a highly desirable trait in tomato. Here, we report the production and characterization of male-sterile transgenic plants that produce parthenocarpic fruits in two tomato cultivars (Micro-Tom and Moneymaker). We generated male-sterility using the cytotoxic gene barnase targeted to the anthers with the PsEND1 anther-specific promoter. The ovaries of these plants grew in the absence of fertilization producing seedless, parthenocarpic fruits. Early anther ablation is essential to trigger the developing of the transgenic ovaries into fruits, in the absence of the signals usually generated during pollination and fertilization. Ovaries are fully functional and can be manually pollinated to obtain seeds. The transgenic plants obtained in the commercial cultivar Moneymaker show that the parthenocarpic development of the fruit does not have negative consequences in fruit quality. Throughout metabolomic analyses of the tomato fruits, we have identified two elite lines which showed increased levels of several health promoting metabolites and volatile compounds. Thus, early anther ablation can be considered a useful tool to promote fruit set and to obtain seedless and good quality fruits in tomato plants. These plants are also useful parental lines to be used in hybrid breeding approaches. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Development of model reference adaptive control theory for electric power plant control applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis.more » An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.« less

  7. Future trends in electrical energy generation economics in the United States

    NASA Technical Reports Server (NTRS)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  8. ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.

    PubMed

    Salihoglu, Nezih Kamil

    2018-05-08

    Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, 2-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.

  9. Plant-based insect repellents: a review of their efficacy, development and testing

    PubMed Central

    2011-01-01

    Plant-based repellents have been used for generations in traditional practice as a personal protection measure against host-seeking mosquitoes. Knowledge on traditional repellent plants obtained through ethnobotanical studies is a valuable resource for the development of new natural products. Recently, commercial repellent products containing plant-based ingredients have gained increasing popularity among consumers, as these are commonly perceived as “safe” in comparison to long-established synthetic repellents although this is sometimes a misconception. To date insufficient studies have followed standard WHO Pesticide Evaluation Scheme guidelines for repellent testing. There is a need for further standardized studies in order to better evaluate repellent compounds and develop new products that offer high repellency as well as good consumer safety. This paper presents a summary of recent information on testing, efficacy and safety of plant-based repellents as well as promising new developments in the field. PMID:21411012

  10. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology[OPEN

    PubMed Central

    Waese, Jamie; Fan, Jim; Yu, Hans; Fucile, Geoffrey; Shi, Ruian; Cumming, Matthew; Town, Chris; Stuerzlinger, Wolfgang

    2017-01-01

    A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an “app” on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research. PMID:28808136

  11. Thermoelectric-Driven Autonomous Sensors for a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Gubía, E.; Sorbet, F. J.

    2013-07-01

    This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.

  12. Emission of bacteria and fungi in the air from wastewater treatment plants - a review.

    PubMed

    Korzeniewska, Ewa

    2011-01-01

    An increase in global population, coupled with intensive development of industry and agriculture, has resulted in the generation and accumulation of large amounts of waste around the world. The spread of pathogenic microorganisms, endotoxins, odours and dust particles in the air is an inevitable consequence of waste production and waste management. Thus, the risk of infections associated with wastewater treatment plants (WWTPs) has become of a particular importance in recent decades. Sewage and unstable sludge contain various pathogens such as viruses, bacteria, and human and animal parasites. These microorganisms can be transmitted to the ambient air in wastewater droplets, which are generated during aeration or mechanical moving of the sewage. Bioaerosols generated during wastewater treatment may therefore pose a potential health hazard to workers of these plants or to habitants of their surroundings. The degree of human exposure to airborne bacteria, fungi, endotoxin and other allergens may vary significantly depending upon the type and the capacity of a plant, kind of the facilities, performed activities and meteorological conditions.

  13. Recent operating experiences with steam generators in Japanese NPPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashima, Seiji

    1997-02-01

    In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation ofmore » SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG.« less

  14. Feasibility study on introduction of the bio-fuel power generation in tropical regions

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Study is made on feasibility of introducing the bio-fuel power generation in tropical regions, especially in South East Asia including Okinawa and South America. Biomass promising as bio-fuel is bagasse and palm oil mill dregs; and bagasse is found to be advantageous to the use for large-scaled power generation. Prospective uses of bagasse are a combined use of gasification process and gas turbine power generation, an effective use of gas turbine exhaust heat at sugar cane factories, and a use of the system to be developed which totalizes these two. As to how to carry out the R and D project, since the gasification power generation process itself is a high technology and has partially unknown fields, it is desirable that research and development are conducted in such technologically developed countries as Japan (Okinawa). A developmental plan, therefore, is worked out as such that a pilot plant of approximately 3000kW is to be constructed in Okinawa because the period for bagasse production is at least 3 months there, and a commercial-scale plant is to be constructed and operated in such big bagasse-producing countries as Brazil.

  15. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies.

    PubMed

    Meena, Kamlesh K; Sorty, Ajay M; Bitla, Utkarsh M; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P; Prabha, Ratna; Sahu, Pramod K; Gupta, Vijai K; Singh, Harikesh B; Krishanani, Kishor K; Minhas, Paramjit S

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding of plant-microbe interactions that modulate cellular mechanisms in plants under extreme external conditions and help to optimize abiotic stresses. Vigilant amalgamation of these high-throughput approaches supports a higher level of knowledge generation about root-level mechanisms involved in the alleviation of abiotic stresses in organisms.

  16. 78 FR 36277 - Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-025; NRC-2008-0252] Vogtle Electric Generating Plant....01, for the Vogtle Electric Generating Plant, Unit 3. ADDRESSES: Please refer to Docket ID NRC-2008... Generating Plant, Unit 3 [[Page 36278

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattison, M.B.; Schroeder, J.A.; Russell, K.D.

    The Idaho National Engineering Laboratory (INEL) over the past year has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of ASP evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both NRR and AEOD. This paper presents an overview of the models and software. Key characteristics include: (1) classification of the plant models according to plant response with amore » unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattison, M.B.; Schroeder, J.A.; Russell, K.D.

    The Idaho National Engineering Laboratory (INEL) over the past year has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of conditional core damage probability (CCDP) evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both NRR and AEOD. This paper presents an overview of the models and software. Key characteristics include: (1) classification of the plant models according tomore » plant response with a unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events.« less

  19. Counter Action Procedure Generation in an Emergency Situation of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Gofuku, A.

    2018-02-01

    Lessons learned from the Fukushima Daiichi accident revealed various weak points in the design and operation of nuclear power plants at the time although there were many resilient activities made by the plant staff under difficult work environment. In order to reinforce the measures to make nuclear power plants more resilient, improvement of hardware and improvement of education and training of nuclear personnel are considered. In addition, considering the advancement of computer technology and artificial intelligence, it is a promising way to develop software tools to support the activities of plant staff.This paper focuses on the software tools to support the operations by human operators and introduces a concept of an intelligent operator support system that is called as co-operator. This paper also describes a counter operation generation technique the authors are studying as a core component of the co-operator.

  20. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  1. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    PubMed

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.

  2. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology.

    PubMed

    Waese, Jamie; Fan, Jim; Pasha, Asher; Yu, Hans; Fucile, Geoffrey; Shi, Ruian; Cumming, Matthew; Kelley, Lawrence A; Sternberg, Michael J; Krishnakumar, Vivek; Ferlanti, Erik; Miller, Jason; Town, Chris; Stuerzlinger, Wolfgang; Provart, Nicholas J

    2017-08-01

    A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an "app" on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research. © 2017 American Society of Plant Biologists. All rights reserved.

  3. Online impedance spectroscopy of lead acid batteries for storage management of a standalone power plant

    NASA Astrophysics Data System (ADS)

    Depernet, Daniel; Ba, Oumar; Berthon, Alain

    2012-12-01

    This paper presents a contribution to implementation of hybrid power plants in rural areas without electricity in Senegal. Wind and photovoltaic generators coupling is used to benefit from renewable energy resources in this country. Lead acid storage batteries are coupled with the generators to ensure smoothness of the electricity generation. This work is focused in particular on the development of a low cost online impedance spectroscopy method to address the problem of limited lifetime of batteries and the difficulties of their maintenance in isolated areas. Control of static converter associated with the battery is adapted to integrate the functionality of characterization of batteries by impedance spectroscopy. An experimental platform developed in the laboratory has validated the method for online measurement of battery impedance spectrum and to initiate a phase of data monitoring.

  4. Development of Flexi-Burn™ CFB Power Plant to Meet the Challenge of Climate Change

    NASA Astrophysics Data System (ADS)

    Hackt, Horst; Fant, Zhen; Seltzert, Andrew; Hotta, Arto; Erikssoni, Timo; Sippu, Ossi

    Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon- dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon-dioxide with its integrated Flexi-Burn™ CFB technology. The proven high efficiency circulating fluidized-bed (CFB) technology, when coupled with air separation units and carbon purification units, offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages over pulverized coal technology of a more uniform furnace heat flux, increased fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels. Development and design of an integrated Flexi-Bum™ CFB steam generator and balance of plant system was conducted for both air mode and oxyfuel mode. Through proper configuration and design, the same steam generator can be switched from air mode to oxyfuel mode without the need for unit shutdown for modifications. The Flexi-Burn™ CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.

  5. Light Water Reactor Sustainability Program Integrated Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution tomore » the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.« less

  6. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is used to investigate the effects of the various solar generation scenarios given emissions projections that account for changing regulatory environment, economic and population growth, and technological change. The results will help to quantify the potential air quality benefits of promotion of solar electricity generation in regions containing high penetration of coal-fired power generation. Note current national solar incentives that are based only on solar generation capacity. Further investigation of changes to regional climate due to emission reductions of aerosols and relevant precursors will provide insight into the environmental effects that may occur if solar power generation becomes widespread.

  7. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1999-02-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalentmore » size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. A general arrangement drawing of the char transfer system was forwarded to SCS for their review. Structural steel drawings were used to generate a three-dimensional model of the char transfer system including all pressure vessels and major piping components. Experimental testing at the Combustion and Environmental Test Facility continued during this quarter. Performance of the char burner, as benchmarked by flame stability and low NOx, has been exceptional. The burner was operated successfully both without natural gas and supplemental pulverized coal.« less

  8. Development of Bioregenerative Life Support for Longer Missions: When Can Plants Begin to Contribute to Atmospheric Management?

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2015-01-01

    Through photosynthesis, plants can be used to generate oxygen and food for life support in human exploration of space. Initial contributions of plants to life support would likely occur through the production of supplemental, fresh foods. For plants to provide significant contributions to oxygen production, larger areas and significant lighting would be needed. An area of 10 m2 of plants with moderate lighting could provide about 13 of a human's oxygen needs. As mission distances and durations increase, plant growing areas could be expanded to assume more of the human life support needs.

  9. Integrated assessment of water-power grid systems under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Zhou, Z.; Betrie, G.

    2017-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.

  10. [Space experiments on the development of biological systems for the human life].

    PubMed

    Sychev, V N

    2013-01-01

    Over the past 22 years, the Institute of Biomedical Problems has stubbornly continued the investigations with higher plants aimed at the development of cultivation technologies suitable for the conditions of space flight. Analysis of the results of 24 plant experiments performed aboard orbital complex MIR and the ISS Russian segment evidenced the ability of higher plants to grow, develop and reproduce inside spacecraft living compartments. Space crops were normal as compared with the laboratory controls. Microbial contamination of the plants was within the normal limits; no pathogen has been detected on plant surfaces. Plants did not change genetically, at least in four space generations. It should be noted that the presence of greenhouse on board the ISS also has a marked positive effect on wellbeing of people living in the close environment and isolation from Earth's biosphere. In the context of the above, the higher plants might become a secure and beneficial part of the life support system for crews on space exploration missions.

  11. Light Water Reactor Sustainability Program: Integrated Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy’s 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less

  12. Prospects for the development of coal-steam plants in Russia

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  13. Adaptation to the Local Environment by Modifications of the Photoperiod Response in Crops

    PubMed Central

    Nakamichi, Norihito

    2015-01-01

    Flowering plants produce a meristem at the shoot tip where specialized tissue generates shoot apical meristems at the appropriate time to differentiate into reproductive structures, pollinate and efficiently generate seeds. The complex set of molecular and phenological events culminating in development of a flowering meristem is referred to as ‘flowering time’. Flowering time affects plant productivity because plants dedicate energy to produce flowers and seeds rather than vegetative tissue once the molecular decision to initiate flowering has been taken. Thus, initiation of flowering time is an important decision in plants, especially in annual plants including crops. Humans have introduced crops into latitudes and climate areas far from their origin or natural ecosystem, requiring in many cases modification of native flowering times. Recent molecular–genetic studies shed light on the genetic basis related to such introductions. In this review, recent progress regarding crop introductions and their genetic bases are summarized, as well as the potential of other agricultural plants to be introduced into different climatic zones. PMID:25432974

  14. Advanced subsystems development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.

  15. The Plant as Metaorganism and Research on Next-Generation Systemic Pesticides – Prospects and Challenges

    PubMed Central

    Vryzas, Zisis

    2016-01-01

    Systemic pesticides (SPs) are usually recommended for soil treatments and as seed coating agents and are taken up from the soil by involving various plant-mediated processes, physiological, and morphological attributes of the root systems. Microscopic insights and next-generation sequencing combined with bioinformatics allow us now to identify new functions and interactions of plant-associated bacteria and perceive plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms and their functions on plants have not been studied yet in accordance with uptake, tanslocation and action of pesticides. Root tips exudates mediated by rhizobacteria could modify the uptake of specific pesticides while bacterial ligands and enzymes can affect metabolism and fate of pesticide within plant. Over expression of specific proteins in cell membrane can also modify pesticide influx in roots. Moreover, proteins and other membrane compartments are usually involved in pesticide modes of action and resistance development. In this article it is discussed what is known of the physiological attributes including apoplastic, symplastic, and trans-membrane transport of SPs in accordance with the intercommunication dictated by plant–microbe, cell to cell and intracellular signaling. Prospects and challenges for uptake, translocation, storage, exudation, metabolism, and action of SPs are given through the prism of new insights of plant microbiome. Interactions of soil applied pesticides with physiological processes, plant root exudates and plant microbiome are summarized to scrutinize challenges for the next-generation pesticides. PMID:28018306

  16. Optimum testing intervals of building emergency power supply systems in tall buildings in the Hong Kong Special Administrative Region

    NASA Astrophysics Data System (ADS)

    Kwok, Yu Fat

    The main objective of this study is to develop a model for the determination of optimum testing interval (OTI) of non-redundant standby plants. This study focuses on the emergency power generators in tall buildings in Hong Kong. The model for the reliability, which is developed, is applicable to any non-duplicated standby plant. In a tall building, the mobilisation of occupants is constrained by its height and the building internal layout. Occupant's safety, amongst other safety considerations, highly depends on the reliability of the fire detection and protection system, which in turn is dependent on the reliability of the emergency power generation plants. A thorough literature survey shows that the practice used in determining OTI in nuclear plants is generally applicable. Historically, the OTI in these plants is determined by balancing the testing downtime and reliability gained from frequent testing. However, testing downtime does not exist in plants like emergency power generator. Subsequently, sophisticated models have taken repairing downtime into consideration. In this study, the algorithms for the determination of OTI, and hence reliability of standby plants, are reconsidered. A new concept is introduced into the subject. A new model is developed for such purposes which embraces more realistic factors found in practice. System aging and the finite life cycle of the standby plant are considered. Somewhat more pragmatic is that the Optimum Overhauling Interval can also be determined from this new model. System unavailability grow with time, but can be reset by test or overhaul. Contrary to fixed testing intervals, OTI is determined whenever system point unavailability exceeds certain level, which depends on the reliability requirement of the standby system. An optimum testing plan for lowering this level to the 'minimum useful unavailability' level (see section 9.1 for more elaboration) can be determined by the new model presented. Cost effectiveness is accounted for by a new parameter 'tau min', the minimum testing interval (MTI). The MTI optimises the total number of tests and the total number of overhauls, when the costs for each are available. The model sets up criteria for test and overhaul and to 'announce' end of system life. The usefulness of the model is validated by a detailed analysis of the operating parameters from 8,500 maintenance records collected for emergency power generation plants in high rise buildings in Hong Kong. (Abstract shortened by UMI.)

  17. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies

    PubMed Central

    Meena, Kamlesh K.; Sorty, Ajay M.; Bitla, Utkarsh M.; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P.; Prabha, Ratna; Sahu, Pramod K.; Gupta, Vijai K.; Singh, Harikesh B.; Krishanani, Kishor K.; Minhas, Paramjit S.

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding of plant–microbe interactions that modulate cellular mechanisms in plants under extreme external conditions and help to optimize abiotic stresses. Vigilant amalgamation of these high-throughput approaches supports a higher level of knowledge generation about root-level mechanisms involved in the alleviation of abiotic stresses in organisms. PMID:28232845

  18. Development and Testing of a Laboratory Spray Table Methodology to Bioassay Simulated Levels of Aerial Spray Drift

    DTIC Science & Technology

    2009-05-01

    was measured on Mylar cards through fluorometric analysis. Plant health measures height and normalized difference vegetation index NDVI were...plant health data were used to generate dose-response relationships. Dose-response curves relating change in plant height and change in measured NDVI ...Held Sensor Model 505, NTech Industries, Inc., Ukiah, California to measure the normalized difference vegetation index NDVI which is directly

  19. Reliable steam generators: how KWU solved beginning problems for its customers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggers, B.; Engl, G.; Froehlich, K.

    This paper describes improvements in inspection and maintenance techniques, the adaptation of a secondary-side concept, and the optimization of water chemistry to achieve the highest possible operational reliability of steam generator performance. In the late 1970s and the early 1980s steam generators of several pressurized water reactors delivered by Kraftwerk Union (KWU) experienced corrosion-induced tube-wall degradation. As a result of these findings and the similar experience in US plants, KWU initiated a systematic program to retain the operational history of the plants at their historically outstanding level. By a combination of improvement in the balance of plant, reduction of themore » phosphate conditioning, and even a change to an all-volatile treatment as well as by the performance of tubesheet lancing, the tube degradation in KWU steam generators is nearly halted and no other known corrosion mechanisms exist that could impair the life expectancy of the steam generators. Nevertheless, repair and cleaning techniques have been developed and are available for application, if necessary, such as tube plugging, tube sleeving, or even partial tube replacement as well as chemical cleaning of the steam generator's secondary side.« less

  20. On Improving CRISPR for Editing Plant Genes: Ribozyme-Mediated Guide RNA Production and Fluorescence-Based Technology for Isolating Transgene-Free Mutants Generated by CRISPR.

    PubMed

    He, Yubing; Wang, Rongchen; Dai, Xinhua; Zhao, Yunde

    2017-01-01

    CRISPR/Cas9-mediated genome editing technology has been used to successfully edit numerous genes in various organisms including plants. There are still two major challenges in using CRISPR/Cas9 technology for gene editing in plants. First, there are very limited choices of promoters that are suitable for in vivo production of single-guide RNAs (sgRNAs), which is complementary to the target sequence and which guides Cas9 to generate double-strand breaks at the target site. It is especially difficult to produce sgRNA molecules with temporal and spatial precision. Second, there is a lack of efficient methods for identifying plants that (1) contain heritable and stable mutations generated by CRISPR/Cas9, and (2) no longer harbor the CRISPR/Cas9 construct and other transgenes. In this chapter, we describe the development of a ribozyme-based strategy that enables the production of sgRNA molecules from any chosen promoter. More importantly, the ribozyme-based technology makes it feasible to produce sgRNAs with temporal and spatial precision, greatly expanding the scope and applications of CRISPR/Cas9 technology. We also developed a fluorescence-based technology that allows us to efficiently and reliably isolate Cas9-free stable Arabidopsis mutants. Thus, we provide effective protocols to overcome two important obstacles in using CRISPR/Cas9 for editing genes in plants. © 2017 Elsevier Inc. All rights reserved.

  1. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.

    PubMed

    Kofuji, Rumiko; Hasebe, Mitsuyasu

    2014-02-01

    Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation. A single stem cell would have been maintained in the ancestral gametophyte meristem, as occurs in extant basal land plants. During land plant evolution, stem cells diverged in the gametophyte generation to form different types of body parts, including the protonema and rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia formed in moss. A simplex meristem with a single stem cell was acquired in the sporophyte generation early in land plant evolution. Subsequently, sporophyte stem cells became multiple in the meristem and were elaborated further in seed plant lineages, although the evolutionary origin of niche cells, which maintain stem cells is unknown. Comparisons of gene regulatory networks are expected to give insights into the general mechanisms of stem cell formation and maintenance in land plants and provide information about their evolution. P. patens develops at least seven types of simplex meristem in the gametophyte and at least one type in the sporophyte generation and is a good material for regulatory network comparisons. In this review, we summarize recently revealed molecular mechanisms of stem cell initiation and maintenance in the moss. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Reducing Risk for the Next Generation Nuclear Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project.more » Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.« less

  3. The Use of Plant-Derived Ribosome Inactivating Proteins in Immunotoxin Development: Past, Present and Future Generations

    PubMed Central

    Rust, Aleksander; Partridge, Lynda J.; Davletov, Bazbek

    2017-01-01

    Ribosome inactivating proteins (RIPs) form a class of toxins that was identified over a century ago. They continue to fascinate scientists and the public due to their very high activity and long-term stability which might find useful applications in the therapeutic killing of unwanted cells but can also be used in acts of terror. We will focus our review on the canonical plant-derived RIPs which display ribosomal RNA N-glycosidase activity and irreversibly inhibit protein synthesis by cleaving the 28S ribosomal RNA of the large 60S subunit of eukaryotic ribosomes. We will place particular emphasis on therapeutic applications and the generation of immunotoxins by coupling antibodies to RIPs in an attempt to target specific cells. Several generations of immunotoxins have been developed and we will review their optimisation as well as their use and limitations in pre-clinical and clinical trials. Finally, we endeavour to provide a perspective on potential future developments for the therapeutic use of immunotoxins. PMID:29076988

  4. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    NASA Astrophysics Data System (ADS)

    Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad

    2013-06-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  5. Genome Sequencing and Assembly by Long Reads in Plants

    PubMed Central

    Li, Changsheng; Lin, Feng; An, Dong; Huang, Ruidong

    2017-01-01

    Plant genomes generated by Sanger and Next Generation Sequencing (NGS) have provided insight into species diversity and evolution. However, Sanger sequencing is limited in its applications due to high cost, labor intensity, and low throughput, while NGS reads are too short to resolve abundant repeats and polyploidy, leading to incomplete or ambiguous assemblies. The advent and improvement of long-read sequencing by Third Generation Sequencing (TGS) methods such as PacBio and Nanopore have shown promise in producing high-quality assemblies for complex genomes. Here, we review the development of sequencing, introducing the application as well as considerations of experimental design in TGS of plant genomes. We also introduce recent revolutionary scaffolding technologies including BioNano, Hi-C, and 10× Genomics. We expect that the informative guidance for genome sequencing and assembly by long reads will benefit the initiation of scientists’ projects. PMID:29283420

  6. Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics.

    PubMed

    Chauhan, Harsh; Khurana, Paramjit

    2011-04-01

    Anther culture-derived haploid embryos were used as explants for Agrobacterium-mediated genetic transformation of bread wheat (Triticum aestivum L. cv CPAN1676) using barley HVA1 gene for drought tolerance. Regenerated plantlets were checked for transgene integration in T₀ generation, and positive transgenic haploid plants were doubled by colchicine treatment. Stable transgenic doubled haploid plants were obtained, and transgene expression was monitored till T₄ generation, and no transgene silencing was observed over the generations. Doubled haploid transgenic plants have faster seed germination and seedling establishment and show better drought tolerance in comparison with nontransgenic, doubled haploid plants, as measured by per cent germination, seedling growth and biomass accumulation. Physiological evaluation for abiotic stress by assessing nitrate reductase enzyme activity and plant yield under post-anthesis water limitation revealed a better tolerance of the transgenics over the wild type. This is the first report on the production of double haploid transgenic wheat through anther culture technique in a commercial cultivar for a desirable trait. This method would also be useful in functional genomics of wheat and other allopolyploids of agronomic importance. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  7. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance.

    PubMed Central

    Keller, H; Pamboukdjian, N; Ponchet, M; Poupet, A; Delon, R; Verrier, J L; Roby, D; Ricci, P

    1999-01-01

    The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. We have developed a strategy for creating novel disease resistance traits whereby transgenic plants respond to infection by a virulent pathogen with the production of an elicitor. To this end, we generated transgenic tobacco plants harboring a fusion between the pathogen-inducible tobacco hsr 203J gene promoter and a Phytophthora cryptogea gene encoding the highly active elicitor cryptogein. Under noninduced conditions, the transgene was silent, and no cryptogein could be detected in the transgenic plants. In contrast, infection by the virulent fungus P. parasitica var nicotianae stimulated cryptogein production that coincided with the fast induction of several defense genes at and around the infection sites. Induced elicitor production resulted in a localized necrosis that resembled a P. cryptogea-induced hypersensitive response and that restricted further growth of the pathogen. The transgenic plants displayed enhanced resistance to fungal pathogens that were unrelated to Phytophthora species, such as Thielaviopsis basicola, Erysiphe cichoracearum, and Botrytis cinerea. Thus, broad-spectrum disease resistance of a plant can be generated without the constitutive synthesis of a transgene product. PMID:9927640

  8. Generating Within-Plant Spatial Distributions of an Insect Herbivore Based on Aggregation Patterns and Per-Node Infestation Probabilities.

    PubMed

    Rincon, Diego F; Hoy, Casey W; Cañas, Luis A

    2015-04-01

    Most predator-prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator-prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous within-plant predator-prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator-silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithm can be used in simulation models that explore the effect of local heterogeneity on whitefly-predator dynamics. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. [Production of marker-free plants expressing the gene of the hepatitis B virus surface antigen].

    PubMed

    Rukavtsova, E B; Gaiazova, A R; Chebotareva, E N; Bur'ianova, Ia I

    2009-08-01

    The pBM plasmid, carrying the gene of hepatitis B virus surface antigen (HBsAg) and free of any selection markers of antibiotic or herbicide resistance, was constructed for genetic transformation of plants. A method for screening transformed plant seedlings on nonselective media was developed. Enzyme immunoassay was used for selecting transgenic plants with HBsAg gene among the produced regenerants; this method provides for a high sensitivity detection of HBsAg in plant extracts. Tobacco and tomato transgenic lines synthesizing this antigen at a level of 0.01-0.05% of the total soluble protein were obtained. The achieved level of HBsAg synthesis is sufficient for preclinical trials of the produced plants as a new generation safe edible vaccine. The developed method for selecting transformants can be used for producing safe plants free of selection markers.

  10. Plant synthetic biology for molecular engineering of signalling and development.

    PubMed

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  11. Interpreting plant responses to clinostating. I - Mechanical stresses and ethylene

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Wheeler, Raymond M.

    1981-01-01

    The possibility that the clinostat mechanical stresses (leaf flopping) induces ethylene production and, thus, the development of epinasty was tested by stressing vertical plants by constant gentle horizontal or vertical shaking or by a quick back-and-forth rotation (twisting). Clinostat leaf flopping was closely approximated by turning plants so that their stems were horizontal, rotating them quickly about the stem axis, and returning them to the vertical, with the treatment repeated every four minutes. It was found that horizontal and vertical shaking, twisting, intermittent horizontal rotating, and gentle hand shaking failed to induce epinasties that approached those observed on the slow clinostat. Minor epinasties were generated by vigorous hand-shaking (120 sec/day) and by daily application of Ag(+). Reducing leaf displacements by inverting plants did not significantly reduce the minor epinasty generated by vigorous hand-shaking.

  12. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  13. PlantFuncSSR: Integrating First and Next Generation Transcriptomics for Mining of SSR-Functional Domains Markers

    PubMed Central

    Sablok, Gaurav; Pérez-Pulido, Antonio J.; Do, Thac; Seong, Tan Y.; Casimiro-Soriguer, Carlos S.; La Porta, Nicola; Ralph, Peter J.; Squartini, Andrea; Muñoz-Merida, Antonio; Harikrishna, Jennifer A.

    2016-01-01

    Analysis of repetitive DNA sequence content and divergence among the repetitive functional classes is a well-accepted approach for estimation of inter- and intra-generic differences in plant genomes. Among these elements, microsatellites, or Simple Sequence Repeats (SSRs), have been widely demonstrated as powerful genetic markers for species and varieties discrimination. We present PlantFuncSSRs platform having more than 364 plant species with more than 2 million functional SSRs. They are provided with detailed annotations for easy functional browsing of SSRs and with information on primer pairs and associated functional domains. PlantFuncSSRs can be leveraged to identify functional-based genic variability among the species of interest, which might be of particular interest in developing functional markers in plants. This comprehensive on-line portal unifies mining of SSRs from first and next generation sequencing datasets, corresponding primer pairs and associated in-depth functional annotation such as gene ontology annotation, gene interactions and its identification from reference protein databases. PlantFuncSSRs is freely accessible at: http://www.bioinfocabd.upo.es/plantssr. PMID:27446111

  14. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI

    USDA-ARS?s Scientific Manuscript database

    The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development, nematode secreted effe...

  15. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.

    PubMed

    Marshall-Colon, Amy; Long, Stephen P; Allen, Douglas K; Allen, Gabrielle; Beard, Daniel A; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A J; Cox, Donna J; Hart, John C; Hirst, Peter M; Kannan, Kavya; Katz, Daniel S; Lynch, Jonathan P; Millar, Andrew J; Panneerselvam, Balaji; Price, Nathan D; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J; Voit, Eberhard O; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.

  16. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform

    PubMed Central

    Marshall-Colon, Amy; Long, Stephen P.; Allen, Douglas K.; Allen, Gabrielle; Beard, Daniel A.; Benes, Bedrich; von Caemmerer, Susanne; Christensen, A. J.; Cox, Donna J.; Hart, John C.; Hirst, Peter M.; Kannan, Kavya; Katz, Daniel S.; Lynch, Jonathan P.; Millar, Andrew J.; Panneerselvam, Balaji; Price, Nathan D.; Prusinkiewicz, Przemyslaw; Raila, David; Shekar, Rachel G.; Shrivastava, Stuti; Shukla, Diwakar; Srinivasan, Venkatraman; Stitt, Mark; Turk, Matthew J.; Voit, Eberhard O.; Wang, Yu; Yin, Xinyou; Zhu, Xin-Guang

    2017-01-01

    Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop. PMID:28555150

  17. Sludge quantification at water treatment plant and its management scenario.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  18. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.

    PubMed

    Yin, Xiaojia; Biswal, Akshaya K; Dionora, Jacqueline; Perdigon, Kristel M; Balahadia, Christian P; Mazumdar, Shamik; Chater, Caspar; Lin, Hsiang-Chun; Coe, Robert A; Kretzschmar, Tobias; Gray, Julie E; Quick, Paul W; Bandyopadhyay, Anindya

    2017-05-01

    CRISPR-Cas9/Cpf1 system with its unique gene targeting efficiency, could be an important tool for functional study of early developmental genes through the generation of successful knockout plants. The introduction and utilization of systems biology approaches have identified several genes that are involved in early development of a plant and with such knowledge a robust tool is required for the functional validation of putative candidate genes thus obtained. The development of the CRISPR-Cas9/Cpf1 genome editing system has provided a convenient tool for creating loss of function mutants for genes of interest. The present study utilized CRISPR/Cas9 and CRISPR-Cpf1 technology to knock out an early developmental gene EPFL9 (Epidermal Patterning Factor like-9, a positive regulator of stomatal development in Arabidopsis) orthologue in rice. Germ-line mutants that were generated showed edits that were carried forward into the T2 generation when Cas9-free homozygous mutants were obtained. The homozygous mutant plants showed more than an eightfold reduction in stomatal density on the abaxial leaf surface of the edited rice plants. Potential off-target analysis showed no significant off-target effects. This study also utilized the CRISPR-LbCpf1 (Lachnospiracae bacterium Cpf1) to target the same OsEPFL9 gene to test the activity of this class-2 CRISPR system in rice and found that Cpf1 is also capable of genome editing and edits get transmitted through generations with similar phenotypic changes seen with CRISPR-Cas9. This study demonstrates the application of CRISPR-Cas9/Cpf1 to precisely target genomic locations and develop transgene-free homozygous heritable gene edits and confirms that the loss of function analysis of the candidate genes emerging from different systems biology based approaches, could be performed, and therefore, this system adds value in the validation of gene function studies.

  19. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error.more » The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.« less

  20. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review

    PubMed Central

    Kim, Yoon-Ha; Khan, Abdul L.; Waqas, Muhammad; Lee, In-Jung

    2017-01-01

    Silicon (Si) is the second most abundant element in soil, where its availability to plants can exhilarate to 10% of total dry weight of the plant. Si accumulation/transport occurs in the upward direction, and has been identified in several crop plants. Si application has been known to ameliorate plant growth and development during normal and stressful conditions over past two-decades. During abiotic (salinity, drought, thermal, and heavy metal etc) stress, one of the immediate responses by plant is the generation of reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide (O2−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH), which cause severe damage to the cell structure, organelles, and functions. To alleviate and repair this damage, plants have developed a complex antioxidant system to maintain homeostasis through non-enzymatic (carotenoids, tocopherols, ascorbate, and glutathione) and enzymatic antioxidants [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)]. To this end, the exogenous application of Si has been found to induce stress tolerance by regulating the generation of ROS, reducing electrolytic leakage, and malondialdehyde (MDA) contents, and immobilizing and reducing the uptake of toxic ions like Na, under stressful conditions. However, the interaction of Si and plant antioxidant enzyme system remains poorly understood, and further in-depth analyses at the transcriptomic level are needed to understand the mechanisms responsible for the Si-mediated regulation of stress responses. PMID:28428797

  1. A dynamic model to assess tradeoffs in power production and riverine ecosystem protection.

    PubMed

    Miara, Ariel; Vörösmarty, Charles J

    2013-06-01

    Major strategic planning decisions loom as society aims to balance energy security, economic development and environmental protection. To achieve such balance, decisions involving the so-called water-energy nexus must necessarily embrace a regional multi-power plant perspective. We present here the Thermoelectric Power & Thermal Pollution Model (TP2M), a simulation model that simultaneously quantifies thermal pollution of rivers and estimates efficiency losses in electricity generation as a result of fluctuating intake temperatures and river flows typically encountered across the temperate zone. We demonstrate the model's theoretical framework by carrying out sensitivity tests based on energy, physical and environmental settings. We simulate a series of five thermoelectric plants aligned along a hypothetical river, where we find that warm ambient temperatures, acting both as a physical constraint and as a trigger for regulatory limits on plant operations directly reduce electricity generation. As expected, environmental regulation aimed at reducing thermal loads at a single plant reduces power production at that plant, but ironically can improve the net electricity output from multiple plants when they are optimally co-managed. On the technology management side, high efficiency can be achieved through the use of natural gas combined cycle plants, which can raise the overall efficiency of the aging population of plants, including that of coal. Tradeoff analysis clearly shows the benefit of attaining such high efficiencies, in terms of both limiting thermal loads that preserve ecosystem services and increasing electricity production that benefits economic development.

  2. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review.

    PubMed

    Kim, Yoon-Ha; Khan, Abdul L; Waqas, Muhammad; Lee, In-Jung

    2017-01-01

    Silicon (Si) is the second most abundant element in soil, where its availability to plants can exhilarate to 10% of total dry weight of the plant. Si accumulation/transport occurs in the upward direction, and has been identified in several crop plants. Si application has been known to ameliorate plant growth and development during normal and stressful conditions over past two-decades. During abiotic (salinity, drought, thermal, and heavy metal etc) stress, one of the immediate responses by plant is the generation of reactive oxygen species (ROS), such as singlet oxygen ( 1 O 2 ), superoxide ([Formula: see text]), hydrogen peroxide (H 2 O 2 ), and hydroxyl radicals (OH), which cause severe damage to the cell structure, organelles, and functions. To alleviate and repair this damage, plants have developed a complex antioxidant system to maintain homeostasis through non-enzymatic (carotenoids, tocopherols, ascorbate, and glutathione) and enzymatic antioxidants [superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)]. To this end, the exogenous application of Si has been found to induce stress tolerance by regulating the generation of ROS, reducing electrolytic leakage, and malondialdehyde (MDA) contents, and immobilizing and reducing the uptake of toxic ions like Na, under stressful conditions. However, the interaction of Si and plant antioxidant enzyme system remains poorly understood, and further in-depth analyses at the transcriptomic level are needed to understand the mechanisms responsible for the Si-mediated regulation of stress responses.

  3. Feasibility study for biomass power plants in Thailand. Volume 2. appendix: Detailed financial analysis results. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachgoengsao, Suphan Buri, and Pichit in Thailand. Volume 2 of the study contains the following appendix: Detailed Financial Analysis Results.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huetter, J.J. Jr.

    The overall feasibility of retrofit for hydroelectric power generation at the Patillas Reservoir, an existing impoundment located near the town of Patillas, Puerto Rico, was studied. The scope of work and project intent is limited to establishing valid acceptance or non-acceptance criteria for this specific site as an example of power generation potential at existing dams of relatively low head (less than or equal to 20 m) in the United States. Information is included on hydrologic conditions at the site, retrofit plant design, economic analysis, environmental, legal, social and institutional aspects, and availability of plant equipment. It is concluded thatmore » generation of hydropower at Patillas is entirely practical and uncomplicated from an engineering viewpoint, has no adverse environmental effects and is economically justifiable for the island of Puerto Rico. The final agency or contractor roles for development are reasonably well-established. There are no prohibitory laws or regulations concerning this development. In fact, according to Puerto Rico legislation, such hydropower developments appear to be mandated. The installed capacity of the site ranges from 665 kW to approximately 1500 kW depending on extent of development of the available options. (LCL)« less

  5. The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development.

    PubMed

    Kudapa, Himabindu; Garg, Vanika; Chitikineni, Annapurna; Varshney, Rajeev K

    2018-04-10

    Chickpea is one of the world's largest cultivated food legumes and is an excellent source of high-quality protein to the human diet. Plant growth and development are controlled by programmed expression of a suite of genes at the given time, stage, and tissue. Understanding how the underlying genome sequence translates into specific plant phenotypes at key developmental stages, information on gene expression patterns is crucial. Here, we present a comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) across different plant developmental stages and organs covering the entire life cycle of chickpea. One of the widely used drought tolerant cultivars, ICC 4958 has been used to generate RNA-Seq data from 27 samples at 5 major developmental stages of the plant. A total of 816 million raw reads were generated and of these, 794 million filtered reads after quality control (QC) were subjected to downstream analysis. A total of 15,947 unique number of differentially expressed genes across different pairwise tissue combinations were identified. Significant differences in gene expression patterns contributing in the process of flowering, nodulation, and seed and root development were inferred in this study. Furthermore, differentially expressed candidate genes from "QTL-hotspot" region associated with drought stress response in chickpea were validated. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  6. Development and design of photovoltaic power prediction system

    NASA Astrophysics Data System (ADS)

    Wang, Zhijia; Zhou, Hai; Cheng, Xu

    2018-02-01

    In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.

  7. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery

    NASA Astrophysics Data System (ADS)

    Malambo, L.; Popescu, S. C.; Murray, S. C.; Putman, E.; Pugh, N. A.; Horne, D. W.; Richardson, G.; Sheridan, R.; Rooney, W. L.; Avant, R.; Vidrine, M.; McCutchen, B.; Baltensperger, D.; Bishop, M.

    2018-02-01

    Plant breeders and agronomists are increasingly interested in repeated plant height measurements over large experimental fields to study critical aspects of plant physiology, genetics and environmental conditions during plant growth. However, collecting such measurements using commonly used manual field measurements is inefficient. 3D point clouds generated from unmanned aerial systems (UAS) images using Structure from Motion (SfM) techniques offer a new option for efficiently deriving in-field crop height data. This study evaluated UAS/SfM for multitemporal 3D crop modelling and developed and assessed a methodology for estimating plant height data from point clouds generated using SfM. High-resolution images in visible spectrum were collected weekly across 12 dates from April (planting) to July (harvest) 2016 over 288 maize (Zea mays L.) and 460 sorghum (Sorghum bicolor L.) plots using a DJI Phantom 3 Professional UAS. The study compared SfM point clouds with terrestrial lidar (TLS) at two dates to evaluate the ability of SfM point clouds to accurately capture ground surfaces and crop canopies, both of which are critical for plant height estimation. Extended plant height comparisons were carried out between SfM plant height (the 90th, 95th, 99th percentiles and maximum height) per plot and field plant height measurements at six dates throughout the growing season to test the repeatability and consistency of SfM estimates. High correlations were observed between SfM and TLS data (R2 = 0.88-0.97, RMSE = 0.01-0.02 m and R2 = 0.60-0.77 RMSE = 0.12-0.16 m for the ground surface and canopy comparison, respectively). Extended height comparisons also showed strong correlations (R2 = 0.42-0.91, RMSE = 0.11-0.19 m for maize and R2 = 0.61-0.85, RMSE = 0.12-0.24 m for sorghum). In general, the 90th, 95th and 99th percentile height metrics had higher correlations to field measurements than the maximum metric though differences among them were not statistically significant. The accuracy of SfM plant height estimates fluctuated over the growing period, likely impacted by the changing reflectance regime due to plant development. Overall, these results show a potential path to reducing laborious manual height measurement and enhancing plant research programs through UAS and SfM.

  8. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  9. Hybridizing a Geothermal Plant with Solar and Thermal Energy Storage to Enhance Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTigue, Joshua Dominic P; Zhu, Guangdong; Turchi, Craig S

    The objective of this project is to identify cost-effective thermal storage systems for a geothermal/solar hybrid system in order to increase the plant dispatchability. Furthermore, an optimal quantity of thermal storage will also be determined to achieve the best economics of a geothermal/solar hybrid plant. NREL is working with Hyperlight Energy and Coso Operating Company to develop techno-economic models of such a system.

  10. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  11. A brief summary of the attempts to develop large wind-electric generating systems in the US

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1974-01-01

    Interest in developing large wind-electric generating systems in the United States was simulated primarily by one man, Palmer C. Putnam. He was responsible for the construction of the 1250 kilowatt Smith-Putnam wind-electric plant. The existence of this system prompted the U. S. Federal Power Commission to investigate the potential of using the winds as a source energy. Also, in 1933 prior to Putnam's effort, there was an abortive attempt by J. D. Madaras to develop a wind system based on the Magnus effect. These three projects comprise the only serious efforts in America to develop large wind driven plants. In this paper the history of each project is briefly described. Also discussed are some of the reasons why wind energy was not seriously considered as a major source of energy for the U. S.

  12. Carbonate fuel cells: Milliwatts to megawatts

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on coal-derived gases, diesel, and other logistic fuels. Innovative carbonate fuel cell/turbine hybrid power plant designs promising record energy conversion efficiencies approaching 75% have also emerged. This paper will review the historical development of this unique technology from milliwatt-scale laboratory cells to present megawatt-scale commercial power plants.

  13. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    PubMed

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Mechanisms of stomatal development: an evolutionary view

    PubMed Central

    2012-01-01

    Plant development has a significant postembryonic phase that is guided heavily by interactions between the plant and the outside environment. This interplay is particularly evident in the development, pattern and function of stomata, epidermal pores on the aerial surfaces of land plants. Stomata have been found in fossils dating from more than 400 million years ago. Strikingly, the morphology of the individual stomatal complex is largely unchanged, but the sizes, numbers and arrangements of stomata and their surrounding cells have diversified tremendously. In many plants, stomata arise from specialized and transient stem-cell like compartments on the leaf. Studies in the flowering plant Arabidopsis thaliana have established a basic molecular framework for the acquisition of cell fate and generation of cell polarity in these compartments, as well as describing some of the key signals and receptors required to produce stomata in organized patterns and in environmentally optimized numbers. Here we present parallel analyses of stomatal developmental pathways at morphological and molecular levels and describe the innovations made by particular clades of plants. PMID:22691547

  15. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  16. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    ERIC Educational Resources Information Center

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  17. Information technology as a key enabler in preparing for competition: ComEd`s Kincaid Generating Station, a work in progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borth, F.C. III; Thompson, J.W.; Mishaga, J.M.

    1996-11-01

    Through ComEd Fossil (Generating) Division`s Competitive Action Plan (CAP) evaluation changes have been identified which are necessary to improve generating station performance. These changes are intended to improve both station reliability and financial margins, and are essential for stations to be successful in a competitive marketplace. Plant upgrades, advanced equipment stewardship, and personnel reductions have been identified as necessary steps in achieving industry leadership and competitive advantage. To deal effectively with plant systems and contend in the competitive marketplace Information Technology (IT) solutions to business problems are being developed. Data acquisition, storage, and retrieval are being automated through use ofmore » state-of-the-art Data Historians. Total plant, high resolution, long term process information will be accessed through Local/Wide Area Networks (LAN/WAN) connections from desktop PC`s. Generating unit Thermal Performance Monitors accessing the Data Historian will analyze plant and system performance enabling reductions in operating costs, and improvements in process control. As inputs to proactive maintenance toolsets this data allows anticipation of equipment service needs, advanced service scheduling, and cost/benefit analysis. The ultimate goal is to optimize repair needs with revenue generation. Advanced applications building upon these foundations will bring knowledge of the costs associated with all the products a generating station offers its customer(s). An overall design philosophy along with preliminary results is presented; these results include shortfalls, lessons learned, and future options.« less

  18. Start-up performance of parabolic trough concentrating solar power plants

    NASA Astrophysics Data System (ADS)

    Ferruzza, Davide; Topel, Monika; Basaran, Ibrahim; Laumert, Björn; Haglind, Fredrik

    2017-06-01

    Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their profitability and performance, the flexibility with respect to transient operations is essential. In this regard, two of the key components identified are the steam generation system and steam turbine. In general it is desirable to have fast ramp-up rates during the start-up of a power plant. However ramp-up rates are limited by, among other things, thermal stresses, which if high enough can compromise the life of the components. Moreover, from an operability perspective it might not be optimal to have designs for the highest heating rates, as there may be other components limiting the power plant start-up. Therefore, it is important to look at the interaction between the steam turbine and steam generator to determine the optimal ramp rates. This paper presents a methodology to account for thermal stresses limitations during the power plant start up, aiming at identifying which components limit the ramp rates. A detailed dynamic model of a parabolic trough power plant was developed and integrated with a control strategy to account for the start-up limitations of both the turbine and steam generator. The models have been introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results indicated that for each application, an optimal heating rates range can be identified. For the specific case presented in the paper, an optimal range of 7-10 K/min of evaporator heating rate can result in a 1.7-2.1% increase in electricity production compared to a slower component (4 K/min).

  19. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant-plant mutualism.

    PubMed

    Pringle, Elizabeth G

    2014-06-22

    In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant-plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output.

  20. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant–plant mutualism

    PubMed Central

    Pringle, Elizabeth G.

    2014-01-01

    In horizontally transmitted mutualisms, mutualists disperse separately and reassemble in each generation with partners genetically unrelated to those in the previous generation. Because of this, there should be no selection on either partner to enhance the other's reproductive output directly. In symbiotic ant–plant mutualisms, myrmecophytic plants host defensive ant colonies, and ants defend the plants from herbivores. Plants and ants disperse separately, and, although ant defence can indirectly increase plant reproduction by reducing folivory, it is unclear whether ants can also directly increase plant reproduction by defending seeds. The neotropical tree Cordia alliodora hosts colonies of Azteca pittieri ants. The trees produce domatia where ants nest at stem nodes and also at the node between the peduncle and the rachides of the infloresence. Unlike the stem domatia, these reproductive domatia senesce after the tree fruits each year. In this study, I show that the tree's resident ant colony moves into these ephemeral reproductive domatia, where they tend honeydew-producing scale insects and patrol the nearby developing fruits. The presence of ants significantly reduced pre-dispersal seed predation by Amblycerus bruchid beetles, thereby directly increasing plant reproductive output. PMID:24807259

  1. Illumina Amplicon Sequencing of 16S rRNA Tag Reveals Bacterial Community Development in the Rhizosphere of Apple Nurseries at a Replant Disease Site and a New Planting Site

    PubMed Central

    Sun, Jian; Zhang, Qiang; Zhou, Jia; Wei, Qinping

    2014-01-01

    We used a next-generation, Illumina-based sequencing approach to characterize the bacterial community development of apple rhizosphere soil in a replant site (RePlant) and a new planting site (NewPlant) in Beijing. Dwarfing apple nurseries of ‘Fuji’/SH6/Pingyitiancha trees were planted in the spring of 2013. Before planting, soil from the apple rhizosphere of the replant site (ReSoil) and from the new planting site (NewSoil) was sampled for analysis on the Illumina MiSeq platform. In late September, the rhizosphere soil from both sites was resampled (RePlant and NewPlant). More than 16,000 valid reads were obtained for each replicate, and the community was composed of five dominant groups (Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria). The bacterial diversity decreased after apple planting. Principal component analyses revealed that the rhizosphere samples were significantly different among treatments. Apple nursery planting showed a large impact on the soil bacterial community, and the community development was significantly different between the replanted and newly planted soils. Verrucomicrobia were less abundant in RePlant soil, while Pseudomonas and Lysobacter were increased in RePlant compared with ReSoil and NewPlant. Both RePlant and ReSoil showed relatively higher invertase and cellulase activities than NewPlant and NewSoil, but only NewPlant soil showed higher urease activity, and this soil also had the higher plant growth. Our experimental results suggest that planting apple nurseries has a significant impact on soil bacterial community development at both replant and new planting sites, and planting on new site resulted in significantly higher soil urease activity and a different bacterial community composition. PMID:25360786

  2. JEDI: Jobs and Economic Development Impacts Model, National Renewable Energy Laboratory (NREL) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-12-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal, and natural gas power plants. Based on project-specific and default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area (usually a state) that could reasonably be supported by a power generation project. For example, JEDImore » estimates the number of in-state construction jobs from a new wind farm. This fact sheet provides an overview of the JEDI model as it pertains to wind energy projects.« less

  3. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  4. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less

  5. Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds.

    PubMed

    Van Aken, Benoit; Doty, Sharon Lafferty

    2010-01-01

    Phytoremediation is the use of plants for the treatment of environmental pollution, including chlorinated organics. Although conceptually very attractive, removal and biodegradation of chlorinated pollutants by plants is a rather slow and inefficient process resulting in incomplete treatment and potential release of toxic metabolites into the environment. In order to overcome inherent limitations of plant metabolic capabilities, plants have been genetically modified, following a strategy similar to the development of transgenic crops: genes from bacteria, fungi, and mammals involved in the metabolism of organic contaminants, such as cytochrome P-450 and glutathione S-transferase, have been introduced into higher plants, resulting in significant improvement of tolerance, removal, and degradation of pollutants. Recently, plant-associated bacteria have been recognized playing a significant role in phytoremediation, leading to the development of genetically modified rhizospheric and endophytic bacteria with improved biodegradation capabilities. Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environmental-friendly treatment of polluted soil and water. This review focuses on recent advances in the development of transgenic plants and bacteria for the treatment of chlorinated pollutants, including chlorinated solvents, polychlorinated phenols, and chlorinated herbicides.

  6. Dosage-Sensitive Function of RETINOBLASTOMA RELATED and Convergent Epigenetic Control Are Required during the Arabidopsis Life Cycle

    PubMed Central

    Johnston, Amal J.; Kirioukhova, Olga; Barrell, Philippa J.; Rutten, Twan; Moore, James M.; Baskar, Ramamurthy; Grossniklaus, Ueli; Gruissem, Wilhelm

    2010-01-01

    The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development. PMID:20585548

  7. Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    PubMed Central

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2007-01-01

    Context Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Case presentation Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. Discussion Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction–type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. Relevance to clinical or professional practice In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers’ health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent. PMID:17366828

  8. Grand rounds: an outbreak of toxic hepatitis among industrial waste disposal workers.

    PubMed

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2007-01-01

    Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction-type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers' health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent.

  9. Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems.

    PubMed

    Bombelli, Paolo; Iyer, Durgaprasad Madras Rajaraman; Covshoff, Sarah; McCormick, Alistair J; Yunus, Kamran; Hibberd, Julian M; Fisher, Adrian C; Howe, Christopher J

    2013-01-01

    Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ∼6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75 ± 0.87 Coulombs for O. sativa compared to 1.12 ± 0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980 ± 0.059 GJ ha(-1) year(-1)) than for E. glabrescens (0.088 ± 0.008 GJ ha(-1) year(-1)). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.

  10. Power Watch: Increasing Transparency and Accessibility of Data in the Global Power Sector to Accelerate the Transition to a Lower Carbon Economy

    NASA Astrophysics Data System (ADS)

    Hennig, R. J.; Friedrich, J.; Malaguzzi Valeri, L.; McCormick, C.; Lebling, K.; Kressig, A.

    2016-12-01

    The Power Watch project will offer open data on the global electricity sector starting with power plants and their impacts on climate and water systems; it will also offer visualizations and decision making tools. Power Watch will create the first comprehensive, open database of power plants globally by compiling data from national governments, public and private utilities, transmission grid operators, and other data providers to create a core dataset that has information on over 80% of global installed capacity for electrical generation. Power plant data will at a minimum include latitude and longitude, capacity, fuel type, emissions, water usage, ownership, and annual generation. By providing data that is both comprehensive, as well as making it publically available, this project will support decision making and analysis by actors across the economy and in the research community. The Power Watch research effort focuses on creating a global standard for power plant information, gathering and standardizing data from multiple sources, matching information from multiple sources on a plant level, testing cross-validation approaches (regional statistics, crowdsourcing, satellite data, and others) and developing estimation methodologies for generation, emissions, and water usage. When not available from official reports, emissions, annual generation, and water usage will be estimated. Water use estimates of power plants will be based on capacity, fuel type and satellite imagery to identify cooling types. This analysis is being piloted in several states in India and will then be scaled up to a global level. Other planned applications of of the Power Watch data include improving understanding of energy access, air pollution, emissions estimation, stranded asset analysis, life cycle analysis, tracking of proposed plants and curtailment analysis.

  11. Analysis on capability of load following for nuclear power plants abroad and its enlightenment

    NASA Astrophysics Data System (ADS)

    Zheng, Kuan; Zhang, Fu-qiang; Deng, Ting-ting; Zhang, Jin-fang; Hao, Weihua

    2017-01-01

    With the acceleration adjustment of China’s energy structure, the development of nuclear power plants in China has been going back to the fast track. While as the trend of slowing electric power demand is now unmistakable, it enforces the power system to face much greater pressure in some coastal zones where the nuclear power plants are of a comparative big proportion, such as Fujian province and Liaoning province. In this paper, the capability of load following of nuclear power plants of some developed countries with high proportion of nuclear power generation such as France, US and Japan are analysed, also from the aspects including the safety, the economy and their practical operation experience is studied. The feasibility of nuclear power plants to participate in the peak regulation of system is also studied and summarized. The results of this paper could be of good reference value for the China’s nuclear power plants to participate in system load following, and also of great significance for the development of the nuclear power plants in China.

  12. Enhanced metabolic and redox activity of vascular aquatic plant Lemna valdiviana under polarization in Direct Photosynthetic Plant Fuel Cell.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2015-12-01

    In this study, duckweed species Lemna valdiviana was investigated as a photoautotrophycally grown biocatalyst in recently developed Direct Photosynthetic Plant Fuel Cell. Stable current outputs, reaching maximum of 226±11 mА/m(2), were achieved during the operating period. The electricity production is associated with electrons generated through the light-dependent reactions in the chloroplasts as well as the respiratory processes in the mitochondria and transferred to the anode via endogenous electron shuttle, synthesized by the plants as a specific response to the polarization. In parallel, a considerable increase in the content of proteins (47%) and reserve carbohydrates (44%) of duckweeds grown under polarization conditions was established by means of biochemical analyses. This, combined with the electricity generation, makes the technology a feasible approach for the duckweed farming. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Industrial wastewater minimization using water pinch analysis: a case study on an old textile plant.

    PubMed

    Ujang, Z; Wong, C L; Manan, Z A

    2002-01-01

    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.

  14. Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions.

    PubMed

    Zhu, Qian-Hao; Shan, Wei-Xing; Ayliffe, Michael A; Wang, Ming-Bo

    2016-03-01

    Plants have developed diverse molecular and cellular mechanisms to cope with a lifetime of exposure to a variety of pathogens. Host transcriptional reprogramming is a central part of plant defense upon pathogen recognition. Recent studies link DNA methylation and demethylation as well as chromatin remodeling by posttranslational histone modifications, including acetylation, methylation, and ubiquitination, to changes in the expression levels of defense genes upon pathogen challenge. Remarkably these inducible defense mechanisms can be primed prior to pathogen attack by epigenetic modifications and this heightened resistance state can be transmitted to subsequent generations by inheritance of these modification patterns. Beside the plant host, epigenetic mechanisms have also been implicated in virulence development of pathogens. This review highlights recent findings and insights into epigenetic mechanisms associated with interactions between plants and pathogens, in particular bacterial and fungal pathogens, and demonstrates the positive role they can have in promoting plant defense.

  15. Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas

    PubMed Central

    Chen, Mao-Sheng; Pan, Bang-Zhen; Fu, Qiantang; Tao, Yan-Bin; Martínez-Herrera, Jorge; Niu, Longjian; Ni, Jun; Dong, Yuling; Zhao, Mei-Li; Xu, Zeng-Fu

    2017-01-01

    Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6), MYC2, SHI-RELATED SEQUENCE 5 (SRS5), SHORT VEGETATIVE PHASE (SVP), TERMINAL FLOWER 1 (TFL1), and TASSELSEED2 (TS2), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas. Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA3) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas. Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system. PMID:28144243

  16. Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas.

    PubMed

    Chen, Mao-Sheng; Pan, Bang-Zhen; Fu, Qiantang; Tao, Yan-Bin; Martínez-Herrera, Jorge; Niu, Longjian; Ni, Jun; Dong, Yuling; Zhao, Mei-Li; Xu, Zeng-Fu

    2016-01-01

    Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 ( KNAT6 ), MYC2 , SHI-RELATED SEQUENCE 5 ( SRS5 ), SHORT VEGETATIVE PHASE ( SVP ), TERMINAL FLOWER 1 ( TFL1 ), and TASSELSEED2 ( TS2 ), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas . Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA 3 ) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas . Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system.

  17. A Comparison of Prediction Methods for Design of Pump as Turbine for Small Hydro Plant: Implemented Plant

    NASA Astrophysics Data System (ADS)

    Naeimi, Hossein; Nayebi Shahabi, Mina; Mohammadi, Sohrab

    2017-08-01

    In developing countries, small and micro hydropower plants are very effective source for electricity generation with energy pay-back time (EPBT) less than other conventional electricity generation systems. Using pump as turbine (PAT) is an attractive, significant and cost-effective alternative. Pump manufacturers do not normally provide the characteristic curves of their pumps working as turbines. Therefore, choosing an appropriate Pump to work as a turbine is essential in implementing the small-hydro plants. In this paper, in order to find the best fitting method to choose a PAT, the results of a small-hydro plant implemented on the by-pass of a Pressure Reducing Valve (PRV) in Urmia city in Iran are presented. Some of the prediction methods of Best Efficiency Point of PATs are derived. Then, the results of implemented project have been compared to the prediction methods results and the deviation of from measured data were considered and discussed and the best method that predicts the specifications of PAT more accurately determined. Finally, the energy pay-back time for the plant is calculated.

  18. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  19. Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.

    2000-01-01

    Rapid-cycling Brassica populations were initially developed as a model for probing the genetic basis of plant disease. Paul Williams and co-workers selected accessions of the six main species for short time to flower and rapid seed maturation. Over multiple generations of breeding and selection, rapid-cycling populations of each of the six species were developed. Because of their close relationship with economically important Brassica species, rapid-cycling Brassica populations, especially those of B. rapa (RCBr) and B. oleracea, have seen wide application in plant and crop physiology investigations. Adding to the popularity of these small, short-lived plants for research applications is their extensive use in K-12 education and outreach.

  20. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Loik, Michael E.; Carter, Sue A.; Alers, Glenn; Wade, Catherine E.; Shugar, David; Corrado, Carley; Jokerst, Devin; Kitayama, Carol

    2017-10-01

    Global renewable electricity generation capacity has rapidly increased in the past decade. Increasing the sustainability of electricity generation and the market share of solar photovoltaics (PV) will require continued cost reductions or higher efficiencies. Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.

  1. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  2. VirtualPlant: A Software Platform to Support Systems Biology Research1[W][OA

    PubMed Central

    Katari, Manpreet S.; Nowicki, Steve D.; Aceituno, Felipe F.; Nero, Damion; Kelfer, Jonathan; Thompson, Lee Parnell; Cabello, Juan M.; Davidson, Rebecca S.; Goldberg, Arthur P.; Shasha, Dennis E.; Coruzzi, Gloria M.; Gutiérrez, Rodrigo A.

    2010-01-01

    Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org. PMID:20007449

  3. Dual roles of infrared imaging on a university campus: serving the physical plant while enhancing a technology-based curriculum

    NASA Astrophysics Data System (ADS)

    Miles, Jonathan J.

    2001-03-01

    The campus of a comprehensive, residential university is in many respects a small city unto itself. All the amenities and services one would expect in a typical community are readily available on a college campus, including residences, athletic and dining facilities, libraries, and stores. A large campus, therefore, requires a reliable energy plant to provide steam, hot water, chilled water, and electricity. James Madison University supports two power plants: a vintage steam plant and a modern resource recovery facility comprising two solid-waste incinerators and two gas-fired units for steam generation, three steam-driven absorption- chilling units, and a single steam-driven generator for peak electricity production. Infrared imaging, as a teaching tool, was introduced in the Program of Integrated Science and Technology at James Madison University in 1997. The Infrared Development and Thermal Testing Laboratory was established at the university later in 1997 with government and industry support, and it is presently equipped with infrared imagers and scanners, single-point detectors, and data-acquisition systems. A study was conducted between 1998 and 1999 to test the economic feasibility of implementing an IR-based predictive maintenance program in the university steam plant. This paper describes the opportunities created at James Madison University to develop IR-based predictive maintenance programs that enhance the operation of the university energy plants; to establish IR-related research and development activities that support government and industry activities; and to enhance a science- and technology-based curriculum by way of unique, IR-based laboratory experiences and demonstrations.

  4. Master Logic Diagram: An Approach to Identify Initiating Events of HTGRs

    NASA Astrophysics Data System (ADS)

    Purba, J. H.

    2018-02-01

    Initiating events of a nuclear power plant being evaluated need to be firstly identified prior to applying probabilistic safety assessment on that plant. Various types of master logic diagrams (MLDs) have been proposedforsearching initiating events of the next generation of nuclear power plants, which have limited data and operating experiences. Those MLDs are different in the number of steps or levels and different in the basis for developing them. This study proposed another type of MLD approach to find high temperature gas cooled reactor (HTGR) initiating events. It consists of five functional steps starting from the top event representing the final objective of the safety functions to the basic event representing the goal of the MLD development, which is an initiating event. The application of the proposed approach to search for two HTGR initiating events, i.e. power turbine generator trip and loss of offsite power, is provided. The results confirmed that the proposed MLD is feasiblefor finding HTGR initiating events.

  5. Isoform Sequencing and State-of-Art Applications for Unravelling Complexity of Plant Transcriptomes

    PubMed Central

    An, Dong; Li, Changsheng; Humbeck, Klaus

    2018-01-01

    Single-molecule real-time (SMRT) sequencing developed by PacBio, also called third-generation sequencing (TGS), offers longer reads than the second-generation sequencing (SGS). Given its ability to obtain full-length transcripts without assembly, isoform sequencing (Iso-Seq) of transcriptomes by PacBio is advantageous for genome annotation, identification of novel genes and isoforms, as well as the discovery of long non-coding RNA (lncRNA). In addition, Iso-Seq gives access to the direct detection of alternative splicing, alternative polyadenylation (APA), gene fusion, and DNA modifications. Such applications of Iso-Seq facilitate the understanding of gene structure, post-transcriptional regulatory networks, and subsequently proteomic diversity. In this review, we summarize its applications in plant transcriptome study, specifically pointing out challenges associated with each step in the experimental design and highlight the development of bioinformatic pipelines. We aim to provide the community with an integrative overview and a comprehensive guidance to Iso-Seq, and thus to promote its applications in plant research. PMID:29346292

  6. Nuclear power plant 5,000 to 10,000 kilowatts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this proposal is to present a suggested program for the development of an Aqueous Homogeneous Reactor Power Plant for the production of power in the 5000 to 10,000 kilowatt range under the terms of the Atomic Energy Commission's invitation of September 21, 1955. It envisions a research and development program prior to finalizing fabricating commitments of full scale components for the purpose of proving mechanical and hydraulic operating and chemical processing feasibility with the expectation that such preliminary effort will assure the contruction of the reactor at the lowest cost and successful operation at the earliest date.more » It proposes the construction of a reactor for an eventual net electrical output of ten megawatts but initially in conjunction with a five megawatt turbo-generating unit. This unit would be constructed at the site of the existing Hersey diesel generating plant of the Wolverine Electric Cooperative approximately ten miles north of Big Rapids, Michigan.« less

  7. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossein Ghezel-Ayagh

    2006-03-01

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based onmore » carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.« less

  8. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    NASA Astrophysics Data System (ADS)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  9. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (insteadmore » of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO 2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit applications. Additional performance and reliability enhancements will also be evaluated in Phase 2 to try to improve overall project economics.« less

  11. Generation of shape complexity through tissue conflict resolution

    PubMed Central

    Rebocho, Alexandra B; Southam, Paul; Kennaway, J Richard; Coen, Enrico

    2017-01-01

    Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals. DOI: http://dx.doi.org/10.7554/eLife.20156.001 PMID:28166865

  12. Plant hormone signaling during development: insights from computational models.

    PubMed

    Oliva, Marina; Farcot, Etienne; Vernoux, Teva

    2013-02-01

    Recent years have seen an impressive increase in our knowledge of the topology of plant hormone signaling networks. The complexity of these topologies has motivated the development of models for several hormones to aid understanding of how signaling networks process hormonal inputs. Such work has generated essential insights into the mechanisms of hormone perception and of regulation of cellular responses such as transcription in response to hormones. In addition, modeling approaches have contributed significantly to exploring how spatio-temporal regulation of hormone signaling contributes to plant growth and patterning. New tools have also been developed to obtain quantitative information on hormone distribution during development and to test model predictions, opening the way for quantitative understanding of the developmental roles of hormones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Environmental impact of coal industry and thermal power plants in India.

    PubMed

    Mishra, U C

    2004-01-01

    Coal is the only natural resource and fossil fuel available in abundance in India. Consequently, it is used widely as a thermal energy source and also as fuel for thermal power plants producing electricity. India has about 90,000 MW installed capacity for electricity generation, of which more than 70% is produced by coal-based thermal power plants. Hydro-electricity contributes about 25%, and the remaining is mostly from nuclear power plants (NPPs). The problems associated with the use of coal are low calorific value and very high ash content. The ash content is as high as 55-60%, with an average value of about 35-40%. Further, most of the coal is located in the eastern parts of the country and requires transportation over long distances, mostly by trains, which run on diesel. About 70% oil is imported and is a big drain on India's hard currency. In the foreseeable future, there is no other option likely to be available, as the nuclear power programme envisages installing 20,000 MWe by the year 2020, when it will still be around 5% of the installed capacity. Hence, attempts are being made to reduce the adverse environmental and ecological impact of coal-fired power plants. The installed electricity generating capacity has to increase very rapidly (at present around 8-10% per annum), as India has one of the lowest per capita electricity consumptions. Therefore, the problems for the future are formidable from ecological, radio-ecological and pollution viewpoints. A similar situation exists in many developing countries of the region, including the People's Republic of China, where coal is used extensively. The paper highlights some of these problems with the data generated in the author's laboratory and gives a brief description of the solutions being attempted. The extent of global warming in this century will be determined by how developing countries like India manage their energy generation plans. Some of the recommendations have been implemented for new plants, and the situation in the new plants is much better. A few coal washeries have also been established. It will be quite some time before the steps to improve the environmental releases are implemented in older plants and several coal mines due to resource constraints.

  14. Comparison and evaluation of power plant options for geosynchronous power stations. Part 1: Synchronous solar power

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1973-01-01

    The present state-of-the-art is described for the development of solar power generators in far out synchronous orbit for power generation. Concepts of geosynchronous solar power satellites are discussed including photovoltaic arrays for power satellites, solar-thermal power satellites, and power transmission to earth.

  15. A new approach for detecting fungal and oomycete plant pathogens in next generation sequencing metagenome data utilising electronic probes

    USDA-ARS?s Scientific Manuscript database

    Early stage infections caused by fungal/oomycete spores can remain undetected until signs or symptoms develop. Serological and molecular techniques are currently used for detecting these pathogens. Next-generation sequencing (NGS) has potential as a diagnostic tool, due to the capacity to target mul...

  16. MHD performance calculations with oxygen enrichment

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Staiger, P. J.; Seikel, G. R.

    1979-01-01

    The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined.

  17. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides,more » and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.« less

  18. Seed Endophyte Microbiome of Crotalaria pumila Unpeeled: Identification of Plant-Beneficial Methylobacteria.

    PubMed

    Sánchez-López, Ariadna S; Pintelon, Isabel; Stevens, Vincent; Imperato, Valeria; Timmermans, Jean-Pierre; González-Chávez, Carmen; Carrillo-González, Rogelio; Van Hamme, Jonathan; Vangronsveld, Jaco; Thijs, Sofie

    2018-01-19

    Metal contaminated soils are increasing worldwide. Metal-tolerant plants growing on metalliferous soils are fascinating genetic and microbial resources. Seeds can vertically transmit endophytic microorganisms that can assist next generations to cope with environmental stresses, through yet poorly understood mechanisms. The aims of this study were to identify the core seed endophyte microbiome of the pioneer metallophyte Crotalaria pumila throughout three generations, and to better understand the plant colonisation of the seed endophyte Methylobacterium sp. Cp3. Strain Cp3 was detected in C. pumila seeds across three successive generations and showed the most dominant community member. When inoculated in the soil at the time of flowering, strain Cp3 migrated from soil to seeds. Using confocal microscopy, Cp3-mCherry was demonstrated to colonise the root cortex cells and xylem vessels of the stem under metal stress. Moreover, strain Cp3 showed genetic and in planta potential to promote seed germination and seedling development. We revealed, for the first time, that the seed microbiome of a pioneer plant growing in its natural environment, and the colonisation behaviour of an important plant growth promoting systemic seed endophyte. Future characterization of seed microbiota will lead to a better understanding of their functional contribution and the potential use for seed-fortification applications.

  19. Seed Endophyte Microbiome of Crotalaria pumila Unpeeled: Identification of Plant-Beneficial Methylobacteria

    PubMed Central

    Sánchez-López, Ariadna S.; Pintelon, Isabel; Imperato, Valeria; Carrillo-González, Rogelio; Van Hamme, Jonathan; Thijs, Sofie

    2018-01-01

    Metal contaminated soils are increasing worldwide. Metal-tolerant plants growing on metalliferous soils are fascinating genetic and microbial resources. Seeds can vertically transmit endophytic microorganisms that can assist next generations to cope with environmental stresses, through yet poorly understood mechanisms. The aims of this study were to identify the core seed endophyte microbiome of the pioneer metallophyte Crotalaria pumila throughout three generations, and to better understand the plant colonisation of the seed endophyte Methylobacterium sp. Cp3. Strain Cp3 was detected in C. pumila seeds across three successive generations and showed the most dominant community member. When inoculated in the soil at the time of flowering, strain Cp3 migrated from soil to seeds. Using confocal microscopy, Cp3-mCherry was demonstrated to colonise the root cortex cells and xylem vessels of the stem under metal stress. Moreover, strain Cp3 showed genetic and in planta potential to promote seed germination and seedling development. We revealed, for the first time, that the seed microbiome of a pioneer plant growing in its natural environment, and the colonisation behaviour of an important plant growth promoting systemic seed endophyte. Future characterization of seed microbiota will lead to a better understanding of their functional contribution and the potential use for seed-fortification applications. PMID:29351192

  20. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Regulation of potassium transport and signaling in plants.

    PubMed

    Wang, Yi; Wu, Wei-Hua

    2017-10-01

    As an essential macronutrient, potassium (K + ) plays crucial roles in diverse physiological processes during plant growth and development. The K + concentration in soils is relatively low and fluctuating. Plants are able to perceive external K + changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K + channels and transporters. As a result, K + homeostasis in plant cells is modulated, which facilitates plant adaptation to K + deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K + channels and transporters as well as their regulatory mechanisms in plant response to low-K + stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Automated determinations of selenium in thermal power plant wastewater by sequential hydride generation and chemiluminescence detection.

    PubMed

    Ezoe, Kentaro; Ohyama, Seiichi; Hashem, Md Abul; Ohira, Shin-Ichi; Toda, Kei

    2016-02-01

    After the Fukushima disaster, power generation from nuclear power plants in Japan was completely stopped and old coal-based power plants were re-commissioned to compensate for the decrease in power generation capacity. Although coal is a relatively inexpensive fuel for power generation, it contains high levels (mgkg(-1)) of selenium, which could contaminate the wastewater from thermal power plants. In this work, an automated selenium monitoring system was developed based on sequential hydride generation and chemiluminescence detection. This method could be applied to control of wastewater contamination. In this method, selenium is vaporized as H2Se, which reacts with ozone to produce chemiluminescence. However, interference from arsenic is of concern because the ozone-induced chemiluminescence intensity of H2Se is much lower than that of AsH3. This problem was successfully addressed by vaporizing arsenic and selenium individually in a sequential procedure using a syringe pump equipped with an eight-port selection valve and hot and cold reactors. Oxidative decomposition of organoselenium compounds and pre-reduction of the selenium were performed in the hot reactor, and vapor generation of arsenic and selenium were performed separately in the cold reactor. Sample transfers between the reactors were carried out by a pneumatic air operation by switching with three-way solenoid valves. The detection limit for selenium was 0.008 mg L(-1) and calibration curve was linear up to 1.0 mg L(-1), which provided suitable performance for controlling selenium in wastewater to around the allowable limit (0.1 mg L(-1)). This system consumes few chemicals and is stable for more than a month without any maintenance. Wastewater samples from thermal power plants were collected, and data obtained by the proposed method were compared with those from batchwise water treatment followed by hydride generation-atomic fluorescence spectrometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    PubMed Central

    De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T. S.; Broeckhove, Jan

    2017-01-01

    Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io. PMID:28523006

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias

    A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generationmore » are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  5. Transgenic Studies on the Involvement of Cytokinin and Gibberellin in Male Development

    PubMed Central

    Huang, Shihshieh; Cerny, R. Eric; Qi, Youlin; Bhat, Deepti; Aydt, Carrie M.; Hanson, Doris D.; Malloy, Kathleen P.; Ness, Linda A.

    2003-01-01

    Numerous plant hormones interact during plant growth and development. Elucidating the role of these various hormones on particular tissue types or developmental stages has been difficult with exogenous applications or constitutive expression studies. Therefore, we used tissue-specific promoters expressing CKX1 and gai, genes involved in oxidative cytokinin degradation and gibberellin (GA) signal transduction, respectively, to study the roles of cytokinin and GA in male organ development. Accumulation of CKX1 in reproductive tissues of transgenic maize (Zea mays) resulted in male-sterile plants. The male development of these plants was restored by applications of kinetin and thidiazuron. Similarly, expression of gai specifically in anthers and pollen of tobacco (Nicotiana tabacum) and Arabidopsis resulted in the abortion of these respective tissues. The gai-induced male-sterile phenotype exhibited by the transgenic plants was reversible by exogenous applications of kinetin. Our results provide molecular evidence of the involvement of cytokinin and GA in male development and support the hypothesis that the male development is controlled in concert by multiple hormones. These studies also suggest a potential method for generating maintainable male sterility in plants by using existing agrochemicals that would reduce the expense of seed production for existing hybrid crops and provide a method to produce hybrid varieties of traditionally non-hybrid crops. PMID:12644677

  6. Non-radioactive TRF assay modifications to improve telomeric DNA detection efficiency in plants

    PubMed Central

    Nigmatullina, Liliia R.; Sharipova, Margarita R.; Shakirov, Eugene V.

    2016-01-01

    The length of telomeric DNA is often considered a cellular biomarker of aging and general health status. Several telomere length measuring assays have been developed, of which the most common is the Telomere Restriction Fragment (TRF) analysis, which typically involves the use of radioactively labeled oligonucleotide probes. While highly effective, this method potentially poses substantial health concerns and generates radioactive waste. Digoxigenin (DIG) alternatives to radioactive probes have been developed and used successfully in a number of assays. Here we optimize the DIG protocol to measure telomere length in the model plant Arabidopsis thaliana and present evidence that this approach can be used successfully to efficiently and accurately measure telomere length in plants. Specifically, hybridization temperature of 42 °C instead of the typical 55 °C appears to generate stronger signals. In addition, DIG incorporation at 5′-end instead of 3′-end of the labeled oligonucleotide greatly enhances signal. We conclude that non-radioactive TRF assays can be as efficient as radioactive methods in detecting and measuring telomere length in plants, making this assay suitable for medical and research laboratories unable to utilize radioactivity due to hazardous waste disposal and safety concerns. PMID:28133587

  7. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 3: Experimental System Descriptions. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.

  8. A method for accelerated trait conversion in plant breeding.

    PubMed

    Lewis, Ramsey S; Kernodle, S P

    2009-05-01

    Backcrossing is often used in cultivar development to transfer one or a few genes to desired genetic backgrounds. The duration necessary to complete such 'trait conversions' is largely dependent upon generation times. Constitutive overexpression of the Arabidopsis thaliana gene FT (FLOWERING LOCUS T) induces early-flowering in many plants. Here, we used tobacco (Nicotiana tabacum L.) as a model system to propose and examine aspects of a modified backcross procedure where transgenic FT overexpression is used to reduce generation time and accelerate gene transfer. In this method, the breeder would select for an FT transgene insertion and the trait(s) of interest at each backcross generation except the last. In the final generation, selection would be conducted for the trait(s) of interest, but against FT, to generate the backcross-derived trait conversion. We demonstrate here that constitutive FT overexpression functions to dramatically reduce days-to-flower similarly in diverse tobacco genetic backgrounds. FT-containing plants flowered in an average of 39 days, in comparison with 87-138 days for non-FT plants. Two FT transgene insertions were found to segregate independently of several disease resistance genes often the focus of backcrossing in tobacco. In addition, no undesirable epigenetic effects on flowering time were observed once FT was segregated away. The proposed system would reduce the time required to complete a trait conversion in tobacco by nearly one-half. These features suggest the possible value of this modified backcrossing system for tobacco or other crop species where long generation times or photoperiod sensitivity may impede timely trait conversion.

  9. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties.

    PubMed

    Wang, Ke; Liu, Huiyun; Du, Lipu; Ye, Xingguo

    2017-05-01

    Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F 1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T 0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T 1 positive plants, but the gus gene was never found to be silenced in T 1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Tropospheric ozone and plants: absorption, responses, and consequences.

    PubMed

    Cho, Kyoungwon; Tiwari, Supriya; Agrawal, S B; Torres, N L; Agrawal, Madhoolika; Sarkar, Abhijit; Shibato, Junko; Agrawal, Ganesh K; Kubo, Akihiro; Rakwal, Randeep

    2011-01-01

    Ozone is now considered to be the second most important gaseous pollutant in our environment. The phytotoxic potential of O₃ was first observed on grape foliage by B.L. Richards and coworkers in 1958 (Richards et al. 1958). To date, unsustainable resource utilization has turned this secondary pollutant into a major component of global climate change and a prime threat to agricultural production. The projected levels to which O₃ will increase are critically alarming and have become a major issue of concern for agriculturalists, biologists, environmentalists and others plants are soft targets for O₃. Ozone enters plants through stomata, where it disolves in the apoplastic fluid. O₃ has several potential effects on plants: direct reaction with cell membranes; conversion into ROS and H₂O₂ (which alters cellular function by causing cell death); induction of premature senescence; and induction of and up- or down-regulation of responsive components such as genes , proteins and metabolites. In this review we attempt to present an overview picture of plant O₃ interactions. We summarize the vast number of available reports on plant responses to O₃ at the morphological, physiological, cellular, biochemical levels, and address effects on crop yield, and on genes, proteins and metabolites. it is now clear that the machinery of photosynthesis, thereby decreasing the economic yield of most plants and inducing a common morphological symptom, called the "foliar injury". The "foliar injury" symptoms can be authentically utilized for biomonitoring of O₃ under natural conditions. Elevated O₃ stress has been convincingly demonstrated to trigger an antioxidative defense system in plants. The past several years have seen the development and application of high-throughput omics technologies (transcriptomics, proteomics, and metabolomics) that are capable of identifying and prolifiling the O₃-responsive components in model and nonmodel plants. Such studies have been carried out ans have generated an inventory of O₃-Responsive components--a great resource to the scientific community. Recently, it has been shown that certain organic chemicals ans elevated CO₂ levels are effective in ameliorating O₃-generated stress. Both targeted and highthroughput approaches have advanced our knowledge concerning what O₃-triggerred signaling and metabolic pathways exist in plants. Moreover, recently generated information, and several biomarkers for O₃, may, in the future, be exploited to better screen and develop O₃-tolerant plants.

  11. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis

    PubMed Central

    Mao, Yanfei; Zhang, Zhengjing; Feng, Zhengyan; Wei, Pengliang; Zhang, Hui; Botella, José Ramón; Zhu, Jian-Kang

    2017-01-01

    Summary The Streptococcus-derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single-guide RNA (sgRNA) for target DNA recognition and the CRISPR-associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ-line-specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ-line-specific promoters (pDD45-GT and pLAT52-GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population. PMID:26360626

  12. Perspectives of the electric power industry amid the transforming global power generation markets

    NASA Astrophysics Data System (ADS)

    Makarov, A. A.; Mitrova, T. A.; Veselov, F. V.; Galkina, A. A.; Kulagin, V. A.

    2017-10-01

    A scenario-based prognosis of the evolution of global power generation markets until 2040, which was developed using the Scaner model-and-information complex, was given. The perspective development of fuel markets, vital for the power generation industry, was considered, and an attempt to predict the demand, production, and prices of oil, gas, coal, and noncarbon resources across various regions of the world was made. The anticipated decline in the growth of the global demand for fossil fuels and their sufficiency with relatively low extraction expenses will maintain the fuel prices (the data hereinafter are given as per 2014 prices) lower than their peak values in 2012. The outrunning growth of demand for electric power is shown in comparison with other power resources by regions and large countries in the world. The conditions of interfuel competition in the electric power industry considering the changes in anticipated fuel prices and cost indicators for various power generation technologies were studied. For this purpose, the ratios of discounted costs of electric power production by new gas and coal TPPs and wind and solar power plants were estimated. It was proven that accounting the system effects (operation modes, necessary duplicating and reserving the power of electric power plants using renewable energy sources) notably reduces the competitiveness of the renewable power industry and is not always compensated by the expected lowering of its capital intensity and growth of fuel for TPPs. However, even with a moderate (in relation to other prognoses) growth of the role of power plants using renewable energy sources, they will triple electric power production. In this context, thermal power plants will preserve their leadership covering up to 60% of the global electric power production, approximately half using gas.

  13. matK-QR classifier: a patterns based approach for plant species identification.

    PubMed

    More, Ravi Prabhakar; Mane, Rupali Chandrashekhar; Purohit, Hemant J

    2016-01-01

    DNA barcoding is widely used and most efficient approach that facilitates rapid and accurate identification of plant species based on the short standardized segment of the genome. The nucleotide sequences of maturaseK ( matK ) and ribulose-1, 5-bisphosphate carboxylase ( rbcL ) marker loci are commonly used in plant species identification. Here, we present a new and highly efficient approach for identifying a unique set of discriminating nucleotide patterns to generate a signature (i.e. regular expression) for plant species identification. In order to generate molecular signatures, we used matK and rbcL loci datasets, which encompass 125 plant species in 52 genera reported by the CBOL plant working group. Initially, we performed Multiple Sequence Alignment (MSA) of all species followed by Position Specific Scoring Matrix (PSSM) for both loci to achieve a percentage of discrimination among species. Further, we detected Discriminating Patterns (DP) at genus and species level using PSSM for the matK dataset. Combining DP and consecutive pattern distances, we generated molecular signatures for each species. Finally, we performed a comparative assessment of these signatures with the existing methods including BLASTn, Support Vector Machines (SVM), Jrip-RIPPER, J48 (C4.5 algorithm), and the Naïve Bayes (NB) methods against NCBI-GenBank matK dataset. Due to the higher discrimination success obtained with the matK as compared to the rbcL , we selected matK gene for signature generation. We generated signatures for 60 species based on identified discriminating patterns at genus and species level. Our comparative assessment results suggest that a total of 46 out of 60 species could be correctly identified using generated signatures, followed by BLASTn (34 species), SVM (18 species), C4.5 (7 species), NB (4 species) and RIPPER (3 species) methods As a final outcome of this study, we converted signatures into QR codes and developed a software matK -QR Classifier (http://www.neeri.res.in/matk_classifier/index.htm), which search signatures in the query matK gene sequences and predict corresponding plant species. This novel approach of employing pattern-based signatures opens new avenues for the classification of species. In addition to existing methods, we believe that matK -QR Classifier would be a valuable tool for molecular taxonomists enabling precise identification of plant species.

  14. Power generation using sugar cane bagasse: A heat recovery analysis

    NASA Astrophysics Data System (ADS)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and 100% are predicted for some cycles with the addition of optimum heat recovery systems.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques V Hugo

    This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclearmore » industry.« less

  16. Tobacco Mosaic Virus Infection Results in an Increase in Recombination Frequency and Resistance to Viral, Bacterial, and Fungal Pathogens in the Progeny of Infected Tobacco Plants1[C][W][OA

    PubMed Central

    Kathiria, Palak; Sidler, Corinne; Golubov, Andrey; Kalischuk, Melanie; Kawchuk, Lawrence M.; Kovalchuk, Igor

    2010-01-01

    Our previous experiments showed that infection of tobacco (Nicotiana tabacum) plants with Tobacco mosaic virus (TMV) leads to an increase in homologous recombination frequency (HRF). The progeny of infected plants also had an increased rate of rearrangements in resistance gene-like loci. Here, we report that tobacco plants infected with TMV exhibited an increase in HRF in two consecutive generations. Analysis of global genome methylation showed the hypermethylated genome in both generations of plants, whereas analysis of methylation via 5-methyl cytosine antibodies demonstrated both hypomethylation and hypermethylation. Analysis of the response of the progeny of infected plants to TMV, Pseudomonas syringae, or Phytophthora nicotianae revealed a significant delay in symptom development. Infection of these plants with TMV or P. syringae showed higher levels of induction of PATHOGENESIS-RELATED GENE1 gene expression and higher levels of callose deposition. Our experiments suggest that viral infection triggers specific changes in progeny that promote higher levels of HRF at the transgene and higher resistance to stress as compared with the progeny of unstressed plants. However, data reported in these studies do not establish evidence of a link between recombination frequency and stress resistance. PMID:20498336

  17. Improving Growth and Productivity of Oleiferous Brassicas under Changing Environment: Significance of Nitrogen and Sulphur Nutrition, and Underlying Mechanisms

    PubMed Central

    Anjum, Naser A.; Gill, Sarvajeet S.; Umar, Shahid; Ahmad, Iqbal; Duarte, Armando C.; Pereira, Eduarda

    2012-01-01

    Mineral nutrients are the integral part of the agricultural systems. Among important plant nutrients, nitrogen (N) and sulphur (S) are known essential elements for growth, development, and various physiological functions in plants. Oleiferous brassicas (rapeseed and mustard) require higher amounts of S in addition to N for optimum growth and yield. Therefore, balancing S-N fertilization, optimization of nutrient replenishment, minimization of nutrient losses to the environment, and the concept of coordination in action between S and N could be a significant strategy for improvement of growth and productivity of oleiferous brassicas. Additionally, positive interaction between S and N has been reported to be beneficial for various aspects of oilseed brassicas. The current paper updates readers on the significance of N and S for the improvement of plant growth, development, and productivity in detail. In addition, S-N nutrition-mediated control of major plant antioxidant defense system components involved in the removal and/or metabolism of stress-induced/generated reactive oxygen species in plants (hence, the control of plant growth, development, and productivity) has been overviewed. PMID:22629181

  18. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs.

    PubMed

    Frank, Margaret H; Scanlon, Michael J

    2015-02-01

    Alternation of generations, in which the haploid and diploid stages of the life cycle are each represented by multicellular forms that differ in their morphology, is a defining feature of the land plants (embryophytes). Anciently derived lineages of embryophytes grow predominately in the haploid gametophytic generation from apical cells that give rise to the photosynthetic body of the plant. More recently evolved plant lineages have multicellular shoot apical meristems (SAMs), and photosynthetic shoot development is restricted to the sporophyte generation. The molecular genetic basis for this evolutionary shift from gametophyte-dominant to sporophyte-dominant life cycles remains a major question in the study of land plant evolution. We used laser microdissection and next generation RNA sequencing to address whether angiosperm meristem patterning genes expressed in the sporophytic SAM of Zea mays are expressed in the gametophytic apical cells, or in the determinate sporophytes, of the model bryophytes Marchantia polymorpha and Physcomitrella patens. A wealth of upregulated genes involved in stem cell maintenance and organogenesis are identified in the maize SAM and in both the gametophytic apical cell and sporophyte of moss, but not in Marchantia. Significantly, meiosis-specific genetic programs are expressed in bryophyte sporophytes, long before the onset of sporogenesis. Our data suggest that this upregulated accumulation of meiotic gene transcripts suppresses indeterminate cell fate in the Physcomitrella sporophyte, and overrides the observed accumulation of meristem patterning genes. A model for the evolution of indeterminate growth in the sporophytic generation through the concerted selection of ancestral meristem gene programs from gametophyte-dominant lineages is proposed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification.

    PubMed

    Sladojevic, Srdjan; Arsenovic, Marko; Anderla, Andras; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  20. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    PubMed Central

    Sladojevic, Srdjan; Arsenovic, Marko; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%. PMID:27418923

  1. Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase.

    PubMed Central

    Lagrimini, L. M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, TTY.

    1997-01-01

    On the basis of the biological compounds that they metabolize, plant peroxidases have long been implicated in plant growth, cell wall biogenesis, lignification, and host defenses. Transgenic tobacco (Nicotiana tabacum L.) plants that underexpress anionic peroxidase were generated using antisense RNA. The antisense RNA was found to be specific for the anionic isoenzyme and highly effective, reducing endogenous transcript levels and total peroxidase activity by as much as 1600-fold. Antisense-transformed plants appeared normal at initial observation; however, growth studies showed that plants with reduced peroxidase activity grow taller and flower sooner than control plants. In contrast, previously transformed plants overproducing anionic peroxidase were shorter and flowered later than controls. Axillary buds were more developed in antisense-transformed plants and less developed in plants overproducing this enzyme. It was found that the lignin content in leaf, stem, and root was unchanged in antisense-transformed plants, which does not support a role for anionic peroxidase in the lignification of secondary xylem vessels. However, studies of wounded tissue show some reduction in wound-induced deposition of lignin-like polymers. The data support a possible role for tobacco anionic peroxidase in host defenses but not without a reduction in growth potential. PMID:12223765

  2. Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase.

    PubMed

    Lagrimini, L. M.; Gingas, V.; Finger, F.; Rothstein, S.; Liu, TTY.

    1997-08-01

    On the basis of the biological compounds that they metabolize, plant peroxidases have long been implicated in plant growth, cell wall biogenesis, lignification, and host defenses. Transgenic tobacco (Nicotiana tabacum L.) plants that underexpress anionic peroxidase were generated using antisense RNA. The antisense RNA was found to be specific for the anionic isoenzyme and highly effective, reducing endogenous transcript levels and total peroxidase activity by as much as 1600-fold. Antisense-transformed plants appeared normal at initial observation; however, growth studies showed that plants with reduced peroxidase activity grow taller and flower sooner than control plants. In contrast, previously transformed plants overproducing anionic peroxidase were shorter and flowered later than controls. Axillary buds were more developed in antisense-transformed plants and less developed in plants overproducing this enzyme. It was found that the lignin content in leaf, stem, and root was unchanged in antisense-transformed plants, which does not support a role for anionic peroxidase in the lignification of secondary xylem vessels. However, studies of wounded tissue show some reduction in wound-induced deposition of lignin-like polymers. The data support a possible role for tobacco anionic peroxidase in host defenses but not without a reduction in growth potential.

  3. Quantifying the Sensitivity of the Production of Environmental Externalities to Market-Based Interventions in the Power Sector

    NASA Astrophysics Data System (ADS)

    Peer, R.; Sanders, K.

    2017-12-01

    The optimization function that governs the dispatching of power generators to meet electricity demand minimizes the marginal cost of electricity generation without regard to the environmental or public health damages caused by power production. Although technologies exist for reducing the externalities resulting from electricity generation at power plants, current solutions typically raise the cost of power production or introduce operational challenges for the grid. This research quantifies the trade-offs and couplings between the cooling water, greenhouse gas emissions, and air quality impacts of different power generating technologies under business as usual market conditions, as well as a series of market-based interventions aimed to reduce the production of those externalities. Using publicly available data from the US Environmental Protection Agency (EPA) and the US Energy Information Administration (EIA) for power plant water use and emissions, a unit commitment and dispatch power market simulation model is modified to evaluate the production of environmental externalities from power production. Scenarios are developed to apply a set of fees for cooling water, carbon dioxide, nitrous oxide and sulfur oxide emissions, respectively. Trade-offs between environmental performance, overall generation costs, and shifts in the power plants dispatched to meet demand are quantified for each power market simulation. The results from this study will provide insight into the development of a novel market-based framework that modifies the optimization algorithms governing the dispatching of electricity onto the grid in efforts to achieve cost-effective improvements in its environmental performance without the need for new infrastructure investments.

  4. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cepcek, S.

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  5. Integrated omics analysis of specialized metabolism in medicinal plants.

    PubMed

    Rai, Amit; Saito, Kazuki; Yamazaki, Mami

    2017-05-01

    Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. RNAi-mediated male sterility of tobacco by silencing TA29.

    PubMed

    Nawaz-ul-Rehman, Muhammad Shah; Mansoor, Shahid; Khan, Asif Ali; Zafar, Yusuf; Briddon, Rob W

    2007-06-01

    The superior performance of F1 hybrids has a significant impact on agricultural productivity. For commercial application, the availability of an efficient system for obtaining male-sterile lines of crops is an essential prerequisite. Here we have investigated the use of RNA interference (RNAi) technology to silence a male-specific gene in the model host tobacco. TA29 is expressed exclusively in anthers at the time of microspore development. About 10 out of 13 tobacco lines transformed with a hairpin RNAi construct containing TA29 sequences were male sterile. Transgenic plants were phenotypically indistinguishable from non-transgenic plants. At the anthesis stage, pollen grains from transgenic, male-sterile plants were aborted and lysed in comparison to the round and fully developed pollen in non-transgenic plants. Microscopic analysis of anthers showed selective degradation of tapetum in transgenic plants with no microspore development. One week after self-pollination, the ovules of non-transgenic plants were double the size of those in transgenic plants, due to successful self-fertilization. Male sterile transgenic plants set seed normally, when cross-pollinated with pollen from non-transgenic plants, confirming no adverse effect on the female parts of the flower. These results show that silencing of male-specific genes by RNAi is potentially a useful tool for generating male-sterile lines for producing hybrid seed.

  7. Comparative safety assessment of plant-derived foods.

    PubMed

    Kok, E J; Keijer, J; Kleter, G A; Kuiper, H A

    2008-02-01

    The second generation of genetically modified (GM) plants that are moving towards the market are characterized by modifications that may be more complex and traits that more often are to the benefit of the consumer. These developments will have implications for the safety assessment of the resulting plant products. In part of the cases the same crop plant can, however, also be obtained by 'conventional' breeding strategies. The breeder will decide on a case-by-case basis what will be the best strategy to reach the set target and whether genetic modification will form part of this strategy. This article discusses important aspects of the safety assessment of complex products derived from newly bred plant varieties obtained by different breeding strategies. On the basis of this overview, we conclude that the current process of the safety evaluation of GM versus conventionally bred plants is not well balanced. GM varieties are elaborately assessed, yet at the same time other crop plants resulting from conventional breeding strategies may warrant further food safety assessment for the benefit of the consumer. We propose to develop a general screening frame for all newly developed plant varieties to select varieties that cannot, on the basis of scientific criteria, be considered as safe as plant varieties that are already on the market.

  8. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is expected within the next 30 to 50 years, as predicted by the Hubbert model and confirmed by other global energy consumption prognoses. Having invested national resources into the development of NGNP, the technology and experience accumulated during the project needs to be documented clearly and in sufficient detail for young engineers coming on-board at both DOE and NASA to acquire it. Hands on training on reactor operation, test rigs of turbomachinery, and heat exchanger components, as well as computational tools will be needed. Senior scientist/engineers involved with the development of NGNP should also be encouraged to participate as lecturers, instructors, or adjunct professors at local universities having engineering (mechanical, electrical, nuclear/chemical, and/or materials) as one of their fields of study.

  9. Emerging Roles of Strigolactones in Plant Responses to Stress and Development

    PubMed Central

    Pandey, Amita; Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    Our environment constantly undergoes changes either natural or manmade affecting growth and development of all the organisms including plants. Plants are sessile in nature and therefore to counter environmental changes such as light, temperature, nutrient and water availability, pathogen, and many others; plants have evolved intricate signaling mechanisms, composed of multiple components including several plant hormones. Research conducted in the last decade has placed Strigolactones (SLs) in the growing list of plant hormones involved in coping with environmental changes. SLs are carotenoid derivatives functioning as both endogenous and exogenous signaling molecules in response to various environmental cues. Initially, SLs were discovered as compounds that are harmful to plants due to their role as stimulants in seed germination of parasitic plants, a more beneficial role in plant growth and development was uncovered much later. SLs are required for maintaining plant architecture by regulating shoot and root growth in response to various external stimuli including arbuscular mycorrhizal fungi, light, nutrients, and temperature. Moreover, a role for SLs has also been recognized during various abiotic and biotic stress conditions making them suitable target for generating genetically engineered crop plants with improved yield. This review discusses the biosynthesis of SLs and their regulatory and physiological roles in various stress conditions. Understanding of detailed signaling mechanisms of SLs will be an important factor for designing genetically modified crops for overcoming the problem of crop loss under stressful conditions. PMID:27092155

  10. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution.

    PubMed

    Mosquna, Assaf; Katz, Aviva; Decker, Eva L; Rensing, Stefan A; Reski, Ralf; Ohad, Nir

    2009-07-01

    The Polycomb group (PcG) complex is involved in the epigenetic control of gene expression profiles. In flowering plants, PcG proteins regulate vegetative and reproductive programs. Epigenetically inherited states established in the gametophyte generation are maintained after fertilization in the sporophyte generation, having a profound influence on seed development. The gametophyte size and phase dominance were dramatically reduced during angiosperm evolution, and have specialized in flowering plants to support the reproductive process. The moss Physcomitrella patens is an ideal organism in which to study epigenetic processes during the gametophyte stage, as it possesses a dominant photosynthetic gametophytic haploid phase and efficient homologous recombination, allowing targeted gene replacement. We show that P. patens PcG protein FIE (PpFIE) accumulates in haploid meristematic cells and in cells that undergo fate transition during dedifferentiation programs in the gametophyte. In the absence of PpFIE, meristems overproliferate and are unable to develop leafy gametophytes or reach the reproductive phase. This aberrant phenotype might result from failure of the PcG complex to repress proliferation and differentiation of three-faced apical stem cells, which are designated to become lateral shoots. The PpFIE phenotype can be partially rescued by FIE of Arabidopsis thaliana, a flowering plant that diverged >450 million years ago from bryophytes. PpFIE can partially complement the A. thaliana fie mutant, illustrating functional conservation of the protein during evolution in regulating the differentiation of meristematic cells in gametophyte development, both in bryophytes and angiosperms. This mechanism was harnessed at the onset of the evolution of alternating generations, facilitating the establishment of sporophytic developmental programs.

  11. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA.

    PubMed

    Kanazashi, Yuhei; Hirose, Aya; Takahashi, Ippei; Mikami, Masafumi; Endo, Masaki; Hirose, Sakiko; Toki, Seiichi; Kaga, Akito; Naito, Ken; Ishimoto, Masao; Abe, Jun; Yamada, Tetsuya

    2018-03-01

    Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T 2 seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T 1 plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T 1 and T 2 generations indicates that putative mutation induced in the T 0 plant is transmitted to the T 1 generation. The inheritable mutation induced in the T 1 plant was also detected. This result indicates that continuous induction of mutations during T 1 plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T 2 seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.

  12. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.

    PubMed

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Induction of low-level hydrogen peroxide generation by unbleached cotton nonwovens as potential or wound healing applications

    USDA-ARS?s Scientific Manuscript database

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  14. Plant-pathogen interactions: toward development of next-generation disease-resistant plants.

    PubMed

    Nejat, Naghmeh; Rookes, James; Mantri, Nitin L; Cahill, David M

    2017-03-01

    Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.

  15. Pollen embryogenesis to induce, detect, and analyze mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, M.J.

    The development of fully differentiated plants from individual pollen grains through a series of developmental phases that resemble embryogenesis beginning with the zygote was demonstrated during the mid-1960's. This technology opened the door to the use of haploid plants (sporophytes with the gametic number of chromosomes) for plant breeding and genetic studies, biochemical and metabolic studies, and the selection of mutations. Although pollen embryogenesis has been demonstrated successfully in numerous plant genera, the procedure cannot as yet be used routinely to generate large populations of plants for experiments. Practical results from use of the technology in genetic toxicology research tomore » detect mutations have failed to fully realize the theoretical potential; further developments of the technology could overcome the limitations. Pollen embryogenesis could be used to develop plants from mutant pollen grains to verify that genetic changes are involved. Through either spontaneous or induced chromosome doubling, these plants can be made homozygous and used to analyze genetically the mutants involved. The success of this approach will depend on the mutant frequency relative to the fraction of pollen grains that undergo embryogenesis; these two factors will dictate population size needed for success. Research effort is needed to further develop pollen embryogenesis for use in the detection of genotoxins under both laboratory and in situ conditions.« less

  16. WWTP dynamic disturbance modelling--an essential module for long-term benchmarking development.

    PubMed

    Gernaey, K V; Rosen, C; Jeppsson, U

    2006-01-01

    Intensive use of the benchmark simulation model No. 1 (BSM1), a protocol for objective comparison of the effectiveness of control strategies in biological nitrogen removal activated sludge plants, has also revealed a number of limitations. Preliminary definitions of the long-term benchmark simulation model No. 1 (BSM1_LT) and the benchmark simulation model No. 2 (BSM2) have been made to extend BSM1 for evaluation of process monitoring methods and plant-wide control strategies, respectively. Influent-related disturbances for BSM1_LT/BSM2 are to be generated with a model, and this paper provides a general overview of the modelling methods used. Typical influent dynamic phenomena generated with the BSM1_LT/BSM2 influent disturbance model, including diurnal, weekend, seasonal and holiday effects, as well as rainfall, are illustrated with simulation results. As a result of the work described in this paper, a proposed influent model/file has been released to the benchmark developers for evaluation purposes. Pending this evaluation, a final BSM1_LT/BSM2 influent disturbance model definition is foreseen. Preliminary simulations with dynamic influent data generated by the influent disturbance model indicate that default BSM1 activated sludge plant control strategies will need extensions for BSM1_LT/BSM2 to efficiently handle 1 year of influent dynamics.

  17. Status of the Flooding Fragility Testing Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C. L.; Savage, B.; Bhandari, B.

    2016-06-01

    This report provides an update on research addressing nuclear power plant component reliability under flooding conditions. The research includes use of the Component Flooding Evaluation Laboratory (CFEL) where individual components and component subassemblies will be tested to failure under various flooding conditions. The resulting component reliability data can then be incorporated with risk simulation strategies to provide a more thorough representation of overall plant risk. The CFEL development strategy consists of four interleaved phases. Phase 1 addresses design and application of CFEL with water rise and water spray capabilities allowing testing of passive and active components including fully electrified components.more » Phase 2 addresses research into wave generation techniques followed by the design and addition of the wave generation capability to CFEL. Phase 3 addresses methodology development activities including small scale component testing, development of full scale component testing protocol, and simulation techniques including Smoothed Particle Hydrodynamic (SPH) based computer codes. Phase 4 involves full scale component testing including work on full scale component testing in a surrogate CFEL testing apparatus.« less

  18. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...

  19. Development of a Small Thermoelectric Generators Prototype for Energy Harvesting from Low Temperature Waste Heat at Industrial Plant.

    PubMed

    Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano

    2017-03-01

    A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.

  20. Development of Transcriptomic Resources for Interrogating the Biosynthesis of Monoterpene Indole Alkaloids in Medicinal Plant Species

    PubMed Central

    Góngora-Castillo, Elsa; Childs, Kevin L.; Fedewa, Greg; Hamilton, John P.; Liscombe, David K.; Magallanes-Lundback, Maria; Mandadi, Kranthi K.; Nims, Ezekiel; Runguphan, Weerawat; Vaillancourt, Brieanne; Varbanova-Herde, Marina; DellaPenna, Dean; McKnight, Thomas D.; O’Connor, Sarah; Buell, C. Robin

    2012-01-01

    The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for understanding plant specialized metabolism, and promotes realization of innovative production systems for plant-derived pharmaceuticals. PMID:23300689

  1. MicroRNAs play critical roles during plant development and in response to abiotic stresses.

    PubMed

    de Lima, Júlio César; Loss-Morais, Guilherme; Margis, Rogerio

    2012-12-01

    MicroRNAs (miRNAs) have been identified as key molecules in regulatory networks. The fine-tuning role of miRNAs in addition to the regulatory role of transcription factors has shown that molecular events during development are tightly regulated. In addition, several miRNAs play crucial roles in the response to abiotic stress induced by drought, salinity, low temperatures, and metals such as aluminium. Interestingly, several miRNAs have overlapping roles with regard to development, stress responses, and nutrient homeostasis. Moreover, in response to the same abiotic stresses, different expression patterns for some conserved miRNA families among different plant species revealed different metabolic adjustments. The use of deep sequencing technologies for the characterisation of miRNA frequency and the identification of new miRNAs adds complexity to regulatory networks in plants. In this review, we consider the regulatory role of miRNAs in plant development and abiotic stresses, as well as the impact of deep sequencing technologies on the generation of miRNA data.

  2. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Yunhong; Liu, Hang; Yin, Heng; Wang, Wenxia; Zhao, Xiaoming; Du, Yuguang

    2013-10-01

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg L(-1)) were found to induce the generation of nitric oxide (NO) in the root system of wheat (Triticum aestivum L.), which promoted the formation and elongation of wheat roots in a dose-dependent manner. NO inhibitors suggested that nitrate reductase (NR), rather than nitric oxide synthase (NOS), was essential for AOS-induced root development. Further studies confirmed that AOS-induced NO generation in wheat roots by up-regulating the gene expression and enzyme activity of NR at the post-transcriptional level. The anatomy and RT-PCR results showed that AOS accelerated the division and growth of stele cells, leading to an increase in the ratio of stele area to root transverse area. This could be inhibited by the NR inhibitor, sodium tungstate, which indicated that NO catalyzed by the NR was involved in AOS regulation of root development. Taken together, in the early stage of AOS-induced root development, NO generation was a novel mechanism by which AOS regulated plant growth. The results also showed that this marine resource could be widely used for crop development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Speed breeding is a powerful tool to accelerate crop research and breeding.

    PubMed

    Watson, Amy; Ghosh, Sreya; Williams, Matthew J; Cuddy, William S; Simmonds, James; Rey, María-Dolores; Asyraf Md Hatta, M; Hinchliffe, Alison; Steed, Andrew; Reynolds, Daniel; Adamski, Nikolai M; Breakspear, Andy; Korolev, Andrey; Rayner, Tracey; Dixon, Laura E; Riaz, Adnan; Martin, William; Ryan, Merrill; Edwards, David; Batley, Jacqueline; Raman, Harsh; Carter, Jeremy; Rogers, Christian; Domoney, Claire; Moore, Graham; Harwood, Wendy; Nicholson, Paul; Dieters, Mark J; DeLacy, Ian H; Zhou, Ji; Uauy, Cristobal; Boden, Scott A; Park, Robert F; Wulff, Brande B H; Hickey, Lee T

    2018-01-01

    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.

  4. Space Solar Power Concepts: Demonstrations to Pilot Plants

    NASA Technical Reports Server (NTRS)

    Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.

  5. Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta.

    PubMed

    Hebelstrup, Kim H; Østergaard-Jensen, Erik; Hill, Robert D

    2008-01-01

    Plant hemoglobins are ubiquitous in all plant families. They are expressed at low levels in specific tissues. Several studies have established that plant hemoglobins are scavengers of nitric oxide (NO) and that varying the endogenous level of hemoglobin in plant cells negatively modulates bioactivity of NO generated under hypoxic conditions or during cellular signaling. Earlier methods for determination of hemoglobin-dependent scavenging in planta were based on measuring activity in whole plants or organs. Plant hemoglobins do not contain specific organelle localization signals; however, earlier reports on plant hemoglobin have demonstrated either cytosolic or nuclear localization, depending on the method or cell type investigated. We have developed two bioimaging techniques: one for visualization of hemoglobin-catalyzed scavenging of NO in specific cells and another for visualization of subcellular localization of green fluorescent protein-tagged plant hemoglobins in transformed Arabidopsis thaliana plants.

  6. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding.

    PubMed

    Podevin, Nancy; Davies, Howard V; Hartung, Frank; Nogué, Fabien; Casacuberta, Josep M

    2013-06-01

    Conventional plant breeding exploits existing genetic variability and introduces new variability by mutagenesis. This has proven highly successful in securing food supplies for an ever-growing human population. The use of genetically modified plants is a complementary approach but all plant breeding techniques have limitations. Here, we discuss how the recent evolution of targeted mutagenesis and DNA insertion techniques based on tailor-made site-directed nucleases (SDNs) provides opportunities to overcome such limitations. Plant breeding companies are exploiting SDNs to develop a new generation of crops with new and improved traits. Nevertheless, some technical limitations as well as significant uncertainties on the regulatory status of SDNs may challenge their use for commercial plant breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Role of a Transcriptional Regulator in Programmed Cell Death and Plant Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julie M. Stone

    2008-09-13

    The long-term goal of this research is to understand the role(s) and molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development and responses to biotic and abiotic stress. We developed a genetic selection scheme to identify A. thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone et al., 2005; Khan and Stone, 2008). The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain transcriptional regulator (Stone et al., 2005; Liang et al., 2008). This research plan ismore » designed to fill gaps in the knowledge about the role of SPL14 in plant growth and development. The work is being guided by three objectives aimed at determining the pathways in which SPL14 functions to modulate PCD and/or plant development: (1) determine how SPL14 functions in plant development, (2) identify target genes that are directly regulated by SPL14, and (3) identify SPL14 modifications and interacting proteins. We made significant progress during the funding period. Briefly, some major accomplishments are highlighted below: (1) To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection (SELEX) and site-directed mutagenesis (Liang et al., 2008). This consensus binding site was used to analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to find possible AtSPL14-regulated genes. These candidate AtSPL14-regulated genes are providing new information on the molecular mechanisms linking plant PCD and plant development through modulation of the 26S proteasome. (2) Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus, Liang and Stone, in preparation) (3) Double mutants generated between fbr6 and various accelerated cell death (acd) mutants indicate that sphingolipid metabolism is influenced by AtSPL14 and sphingolipidomics profiling supports this conclusion (Lin, Markham and Stone, in preparation). (4) A new set of phenotypes have been uncovered in the original fbr6-1 mutant, including a short-root phenotype related to auxin signaling and altered photosynthetic parameters related to stomatal density and conductance (Lin and Stone, in preparation; Lin, Madhavan and Stone, in preparation). Additional AtSPL14-related mutants and transgenic plants have been generated to effectively dissect the functions of AtSPL14, including a dominant negative fbr6-2 allele and transgenic plants overexpressing FBR6/AtSPL14 that display an accelerated cell death (acd) phenotype.« less

  8. Experimental Study and Optimization of Thermoelectricity-Driven Autonomous Sensors for the Chimney of a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Aranguren, P.

    2014-06-01

    In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.

  9. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  10. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism.

    PubMed

    Noda, Naonobu; Yoshioka, Satoshi; Kishimoto, Sanae; Nakayama, Masayoshi; Douzono, Mitsuru; Tanaka, Yoshikazu; Aida, Ryutaro

    2017-07-01

    Various colored cultivars of ornamental flowers have been bred by hybridization and mutation breeding; however, the generation of blue flowers for major cut flower plants, such as roses, chrysanthemums, and carnations, has not been achieved by conventional breeding or genetic engineering. Most blue-hued flowers contain delphinidin-based anthocyanins; therefore, delphinidin-producing carnation, rose, and chrysanthemum flowers have been generated by overexpression of the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the key enzyme for delphinidin biosynthesis. Even so, the flowers are purple/violet rather than blue. To generate true blue flowers, blue pigments, such as polyacylated anthocyanins and metal complexes, must be introduced by metabolic engineering; however, introducing and controlling multiple transgenes in plants are complicated processes. We succeeded in generating blue chrysanthemum flowers by introduction of butterfly pea UDP (uridine diphosphate)-glucose:anthocyanin 3',5'- O -glucosyltransferase gene, in addition to the expression of the Canterbury bells F3'5'H . Newly synthesized 3',5'-diglucosylated delphinidin-based anthocyanins exhibited a violet color under the weakly acidic pH conditions of flower petal juice and showed a blue color only through intermolecular association, termed "copigmentation," with flavone glucosides in planta. Thus, we achieved the development of blue color by a two-step modification of the anthocyanin structure. This simple method is a promising approach to generate blue flowers in various ornamental plants by metabolic engineering.

  11. Generation of EMS-Mutagenized Populations of Arabidopsis thaliana for Polyamine Genetics.

    PubMed

    Atanasov, Kostadin E; Liu, Changxin; Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    In the recent years, genetic engineering of polyamine biosynthetic genes has provided evidence for their involvement in plant stress responses and different aspects of plant development. Such approaches are being complemented with the use of reverse genetics, in which mutants affected on a particular trait, tightly associated with polyamines, are isolated and the causal genes mapped. Reverse genetics enables the identification of novel genes in the polyamine pathway, which may be involved in downstream signaling, transport, homeostasis, or perception. Here, we describe a basic protocol for the generation of ethyl methanesulfonate (EMS) mutagenized populations of Arabidopsis thaliana for its use in reverse genetics applied to polyamines.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattison, M.B.

    The Idaho National Engineering Laboratory (INEL) over the three years has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of ASP evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both the U.S. Nuclear Regulatory Commission`s (NRC`s) Office of Nuclear Reactor Regulation (NRR) and the Office for Analysis and Evaluation of Operational Data (AEOD). This paper presents an overviewmore » of the models and software. Key characteristics include: (1) classification of the plant models according to plant response with a unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events. Future plans for the ASP models is also presented.« less

  13. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less

  14. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications.

    PubMed

    Poot-Poot, Wilberth; Hernandez-Sotomayor, Soledad M Teresa

    2011-10-01

    An early response of plants to environmental signals or abiotic stress suggests that the phospholipid signaling pathway plays a pivotal role in these mechanisms. The phospholipid signaling cascade is one of the main systems of cellular transduction and is related to other signal transduction mechanisms. These other mechanisms include the generation of second messengers and their interactions with various proteins, such as ion channels. This phospholipid signaling cascade is activated by changes in the environment, such as phosphate starvation, water, metals, saline stres, and plant-pathogen interactions. One important factor that impacts agricultural crops is metal-induced stress. Because aluminum has been considered to be a major toxic factor for agriculture conducted in acidic soils, many researchers have focused on understanding the mechanisms of aluminum toxicity in plants. We have contributed the last fifteen years in this field by studying the effects of aluminum on phospholipid signaling in coffee, one of the Mexico's primary crops. We have focused our research on aluminum toxicity mechanisms in Coffea arabica suspension cells as a model for developing future contributions to the biotechnological transformation of coffee crops such that they can be made resistant to aluminum toxicity. We conclude that aluminum is able to not only generate a signal cascade in plants but also modulate other signal cascades generated by other types of stress in plants. The aim of this review is to discuss possible involvement of the phospholipid signaling pathway in the aluminum toxicity response of plant cells. Copyright © 2011 Wiley Periodicals, Inc.

  15. Plant Photodynamic Stress: What's New?

    PubMed Central

    Issawi, Mohammad; Sol, Vincent; Riou, Catherine

    2018-01-01

    In the 1970's, an unconventional stressful photodynamic treatment applied to plants was investigated in two directions. Exogenous photosensitizer treatment underlies direct photodynamic stress while treatment mediating endogenous photosensitizer over-accumulation pinpoints indirect photodynamic stress. For indirect photodynamic treatment, tetrapyrrole biosynthesis pathway was deregulated by 5-aminolevulenic acid or diphenyl ether. Overall, photodynamic stress involves the generation of high amount of reactive oxygen species leading to plant cell death. All these investigations were mainly performed to gain insight into new herbicide development but they were rapidly given up or limited due to the harmfulness of diphenyl ether and the high cost of 5-aminolevulinic acid treatment. Twenty years ago, plant photodynamic stress came back by way of crop transgenesis where for example protoporphyrin oxidases from human or bacteria were overexpressed. Such plants grew without dramatic effects of photodamage suggesting that plants tolerated induced photodynamic stress. In this review, we shed light on the occurrence of plant photodynamic stress and discuss challenging issues in the context of agriculture focusing on direct photodynamic modality. Indeed, we highlighted applications of exogenous PS especially porphyrins on plants, to further develop an emerged antimicrobial photodynamic treatment that could be a new strategy to kill plant pathogens without disturbing plant growth. PMID:29875786

  16. Sub-synchronous resonance damping using high penetration PV plant

    NASA Astrophysics Data System (ADS)

    Khayyatzadeh, M.; Kazemzadeh, R.

    2017-02-01

    The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.

  17. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula.

    PubMed

    Curtin, Shaun J; Xiong, Yer; Michno, Jean-Michel; Campbell, Benjamin W; Stec, Adrian O; Čermák, Tomas; Starker, Colby; Voytas, Daniel F; Eamens, Andrew L; Stupar, Robert M

    2018-06-01

    Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer-like3 gene and the GmHen1a gene was observed in the T 0 generation, but these mutations failed to transmit to the T 1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole-genome sequencing to reveal a spectrum of non-germ-line-targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana.

    PubMed

    Zuñiga-Mayo, Victor M; Baños-Bayardo, Cesar R; Díaz-Ramírez, David; Marsch-Martínez, Nayelli; de Folter, Stefan

    2018-05-01

    Hormones are an important component in the regulatory networks guiding plant development. Cytokinins are involved in different physiological and developmental processes in plants. In the model plant Arabidopsis thaliana, cytokinin application during gynoecium development produces conspicuous phenotypes. On the other hand, Brassica napus, also known as canola, is a crop plant belonging to the Brassicaceae family, as A. thaliana. This makes B. napus a good candidate to study whether the cytokinin responses observed in A. thaliana are conserved in the same plant family. Here, we observed that cytokinin treatment in B. napus affects different traits of flower and fruit development. It increases ovule and seed number, affects stamen filament elongation and anther maturation, and causes a conspicuous overgrowth of tissue in petals and gynoecia. Furthermore, cytokinin recovers replum development in both wild type B. napus and in the A. thaliana rpl ntt double mutant, in which no replum is visible. These results indicate both conserved and novel responses to cytokinin in B. napus. Moreover, in this species, some cytokinin-induced phenotypes are inherited to the next, untreated generation, suggesting that cytokinins may trigger epigenetic modifications.

  19. A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana

    PubMed Central

    Paz-Ares, Javier; Weigel, Detlef

    2010-01-01

    Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ∼20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants. PMID:20661442

  20. A key enzyme of animal steroidogenesis can function in plants enhancing their immunity and accelerating the processes of growth and development.

    PubMed

    Shpakovski, George V; Spivak, Svetlana G; Berdichevets, Irina N; Babak, Olga G; Kubrak, Svetlana V; Kilchevsky, Alexander V; Aralov, Andrey V; Slovokhotov, Ivan Yu; Shpakovski, Dmitry G; Baranova, Ekaterina N; Khaliluev, Marat R; Shematorova, Elena K

    2017-11-14

    The initial stage of the biosynthesis of steroid hormones in animals occurs in the mitochondria of steroidogenic tissues, where cytochrome P450 SCC (CYP11A1) encoded by the CYP11A1 gene catalyzes the conversion of cholesterol into pregnenolone - the general precursor of all the steroid hormones, starting with progesterone. This stage is missing in plants where mitochondrial cytochromes P450 (the mito CYP clan) have not been found. Generating transgenic plants with a mitochondrial type P450 from animals would offer an interesting option to verify whether plant mitochondria could serve as another site of P450 monooxygenase reaction for the steroid hormones biosynthesis. For a more detailed comparison of steroidogenic systems of Plantae and Animalia, we have created and studied transgenic tobacco and tomato plants efficiently expressing mammalian CYP11A1 cDNA. The detailed phenotypic characterization of plants obtained has shown that through four generations studied, the transgenic tobacco plants have reduced a period of vegetative development (early flowering and maturation of bolls), enlarged biomass and increased productivity (quantity and quality of seeds) as compared to the only empty-vector containing or wild type plants. Moreover, the CYP11A1 transgenic plants show resistance to such fungal pathogen as Botrytis cinerea. Similar valuable phenotypes (the accelerated course of ontogenesis and/or stress resistance) are also visible in two clearly distinct transgenic tomato lines expressing CYP11A1 cDNA: one line (No. 4) has an accelerated rate of vegetative development, while the other (No. 7) has enhanced immunity to abiotic and biotic stresses. The progesterone level in transgenic tobacco and tomato leaves is 3-5 times higher than in the control plants of the wild type. For the first time, we could show the compatibility in vivo of even the most specific components of the systems of biosynthesis of steroid hormones in Plantae and Animalia. The hypothesis is proposed and substantiated that the formation of the above-noted special phenotypes of transgenic plants expressing mammalian CYP11A1 cDNA is due to the increased biosynthesis of progesterone that can be considered as a very ancient bioregulator of plant cells and the first real hormone common to plants and animals.

  1. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    NASA Astrophysics Data System (ADS)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  2. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  3. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  4. Preferential expression and immunogenicity of HIV-1 Tat fusion protein expressed in tomato plant.

    PubMed

    Cueno, Marni E; Hibi, Yurina; Karamatsu, Katsuo; Yasutomi, Yasuhiro; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi

    2010-10-01

    HIV-1 Tat plays a major role in viral replication and is essential for AIDS development making it an ideal vaccine target providing that both humoral and cellular immune responses are induced. Plant-based antigen production, due to its cheaper cost, appears ideal for vaccine production. In this study, we created a plant-optimized tat and mutant (Cys30Ala/Lys41Ala) tat (mtat) gene and ligated each into a pBI121 expression vector with a stop codon and a gusA gene positioned immediately downstream. The vector construct was bombarded into tomato leaf calli and allowed to develop. We thus generated recombinant tomato plants preferentially expressing a Tat-GUS fusion protein over a Tat-only protein. In addition, plants bombarded with either tat or mtat genes showed no phenotypic difference and produced 2-4 microg Tat-GUS fusion protein per milligram soluble plant protein. Furthermore, tomato extracts intradermally inoculated into mice were found to induce a humoral and, most importantly, cellular immunity.

  5. The multiple functions of plant serine protease inhibitors

    PubMed Central

    Giri, Ashok P; Kaur, Harleen; Baldwin, Ian T

    2011-01-01

    Plant protease inhibitors (PIs) are a diverse group of proteins which have been intensely investigated due to their potential function in protecting plants against herbivorous insects by inhibiting digestive proteases. Although this mechanism has been well documented for a number of single PIs and their target enzymes, whether this mechanism protects plants in nature remains unclear. Moreover, many plants express a number of different PIs and it was unknown if these proteins work synergistically as defenses or if they also have other functions. We recently identified four serine PIs (SPI) of Solanum nigrum and demonstrated that they differ substantially in substrate specificity, accumulation patterns, and their effect against different natural herbivorous insects in field- and glasshouse experiments. These differences suggest that SPIs have at least partially diversified to provide protection against different attackers. Although we could not detect effects on plant development or growth when silencing SPIs, gene- and tissue-specific expression patterns suggest multiple functions in generative tissues, including a possible involvement in development. PMID:22004998

  6. CAES (conventional compressed-air energy storage) plant with steam generation: Preliminary design and cost analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Swensen, E.C.; Abitante, P.A.

    1990-10-01

    A study was performed to evaluate the performance and cost characteristics of two alternative CAES-plant concepts which utilize the low-pressure expander's exhaust-gas heat for the generation of steam in a heat recovery steam generator (HRSG). Both concepts result in increased net-power generation relative to a conventional CAES plant with a recuperator. The HRSG-generated steam produces additional power in either a separate steam-turbine bottoming cycle (CAESCC) or by direct injection into and expansion through the CAES-turboexpander train (CAESSI). The HRSG, which is a proven component of combined-cycle and cogeneration plants, replaces the recuperator of a conventional CAES plant, which has demonstratedmore » the potential for engineering and operating related problems and higher costs than were originally estimated. To enhance the credibility of the results, the analyses performed were based on the performance, operational and cost data of the 110-MW CAES plant currently under construction for the Alabama Electric Cooperative (AEC). The results indicate that CAESCC- and CAESSI-plant concepts are attractive alternatives to the conventional CAES plant with recuperator, providing greater power generation, up to 44-MW relative to the AEC CAES plant, with competitive operating and capital costs. 5 refs., 43 figs., 26 tabs.« less

  7. Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid

    NASA Astrophysics Data System (ADS)

    Arda, Samet Egemen

    A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.

  8. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  9. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis

    PubMed Central

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I.; Rodríguez-Hernández, Aída A.; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F.

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  10. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines.

    PubMed

    Chakraborty, Anirban; Mitra, Joy; Bhattacharyya, Jagannath; Pradhan, Subrata; Sikdar, Narattam; Das, Srirupa; Chakraborty, Saikat; Kumar, Sachin; Lakhanpaul, Suman; Sen, Soumitra K

    2015-06-01

    Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.

  11. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  12. Disease Management in the Genomics Era-Summaries of Focus Issue Papers.

    PubMed

    Klosterman, S J; Rollins, J R; Sudarshana, M R; Vinatzer, B A

    2016-10-01

    The genomics revolution has contributed enormously to research and disease management applications in plant pathology. This development has rapidly increased our understanding of the molecular mechanisms underpinning pathogenesis and resistance, contributed novel markers for rapid pathogen detection and diagnosis, and offered further insights into the genetics of pathogen populations on a larger scale. The availability of whole genome resources coupled with next-generation sequencing (NGS) technologies has helped fuel genomics-based approaches to improve disease resistance in crops. NGS technologies have accelerated the pace at which whole plant and pathogen genomes have become available, and made possible the metagenomic analysis of plant-associated microbial communities. Furthermore, NGS technologies can now be applied routinely and cost effectively to rapidly generate plant and/or pathogen genome or transcriptome marker sequences associated with virulence phenotypes in the pathogen or resistance phenotypes in the plant, potentially leading to improvements in plant disease management. In some systems, investments in plant and pathogen genomics have led to immediate, tangible benefits. This focus issue covers some of the systems. The articles in this focus issue range from overall perspective articles to research articles describing specific genomics applications for detection and control of diseases caused by nematode, viral, bacterial, fungal, and oomycete pathogens. The following are representative short summaries of the articles that appear in this Focus Issue .

  13. Ancillary Service Revenue Potential for Geothermal Generators in California FY15 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, T; Sotorrio, P

    2015-04-16

    Achieving California’s 33% renewable generation goal will substantially increase uncertainty and variability in grid operations. Geothermal power plant operators could mitigate this variability and uncertainty by operating plants in a more flexible mode. Plant operators would be compensated for flexibility through payments for ancillary services such as frequency regulation, load following, and spinning reserve. This study explores economic incentives for geothermal plant operators to provide such flexibility. Historical and forecast ancillary service prices are compared to operator compensation for energy under firm contracts at fixed prices, which are higher than current or year 2020 projected market clearing prices for ancillarymore » services in most hours of the year. Power purchase agreements recently executed by geothermal operators typically provide only energy payments at fixed energy prices and escalation rates. We postulate new contract structures that would allow a geothermal plant operator to switch from providing energy to providing ancillary services to the grid operator when it is advantageous to the plant operator to do so. Additional revenues would be earned through ancillary service payments. Estimates of these additional annual revenues a plant operator could realize are developed for a range of contract energy prices. The impacts of flexible operations on reservoir lifetimes and implications for project finance are also discussed.« less

  14. Ancillary Service Revenue Potential for Geothermal Generators in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, T.; Sotorrio, P.

    2015-01-02

    Achieving California’s 33% renewable generation goal will substantially increase uncertainty and variability in grid operations. Geothermal power plant operators could mitigate this variability and uncertainty by operating plants in a more flexible mode. Plant operators would be compensated for flexibility through payments for ancillary services such as frequency regulation, load following, and spinning reserve. This study explores economic incentives for geothermal plant operators to provide such flexibility. Historical and forecast ancillary service prices are compared to operator compensation for energy under firm contracts at fixed prices, which are higher than current or year 2020 projected market clearing prices for ancillarymore » services in most hours of the year. Power purchase agreements recently executed by geothermal operators typically provide only energy payments at fixed energy prices and escalation rates. We postulate new contract structures that would allow a geothermal plant operator to switch from providing energy to providing ancillary services to the grid operator when it is advantageous to the plant operator to do so. Additional revenues would be earned through ancillary service payments. Estimates of these additional annual revenues a plant operator could realize are developed for a range of contract energy prices. The impacts of flexible operations on reservoir lifetimes and implications for project finance are also discussed.« less

  15. Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant 'Zinke' effects.

    PubMed

    Waring, Bonnie G; Álvarez-Cansino, Leonor; Barry, Kathryn E; Becklund, Kristen K; Dale, Sarah; Gei, Maria G; Keller, Adrienne B; Lopez, Omar R; Markesteijn, Lars; Mangan, Scott; Riggs, Charlotte E; Rodríguez-Ronderos, María Elizabeth; Segnitz, R Max; Schnitzer, Stefan A; Powers, Jennifer S

    2015-08-07

    Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of individual plants on their local environments (individual plant effects). Here, we synthesize this work using meta-analysis to show that plant effects are strong and pervasive across ecosystems on six continents. Overall, soil properties beneath individual plants differ from those of neighbours by an average of 41%. Although the magnitudes of individual plant effects exhibit weak relationships with climate and latitude, they are significantly stronger in deserts and tundra than forests, and weaker in intensively managed ecosystems. The ubiquitous effects of plant individuals and species on local soil properties imply that individual plant effects have a role in plant-soil feedbacks, linking individual plants with biogeochemical processes at the ecosystem scale. © 2015 The Author(s).

  16. The Economics of IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, K.; Paramonov, D.

    2002-07-01

    IRIS (International Reactor Innovative and Secure) is a small to medium advanced light water cooled modular reactor being developed by an international consortium led by Westinghouse/BNFL. This reactor design is specifically aimed at utilities looking to install new (or replacement) nuclear capacity to match market demands, or at developing countries for their distributed power needs. To determine the optimal configuration for IRIS, analysis was undertaken to establish Generation Costs ($/MWh) and Internal Rate of Return (IRR %) to the Utility at alternative power ratings. This was then combined with global market projections for electricity demand out to 2030, segmented intomore » key geographical regions. Finally this information is brought together to form insights, conclusions and recommendations regarding the optimal design. The resultant analysis reveals a single module sized at 335 MWe, with a construction period of 3 years and a 60-year plant life. Individual modules can be installed in a staggered fashion (3 equivalent to 1005 MWe) or built in pairs (2 sets of twin units' equivalent to 1340 MWe). Uncertainty in Market Clearing Price for electricity, Annual Operating Costs and Construction Costs primarily influence lifetime Net Present Values (NPV) and hence IRR % for Utilities. Generation Costs in addition are also influenced by Fuel Costs, Plant Output, Plant Availability and Plant Capacity Factor. Therefore for a site based on 3 single modules, located in North America, Generations Costs of 28.5 $/MWh are required to achieve an IRR of 20%, a level which enables IRIS to compete with all other forms of electricity production. Plant size is critical to commercial success. Sustained (lifetime) high factors for Plant Output, Availability and Capacity Factor are required to achieve a competitive advantage. Modularity offers Utilities the option to match their investments with market conditions, adding additional capacity as and when the circumstances are right. Construction schedule needs to be controlled. There is a clear trade-off between reducing financing charges and optimising revenue streams. (authors)« less

  17. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    PubMed Central

    2012-01-01

    Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. Conclusions We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species. PMID:22805587

  18. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    PubMed

    Yang, Huaan; Tao, Ye; Zheng, Zequn; Li, Chengdao; Sweetingham, Mark W; Howieson, John G

    2012-07-17

    In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.; McCorkle, D.; Yang, C.

    Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less

  20. Ozone-mist spray sterilization for pest control in agricultural management

    NASA Astrophysics Data System (ADS)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  1. Automated Diagnosis Of Conditions In A Plant-Growth Chamber

    NASA Technical Reports Server (NTRS)

    Clinger, Barry R.; Damiano, Alfred L.

    1995-01-01

    Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.

  2. Role of pump hydro in electric power systems

    NASA Astrophysics Data System (ADS)

    Bessa, R.; Moreira, C.; Silva, B.; Filipe, J.; Fulgêncio, N.

    2017-04-01

    This paper provides an overview of the expected role that variable speed hydro power plants can have in future electric power systems characterized by a massive integration of highly variable sources. Therefore, it is discussed the development of a methodology for optimising the operation of hydropower plants under increasing contribution from new renewable energy sources, addressing the participation of a hydropower plant with variable speed pumping in reserve markets. Complementarily, it is also discussed the active role variable speed generators can have in the provision of advanced frequency regulation services.

  3. Steam generators regulatory practices and issues in Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, C.; Castelao, C.; Ruiz-Colino, J.

    1997-02-01

    This paper presents the actual status of Spanish Steam Generator tubes, actions developed by PWR plant owners and submitted to CSN, and regulatory activities related to tube degradation mechanisms analysis; NDT tube inspection techniques; tube, tubesheet and TSPs integrity studies; tube plugging/repair criteria; preventive and corrective measures including whole SGs replacement; tube leak measurement methods and other operational aspects.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, A.; Mikhail, M.

    Comprehensive software packages have been developed at the Western Research Centre as tools to help coal preparation engineers analyze, evaluate, and control coal cleaning processes. The COal Preparation Software package (COPS) performs three functions: (1) data handling and manipulation, (2) data analysis, including the generation of washability data, performance evaluation and prediction, density and size modeling, evaluation of density and size partition characteristics and attrition curves, and (3) generation of graphics output. The Separation ChARacteristics Estimation software packages (SCARE) are developed to balance raw density or size separation data. The cases of density and size separation data are considered. Themore » generated balanced data can take the balanced or normalized forms. The scaled form is desirable for direct determination of the partition functions (curves). The raw and generated separation data are displayed in tabular and/or graphical forms. The computer softwares described in this paper are valuable tools for coal preparation plant engineers and operators for evaluating process performance, adjusting plant parameters, and balancing raw density or size separation data. These packages have been applied very successfully in many projects carried out by WRC for the Canadian coal preparation industry. The software packages are designed to run on a personal computer (PC).« less

  5. Symbiotic regulation of plant growth, development and reproduction

    USGS Publications Warehouse

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  6. Symbiotic regulation of plant growth, development and reproduction

    PubMed Central

    Freeman, D Carl; McArthur, E Durant; Kim, Yong Ok; Redman, Regina S

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. PMID:19704912

  7. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    DOEpatents

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  8. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing

    PubMed Central

    2012-01-01

    Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. PMID:22908993

  9. Maps | Geospatial Data Science | NREL

    Science.gov Websites

    Maps Maps NREL develops an array of maps to support renewable energy development and generation resource in the United States by county Geothermal Maps of geothermal power plants, resources for enhanced geothermal systems, and hydrothermal sites in the United States Hydrogen Maps of hydrogen production

  10. Development of advanced technological systems for accelerator transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  11. A prototype knowledge-based decision support system for industrial waste management. Part 2: Application to a Trinidadian industrial estate case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, C.A.; Baetz, B.W.

    1998-09-01

    A knowledge-based decision support system (KBDSS) has been developed to examine the potentials for reuse, co-treatment, recycling and disposal of wastes from different industrial facilities. Four plants on the Point Lisas Industrial Estate in Trinidad were selected to test this KBDSS; a gas processing plant, a methanol plant, a fertilizer/ammonia plant and a steel processing plant. A total of 77 wastes were produced by the plants (51,481,500 t year{sup {minus}1}) with the majority being released into the ocean or emitted into the air. Seventeen wastes were already being recycled off-site so were not included in the database. Using a knowledgemore » base of 25 possible treatment processes, the KBDSS generated over 4,600 treatment train options for managing the plant wastes. The developed system was able to determine treatment options for the wastes which would minimize the number of treatments and the amount of secondary wastes produced and maximize the potential for reuse, recycling and co-treatment of wastes.« less

  12. Breckinridge Project, initial effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less

  13. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns

    PubMed Central

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, “What is their role in non-seed plants?” From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution. PMID:29720991

  14. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns.

    PubMed

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKC C genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC * genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.

  15. Mutagenic effects of heavy ion radiation in plants

    NASA Astrophysics Data System (ADS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-10-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  16. Jobs and Economic Development Impact (JEDI) Models | NREL

    Science.gov Websites

    estimate the economic impacts of constructing and operating power generation and biofuel plants at the local and state levels. Using JEDI, you can analyze the energy impacts of wind, biofuels, concentrating

  17. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-01-01

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants. PMID:23644891

  18. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira da Cunha, Mauricio

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless, battery-free, maintenance-free operation, and operation in the harsh-environment of power plant equipment up to about 1100 oC. Their small size and configuration allows flexible sensor placement and embedding of multiple sensor arrays into a variety of components within power systems that can be interrogated by a single RF unit. The outcomes of this project and technological transfer respond to a DOE analysis need, which indicated that if one percent efficiency in coal burning is achieved, an additional 2 gigawatt-hours of energy per year is generated and the resulting coal cost savings is $300 million per year, also accompanied by a reduction of more than 10 million metric tons of CO2 per year emitted into the atmosphere. Therefore, the developed harsh environment wireless microwave acoustic sensor technology and the technological transfer achievements that resulted from the execution of this project have significant impact for power plant equipment and systems and are well-positioned to contribute to the cost reduction in power generation, the increase in power plant efficiency, the improvement in maintenance, the reduction in down-time, and the decrease in environmental pollution. The technology is also in a position to be extended to address other types of high-temperature harsh-environment power plant and energy sector sensing needs.« less

  19. Simulating the Water Use of Thermoelectric Power Plants in the United States: Model Development and Verification

    NASA Astrophysics Data System (ADS)

    Betrie, G.; Yan, E.; Clark, C.

    2016-12-01

    Thermoelectric power plants use the highest amount of freshwater second to the agriculture sector. However, there is scarcity of information that characterizes the freshwater use of these plants in the United States. This could be attributed to the lack of model and data that are required to conduct analysis and gain insights. The competition for freshwater among sectors will increase in the future as the amount of freshwater gets limited due climate change and population growth. A model that makes use of less data is urgently needed to conduct analysis and identify adaptation strategies. The objectives of this study are to develop a model and simulate the water use of thermoelectric power plants in the United States. The developed model has heat-balance, climate, cooling system, and optimization modules. It computes the amount of heat rejected to the environment, estimates the quantity of heat exchanged through latent and sensible heat to the environment, and computes the amount of water required per unit generation of electricity. To verify the model, we simulated a total of 876 fossil-fired, nuclear and gas-turbine power plants with different cooling systems (CS) using 2010-2014 data obtained from Energy Information Administration. The CS includes once-through with cooling pond, once-through without cooling ponds, recirculating with induced draft and recirculating with induced draft natural draft. The results show that the model reproduced the observed water use per unit generation of electricity for the most of the power plants. It is also noticed that the model slightly overestimates the water use during the summer period when the input water temperatures are higher. We are investigating the possible reasons for the overestimation and address it in the future work. The model could be used individually or coupled to regional models to analyze various adaptation strategies and improve the water use efficiency of thermoelectric power plants.

  20. A new double right border binary vector for producing marker-free transgenic plants

    PubMed Central

    2013-01-01

    Background Once a transgenic plant is developed, the selectable marker gene (SMG) becomes unnecessary in the plant. In fact, the continued presence of the SMG in the transgenic plant may cause unexpected pleiotropic effects as well as environmental or biosafety issues. Several methods for removal of SMGs that have been reported remain inaccessible due to protection by patents, while development of new ones is expensive and cost prohibitive. Here, we describe the development of a new vector for producing marker-free plants by simply adapting an ordinary binary vector to the double right border (DRB) vector design using conventional cloning procedures. Findings We developed the DRB vector pMarkfree5.0 by placing the bar gene (representing genes of interest) between two copies of T-DNA right border sequences. The β-glucuronidase (gus) and nptII genes (representing the selectable marker gene) were cloned next followed by one copy of the left border sequence. When tested in a model species (tobacco), this vector system enabled the generation of 55.6% kanamycin-resistant plants by Agrobacterium-mediated transformation. The frequency of cotransformation of the nptII and bar transgenes using the vector was 66.7%. Using the leaf bleach and Basta assays, we confirmed that the nptII and bar transgenes were coexpressed and segregated independently in the transgenic plants. This enable separation of the transgenes in plants cotransformed using pMarkfree5.0. Conclusions The results suggest that the DRB system developed here is a practical and effective approach for separation of gene(s) of interest from a SMG and production of SMG-free plants. Therefore this system could be instrumental in production of “clean” plants containing genes of agronomic importance. PMID:24207020

  1. Coal-fired high performance power generating system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less

  2. 77 FR 37937 - License Renewal Application for Prairie Island Nuclear Generating Plant Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Prairie Island Nuclear Generating Plant Independent Spent Fuel Storage Installation AGENCY: Nuclear... INFORMATION CONTACT: Pamela Longmire, Ph.D., Project Manager, Licensing Branch, Division of Spent Fuel Storage... February 29, 2012 (ADAMS Accession number ML12065A073), by Prairie Island Nuclear Generating Plant (PINGP...

  3. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  4. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  5. Achieving more reliable operation of turbine generators at nuclear power plants by improving the water chemistry of the generator stator cooling system

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.; Chudakova, I. Yu.; Alekseenko, O. A.

    2011-08-01

    Ways of improving the water chemistry used in the turbine generator stator's cooling systems at Russian nuclear power plants are considered. Data obtained from operational chemical monitoring of indicators characterizing the quality of cooling water in the turbine generator stator cooling systems of operating power units at nuclear power plants are presented.

  6. Genetic Variation in an Inbred Plant: Variation in Tissue Cultures of Soybean [Glycine Max (L.) Merrill

    PubMed Central

    Roth, E. J.; Frazier, B. L.; Apuya, N. R.; Lark, K. G.

    1989-01-01

    Although soybean [Glycine max (L.) Merrill] grows as an inbreeding, generally homozygous, plant, the germplasm of the species contains large amounts of genetic variation. Analysis of soybean DNA has indicated that variation of RFLP (restriction fragment length polymorphism) markers within the species usually entails only two alleles at any one locus and that mixtures of such dimorphic loci account for virtually all of the restriction fragment variation seen in soybean (G. max), and in its ancestors, G. soja and G. gracilis. We report here that tissue cultures prepared from root tissue of individual soybean plants develop RFLP allelic differences at various loci. However, these newly generated alleles are almost always the same as ones previously found and characterized in other varieties of cultivated soybean (cultivars). This repeated generation of particular alleles suggests that much of the genetic variation seen in soybean could be the consequence of specific, relatively frequently employed, recombinational events. Such a mechanism would allow inbred cultivars to generate genetic variation (in the form of alternative alleles) in a controlled manner, perhaps in response to stress. PMID:2567263

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrens, I.M.; Stenzel, W.C.

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would bemore » measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.« less

  8. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha

    PubMed Central

    2013-01-01

    Background Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. Results In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. Conclusions The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants. PMID:24365221

  9. High-reliability gas-turbine combined-cycle development program: Phase II, Volume 3. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. The power plant was addressed in three areas: (1) the gas turbine, (2) the gas turbine ancillaries, and (3) the balance of plant including the steam turbine generator. To achieve the program goals, a gasmore » turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and manual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-h EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricty compared to present market offerings.« less

  10. High-reliability gas-turbine combined-cycle development program: Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. This volume presents information of the reliability, availability, and maintainability (RAM) analysis of a representative plant and the preliminary design of the gas turbine, the gas turbine ancillaries, and the balance of plant including themore » steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000 hours. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and mandual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-hour EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricity compared to present market offerings.« less

  11. Liquid metal magnetohydrodynamics (LMMHD) technology transfer feasibility study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Hays, L. G.; Alper, M. E.

    1973-01-01

    The potential application of liquid metal magnetohydrodynamics (LMMHD) to central station utility power generation through the period to 1990 is examined. Included are: (1) a description of LMMHD and a review of its development status, (2) LMMHD preliminary design for application to central station utility power generation, (3) evaluation of LMMHD in comparison with conventional and other advanced power generation systems and (4) a technology development plan. One of the major conclusions found is that the most economic and technically feasible application of LMMHD is a topping cycle to a steam plant, taking advantage of high temperatures available but not usable by the steam cycle.

  12. Development of the water-lubricated thrust bearing of the hydraulic turbine generator

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Deguchi, K.; Okude, K.; Fujimoto, R.

    2012-11-01

    In hydropower plant, a large quantities of turbine oil is used as machine control pressure oil and lubricating oil. If the oil leak out from hydropower plant, it flows into a river. And such oil spill has an adverse effect on natural environment because the oil does not degrade easily. Therefore the KANSAI and Hitachi Mitsubishi Hydro developed the water-lubricated thrust bearing for vertical type hydraulic turbine generator. The water-lubricated bearing has advantages in risk avoidance of river pollution because it does not need oil. For proceeding the development of the water-lubricated thrust bearing, we studied following items. The first is the examination of the trial products of water lubricating liquid. The second is the study of bearing structure which can satisfy bearing performance such as temperature characteristic and so on. The third is the mock-up testing for actual application in the future. As a result, it was found that the water-lubricated thrust bearing was technically applicable to actual equipments.

  13. Projection of distributed-collector solar-thermal electric power plant economics to years 1990-2000

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Elgabalawi, N.; Herrera, G.; Turner, R. H.

    1977-01-01

    A preliminary comparative evaluation of distributed-collector solar thermal power plants was undertaken by projecting power plant economics of selected systems to the 1990 to 2000 time frame. The selected systems include: (1) fixed orientation collectors with concentrating reflectors and vacuum tube absorbers, (2) one axis tracking linear concentrator including parabolic trough and variable slat designs, and (3) two axis tracking parabolic dish systems including concepts with small heat engine-electric generator assemblies at each focal point as well as approaches having steam generators at the focal point with pipeline collection to a central power conversion unit. Comparisons are presented primarily in terms of energy cost and capital cost over a wide range of operating load factors. Sensitvity of energy costs for a range of efficiency and cost of major subsystems/components is presented to delineate critical technological development needs.

  14. Small RNA-seq analysis in response to methyl jasmonate and abscisic acid treatment in Persicaria minor.

    PubMed

    Nazaruddin, Nazaruddin; Samad, Abdul Fatah A; Sajad, Muhammad; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan

    2017-06-01

    Persicaria minor (Kesum) is an important medicinal plant with high level of secondary metabolite contents, especially, terpenoids and flavonoids. Previous studies have revealed that application of exogenous phytohormone could increase secondary metabolite contents of the plant. MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in various biological processes. In order to explore the possible role of miRNA in the regulation of these phytohormones signaling pathway and uncovering their potential correlation, we, for the first time, have generated the smallRNA library of Kesum plant. The library was developed in response to methyl jasmonate (MJ) and abscisic acid (ABA) treatment by using next-generation sequencing technology. Raw reads have been deposited to SRA database with the accession numbers, SRX2655642 and SRX2655643 (MJ-treated), SRXSRX2655644 and SRX2655645 (ABA-treated) and SRX2655646and SRX2655647 (Control).

  15. Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.

  16. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    PubMed

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  17. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    NASA Astrophysics Data System (ADS)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic assessment review and then on to the stakeholder cost benefit analysis (if model qualifications are met) leading to a final plant retirement decision. This application via the model and guide, in turn, will lead electric utilities to explore system upgrade import opportunities and mitigation measures versus building new replacement generation facilities. United States nuclear reactors are licensed for 40 years with a 20 year extension available prior to the expiration date (EIA, 2013). Since late 2012, electric power companies have announced the early retirement of four uneconomical nuclear power plants while other studies have indicated that as many as 70 percent of United States nuclear power plants are potentially at risk for early retirement (Crooks, 2014 and Cooper, 2013). A high percentage of these aforementioned nuclear plants have operating licenses that will not expire until 2030 and beyond. Thus, for the most part, replacement power contingency planning has not been initiated for these plants or is still in preliminary stages. The recent nuclear plant retirements are the first since 1998 (EIA, 2013). Decisions to retire the plants involved concerns over maintenance and repair costs as well as declining profitability (EIA, 2013). In addition, the Energy Information Administration (2010-2012) released data that demonstrated that the worst 25 percent of United States nuclear plants are far more expensive to operate and generate electricity than new gas plants. It is equally important to understand and explain the economic and power replacement implications to both ratepayers and end-users. A SONGS case study analysis will review the economic, operational and political challenges that SCE faced leading to the retirement decision of SONGS. As preface to the case study, replacement steam generators (RSGs) were installed in Unit 2 in 2009 and in Unit 3 in 2010. In January 2012, while Unit 2 was down for routine maintenance, a small leak was discovered inside a steam generator in Unit 3. Because of the situation, both units remained shut down to evaluate the cause of the leakage and to make repairs. SCE submitted plans to the Nuclear Regulatory Commission (NRC) to re-start Unit 2 at reduced power. However, concerns over the length of the review process and the high costs associated with steam generator repairs led SCE to retire both reactors (SCE SONGS Fact Sheets, 2012-2013). Finally, collaborative resource power replacement planning is needed more than ever as nuclear facilities in the United States are now being retired for economic related reasons (Crooks, 2014). This collaborative power replacement process and implementation must encompass all relevant stakeholders including state grid operators, ratepayers, shareholders and the electric utility company.

  18. Evaluation, analysis, and documentation support for the 10-kw Signature Suppressed Lightweight Electric Energy Plant (SLEEP). Technical report, April 1987-March 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morsch, B.A.; Main, B.W.; Buckman, A.F.

    The US Army identified the need for a Signature Suppressed, Lightweight Electric Energy Plant (SLEEP) to improve the survivability of forward deployed units. The US Army Belvoir Research, Development and Engineering Center has the responsibility for procuring generators to meet this requirement. This study was to investigate power-generation technology and determine the most-effective technology to meet the SLEEP requirement. The Stirling was identified as the most-promising technology for SLEEP. Commercial systems and improvements to existing systems cannot meet this requirement. Procurement of SLEEP was determined to be well suited for the Army Streamlined Acquisition Program.

  19. Methods and strategies for future reactor safety goals

    NASA Astrophysics Data System (ADS)

    Arndt, Steven Andrew

    There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk-informed analyses and discussions. This dissertation examines potential approaches to updating the safety goals that include the establishment of new quantitative safety goal associated with the comparative risk of generating electricity by viable competing technologies and modifications of the goals to account for multi-plant reactor sites, and issues associated with the use of safety goals in both initial licensing and operational decision making. This research develops a new quantitative health objective that uses a comparable benefit risk metric based on the life-cycle risk of the construction, operation and decommissioning of a comparable non-nuclear electric generation facility, as well as the risks associated with mining and transportation. This dissertation also evaluates the effects of using various methods for aggregating site risk as a safety metric, as opposed to using single plant safety goals. Additionally, a number of important assumptions inherent in the current safety goals, including the effect of other potential negative societal effects such as the generation of greenhouse gases (e.g., carbon dioxide) have on the risk of electric power production and their effects on the setting of safety goals, is explored. Finally, the role risk perception should play in establishing safety goals has been explored. To complete this evaluation, a new method to analytically compare alternative technologies of generating electricity was developed, including development of a new way to evaluate risk perception, and a new method was developed for evaluating the risk at multiple units on a single site. To test these modifications to the safety goals a number of possible reactor designs and configurations were evaluated using these new proposed safety goals to determine the goals' usefulness and utility. The results of the analysis showed that the modifications provide measures that more closely evaluate the potential risk to the public from the operation of nuclear power plants than the current safety goals, while still providing a straight-forward process for assessment of reactor design and operation.

  20. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development.

    PubMed

    Corpas, Francisco J; Barroso, Juan B; Carreras, Alfonso; Valderrama, Raquel; Palma, José M; León, Ana M; Sandalio, Luisa M; del Río, Luis A

    2006-07-01

    Nitric oxide (NO) is an important signalling molecule in different animal and plant physiological processes. Little is known about its biological function in plants and on the enzymatic source or site of NO production during plant development. The endogenous NO production from L-arginine (NO synthase activity) was analyzed in leaves, stems and roots during plant development, using pea seedlings as a model. NOS activity was analyzed using a novel chemiluminescence-based assay which is more sensitive and specific than previous methods used in plant tissues. In parallel, NO accumulation was analyzed by confocal laser scanning microscopy using as fluorescent probes either DAF-2 DA or DAF-FM DA. A strong increase in NOS activity was detected in stems after 11 days growth, coinciding with the maximum stem elongation. The arginine-dependent NOS activity was constitutive and sensitive to aminoguanidine, a well-known irreversible inhibitor of animal NOS, and this NOS activity was differentially modulated depending on the plant organ and seedling developmental stage. In all tissues studied, NO was localized mainly in the vascular tissue (xylem) and epidermal cells and in root hairs. These loci of NO generation and accumulation suggest novel functions for NO in these cell types.

  1. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    PubMed

    Nakata, Paul A

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.

  2. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    PubMed Central

    Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.

    2008-01-01

    Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control. PMID:27879874

  3. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  4. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  5. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suk Kim, Jong; McKellar, Michael; Bragg-Sitton, Shannon M.

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the HTSE process that requires higher temperature input. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES. A natural-gas fired GTPP has been proposed as a secondary energy supply to be included in an N-R HES. This auxiliary generator could be used to cover rapid dynamics in grid demand that cannot be met by the remainder of the N-R HES. To evaluate the operability and controllability of the proposed process during transients between load (demand) levels, the dynamic model and control design were developed. Special attention was given to the design of feedback controllers to regulate the power frequency, and exhaust gas and turbine firing temperatures. Several case studies were performed to investigate the system responses to the major disturbance (power load demand) in such a control system. The simulation results show that the performance of the proposed control strategies was satisfactory under each test when the GTPP experienced high rapid variations in the load.« less

  6. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how themore » reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.« less

  7. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    NASA Astrophysics Data System (ADS)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be safely achieved.

  8. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy

    ERIC Educational Resources Information Center

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy

    2011-01-01

    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  9. Next Generation Nuclear Plant Methods Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  10. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  11. Investigation, Modeling and Validation of Digital Bridge for a New Generation Hot-Wire Anemometer

    NASA Astrophysics Data System (ADS)

    Joshi, Karthik Kamalakar

    The Digital Bridge Thermal Anemometer (DBTA) is a new generation anemometer that uses advanced electronics and a modified half-Wheatstone bridge configuration, specifically a sensor and a shunt resistor in series. This allows the miniaturization of the anemometer and the communication between host computer and anemometer is carried out using serial or ethernet which eliminates the noise due to the use of long cables in conventional anemometer and the digital data sent to host computer is immune to electrical noise. In the new configuration the potential drop across a shunt resistor is used to control the bridge. This thesis is confined to the anemometer used in constant temperature (CT) mode. The heat transfer relations are studied and new expressions are developed based on the new configuration of the bridge using perturbation analysis. The theoretical plant model of a commercially available sensor and a custom built sensor are derived and quantified. The plant model is used to design a controller to control the plant in closed-loop using feedback. To test the performance of the modified sensor used with a "generation-I" bridge and DAQ, an experiment was conducted. The controller was implemented in a user interface in LabVIEW. The test is to compare the results between a conventional TSI sensor with an IFA 300 anemometer and the setup describe above, in the wake behind a circular cylinder. Performance of the DBTA is satisfactory at low frequencies. A user interface capable of communicating with the anemometer to control the operation and collect data generated by anemometer is developed in LabVIEW.

  12. Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development.

    PubMed

    Li, Feng; Han, Yangyang; Feng, Yanan; Xing, Shichao; Zhao, Meirong; Chen, Yanhui; Wang, Wei

    2013-02-10

    Expansins are the key regulators of cell wall extension during plant growth. Previously, we produced transgenic tobacco plants with increased tolerance to water stress by overexpressing the wheat expansin gene TaEXPB23 driven by the constitutive 35S cauliflower mosaic virus (CaMV) promoter. However, the growth and development of 35S::TaEXPB23 transgenic tobacco plants were altered under normal growth conditions, with a faster growth rate at the seedling stage, earlier flowering and maturation, and a shorter plant height compared to WT. In the current study, we determined that cellular characteristics and carbohydrate metabolism were altered in 35S::TaEXPB23 transgenic tobacco plants. We also generated transgenic Arabidopsis plants using the same vector. The transgenic Arabidopsis plants had the same phenotype as the transgenic tobacco plants, which may have resulted from the altered expression of several flowering-related genes. We then produced TaEXPB23 transgenic tobacco plants using the stress-inducible RD29A promoter. The use of this promoter reduced the negative effects of TaEXPB23 on plant growth and development. The RD29A::TaEXPB23 transgenic tobacco plants had greater tolerance to water stress than WT, as determined by examining physiological and biochemical parameters. Therefore, the use of stress-inducible promoters, such as RD29A, may minimize the negative effects of constitutive transgene expression and improve the water-stress tolerance of plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    PubMed Central

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example. PMID:26287175

  14. Efficient Generation of Marker-Free Transgenic Rice Plants Using an Improved Transposon-Mediated Transgene Reintegration Strategy1

    PubMed Central

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551

  15. Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula)

    PubMed Central

    Rodrigo, Juan Manuel; Zappacosta, Diego Carlos; Selva, Juan Pablo; Garbus, Ingrid; Albertini, Emidio; Echenique, Viviana

    2017-01-01

    To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control. PMID:28419145

  16. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).

    PubMed

    Ramesh, S V

    2013-09-01

    Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.

  17. Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, Gary T; Belles, Randy; Blevins, Brandon R

    2012-05-01

    Oak Ridge National Laboratory (ORNL) initiated an internal National Electric Generation Siting Study, which is an ongoing multiphase study addressing several key questions related to our national electrical energy supply. This effort has led to the development of a tool, OR-SAGE (Oak Ridge Siting Analysis for power Generation Expansion), to support siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of Geographic Information Systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The initial phase of the study examinedmore » nuclear power generation. These early nuclear phase results were shared with staff from the Electric Power Research Institute (EPRI), which formed the genesis and support for an expansion of the work to several other power generation forms, including advanced coal with carbon capture and storage (CCS), solar, and compressed air energy storage (CAES). Wind generation was not included in this scope of work for EPRI. The OR-SAGE tool is essentially a dynamic visualization database. The results shown in this report represent a single static set of results using a specific set of input parameters. In this case, the GIS input parameters were optimized to support an economic study conducted by EPRI. A single set of individual results should not be construed as an ultimate energy solution, since US energy policy is very complex. However, the strength of the OR-SAGE tool is that numerous alternative scenarios can be quickly generated to provide additional insight into electrical generation or other GIS-based applications. The screening process divides the contiguous United States into 100 x 100 m (1-hectare) squares (cells), applying successive power generation-appropriate site selection and evaluation criteria (SSEC) to each cell. There are just under 700 million cells representing the contiguous United States. If a cell meets the requirements of each criterion, the cell is deemed a candidate area for siting a specific power generation form relative to a reference plant for that power type. Some SSEC parameters preclude siting a power plant because of an environmental, regulatory, or land-use constraint. Other SSEC assist in identifying less favorable areas, such as proximity to hazardous operations. All of the selected SSEC tend to recommend against sites. The focus of the ORNL electrical generation source siting study is on identifying candidate areas from which potential sites might be selected, stopping short of performing any detailed site evaluations or comparisons. This approach is designed to quickly screen for and characterize candidate areas. Critical assumptions supporting this work include the supply of cooling water to thermoelectric power generation; a methodology to provide an adequate siting footprint for typical power plant applications; a methodology to estimate thermoelectric plant capacity while accounting for available cooling water; and a methodology to account for future ({approx}2035) siting limitations as population increases and demands on freshwater sources change. OR-SAGE algorithms were built to account for these critical assumptions. Stream flow is the primary thermoelectric plant cooling source evaluated in this study. All cooling was assumed to be provided by a closed-cycle cooling (CCC) system requiring makeup water to account for evaporation and blowdown. Limited evaluations of shoreline cooling and the use of municipal processed water (gray) cooling were performed. Using a representative set of SSEC as input to the OR-SAGE tool and employing the accompanying critical assumptions, independent results for the various power generation sources studied were calculated.« less

  18. Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics

    PubMed Central

    Ben-Amar, Anis; Daldoul, Samia; Reustle, Götz M.; Krczal, Gabriele; Mliki, Ahmed

    2016-01-01

    In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants. PMID:28217003

  19. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?†

    PubMed Central

    Sattler, Scott E.; Funnell-Harris, Deanna L.

    2013-01-01

    Lignin is a ubiquitous polymer present in cell walls of all vascular plants, where it rigidifies and strengthens the cell wall structure through covalent cross-linkages to cell wall polysaccharides. The presence of lignin makes the cell wall recalcitrant to conversion into fermentable sugars for bioenergy uses. Therefore, reducing lignin content and modifying its linkages have become major targets for bioenergy feedstock development through either biotechnology or traditional plant breeding. In addition, lignin synthesis has long been implicated as an important plant defense mechanism against pathogens, because lignin synthesis is often induced at the site of pathogen attack. This article explores the impact of lignin modifications on the susceptibility of a range of plant species to their associated pathogens, and the implications for development of feedstocks for the second-generation biofuels industry. Surprisingly, there are some instances where plants modified in lignin synthesis may display increased resistance to associated pathogens, which is explored in this article. PMID:23577013

  20. Vietnam plunges ahead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, M.T.

    1995-07-01

    Vietnam is moving fast. Facing the need to double its installed power generation capacity by the year 2000, Vietnam is pursuing a range of development alternatives to add an estimated 3,000 MW of new power plants. As part of the country`s progress toward a market economy, Vietnam has relaxed its rules regarding investment in power plants. The country enacted a new electricity law early in 1995, paving the way for private participation in the power sector.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salnykov, A. A., E-mail: admin@rasnpp.org.ru

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  2. Tdp studies and tests for C. A. Energia Electrica de Venezuela (enelven) at planta ramon laguna, units RL-17 and RL-10. Volume 3. Unit RL-10 turbine generator condition assessment report and units RL-10 and RL-11 boiler feed pump conditon assessment report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-28

    The study, conducted by Babcock and Wilcox, was funded by the U.S. Trade and Development agency on behalf of Enelven. In order to maximize generated power output and minimize operating costs at Planta Ramon Laguna, tests were done to evaluate the condition of equipment at the plant. In order to identify any damage and determine the operating output of each unit, assessments were done of the furnaces, boilers, generators and boiler feed pumps being used in the plant. The report presents the results of these tests. This is the last of three volumes and it is divided into the followingmore » sections: (1) Condition Assessment of Unit RL-10 Turbine-Generator; (2) Condition Assessment of Unit RL-10 and RL-11 Boiler Feed Pumps.« less

  3. Effects of 60 Hz sinusoidal magnetic field on in vitro establishment, multiplication, and acclimatization phases of Coffea arabica seedlings.

    PubMed

    Isaac Alemán, Elizabeth; Oliveira Moreira, Rafael; Almeida Lima, Andre; Chaves Silva, Samuel; González-Olmedo, Justo Lorenzo; Chalfun-Junior, Antonio

    2014-09-01

    The influence of extremely low frequency electromagnetic fields on net photosynthesis, transpiration, photosynthetic pigment concentration, and gene expression of ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit (RBCS1), during in vitro establishment, in vitro multiplication and acclimatization phases of coffee seedlings were investigated. Untreated coffee plants were considered as control, whereas treated plants were exposed to a 60 Hz sinusoidal magnetic field of 2 mT of magnetic induction during 3 min. This magnetic field was generated by an electromagnet, connected to a wave generator. The results revealed that magnetically treated plants showed a significant increase in net photosynthesis (85.4% and 117.9%, in multiplication and acclimatization phases, respectively), and in photosynthetic pigment concentration (66.6% for establishment phase, 79.9% for multiplication phase, and 43.8% for acclimatization phase). They also showed a differential RBCS1 gene expression (approximately twofold) and a decrease of transpiration rates in regard to their control plants. In conclusion, the findings suggest that the application of 60 Hz magnetic field to in vitro coffee plants may improve the seedlings quality by modifying some photosynthetic physiological and molecular processes, increasing their vigor, and ensuring better plant development in later stages. © 2014 Wiley Periodicals, Inc.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carney, M.V.

    The Logan Generating Plant is a $500 million, 202-megawatt (MW), pulverized-coal cogeneration facility. Its electricity output - enough for 270,000 homes - is sold to Atlantic Electric. It also supplies all of the steam (up to 50,000 pounds per hour) to a nearby Monsanto facility. The plant went into commercial service in September 1994. Currently, the facility employs 62 people. In addition to becoming an active, long-term employer in Logan Township, the plant will help stimulate the local economy for years to come as a consumer of goods and services. In addition, local and state revenues from the Logan plantmore » provide a much needed economic boost. Cogeneration, which is the production of electric power and thermal energy (heat) from a single energy source, provides efficiency benefits in fuel consumption, capital investment and operating costs. Electricity and process steam from the Logan plant helps Monsanto control its energy costs, thus helping it remain competitive. The Logan Generating Plant plays an important role in the economic development of southern New Jersey by providing clean, dependable and competitively priced electricity to Atlantic Electric for resale to its utility customers. The environmental and economic benefits of the facility are discussed.« less

  5. 50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  6. 52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  7. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    PubMed

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  8. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    PubMed Central

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  9. A mobile test facility based on a magnetic cumulative generator to study the stability of the power plants under impact of lightning currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurupov, A. V.; Zavalova, V. E., E-mail: zavalova@fites.ru; Kozlov, A. V.

    The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in amore » circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.« less

  10. Cathepsin B Cysteine Proteinase is Essential for the Development and Pathogenesis of the Plant Parasitic Nematode Radopholus similis

    PubMed Central

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Dong-Wei; Xu, Chun-Ling; Huang, Xin; Wu, Wen-Jia; Li, Dan-Lei

    2015-01-01

    Radopholus similis is an important plant parasitic nematode which severely harms many crops. Cathepsin B is present in a wide variety of organisms, and plays an important role in many parasites. Understanding cathepsin B of R. similis would allow us to find new targets and approaches for its control. In this study, we found that Rs-cb-1 mRNA was expressed in esophageal glands, intestines and gonads of females, testes of males, juveniles and eggs in R. similis. Rs-cb-1 expression was the highest in females, followed by juveniles and eggs, and was the lowest in males. The maximal enzyme activity of Rs-CB-1 was detected at pH 6.0 and 40 °C. Silencing of Rs-cb-1 using in vitro RNAi (Soaking with dsRNA in vitro) not only significantly inhibited the development and hatching of R. similis, but also greatly reduced its pathogenicity. Using in planta RNAi, we confirmed that Rs-cb-1 expression in nematodes were significantly suppressed and the resistance to R. similis was significantly improved in T2 generation transgenic tobacco plants expressing Rs-cb-1 dsRNA. The genetic effects of in planta RNAi-induced gene silencing could be maintained in the absence of dsRNA for at least two generations before being lost, which was not the case for the effects induced by in vitro RNAi. Overall, our results first indicate that Rs-cb-1 plays key roles in the development, hatching and pathogenesis of R. similis, and that in planta RNAi is an effective tool in studying gene function and genetic engineering of plant resistance to migratory plant parasitic nematodes. PMID:26221074

  11. 3. Credit PEM. Interior of Martinsburg plant showing two MacIntousch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit PEM. Interior of Martinsburg plant showing two MacIntousch Seymore steam engines and one Taylor steam engine belt driving (from let to right) a sperry 30 light, 220 Volt generator, a Westinghouse 900 light, 2200 Volt generator, a Ball 80 light are generator, and two Edison, 900 light, 220 Volt generators. Note switchboard to left. Photo c. 1896. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  12. Transgenic elite indica rice plants expressing CryIAc delta-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas).

    PubMed

    Nayak, P; Basu, D; Das, S; Basu, A; Ghosh, D; Ramakrishnan, N A; Ghosh, M; Sen, S K

    1997-03-18

    Generation of insect-resistant, transgenic crop plants by expression of the insecticidal crystal protein (ICP) gene of Bacillus thuringiensis (Bt) is a standard crop improvement approach. In such cases, adequate expression of the most appropriate ICP against the target insect pest of the crop species is desirable. It is also considered advantageous to generate Bt-transgenics with multiple toxin systems to control rapid development of pest resistance to the ICP. Larvae of yellow stem borer (YSB), Scirpophaga incertulas, a major lepidopteran insect pest of rice, cause massive losses of rice yield. Studies on insect feeding and on the binding properties of ICP to brush border membrane receptors in the midgut of YSB larvae revealed that cryIAb and cryIAc are two individually suitable candidate genes for developing YSB-resistant rice. Programs were undertaken to develop Bt-transgenic rice with these ICP genes independently in a single cultivar. A cryIAc gene was reconstructed and placed under control of the maize ubiquitin 1 promoter, along with the first intron of the maize ubiquitin 1 gene, and the nos terminator. The gene construct was delivered to embryogenic calli of IR64, an elite indica rice cultivar, using the particle bombardment method. Six highly expressive independent transgenic ICP lines were identified. Molecular analyses and insect-feeding assays of two such lines revealed that the transferred synthetic cryIAc gene was expressed stably in the T2 generation of these lines and that the transgenic rice plants were highly toxic to YSB larvae and lessened the damage caused by their feeding.

  13. Stability and pre-formulation development of a plant-produced anthrax vaccine candidate.

    PubMed

    Jones, R Mark; Burke, Michael; Dubose, Devon; Chichester, Jessica A; Manceva, Slobodanka; Horsey, April; Streatfield, Stephen J; Breit, Jeff; Yusibov, Vidadi

    2017-10-04

    Second generation anthrax vaccines focus on the use of recombinant protective antigen (rPA) to elicit a strong, toxin neutralizing antibody responses in immunized subjects. The main difference between the rPA vaccines compared to the current licensed vaccine, anthrax vaccine absorbed (AVA), is the rPA vaccines are highly purified preparations of only rPA. These second generation rPA vaccines strive to elicit strong immune responses with substantially fewer doses than AVA while provoking less side effects. Many of the rPA candidates have shown to be effective in pre-clinical studies, but most of the second generation molecules have stability issues which reduce their efficacy over time. These stability issues are evident even under refrigerated conditions and thus emphasis has been directed to stabilizing the rPA molecule and determining an optimized final formulation. Stabilization of vaccines for long-term storage is a major challenge in the product development life cycle. The effort required to identify suitable formulations can be slow and expensive. The ideal storage for stockpiled vaccines would allow the candidate to withstand years of storage at ambient temperatures. The Fraunhofer Center for Molecular Biotechnology is developing a plant-produced rPA vaccine candidate that shows instability when stored under refrigerated conditions in a solution, as is typical for rPA vaccines. Increased stability of our plant-produced rPA vaccine candidate was achieved in a spray dried powder formulation that could eliminate the need for conventional cold chain allowing greater confidence to stockpile vaccine for civilian and military biodefense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting.

    PubMed

    Gao, Yu-Lin; Feng, Hong-Qiang; Wu, Kong-Ming

    2010-08-01

    Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.

  15. Transmission system protection screening for integration of offshore wind power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadi, A.; Strezoski, L.; Clark, K.

    This paper develops an efficient methodology for protection screening of large-scale transmission systems as part of the planning studies for the integration of offshore wind power plants into the power grid. This methodology avails to determine whether any upgrades are required to the protection system. The uncertainty is considered in form of variability of the power generation by offshore wind power plant. This paper uses the integration of a 1000 MW offshore wind power plant operating in Lake Erie into the FirstEnergy/PJM service territory as a case study. This study uses a realistic model of a 63,000-bus test system thatmore » represents the U.S. Eastern Interconnection.« less

  16. Transmission system protection screening for integration of offshore wind power plants

    DOE PAGES

    Sajadi, A.; Strezoski, L.; Clark, K.; ...

    2018-02-21

    This paper develops an efficient methodology for protection screening of large-scale transmission systems as part of the planning studies for the integration of offshore wind power plants into the power grid. This methodology avails to determine whether any upgrades are required to the protection system. The uncertainty is considered in form of variability of the power generation by offshore wind power plant. This paper uses the integration of a 1000 MW offshore wind power plant operating in Lake Erie into the FirstEnergy/PJM service territory as a case study. This study uses a realistic model of a 63,000-bus test system thatmore » represents the U.S. Eastern Interconnection.« less

  17. Dynamic Fuzzy Model Development for a Drum-type Boiler-turbine Plant Through GK Clustering

    NASA Astrophysics Data System (ADS)

    Habbi, Ahcène; Zelmat, Mimoun

    2008-10-01

    This paper discusses a TS fuzzy model identification method for an industrial drum-type boiler plant using the GK fuzzy clustering approach. The fuzzy model is constructed from a set of input-output data that covers a wide operating range of the physical plant. The reference data is generated using a complex first-principle-based mathematical model that describes the key dynamical properties of the boiler-turbine dynamics. The proposed fuzzy model is derived by means of fuzzy clustering method with particular attention on structure flexibility and model interpretability issues. This may provide a basement of a new way to design model based control and diagnosis mechanisms for the complex nonlinear plant.

  18. Small-scale Geothermal Power Plants Using Hot Spring Water

    NASA Astrophysics Data System (ADS)

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)

  19. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  20. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis.

    PubMed

    Mao, Yanfei; Zhang, Zhengjing; Feng, Zhengyan; Wei, Pengliang; Zhang, Hui; Botella, José Ramón; Zhu, Jian-Kang

    2016-02-01

    The Streptococcus-derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single-guide RNA (sgRNA) for target DNA recognition and the CRISPR-associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ-line-specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ-line-specific promoters (pDD45-GT and pLAT52-GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. 76 FR 39445 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ..., combined-cycle plant; a combination of natural gas, wind, and wood-fired generation and conservation; a... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-282 and 50-306; NRC-2009-0507] Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Issuance of Renewed...

  2. Intergenerational responses of wheat (Triticum aestivum L.) to ...

    EPA Pesticide Factsheets

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO2-NPs/kg soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and in Ce-500 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, and isotopic data were collected in second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ15N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). In addition, plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). The findings demonstrated that first generation exposure of

  3. Green light for quantitative live-cell imaging in plants.

    PubMed

    Grossmann, Guido; Krebs, Melanie; Maizel, Alexis; Stahl, Yvonne; Vermeer, Joop E M; Ott, Thomas

    2018-01-29

    Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number of methodologies have been adapted or developed over the last decades that allow minimal or non-invasive live-cell imaging in the context of tissues. Combined with the ease to generate transgenic reporter lines in specific genetic backgrounds or accessions, we are witnessing a blooming in plant cell biology. However, the imaging of plant cells entails a number of specific challenges, such as high levels of autofluorescence, light scattering that is caused by cell walls and their sensitivity to environmental conditions. Quantitative live-cell imaging in plants therefore requires adapting or developing imaging techniques, as well as mounting and incubation systems, such as micro-fluidics. Here, we discuss some of these obstacles, and review a number of selected state-of-the-art techniques, such as two-photon imaging, light sheet microscopy and variable angle epifluorescence microscopy that allow high performance and minimal invasive live-cell imaging in plants. © 2018. Published by The Company of Biologists Ltd.

  4. Epigenetic events in plant male germ cell heat stress responses.

    PubMed

    Chen, Yuanyuan; Müller, Florian; Rieu, Ivo; Winter, Peter

    2016-06-01

    A review on pollen epigenetics. Plants grow in an ever-changing environment and are used to environmental fluctuations such as high and low temperatures during their life cycles. To cope with adverse conditions, plants have evolved intricate short-term and long-term mechanisms to respond and adapt to external stresses. The plant's ability to respond to stresses largely depends on its capacity to modulate the transcriptome rapidly and specifically. Epigenetic mechanisms, including DNA methylation, chromatin dynamics and small RNAs, play an essential role in the regulation of stress-responsive gene expression. Stress-related covalent modifications of DNA and histones can be passed on during mitosis and meiosis to the next generation and provide a memory that enables the plant and even its offspring to adopt better to a subsequent stress. Plant reproduction, in particular pollen development, is the most stress-sensitive process in the life cycle of the organism. In particular, developmental stages around the meiotic and mitotic divisions are the most vulnerable. In this review, we highlight the current understanding of epigenetic mechanisms involved in pollen development and speculate on their roles in pollen heat stress response.

  5. Stability assessment of the chemical composition of the treated mining water used to replenish the cooling circuit in Jaworzno III Power Plant - Power Plant II

    NASA Astrophysics Data System (ADS)

    Karpiński, Marcin; Kmiecik, Ewa

    2017-11-01

    In Poland, electricity is still produced mainly in conventional power plants where fuel and water are materials necessary to generate the electricity. Even in modern power plants operating according to the principles of the sustainable development, this involves a high intake of water and considerable production of wastewater. This, in turn, necessi-tates the application of some technological solutions aimed at limiting the negative impact on the environment. The Jaworzno III Power Plant - Power Plant II is located in Jaworzno, Silesian Province, Poland. In order to minimise the negative impact on the surface water, the plant replenishes the cooling circuit with the mining water obtained from the closed-down Jan Kanty mine. The paper presents a stability assessment of the chemical composition of the treated mining water used to replenish the cooling circuit based on the data from 2007-2017.

  6. Short-Term Planning of Hybrid Power System

    NASA Astrophysics Data System (ADS)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  7. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  8. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    DOE PAGES

    Rico, Cyren M.; Johnson, Mark G.; Marcus, Matthew A.; ...

    2017-02-06

    The intergenerational impact of engineered nanomaterials in plants is a major knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO 2 -NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO 2-NPs kg -1 soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and inmore » Ce-500 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, isotopic, and synchrotron X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) data were collected on second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ 15 N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). Plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). In addition, synchrotron XRF elemental chemistry maps of soil/plant thin-sections revealed limited transformation of CeO 2-NPs with no evidence of plant uptake or accumulation. The findings demonstrated that first generation exposure of wheat to CeO 2-NPs affects the physiology and nutrient profile of the second generation plants. However, the lack of concentration-dependent responses indicate that complex physiological processes are involved which alter uptake and metabolism of CeO 2-NPs in wheat.« less

  9. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rico, Cyren M.; Johnson, Mark G.; Marcus, Matthew A.

    The intergenerational impact of engineered nanomaterials in plants is a major knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO 2 -NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO 2-NPs kg -1 soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and inmore » Ce-500 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, isotopic, and synchrotron X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) data were collected on second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ 15 N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). Plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). In addition, synchrotron XRF elemental chemistry maps of soil/plant thin-sections revealed limited transformation of CeO 2-NPs with no evidence of plant uptake or accumulation. The findings demonstrated that first generation exposure of wheat to CeO 2-NPs affects the physiology and nutrient profile of the second generation plants. However, the lack of concentration-dependent responses indicate that complex physiological processes are involved which alter uptake and metabolism of CeO 2-NPs in wheat.« less

  10. In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro.

    PubMed

    Sankara Rao, K; Sreevathsa, Rohini; Sharma, Pinakee D; Keshamma, E; Udaya Kumar, M

    2008-10-01

    Development of transgenics in pigeon pea remains dogged by poor plant regeneration in vitro from transformed tissues and low frequency transformation protocols. This article presents a non-tissue culture-based method of generating transgenic pigeon pea (Cajanus cajan (L.) Millisp.) plants using Agrobacterium-Ti plasmid-mediated transformation system. The protocol involves raising of whole plant transformants (T0 plants) directly from Agrobacterium-infected young seedlings. The plumular and intercotyledonary meristems of the seedling axes are targeted for transformation. The transformation conditions optimized were, pricking of the apical and intercotyledonary region of the seedling axes of two-day old germinating seedlings with a sewing needle, infection with Agrobacterium (LBA4404/pKIWI105 carrying uid A and npt II genes) in Winans' AB medium that was added with wounded tobacco leaf extract, co-cultivation in the same medium for 1h and transfer of seedlings to soilrite for further growth and hardening and subsequent transfer of seedlings to soil in pots in the greenhouse. Out of the 22-25 primary transformants that survived infection-hardening treatments from each of the three experiments, 15 plants on the average established on the soil under greenhouse conditions, showed slow growth initially, nevertheless grew as normal plants, and flowered and set seed eventually. Of the several seeds harvested from all the T0 plants, six hundred were sown to obtain progeny (T1) plants and 350 of these were randomly analysed to determine their transgenic nature. PCR was performed for both gus (uid A) and npt II genes. Forty eight of the 350 T1 plants amplified both transgenes. Southern blot analysis substantiated the integration and transmission of these genes. The protocol ensured generation of pigeon pea transgenic plants with considerable ease in a short time and is applicable across different genotypes/cultivars of the crop and offers immense potential as a supplemental or an alternative protocol for generating transgenic plants of difficult-to-regenerate pigeon pea. Further, the protocol offers the option of doing away with a selection step in the procedure and so facilitates transformation, which is free of marker genes.

  11. Cytoplasmic Nucleation and Atypical Branching Nucleation Generate Endoplasmic Microtubules in Physcomitrella patens[OPEN

    PubMed Central

    Nakaoka, Yuki; Kimura, Akatsuki; Tani, Tomomi; Goshima, Gohta

    2015-01-01

    The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MT dynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants. PMID:25616870

  12. EXTERIOR VIEW SHOWING THE OILOSTATIC TERMINALS IN THE GENERATING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW SHOWING THE OILOSTATIC TERMINALS IN THE GENERATING PLANT SWITCH YARD. - Wilson Dam & Hydroelectric Plant, Oilostatic Transmission System, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  13. 53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  14. Value as a parameter to consider in operational strategies for CSP plants

    NASA Astrophysics Data System (ADS)

    de Meyer, Oelof; Dinter, Frank; Govender, Saneshan

    2017-06-01

    This paper introduced a value parameter to consider when analyzing operational strategies for CSP plants. The electric system in South Africa, used as case study, is severely constrained with an influx of renewables in the early phase of deployment. The energy demand curve for the system is analyzed showing the total wind and solar photovoltaic contributions for winter and summer. Due to the intermittent nature and meteorological operating conditions of wind and solar photovoltaic plants, the value of CSP plants within the electric system is introduced. Analyzing CSP plants based on the value parameter alone will remain only a philosophical view. Currently there is no quantifiable measure to translate the philosophical view or subjective value and it solely remains the position of the stakeholder. By introducing three other parameters, Cost, Plant and System to a holistic representation of the Operating Strategies of generation plants, the Value parameter can be translated into a quantifiable measure. Utilizing the country's current procurement program as case study, CSP operating under the various PPA within the Bid Windows are analyzed. The Value Cost Plant System diagram developed is used to quantify the value parameter. This paper concluded that no value is obtained from CSP plants operating under the Bid Window 1 & 2 Power Purchase Agreement. However, by recognizing the dispatchability potential of CSP plants in Bid Window 3 & 3.5, the value of CSP in the electric system can be quantified utilizing Value Added Relationship VCPS-diagram. Similarly ancillary services to the system were analyzed. One of the relationships that have not yet been explored within the industry is an interdependent relationship. It was emphasized that the cost and value structure is shared between the plant and system. Although this relationship is functional when the plant and system belongs to the same entity, additional value is achieved by marginalizing the cost structure. A tradeoff between the plant performance indicators and system operations are achieved. CSP plants have demonstrated its capabilities by adapting to various operating strategies. With adequate storage capabilities and appropriate system boundary conditions in place, CSP plants offer solutions as base-load generation plants, peaking plants, intermittent generation and ancillary services to the system. Depending on the electric system structure, the value obtained from CSP plants are quantifiable under the right boundary conditions. An interdependent relationship between the plant and system attains the most value in operating strategies for CSP.

  15. An assessment of potential CO2 Sources throughout the Illinois Basin Subtask 5.1 – CO2 Source Assessment Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Vinodkumar; O?Brien, Kevin; Korose, Christopher

    Large-scale anthropogenic CO2 sources (>100,000 tonnes/year) were catalogued and assessed for the Illinois East Sub-Basin project area. The portfolio of sources is quite diverse, and contains not only fossil-based power generation facilities but also ethanol, chemical, and refinery facilities. Over 60% of the facilities are relatively new (i.e. post year 2000 construction) hence increasing the likelihood that retrofitting the facility with a carbon capture plant is feasible. Two of the facilities have indicated interest in being “early adopters” should the CarbonSAFE project eventually transition to a build and operate phase: the Prairie State Generating Company’s electricity generation facility near Marissa,more » Illinois, and Quasar Syngas, LLC’s Wabash ammonia/direct-reduced iron plant, currently in development north of Terre Haute, Indiana.« less

  16. How to address data gaps in life cycle inventories: a case study on estimating CO2 emissions from coal-fired electricity plants on a global scale.

    PubMed

    Steinmann, Zoran J N; Venkatesh, Aranya; Hauck, Mara; Schipper, Aafke M; Karuppiah, Ramkumar; Laurenzi, Ian J; Huijbregts, Mark A J

    2014-05-06

    One of the major challenges in life cycle assessment (LCA) is the availability and quality of data used to develop models and to make appropriate recommendations. Approximations and assumptions are often made if appropriate data are not readily available. However, these proxies may introduce uncertainty into the results. A regression model framework may be employed to assess missing data in LCAs of products and processes. In this study, we develop such a regression-based framework to estimate CO2 emission factors associated with coal power plants in the absence of reported data. Our framework hypothesizes that emissions from coal power plants can be explained by plant-specific factors (predictors) that include steam pressure, total capacity, plant age, fuel type, and gross domestic product (GDP) per capita of the resident nations of those plants. Using reported emission data for 444 plants worldwide, plant level CO2 emission factors were fitted to the selected predictors by a multiple linear regression model and a local linear regression model. The validated models were then applied to 764 coal power plants worldwide, for which no reported data were available. Cumulatively, available reported data and our predictions together account for 74% of the total world's coal-fired power generation capacity.

  17. Analysis of plant microbe interactions in the era of next generation sequencing technologies

    PubMed Central

    Knief, Claudia

    2014-01-01

    Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods. PMID:24904612

  18. Preliminary Framework for Human-Automation Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Spielman, Zachary Alexander

    The Department of Energy’s Advanced Reactor Technologies Program sponsors research, development and deployment activities through its Next Generation Nuclear Plant, Advanced Reactor Concepts, and Advanced Small Modular Reactor (aSMR) Programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Human Automation Collaboration (HAC) Research Project is located under the aSMR Program, which identifies developing advanced instrumentation and controls and human-machine interfaces as one of four key research areas. It is expected that the new nuclear power plant designs will employ technology significantly more advanced than the analog systems in the existing reactor fleetmore » as well as utilizing automation to a greater extent. Moving towards more advanced technology and more automation does not necessary imply more efficient and safer operation of the plant. Instead, a number of concerns about how these technologies will affect human performance and the overall safety of the plant need to be addressed. More specifically, it is important to investigate how the operator and the automation work as a team to ensure effective and safe plant operation, also known as the human-automation collaboration (HAC). The focus of the HAC research is to understand how various characteristics of automation (such as its reliability, processes, and modes) effect an operator’s use and awareness of plant conditions. In other words, the research team investigates how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. This report addresses the Department of Energy milestone M4AT-15IN2302054, Complete Preliminary Framework for Human-Automation Collaboration, by discussing the two phased development of a preliminary HAC framework. The framework developed in the first phase was used as the basis for selecting topics to be investigated in more detail. The results and insights gained from the in-depth studies conducted during the second phase were used to revise the framework. This report describes the basis for the framework developed in phase 1, the changes made to the framework in phase 2, and the basis for the changes. Additional research needs are identified and presented in the last section of the report.« less

  19. A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat

    PubMed Central

    2010-01-01

    Background Mutational inactivation of plant genes is an essential tool in gene function studies. Plants with inactivated or deleted genes may also be exploited for crop improvement if such mutations/deletions produce a desirable agronomical and/or quality phenotype. However, the use of mutational gene inactivation/deletion has been impeded in polyploid plant species by genetic redundancy, as polyploids contain multiple copies of the same genes (homoeologous genes) encoded by each of the ancestral genomes. Similar to many other crop plants, bread wheat (Triticum aestivum L.) is polyploid; specifically allohexaploid possessing three progenitor genomes designated as 'A', 'B', and 'D'. Recently modified TILLING protocols have been developed specifically for mutation detection in wheat. Whilst extremely powerful in detecting single nucleotide changes and small deletions, these methods are not suitable for detecting whole gene deletions. Therefore, high-throughput methods for screening of candidate homoeologous gene deletions are needed for application to wheat populations generated by the use of certain mutagenic agents (e.g. heavy ion irradiation) that frequently generate whole-gene deletions. Results To facilitate the screening for specific homoeologous gene deletions in hexaploid wheat, we have developed a TaqMan qPCR-based method that allows high-throughput detection of deletions in homoeologous copies of any gene of interest, provided that sufficient polymorphism (as little as a single nucleotide difference) amongst homoeologues exists for specific probe design. We used this method to identify deletions of individual TaPFT1 homoeologues, a wheat orthologue of the disease susceptibility and flowering regulatory gene PFT1 in Arabidopsis. This method was applied to wheat nullisomic-tetrasomic lines as well as other chromosomal deletion lines to locate the TaPFT1 gene to the long arm of chromosome 5. By screening of individual DNA samples from 4500 M2 mutant wheat lines generated by heavy ion irradiation, we detected multiple mutants with deletions of each TaPFT1 homoeologue, and confirmed these deletions using a CAPS method. We have subsequently designed, optimized, and applied this method for the screening of homoeologous deletions of three additional wheat genes putatively involved in plant disease resistance. Conclusions We have developed a method for automated, high-throughput screening to identify deletions of individual homoeologues of a wheat gene. This method is also potentially applicable to other polyploidy plants. PMID:21114819

  20. Solid Waste from the Operation and Decommissioning of Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  1. DLA TEST Defense Infrastructure: Improvement Needed in Energy Reporting and Security Funding at Installations with Limited Connectivity

    DTIC Science & Technology

    2016-01-01

    2013 Annual Energy Management Report 20 Figure 7: 1.4 Megawatt Generators at Landfill Gas Plant at Joint Base Elmendorf-Richardson, Alaska 24...has significant redundancy through its onsite landfill gas electrical generation plant which, in combination with back-up generators, can provide...DOD Energy Management Figure 7: 1.4 Megawatt Generators at Landfill Gas Plant at Joint Base Elmendorf- Richardson, Alaska We also found that the

  2. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    NASA Astrophysics Data System (ADS)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and run the Sustainable Systems Analysis Algorithm (SSAA) and the multi-criteria decision analysis (MCDA) decision models. The following alternative energy sources for electricity (kilo- and megawatt output) will be assessed in this paper: solar, biomass and biofuels, hydro, geothermal, onshore wind, offshore wind, tidal, and natural gas. The SSAA methodology, in conjunction with the MCDA model techniques, will be used to obtain sustainable, alternative energy source system options; the system will attempt to balance its three linked aspects (environmental, economic, and technical). The results, based on the Sustainability Directive three-dimensional vector calculations from each alternative energy source option, are presented in this paper. Moving towards sustainability is a dynamically changing process, and the SSAA methodology is a synergist for system modifications that strives for continuous improvement toward the Ideal Sustainability Directive.

  3. Seabuckthorn: an underutilized resource for the nutritional security and livelihood improvement of rural communities in Uttarakhand Himalaya.

    PubMed

    Dhyani, Deepak; Maikhuri, Rakesh Kumar; Dhyani, Shalini

    2011-01-01

    Seabuckthorn (Hippophae salicifolia) is one of the potential underutilized plant species having huge multipurpose benefits including economic and ecological. Comparative study of fruit morphology, architecture, and juice yield productivity revealed that fruit berries of Seabuckthorn in Mana valley was found superior and can provide higher economic return than the berries of other plant species. Moreover, awareness programmes related to nutritional worth and development and demonstration of value added product resulted in economy generation for local inhabitants. Several countries are commercially and ecologically harnessing the potential of Seabuckthorn for livelihood enhancement and environmental conservation. Correspondingly, in Indian Himalayan region, Seabuckthorn plant can also offer benefits of nutrition, food, medicine, cosmetic, etc., to the rural people for their socioeconomic development. Findings presented here have important connotations in light of upcoming organic food and nutraceutical industries in the country. The current study will also help in developing value chain of Seabuckthorn in Uttarakhand.

  4. [Genetic study on two maize male sterile mutants obtained by space mutagenesis].

    PubMed

    Li, Yu-Ling; Yu, Yong-Liang; Liu, Yan-Xia; Li, Xue-Hui; Fu, Jia-Feng

    2007-06-01

    Two maize male sterile mutants were selected from the offspring of four maize inbred lines, which were carried into space by the Shenzhou spaceship 4. Their genetic characteristic and stability was analyzed in present study. Crosses were made between the male sterile plants and fertile plants from the same line, and other inbred lines with normal cytoplasm. The ratios of the sterile plants with the fertile plants in their F1, F2 generations, and their reciprocal backcross generations with the male sterile plants were calculated. The results showed that the characteristic in male sterility was stable in different years, different seasons and different locations, and was inheritable from generation to generation. This male sterile was controlled by a single nuclear recessive gene. Since no pollens or a few malformed pollens existed in the anther of the sterile plants, it was a completely sterile type.

  5. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s

    NASA Astrophysics Data System (ADS)

    Severnini, Edson

    2017-04-01

    The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.

  6. Warm Water Entrainment Impacts and Environmental Life Cycle Assessment of a Proposed Ocean Thermal Energy Conversion Pilot Plant Offshore Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Hauer, Whitney Blanchard

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology that uses the temperature difference of large volumes of cold deep and warm surface seawater in tropical regions to generate electricity. One anticipated environmental impact of OTEC operations is the entrainment and subsequent mortality of ichthyoplankton (fish eggs and larvae) from the withdrawal of cold and warm seawater. The potential ichthyoplankton loss from the warm water intake was estimated for a proposed 10 MW OTEC pilot plant offshore Oahu, HI based on ambient vertical distribution data. The estimated losses due to entrainment from the warm water intake were 8.418E+02 larvae/1000 m3, 3.26E+06 larvae/day, and 1.19E+09 larvae/year. The potential entrained larvae/year is 1.86 X greater than at the Kahe Generating Station (Kapolei, HI), a 582 MW oil-fired power plant. Extrapolating to age-1 equivalence (9.2E+02 and 2.9E+02 yellowfin and skipjack tuna, respectively), the estimated yearly losses from warm water entrainment of yellowfin and skipjack tuna fish eggs and larvae represent 0.25-0.26 % and 0.09-0.11 % of Hawaii's commercial yellowfin and skipjack tuna industry in 2011 and 2012. An environmental life cycle assessment (LCA) was developed for the proposed OTEC plant operating for 20 and 40 years with availability factors of 0.85, 0.95, and 1.0 to determine the global warming potential (GWP) and cumulative energy demand (CED) impacts. For a 20 year operational OTEC plant, the GWP, CED, energy return on investment (EROI), and energy payback time (EPBT) ranged from 0.047 to 0.055 kg CO2eq/kWh, 0.678 to 0.798 MJ/kWh, 4.51 to 5.31 (unitless), and 3.77 to 4.43 years, respectively. For a 40 year operational OTEC plant, the GWP, CED, EROI, and EBPT ranged from 0.036 to 0.043 kg CO2eq/kWh, 0.527 to 0.620 MJ/kWh, 5.81 to 6.83 (unitless), and 5.85 to 6.89 years, respectively. The GWP impacts are within the range of renewable energy technologies and less than conventional electricity generation, with the exception of nuclear power. As part of the LCA, an ichthyoplankton entrainment impact assessment method was developed to estimate potential loss from the warm water intake for the proposed OTEC plant and for six coastal nuclear power facilities that use once-through cooling technology. Larval fish entrainment (#/kWh) was significantly greater (p<0.026) for the proposed OTEC facility, ranging from 10.0 to 11.7 larvae/kWh due to different capacity factors, than for the six nuclear power facilities that ranged from 0.08 to 0.78 larvae/kWh. While this research did not investigate OTEC technology development and economics, OTEC would be a favorable option for reducing the GWP and the reliance on fossil fuels for electricity generation in HI. The impact of ichthyoplankton mortality due to warm water entrainment for a 10 MW OTEC plant offshore Oahu, HI would likely be acceptable as there are examples of similar water withdrawals for electricity generation. Biological monitoring of a 10 MW facility would verify estimated environmental impacts of the warm water withdrawal and provide new information on the cold water withdrawal before advancing to a commercial (e.g., 100 MW) scale facility.

  7. Updated (BP3) Technical and Economic Feasibility Study - Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezel-Ayagh, Hossein

    This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO 2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combinedmore » Cycle, etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO 2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO 2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO 2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO 2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO 2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO 2 captured. The incremental COE for the ECM-based CO 2 capture is expected to meet U.S. DOE’s target of 35%. This study has indicated that CEPACS systems offer significant benefits with respect to cost, performance, water consumption and emissions to environment. The realization of these benefits will provide a single solution to carbon dioxide capture in addition to meeting the increasing demand for electricity.« less

  8. Updated (BP3) Technical and Economic Feasibility Study - Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezel-Ayagh, Hossein

    This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combined Cycle,more » etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO2 captured. The incremental COE for the ECM-based CO2 capture is expected to meet U.S. DOE’s target of 35%. This study has indicated that CEPACS systems offer significant benefits with respect to cost, performance, water consumption and emissions to environment. The realization of these benefits will provide a single solution to carbon dioxide capture in addition to meeting the increasing demand for electricity.« less

  9. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  10. First systematic plant proteomics workshop in Botany Department, University of Delhi: transferring proteomics knowledge to next-generation researchers and students.

    PubMed

    Deswal, Renu; Abat, Jasmeet Kaur; Sehrawat, Ankita; Gupta, Ravi; Kashyap, Prakriti; Sharma, Shruti; Sharma, Bhavana; Chaurasia, Satya Prakash; Chanu, Sougrakpam Yaiphabi; Masi, Antonio; Agrawal, Ganesh Kumar; Sarkar, Abhijit; Agrawal, Raj; Dunn, Michael J; Renaut, Jenny; Rakwal, Randeep

    2014-07-01

    International Plant Proteomics Organization (INPPO) outlined ten initiatives to promote plant proteomics in each and every country. With greater emphasis in developing countries, one of those was to "organize workshops at national and international levels to train manpower and exchange information". This third INPPO highlights covers the workshop organized for the very first time in a developing country, India, at the Department of Botany in University of Delhi on December 26-30, 2013 titled - "1(st) Plant Proteomics Workshop / Training Program" under the umbrella of INPPO India-Nepal chapter. Selected 20 participants received on-hand training mainly on gel-based proteomics approach along with manual booklet and parallel lectures on this and associated topics. In house, as well as invited experts drawn from other Universities and Institutes (national and international), delivered talks on different aspects of gel-based and gel-free proteomics. Importance of gel-free proteomics approach, translational proteomics, and INPPO roles were presented and interactively discussed by a group of three invited speakers Drs. Ganesh Kumar Agrawal (Nepal), Randeep Rakwal (Japan), and Antonio Masi (Italy). Given the output of this systematic workshop, it was proposed and thereafter decided to be organized every alternate year; the next workshop will be held in 2015. Furthermore, possibilities on providing advanced training to those students / researchers / teachers with basic knowledge in proteomics theory and experiments at national and international levels were discussed. INPPO is committed to generating next-generation trained manpower in proteomics, and it would only happen by the firm determination of scientists to come forward and do it. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation.

    PubMed

    Wu, Qingyu; Shigaki, Toshiro; Williams, Kimberly A; Han, Jeung-Sul; Kim, Chang Kil; Hirschi, Kendal D; Park, Sunghun

    2011-01-15

    Phytoremediation is a cost-effective and minimally invasive technology to cleanse soils contaminated with heavy metals. However, few plant species are suitable for phytoremediation of metals such as cadmium (Cd). Genetic engineering offers a powerful tool to generate plants that can hyperaccumulate Cd. An Arabidopsis CAX1 mutant (CAXcd), which confers enhanced Cd transport in yeast, was ectopically expressed in petunia to evaluate whether the CAXcd expression would enhance Cd tolerance and accumulation in planta. The CAXcd-expressing petunia plants showed significantly greater Cd tolerance and accumulation than the controls. After being treated with either 50 or 100μM CdCl(2) for 6 weeks, the CAXcd-expressing plants showed more vigorous growth compared with controls, and the transgenic plants accumulated significantly more Cd (up to 2.5-fold) than controls. Moreover, the accumulation of Cd did not affect the development and morphology of the CAXcd-expressing petunia plants until the flowering and ultimately the maturing of seeds. Therefore, petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Mutation breeding of ornamental plants using ion beams.

    PubMed

    Yamaguchi, Hiroyasu

    2018-01-01

    Ornamental plants that have a rich variety of flower colors and shapes are highly prized in the commercial flower market, and therefore, mutant cultivars that produce different types of flowers while retaining their growth habits are in demand. Furthermore, mutation breeding is well suited for ornamental plants because many species can be easily vegetatively propagated, facilitating the production of spontaneous and induced mutants. The use of ion beams in mutation breeding has rapidly expanded since the 1990s in Japan, with the prospect that more ion beam-specific mutants will be generated. There are currently four irradiation facilities in Japan that provide ion beam irradiation for plant materials. The development of mutant cultivars using ion beams has been attempted on many ornamental plants thus far, and some species have been used to investigate the process of mutagenesis. In addition, progress is being made in clarifying the genetic mechanism for expressing important traits, which will probably result in the development of more efficient mutation breeding methods for ornamental plants. This review not only provides examples of successful mutation breeding results using ion beams, but it also describes research on mutagenesis and compares results of ion beam and gamma ray breeding using ornamental plants.

  13. Mutation breeding of ornamental plants using ion beams

    PubMed Central

    Yamaguchi, Hiroyasu

    2018-01-01

    Ornamental plants that have a rich variety of flower colors and shapes are highly prized in the commercial flower market, and therefore, mutant cultivars that produce different types of flowers while retaining their growth habits are in demand. Furthermore, mutation breeding is well suited for ornamental plants because many species can be easily vegetatively propagated, facilitating the production of spontaneous and induced mutants. The use of ion beams in mutation breeding has rapidly expanded since the 1990s in Japan, with the prospect that more ion beam-specific mutants will be generated. There are currently four irradiation facilities in Japan that provide ion beam irradiation for plant materials. The development of mutant cultivars using ion beams has been attempted on many ornamental plants thus far, and some species have been used to investigate the process of mutagenesis. In addition, progress is being made in clarifying the genetic mechanism for expressing important traits, which will probably result in the development of more efficient mutation breeding methods for ornamental plants. This review not only provides examples of successful mutation breeding results using ion beams, but it also describes research on mutagenesis and compares results of ion beam and gamma ray breeding using ornamental plants. PMID:29681749

  14. Hsp100/ClpB Chaperone Function and Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierling, Elizabeth

    2015-01-27

    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpBmore » proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.« less

  15. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants.

    PubMed

    Lombardo, Luca; Coppola, Gerardo; Zelasco, Samanta

    2016-01-01

    The advent of modern molecular biology and recombinant DNA technology has resulted in a dramatic increase in the number of insect-resistant (IR) and herbicide-tolerant (HT) plant varieties, with great economic benefits for farmers. Nevertheless, the high selection pressure generated by control strategies for weed and insect populations has led to the evolution of herbicide and pesticide resistance. In the short term, the development of new techniques or the improvement of existing ones will provide further instruments to counter the appearance of resistant weeds and insects and to reduce the use of agrochemicals. In this review, we examine some of the most promising new technologies for developing IR and HT plants, such as genome editing and antisense technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations.

    PubMed

    Breeze, Paul

    2008-11-13

    Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020.

  17. Summary of Planned Implementation for the HTGR Lessons Learned Applicable to the NGNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Mckirdy

    2011-09-01

    This document presents a reconciliation of the lessons learned during a 2010 comprehensive evaluation of pertinent lessons learned from past and present high temperature gas-cooled reactors that apply to the Next Generation Nuclear Plant Project along with current and planned activities. The data used are from the latest Idaho National Laboratory research and development plans, the conceptual design report from General Atomics, and the pebble bed reactor technology readiness study from AREVA. Only those lessons related to the structures, systems, and components of the Next Generation Nuclear Plant (NGNP), as documented in the recently updated lessons learned report are addressed.more » These reconciliations are ordered according to plant area, followed by the affected system, subsystem, or component; lesson learned; and finally an NGNP implementation statement. This report (1) provides cross references to the original lessons learned document, (2) describes the lesson learned, (3) provides the current NGNP implementation status with design data needs associated with the lesson learned, (4) identifies the research and development being performed related to the lesson learned, and (5) summarizes with a status of how the lesson learned has been addressed by the NGNP Project.« less

  18. Developmental Pathways Are Blueprints for Designing Successful Crops

    PubMed Central

    Trevaskis, Ben

    2018-01-01

    Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted. PMID:29922318

  19. Developmental Pathways Are Blueprints for Designing Successful Crops.

    PubMed

    Trevaskis, Ben

    2018-01-01

    Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.

  20. The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean.

    PubMed

    Barraza, Aarón; Cabrera-Ponce, José L; Gamboa-Becerra, Roberto; Luna-Martínez, Francisco; Winkler, Robert; Álvarez-Venegas, Raúl

    2015-01-01

    Common bean is the most important grain legume in the human diet. Bean improvement efforts have been focused on classical breeding techniques because bean is recalcitrant to both somatic embryogenesis and in vitro regeneration. This study was undertaken to better understand the process of somatic embryogenesis in the common bean. We focused on the mechanisms by which somatic embryogenesis in plants is regulated and the interaction of these mechanisms with plant hormones. Specifically, we examined the role of the gene PvTRX1h, an ortholog of a major known histone lysine methyltransferase in plants, in somatic embryo generation. Given the problems with regeneration and transformation, we chose to develop and use regeneration-competent callus that could be successively transformed. Embryogenic calli of common bean were generated and transformed with the PvTRX1hRiA construction to down-regulate, by RNA interference, expression of the PvTRX1h gene. Plant hormone content was measured by mass spectrometry and gene expression was assessed by q-PCR. Detailed histological analysis was performed on selected transgenic embryogenic calli. It was determined that down-regulation of PvTRX1h gene was accompanied by altered concentrations of plant hormones in the calli. PvTRX1h regulated the expression of genes involved in auxin biosynthesis and embryogenic calli in which PvTRX1h was down-regulated were capable of differentiation into somatic embryos. Also, down-regulation of PvTRX1h showed increased transcript abundance of a gene coding for a second histone lysine methyltransferase, PvASHH2h. Accordingly, the PvTRX1h gene is involved in the synthesis of plant hormones in common bean callus. These results shed light on the crosstalk among histone methyltransferases and plant hormone signaling and on gene regulation during somatic embryo generation.

  1. Mutagenic effects of heavy ion radiation in plants

    NASA Technical Reports Server (NTRS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  2. Another lesson from plants: the forward osmosis-based actuator.

    PubMed

    Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara

    2014-01-01

    Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.

  3. Another Lesson from Plants: The Forward Osmosis-Based Actuator

    PubMed Central

    Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara

    2014-01-01

    Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2–5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems. PMID:25020043

  4. ASME Code Efforts Supporting HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less

  5. ASME Code Efforts Supporting HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less

  6. ASME Code Efforts Supporting HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This reportmore » discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martel, Laura; Smith, Paul; Rizea, Steven

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energymore » Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.« less

  8. Results of the first stage (2002-2009) of investigation of higher plants onboard RS ISS, as an element of future closed Life Support Systems

    NASA Astrophysics Data System (ADS)

    Sychev, Vladimir; Levinskikh, Margarita; Podolsky, Igor; Bingham, Gail; Novikova, Nataliya; Sugimoto, Manabu

    A key task for biomedical human support in long-term manned space expeditions is the develop-ment of the Life Support System (LSS). It is expected that in the first continuous interplanetary expeditions LSS of only a few biological elements of the LSS, such as higher plants will be in-cluded. Therefore, investigations of growth and development of higher plants for consideration in the LSS are of high importance. In a period from October, 2002 to December 2009, 15 ex-periments on cultivation of different plants, including two genetically marked species of dwarf peas, a leaf vegetable strain of Mizuna, radish, barley and wheat were conducted in space greenhouse "LADA" onboard Russian Segment (RS) of International Space Station (ISS). The experiments resulted in the conclusion that the properties of growth and development of plants grown in space greenhouse "LADA" were unaffected by spaceflight conditions. In experiments conducted in a period from 2003 to 2005, it was shown for the first time that pea plants pre-serve reproductive functions, forming viable seeds during at least four continuous full cycles of ontogenesis ("seed to seed") under spaceflight conditions. No changes were found in the genetic apparatus of the pea plants in the four "space" generations. Since 2005, there have been routine collections of microbiological samples from the surfaces of the plants grown on-board in "LADA" greenhouse. Analysis has shown that the properties of contamination of the plants grown aboard by microorganism contain no abnormal patterns. Since 2008, the plants cultivated in "LADA" greenhouse have been frozen onboard RS ISS in the MELFI refrigerator and transferred to the Earth for further investigations. Investigations of Mizuna plants grown and frozen onboard of ISS, showed no differences between "ground control" and "space" plants in chemical and biochemical properties. There also no stress-response was found in kashinriki strain barley planted and frozen onboard ISS.

  9. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].

    PubMed

    Lopes Ferreira, Nicolas

    2008-01-01

    Plants, which are one of major groups of life forms, are constituted of an amazing number of molecules such as sugars, proteins, phenolic compounds etc. These molecules display multiple and complementary properties involved in various compartments of plants (structure, storage, biological activity etc.). The first uses of plants in industry were for food and feed, paper manufacturing or combustion. In the coming decades, these renewable biological materials will be the basis of a new concept: the "biorefiner" i.e. the chemical conversion of the whole plant to various products and uses. This concept, born in the 90ies, is analogous to today's petroleum refinery, which produces multiple fuels and derivative products from petroleum. Agriculture generates lots of co-products which were most often wasted. The rational use of these wasted products, which can be considered as valuable renewable materials, is now economically interesting and will contribute to the reduction of greenhouse has emissions by partially substituting for fossil fuels. Such substructures from biological waste products and transforming them into biofuels and new industrial products named "bioproducts". These compounds, such as bioplastics or biosurfactants, can replace equivalent petroleum derivatives. Towards that goal, lots of filamentous fungi, growing on a broad range of vegetable species, are able to produce enzymes adapted to the modification of these type of substrates. The best example, at least the more industrially developed to date, is the second generation biofuel technology using cellulose as a raw material. The process includes an enzymatic hydrolysis step which requires cellulases secreted from Trichoderma fungal species. This industrial development of a renewable energy will contribute to the diversification of energy sources used to transport and to the development of green chemistry which will partially substitute petrochemicals.

  10. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    EPA Science Inventory

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  11. 5. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE GENERATING UNITS FOREGROUND AND 60 CYCLE GENERATING UNIT REAR Photographer unknown, no date - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  12. Enhancing Elementary Pre-service Teachers' Plant Processes Conceptions

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-06-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to predict the fate of a healthy plant in a sealed terrarium (Plant-in-a-Jar), justify their predictions, observe the plant over a 5-week period, and complete guided inquiry activities centered on one of the targeted plant processes each week. Data sources included PTs' pre- and post-predictions with accompanying justifications, course artifacts such as weekly terrarium observations and science journal entries, and group models of the interrelated plant processes occurring within the sealed terraria. A subset of 33 volunteer PTs also completed interviews the week the Plant-in-a-Jar scenario was introduced and approximately 4 months after the instructional intervention ended. Pre- and post-predictions from all PTs as well as interview responses from the subgroup of PTs, were coded into categories based on key plant processes emphasized in the Next Generation Science Standards. Study findings revealed that PTs developed more accurate conceptions of plant processes and their interrelated nature as a result of the instructional intervention. Primary patterns of change in PTs' plant process conceptions included development of more accurate conceptions of how water is used by plants, more accurate conceptions of photosynthesis features, and more accurate conceptions of photosynthesis and cellular respiration as transformative processes.

  13. Unraveling the Host Plant Alternation of Cacopsylla pruni – Adults but Not Nymphs Can Survive on Conifers Due to Phloem/Xylem Composition

    PubMed Central

    Gallinger, Jannicke; Gross, Jürgen

    2018-01-01

    Plant sap feeding insects like psyllids are known to be vectors of phloem dwelling bacteria (‘Candidatus Phytoplasma’ and ‘Ca. Liberibacter’), plant pathogens which cause severe diseases and economically important crop damage. Some univoltine psyllid species have a particular life cycle, within one generation they alternate two times between different host plant species. The plum psyllid Cacopsylla pruni, the vector of European Stone Fruit Yellows (ESFY), one of the most serious pests in European fruit production, migrates to stone fruit orchards (Prunus spp.) for mating and oviposition in early spring. The young adults of the new generation leave the Prunus trees in summer and emigrate to their overwintering hosts like spruce and other conifers. Very little is known about the factors responsible for the regulation of migration, reasons for host alternation, and the behavior of psyllids during their phase of life on conifers. Because insect feeding behavior and host acceptance is driven by different biotic factors, such as olfactory and gustatory cues as well as mechanical barriers, we carried out electrical penetration graph (EPG) recordings and survival bioassays with C. pruni on different conifer species as potential overwintering hosts and analyzed the chemical composition of the respective plant saps. We are the first to show that migrating psyllids do feed on overwintering hosts and that nymphs are able to ingest phloem and xylem sap of coniferous trees, but cannot develop on conifer diet. Analyses of plant saps reveal qualitative differences in the chemical composition between coniferous trees and Prunus as well as within conifer species. These differences are discussed with regard to nutritional needs of psyllid nymphs for proper development, overwintering needs of adults and restriction of ‘Ca. P. prunorum’ to Prunus phloem. PMID:29706983

  14. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.

    PubMed

    Weckwerth, Wolfram

    2011-12-10

    Plants have shaped our human life form from the outset. With the emerging recognition of world population feeding, global climate change and limited energy resources with fossil fuels, the relevance of plant biology and biotechnology is becoming dramatically important. One key issue is to improve plant productivity and abiotic/biotic stress resistance in agriculture due to restricted land area and increasing environmental pressures. Another aspect is the development of CO(2)-neutral plant resources for fiber/biomass and biofuels: a transition from first generation plants like sugar cane, maize and other important nutritional crops to second and third generation energy crops such as Miscanthus and trees for lignocellulose and algae for biomass and feed, hydrogen and lipid production. At the same time we have to conserve and protect natural diversity and species richness as a foundation of our life on earth. Here, biodiversity banks are discussed as a foundation of current and future plant breeding research. Consequently, it can be anticipated that plant biology and ecology will have more indispensable future roles in all socio-economic aspects of our life than ever before. We therefore need an in-depth understanding of the physiology of single plant species for practical applications as well as the translation of this knowledge into complex natural as well as anthropogenic ecosystems. Latest developments in biological and bioanalytical research will lead into a paradigm shift towards trying to understand organisms at a systems level and in their ecosystemic context: (i) shotgun and next-generation genome sequencing, gene reconstruction and annotation, (ii) genome-scale molecular analysis using OMICS technologies and (iii) computer-assisted analysis, modeling and interpretation of biological data. Systems biology combines these molecular data, genetic evolution, environmental cues and species interaction with the understanding, modeling and prediction of active biochemical networks up to whole species populations. This process relies on the development of new technologies for the analysis of molecular data, especially genomics, metabolomics and proteomics data. The ambitious aim of these non-targeted 'omic' technologies is to extend our understanding beyond the analysis of separated parts of the system, in contrast to traditional reductionistic hypothesis-driven approaches. The consequent integration of genotyping, pheno/morphotyping and the analysis of the molecular phenotype using metabolomics, proteomics and transcriptomics will reveal a novel understanding of plant metabolism and its interaction with the environment. The analysis of single model systems - plants, fungi, animals and bacteria - will finally emerge in the analysis of populations of plants and other organisms and their adaptation to the ecological niche. In parallel, this novel understanding of ecophysiology will translate into knowledge-based approaches in crop plant biotechnology and marker- or genome-assisted breeding approaches. In this review the foundations of green systems biology are described and applications in ecosystems research are presented. Knowledge exchange of ecosystems research and green biotechnology merging into green systems biology is anticipated based on the principles of natural variation, biodiversity and the genotype-phenotype environment relationship as the fundamental drivers of ecology and evolution. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Real options and asset valuation in competitive energy markets

    NASA Astrophysics Data System (ADS)

    Oduntan, Adekunle Richard

    The focus of this work is to develop a robust valuation framework for physical power assets operating in competitive markets such as peaking or mid-merit thermal power plants and baseload power plants. The goal is to develop a modeling framework that can be adapted to different energy assets with different types of operating flexibilities and technical constraints and which can be employed for various purposes such as capital budgeting, business planning, risk management and strategic bidding planning among others. The valuation framework must also be able to capture the reality of power market rules and opportunities, as well as technical constraints of different assets. The modeling framework developed conceptualizes operating flexibilities of power assets as "switching options' whereby the asset operator decides at every decision point whether to switch from one operating mode to another mutually exclusive mode, within the limits of the equipment constraints of the asset. As a current decision to switch operating modes may affect future operating flexibilities of the asset and hence cash flows, a dynamic optimization framework is employed. The developed framework accounts for the uncertain nature of key value drivers by representing them with appropriate stochastic processes. Specifically, the framework developed conceptualizes the operation of a power asset as a multi-stage decision making problem where the operator has to make a decision at every stage to alter operating mode given currently available information about key value drivers. The problem is then solved dynamically by decomposing it into a series of two-stage sub-problems according to Bellman's optimality principle. The solution algorithm employed is the Least Squares Monte Carlo (LSM) method. The developed valuation framework was adapted for a gas-fired thermal power plant, a peaking hydroelectric power plant and a baseload power plant. This work built on previously published real options valuation methodologies for gas-fired thermal power plants by factoring in uncertainty from gas supply/consumption imbalance which is usually faced by gas-fired power generators. This source of uncertainty arises because of mismatch between natural gas and electricity wholesale markets. Natural gas markets in North America operate on a day-ahead basis while power plants are dispatched in real time. Inability of a power generator to match its gas supply and consumption in real time, leading to unauthorized gas over-run or under-run, attracts penalty charges from the gas supplier to the extent that the generator can not manage the imbalance through other means. By considering an illustrative power plant operating in Ontario, we show effects of gas-imbalance on dispatch strategies on a daily cycling operation basis and the resulting impact on net revenue. Similarly, we employ the developed valuation framework to value a peaking hydroelectric power plant. This application also builds on previous real options valuation work for peaking hydroelectric power plants by considering their operations in a joint energy and ancillary services market. Specifically, the valuation model is developed to capture the value of a peaking power plant whose owner has the flexibility to participate in a joint operating reserve market and an energy market, which is currently the case in the Ontario wholesale power market. The model factors in water inflow uncertainty into the reservoir forebay of a hydroelectric facility and also considers uncertain energy and operating reserve prices. The switching options considered include (i) a joint energy and operating reserve bid (ii) an energy only bid and (iii) a do nothing (idle) strategy. Being an energy limited power plant, by doing nothing at a decision interval, the power asset operator is able to timeshift scarce water for use at a future period when market situations are expected to be better. Finally, the developed valuation framework was employed to optimize life-cycle management decisions of a baseload power plant, such as a nuclear power plant. Given uncertainty of long-term value drivers, including power prices, equipment performance and the relationship between current life cycle spending and future equipment degradation, optimization is carried out with the objective of minimizing overall life-cycle related costs. These life-cycle costs include (i) lost revenue during planned and unplanned outages, (ii) potential costs of future equipment degradation due to inadequate preventative maintenance, and (iii) the direct costs of implementing the life-cycle projects. The switching options in this context include the option to shutdown the power plant in order to execute a given preventative maintenance and inspection project and the option to keep the option "alive" by choosing to delay a planned life-cycle activity.

  16. Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions.

    PubMed

    Schmidt, Martin; Van Bel, Michiel; Woloszynska, Magdalena; Slabbinck, Bram; Martens, Cindy; De Block, Marc; Coppens, Frederik; Van Lijsebettens, Mieke

    2017-07-06

    Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome-wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material. We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species. As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice. Plant-RRBS offers high-throughput and broad, genome-dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations.

  17. Progress in preliminary studies at Ottana Solar Facility

    NASA Astrophysics Data System (ADS)

    Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.

    2016-05-01

    The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.

  18. Flavonoid engineering of flax potentiate its biotechnological application.

    PubMed

    Zuk, Magdalena; Kulma, Anna; Dymińska, Lucyna; Szołtysek, Katarzyna; Prescha, Anna; Hanuza, Jerzy; Szopa, Jan

    2011-01-28

    Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification.Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products.

  19. Flavonoid engineering of flax potentiate its biotechnological application

    PubMed Central

    2011-01-01

    Background Flavonoids are a group of secondary plant metabolites important for plant growth and development. They show also a protective effect against colon and breast cancer, diabetes, hypercholesterolemic atherosclerosis, lupus nephritis, and immune and inflammatory reactions. Thus, overproduction of these compounds in flax by genetic engineering method might potentiate biotechnological application of these plant products. Results Flax plants of third generation overexpressing key genes of flavonoid pathway cultivated in field were used as plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts and fibre from natural and transgenic flax plants were compared. The data obtained suggests that the introduced genes were stably inherited and expressed through plant generations. Overproduction of flavonoid compounds resulted in increase of fatty acids accumulation in oil from transgenic seeds due to protection from oxidation offered during synthesis and seed maturation. The biochemical analysis of seedcake extracts from seeds of transgenic flax revealed significant increase in flavonoids (kaempferol), phenolic acids (coumaric, ferulic, synapic acids) and lignan content. Fibres, another product of flax plant showed increase in the level of catechine and acetylvanillone and decrease in phenolic acids upon flax modification. Biochemical analysis results were confirmed using IR spectroscopy. The integral intensities of IR bands have been used for identification of the component of phenylpropanoid pathway in oil, seedcake extract and fibre from control and transgenic flax. It was shown that levels of flavonoids, phenolic acids and lignans in oil and seedcake extract was higher in transgenic flax products compared to control. An FT-IR study of fibres confirmed the biochemical data and revealed that the arrangement of the cellulose polymer in the transgenic fibres differs from the control; in particular a significant decrease in the number of hydrogen bonds was detected. Conclusions All analysed products from generated transgenic plants were enriched with antioxidant compounds derived from phenylopropanoid pathway Thus the products provide valuable source of flavonoids, phenolic acids and lignan for biomedical application. The compounds composition and quantity from transgenic plants was confirmed by IR spectroscopy. Thus the infrared spectroscopy appeared to be suitable method for characterization of flax products. PMID:21276227

  20. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    PubMed

    Abbott, Karen C; Karst, Justine; Biederman, Lori A; Borrett, Stuart R; Hastings, Alan; Walsh, Vonda; Bever, James D

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an important first step toward developing a general understanding of the interplay between mutualism and competition in patchy landscapes, and generate qualitative predictions that may be tested in future empirical studies.

  1. Spatial Heterogeneity in Soil Microbes Alters Outcomes of Plant Competition

    PubMed Central

    Abbott, Karen C.; Karst, Justine; Biederman, Lori A.; Borrett, Stuart R.; Hastings, Alan; Walsh, Vonda; Bever, James D.

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an important first step toward developing a general understanding of the interplay between mutualism and competition in patchy landscapes, and generate qualitative predictions that may be tested in future empirical studies. PMID:25946068

  2. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of greenhouse gas emitting electric generation plants. However, renewable energy policies do not have an effect on productivity growth. Renewable energy inputs are found to be as efficient if not more efficient than traditional energy sources.

  3. Chemical sensing of Benzo[a]pyrene using Corchorus depressus fluorescent flavonoids.

    PubMed

    Ahmad, Wajiha; Rana, Nosheen Fatima; Riaz, Sundus; Ahmad, Nasir Mehmood; Hameed, Maryam; Naeem, Ayesha; Tahir, Rabbiya

    2018-04-01

    Plant phytochemicals, such as flavonoids are in use for the development of optical biosensor. Benzo[a]pyrene (B[a]P), is a pervasive environmental and dietary carcinogen. A fluorescent assay is developed using plant isolated flavonoid for the detection of B[a]P. High content saponins are excluded from the flavonoid-containing methanolic extract of Corchorus depressus by implying reduction of silver ions by saponins resulting in formation of silver nanoparticles. Isolated plant flavonoids are used to develop a spectrofluorometric assay for the detection of B[a]P. Decrease in the flavonoid fluorescence intensity by B[a]P is found to be based on both static and dynamic quenching. Specificity of the assay for B[a]P was tested for other carcinogens belonging to different classes of compounds. Flavonoids-mediated sensing can be implied for the development of new generation of nanoparticle-based biosensors that can be more sensitive and less susceptible to external factors, such as temperature and humidity.

  4. 2. Credit PEM. View of Martinsburg Power Company steam generating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit PEM. View of Martinsburg Power Company steam generating plant. From right to left: original 1889 generating building, transformer room, new generating room and, adjacent to draft stack is boiler room addition. Photo c. 1911. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  5. 13. VIEW OF PELTON WHEELS AND GENERATORS IN CAVITY PLANT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF PELTON WHEELS AND GENERATORS IN CAVITY PLANT, AS SEEN FROM PELTON WHEEL-GENERATOR UNIT #1; GENERATOR #1, #2, #3, #4 WERE MANUFACTURED BY WESTINGHOUSE, EACH RATED AT 1,500 KW - Snoqualmie Falls Hydroelectric Project, .5 mile north of Snoqualmie, Snoqualmie, King County, WA

  6. Conserved versatile master regulators in signalling pathways in response to stress in plants

    PubMed Central

    Balderas-Hernández, Victor E.; Alvarado-Rodríguez, Miguel; Fraire-Velázquez, Saúl

    2013-01-01

    From the first land plants to the complex gymnosperms and angiosperms of today, environmental conditions have forced plants to develop molecular strategies to surpass natural obstacles to growth and proliferation, and these genetic gains have been transmitted to the following generations. In this long natural process, novel and elaborate mechanisms have evolved to enable plants to cope with environmental limitations. Elements in many signalling cascades enable plants to sense different, multiple and simultaneous ambient cues. A group of versatile master regulators of gene expression control plant responses to stressing conditions. For crop breeding purposes, the task is to determine how to activate these key regulators to enable accurate and optimal reactions to common stresses. In this review, we discuss how plants sense biotic and abiotic stresses, how and which master regulators are implied in the responses to these stresses, their evolution in the life kingdoms, and the domains in these proteins that interact with other factors to lead to a proper and efficient plant response. PMID:24147216

  7. MicroRNA-based biotechnology for plant improvement.

    PubMed

    Zhang, Baohong; Wang, Qinglian

    2015-01-01

    MicroRNAs (miRNAs) are an extensive class of newly discovered endogenous small RNAs, which negatively regulate gene expression at the post-transcription levels. As the application of next-generation deep sequencing and advanced bioinformatics, the miRNA-related study has been expended to non-model plant species and the number of identified miRNAs has dramatically increased in the past years. miRNAs play a critical role in almost all biological and metabolic processes, and provide a unique strategy for plant improvement. Here, we first briefly review the discovery, history, and biogenesis of miRNAs, then focus more on the application of miRNAs on plant breeding and the future directions. Increased plant biomass through controlling plant development and phase change has been one achievement for miRNA-based biotechnology; plant tolerance to abiotic and biotic stress was also significantly enhanced by regulating the expression of an individual miRNA. Both endogenous and artificial miRNAs may serve as important tools for plant improvement. © 2014 Wiley Periodicals, Inc.

  8. Deciphering structural and temporal interplays during the architectural development of mango trees.

    PubMed

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Trottier, Catherine; Guédon, Yann; Normand, Frédéric

    2013-05-01

    Plant architecture is commonly defined by the adjacency of organs within the structure and their properties. Few studies consider the effect of endogenous temporal factors, namely phenological factors, on the establishment of plant architecture. This study hypothesized that, in addition to the effect of environmental factors, the observed plant architecture results from both endogenous structural and temporal components, and their interplays. Mango tree, which is characterized by strong phenological asynchronisms within and between trees and by repeated vegetative and reproductive flushes during a growing cycle, was chosen as a plant model. During two consecutive growing cycles, this study described vegetative and reproductive development of 20 trees submitted to the same environmental conditions. Four mango cultivars were considered to assess possible cultivar-specific patterns. Integrative vegetative and reproductive development models incorporating generalized linear models as components were built. These models described the occurrence, intensity, and timing of vegetative and reproductive development at the growth unit scale. This study showed significant interplays between structural and temporal components of plant architectural development at two temporal scales. Within a growing cycle, earliness of bud burst was highly and positively related to earliness of vegetative development and flowering. Between growing cycles, flowering growth units delayed vegetative development compared to growth units that did not flower. These interplays explained how vegetative and reproductive phenological asynchronisms within and between trees were generated and maintained. It is suggested that causation networks involving structural and temporal components may give rise to contrasted tree architectures.

  9. All-regime combined-cycle plant: Engineering solutions

    NASA Astrophysics Data System (ADS)

    Berezinets, P. A.; Tumanovskii, G. G.; Tereshina, G. E.; Krylova, I. N.; Markina, V. N.; Migun, E. N.

    2016-12-01

    The development of distributed power generation systems as a supplement to the centralized unified power grid increases the operational stability and efficiency of the entire power generation industry and improves the power supply to consumers. An all-regime cogeneration combined-cycle plant with a power of 20-25 mW (PGU-20/25T) and an electrical efficiency above 50% has been developed at the All-Russia Thermal Engineering Institute (ATEI) as a distributed power generation object. The PGU-20/25T two-circuit cogeneration plant provides a wide electrical and thermal power adjustment range and the absence of the mutual effect of electrical and thermal power output regimes at controlled frequency and power in a unified or isolated grid. The PGU-20/25T combined-cycle plant incorporates a gas-turbine unit (GTU) with a power of 16 MW, a heat recovery boiler (HRB) with two burners (before the boiler and the last heating stage), and a cogeneration steam turbine with a power of 6/9 MW. The PGU-20/25T plant has a maximum electrical power of 22 MW and an efficiency of 50.8% in the heat recovery regime and a maximum thermal power output of 16.3 MW (14 Gcal/h) in the cogeneration regime. The use of burners can increase the electrical power to 25 MW in the steam condensation regime at an efficiency of 49% and the maximum thermal power output to 29.5 MW (25.4 Gcal/h). When the steam turbine is shut down, the thermal power output can grow to 32.6 MW (28 Gcal/h). The innovative equipment, which was specially developed for PGU-20/25T, improves the reliability of this plant and simplifies its operation. Among this equipment are microflame burners in the heat recovery boiler, a vacuum system based on liquid-ring pumps, and a vacuum deaerator. To enable the application of PGU-20/25T in water-stressed regions, an air condenser preventing the heat-transfer tubes from the risk of covering with ice during operation in frost air has been developed. The vacuum system eliminates the need for an extraneous source of steam for the startup of the PGU-20/25T plant. The vacuum deaerator provides prestartup deaeration and the filling of the entire condensate feed pipeline with deaerated water and also enables the maintenance of the water temperature before the boiler at a level of no lower than 60°C and the oxygen content at a level of no higher than 10 μg/L during operation under load. The microflame burners in the heat recovery boiler enable the independent adjustment of the electrical power and the thermal power output from the PGU-20/25T plant. All the innovative equipment has been tested on experimental prototypes.

  10. Mutations in cauliflower and sprout broccoli grown from seeds flown in space

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Huang, Congli; Zhang, Keping; Sun, Yeqing

    2010-11-01

    Cauliflower and sprout broccoli are widely planted vegetables particularly in Fujian Province, China. To study the mutation in these two types of vegetables induced from spaceflight, we flew the seeds on the 20th Chinese recoverable satellite which orbited the Earth for 18 days. After returning to the Earth, the cauliflower seeds were planted for two generations and the sprout broccoli seeds for one generation at the Xiamen Agriculture Research Institute. Of the 12 cauliflowers planted for the first generation, two showed significant phenotypical changes in both the size of the plant and the weight of the flower head. In addition, most of the space flown plants were found to be resistant to the black rot attack in the field. Cauliflowers planted for the second generation from the seeds in one of the two plants that displayed phenotypical changes in the first generation showed similar mutations. For the first generation of sprout broccoli, the rate of emergence from the flown seeds was lower than that of the control by 30%. No significant changes in the phenotype between the sprout broccolis planted from the flown seeds and the control were observed except one of the mutated sprout broccolis showed a change in the appearance in the lesser bud of the chief flower head. Results of the study demonstrated that DNA damages in some of the genes may have occurred in the seeds flown in space, and some of the changes in the genes may have inherited from the first to the second generation. The improved resistance to the black rot attack and increased size of the flower head are apparently beneficial.

  11. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program. Joint Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Don

    2014-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation’s electrical generation capability. By the end of 2014, about one-third of the existing domestic fleet will havemore » passed their 40th anniversary of power operations, and about one-half of the fleet will reach the same 40-year mark within this decade. Recognizing the challenges associated with pursuing extended service life of commercial nuclear power plants, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs (DOE-NE’s Light Water Reactor Sustainability [LWRS] Program and EPRI’s Long-Term Operations [LTO] Program) to address these challenges. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a memorandum of understanding in late 2010 to “establish guiding principles under which research activities (between LWRS and LTO) could be coordinated to the benefit of both parties.” This document represents the third annual revision to the initial version (March 2011) of the plan as called for in the memorandum of understanding.« less

  12. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    PubMed

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  13. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  14. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  15. Single-Cell Genomic Analysis in Plants

    PubMed Central

    Hu, Haifei; Scheben, Armin; Edwards, David

    2018-01-01

    Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790

  16. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    PubMed

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  17. Reduction of noise generated by air conditioning and ventilation plants and transmitted to inhabited areas. [application of silencers

    NASA Technical Reports Server (NTRS)

    Harastaseanu, E.; Cristescu, G.; Mercea, F.

    1974-01-01

    The fans with which the conditioning and ventilation plants of weaving and spinning mills are equipped and the conditioning devices used in certain confection and knit wear departments of the textile industry generate loud noise. Solutions are presented for reducing the noise generated by the fans of ventilation and conditioning plants and transmitted to inhabited regions down to the admissible level, as well as the results obtained by experimental application of some noise reduction solutions in the conditioning plants of a spinning mill.

  18. Olkiluoto 1 and 2 - Plant efficiency improvement and lifetime extension-project (PELE) implemented during outages 2010 and 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosonen, M.; Hakola, M.

    2012-07-01

    Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders. TVO is the operator of the Olkiluoto nuclear power plant. TVO follows the principle of continuous improvement in the operation and maintenance of the Olkiluoto plant units. The PELE project (Plant Efficiency Improvement and Lifetime Extension), mainly completed during the annual outages in 2010 and 2011, and forms one part of the systematic development of Olkiluoto units. TVO maintains a long-term development program that aims at systematically modernizing the plant unit systems and equipment based on the latest technology. According to themore » program, the Olkiluoto 1 and Olkiluoto 2 plant units are constantly renovated with the intention of keeping them safe and reliable, The aim of the modernization projects is to improve the safety, reliability, and performance of the plant units. PELE project at Olkiluoto 1 was done in 2010 and at Olkiluoto 2 in 2011. The outage length of Olkiluoto 1 was 26 d 12 h 4 min and Olkiluoto 2 outage length was 28 d 23 h 46 min. (Normal service-outage is about 14 days including refueling and refueling-outage length is about seven days. See figure 1) The PELE project consisted of several single projects collected into one for coordinated project management. Some of the main projects were as follows: - Low pressure turbines: rotor, stator vane, casing and turbine instrumentation replacement. - Replacement of Condenser Cooling Water (later called seawater pumps) pumps - Replacement of inner isolation valves on the main steam lines. - Generator and the generator cooling system replacement. - Low voltage switchgear replacement. This project will continue during future outages. PELE was a success. 100 TVO employees and 1500 subcontractor employees participated in the project. The execution of the PELE projects went extremely well during the outages. The replacement of the low pressure turbines and seawater pumps improved the efficiency of the plant units, and a power increase of nearly 20 MW was achieved at both plant units. PELE wonderfully manifests one of the strategic goals of our company; developing the competence of our in-house personnel by working in projects. (authors)« less

  19. Local Auxin Biosynthesis Mediated by a YUCCA Flavin Monooxygenase Regulates Haustorium Development in the Parasitic Plant Phtheirospermum japonicum.

    PubMed

    Ishida, Juliane K; Wakatake, Takanori; Yoshida, Satoko; Takebayashi, Yumiko; Kasahara, Hiroyuki; Wafula, Eric; dePamphilis, Claude W; Namba, Shigetou; Shirasu, Ken

    2016-08-01

    Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum. © 2016 American Society of Plant Biologists. All rights reserved.

  20. Smart Energy Management of Multiple Full Cell Powered Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOhammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. Themore » goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.« less

Top