Sample records for generation processes modelado

  1. Fatigue Prediction for Composite Materials and Structures

    DTIC Science & Technology

    2005-10-01

    Teoría de Mezclas Serie-Paralelo Avanzada para el Análisis de Materiales Compuestos ” V Congreso de la Asociacion Española de Materiales Compuestos ...Computational Materials Science 32, 175–195 [2] Rastellini, F.; Oller, S. (2004). Modelado numérico de no linealidad constitutiva en laminados compuestos

  2. Evaluation of clinical information modeling tools.

    PubMed

    Moreno-Conde, Alberto; Austin, Tony; Moreno-Conde, Jesús; Parra-Calderón, Carlos L; Kalra, Dipak

    2016-11-01

    Clinical information models are formal specifications for representing the structure and semantics of the clinical content within electronic health record systems. This research aims to define, test, and validate evaluation metrics for software tools designed to support the processes associated with the definition, management, and implementation of these models. The proposed framework builds on previous research that focused on obtaining agreement on the essential requirements in this area. A set of 50 conformance criteria were defined based on the 20 functional requirements agreed by that consensus and applied to evaluate the currently available tools. Of the 11 initiative developing tools for clinical information modeling identified, 9 were evaluated according to their performance on the evaluation metrics. Results show that functionalities related to management of data types, specifications, metadata, and terminology or ontology bindings have a good level of adoption. Improvements can be made in other areas focused on information modeling and associated processes. Other criteria related to displaying semantic relationships between concepts and communication with terminology servers had low levels of adoption. The proposed evaluation metrics were successfully tested and validated against a representative sample of existing tools. The results identify the need to improve tool support for information modeling and software development processes, especially in those areas related to governance, clinician involvement, and optimizing the technical validation of testing processes. This research confirmed the potential of these evaluation metrics to support decision makers in identifying the most appropriate tool for their organization. Los Modelos de Información Clínica son especificaciones para representar la estructura y características semánticas del contenido clínico en los sistemas de Historia Clínica Electrónica. Esta investigación define, prueba y valida un marco para la evaluación de herramientas informáticas diseñadas para dar soporte en la en los procesos de definición, gestión e implementación de estos modelos. El marco de evaluación propuesto se basa en una investigación previa para obtener consenso en la definición de requisitos esenciales en esta área. A partir de los 20 requisitos funcionales acordados, un conjunto de 50 criterios de conformidad fueron definidos y aplicados en la evaluación de las herramientas existentes. Un total de 9 de las 11 iniciativas identificadas desarrollando herramientas para el modelado de información clínica fueron evaluadas. Los resultados muestran que las funcionalidades relacionadas con la gestión de tipos de datos, especificaciones, metadatos y mapeo con terminologías u ontologías tienen un buen nivel de adopción. Se identifican posibles mejoras en áreas relacionadas con los procesos de modelado de información. Otros criterios relacionados con presentar las relaciones semánticas entre conceptos y la comunicación con servidores de terminología tienen un bajo nivel de adopción. El marco de evaluación propuesto fue probado y validado satisfactoriamente contra un conjunto representativo de las herramientas existentes. Los resultados identifican la necesidad de mejorar el soporte de herramientas a los procesos de modelado de información y desarrollo de software, especialmente en las áreas relacionadas con gobernanza, participación de profesionales clínicos y la optimización de la validación técnica en los procesos de pruebas técnicas. Esta investigación ha confirmado el potencial de este marco de evaluación para dar soporte a los usuarios en la toma de decisiones sobre que herramienta es más apropiadas para su organización. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Deglaciation and post-glacial environmental evolution in the Western Massif of Picos de Europa

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesús; Oliva, Marc; García, Cristina; López-Sáez, José Antonio; Gallinar, David; Geraldes, Miguel

    2014-05-01

    This study examines the process of deglaciation of the Western Massif of Picos de Europa through field work, geomorphological mapping, sedimentary records and absolute datings of 14C. This massif has several peaks over 2,400 m a.s.l. (Peña Santa de Castilla, 2,596 m; Torre Santa María, 2,486 m; Torre del Mediu, 2,467 m). It is composed mainly by Carboniferous limestones. This area has been intensively affected by karstic dissolution, Quaternary glaciers and fluvio-torrential processes (Miotke, 1968; Moreno et al, 2010; Ruiz-Fernández et al, 2009; Ruiz-Fernández, 2013). At present day, periglacial processes are active at the highest elevations (Ruiz-Fernández, 2013). We have identified four main glacial stages regarding the deglaciation of the massif: (i) maximum advance corresponding to the Last Glaciation, (ii) retreat and stabilization after the maximum advance, (iii) Late Glacial, and (iv) Little Ice Age. Sedimentological studies also contribute data to the understanding of the chronological framework of these environmental changes. The datings of the bottom sediments in two long sequences (8 and 5.4 m) provided a minimum age of 18,075 ± 425 cal BP for the maximum advance stage and 11,150 ± 900 cal BP for retreat and stabilization in the phase following the maximum advance. The ongoing analyses of these sequences at very high resolution will provide new knowledge about the environmental conditions prevailing since the deglaciation of the massif. References Miotke, F.D. (1968). Karstmorphologische studien in der glazial-überformten Höhenstufe der Picos de Europa, Nordspanien. Hannover, Selbtverlag der Geografischen Gessellschaft, 161 pp. Moreno, A., Valero, B.L., Jiménez, M., Domínguez, M.J., Mata, M.P., Navas, A., González, P., Stoll, H., Farias, P., Morellón, M., Corella, J.P. & Rico, M. (2010). The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). Journal of Quaternary Science, 25 (7), 1076-1091. Ruiz-Fernández, J. (2013). Las formas de modelado glaciar, periglaciar y fluviotorrencial del Macizo Occidental de los Picos de Europa (Cordillera Cantábrica). Unpublished PhD Thesis, University of Oviedo, 314 pp. Ruiz-Fernández, J., Poblete. M.A., Serrano, P., Martí, C. & García-Ruiz, J.M. (2009). Morphometry of glacial cirques in the Cantabrian Range (Northwest Spain). Zeitschrift für Geomorphologie N. F., 53, 47-68.

  4. Inverse problem in hydrogeology

    NASA Astrophysics Data System (ADS)

    Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.

    2005-03-01

    The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le cas dans d'autres cas de figure. Par ailleurs, il peut être vu comme une des étapes dans le processus de détermination du comportement de l'aquifère. Il est montré que les méthodes d'évaluation des paramètres actuels ne diffèrent pas si ce n'est dans les détails des calculs informatiques. Il est montré qu'il existe une large panoplie de techniques d'inversion : codes de calcul utilisables par tout-un-chacun, accommodation de la variabilité via la géostatistique, incorporation d'informations géologiques et de différents types de données (température, occurrence, concentration en isotopes, âge, etc.), détermination de l'incertitude. Vu ces développements, la calibration automatique facilite énormément la modélisation. Par ailleurs, il est souhaitable que son utilisation devienne une pratique standardisée. Se sintetiza el estado del problema inverso en aguas subterráneas. El énfasis se ubica en la caracterización de acuíferos, donde los modeladores tienen que enfrentar la incertidumbre del modelo conceptual (principalmente variabilidad temporal y espacial), dependencia de escala, muchos tipos de parámetros desconocidos (transmisividad, recarga, condiciones limitantes, etc), no linealidad, y frecuentemente baja sensibilidad de variables de estado (típicamente presiones y concentraciones) a las propiedades del acuífero. Debido a estas dificultades, no puede separarse la calibración de los procesos de modelado, como frecuentemente se hace en otros campos. En su lugar, debe de visualizarse como un paso en el proceso de enten dimiento del comportamiento del acuífero. En realidad, se muestra que los métodos reales de estimación de parámetros no difieren uno del otro en lo esencial, aunque sí pueden diferir en los detalles computacionales. Se discute que existe amplio espacio para la mejora del problema inverso en aguas subterráneas: desarrollo de códigos amigables alusuario, acomodamiento de variabilidad a través de geoestadística, incorporación de información geológica y diferentes tipos de datos (temperatura, presencia y concentración de isótopos, edad, etc), explicación apropiada de incertidumbre, etc. A pesar de esto, aún con los códigos existentes, la calibración automática facilita enormemente la tarea de modelado. Por lo tanto, se sostiene que su uso debería de convertirse en práctica standard.

  5. A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji

    Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.

  6. A Positive Generation Effect on Memory for Auditory Context

    PubMed Central

    Overman, Amy A.; Richard, Alison G.; Stephens, Joseph D. W.

    2016-01-01

    Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan, 2004; Mulligan, Lozito, & Rosner, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender) whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account. PMID:27696145

  7. Prediction and generation of binary Markov processes: Can a finite-state fox catch a Markov mouse?

    NASA Astrophysics Data System (ADS)

    Ruebeck, Joshua B.; James, Ryan G.; Mahoney, John R.; Crutchfield, James P.

    2018-01-01

    Understanding the generative mechanism of a natural system is a vital component of the scientific method. Here, we investigate one of the fundamental steps toward this goal by presenting the minimal generator of an arbitrary binary Markov process. This is a class of processes whose predictive model is well known. Surprisingly, the generative model requires three distinct topologies for different regions of parameter space. We show that a previously proposed generator for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first quantitative light on the relative (minimal) costs of prediction and generation. We find, for instance, that the difference between prediction and generation is maximized when the process is approximately independently, identically distributed.

  8. A Positive Generation Effect on Memory for Auditory Context.

    PubMed

    Overman, Amy A; Richard, Alison G; Stephens, Joseph D W

    2017-06-01

    Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan in Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 838-855, 2004; Mulligan, Lozito, & Rosner in Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 836-846, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender), whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account.

  9. LISP based simulation generators for modeling complex space processes

    NASA Technical Reports Server (NTRS)

    Tseng, Fan T.; Schroer, Bernard J.; Dwan, Wen-Shing

    1987-01-01

    The development of a simulation assistant for modeling discrete event processes is presented. Included are an overview of the system, a description of the simulation generators, and a sample process generated using the simulation assistant.

  10. Terahertz generation by difference frequency generation from a compact optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Wang, Silei; Wang, Mengtao; Wang, Weishu

    2017-11-01

    Terahertz (THz) generation by difference frequency generation (DFG) processes with dual idler waves is theoretically analyzed. The dual idler waves are generated by a compact optical parametric oscillator (OPO) with periodically poled lithium niobate (PPLN). The phase-matching conditions in a same PPLN for the optical parametric oscillation generating signal and idler waves and for the DFG generating THz waves can be simultaneously satisfied by selecting the poling period of PPLN. Moreover, 3-order cascaded DFG processes generating THz waves can be realized in the same PPLN. To take an example of 8.341 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 8.341 THz in 3-order cascaded DFG processes increase to 2.57 times. When the pump intensity equals to 20 MW/mm2, the quantum conversion efficiency of 106% in 3-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.

  11. Autogen Version 2.0

    NASA Technical Reports Server (NTRS)

    Gladden, Roy

    2007-01-01

    Version 2.0 of the autogen software has been released. "Autogen" (automated sequence generation) signifies both a process and software used to implement the process of automated generation of sequences of commands in a standard format for uplink to spacecraft. Autogen requires fewer workers than are needed for older manual sequence-generation processes and reduces sequence-generation times from weeks to minutes.

  12. The Effects of Generative Learning Strategy Prompts and Metacognitive Feedback on Learners' Self-Regulation, Generation Process, and Achievement

    ERIC Educational Resources Information Center

    Lee, Hyeon Woo

    2008-01-01

    Instructional designers need to understand the internal processes of learning, identify learners' cognitive difficulties with those processes, and create strategies to help learners overcome those difficulties. Generative learning theory, one conception of human learning about cognitive functioning and process, emphasizes that meaningful learning…

  13. Flexible, secure agent development framework

    DOEpatents

    Goldsmith,; Steven, Y [Rochester, MN

    2009-04-07

    While an agent generator is generating an intelligent agent, it can also evaluate the data processing platform on which it is executing, in order to assess a risk factor associated with operation of the agent generator on the data processing platform. The agent generator can retrieve from a location external to the data processing platform an open site that is configurable by the user, and load the open site into an agent substrate, thereby creating a development agent with code development capabilities. While an intelligent agent is executing a functional program on a data processing platform, it can also evaluate the data processing platform to assess a risk factor associated with performing the data processing function on the data processing platform.

  14. Two schemes for rapid generation of digital video holograms using PC cluster

    NASA Astrophysics Data System (ADS)

    Park, Hanhoon; Song, Joongseok; Kim, Changseob; Park, Jong-Il

    2017-12-01

    Computer-generated holography (CGH), which is a process of generating digital holograms, is computationally expensive. Recently, several methods/systems of parallelizing the process using graphic processing units (GPUs) have been proposed. Indeed, use of multiple GPUs or a personal computer (PC) cluster (each PC with GPUs) enabled great improvements in the process speed. However, extant literature has less often explored systems involving rapid generation of multiple digital holograms and specialized systems for rapid generation of a digital video hologram. This study proposes a system that uses a PC cluster and is able to more efficiently generate a video hologram. The proposed system is designed to simultaneously generate multiple frames and accelerate the generation by parallelizing the CGH computations across a number of frames, as opposed to separately generating each individual frame while parallelizing the CGH computations within each frame. The proposed system also enables the subprocesses for generating each frame to execute in parallel through multithreading. With these two schemes, the proposed system significantly reduced the data communication time for generating a digital hologram when compared with that of the state-of-the-art system.

  15. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  16. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  17. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  18. Option generation in decision making: ideation beyond memory retrieval

    PubMed Central

    Del Missier, Fabio; Visentini, Mimì; Mäntylä, Timo

    2015-01-01

    According to prescriptive decision theories, the generation of options for choice is a central aspect of decision making. A too narrow representation of the problem may indeed limit the opportunity to evaluate promising options. However, despite the theoretical and applied significance of this topic, the cognitive processes underlying option generation are still unclear. In particular, while a cued recall account of option generation emphasizes the role of memory and executive control, other theoretical proposals stress the importance of ideation processes based on various search and thinking processes. Unfortunately, relevant behavioral evidence on the cognitive processes underlying option generation is scattered and inconclusive. In order to reach a better understanding, we carried out an individual-differences study employing a wide array of cognitive predictors, including measures of episodic memory, semantic memory, cognitive control, and ideation fluency. The criterion tasks consisted of three different poorly-structured decision-making scenarios, and the participants were asked to generate options to solve these problems. The main criterion variable of the study was the number of valid options generated, but also the diversity and the quality of generated options were examined. The results showed that option generation fluency and diversity in the context of ill-structured decision making are supported by ideation ability even after taking into account the effects of individual differences in several other aspects of cognitive functioning. Thus, ideation processes, possibly supported by search and thinking processes, seem to contribute to option generation beyond basic associative memory retrieval. The findings of the study also indicate that generating more options may have multifaceted consequences for choice, increasing the quality of the best option generated but decreasing the mean quality of the options in the generated set. PMID:25657628

  19. Option generation in decision making: ideation beyond memory retrieval.

    PubMed

    Del Missier, Fabio; Visentini, Mimì; Mäntylä, Timo

    2014-01-01

    According to prescriptive decision theories, the generation of options for choice is a central aspect of decision making. A too narrow representation of the problem may indeed limit the opportunity to evaluate promising options. However, despite the theoretical and applied significance of this topic, the cognitive processes underlying option generation are still unclear. In particular, while a cued recall account of option generation emphasizes the role of memory and executive control, other theoretical proposals stress the importance of ideation processes based on various search and thinking processes. Unfortunately, relevant behavioral evidence on the cognitive processes underlying option generation is scattered and inconclusive. In order to reach a better understanding, we carried out an individual-differences study employing a wide array of cognitive predictors, including measures of episodic memory, semantic memory, cognitive control, and ideation fluency. The criterion tasks consisted of three different poorly-structured decision-making scenarios, and the participants were asked to generate options to solve these problems. The main criterion variable of the study was the number of valid options generated, but also the diversity and the quality of generated options were examined. The results showed that option generation fluency and diversity in the context of ill-structured decision making are supported by ideation ability even after taking into account the effects of individual differences in several other aspects of cognitive functioning. Thus, ideation processes, possibly supported by search and thinking processes, seem to contribute to option generation beyond basic associative memory retrieval. The findings of the study also indicate that generating more options may have multifaceted consequences for choice, increasing the quality of the best option generated but decreasing the mean quality of the options in the generated set.

  20. Relational and item-specific influences on generate-recognize processes in recall.

    PubMed

    Guynn, Melissa J; McDaniel, Mark A; Strosser, Garrett L; Ramirez, Juan M; Castleberry, Erica H; Arnett, Kristen H

    2014-02-01

    The generate-recognize model and the relational-item-specific distinction are two approaches to explaining recall. In this study, we consider the two approaches in concert. Following Jacoby and Hollingshead (Journal of Memory and Language 29:433-454, 1990), we implemented a production task and a recognition task following production (1) to evaluate whether generation and recognition components were evident in cued recall and (2) to gauge the effects of relational and item-specific processing on these components. An encoding task designed to augment item-specific processing (anagram-transposition) produced a benefit on the recognition component (Experiments 1-3) but no significant benefit on the generation component (Experiments 1-3), in the context of a significant benefit to cued recall. By contrast, an encoding task designed to augment relational processing (category-sorting) did produce a benefit on the generation component (Experiment 3). These results converge on the idea that in recall, item-specific processing impacts a recognition component, whereas relational processing impacts a generation component.

  1. The neural component-process architecture of endogenously generated emotion

    PubMed Central

    Kanske, Philipp; Singer, Tania

    2017-01-01

    Abstract Despite the ubiquity of endogenous emotions and their role in both resilience and pathology, the processes supporting their generation are largely unknown. We propose a neural component process model of endogenous generation of emotion (EGE) and test it in two functional magnetic resonance imaging (fMRI) experiments (N = 32/293) where participants generated and regulated positive and negative emotions based on internal representations, usin self-chosen generation methods. EGE activated nodes of salience (SN), default mode (DMN) and frontoparietal control (FPCN) networks. Component processes implemented by these networks were established by investigating their functional associations, activation dynamics and integration. SN activation correlated with subjective affect, with midbrain nodes exclusively distinguishing between positive and negative affect intensity, showing dynamics consistent generation of core affect. Dorsomedial DMN, together with ventral anterior insula, formed a pathway supporting multiple generation methods, with activation dynamics suggesting it is involved in the generation of elaborated experiential representations. SN and DMN both coupled to left frontal FPCN which in turn was associated with both subjective affect and representation formation, consistent with FPCN supporting the executive coordination of the generation process. These results provide a foundation for research into endogenous emotion in normal, pathological and optimal function. PMID:27522089

  2. Coherence-generating power of quantum dephasing processes

    NASA Astrophysics Data System (ADS)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  3. THE SECOND GENERATION OF THE WASTE REDUCTION (WAR) ALGORITHM: A DECISION SUPPORT SYSTEM FOR GREENER CHEMICAL PROCESSES

    EPA Science Inventory

    chemical process designers using simulation software generate alternative designs for one process. One criterion for evaluating these designs is their potential for adverse environmental impacts due to waste generated, energy consumed, and possibilities for fugitive emissions. Co...

  4. Automated Sequence Generation Process and Software

    NASA Technical Reports Server (NTRS)

    Gladden, Roy

    2007-01-01

    "Automated sequence generation" (autogen) signifies both a process and software used to automatically generate sequences of commands to operate various spacecraft. The autogen software comprises the autogen script plus the Activity Plan Generator (APGEN) program. APGEN can be used for planning missions and command sequences.

  5. 40 CFR 436.21 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... natural deposits. (e) The term “process generated waste water” shall mean any waste water used in the... of the mine operator. However, if a mine is also used for treatment of process generated waste water, discharges of commingled water from the facilities shall be deemed discharges of process generated waste...

  6. Theoretical analysis of terahertz generation from a compact optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Wang, Silei; Wang, Mengtao; Yuan, Bin; Wang, Weishu

    2017-10-01

    Terahertz (THz) generation by difference frequency generation (DFG) processes with dual signal waves is theoretically analyzed. The dual signal waves are generated by an optical parametric oscillator (OPO) with periodically inverted KTiOPO4 (KTP) plates based on adhesive-free-bonded (AFB) technology. The phase-matching conditions in a same AFB KTP composite for the OPO generating signals and idlers and for the DFG generating THz wave can be simultaneously satisfied by selecting the thickness of each KTP plate. Moreover, 4-order cascaded DFG processes can be realized in the same AFB KTP composite. The cascaded Stokes interaction processes generating THz photons and the cascaded anti-Stokes interaction processes consuming THz photons are investigated from coupled wave equations. Take an example of 3.106 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 3.106 THz in 4-order cascaded DFG processes increase to 5.56 times. When the pump intensity equals 20 MW mm-2, the quantum conversion efficiency of 259% in 4-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.

  7. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOEpatents

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  8. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding: Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium in stainless steel welding fumes.

    PubMed

    Keane, M; Siert, A; Stone, S; Chen, B; Slaven, J; Cumpston, A; Antonini, J

    2012-09-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr 6+ ) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr 6+ fractions were measured in the fumes; fume generation rates, Cr 6+ generation rates, and Cr 6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr 6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr 6+ ranged from 69 to 7800 μg/min, and Cr 6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr 6+ (ppm) in the fume did not necessarily correlate with the Cr 6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr 6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use.

  9. D.C. - ARC plasma generator for nonequilibrium plasmachemical processes

    NASA Astrophysics Data System (ADS)

    Kvaltin, J.

    1990-06-01

    The analysis of conditions for generation of nonequilibrium plasma to plasmachemical processes is made and the design of d.c.-arc plasma generator on the base of integral criterion is suggested. The measurement of potentials on the plasma column of that generator is presented.

  10. Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka

    Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.

  11. InSAR Deformation Time Series Processed On-Demand in the Cloud

    NASA Astrophysics Data System (ADS)

    Horn, W. B.; Weeden, R.; Dimarchi, H.; Arko, S. A.; Hogenson, K.

    2017-12-01

    During this past year, ASF has developed a cloud-based on-demand processing system known as HyP3 (http://hyp3.asf.alaska.edu/), the Hybrid Pluggable Processing Pipeline, for Synthetic Aperture Radar (SAR) data. The system makes it easy for a user who doesn't have the time or inclination to install and use complex SAR processing software to leverage SAR data in their research or operations. One such processing algorithm is generation of a deformation time series product, which is a series of images representing ground displacements over time, which can be computed using a time series of interferometric SAR (InSAR) products. The set of software tools necessary to generate this useful product are difficult to install, configure, and use. Moreover, for a long time series with many images, the processing of just the interferograms can take days. Principally built by three undergraduate students at the ASF DAAC, the deformation time series processing relies the new Amazon Batch service, which enables processing of jobs with complex interconnected dependencies in a straightforward and efficient manner. In the case of generating a deformation time series product from a stack of single-look complex SAR images, the system uses Batch to serialize the up-front processing, interferogram generation, optional tropospheric correction, and deformation time series generation. The most time consuming portion is the interferogram generation, because even for a fairly small stack of images many interferograms need to be processed. By using AWS Batch, the interferograms are all generated in parallel; the entire process completes in hours rather than days. Additionally, the individual interferograms are saved in Amazon's cloud storage, so that when new data is acquired in the stack, an updated time series product can be generated with minimal addiitonal processing. This presentation will focus on the development techniques and enabling technologies that were used in developing the time series processing in the ASF HyP3 system. Data and process flow from job submission through to order completion will be shown, highlighting the benefits of the cloud for each step.

  12. 75 FR 68294 - Revisions to the California State Implementation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... matter emissions from boilers, steam generators and process heaters greater than 5.0 MMbtu/hour. We are... Advance Emission 10/16/08 03/17/09 Reduction Options for Boilers, Steam Generators and Process Heaters..., steam generators and process heaters with a total rated heat input greater than 5 MMBtu/ hour. EPA's...

  13. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.

    PubMed

    Umeshima, Hiroki; Nomura, Ken-Ichi; Yoshikawa, Shuhei; Hörning, Marcel; Tanaka, Motomu; Sakuma, Shinya; Arai, Fumihito; Kaneko, Makoto; Kengaku, Mineko

    2018-04-05

    Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes. In contrast, neurons with a long leading process generated a force dipole with opposing traction forces in the proximal leading process during nuclear translocation. Transient accumulation of actin filaments was observed at the dipole center of the two opposing forces, which was abolished by inhibition of myosin II activity. A swelling in the leading process emerged and generated a traction force that pulled the nucleus when nuclear translocation was physically hampered. The traction force in the leading process swelling was uncoupled from somal translocation in neurons expressing a dominant negative mutant of the KASH protein, which disrupts the interaction between cytoskeletal components and the nuclear envelope. Our results suggest that the leading process is the site of generation of actomyosin-dependent traction force in long bipolar neurons, and that the traction force is transmitted to the nucleus via KASH proteins. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  14. Temporal Dynamics of Hypothesis Generation: The Influences of Data Serial Order, Data Consistency, and Elicitation Timing

    PubMed Central

    Lange, Nicholas D.; Thomas, Rick P.; Davelaar, Eddy J.

    2012-01-01

    The pre-decisional process of hypothesis generation is a ubiquitous cognitive faculty that we continually employ in an effort to understand our environment and thereby support appropriate judgments and decisions. Although we are beginning to understand the fundamental processes underlying hypothesis generation, little is known about how various temporal dynamics, inherent in real world generation tasks, influence the retrieval of hypotheses from long-term memory. This paper presents two experiments investigating three data acquisition dynamics in a simulated medical diagnosis task. The results indicate that the mere serial order of data, data consistency (with previously generated hypotheses), and mode of responding influence the hypothesis generation process. An extension of the HyGene computational model endowed with dynamic data acquisition processes is forwarded and explored to provide an account of the present data. PMID:22754547

  15. Waveform Generator Signal Processing Software

    DOT National Transportation Integrated Search

    1988-09-01

    This report describes the software that was developed to process test waveforms that were recorded by crash test data acquisition systems. The test waveforms are generated by an electronic waveform generator developed by MGA Research Corporation unde...

  16. Analytical redundancy and the design of robust failure detection systems

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.; Willsky, A. S.

    1984-01-01

    The Failure Detection and Identification (FDI) process is viewed as consisting of two stages: residual generation and decision making. It is argued that a robust FDI system can be achieved by designing a robust residual generation process. Analytical redundancy, the basis for residual generation, is characterized in terms of a parity space. Using the concept of parity relations, residuals can be generated in a number of ways and the design of a robust residual generation process can be formulated as a minimax optimization problem. An example is included to illustrate this design methodology. Previously announcedd in STAR as N83-20653

  17. Generated spiral bevel gears: Optimal machine-tool settings and tooth contact analysis

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W. J.; Coy, J. J.; Heine, C.

    1985-01-01

    Geometry and kinematic errors were studied for Gleason generated spiral bevel gears. A new method was devised for choosing optimal machine settings. These settings provide zero kinematic errors and an improved bearing contact. The kinematic errors are a major source of noise and vibration in spiral bevel gears. The improved bearing contact gives improved conditions for lubrication. A computer program for tooth contact analysis was developed, and thereby the new generation process was confirmed. The new process is governed by the requirement that during the generation process there is directional constancy of the common normal of the contacting surfaces for generator and generated surfaces of pinion and gear.

  18. Sources of Information as Determinants of Product and Process Innovation.

    PubMed

    Gómez, Jaime; Salazar, Idana; Vargas, Pilar

    2016-01-01

    In this paper we use a panel of manufacturing firms in Spain to examine the extent to which they use internal and external sources of information (customers, suppliers, competitors, consultants and universities) to generate product and process innovation. Our results show that, although internal sources are influential, external sources of information are key to achieve innovation performance. These results are in line with the open innovation literature because they show that firms that are opening up their innovation process and that use different information sources have a greater capacity to generate innovations. We also find that the importance of external sources of information varies depending on the type of innovation (product or process) considered. To generate process innovation, firms mainly rely on suppliers while, to generate product innovation, the main contribution is from customers. The potential simultaneity between product and process innovation is also taken into consideration. We find that the generation of both types of innovation is not independent.

  19. Sources of Information as Determinants of Product and Process Innovation

    PubMed Central

    2016-01-01

    In this paper we use a panel of manufacturing firms in Spain to examine the extent to which they use internal and external sources of information (customers, suppliers, competitors, consultants and universities) to generate product and process innovation. Our results show that, although internal sources are influential, external sources of information are key to achieve innovation performance. These results are in line with the open innovation literature because they show that firms that are opening up their innovation process and that use different information sources have a greater capacity to generate innovations. We also find that the importance of external sources of information varies depending on the type of innovation (product or process) considered. To generate process innovation, firms mainly rely on suppliers while, to generate product innovation, the main contribution is from customers. The potential simultaneity between product and process innovation is also taken into consideration. We find that the generation of both types of innovation is not independent. PMID:27035456

  20. The wandering self: Tracking distracting self-generated thought in a cognitively demanding context.

    PubMed

    Huijser, Stefan; van Vugt, Marieke K; Taatgen, Niels A

    2018-02-01

    We investigated how self-referential processing (SRP) affected self-generated thought in a complex working memory task (CWM) to test the predictions of a computational cognitive model. This model described self-generated thought as resulting from competition between task- and distracting processes, and predicted that self-generated thought interferes with rehearsal, reducing memory performance. SRP was hypothesized to influence this goal competition process by encouraging distracting self-generated thinking. We used a spatial CWM task to examine if SRP instigated such thoughts, and employed eye-tracking to examine rehearsal interference in eye-movement and self-generated thinking in pupil size. The results showed that SRP was associated with lower performance and higher rates of self-generated thought. Self-generated thought was associated with less rehearsal and we observed a smaller pupil size for mind wandering. We conclude that SRP can instigate self-generated thought and that goal competition provides a likely explanation for how self-generated thoughts arises in a demanding task. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Indigenous technology development and standardization of the process for obtaining ready to use sterile sodium pertechnetate-Tc-99m solution from Geltech generator

    PubMed Central

    Sarkar, Sishir Kumar; Kothalkar, Chetan; Naskar, Prabhakar; Joshi, Sangeeta; Saraswathy, Padmanabhan; Dey, Arun Chandra; Vispute, Gunvant Leeladhar; Murhekar, Vishwas Vinayak; Pilkhwal, Neelam

    2013-01-01

    Purpose of the Study: The indigenous design and technology development for processing large scale zirconium molybdate-Mo-99 (ZrMo-99) Geltech generator was successfully commissioned in Board of Radiation and Isotope Technology (BRIT), India, in 2006. The generator production facility comprises of four shielded plant facilities equipped with tongs and special process gadgets amenable for remote operations for radiochemical processing of ZrMo-99 gel. Results: Over 2800 Geltech generators have been processed and supplied to user hospitals during the period 2006-2013. Geltech generator supplied by BRIT was initially not sterile. Simple elution of Tc-99m is performed by a sterile evacuated vial with sterile and pyrogen free 0.9% NaCl solution to obtain sodium (Tc-99m) pertechnetate solution. A special type online 0.22 μm membrane filter has been identified and adapted in Geltech generator. Conclusions: The online filtration of Tc-99m from Geltech generator; thus, provided sterile Tc-99m sodium pertechnetate solution. Generators assembled with modified filter assembly were supplied to local hospital in Mumbai Radiation Medicine Centre (RMC) and S.G.S. Medical College and KEM Hospital) and excellent performances were reported by users. PMID:24163509

  2. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding

    PubMed Central

    KEANE, M.; SIERT, A.; STONE, S.; CHEN, B.; SLAVEN, J.; CUMPSTON, A.; ANTONINI, J.

    2015-01-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation rates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 μg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). Conclusion: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. PMID:26690276

  3. Industrial Technology Modernization Program. Project 32. Factory Vision. Phase 2

    DTIC Science & Technology

    1988-04-01

    instructions for the PWA’s, generating the numerical control (NC) program instructions for factory assembly equipment, controlling the process... generating the numerical control (NC) program instructions for factory assembly equipment, controlling the production process instructions and NC... Assembly Operations the "Create Production Process Program" will automatically generate a sequence of graphics pages (in paper mode), or graphics screens

  4. Electron beam generation in the turbulent plasma of Z-pinch discharges

    NASA Astrophysics Data System (ADS)

    Vikhrev, Victor V.; Baronova, Elena O.

    1997-05-01

    Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.

  5. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  6. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation.

  7. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    NASA Astrophysics Data System (ADS)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  8. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle.

    PubMed

    Yatagai, Tomonori; Ohkawa, Yoshiko; Kubo, Daichi; Kawase, Yoshinori

    2017-01-02

    The hydroxyl radical generation in an electro-Fenton process with a gas-diffusion electrode which is strongly linked with electro-chemical generation of hydrogen peroxide and iron redox cycle was studied. The OH radical generation subsequent to electro-chemical generations of H 2 O 2 was examined under the constant potential in the range of Fe 2+ dosage from 0 to 1.0 mM. The amount of generated OH radical initially increased and gradually decreased after the maximum was reached. The initial rate of OH radical generation increased for the Fe 2+ dosage <0.25 mM and at higher Fe 2+ dosages remained constant. At higher Fe 2+ dosages the precipitation of Fe might inhibit the enhancement of OH radical generation. The experiments for decolorization and total organic carbon (TOC) removal of azo-dye Orange II by the electro-Fenton process were conducted and the quick decolorization and slow TOC removal of Orange II were found. To quantify the linkages of OH radical generation with dynamic behaviors of electro-chemically generated H 2 O 2 and iron redox cycle and to investigate effects of OH radical generation on the decolorization and TOC removal of Orange II, novel reaction kinetic models were developed. The proposed models could satisfactory clarify the linkages of OH radical generation with electro-chemically generated H 2 O 2 and iron redox cycle and simulate the decolorization and TOC removal of Orange II by the electro-Fenton process.

  9. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease.

    PubMed

    Skinner, Michael K; Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel; Nilsson, Eric; McBirney, Margaux; Klukovich, Rachel; Xie, Yeming; Tang, Chong; Yan, Wei

    2018-02-27

    Environmental toxicants such as DDT have been shown to induce the epigenetic transgenerational inheritance of disease (e.g., obesity) through the germline. The current study was designed to investigate the DDT-induced concurrent alterations of a number of different epigenetic processes including DNA methylation, non-coding RNA (ncRNA) and histone retention in sperm. Gestating females were exposed transiently to DDT during fetal gonadal development, and then, the directly exposed F1 generation, the directly exposed germline F2 generation and the transgenerational F3 generation sperm were investigated. DNA methylation and ncRNA were altered in each generation sperm with the direct exposure F1 and F2 generations being predominantly distinct from the F3 generation epimutations. The piRNA and small tRNA were the most predominant classes of ncRNA altered. A highly conserved set of histone retention sites were found in the control lineage generations which was not significantly altered between generations, but a large number of new histone retention sites were found only in the transgenerational generation DDT lineage sperm. Therefore, all three different epigenetic processes were concurrently altered as DDT induced the epigenetic transgenerational inheritance of sperm epimutations. The direct exposure generations sperm epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene associations with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Observations demonstrate all three epigenetic processes are involved in transgenerational inheritance. The different epigenetic processes appear to be integrated in mediating the epigenetic transgenerational inheritance phenomenon.

  10. HEPA Filter Disposal Write-Up 10/19/16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll, C.

    Process knowledge (PK) collection on HEPA filters is handled via the same process as other waste streams at LLNL. The Field technician or Characterization point of contact creates an information gathering document (IGD) in the IGD database, with input provided from the generator, and submits it for electronic approval. This document is essentially a waste generation profile, detailing the physical, chemical as well as radiological characteristics, and hazards, of a waste stream. It will typically contain a general, but sometimes detailed, description of the work processes which generated the waste. It will contain PK as well as radiological and industrialmore » hygiene analytical swipe results, and any other analytical or other supporting knowledge related to characterization. The IGD goes through an electronic approval process to formalize the characterization and to ensure the waste has an appropriate disposal path. The waste generator is responsible for providing initial process knowledge information, and approves the IGD before it routed to chemical and radiological waste characterization professionals. This is the standard characterization process for LLNL-generated HEPA Filters.« less

  11. Electron beam deflection control system of a welding and surface modification installation

    NASA Astrophysics Data System (ADS)

    Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.

    2018-03-01

    In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.

  12. Integrated Dynamic Process Planning and Scheduling in Flexible Manufacturing Systems via Autonomous Agents

    NASA Astrophysics Data System (ADS)

    Nejad, Hossein Tehrani Nik; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka

    Process planning and scheduling are important manufacturing planning activities which deal with resource utilization and time span of manufacturing operations. The process plans and the schedules generated in the planning phase shall be modified in the execution phase due to the disturbances in the manufacturing systems. This paper deals with a multi-agent architecture of an integrated and dynamic system for process planning and scheduling for multi jobs. A negotiation protocol is discussed, in this paper, to generate the process plans and the schedules of the manufacturing resources and the individual jobs, dynamically and incrementally, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans and schedules are searched and generated to cope with both the dynamic status and the disturbances of the manufacturing systems. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans and schedules in the dynamic manufacturing environment. A simulation software has been developed to carry out case studies, aimed at verifying the performance of the proposed multi-agent architecture.

  13. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOEpatents

    Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel

    2000-01-01

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  14. Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model

    PubMed Central

    Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro

    2013-01-01

    Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108

  15. Simple process-based simulators for generating spatial patterns of habitat loss and fragmentation: a review and introduction to the G-RaFFe model.

    PubMed

    Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro

    2013-01-01

    Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Ryan S.; Adolf, Douglas Brian; Stavig, Mark Edwin

    Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies inmore » the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.« less

  17. 76 FR 13112 - Maryland Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... generation, storage, handling, processing, disposal, recycling, beneficial use, or other use of CCBs within... establish requirements pertaining to the generation, storage, handling, processing, disposal, recycling...

  18. Effect of Entropy Generation on Wear Mechanics and System Reliability

    NASA Astrophysics Data System (ADS)

    Gidwani, Akshay; James, Siddanth; Jagtap, Sagar; Karthikeyan, Ram; Vincent, S.

    2018-04-01

    Wear is an irreversible phenomenon. Processes such as mutual sliding and rolling between materials involve entropy generation. These processes are monotonic with respect to time. The concept of entropy generation is further quantified using Degradation Entropy Generation theorem formulated by Michael D. Bryant. The sliding-wear model can be extrapolated to different instances in order to further provide a potential analysis of machine prognostics as well as system and process reliability for various processes besides even mere mechanical processes. In other words, using the concept of ‘entropy generation’ and wear, one can quantify the reliability of a system with respect to time using a thermodynamic variable, which is the basis of this paper. Thus in the present investigation, a unique attempt has been made to establish correlation between entropy-wear-reliability which can be useful technique in preventive maintenance.

  19. Generation and context memory.

    PubMed

    Mulligan, Neil W; Lozito, Jeffrey P; Rosner, Zachary A

    2006-07-01

    Generation enhances memory for occurrence but may not enhance other aspects of memory. The present study further delineates the negative generation effect in context memory reported in N. W. Mulligan (2004). First, the negative generation effect occurred for perceptual attributes of the target item (its color and font) but not for extratarget aspects of context (location and background color). Second, nonvisual generation tasks with either semantic or nonsemantic generation rules (antonym and rhyme generation, respectively) produced the same pattern of results. In contrast, a visual (or data-driven) generation task (letter transposition) did not disrupt context memory for color. Third, generating nonwords produced no effect on item memory but persisted in producing a negative effect on context memory for target attributes, implying that (a) the negative generation effect in context memory is not mediated by semantic encoding, and (b) the negative effect on context memory can be dissociated from the positive effect on item memory. The results are interpreted in terms of the processing account of generation. The original, perceptual-conceptual version of this account is too narrow, but a modified processing account, based on a more generic visual versus nonvisual processing distinction, accommodates the results. Copyright 2006 APA, all rights reserved.

  20. Industrial Processes to Reduce Generation of Hazardous Waste at DoD facilities. Phase Report. Appendix A

    DTIC Science & Technology

    1985-12-01

    ITASK IWORK UNIT Roo 2󈧆 DELEMENT NO. NO. NO. IACCESSION NO ~2sI DC tn 200061 1 ift E (include Security Classification) Industrit I Processes to Reduice...SCRT LSIIAINO HSPG Bes Av ia l ther editions are obsolete. I iN 1 ALSs I F1 1- Bs Available INDUSTRIAL PROCESSES TO REDUCE GENERATION OF HAZARDOUS...Defense (DOD) by CH2M HILL and PEER Consultants, Inc., for the purpose of reducing hazardous waste generation from DOD industrial processes . It is not

  1. Enhanced generation of perfluoroalkyl carboxylic acids (PFCAs) from fluorotelomer alcohols (FTOHs) via ammonia-oxidation process.

    PubMed

    Yu, Xiaolong; Nishimura, Fumitake; Hidaka, Taira

    2018-05-01

    With the phase-out of persistent, bioaccumalative, and toxic perfluoroalkyl carboxylic acids (PFCAs), it is needed to explore the potential release of PFCAs from precursors being emitted into the environment. Biotransformation of fluorotelomer alcohols (FTOHs) via biological processes in wastewater treatment plants (WWTPs) leads to discharge of PFCAs into receiving waters. However, the commonly existed microbial activity that can impact on FTOHs biodegradation in WWTPs remains unclear. The objective of present research was to explore the relationship between ammonia-oxidation process and the enhanced PFCAs generation from FTOHs biodegradation under aerobic activated sludge. The obtained results indicate that the cometabolism process performed by nitrifying microorganisms (NMs) was responsible for enhanced PFCAs generation. Among NMs, the ammonia-oxidation bacteria that can express non-specific enzyme of ammonia monooxygenases resulted in the enhanced PFCAs generation from FTOHs. Meanwhile, the different addition amount of ammonia contributed to different defluorination efficiency of FTOHs. The present study further correlated the enhanced PFCAs generation from FTOHs biodegradation with ammonia-oxidation process, which can provide practical information on effective management of PFCAs generation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Software Quality Assurance and Verification for the MPACT Library Generation Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuxuan; Williams, Mark L.; Wiarda, Dorothea

    This report fulfills the requirements for the Consortium for the Advanced Simulation of Light-Water Reactors (CASL) milestone L2:RTM.P14.02, “SQA and Verification for MPACT Library Generation,” by documenting the current status of the software quality, verification, and acceptance testing of nuclear data libraries for MPACT. It provides a brief overview of the library generation process, from general-purpose evaluated nuclear data files (ENDF/B) to a problem-dependent cross section library for modeling of light-water reactors (LWRs). The software quality assurance (SQA) programs associated with each of the software used to generate the nuclear data libraries are discussed; specific tests within the SCALE/AMPX andmore » VERA/XSTools repositories are described. The methods and associated tests to verify the quality of the library during the generation process are described in detail. The library generation process has been automated to a degree to (1) ensure that it can be run without user intervention and (2) to ensure that the library can be reproduced. Finally, the acceptance testing process that will be performed by representatives from the Radiation Transport Methods (RTM) Focus Area prior to the production library’s release is described in detail.« less

  3. Processing and analysis techniques involving in-vessel material generation

    DOEpatents

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.

    2011-01-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  4. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.

    PubMed

    Badel, Adrien; Benayad, Abdelmjid; Lefeuvre, Elie; Lebrun, Laurent; Richard, Claude; Guyomar, Daniel

    2006-04-01

    This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.

  5. Processing and analysis techniques involving in-vessel material generation

    DOEpatents

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.

    2012-09-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  6. Actual operation and regulatory activities on steam generator replacement in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hitoshi

    1997-02-01

    This paper summarizes the operating reactors in Japan, and the status of the steam generators in these plants. It reviews plans for replacement of existing steam generators, and then goes into more detail on the planning and regulatory steps which must be addressed in the process of accomplishing this maintenance. The paper also reviews the typical steps involved in the process of removal and replacement of steam generators.

  7. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  8. Application Processing | Distributed Generation Interconnection

    Science.gov Websites

    delivering swift customer service. The rapid rise of distributed generation (DG) PV interconnection speed processing, reduce paperwork, and improve customer service. Webinars and publications are

  9. Investigate the complex process in particle-fluid based surface generation technology using reactive molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Han, Xuesong; Li, Haiyan; Zhao, Fu

    2017-07-01

    Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.

  10. Effective stochastic generator with site-dependent interactions

    NASA Astrophysics Data System (ADS)

    Khamehchi, Masoumeh; Jafarpour, Farhad H.

    2017-11-01

    It is known that the stochastic generators of effective processes associated with the unconditioned dynamics of rare events might consist of non-local interactions; however, it can be shown that there are special cases for which these generators can include local interactions. In this paper, we investigate this possibility by considering systems of classical particles moving on a one-dimensional lattice with open boundaries. The particles might have hard-core interactions similar to the particles in an exclusion process, or there can be many arbitrary particles at a single site in a zero-range process. Assuming that the interactions in the original process are local and site-independent, we will show that under certain constraints on the microscopic reaction rules, the stochastic generator of an unconditioned process can be local but site-dependent. As two examples, the asymmetric zero-temperature Glauber model and the A-model with diffusion are presented and studied under the above-mentioned constraints.

  11. A study of increasing radical density and etch rate using remote plasma generator system

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook

    2013-09-01

    To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.

  12. Molecular Memory of Morphologies by Septins during Neuron Generation Allows Early Polarity Inheritance.

    PubMed

    Boubakar, Leila; Falk, Julien; Ducuing, Hugo; Thoinet, Karine; Reynaud, Florie; Derrington, Edmund; Castellani, Valérie

    2017-08-16

    Transmission of polarity established early during cell lineage history is emerging as a key process guiding cell differentiation. Highly polarized neurons provide a fascinating model to study inheritance of polarity over cell generations and across morphological transitions. Neural crest cells (NCCs) migrate to the dorsal root ganglia to generate neurons directly or after cell divisions in situ. Using live imaging of vertebrate embryo slices, we found that bipolar NCC progenitors lose their polarity, retracting their processes to round for division, but generate neurons with bipolar morphology by emitting processes from the same locations as the progenitor. Monitoring the dynamics of Septins, which play key roles in yeast polarity, indicates that Septin 7 tags process sites for re-initiation of process growth following mitosis. Interfering with Septins blocks this mechanism. Thus, Septins store polarity features during mitotic rounding so that daughters can reconstitute the initial progenitor polarity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of Process and Outcome Accountability on Idea Generation.

    PubMed

    Häusser, Jan Alexander; Frisch, Johanna Ute; Wanzel, Stella; Schulz-Hardt, Stefan

    2017-07-01

    Previous research on the effects of outcome and process accountability on decision making has neglected the preceding phase of idea generation. We conducted a 2 (outcome accountability: yes vs. no) × 2 (process accountability: yes vs. no) experiment (N = 147) to test the effects of accountability on quantity and quality of generated ideas in a product design task. Furthermore, we examined potential negative side effects of accountability (i.e., stress and lengthened decision making). We found that (a) outcome accountability had a negative effect on quantity of ideas and (b) process accountability extended the idea generation process. Furthermore, any type of accountability (c) had a negative effect on uniqueness of ideas, (d) did not affect the quality of the idea that was selected, and (e) increased stress. Moreover, the negative effect of accountability on uniqueness of ideas was mediated by stress.

  14. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    NASA Technical Reports Server (NTRS)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  15. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    NASA Technical Reports Server (NTRS)

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  16. Performing process migration with allreduce operations

    DOEpatents

    Archer, Charles Jens; Peters, Amanda; Wallenfelt, Brian Paul

    2010-12-14

    Compute nodes perform allreduce operations that swap processes at nodes. A first allreduce operation generates a first result and uses a first process from a first compute node, a second process from a second compute node, and zeros from other compute nodes. The first compute node replaces the first process with the first result. A second allreduce operation generates a second result and uses the first result from the first compute node, the second process from the second compute node, and zeros from others. The second compute node replaces the second process with the second result, which is the first process. A third allreduce operation generates a third result and uses the first result from first compute node, the second result from the second compute node, and zeros from others. The first compute node replaces the first result with the third result, which is the second process.

  17. Name and face learning in older adults: effects of level of processing, self-generation, and intention to learn.

    PubMed

    Troyer, Angela K; Häfliger, Andrea; Cadieux, Mélanie J; Craik, Fergus I M

    2006-03-01

    Many older adults are interested in strategies to help them learn new names. We examined the learning conditions that provide maximal benefit to name and face learning. In Experiment 1, consistent with levels-of-processing theory, name recall and recognition by 20 younger and 20 older adults was poorest with physical processing, intermediate with phonemic processing, and best with semantic processing. In Experiment 2, name and face learning in 20 younger and 20 older adults was maximized with semantic processing of names and physical processing of faces. Experiment 3 showed a benefit of self-generation and of intentional learning of name-face pairs in 24 older adults. Findings suggest that memory interventions should emphasize processing names semantically, processing faces physically, self-generating this information, and keeping in mind that memory for the names will be needed in the future.

  18. {sup 99m}Tc generators for clinical use based on zirconium molybdate gel and (n, gamma) produced {sup 99}Mo: Indian experience in the development and deployment of indigenous technology and processing facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraswathy, P.; Dey, A.C.; Sarkar, S.K.

    The Indian pursuit of gel generator technology for {sup 99m}Tc was driven mainly by three considerations, namely, (i) well-established and ease of reliable production of (n, gamma)-based {sup 99}Mo in several tens of GBq quantities in the research reactors in Trombay/Mumbai, India, (ii) need for relatively low-cost alternate technology to replace the solvent (MEK) extraction generator system in use in India since 1970s and (iii) minimize dependency on weekly import of fission-produced {sup 99}Mo raw material required for alumina column generator. Extensive investigations on process standardisation for zirconium molybdate gel (ZMG) led to a steady progress, achieved both in termsmore » of process technology and final performance of {sup 99m}Tc gel generators. The {sup 99m}Tc final product purity from the Indian gel system was comparable to that obtained from the gold-standard alumina column generators. Based on the feasibility established for reliable small-scale production, as well as satisfactory clinical experience with a number of gel generators used in collaborating hospital radiopharmacies, full-fledged mechanised processing facilities for handling up to 150 g of ZMG were set up. The indigenous design and development included setting up of shielded plant facilities with pneumatic-driven as well as manual controls and special gadgets such as, microwave heating of the zirconium molybdate cake, dispenser for gel granules, loading of gel columns into pre-assembled generator housing etc. Formal review of the safety features was carried out by the regulatory body and stage-wise clearance for processing low and medium level {sup 99}Mo activity was granted. Starting from around 70 GBq {sup 99}Mo handling, the processing facilities have since been successfully operated at a level of 740 GBq {sup 99}Mo, twice a month. In all 18 batches of gel have been processed and 156 generators produced. The individual generator capacity was 15 to 30 GBq with an elution yield of nearly 75%. 129 generators were supplied to 11 user hospitals and the estimated number of clinical studies done is well over 5000. The salient aspects of the Indian experience have been reported in many a forum and shared with the IAEA through the on-going CRP. The detailed process know-how is available for technology transfer from BRIT, India. (author)« less

  19. Functional overlap of top-down emotion regulation and generation: an fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions.

    PubMed

    Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri

    2014-09-01

    One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.

  20. Solution-Processed Carbon Nanotube True Random Number Generator.

    PubMed

    Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2017-08-09

    With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.

  1. Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors

    PubMed Central

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena

    2013-01-01

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804

  2. Computational burden resulting from image recognition of high resolution radar sensors.

    PubMed

    López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena

    2013-04-22

    This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.

  3. Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators

    PubMed Central

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869

  4. Universal portfolios generated by weakly stationary processes

    NASA Astrophysics Data System (ADS)

    Tan, Choon Peng; Pang, Sook Theng

    2014-12-01

    Recently, a universal portfolio generated by a set of independent Brownian motions where a finite number of past stock prices are weighted by the moments of the multivariate normal distribution is introduced and studied. The multivariate normal moments as polynomials in time consequently lead to a constant rebalanced portfolio depending on the drift coefficients of the Brownian motions. For a weakly stationary process, a different type of universal portfolio is proposed where the weights on the stock prices depend only on the time differences of the stock prices. An empirical study is conducted on the returns achieved by the universal portfolios generated by the Ornstein-Uhlenbeck process on selected stock-price data sets. Promising results are demonstrated for increasing the wealth of the investor by using the weakly-stationary-process-generated universal portfolios.

  5. Study on the generation technology of Li brocade pattern mutant genes based on the AI and Java technology

    NASA Astrophysics Data System (ADS)

    Zhou, Yuping; Zhang, Qi

    2018-04-01

    In the information environment, digital and information processing to Li brocade patterns reveals an important means of Li ethnic style and inheriting the national culture. Adobe Illustrator CS3 and Java language were used in the paper to make "variation" processing to Li brocade patterns, and generate "Li brocade pattern mutant genes". The generation of pattern mutant genes includes color mutation, shape mutation, adding and missing transform, and twisted transform, etc. Research shows that Li brocade pattern mutant genes can be generated by using the Adobe Illustrator CS3 and the image processing tools of Java language edit, etc.

  6. The challenge of selecting tomorrow's police officers from Generations X and Y.

    PubMed

    McCafferty, Francis L

    2003-01-01

    Demands on police officers in the past 30 years have grown dramatically with the increasing threats to social order and personal security. Selection of police officers has always been difficult, but now with the increasing demand and complexity of police work, along with the candidates applying from Generation X and even Generation Y, the selection process has become more critical. The personal characteristics attributed to Generation X--and in the future, to Generation Y--should be factored into the selection process to ensure that those individuals selected as police officers will be able to cope with what has been described as the impossible mandate of police work in a free society. Background information on the X and Y generations is imperative for psychiatrists working with police departments and other law enforcement agencies. This article will explore these areas and construct a paradigm selection process.

  7. Real-time liquid-crystal atmosphere turbulence simulator with graphic processing unit.

    PubMed

    Hu, Lifa; Xuan, Li; Li, Dayu; Cao, Zhaoliang; Mu, Quanquan; Liu, Yonggang; Peng, Zenghui; Lu, Xinghai

    2009-04-27

    To generate time-evolving atmosphere turbulence in real time, a phase-generating method for our liquid-crystal (LC) atmosphere turbulence simulator (ATS) is derived based on the Fourier series (FS) method. A real matrix expression for generating turbulence phases is given and calculated with a graphic processing unit (GPU), the GeForce 8800 Ultra. A liquid crystal on silicon (LCOS) with 256x256 pixels is used as the turbulence simulator. The total time to generate a turbulence phase is about 7.8 ms for calculation and readout with the GPU. A parallel processing method of calculating and sending a picture to the LCOS is used to improve the simulating speed of our LC ATS. Therefore, the real-time turbulence phase-generation frequency of our LC ATS is up to 128 Hz. To our knowledge, it is the highest speed used to generate a turbulence phase in real time.

  8. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    NASA Astrophysics Data System (ADS)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  9. Periodic, On-Demand, and User-Specified Information Reconciliation

    NASA Technical Reports Server (NTRS)

    Kolano, Paul

    2007-01-01

    Automated sequence generation (autogen) signifies both a process and software used to automatically generate sequences of commands to operate various spacecraft. Autogen requires fewer workers than are needed for older manual sequence-generation processes and reduces sequence-generation times from weeks to minutes. The autogen software comprises the autogen script plus the Activity Plan Generator (APGEN) program. APGEN can be used for planning missions and command sequences. APGEN includes a graphical user interface that facilitates scheduling of activities on a time line and affords a capability to automatically expand, decompose, and schedule activities.

  10. Automated event generation for loop-induced processes

    DOE PAGES

    Hirschi, Valentin; Mattelaer, Olivier

    2015-10-22

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant 2 → 4 processes. Furthermore, many of these are computed heremore » for the first time.« less

  11. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    PubMed

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  12. Downhole steam generator using low-pressure fuel and air supply

    DOEpatents

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  13. Planning applications in image analysis

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.

    1994-01-01

    We describe two interim results from an ongoing effort to automate the acquisition, analysis, archiving, and distribution of satellite earth science data. Both results are applications of Artificial Intelligence planning research to the automatic generation of processing steps for image analysis tasks. First, we have constructed a linear conditional planner (CPed), used to generate conditional processing plans. Second, we have extended an existing hierarchical planning system to make use of durations, resources, and deadlines, thus supporting the automatic generation of processing steps in time and resource-constrained environments.

  14. The ferrosilicon process for the generation of hydrogen

    NASA Technical Reports Server (NTRS)

    Weaver, E R; Berry, W M; Bohnson, V L; Gordon, B D

    1920-01-01

    Report describes the generation of hydrogen by the reaction between ferrosilicon, sodium hydroxide, and water. This method known as the ferrosilicon method is especially adapted for use in the military field because of the relatively small size and low cost of the generator required to produce hydrogen at a rapid rate, the small operating force required, and the fact that no power is used except the small amount required to operate the stirring and pumping machinery. These advantages make it possible to quickly generate sufficient hydrogen to fill a balloon with a generator which can be transported on a motor truck. This report gives a summary of the details of the ferrosilicon process and a critical examination of the means which are necessary in order to make the process successful.

  15. Steam generation by combustion of processed waste fats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudel, F.; Lengenfeld, P.

    1993-12-31

    The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.

  16. Category Cued Recall Evokes a Generate-Recognize Retrieval Process

    PubMed Central

    Hunt, R. Reed; Smith, Rebekah E.; Toth, Jeffrey P.

    2015-01-01

    The experiments reported here were designed to replicate and extend McCabe, Roediger, and Karpicke’s (2011) finding that retrieval in category cued recall involves both controlled and automatic processes. The extension entailed identifying whether distinctive encoding affected one or both of these two processes. The first experiment successfully replicated McCabe et al., but the second, which added a critical baseline condition, produced data inconsistent with a two independent process model of recall. The third experiment provided evidence that retrieval in category cued recall reflects a generate-recognize strategy, with the effect of distinctive processing being localized to recognition. Overall, the data suggest that category cued recall evokes a generate-recognize retrieval strategy and that the sub-processes underlying this strategy can be dissociated as a function of distinctive versus relational encoding processes. PMID:26280355

  17. Feller processes: the next generation in modeling. Brownian motion, Lévy processes and beyond.

    PubMed

    Böttcher, Björn

    2010-12-03

    We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.

  18. Feller Processes: The Next Generation in Modeling. Brownian Motion, Lévy Processes and Beyond

    PubMed Central

    Böttcher, Björn

    2010-01-01

    We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes. PMID:21151931

  19. Design Ideas, Reflection, and Professional Identity: How Graduate Students Explore the Idea Generation Process

    ERIC Educational Resources Information Center

    Hutchinson, Alisa; Tracey, Monica W.

    2015-01-01

    Within design thinking, designers are responsible for generating, testing, and refining design ideas as a means to refine the design problem and arrive at an effective solution. Thus, understanding one's individual idea generation experiences and processes can be seen as a component of professional identity for designers, which involves the…

  20. Assessment of the Study of Army Logistics 1981. Volume II. Analysis of Recommendations.

    DTIC Science & Technology

    1983-02-01

    conceived. This third generation equipment, because of its size, cost and processing characteristics, demands large scale integrated processing with a... generated by DS4. Three systems changes to SAILS ABX have been implemented which reduce the volume of supply status provided to the DS4 system. 15... generated by the wholesale system by 50 percent or nearly 1,000,000 transactions per month. Additional reductions will be generated by selected status

  1. Sex differences in processing printed advertisements.

    PubMed

    Putrevu, Sanjay

    2004-06-01

    The success of using biological sex to divide or segment markets requires a thorough understanding of how men and women process and respond to advertisements and other persuasive communications. Toward this end, this research (N=64; 32 men and 32 women) studied how college-age men and women respond to printed advertisements. There were no differences between the sexes in recall and recognition of claims in advertisements, but men and women generated different types of message relevant thoughts-women generated more category thoughts and men generated more attribute thoughts, suggesting that, while women and men might not differ in the depth of processing, they might use different processing styles.

  2. Examining causal components and a mediating process underlying self-generated health arguments for exercise and smoking cessation.

    PubMed

    Baldwin, Austin S; Rothman, Alexander J; Vander Weg, Mark W; Christensen, Alan J

    2013-12-01

    Self-persuasion-generating one's own arguments for engaging in a specific behavior-can be an effective strategy to promote health behavior change, yet the causal processes that explain why it is effective are not well-specified. We sought to elucidate specific causal components and a mediating process of self-persuasion in two health behavior domains: physical activity and smoking. In two experiments, participants were randomized to write or read arguments about regular exercise (Study 1: N = 76; college students) or smoking cessation (Study 2: N = 107; daily smokers). In Study 2, we also manipulated the argument content (matched vs. mismatched participants' own concerns about smoking) to isolate its effect from the effect of argument source (self vs. other). Study outcomes included participants' reports of argument ratings, attitudes, behavioral intentions (Studies 1 & 2), and cessation attempts at 1 month (Study 2). In Study 1, self-generated arguments about exercise were evaluated more positively than other arguments (p = .01, d = .63), and this biased processing mediated the self-generated argument effect on attitudes toward exercise (β = .08, 95% CI = .01, .18). In Study 2, the findings suggested that biased processing occurs because self-generated argument content matches people's own health concerns and not because of the argument source (self vs. other). In addition, self-generated arguments indirectly led to greater behavior change intentions (Studies 1 & 2) and a greater likelihood of a smoking cessation attempt (Study 2). The findings elucidate a causal component and a mediating process that explain why self-persuasion and related behavior change interventions, such as motivational interviewing, are effective. Findings also suggest that self-generated arguments may be an efficient way to deliver message interventions aimed at changing health behaviors.

  3. Experiences on developing digital down conversion algorithms using Xilinx system generator

    NASA Astrophysics Data System (ADS)

    Xu, Chengfa; Yuan, Yuan; Zhao, Lizhi

    2013-07-01

    The Digital Down Conversion (DDC) algorithm is a classical signal processing method which is widely used in radar and communication systems. In this paper, the DDC function is implemented by Xilinx System Generator tool on FPGA. System Generator is an FPGA design tool provided by Xilinx Inc and MathWorks Inc. It is very convenient for programmers to manipulate the design and debug the function, especially for the complex algorithm. Through the developing process of DDC function based on System Generator, the results show that System Generator is a very fast and efficient tool for FPGA design.

  4. Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language.

    PubMed

    Roehner, Nicholas; Zhang, Zhen; Nguyen, Tramy; Myers, Chris J

    2015-08-21

    In the context of synthetic biology, model generation is the automated process of constructing biochemical models based on genetic designs. This paper discusses the use cases for model generation in genetic design automation (GDA) software tools and introduces the foundational concepts of standards and model annotation that make this process useful. Finally, this paper presents an implementation of model generation in the GDA software tool iBioSim and provides an example of generating a Systems Biology Markup Language (SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).

  5. Effects of doping impurity and growth orientation on dislocation generation in GaAs crystals grown from the melt: A qualitative finite-element study

    NASA Astrophysics Data System (ADS)

    Zhu, X. A.; Tsai, C. T.

    2000-09-01

    Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.

  6. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  7. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  8. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  9. 40 CFR 60.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...

  10. The Generation and Maintenance of Visual Mental Images: Evidence from Image Type and Aging

    ERIC Educational Resources Information Center

    De Beni, Rossana; Pazzaglia, Francesca; Gardini, Simona

    2007-01-01

    Imagery is a multi-componential process involving different mental operations. This paper addresses whether separate processes underlie the generation, maintenance and transformation of mental images or whether these cognitive processes rely on the same mental functions. We also examine the influence of age on these mental operations for…

  11. Creativity: The Role of Unconscious Processes in Idea Generation and Idea Selection

    ERIC Educational Resources Information Center

    Ritter, Simone M.; van Baaren, Rick B.; Dijksterhuis, Ap

    2012-01-01

    Today's world of continuous change thrives on creative individuals. Anecdotal reports suggest that creative performance benefits from unconscious processes. Empirical research on the role of the unconscious in creativity, though, is inconsistent and thus far has focused mainly on one aspect of the creative process--idea generation. This is the…

  12. Hydrogen manufacture by Lurgi gasification of Oklahoma coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Advantages and disadvantages of using the Lurgi gasification process to produce hydrogen from Oklahoma coal are listed. Special attention was given to the production of heat for the process; heat is generated by burning part of pretreated coal in the steam generator. Overall performance of the Lurgi process is summarized in tabular form.

  13. The Racial and Ethnic Identity Formation Process of Second-Generation Asian Indian Americans: A Phenomenological Study

    ERIC Educational Resources Information Center

    Iwamoto, Derek Kenji; Negi, Nalini Junko; Partiali, Rachel Negar; Creswell, John W.

    2013-01-01

    This phenomenological study elucidates the identity development processes of 12 second-generation adult Asian Indian Americans. The results identify salient sociocultural factors and multidimensional processes of racial and ethnic identity development. Discrimination, parental, and community factors seemed to play a salient role in influencing…

  14. Instructional Topics in Educational Measurement (ITEMS) Module: Using Automated Processes to Generate Test Items

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis

    2013-01-01

    Changes to the design and development of our educational assessments are resulting in the unprecedented demand for a large and continuous supply of content-specific test items. One way to address this growing demand is with automatic item generation (AIG). AIG is the process of using item models to generate test items with the aid of computer…

  15. The Universality of Self-Generated Verbal Mediators as a Means of Enhancing Memory Processes. Research Report No. 58.

    ERIC Educational Resources Information Center

    Buium, Nissan; Turnure, James E.

    In a replication of a similar study with American children, 56 normal native Israeli children (5-years-old) were studied to determine the universality of self-generated verbal mediators as a means of enhancing memory processes. Eight Ss, randomly selected, were assigned in each of the following conditions: labeling, sentence generation, listening…

  16. Automatic Item Generation: A More Efficient Process for Developing Mathematics Achievement Items?

    ERIC Educational Resources Information Center

    Embretson, Susan E.; Kingston, Neal M.

    2018-01-01

    The continual supply of new items is crucial to maintaining quality for many tests. Automatic item generation (AIG) has the potential to rapidly increase the number of items that are available. However, the efficiency of AIG will be mitigated if the generated items must be submitted to traditional, time-consuming review processes. In two studies,…

  17. Fluorine separation and generation device

    DOEpatents

    The Regents of the University of California

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  18. Towards automatic planning for manufacturing generative processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from themore » original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.« less

  19. Reduced Order Models Via Continued Fractions Applied to Control Systems,

    DTIC Science & Technology

    1980-09-01

    a simple * model of a nuclear reactor power generator [20, 21]. The heat generating process of a nuclear reactor is dependent upon the mechanism...called fission (a fragmentation of matter). The power generated by this process is directly related to the population of neutrons, n~t) and can be...150) 6(t ()n~t) - c(t) (151) where 6k(t) 6 kc(t)-an(t) (152) The variable 6k(t) is the input to the process and is given the name "reactivity". It is

  20. Category cued recall evokes a generate-recognize retrieval process.

    PubMed

    Hunt, R Reed; Smith, Rebekah E; Toth, Jeffrey P

    2016-03-01

    The experiments reported here were designed to replicate and extend McCabe, Roediger, and Karpicke's (2011) finding that retrieval in category cued recall involves both controlled and automatic processes. The extension entailed identifying whether distinctive encoding affected 1 or both of these 2 processes. The first experiment successfully replicated McCabe et al., but the second, which added a critical baseline condition, produced data inconsistent with a 2 independent process model of recall. The third experiment provided evidence that retrieval in category cued recall reflects a generate-recognize strategy, with the effect of distinctive processing being localized to recognition. Overall, the data suggest that category cued recall evokes a generate-recognize retrieval strategy and that the subprocesses underlying this strategy can be dissociated as a function of distinctive versus relational encoding processes. (c) 2016 APA, all rights reserved).

  1. Automatic Generation of Cycle-Approximate TLMs with Timed RTOS Model Support

    NASA Astrophysics Data System (ADS)

    Hwang, Yonghyun; Schirner, Gunar; Abdi, Samar

    This paper presents a technique for automatically generating cycle-approximate transaction level models (TLMs) for multi-process applications mapped to embedded platforms. It incorporates three key features: (a) basic block level timing annotation, (b) RTOS model integration, and (c) RTOS overhead delay modeling. The inputs to TLM generation are application C processes and their mapping to processors in the platform. A processor data model, including pipelined datapath, memory hierarchy and branch delay model is used to estimate basic block execution delays. The delays are annotated to the C code, which is then integrated with a generated SystemC RTOS model. Our abstract RTOS provides dynamic scheduling and inter-process communication (IPC) with processor- and RTOS-specific pre-characterized timing. Our experiments using a MP3 decoder and a JPEG encoder show that timed TLMs, with integrated RTOS models, can be automatically generated in less than a minute. Our generated TLMs simulated three times faster than real-time and showed less than 10% timing error compared to board measurements.

  2. 40 CFR 761.187 - Reporting importers and by persons generating PCBs in excluded manufacturing processes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....3, PCB-generating manufacturing processes or importers of PCB-containing products shall be..., 1200 Pennsylvania Ave., NW., Washington, DC 20460-0001, ATTN: PCB Notification. (Sec. 6, Pub. L. 94-469...

  3. Advances in Software Tools for Pre-processing and Post-processing of Overset Grid Computations

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    Recent developments in three pieces of software for performing pre-processing and post-processing work on numerical computations using overset grids are presented. The first is the OVERGRID graphical interface which provides a unified environment for the visualization, manipulation, generation and diagnostics of geometry and grids. Modules are also available for automatic boundary conditions detection, flow solver input preparation, multiple component dynamics input preparation and dynamics animation, simple solution viewing for moving components, and debris trajectory analysis input preparation. The second is a grid generation script library that enables rapid creation of grid generation scripts. A sample of recent applications will be described. The third is the OVERPLOT graphical interface for displaying and analyzing history files generated by the flow solver. Data displayed include residuals, component forces and moments, number of supersonic and reverse flow points, and various dynamics parameters.

  4. The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1

    NASA Astrophysics Data System (ADS)

    Kersevan, Borut Paul; Richter-Waş, Elzbieta

    2013-03-01

    The AcerMC Monte Carlo generator is dedicated to the generation of Standard Model background processes which were recognised as critical for the searches at LHC, and generation of which was either unavailable or not straightforward so far. The program itself provides a library of the massive matrix elements (coded by MADGRAPH) and native phase space modules for generation of a set of selected processes. The hard process event can be completed by the initial and the final state radiation, hadronisation and decays through the existing interface with either PYTHIA, HERWIG or ARIADNE event generators and (optionally) TAUOLA and PHOTOS. Interfaces to all these packages are provided in the distribution version. The phase-space generation is based on the multi-channel self-optimising approach using the modified Kajantie-Byckling formalism for phase space construction and further smoothing of the phase space was obtained by using a modified ac-VEGAS algorithm. An additional improvement in the recent versions is the inclusion of the consistent prescription for matching the matrix element calculations with parton showering for a select list of processes. Catalogue identifier: ADQQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3853309 No. of bytes in distributed program, including test data, etc.: 68045728 Distribution format: tar.gz Programming language: FORTRAN 77 with popular extensions (g77, gfortran). Computer: All running Linux. Operating system: Linux. Classification: 11.2, 11.6. External routines: CERNLIB (http://cernlib.web.cern.ch/cernlib/), LHAPDF (http://lhapdf.hepforge.org/) Catalogue identifier of previous version: ADQQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 149(2003)142 Does the new version supersede the previous version?: Yes Nature of problem: Despite a large repertoire of processes implemented for generation in event generators like PYTHIA [1] or HERWIG [2] a number of background processes, crucial for studying the expected physics of the LHC experiments, is missing. For some of these processes the matrix element expressions are rather lengthy and/or to achieve a reasonable generation efficiency it is necessary to tailor the phase space selection procedure to the dynamics of the process. That is why it is not practical to imagine that any of the above general purpose generators will contain every, or even only observable, processes which will occur at LHC collisions. A more practical solution can be found in a library of dedicated matrix-element-based generators, with the standardised interfaces like that proposed in [3], to the more universal one which is used to complete the event generation. Solution method: The AcerMC EventGenerator provides a library of the matrix-element-based generators for several processes. The initial- and final-state showers, beam remnants and underlying events, fragmentation and remaining decays are supposed to be performed by the other universal generator to which this one is interfaced. We will call it a supervising generator. The interfaces to PYTHIA 6.4, ARIADNE 4.1 and HERWIG 6.5, as such generators, are provided. Provided is also an interface to TAUOLA [4] and PHOTOS [5] packages for τ-lepton decays (including spin correlations treatment) and QED radiations in decays of particles. At present, the following matrix-element-based processes have been implemented: gg,qq¯→tt¯bb¯, qq¯→W(→ℓν)bb¯; qq¯→W(→ℓν)tt¯; gg,qq¯→Z/γ∗(→ℓℓ)bb¯; gg,qq¯→Z/γ∗(→ℓℓ,νν,bb¯)tt¯; complete EW gg,qq¯→(Z/W/γ∗→)tt¯bb¯; gg,qq¯→tt¯tt¯; gg,qq¯→(tt¯→)ff¯bff¯b¯; gg,qq¯→(WWbb →)ff¯ff¯bb¯. Both interfaces allow the use of the LHAPDF/LHAGLUE library of parton density functions. Provided is also a set of control processes: qq¯→W→ℓν; qq¯→Z/γ∗→ℓℓ; gg,qq¯→tt¯ and gg→(tt¯→)WbWb¯; Reasons for new version: Implementation of several new processes and methods. Summary of revisions: Each version added new processes or functionalities, a detailed list is given in the section “Changes since AcerMC 1.0”. Restrictions: The package is optimised for the 14 TeV pp collision simulated in the LHC environment and also works at the achieved LHC energies of 7 TeV and 8 TeV. The consistency between results of the complete generation using PYTHIA 6.4 or HERWIG 6.5 interfaces is technically limited by the different approaches taken in both these generators for evaluating αQCD and αQED couplings and by the different models for fragmentation/hadronisation. For the consistency check, in the AcerMC library contains native coded definitions of the QCD and αQED. Using these native definitions leads to the same total cross-sections both with PYTHIA 6.4 or HERWIG 6.5 interfaces.

  5. A method of computer aided design with self-generative models in NX Siemens environment

    NASA Astrophysics Data System (ADS)

    Grabowik, C.; Kalinowski, K.; Kempa, W.; Paprocka, I.

    2015-11-01

    Currently in CAD/CAE/CAM systems it is possible to create 3D design virtual models which are able to capture certain amount of knowledge. These models are especially useful in an automation of routine design tasks. These models are known as self-generative or auto generative and they can behave in an intelligent way. The main difference between the auto generative and fully parametric models consists in the auto generative models ability to self-organizing. In this case design model self-organizing means that aside from the possibility of making of automatic changes of model quantitative features these models possess knowledge how these changes should be made. Moreover they are able to change quality features according to specific knowledge. In spite of undoubted good points of self-generative models they are not so often used in design constructional process which is mainly caused by usually great complexity of these models. This complexity makes the process of self-generative time and labour consuming. It also needs a quite great investment outlays. The creation process of self-generative model consists of the three stages it is knowledge and information acquisition, model type selection and model implementation. In this paper methods of the computer aided design with self-generative models in NX Siemens CAD/CAE/CAM software are presented. There are the five methods of self-generative models preparation in NX with: parametric relations model, part families, GRIP language application, knowledge fusion and OPEN API mechanism. In the paper examples of each type of the self-generative model are presented. These methods make the constructional design process much faster. It is suggested to prepare this kind of self-generative models when there is a need of design variants creation. The conducted research on assessing the usefulness of elaborated models showed that they are highly recommended in case of routine tasks automation. But it is still difficult to distinguish which method of self-generative preparation is most preferred. It always depends on a problem complexity. The easiest way for such a model preparation is this with the parametric relations model whilst the hardest one is this with the OPEN API mechanism. From knowledge processing point of view the best choice is application of the knowledge fusion.

  6. Diagnostic Hypothesis Generation and Human Judgment

    ERIC Educational Resources Information Center

    Thomas, Rick P.; Dougherty, Michael R.; Sprenger, Amber M.; Harbison, J. Isaiah

    2008-01-01

    Diagnostic hypothesis-generation processes are ubiquitous in human reasoning. For example, clinicians generate disease hypotheses to explain symptoms and help guide treatment, auditors generate hypotheses for identifying sources of accounting errors, and laypeople generate hypotheses to explain patterns of information (i.e., data) in the…

  7. Effects of peptides on generation of reactive oxygen species in subcellular fractions of Drosophila melanogaster.

    PubMed

    Khavinson, V K; Myl'nikov, S V; Oparina, T I; Arutyunyan, A V

    2001-07-01

    We studied the effects of Epithalon (Ala-Glu-Asp-Gly) and Vilon (Lys-Glu) on free radical processes in highly inbred HA(+)line of Drosophila melanogaster. Vilon inhibited generation of reactive oxygen species in mitochondria, but stimulated this process in the cytosol. We found sex- and age-related differences in the generation of reactive oxygen species and cytosol antioxidant activity.

  8. The College Choice Process: A Qualitative Review of the Role of Parents in Freshman, First Generation Scholarship Recipients' Access to Higher Education

    ERIC Educational Resources Information Center

    Hebert, Ronald Dudley, Jr.

    2017-01-01

    This dissertation explores the role of parents in freshman, first generation scholarship recipients' access to higher education. Three overarching goals guide the research: To gain knowledge and a better understanding of the college choice process of freshman, first generation scholarship recipients; to better understand the role of parents in the…

  9. Development and Experimental Validation of a Thermoelectric Test Bench for Laboratory Lessons

    ERIC Educational Resources Information Center

    Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Pérez Artieda, Gurutze

    2013-01-01

    The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor…

  10. Generation kinetics of boron-oxygen complexes in p-type compensated c-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yichao; Yu, Xuegong, E-mail: yuxuegong@zju.edu.cn; Chen, Peng

    2014-03-10

    Kinetics characteristics of boron-oxygen complexes responsible for light-induced degradation in p-type compensated c-Si have been investigated. The generation of B-O complexes is well fitted by a fast-forming process and a slow-forming one. Activation energies of complexes generation during the fast-forming process are determined to be 0.29 and 0.24 eV in compensated and non-compensated c-Si, respectively, and those during the slow-forming process are the same, about 0.44 eV. Moreover, it is found that the pre-exponential factors of complexes generation in compensated c-Si is proportional to the square of the net doping concentration, which suggests that the latent centers should exist.

  11. Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei

    2011-03-01

    We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.

  12. Globally scalable generation of high-resolution land cover from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.

    2017-05-01

    We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).

  13. An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response

    PubMed Central

    Stipčević, Mario; Ursin, Rupert

    2015-01-01

    Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physicsal process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, wich can be described by a probabilistic theory only, even in principle. Here we present a conceptualy simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology. PMID:26057576

  14. Secure ADS-B authentication system and method

    NASA Technical Reports Server (NTRS)

    Viggiano, Marc J (Inventor); Valovage, Edward M (Inventor); Samuelson, Kenneth B (Inventor); Hall, Dana L (Inventor)

    2010-01-01

    A secure system for authenticating the identity of ADS-B systems, including: an authenticator, including a unique id generator and a transmitter transmitting the unique id to one or more ADS-B transmitters; one or more ADS-B transmitters, including a receiver receiving the unique id, one or more secure processing stages merging the unique id with the ADS-B transmitter's identification, data and secret key and generating a secure code identification and a transmitter transmitting a response containing the secure code and ADSB transmitter's data to the authenticator; the authenticator including means for independently determining each ADS-B transmitter's secret key, a receiver receiving each ADS-B transmitter's response, one or more secure processing stages merging the unique id, ADS-B transmitter's identification and data and generating a secure code, and comparison processing comparing the authenticator-generated secure code and the ADS-B transmitter-generated secure code and providing an authentication signal based on the comparison result.

  15. Potential of different mechanical and thermal treatments to control off-flavour generation in broccoli puree.

    PubMed

    Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag

    2017-02-15

    The aim of this study was scientifically investigate the impact of the sequence of different thermo-mechanical treatments on the volatile profile of differently processed broccoli puree, and to investigate if any relationship persists between detected off-flavour changes and microstructural changes as a function of selected process conditions. Comparison of the headspace GC-MS fingerprinting of the differently processed broccoli purees revealed that an adequate combination of processing steps allows to reduce the level of off-flavour volatiles. Moreover, applying mechanical processing before or after the thermal processing at 90°C determines the pattern of broccoli tissue disruption, resulting into different microstructures and various enzymatic reactions inducing volatile generation. These results may aid the identification of optimal process conditions generating a reduced level of off-flavour in processed broccoli. In this way, broccoli can be incorporated as a food ingredient into mixed food products with limited implications on sensorial consumer acceptance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reconfigurable data path processor

    NASA Technical Reports Server (NTRS)

    Donohoe, Gregory (Inventor)

    2005-01-01

    A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.

  17. Spot restoration for GPR image post-processing

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2014-05-20

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  18. Influence of winding construction on starter-generator thermal processes

    NASA Astrophysics Data System (ADS)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  19. Strategies for automatic processing of large aftershock sequences

    NASA Astrophysics Data System (ADS)

    Kvaerna, T.; Gibbons, S. J.

    2017-12-01

    Aftershock sequences following major earthquakes present great challenges to seismic bulletin generation. The analyst resources needed to locate events increase with increased event numbers as the quality of underlying, fully automatic, event lists deteriorates. While current pipelines, designed a generation ago, are usually limited to single passes over the raw data, modern systems also allow multiple passes. Processing the raw data from each station currently generates parametric data streams that are later subject to phase-association algorithms which form event hypotheses. We consider a major earthquake scenario and propose to define a region of likely aftershock activity in which we will detect and accurately locate events using a separate, specially targeted, semi-automatic process. This effort may use either pattern detectors or more general algorithms that cover wider source regions without requiring waveform similarity. An iterative procedure to generate automatic bulletins would incorporate all the aftershock event hypotheses generated by the auxiliary process, and filter all phases from these events from the original detection lists prior to a new iteration of the global phase-association algorithm.

  20. MER Telemetry Processor

    NASA Technical Reports Server (NTRS)

    Lee, Hyun H.

    2012-01-01

    MERTELEMPROC processes telemetered data in data product format and generates Experiment Data Records (EDRs) for many instruments (HAZCAM, NAVCAM, PANCAM, microscopic imager, Moessbauer spectrometer, APXS, RAT, and EDLCAM) on the Mars Exploration Rover (MER). If the data is compressed, then MERTELEMPROC decompresses the data with an appropriate decompression algorithm. There are two compression algorithms (ICER and LOCO) used in MER. This program fulfills a MER specific need to generate Level 1 products within a 60-second time requirement. EDRs generated by this program are used by merinverter, marscahv, marsrad, and marsjplstereo to generate higher-level products for the mission operations. MERTELEPROC was the first GDS program to process the data product. Metadata of the data product is in XML format. The software allows user-configurable input parameters, per-product processing (not streambased processing), and fail-over is allowed if the leading image header is corrupted. It is used within the MER automated pipeline. MERTELEMPROC is part of the OPGS (Operational Product Generation Subsystem) automated pipeline, which analyzes images returned by in situ spacecraft and creates level 1 products to assist in operations, science, and outreach.

  1. Routes to the past: neural substrates of direct and generative autobiographical memory retrieval.

    PubMed

    Addis, Donna Rose; Knapp, Katie; Roberts, Reece P; Schacter, Daniel L

    2012-02-01

    Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Routes to the past: Neural substrates of direct and generative autobiographical memory retrieval

    PubMed Central

    Addis, Donna Rose; Knapp, Katie; Roberts, Reece P.; Schacter, Daniel L.

    2011-01-01

    Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. PMID:22001264

  3. Mechanism of the surface runoff generation processes of a permafrost watershed in the Qinghai-Tibet plateau

    NASA Astrophysics Data System (ADS)

    Genxu, W.

    2017-12-01

    There is a lack of knowledge about how to quantify runoff generation and the hydrological processes operating in permafrost catchments on permafrost-dominant catchments. To understand the mechanism of runoff generation processes in permafrost catchments, a typical headwater catchment with continuous permafrost on the Tibetan Plateau was measured. A new approach is presented in this study to account for runoff processes on the spring thawing period and autumn freezing period, when runoff generation clearly differs from that of non-permafrost catchments. This approach introduces a soil temperature-based water saturation function and modifies the soil water storage curve with a soil temperature threshold. The results show that surface soil thawing induced saturation excess runoff and subsurface interflow account for approximately 66-86% and 14-34% of total spring runoff, respectively, and the soil temperature significantly affects the runoff generation pattern, the runoff composition and the runoff coefficient with the enlargement of the active layer. The suprapermafrost groundwater discharge decreases exponentially with active layer frozen processes during autumn runoff recession, whereas the ratio of groundwater discharge to total runoff and the direct surface runoff coefficient simultaneously increase. The bidirectional freezing of the active layer controls and changes the autumn runoff processes and runoff composition. The new approach could be used to further develop hydrological models of cold regions dominated by permafrost.

  4. 40 CFR 436.21 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... However, if a mine is also used for treatment of process generated waste water, discharges of commingled water from the facilities shall be deemed discharges of process generated waste water. (c) The term “10... treatment of such waste water. ...

  5. AIRSAR Web-Based Data Processing

    NASA Technical Reports Server (NTRS)

    Chu, Anhua; Van Zyl, Jakob; Kim, Yunjin; Hensley, Scott; Lou, Yunling; Madsen, Soren; Chapman, Bruce; Imel, David; Durden, Stephen; Tung, Wayne

    2007-01-01

    The AIRSAR automated, Web-based data processing and distribution system is an integrated, end-to-end synthetic aperture radar (SAR) processing system. Designed to function under limited resources and rigorous demands, AIRSAR eliminates operational errors and provides for paperless archiving. Also, it provides a yearly tune-up of the processor on flight missions, as well as quality assurance with new radar modes and anomalous data compensation. The software fully integrates a Web-based SAR data-user request subsystem, a data processing system to automatically generate co-registered multi-frequency images from both polarimetric and interferometric data collection modes in 80/40/20 MHz bandwidth, an automated verification quality assurance subsystem, and an automatic data distribution system for use in the remote-sensor community. Features include Survey Automation Processing in which the software can automatically generate a quick-look image from an entire 90-GB SAR raw data 32-MB/s tape overnight without operator intervention. Also, the software allows product ordering and distribution via a Web-based user request system. To make AIRSAR more user friendly, it has been designed to let users search by entering the desired mission flight line (Missions Searching), or to search for any mission flight line by entering the desired latitude and longitude (Map Searching). For precision image automation processing, the software generates the products according to each data processing request stored in the database via a Queue management system. Users are able to have automatic generation of coregistered multi-frequency images as the software generates polarimetric and/or interferometric SAR data processing in ground and/or slant projection according to user processing requests for one of the 12 radar modes.

  6. Digital processing with single electrons for arbitrary waveform generation of current

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa

    2018-03-01

    We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.

  7. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  8. GRASP/Ada: Graphical Representations of Algorithms, Structures, and Processes for Ada. The development of a program analysis environment for Ada: Reverse engineering tools for Ada, task 2, phase 3

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1991-01-01

    The main objective is the investigation, formulation, and generation of graphical representations of algorithms, structures, and processes for Ada (GRASP/Ada). The presented task, in which various graphical representations that can be extracted or generated from source code are described and categorized, is focused on reverse engineering. The following subject areas are covered: the system model; control structure diagram generator; object oriented design diagram generator; user interface; and the GRASP library.

  9. Computer generated animation and movie production at LARC: A case study

    NASA Technical Reports Server (NTRS)

    Gates, R. L.; Matthews, C. G.; Vonofenheim, W. H.; Randall, D. P.; Jones, K. H.

    1984-01-01

    The process of producing computer generated 16mm movies using the MOVIE.BYU software package developed by Brigham Young University and the currently available hardware technology at the Langley Research Center is described. A general overview relates the procedures to a specific application. Details are provided which describe the data used, preparation of a storyboard, key frame generation, the actual animation, title generation, filming, and processing/developing the final product. Problems encountered in each of these areas are identified. Both hardware and software problems are discussed along with proposed solutions and recommendations.

  10. Feynman-Kac formula for stochastic hybrid systems.

    PubMed

    Bressloff, Paul C

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  11. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  12. Repeatable hydrogen generation of 3D microporous nickel membrane using chemical milling

    NASA Astrophysics Data System (ADS)

    Seo, Keumyoung; Lim, Taekyung; Ju, Sanghyun

    2018-05-01

    In this study, we investigated a novel method of hydrogen generation through a chemical milling process. In the process of generating hydrogen with a thermochemical water-splitting method using a 3D microporous nickel membrane, the nickel surface is oxidized, leading to a decreased generation of hydrogen gas with time. To regenerate hydrogen from the oxidized catalysts, the oxidized metal surface was easily removed at room temperature, re-exposing a metal surface with abundant oxygen vacancies for continuous hydrogen generation. With this method, ~110 µmol · g‑1 of hydrogen gas was continuously produced per cycle. Since this method enabled us to create a fit state for hydrogen generation without extra heat, light, or electrical energy, it can solve the biggest commercialization challenge: inefficiency because the energy required for hydrogen generation is higher than the energy of the generated hydrogen.

  13. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.

    PubMed

    Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio

    2012-01-01

    Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  15. Process and apparatus for separating fine particles by microbubble flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1991-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine particles, especially coal, so as to produce a high purity and large recovery efficiently. This is accomplished through the use of a high aspect ratio flotation column, microbubbles, and a countercurrent use of wash water to gently wash the froth. Also, disclosed are unique processes and apparatus for generating microbubbles for flotation in a high efficient and inexpensive manner using either a porous tube or an in-line static generator. 23 figures.

  16. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1992-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  17. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1998-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  18. Exploring the Processes of Generating LOD (0-2) Citygml Models in Greater Municipality of Istanbul

    NASA Astrophysics Data System (ADS)

    Buyuksalih, I.; Isikdag, U.; Zlatanova, S.

    2013-08-01

    3D models of cities, visualised and exploded in 3D virtual environments have been available for several years. Currently a large number of impressive realistic 3D models have been regularly presented at scientific, professional and commercial events. One of the most promising developments is OGC standard CityGML. CityGML is object-oriented model that support 3D geometry and thematic semantics, attributes and relationships, and offers advanced options for realistic visualization. One of the very attractive characteristics of the model is the support of 5 levels of detail (LOD), starting from 2.5D less accurate model (LOD0) and ending with very detail indoor model (LOD4). Different local government offices and municipalities have different needs when utilizing the CityGML models, and the process of model generation depends on local and domain specific needs. Although the processes (i.e. the tasks and activities) for generating the models differs depending on its utilization purpose, there are also some common tasks (i.e. common denominator processes) in the model generation of City GML models. This paper focuses on defining the common tasks in generation of LOD (0-2) City GML models and representing them in a formal way with process modeling diagrams.

  19. Identification of a novel amyloid precursor protein processing pathway that generates secreted N-terminal fragments.

    PubMed

    Vella, Laura J; Cappai, Roberto

    2012-07-01

    Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The proteolytic processing of the amyloid precursor protein (APP) into the β-amyloid (Aβ) peptide is a central event in AD. While the pathway that generates Aβ is well described, many questions remain concerning general APP metabolism and its metabolites. It is becoming clear that the amino-terminal region of APP can be processed to release small N-terminal fragments (NTFs). The purpose of this study was to investigate the occurrence and generation of APP NTFs in vivo and in cell culture (SH-SY5Y) in order to delineate the cellular pathways implicated in their generation. We were able to detect 17- to 28-kDa APP NTFs in human and mouse brain tissue that are distinct from N-APP fragments previously reported. We show that the 17- to 28-kDa APP NTFs were highly expressed in mice from the age of 2 wk to adulthood. SH-SY5Y studies indicate the generation of APP NTFs involves a novel APP processing pathway, regulated by protein kinase C, but independent of α-secretase or β-secretase 1 (BACE) activity. These results identify a novel, developmentally regulated APP processing pathway that may play an important role in the physiological function of APP.

  20. Ceramic oxygen transport membrane array reactor and reforming method

    DOEpatents

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  1. New Teacher Induction Programs: A Case Study of an Exemplary School District, and How It Prepares Its New Teachers for the Use of Instructional Technology in the Classroom

    ERIC Educational Resources Information Center

    Sherman, David B.

    2014-01-01

    This research study examined Generation Y new teachers, the process of new teacher induction, and the most effective methods for providing professional development in instructional technology for Generation Y teachers. This research study examined Generation Y new teachers, the process of new teacher induction, and the most effective methods for…

  2. Interweaving Meaning Generation in Science with Learning to Learn Together Processes Using Web 2.0 Tools

    ERIC Educational Resources Information Center

    Smyrnaiou, Zacharoula; Moustaki, Foteini; Yiannoutsou, Nikoleta; Kynigos, Chronis

    2012-01-01

    The literature of the science education does not offer much data concerning meaning generation (MG) and learning to learn together (L2L2) processes. The objective of this paper is the study of how a group of students working with an on-line Platform, interact, collaborate and express themselves to generate meanings with regard to moving in 3d…

  3. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.M. Gandrik

    2012-04-01

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  4. Next Generation MODTRAN for Improved Atmospheric Correction of Spectral Imagery

    DTIC Science & Technology

    2016-01-29

    DoD operational and research sensor and data processing systems, particularly those involving the removal of atmospheric effects, commonly referred...atmospheric correction process. Given the ever increasing capabilities of spectral sensors to quickly generate enormous quantities of data, combined...many DoD operational and research sensor and data processing systems, particularly those involving the removal of atmospheric effects, commonly

  5. Multi-Mission Automated Task Invocation Subsystem

    NASA Technical Reports Server (NTRS)

    Cheng, Cecilia S.; Patel, Rajesh R.; Sayfi, Elias M.; Lee, Hyun H.

    2009-01-01

    Multi-Mission Automated Task Invocation Subsystem (MATIS) is software that establishes a distributed data-processing framework for automated generation of instrument data products from a spacecraft mission. Each mission may set up a set of MATIS servers for processing its data products. MATIS embodies lessons learned in experience with prior instrument- data-product-generation software. MATIS is an event-driven workflow manager that interprets project-specific, user-defined rules for managing processes. It executes programs in response to specific events under specific conditions according to the rules. Because requirements of different missions are too diverse to be satisfied by one program, MATIS accommodates plug-in programs. MATIS is flexible in that users can control such processing parameters as how many pipelines to run and on which computing machines to run them. MATIS has a fail-safe capability. At each step, MATIS captures and retains pertinent information needed to complete the step and start the next step. In the event of a restart, this information is retrieved so that processing can be resumed appropriately. At this writing, it is planned to develop a graphical user interface (GUI) for monitoring and controlling a product generation engine in MATIS. The GUI would enable users to schedule multiple processes and manage the data products produced in the processes. Although MATIS was initially designed for instrument data product generation,

  6. Estudio numerico y experimental del proceso de soldeo MIG sobre la aleacion 6063--T5 utilizando el metodo de Taguchi

    NASA Astrophysics Data System (ADS)

    Meseguer Valdenebro, Jose Luis

    Electric arc welding processes represent one of the most used techniques on manufacturing processes of mechanical components in modern industry. The electric arc welding processes have been adapted to current needs, becoming a flexible and versatile way to manufacture. Numerical results in the welding process are validated experimentally. The main numerical methods most commonly used today are three: finite difference method, finite element method and finite volume method. The most widely used numerical method for the modeling of welded joints is the finite element method because it is well adapted to the geometric and boundary conditions in addition to the fact that there is a variety of commercial programs which use the finite element method as a calculation basis. The content of this thesis shows an experimental study of a welded joint conducted by means of the MIG welding process of aluminum alloy 6063-T5. The numerical process is validated experimentally by applying the method of finite element through the calculation program ANSYS. The experimental results in this paper are the cooling curves, the critical cooling time t4/3, the weld bead geometry, the microhardness obtained in the welded joint, and the metal heat affected zone base, process dilution, critical areas intersected between the cooling curves and the curve TTP. The numerical results obtained in this thesis are: the thermal cycle curves, which represent both the heating to maximum temperature and subsequent cooling. The critical cooling time t4/3 and thermal efficiency of the process are calculated and the bead geometry obtained experimentally is represented. The heat affected zone is obtained by differentiating the zones that are found at different temperatures, the critical areas intersected between the cooling curves and the TTP curve. In order to conclude this doctoral thesis, an optimization has been conducted by means of the Taguchi method for welding parameters in order to obtain an improvement on mechanical properties in aluminum metal joint. Los procesos de soldadura por arco electrico representan unas de las tecnicas mas utilizadas en los procesos de fabricacion de componentes mecanicos en la industria moderna. Los procesos de soldeo por arco se han adaptado a las necesidades actuales, haciendose un modo de fabricacion flexible y versatil. Los resultados obtenidos numericamente en el proceso de soldadura son validados experimentalmente. Los principales metodos numericos mas empleados en la actualidad son tres, metodo por diferencias finitas, metodos por elementos finitos y metodo por volumenes finitos. El metodo numerico mas empleado para el modelado de uniones soldadas, es el metodo por elementos finitos, debido a que presenta una buena adaptacion a las condiciones geometricas y de contorno ademas de que existe una diversidad de programas comerciales que utilizan el metodo por elementos finitos como base de calculo. Este trabajo de investigacion presenta un estudio experimental de una union soldada mediante el proceso MIG de la aleacion de aluminio 6063-T5. El metodo numerico se valida experimentalmente aplicando el metodo de los elementos finitos con el programa de calculo ANSYS. Los resultados experimentales obtenidos son: las curvas de enfriamiento, el tiempo critico de enfriamiento t4/3, geometria del cordon, microdurezas obtenidas en la union soldada, zona afectada termicamente y metal base, dilucion del proceso, areas criticas intersecadas entre las curvas de enfriamiento y la curva TTP. Los resultados numericos son: las curvas del ciclo termico, que representan tanto el calentamiento hasta alcanzar la temperatura maxima y un posterior enfriamiento. Se calculan el tiempo critico de enfriamiento t4/3, el rendimiento termico y se representa la geometria del cordon obtenida experimentalmente. La zona afectada termicamente se obtiene diferenciando las zonas que se encuentran a diferentes temperaturas, las areas criticas intersecadas entre las curvas de enfriamiento y la curva TTP. Para finalizar el trabajo de investigacion se ha realizado una optimizacion, con la aplicacion del metodo de Taguchi, de los parametros de soldeo con el objetivo de obtener una mejora sustancial en las propiedades mecanicas de las uniones metalicas de aluminio.

  7. Auto Code Generation for Simulink-Based Attitude Determination Control System

    NASA Technical Reports Server (NTRS)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  8. Regional brain activation/deactivation during word generation in schizophrenia: fMRI study.

    PubMed

    John, John P; Halahalli, Harsha N; Vasudev, Mandapati K; Jayakumar, Peruvumba N; Jain, Sanjeev

    2011-03-01

    Examination of the brain regions that show aberrant activations and/or deactivations during semantic word generation could pave the way for a better understanding of the neurobiology of cognitive dysfunction in schizophrenia. To examine the pattern of functional magnetic resonance imaging blood oxygen level dependent activations and deactivations during semantic word generation in schizophrenia. Functional magnetic resonance imaging was performed on 24 participants with schizophrenia and 24 matched healthy controls during an overt, paced, 'semantic category word generation' condition and a baseline 'word repetition' condition that modelled all the lead-in/associated processes involved in the performance of the generation task. The brain regions activated during word generation in healthy individuals were replicated with minimal redundancies in participants with schizophrenia. The individuals with schizophrenia showed additional activations of temporo-parieto-occipital cortical regions as well as subcortical regions, despite significantly poorer behavioural performance than the healthy participants. Importantly, the extensive deactivations in other brain regions during word generation in healthy individuals could not be replicated in those with schizophrenia. More widespread activations and deficient deactivations in the poorly performing participants with schizophrenia may reflect an inability to inhibit competing cognitive processes, which in turn could constitute the core information-processing deficit underlying impaired word generation in schizophrenia.

  9. Selection of human consumables for future space missions

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Smith, M. C.

    1991-01-01

    Consumables for human spaceflight include oxygen, water, food and food packaging, personal hygiene items, and clothing. This paper deals with the requirements for food and water, and their impact on waste product generation. Just as urbanization of society has been made possible by improved food processing and packaging, manned spaceflight has benefitted from this technology. The downside of this technology is increased food package waste product. Since consumables make up a major portion of the vehicle onboard stowage and generate most of the waste products, selection of consumables is a very critical process. Food and package waste comprise the majority of the trash generated on the current shuttle orbiter missions. Plans for future missions must include accurate assessment of the waste products to be generated, and the methods for processing and disposing of these wastes.

  10. Ultrasonic imaging system for in-process fabric defect detection

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  11. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  12. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  13. Spatially assisted down-track median filter for GPR image post-processing

    DOEpatents

    Paglieroni, David W; Beer, N Reginald

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  14. Data Transparency | Distributed Generation Interconnection Collaborative |

    Science.gov Websites

    quality and availability are increasingly vital for reducing the costs of distributed generation completion in certain areas, increasing accountability for utility application processing. As distributed PV NREL, HECO, TSRG Improving Data Transparency for the Distributed PV Interconnection Process: Emergent

  15. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... leaching characteristics for storage or disposal. (a) Existing accumulations of non-liquid, non-metal PCB bulk product waste. (b) Non-liquid, non-metal PCB bulk product waste from processes that continuously generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  16. Process for Generating Engine Fuel Consumption Map: Future Atkinson Engine with Cooled EGR and Cylinder Deactivation

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize GT-POWER modeled engine and laboratory engine dyno test data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  17. Evaluation of grid generation technologies from an applied perspective

    NASA Technical Reports Server (NTRS)

    Hufford, Gary S.; Harrand, Vincent J.; Patel, Bhavin C.; Mitchell, Curtis R.

    1995-01-01

    An analysis of the grid generation process from the point of view of an applied CFD engineer is given. Issues addressed include geometric modeling, structured grid generation, unstructured grid generation, hybrid grid generation and use of virtual parts libraries in large parametric analysis projects. The analysis is geared towards comparing the effective turn around time for specific grid generation and CFD projects. The conclusion was made that a single grid generation methodology is not universally suited for all CFD applications due to both limitations in grid generation and flow solver technology. A new geometric modeling and grid generation tool, CFD-GEOM, is introduced to effectively integrate the geometric modeling process to the various grid generation methodologies including structured, unstructured, and hybrid procedures. The full integration of the geometric modeling and grid generation allows implementation of extremely efficient updating procedures, a necessary requirement for large parametric analysis projects. The concept of using virtual parts libraries in conjunction with hybrid grids for large parametric analysis projects is also introduced to improve the efficiency of the applied CFD engineer.

  18. Process for producing furan from furfural aldehyde

    DOEpatents

    Diebold, James P.; Evans, Robert J.

    1988-01-01

    A process of producing furan and derivatives thereof is disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  19. Process for producing furan from furfural aldehyde

    DOEpatents

    Diebold, J.P.; Evans, R.J.

    1987-04-06

    A process of producing furan and derivatives thereof as disclosed. The process includes generating furfural aldehyde vapors and then passing those vapors over a zeolite catalyst at a temperature and for a residence time effective to decarbonylate the furfural aldehydes to form furans and derivatives thereof. The resultant furan vapors and derivatives are then separated. In a preferred form, the furfural aldehyde vapors are generated during the process of converting biomass materials to liquid and gaseous fuels.

  20. Comparison of elevation derived from insar data with dem from topography map in Son Dong, Bac Giang, Viet Nam

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy

    2012-07-01

    Digital Elevation Models (DEMs) are used in many applications in the context of earth sciences such as in topographic mapping, environmental modeling, rainfall-runoff studies, landslide hazard zonation, seismic source modeling, etc. During the last years multitude of scientific applications of Synthetic Aperture Radar Interferometry (InSAR) techniques have evolved. It has been shown that InSAR is an established technique of generating high quality DEMs from space borne and airborne data, and that it has advantages over other methods for the generation of large area DEM. However, the processing of InSAR data is still a challenging task. This paper describes InSAR operational steps and processing chain for DEM generation from Single Look Complex (SLC) SAR data and compare a satellite SAR estimate of surface elevation with a digital elevation model (DEM) from Topography map. The operational steps are performed in three major stages: Data Search, Data Processing, and product Validation. The Data processing stage is further divided into five steps of Data Pre-Processing, Co-registration, Interferogram generation, Phase unwrapping, and Geocoding. The Data processing steps have been tested with ERS 1/2 data using Delft Object-oriented Interferometric (DORIS) InSAR processing software. Results of the outcome of the application of the described processing steps to real data set are presented.

  1. The Common Patterns of Nature

    PubMed Central

    Frank, Steven A.

    2010-01-01

    We typically observe large-scale outcomes that arise from the interactions of many hidden, small-scale processes. Examples include age of disease onset, rates of amino acid substitutions, and composition of ecological communities. The macroscopic patterns in each problem often vary around a characteristic shape that can be generated by neutral processes. A neutral generative model assumes that each microscopic process follows unbiased or random stochastic fluctuations: random connections of network nodes; amino acid substitutions with no effect on fitness; species that arise or disappear from communities randomly. These neutral generative models often match common patterns of nature. In this paper, I present the theoretical background by which we can understand why these neutral generative models are so successful. I show where the classic patterns come from, such as the Poisson pattern, the normal or Gaussian pattern, and many others. Each classic pattern was often discovered by a simple neutral generative model. The neutral patterns share a special characteristic: they describe the patterns of nature that follow from simple constraints on information. For example, any aggregation of processes that preserves information only about the mean and variance attracts to the Gaussian pattern; any aggregation that preserves information only about the mean attracts to the exponential pattern; any aggregation that preserves information only about the geometric mean attracts to the power law pattern. I present a simple and consistent informational framework of the common patterns of nature based on the method of maximum entropy. This framework shows that each neutral generative model is a special case that helps to discover a particular set of informational constraints; those informational constraints define a much wider domain of non-neutral generative processes that attract to the same neutral pattern. PMID:19538344

  2. Reconexión magnética en una región activa en decaimiento

    NASA Astrophysics Data System (ADS)

    Mandrini, C. H.; Démoulin, P.; van Driel-Gesztelyi, L.; Schmieder, B.; Bagalá, L. G.; Rovira, M. G.

    Se han obtenido observaciones desde Tierra (Hα y magnetogramas) coordinadas con el Soft X-ray Telescope (SXT), a bordo del satélite japonés Yohkoh, de una región activa bipolar en decaimiento. Estos datos constituyen la base para el estudio de un punto brillante en rayos X (PBX) y de la actividad relacionada con el mismo en distintas capas de la atmósfera solar. Las observaciones muestran que el PBX está relacionado con la aparición de un bipolo menor (~ 1020 Mx) y que su abrillantamiento continuo, así como sus aumentos de brillo esporádicos (``fulguraciones"), son el resultado de la reconexión entre el pequeño arco emergente (visto en Hα como un sistema de filamentos arqueados, SFA) y arcos mayores asociados al campo facular preexistente. Se ha extrapolado el campo magnético observado en la aproximación libre de fuerzas lineal y se ha seguido su evolución a lo largo de la vida del PBX. Se ha calculado la posición de las cuasiseparatrices (CSs) a partir del campo modelado. Las líneas de campo extrapoladas, cuyas bases fotosféricas se encuentran a ambos lados de las CSs, están de acuerdo con las estructuras cromosféricas y coronales observadas. Se ha calculado el espesor de la CD ubicada a lo largo de la polaridad negativa emergente, encontrándose que su variación está de acuerdo con la evolución de la intensidad del PBX; la CS es muy delgada durante la vida del PBX (~ 100 m), mientras que su espesor aumenta considerablemente (>= 10^4 m) cuando el PBX desaparece de las imágenes del SXT. Estos resultados señalan que el abrillantamiento y las ``fulguraciones" de este PBX se deben al proceso de reconexión en 3D que tiene lugar en las CSs.

  3. Identifying the hazard characteristics of powder byproducts generated from semiconductor fabrication processes.

    PubMed

    Choi, Kwang-Min; An, Hee-Chul; Kim, Kwan-Sick

    2015-01-01

    Semiconductor manufacturing processes generate powder particles as byproducts which potentially could affect workers' health. The chemical composition, size, shape, and crystal structure of these powder particles were investigated by scanning electron microscopy equipped with an energy dispersive spectrometer, Fourier transform infrared spectrometry, and X-ray diffractometry. The powders generated in diffusion and chemical mechanical polishing processes were amorphous silica. The particles in the chemical vapor deposition (CVD) and etch processes were TiO(2) and Al(2)O(3), and Al(2)O(3) particles, respectively. As for metallization, WO(3), TiO(2), and Al(2)O(3) particles were generated from equipment used for tungsten and barrier metal (TiN) operations. In photolithography, the size and shape of the powder particles showed 1-10 μm and were of spherical shape. In addition, the powders generated from high-current and medium-current processes for ion implantation included arsenic (As), whereas the high-energy process did not include As. For all samples collected using a personal air sampler during preventive maintenance of process equipment, the mass concentrations of total airborne particles were < 1 μg, which is the detection limit of the microbalance. In addition, the mean mass concentrations of airborne PM10 (particles less than 10 μm in diameter) using direct-reading aerosol monitor by area sampling were between 0.00 and 0.02 μg/m(3). Although the exposure concentration of airborne particles during preventive maintenance is extremely low, it is necessary to make continuous improvements to the process and work environment, because the influence of chronic low-level exposure cannot be excluded.

  4. Performance of quantum cloning and deleting machines over coherence

    NASA Astrophysics Data System (ADS)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  5. An improved neutral landscape model for recreating real landscapes and generating landscape series for spatial ecological simulations.

    PubMed

    van Strien, Maarten J; Slager, Cornelis T J; de Vries, Bauke; Grêt-Regamey, Adrienne

    2016-06-01

    Many studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes. In order to achieve more flexibility and variability in the generated landscapes patterns, a more complete set of class- and patch-level pattern variables should be implemented in these models. These enhancements have been implemented in Landscape Generator (LG), which is a software that uses optimization algorithms to generate landscapes that match user-defined target values. Developed for participatory spatial planning at small scale, we enhanced the usability of LG and demonstrated how it can be used for larger scale ecological studies. First, we used LG to recreate landscape patterns from a real landscape (i.e., a mountainous region in Switzerland). Second, we generated landscape series with incrementally changing pattern variables, which could be used in ecological simulation studies. We found that LG was able to recreate landscape patterns that approximate those of real landscapes. Furthermore, we successfully generated landscape series that would not have been possible with traditional neutral landscape models. LG is a promising novel approach for generating neutral landscapes and enables testing of new hypotheses regarding the influence of landscape patterns on ecological processes. LG is freely available online.

  6. Storage, generation, and use of hydrogen

    DOEpatents

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  7. Pulsed corona generation using a diode-based pulsed power generator

    NASA Astrophysics Data System (ADS)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  8. In-Process Metrology And Control Of Large Optical Grinders

    NASA Astrophysics Data System (ADS)

    Anderson, D. S.; Ketelsen, D.; Kittrell, W. Cary; Kuhn, Wm; Parks, R. E.; Stahl, P.

    1987-01-01

    The advent of rapid figure generation at the University of Arizona has prompted the development of rapid metrology techniques. The success and efficiency of the generating process is highly dependent on timely and accurate measurements to update the feedback loop between machine and optician. We will describe the advantages and problems associated with the in-process metrology and control systems used at the Optical Sciences Center.

  9. Integrated Biorefineries with Engineered Microbes and High-value Co-products for Profitable Biofuels Production

    USDA-ARS?s Scientific Manuscript database

    First-generation (ie., corn-based) fuel ethanol production processes provide several advantages which could be synergistically applied to overcome limitations of second-generation biofuel processes from lignocellulose. These include resources such as equipment, manpower, nutrients, water, and heat....

  10. Next Generation Parallelization Systems for Processing and Control of PDS Image Node Assets

    NASA Astrophysics Data System (ADS)

    Verma, R.

    2017-06-01

    We present next-generation parallelization tools to help Planetary Data System (PDS) Imaging Node (IMG) better monitor, process, and control changes to nearly 650 million file assets and over a dozen machines on which they are referenced or stored.

  11. Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer

    NASA Astrophysics Data System (ADS)

    Edwards, Paul J.; Hurst, Robert B.

    2001-09-01

    The probability density of the times for which the horizontal wind remains above or below a given threshold speed is of some interest in the fields of renewable energy generation and pollutant dispersal. However there appear to be no analytic or conceptual models which account for the observed power law form of the distribution of these episode lengths over a range of over three decades, from a few tens of seconds to a day or more. We reanalyze high resolution wind data and demonstrate the fractal character of the point process generated by the wind speed level crossings. We simulate the fluctuating wind speed by a Markov process which approximates the characteristics of the real (non-Markovian) wind and successfully generates a power law distribution of episode lengths. However, fundamental questions concerning the physical basis for this behavior and the connection between the properties of a continuous-time stochastic process and the fractal statistics of the point process generated by its level crossings remain unanswered.

  12. Distributed processing method for arbitrary view generation in camera sensor network

    NASA Astrophysics Data System (ADS)

    Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki

    2003-05-01

    Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.

  13. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.

    PubMed

    Wang, Anbang; Wang, Longsheng; Li, Pu; Wang, Yuncai

    2017-02-20

    Chaotic external-cavity semiconductor laser (ECL) is a promising entropy source for generation of high-speed physical random bits or digital keys. The rate and randomness is unfortunately limited by laser relaxation oscillation and external-cavity resonance, and is usually improved by complicated post processing. Here, we propose using a physical broadband white chaos generated by optical heterodyning of two ECLs as entropy source to construct high-speed random bit generation (RBG) with minimal post processing. The optical heterodyne chaos not only has a white spectrum without signature of relaxation oscillation and external-cavity resonance but also has a symmetric amplitude distribution. Thus, after quantization with a multi-bit analog-digital-convertor (ADC), random bits can be obtained by extracting several least significant bits (LSBs) without any other processing. In experiments, a white chaos with a 3-dB bandwidth of 16.7 GHz is generated. Its entropy rate is estimated as 16 Gbps by single-bit quantization which means a spectrum efficiency of 96%. With quantization using an 8-bit ADC, 320-Gbps physical RBG is achieved by directly extracting 4 LSBs at 80-GHz sampling rate.

  14. Error Generation in CATS-Based Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd

    2003-01-01

    This research presents a methodology for generating errors from a model of nominally preferred correct operator activities, given a particular operational context, and maintaining an explicit link to the erroneous contextual information to support analyses. It uses the Crew Activity Tracking System (CATS) model as the basis for error generation. This report describes how the process works, and how it may be useful for supporting agent-based system safety analyses. The report presents results obtained by applying the error-generation process and discusses implementation issues. The research is supported by the System-Wide Accident Prevention Element of the NASA Aviation Safety Program.

  15. From SHG to mid-infrared SPDC generation in strained silicon waveguides

    NASA Astrophysics Data System (ADS)

    Castellan, Claudio; Trenti, Alessandro; Mancinelli, Mattia; Marchesini, Alessandro; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2017-08-01

    The centrosymmetric crystalline structure of Silicon inhibits second order nonlinear optical processes in this material. We report here that, by breaking the silicon symmetry with a stressing silicon nitride over-layer, Second Harmonic Generation (SHG) is obtained in suitably designed waveguides where multi-modal phase-matching is achieved. The modeling of the generated signal provides an effective strain-induced second order nonlinear coefficient of χ(2) = (0.30 +/- 0.02) pm/V. Our work opens also interesting perspectives on the reverse process, the Spontaneous Parametric Down Conversion (SPDC), through which it is possible to generate mid-infrared entangled photon pairs.

  16. Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber

    NASA Astrophysics Data System (ADS)

    Borne, Adrien; Katsura, Tomotaka; Félix, Corinne; Doppagne, Benjamin; Segonds, Patricia; Bencheikh, Kamel; Levenson, Juan Ariel; Boulanger, Benoit

    2016-01-01

    Several third-harmonic generation processes were performed in a single step-index germanium-doped silica optical fiber under intermodal phase-matching conditions. The nanosecond fundamental beam range between 1400 and 1600 nm. The transverse distributions of the energy were successfully modeled in the form of Ince-Gauss modes, pointing out some ellipticity of fiber core. From these experiments and theoretical calculations, we discuss the implementation of frequency degenerated triple photon generation that shares the same phase-matching condition as third-harmonic generation, which is its reverse process.

  17. Lander Trajectory Reconstruction computer program

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Bradt, A. J.; Ferguson, J. B.; Schnelker, H. J.

    1971-01-01

    The Lander Trajectory Reconstruction (LTR) computer program is a tool for analysis of the planetary entry trajectory and atmosphere reconstruction process for a lander or probe. The program can be divided into two parts: (1) the data generator and (2) the reconstructor. The data generator provides the real environment in which the lander or probe is presumed to find itself. The reconstructor reconstructs the entry trajectory and atmosphere using sensor data generated by the data generator and a Kalman-Schmidt consider filter. A wide variety of vehicle and environmental parameters may be either solved-for or considered in the filter process.

  18. Guidelines in preparing computer-generated plots for NASA technical reports with the LaRC graphics output system

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.

    1983-01-01

    To response to a need for improved computer-generated plots that are acceptable to the Langley publication process, the LaRC Graphics Output System has been modified to encompass the publication requirements, and a guideline has been established. This guideline deals only with the publication requirements of computer-generated plots. This report explains the capability that authors of NASA technical reports can use to obtain publication--quality computer-generated plots or the Langley publication process. The rules applied in developing this guideline and examples illustrating the rules are included.

  19. Magnetospheric convection during quiet or moderately disturbed times

    NASA Technical Reports Server (NTRS)

    Caudal, G.; Blanc, M.

    1988-01-01

    The processes which contribute to the large-scale plasma circulation in the earth's environment during quiet times, or during reasonable stable magnetic conditions are reviewed. The various sources of field-aligned current generation in the solar wind and the magnetosphere are presented. The generation of field-aligned currents on open field lines connected to either polar cap and the generation of closed field lines of the inner magnetosphere are examined. Consideration is given to the hypothesis of Caudal (1987) that loss processes of trapped particles are competing with adiabatic motions in the generation of field-aligned currents in the inner magnetosphere.

  20. Choices of capture chromatography technology in antibody manufacturing processes.

    PubMed

    DiLeo, Michael; Ley, Arthur; Nixon, Andrew E; Chen, Jie

    2017-11-15

    The capture process employed in monoclonal antibody downstream purification is not only the most critically impacted process by increased antibody titer resulting from optimized mammalian cell culture expression systems, but also the most important purification step in determining overall process throughput, product quality, and economics. Advances in separation technology for capturing antibodies from complex feedstocks have been one focus of downstream purification process innovation for past 10 years. In this study, we evaluated new generation chromatography resins used in the antibody capture process including Protein A, cation exchange, and mixed mode chromatography to address the benefits and unique challenges posed by each chromatography approach. Our results demonstrate the benefit of improved binding capacity of new generation Protein A resins, address the concern of high concentration surge caused aggregation when using new generation cation exchange resins with over 100mg/mL binding capacity, and highlight the potential of multimodal cation exchange resins for capture process design. The new landscape of capture chromatography technologies provides options to achieve overall downstream purification outcome with high product quality and process efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    PubMed

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A model of oil-generation in a waterlogged and closed system

    NASA Astrophysics Data System (ADS)

    Zhigao, He

    This paper presents a new model on synthetic effects on oil-generation in a waterlogged and closed system. It is suggested based on information about oil in high pressure layers (including gas dissolved in oil), marsh gas and its fermentative solution, fermentation processes and mechanisms, gaseous hydrocarbons of carbonate rocks by acid treatment, oil-field water, recent and ancient sediments, and simulation experiments of artificial marsh gas and biological action. The model differs completely from the theory of oil-generation by thermal degradation of kerogen but stresses the synthetic effects of oil-generation in special waterlogged and closed geological systems, the importance of pressure in oil-forming processes, and direct oil generation by micro-organisms. Oil generated directly by micro-organisms is a particular biochemical reaction. Another feature of this model is that generation, migration and accumulation of petroleum are considered as a whole.

  3. The Racial and Ethnic Identity Formation Process of Second-Generation Asian Indian Americans: A Phenomenological Study.

    PubMed

    Iwamoto, Derek Kenji; Negi, Nalini Junko; Partiali, Rachel Negar; Creswell, John W

    2013-10-01

    This phenomenological study elucidates the identity development processes of 12 second-generation adult Asian Indian Americans. The results identify salient sociocultural factors and multidimensional processes of racial and ethnic identity development. Discrimination, parental, and community factors seemed to play a salient role in influencing participants' racial and ethnic identity development. The emergent Asian Indian American racial and ethnic identity model provides a contextualized overview of key developmental periods and turning points within the process of identity development.

  4. The Racial and Ethnic Identity Formation Process of Second-Generation Asian Indian Americans: A Phenomenological Study

    PubMed Central

    Iwamoto, Derek Kenji; Negi, Nalini Junko; Partiali, Rachel Negar; Creswell, John W.

    2014-01-01

    This phenomenological study elucidates the identity development processes of 12 second-generation adult Asian Indian Americans. The results identify salient sociocultural factors and multidimensional processes of racial and ethnic identity development. Discrimination, parental, and community factors seemed to play a salient role in influencing participants’ racial and ethnic identity development. The emergent Asian Indian American racial and ethnic identity model provides a contextualized overview of key developmental periods and turning points within the process of identity development. PMID:25298617

  5. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that consists of four processes; the first process is a charging process, during which an electric field is applied to a thermodielectric material, causing it to acquire electrical charge on its surface (this process is analogous to the isentropic compression process of a Brayton cycle). The second process is a heating process in which the temperature of the dielectric material is increased via heat transfer from an external source. During this process, the thermodielectric material is forced to eject a portion of its surface charge because its charge storing capability decreases as the temperature increases; the ejected charge is intended for capture by external circuitry connected to the thermodielectric material, where it can be routed to an electrochemical storage device or an electromechanical device requiring high voltage direct current. The third process is a discharging process, during which the applied electric field is reduced to its initial strength (analogous to the isentropic expansion process of a Brayton cycle). The final process is a cooling process in which the temperature of the dielectric material is decreased via heat transfer from an external source, returning it to its initial temperature. Previously, predicting the performance of a thermodielectric power generator was hindered by a poor understanding of the material's thermodynamic properties and the effect unsteady heat transfer losses have on system performance. In order to improve predictive capabilities in this study, a thermodielectric equation of state was developed that relates the strength of the applied electric field, the amount of surface charge stored by the thermodielectric material, and its temperature. This state equation was then used to derive expressions for the material's thermodynamic states (internal energy, entropy), which were subsequently used to determine the optimum material properties for power generation. Next, a numerical simulation code was developed to determine the heat transfer capabilities of a micro-scale parallel plate heat recuperator (MPPHR), a device designed specifically to (a) provide the unsteady heating and cooling necessary for thermodielectric power generation and (b) minimize the unsteady heat transfer losses of the system. The simulation code was used to find the optimum heat transfer and heat recuperation regimes of the MPPHR. The previously derived thermodynamic equations that describe the behavior of the thermodielectric materials were then incorporated into the model for the walls of the parallel plate channel in the numerical simulation code, creating a tool capable of determining the thermodynamic performance of an MTDPG, in terms of the thermal efficiency, percent Carnot efficiency, and energy/power density. A detailed parameterization of the MTDPG with the simulation code yielded the critical non-dimensional numbers that determine the relationship between the heat exchange/recuperation abilities of the flow and the power generation capabilities of the thermodielectric materials. These relationships were subsequently used to optimize the performance of an MTDPG with an operating temperature range of 300--500 °K. The optimization predicted that the MTDPG could provide a thermal efficiency of 29.7 percent with the potential to reach 34 percent. These thermal efficiencies correspond to 74.2 and 85 percent of the Carnot efficiency, respectively. The power density of this MTDPG depends on the operating frequency and can exceed 1,000,000 W/m3.

  6. The prediction, observation and study of long-distant undamped thermal waves generated in pulse radiative processes

    NASA Astrophysics Data System (ADS)

    Vysotskii, V. I.; Kornilova, A. A.; Vasilenko, A. O.; Krit, T. B.; Vysotskyy, M. V.

    2017-07-01

    The problems of the existence, generation, propagation and registration of long-distant undamped thermal waves formed in pulse radiative processes have been theoretically analyzed and confirmed experimentally. These waves may be used for the analysis of short-time processes of interaction of particles or electromagnetic fields with different targets. Such undamped waves can only exist in environments with a finite (nonzero) time of local thermal relaxation and their frequencies are determined by this time. The results of successful experiments on the generation and registration of undamped thermal waves at a large distance (up to 2 m) are also presented.

  7. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1992-12-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  8. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1998-09-29

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  9. Semantic based man-machine interface for real-time communication

    NASA Technical Reports Server (NTRS)

    Ali, M.; Ai, C.-S.

    1988-01-01

    A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.

  10. 40 CFR 279.20 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Mixtures of used oil and diesel fuel mixed by the generator of the used oil for use in the generator's own... THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.20 Applicability. (a) General... oil generators. A used oil generator is any person, by site, whose act or process produces used oil or...

  11. 40 CFR 279.20 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Mixtures of used oil and diesel fuel mixed by the generator of the used oil for use in the generator's own... THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.20 Applicability. (a) General... oil generators. A used oil generator is any person, by site, whose act or process produces used oil or...

  12. An experimental study of factors affecting the selective inhibition of sintering process

    NASA Astrophysics Data System (ADS)

    Asiabanpour, Bahram

    Selective Inhibition of Sintering (SIS) is a new rapid prototyping method that builds parts in a layer-by-layer fabrication basis. SIS works by joining powder particles through sintering in the part's body, and by sintering inhibition of some selected powder areas. The objective of this research has been to improve the new SIS process, which has been invented at USC. The process improvement is based on statistical design of experiments. To conduct the needed experiments a working machine and related path generator software were needed. The machine and its control software were made available prior to this research. The path generator algorithms and software had to be created. This program should obtain model geometry data from a CAD file and generate an appropriate path file for the printer nozzle. Also, the program should generate a simulation file for path file inspection using virtual prototyping. The activities related to path generator constitute the first part of this research, which has resulted in an efficient path generator. In addition, to reach an acceptable level of accuracy, strength, and surface quality in the fabricated parts, all effective factors in the SIS process should be identified and controlled. Simultaneous analytical and experimental studies were conducted to recognize effective factors and to control the SIS process. Also, it was known that polystyrene was the most appropriate polymer powder and saturated potassium iodide was the most effective inhibitor among the available candidate materials. In addition, statistical tools were applied to improve the desirable properties of the parts fabricated by the SIS process. An investigation of part strength was conducted using the Response Surface Methodology (RSM) and a region of acceptable operating conditions for the part strength was found. Then, through analysis of the experimental results, the impact of the factors on the final part surface quality and dimensional accuracy was modeled. After developing a desirability function model, process operating conditions for maximum desirability were identified. Finally, the desirability model was validated.

  13. Automated Run-Time Mission and Dialog Generation

    DTIC Science & Technology

    2007-03-01

    Processing, Social Network Analysis, Simulation, Automated Scenario Generation 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified...9 D. SOCIAL NETWORKS...13 B. MISSION AND DIALOG GENERATION.................................................13 C. SOCIAL NETWORKS

  14. Breckinridge Project, initial effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less

  15. 10 CFR 74.59 - Quality assurance and accounting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... occurs which has the potential to affect a measurement result or when program data, generated by tests.../receiver differences, inventory differences, and process differences. (4) Utilize the data generated during... difference (SEID) and the standard error of the process differences. Calibration and measurement error data...

  16. 10 CFR 74.59 - Quality assurance and accounting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... occurs which has the potential to affect a measurement result or when program data, generated by tests.../receiver differences, inventory differences, and process differences. (4) Utilize the data generated during... difference (SEID) and the standard error of the process differences. Calibration and measurement error data...

  17. HIERARCHIAL DESIGN AND EVALUATION OF PROCESSES TO GENERATE WASTE-RECYCLED FEEDS

    EPA Science Inventory

    Hierarchical Design and Evaluation of Processes to Generate
    Waste-Recycled Feeds

    Raymond L. Smith
    U.S. Environmental Protection Agency
    Office of Research and Development
    National Risk Management Research Laboratory
    26 W. Martin Luther King Drive
    Cincinna...

  18. Learning as a Generative Process

    ERIC Educational Resources Information Center

    Wittrock, M. C.

    2010-01-01

    A cognitive model of human learning with understanding is introduced. Empirical research supporting the model, which is called the generative model, is summarized. The model is used to suggest a way to integrate some of the research in cognitive development, human learning, human abilities, information processing, and aptitude-treatment…

  19. Failure detection system design methodology. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.

    1980-01-01

    The design of a failure detection and identification system consists of designing a robust residual generation process and a high performance decision making process. The design of these two processes are examined separately. Residual generation is based on analytical redundancy. Redundancy relations that are insensitive to modelling errors and noise effects are important for designing robust residual generation processes. The characterization of the concept of analytical redundancy in terms of a generalized parity space provides a framework in which a systematic approach to the determination of robust redundancy relations are developed. The Bayesian approach is adopted for the design of high performance decision processes. The FDI decision problem is formulated as a Bayes sequential decision problem. Since the optimal decision rule is incomputable, a methodology for designing suboptimal rules is proposed. A numerical algorithm is developed to facilitate the design and performance evaluation of suboptimal rules.

  20. The second phase in creating the cardiac center for the next generation: beyond structure to process improvement.

    PubMed

    Woods, J

    2001-01-01

    The third generation cardiac institute will build on the successes of the past in structuring the service line, re-organizing to assimilate specialist interests, and re-positioning to expand cardiac services into cardiovascular services. To meet the challenges of an increasingly competitive marketplace and complex delivery system, the focus for this new model will shift away from improved structures, and toward improved processes. This shift will require a sound methodology for statistically measuring and sustaining process changes related to the optimization of cardiovascular care. In recent years, GE Medical Systems has successfully applied Six Sigma methodologies to enable cardiac centers to control key clinical and market development processes through its DMADV, DMAIC and Change Acceleration processes. Data indicates Six Sigma is having a positive impact within organizations across the United States, and when appropriately implemented, this approach can serve as a solid foundation for building the next generation cardiac institute.

  1. Photo-induced changes of the surface band bending in GaN: Influence of growth technique, doping and polarity

    NASA Astrophysics Data System (ADS)

    Winnerl, Andrea; Pereira, Rui N.; Stutzmann, Martin

    2017-05-01

    In this work, we use conductance and contact potential difference photo-transient data to study the influence of the growth technique, doping, and crystal polarity on the kinetics of photo-generated charges in GaN. We found that the processes, and corresponding time scales, involved in the decay of charge carriers generated at and close to the GaN surface via photo-excitation are notably independent of the growth technique, doping (n- and p-types), and also crystal polarity. Hence, the transfer of photo-generated charges from band states back to surface states proceeds always by hopping via shallow defect states in the space-charge region (SCR) close to the surface. Concerning the charge carrier photo-generation kinetics, we observe considerable differences between samples grown with different techniques. While for GaN grown by metal-organic chemical vapor deposition, the accumulation of photo-conduction electrons results mainly from a combined trapping-hopping process (slow), where photo-generated electrons hop via shallow defect states to the conduction band (CB), in hydride vapor phase epitaxy and molecular beam epitaxy materials, a faster direct process involving electron transfer via CB states is also present. The time scales of both processes are quite insensitive to the doping level and crystal polarity. However, these processes become irrelevant for very high doping levels (both n- and p-types), where the width of the SCR is much smaller than the photon penetration depth, and therefore, most charge carriers are generated outside the SCR.

  2. ERP correlates of processing the auditory consequences of own versus observed actions.

    PubMed

    Ghio, Marta; Scharmach, Katrin; Bellebaum, Christian

    2018-06-01

    Research has so far focused on neural mechanisms that allow us to predict the sensory consequences of our own actions, thus also contributing to ascribing them to ourselves as agents. Less attention has been devoted to processing the sensory consequences of observed actions ascribed to another human agent. Focusing on audition, there is consistent evidence of a reduction of the auditory N1 ERP for self- versus externally generated sounds, while ERP correlates of processing sensory consequences of observed actions are mainly unexplored. In a between-groups ERP study, we compared sounds generated by self-performed (self group) or observed (observation group) button presses with externally generated sounds, which were presented either intermixed with action-generated sounds or in a separate condition. Results revealed an overall reduction of the N1 amplitude for processing action- versus externally generated sounds in both the intermixed and the separate condition, with no difference between the groups. Further analyses, however, suggested that an N1 attenuation effect relative to the intermixed condition at frontal electrode sites might exist only for the self but not for the observation group. For both groups, we found a reduction of the P2 amplitude for processing action- versus all externally generated sounds. We discuss whether the N1 and the P2 reduction can be interpreted in terms of predictive mechanisms for both action execution and observation, and to what extent these components might reflect also the feeling of (self) agency and the judgment of agency (i.e., ascribing agency either to the self or to others). © 2017 Society for Psychophysiological Research.

  3. An analytical and numerical study of Galton-Watson branching processes relevant to population dynamics

    NASA Astrophysics Data System (ADS)

    Jang, Sa-Han

    Galton-Watson branching processes of relevance to human population dynamics are the subject of this thesis. We begin with an historical survey of the invention of the invention of this model in the middle of the 19th century, for the purpose of modelling the extinction of unusual surnames in France and Britain. We then review the principal developments and refinements of this model, and their applications to a wide variety of problems in biology and physics. Next, we discuss in detail the case where the probability generating function for a Galton-Watson branching process is a geometric series, which can be summed in closed form to yield a fractional linear generating function that can be iterated indefinitely in closed form. We then describe the matrix method of Keyfitz and Tyree, and use it to determine how large a matrix must be chosen to model accurately a Galton-Watson branching process for a very large number of generations, of the order of hundreds or even thousands. Finally, we show that any attempt to explain the recent evidence for the existence thousands of generations ago of a 'mitochondrial Eve' and a 'Y-chromosomal Adam' in terms of a the standard Galton-Watson branching process, or indeed any statistical model that assumes equality of probabilities of passing one's genes to one's descendents in later generations, is unlikely to be successful. We explain that such models take no account of the advantages that the descendents of the most successful individuals in earlier generations enjoy over their contemporaries, which must play a key role in human evolution.

  4. Thermoelectric generator and method for the fabrication thereof

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

  5. Thermoelectric generator and method for the fabrication thereof

    DOEpatents

    Benson, D.K.; Tracy, C.E.

    1984-08-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

  6. Charged lepton flavor violation in a class of radiative neutrino mass generation models

    NASA Astrophysics Data System (ADS)

    Chowdhury, Talal Ahmed; Nasri, Salah

    2018-04-01

    We investigate the charged lepton flavor violating processes μ →e γ , μ →e e e ¯, and μ -e conversion in nuclei for a class of three-loop radiative neutrino mass generation models with electroweak multiplets of increasing order. We find that, because of certain cancellations among various one-loop diagrams which give the dipole and nondipole contributions in an effective μ e γ vertex and a Z-penguin contribution in an effective μ e Z vertex, the flavor violating processes μ →e γ and μ -e conversion in nuclei become highly suppressed compared to μ →e e e ¯ process. Therefore, the observation of such a pattern in LFV processes may reveal the radiative mechanism behind neutrino mass generation.

  7. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    PubMed Central

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-01-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032

  8. Buried object detection in GPR images

    DOEpatents

    Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald

    2014-04-29

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  9. Genotypic evaluation of tall fescue dihaploids by capillary electrophoresis

    USDA-ARS?s Scientific Manuscript database

    Recent innovations in tall fescue breeding and selection allow for the generation of dihaploid tall fescue lines. During the dihaploid generation process, two possible products can be generated. These being tall fescue hybrids generated from outcrossing and homozygous dihaploid tall fescue lines. As...

  10. The effect of feed composition on anaerobic co-digestion of animal-processing by-products.

    PubMed

    Hidalgo, D; Martín-Marroquín, J M; Corona, F

    2018-06-15

    Four streams and their mixtures have been considered for anaerobic co-digestion, all of them generated during pig carcasses processing or in related industrial activities: meat flour (MF), process water (PW), pig manure (PM) and glycerin (GL). Biochemical methane potential assays were conducted at 37 °C to evaluate the effects of the substrate mix ratio on methane generation and process behavior. The results show that the co-digestion of these products favors the anaerobic fermentation process when limiting the amount of meat flour in the mixture to co-digest, which should not exceed 10%. The ratio of other tested substrates is less critical, because different mixtures reach similar values of methane generation. The presence in the mixture of process water contributes to a quick start of the digester, something very interesting when operating an industrial reactor. The analysis of the fraction digested reveals that the four analyzed streams can be, a priori, suitable for agronomic valorization once digested. Copyright © 2017. Published by Elsevier Ltd.

  11. Error correction for IFSAR

    DOEpatents

    Doerry, Armin W.; Bickel, Douglas L.

    2002-01-01

    IFSAR images of a target scene are generated by compensating for variations in vertical separation between collection surfaces defined for each IFSAR antenna by adjusting the baseline projection during image generation. In addition, height information from all antennas is processed before processing range and azimuth information in a normal fashion to create the IFSAR image.

  12. The Relationship of Teacher Evaluation Scores Generated by a Process-Product Evaluation Instrument to Selected Variables.

    ERIC Educational Resources Information Center

    Tadlock, James; Nesbit, Lamar

    The Jackson Municipal Separate School District, Mississippi, has instituted a mixed-criteria reduction-in-force procedure emphasizing classroom performance to a greater degree than seniority, certification, and staff development participation. The district evaluation process--measuring classroom teaching performance--generated data for the present…

  13. Process for Generating Engine Fuel Consumption Map: Ricardo Cooled EGR Boost 24-bar Standard Car Engine Tier 2 Fuel

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize the fuel consumption map of a Ricardo modeled engine and vehicle fuel consumption data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  14. Historical generations and psychology. The case of the Great Depression and World War II.

    PubMed

    Rogler, Lloyd H

    2002-12-01

    The author assembles a theory of historical generations from dispersed sources in the social and behavioral sciences and in the humanities, differentiates the theory from formulations of other generation concepts, and applies it to central features in the lives of persons in the generation of the Great Depression and World War II. The application of the theory to historical materials explains how a commitment to social interdependence emerged as the signature orientation of the generation of the Great Depression and World War II. Challenges to the perspective of contextualism stem from the theory's hypotheses about linkages that mediate between cataclysmic events and psychological processes, the influence of historical generations on many of psychology's everyday concerns, and instructive comparisons with a body of growing research on processes involving adaptations to different cultures.

  15. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayancsik, B.A.

    1994-10-13

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less

  16. Evaluating the Psychometric Characteristics of Generated Multiple-Choice Test Items

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis; Pugh, Debra; Touchie, Claire; Boulais, André-Philippe; De Champlain, André

    2016-01-01

    Item development is a time- and resource-intensive process. Automatic item generation integrates cognitive modeling with computer technology to systematically generate test items. To date, however, items generated using cognitive modeling procedures have received limited use in operational testing situations. As a result, the psychometric…

  17. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    PubMed Central

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-01-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 ± 7% versus 30 ± 5% in abundance of PAOs and 97 ± 0.73% versus 82 ± 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration. PMID:25721019

  18. A Neural Dynamic Model Generates Descriptions of Object-Oriented Actions.

    PubMed

    Richter, Mathis; Lins, Jonas; Schöner, Gregor

    2017-01-01

    Describing actions entails that relations between objects are discovered. A pervasively neural account of this process requires that fundamental problems are solved: the neural pointer problem, the binding problem, and the problem of generating discrete processing steps from time-continuous neural processes. We present a prototypical solution to these problems in a neural dynamic model that comprises dynamic neural fields holding representations close to sensorimotor surfaces as well as dynamic neural nodes holding discrete, language-like representations. Making the connection between these two types of representations enables the model to describe actions as well as to perceptually ground movement phrases-all based on real visual input. We demonstrate how the dynamic neural processes autonomously generate the processing steps required to describe or ground object-oriented actions. By solving the fundamental problems of neural pointing, binding, and emergent discrete processing, the model may be a first but critical step toward a systematic neural processing account of higher cognition. Copyright © 2017 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  19. Semi-autonomous remote sensing time series generation tool

    NASA Astrophysics Data System (ADS)

    Babu, Dinesh Kumar; Kaufmann, Christof; Schmidt, Marco; Dhams, Thorsten; Conrad, Christopher

    2017-10-01

    High spatial and temporal resolution data is vital for crop monitoring and phenology change detection. Due to the lack of satellite architecture and frequent cloud cover issues, availability of daily high spatial data is still far from reality. Remote sensing time series generation of high spatial and temporal data by data fusion seems to be a practical alternative. However, it is not an easy process, since it involves multiple steps and also requires multiple tools. In this paper, a framework of Geo Information System (GIS) based tool is presented for semi-autonomous time series generation. This tool will eliminate the difficulties by automating all the steps and enable the users to generate synthetic time series data with ease. Firstly, all the steps required for the time series generation process are identified and grouped into blocks based on their functionalities. Later two main frameworks are created, one to perform all the pre-processing steps on various satellite data and the other one to perform data fusion to generate time series. The two frameworks can be used individually to perform specific tasks or they could be combined to perform both the processes in one go. This tool can handle most of the known geo data formats currently available which makes it a generic tool for time series generation of various remote sensing satellite data. This tool is developed as a common platform with good interface which provides lot of functionalities to enable further development of more remote sensing applications. A detailed description on the capabilities and the advantages of the frameworks are given in this paper.

  20. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  1. Survey of NASA V and V Processes/Methods

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles; Nelson, Stacy

    2002-01-01

    The purpose of this report is to describe current NASA Verification and Validation (V&V) techniques and to explain how these techniques are applicable to 2nd Generation RLV Integrated Vehicle Health Management (IVHM) software. It also contains recommendations for special V&V requirements for IVHM. This report is divided into the following three sections: 1) Survey - Current NASA V&V Processes/Methods; 2) Applicability of NASA V&V to 2nd Generation RLV IVHM; and 3) Special 2nd Generation RLV IVHM V&V Requirements.

  2. How Expert Clinicians Intuitively Recognize a Medical Diagnosis.

    PubMed

    Brush, John E; Sherbino, Jonathan; Norman, Geoffrey R

    2017-06-01

    Research has shown that expert clinicians make a medical diagnosis through a process of hypothesis generation and verification. Experts begin the diagnostic process by generating a list of diagnostic hypotheses using intuitive, nonanalytic reasoning. Analytic reasoning then allows the clinician to test and verify or reject each hypothesis, leading to a diagnostic conclusion. In this article, we focus on the initial step of hypothesis generation and review how expert clinicians use experiential knowledge to intuitively recognize a medical diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Rapid 3D bioprinting from medical images: an application to bone scaffolding

    NASA Astrophysics Data System (ADS)

    Lee, Daniel Z.; Peng, Matthew W.; Shinde, Rohit; Khalid, Arbab; Hong, Abigail; Pennacchi, Sara; Dawit, Abel; Sipzner, Daniel; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2018-03-01

    Bioprinting of tissue has its applications throughout medicine. Recent advances in medical imaging allows the generation of 3-dimensional models that can then be 3D printed. However, the conventional method of converting medical images to 3D printable G-Code instructions has several limitations, namely significant processing time for large, high resolution images, and the loss of microstructural surface information from surface resolution and subsequent reslicing. We have overcome these issues by creating a JAVA program that skips the intermediate triangularization and reslicing steps and directly converts binary dicom images into G-Code. In this study, we tested the two methods of G-Code generation on the application of synthetic bone graft scaffold generation. We imaged human cadaveric proximal femurs at an isotropic resolution of 0.03mm using a high resolution peripheral quantitative computed tomography (HR-pQCT) scanner. These images, of the Digital Imaging and Communications in Medicine (DICOM) format, were then processed through two methods. In each method, slices and regions of print were selected, filtered to generate a smoothed image, and thresholded. In the conventional method, these processed images are converted to the STereoLithography (STL) format and then resliced to generate G-Code. In the new, direct method, these processed images are run through our JAVA program and directly converted to G-Code. File size, processing time, and print time were measured for each. We found that this new method produced a significant reduction in G-Code file size as well as processing time (92.23% reduction). This allows for more rapid 3D printing from medical images.

  4. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    PubMed

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  5. Pulse transmission receiver with higher-order time derivative pulse generator

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-12

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  6. GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Yu. Sarkisov, S.; Shkurinov, A. P.; Tolbanov, O. P.

    2011-08-01

    We demonstrate the possibility of broadband THz pulse generation in mixed GaSe1-xSx and GaSe1-xTex crystals. The ordinary and extraordinary refractive indices of the crystals have been measured by the terahertz time-domain spectroscopy method, those values strongly influence the efficiency of THz generation process. The high birefringence and transparency of pure GaSe and mixed crystals allow optical rectification of femtosecond laser pulses in the several millimeters thick crystal using the еее interaction process (with two pumping waves and generated THz wave all having extraordinary polarization in the crystal).

  7. Inhibitory Control as a Core Process of Creative Problem Solving and Idea Generation from Childhood to Adulthood.

    PubMed

    Cassotti, Mathieu; Agogué, Marine; Camarda, Anaëlle; Houdé, Olivier; Borst, Grégoire

    2016-01-01

    Developmental cognitive neuroscience studies tend to show that the prefrontal brain regions (known to be involved in inhibitory control) are activated during the generation of creative ideas. In the present article, we discuss how a dual-process model of creativity-much like the ones proposed to account for decision making and reasoning-could broaden our understanding of the processes involved in creative ideas generation. When generating creative ideas, children, adolescents, and adults tend to follow "the path of least resistance" and propose solutions that are built on the most common and accessible knowledge within a specific domain, leading to fixation effect. In line with recent theory of typical cognitive development, we argue that the ability to resist the spontaneous activation of design heuristics, to privilege other types of reasoning, might be critical to generate creative ideas at all ages. In the present review, we demonstrate that inhibitory control at all ages can actually support creativity. Indeed, the ability to think of something truly new and original requires first inhibiting spontaneous solutions that come to mind quickly and unconsciously and then exploring new ideas using a generative type of reasoning. © 2016 Wiley Periodicals, Inc.

  8. 36 CFR 242.16 - Customary and traditional use determination process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... generation to generation; (7) A pattern of use in which the harvest is shared or distributed within a... storing fish or wildlife which has been traditionally used by past generations, including consideration of...

  9. Bioethanol from Lignocellulosic Biomass: Current Findings Determine Research Priorities

    PubMed Central

    Kang, Qian; Appels, Lise; Tan, Tianwei

    2014-01-01

    “Second generation” bioethanol, with lignocellulose material as feedstock, is a promising alternative for first generation bioethanol. This paper provides an overview of the current status and reveals the bottlenecks that hamper its implementation. The current literature specifies a conversion of biomass to bioethanol of 30 to ~50% only. Novel processes increase the conversion yield to about 92% of the theoretical yield. New combined processes reduce both the number of operational steps and the production of inhibitors. Recent advances in genetically engineered microorganisms are promising for higher alcohol tolerance and conversion efficiency. By combining advanced systems and by intensive additional research to eliminate current bottlenecks, second generation bioethanol could surpass the traditional first generation processes. PMID:25614881

  10. Alterations in choice behavior by manipulations of world model.

    PubMed

    Green, C S; Benson, C; Kersten, D; Schrater, P

    2010-09-14

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.

  11. Alterations in choice behavior by manipulations of world model

    PubMed Central

    Green, C. S.; Benson, C.; Kersten, D.; Schrater, P.

    2010-01-01

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) “probability matching”—a consistent example of suboptimal choice behavior seen in humans—occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning. PMID:20805507

  12. ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Jung, Jinwook; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Han, Seungyong; Ko, Seung Hwan

    2018-05-12

    To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency. Herein, we introduce a novel wet-based, successive photoreduction process that can improve charge transfer efficiency by surface plasmon effect for a solar-driven water splitting device. The proposed process enables to fabricate ZnO/CuO/Ag or ZnO/CuO/Au hierarchical nanostructure, having an enhanced electrical, optical, photoelectrochemical property. The fabricated hierarchical nanostructures are demonstrated as a photocathode in the photoelectrochemical cell and characterized by using various analytic tools.

  13. ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation

    PubMed Central

    Kwon, Jinhyeong; Cho, Hyunmin; Jung, Jinwook; Lee, Habeom; Han, Seungyong

    2018-01-01

    To date, solar energy generation devices have been widely studied to meet a clean and sustainable energy source. Among them, water splitting photoelectrochemical cell is regarded as a promising energy generation way for splitting water molecules and generating hydrogen by sunlight. While many nanostructured metal oxides are considered as a candidate, most of them have an improper bandgap structure lowering energy transition efficiency. Herein, we introduce a novel wet-based, successive photoreduction process that can improve charge transfer efficiency by surface plasmon effect for a solar-driven water splitting device. The proposed process enables to fabricate ZnO/CuO/Ag or ZnO/CuO/Au hierarchical nanostructure, having an enhanced electrical, optical, photoelectrochemical property. The fabricated hierarchical nanostructures are demonstrated as a photocathode in the photoelectrochemical cell and characterized by using various analytic tools. PMID:29757225

  14. Encouraging Example Generation: A Teaching Experiment in First-Semester Calculus

    ERIC Educational Resources Information Center

    Wagner, Elaine Rumsey; Orme, Susan Marla; Turner, Heidi Jean; Yopp, David

    2017-01-01

    Mathematicians use example generation to test and verify mathematical ideas; however, the processes through which undergraduates learn to productively generate examples are not well understood. We engaged calculus students in a teaching experiment designed to develop skills in productively generating examples to learn novel concepts. This article…

  15. Electrochemical process and production of novel complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  16. Magnetic filter apparatus and method for generating cold plasma in semicoductor processing

    DOEpatents

    Vella, Michael C.

    1996-01-01

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

  17. Magnetic filter apparatus and method for generating cold plasma in semiconductor processing

    DOEpatents

    Vella, M.C.

    1996-08-13

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

  18. System for monitoring an industrial or biological process

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  19. System for monitoring an industrial or biological process

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  20. Method for routing events from key strokes in a multi-processing computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodes, D.A.; Rustici, E.; Carter, K.H.

    1990-01-23

    The patent describes a method of routing user input in a computer system which concurrently runs a plurality of processes. It comprises: generating keycodes representative of keys typed by a user; distinguishing generated keycodes by looking up each keycode in a routing table which assigns each possible keycode to an individual assigned process of the plurality of processes, one of which processes being a supervisory process; then, sending each keycode to its assigned process until a keycode assigned to the supervisory process is received; sending keycodes received subsequent to the keycode assigned to the supervisory process to a buffer; next,more » providing additional keycodes to the supervisory process from the buffer until the supervisory process has completed operation; and sending keycodes stored in the buffer to processes assigned therewith after the supervisory process has completedoperation.« less

  1. Spatially adaptive migration tomography for multistatic GPR imaging

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2013-08-13

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  2. Automated objective characterization of visual field defects in 3D

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor)

    2006-01-01

    A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

  3. Synthetic aperture integration (SAI) algorithm for SAR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  4. Zero source insertion technique to account for undersampling in GPR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. Real-time system for imaging and object detection with a multistatic GPR array

    DOEpatents

    Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  6. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    PubMed

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  7. Micro Slot Generation by μ-ED Milling

    NASA Astrophysics Data System (ADS)

    Dave, H. K.; Mayanak, M. K.; Rajpurohit, S. R.; Mathai, V. J.

    2016-08-01

    Micro electro discharge machining is one of the most widely used advanced micro machining technique owing to its capability to fabricate micro features on any electrically conductive materials irrespective of its material properties. Despite its wide acceptability, the process is always adversely affected by issues like wear that occurred on the tool electrode, which results into generation of inaccurate features. Micro ED milling, a process variant in which the tool electrode simultaneously rotated and scanned during machining, is reported to have high process efficiency for generation of 3D complicated shapes and features with relatively less electrode wear intensity. In the present study an attempt has been made to study the effect of two process parameters viz. capacitance and scanning speed of tool electrode on end wear that occurs on the tool electrode and overcut of micro slots generated by micro ED milling. The experiment has been conducted on Al 1100 alloy with tungsten electrode having diameter of 300 μm. Results suggest that wear on the tool electrode and overcut of the micro features generated are highly influenced by the level of the capacitance employed during machining. For the parameter usage employed for present study however, no significant effect of variation of scanning speed has been observed on both responses.

  8. Cognitive and Interpersonal Predictors of Stress Generation in Children of Affectively Ill Parents

    ERIC Educational Resources Information Center

    Shih, Josephine H.; Abela, John R. Z.; Starrs, Claire

    2009-01-01

    Stress generation is a process in which individuals, through their depressive symptoms, personal characteristics, and/or behaviors, contribute to the occurrence of stressful life events. While this process has been well documented in adults, few studies have examined it in children. The present study examines whether cognitive and interpersonal…

  9. Dreams Fulfilled, Dreams Shattered: Determinants of Segmented Assimilation in the Second Generation

    ERIC Educational Resources Information Center

    Haller, William; Portes, Alejandro; Lynch, Scott M.

    2011-01-01

    We summarize prior theories on the adaptation process of the contemporary immigrant second generation as a prelude to presenting additive and interactive models showing the impact of family variables, school contexts and academic outcomes on the process. For this purpose, we regress indicators of educational and occupational achievement in early…

  10. 40 CFR 436.41 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... seepage. However, if a mine is also used for the treatment of process generated waste water, discharges of commingled water from the mine shall be deemed discharges of process generated waste water. (c) The term “10... water in a pit, pond, lagoon, mine or other facility used for treatment of such waste water. The terms...

  11. Applying Fourth Generation Management to Access Services: Reinventing Customer Service and Process Management

    ERIC Educational Resources Information Center

    Hasty, Douglas F.

    2004-01-01

    Are librarians doing all they can to ensure that customer services are delivered with the customer in mind? Librarians are great at helping, but we sometimes need help with identifying customers, defining their needs, developing services, and reviewing the processes behind the services. Fourth Generation Management provides new insight for…

  12. Sequential Processes in Image Generation: An Objective Measure. Technical Report #6.

    ERIC Educational Resources Information Center

    Kosslyn, Stephen M.; And Others

    This paper investigates the processes by which visual mental images--the precept-like short-term memory representations--are created from information stored in long-term memory. It also presents a new method for studying image generation. Three experiments were conducted using college students as subjects. In the first experiment, a Podgorny and…

  13. AUTOMATED LITERATURE PROCESSING HANDLING AND ANALYSIS SYSTEM--FIRST GENERATION.

    ERIC Educational Resources Information Center

    Redstone Scientific Information Center, Redstone Arsenal, AL.

    THE REPORT PRESENTS A SUMMARY OF THE DEVELOPMENT AND THE CHARACTERISTICS OF THE FIRST GENERATION OF THE AUTOMATED LITERATURE PROCESSING, HANDLING AND ANALYSIS (ALPHA-1) SYSTEM. DESCRIPTIONS OF THE COMPUTER TECHNOLOGY OF ALPHA-1 AND THE USE OF THIS AUTOMATED LIBRARY TECHNIQUE ARE PRESENTED. EACH OF THE SUBSYSTEMS AND MODULES NOW IN OPERATION ARE…

  14. 40 CFR 436.31 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... deposits. (e) The term “process generated waste water” shall mean any waste water used in the slurry... rainfall and ground water seepage. However, if a mine is also used for treatment of process generated waste... waste water. (c) The term “10-year 24-hour precipitation event” shall mean the maximum 24 hour...

  15. The Development of Group Interaction Patterns: How Groups become Adaptive, Generative, and Transformative Learners

    ERIC Educational Resources Information Center

    London, Manuel; Sessa, Valerie I.

    2007-01-01

    This article integrates the literature on group interaction process analysis and group learning, providing a framework for understanding how patterns of interaction develop. The model proposes how adaptive, generative, and transformative learning processes evolve and vary in their functionality. Environmental triggers for learning, the group's…

  16. Cache write generate for parallel image processing on shared memory architectures.

    PubMed

    Wittenbrink, C M; Somani, A K; Chen, C H

    1996-01-01

    We investigate cache write generate, our cache mode invention. We demonstrate that for parallel image processing applications, the new mode improves main memory bandwidth, CPU efficiency, cache hits, and cache latency. We use register level simulations validated by the UW-Proteus system. Many memory, cache, and processor configurations are evaluated.

  17. Particle Generation and Evolution in Silane/Acetylene Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Keil, D. G.

    2001-01-01

    The objective of this new experimental program is to advance the understanding of the formation of particles from gas phase combustion processes. The work will utilize the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio. A key goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release necessary to drive the combustion wave, and to locate the parts of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like "highly sooty" hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.

  18. Particle Generation And Evolution In Silane (SiH4)/Acetylene (C2H2) Flames In Microgravity

    NASA Technical Reports Server (NTRS)

    Keil, D. G.

    2003-01-01

    The objective of this experimental program is to advance the understanding of the coupling of particle formation with gas phase combustion processes. The work utilizes the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio (Ref. 1). A goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release needed to drive the combustion wave, and to locate the steps of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like highly sooty hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.

  19. Relations between perceptual and conceptual scope: how global versus local processing fits a focus on similarity versus dissimilarity.

    PubMed

    Förster, Jens

    2009-02-01

    Nine studies showed a bidirectional link (a) between a global processing style and generation of similarities and (b) between a local processing style and generation of dissimilarities. In Experiments 1-4, participants were primed with global versus local perception styles and then asked to work on an allegedly unrelated generation task. Across materials, participants generated more similarities than dissimilarities after global priming, whereas for participants with local priming, the opposite was true. Experiments 5-6 demonstrated a bidirectional link whereby participants who were first instructed to search for similarities attended more to the gestalt of a stimulus than to its details, whereas the reverse was true for those who were initially instructed to search for dissimilarities. Because important psychological variables are correlated with processing styles, in Experiments 7-9, temporal distance, a promotion focus, and high power were predicted and shown to enhance the search for similarities, whereas temporal proximity, a prevention focus, and low power enhanced the search for dissimilarities. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  20. Rewired: Understanding the iGeneration and the Way They Learn

    ERIC Educational Resources Information Center

    Rosen, Larry D.

    2010-01-01

    The iGeneration is radically different from any previous generation of students and a variety of existing technologies can be used to engage and excite them in the learning process. The iGeneration is a creative, multimedia generation. They think of the world as a canvas to paint with words, sights, sounds, video, music, web pages, and anything…

  1. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments.

    PubMed

    Saini, Jitendra Kumar; Saini, Reetu; Tewari, Lakshmi

    2015-08-01

    Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulose-rich biomass resources available in huge amounts for bioethanol production. These agricultural residues are converted to bioethanol in several steps which are described here. This review enlightens various steps involved in production of the second-generation bioethanol. Mechanisms and recent advances in pretreatment, cellulases production and second-generation ethanol production processes are described here.

  2. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing.

    PubMed

    Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana

    2016-05-01

    Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.

  3. Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process.

    PubMed

    Sun, Bo; Dong, Hongyu; He, Di; Rao, Dandan; Guan, Xiaohong

    2016-02-02

    Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.

  4. Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T{sub e} plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine

    2016-01-15

    The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare thesemore » results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.« less

  5. The Importance of Long Wavelength Processes in Generating Landscapes

    NASA Astrophysics Data System (ADS)

    Roberts, Gareth G.; White, Nicky

    2017-04-01

    The processes responsible for generating landscapes observed on Earth and elsewhere are poorly understood. For example, the relative importance of long (>10 km) and short wavelength erosional processes in determining the evolution of topography is debated. Much work has focused on developing an observational and theoretical framework for evolution of longitudinal river profiles (i.e. elevation as a function of streamwise distance), which probably sets the pace of erosion in low-mid latitude continents. A large number of geomorphic studies emphasis the importance of short wavelength processes in sculpting topography (e.g. waterfall migration, interaction of biota and the solid Earth, hill slope evolution). However, it is not clear if these processes scale to generate topography observed at longer (>10 km) wavelengths. At wavelengths of tens to thousands of kilometers topography is generated by modification of the lithosphere (e.g. shortening, extension, flexure) and by sub-plate processes (e.g. dynamic support). Inversion of drainage patterns suggests that uplift rate histories can be reliably recovered at these long wavelengths using simple erosional models (e.g. stream power). Calculated uplift and erosion rate histories are insensitive to short wavelength (<10 km) or rapid (<100 ka) environmental changes (e.g. biota, precipitation, lithology). One way to examine the relative importance of short and long wavelength processes in generating topography is to transform river profiles into distance-frequency space. We calculate the wavelet power spectrum of a suite of river profiles and examine their spectral content. Big rivers in North America (e.g. Colorado, Rio Grande) and Africa (e.g. Niger, Orange) have a red noise spectrum (i.e. power inversely proportional to wavenumber-squared) at wavelengths > 100 km. More than 90% of river profile elevations in our inventory are determined at these wavelengths. At shorter wavelengths spectra more closely resemble pink noise (power inversely proportional to wavenumber). These observations suggest that short wavelength processes do not simply scale to generate the long wavelength changes in elevation. Instead we suggest that long wavelength processes (e.g. regional uplift, knickzone migration) determine the shape and evolution of nearly all topography. These results suggest that the erosional complexity observed in local geomorphic studies and the relative simplicity of erosional models required to fit continental-scale drainage patterns are not mutually exclusive. Rather that the problem of fluvial erosion is being tackled at different and probably unrelated scales.

  6. Change control microcomputer device for vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-08-19

    A charge control microcomputer device for a vehicle is described which consists of: a clutch device for transmitting the rotary output of an engine; a charging generator driven by the clutch device; a battery charged by an output of the charging generator; a voltage regulator for controlling an output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving engine data, to control the engine; and a charge control microcomputer for processing the engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage datamore » from the charging generator, to determine a reference voltage for the voltage regulator in accordance with the engine data and the charge system data, and for processing an engine rotation signal to generate and apply an operating instruction to the clutch device in accordance with the engine data and the charge system data, such that the charging generator is driven within a predetermined range of revolutions per minute at all times.« less

  7. A Model of Generating Visual Place Cells Based on Environment Perception and Similar Measure.

    PubMed

    Zhou, Yang; Wu, Dewei

    2016-01-01

    It is an important content to generate visual place cells (VPCs) in the field of bioinspired navigation. By analyzing the firing characteristic of biological place cells and the existing methods for generating VPCs, a model of generating visual place cells based on environment perception and similar measure is abstracted in this paper. VPCs' generation process is divided into three phases, including environment perception, similar measure, and recruiting of a new place cell. According to this process, a specific method for generating VPCs is presented. External reference landmarks are obtained based on local invariant characteristics of image and a similar measure function is designed based on Euclidean distance and Gaussian function. Simulation validates the proposed method is available. The firing characteristic of the generated VPCs is similar to that of biological place cells, and VPCs' firing fields can be adjusted flexibly by changing the adjustment factor of firing field (AFFF) and firing rate's threshold (FRT).

  8. A Model of Generating Visual Place Cells Based on Environment Perception and Similar Measure

    PubMed Central

    2016-01-01

    It is an important content to generate visual place cells (VPCs) in the field of bioinspired navigation. By analyzing the firing characteristic of biological place cells and the existing methods for generating VPCs, a model of generating visual place cells based on environment perception and similar measure is abstracted in this paper. VPCs' generation process is divided into three phases, including environment perception, similar measure, and recruiting of a new place cell. According to this process, a specific method for generating VPCs is presented. External reference landmarks are obtained based on local invariant characteristics of image and a similar measure function is designed based on Euclidean distance and Gaussian function. Simulation validates the proposed method is available. The firing characteristic of the generated VPCs is similar to that of biological place cells, and VPCs' firing fields can be adjusted flexibly by changing the adjustment factor of firing field (AFFF) and firing rate's threshold (FRT). PMID:27597859

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, H.

    In this dissertation we study a procedure which restarts a Markov process when the process is killed by some arbitrary multiplicative functional. The regenerative nature of this revival procedure is characterized through a Markov renewal equation. An interesting duality between the revival procedure and the classical killing operation is found. Under the condition that the multiplicative functional possesses an intensity, the generators of the revival process can be written down explicitly. An intimate connection is also found between the perturbation of the sample path of a Markov process and the perturbation of a generator (in Kato's sense). The applications ofmore » the theory include the study of the processes like piecewise-deterministic Markov process, virtual waiting time process and the first entrance decomposition (taboo probability).« less

  10. Effect of external plasma flows on the interaction between turbulence and convective cells

    NASA Astrophysics Data System (ADS)

    Uzawa, Ken; Li, Jiquan

    2005-10-01

    It is widely recognized that large scale structures, such as zonal flows, streamers and also long wavelength Kelvin-Helmholtz modes are nonlinearly generated from maternal turbulence through modulational instability process and play a crucial role in regulating the transport in tokamaks. In order to control the transport, it is desirable to control such structures and/or modulational process. One of control parameters may be mean flow which intrinsically exists in tokamak plasmas. Besides the direct influence on the transport through vortex decorrelation, the mean flow may indirectly change the zonal flow generation by acting on the modulational process itself. In this work, we theoretically investigate the characteristics of zonal flow generation due to the electron temperature gradient (ETG) turbulence in the presence of long wavelength ITG driven zonal flow. This was done by extending our previous modulational analyses[1]. We have numerically analyzed the influence of mean flow on zonal flow generation. The main result is that the zonal flow generation is suppressed by the presence of the mean flow. [1]J. Li, Y. Kishimoto, Physics of Plasmas, 9, 1241 (2002)

  11. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes.

    PubMed

    Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2017-12-01

    The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling and Simulation of the Economics of Mining in the Bitcoin Market.

    PubMed

    Cocco, Luisanna; Marchesi, Michele

    2016-01-01

    In January 3, 2009, Satoshi Nakamoto gave rise to the "Bitcoin Blockchain", creating the first block of the chain hashing on his computer's central processing unit (CPU). Since then, the hash calculations to mine Bitcoin have been getting more and more complex, and consequently the mining hardware evolved to adapt to this increasing difficulty. Three generations of mining hardware have followed the CPU's generation. They are GPU's, FPGA's and ASIC's generations. This work presents an agent-based artificial market model of the Bitcoin mining process and of the Bitcoin transactions. The goal of this work is to model the economy of the mining process, starting from GPU's generation, the first with economic significance. The model reproduces some "stylized facts" found in real-time price series and some core aspects of the mining business. In particular, the computational experiments performed can reproduce the unit root property, the fat tail phenomenon and the volatility clustering of Bitcoin price series. In addition, under proper assumptions, they can reproduce the generation of Bitcoins, the hashing capability, the power consumption, and the mining hardware and electrical energy expenditures of the Bitcoin network.

  13. Automatic two- and three-dimensional mesh generation based on fuzzy knowledge processing

    NASA Astrophysics Data System (ADS)

    Yagawa, G.; Yoshimura, S.; Soneda, N.; Nakao, K.

    1992-09-01

    This paper describes the development of a novel automatic FEM mesh generation algorithm based on the fuzzy knowledge processing technique. A number of local nodal patterns are stored in a nodal pattern database of the mesh generation system. These nodal patterns are determined a priori based on certain theories or past experience of experts of FEM analyses. For example, such human experts can determine certain nodal patterns suitable for stress concentration analyses of cracks, corners, holes and so on. Each nodal pattern possesses a membership function and a procedure of node placement according to this function. In the cases of the nodal patterns for stress concentration regions, the membership function which is utilized in the fuzzy knowledge processing has two meanings, i.e. the “closeness” of nodal location to each stress concentration field as well as “nodal density”. This is attributed to the fact that a denser nodal pattern is required near a stress concentration field. What a user has to do in a practical mesh generation process are to choose several local nodal patterns properly and to designate the maximum nodal density of each pattern. After those simple operations by the user, the system places the chosen nodal patterns automatically in an analysis domain and on its boundary, and connects them smoothly by the fuzzy knowledge processing technique. Then triangular or tetrahedral elements are generated by means of the advancing front method. The key issue of the present algorithm is an easy control of complex two- or three-dimensional nodal density distribution by means of the fuzzy knowledge processing technique. To demonstrate fundamental performances of the present algorithm, a prototype system was constructed with one of object-oriented languages, Smalltalk-80 on a 32-bit microcomputer, Macintosh II. The mesh generation of several two- and three-dimensional domains with cracks, holes and junctions was presented as examples.

  14. An Environmental Impact Analysis of Semi-Mechanical Extraction Process of Sago Starch: Life Cycle Assessment (LCA) Perspective

    NASA Astrophysics Data System (ADS)

    Yusuf, M. A.; Romli, M.; Suprihatin; Wiloso, E. I.

    2018-05-01

    Industrial activities use material, energy and water resources and generate greenhouse gas (GHG). Currently, various regulations require industry to measure and quantify the emissions generated from its process activity. LCA is a method that can be used to analyze and report the environmental impact of an activity that uses resources and generates waste by an industrial activity. In this work, LCA is used to determine the environmental impact of a semi-mechanical extraction process of sago industry. The data was collected through the sago industry in Cimahpar, Bogor. The extraction of sago starch consists of stem cutting, rasping, mixing, filtration, starch sedimentation, washing, and drying. The scope of LCA study covers the harvesting of sago stem, transportation to extraction site, and the starch extraction process. With the assumption that the average transportation distance of sago stem to extraction site is 200 km, the GHG emission is estimated to be 325 kg CO2 eq / ton of sundried sago starch. This figure is lower than that reported for maize starch (1120 kg CO2 eq), potato starch (2232 kg CO2 eq) and cassava starch (4310 kg CO2 eq). This is most likely due to the uncounted impact from the use of electrical energy on the extraction process, which is currently being conducted. A follow-up study is also underway to formulate several process improvement scenarios to derive the design of sago starch processing that generates the minimum emissions.

  15. Generation of control sequences for a pilot-disassembly system

    NASA Astrophysics Data System (ADS)

    Seliger, Guenther; Kim, Hyung-Ju; Keil, Thomas

    2002-02-01

    Closing the product and material cycles has emerged as a paradigm for industry in the 21st century. Disassembly plays a key role in a life cycle economy since it enables the recovery of resources. A partly automated disassembly system should adapt to a large variety of products and different degrees of devaluation. Also the amounts of products to be disassembled can vary strongly. To cope with these demands an approach to generate on-line disassembly control sequences will be presented. In order to react on these demands the technological feasibility is considered within a procedure for the generation of disassembly control sequences. Procedures are designed to find available and technologically feasible disassembly processes. The control system is formed by modularised and parameterised control units in the cell level within the entire control architecture. In the first development stage product and process analyses at the sample product washing machine were executed. Furthermore a generalized disassembly process was defined. Afterwards these processes were structured in primary and secondary functions. In the second stage the disassembly control at the technological level was investigated. Factors were the availability of the disassembly tools and the technological feasibility of the disassembly processes within the disassembly system. Technical alternative disassembly processes are determined as a result of availability of the tools and technological feasibility of processes. The fourth phase was the concept for the generation of the disassembly control sequences. The approach will be proved in a prototypical disassembly system.

  16. Hardware based redundant multi-threading inside a GPU for improved reliability

    DOEpatents

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-05-05

    A system and method for verifying computation output using computer hardware are provided. Instances of computation are generated and processed on hardware-based processors. As instances of computation are processed, each instance of computation receives a load accessible to other instances of computation. Instances of output are generated by processing the instances of computation. The instances of output are verified against each other in a hardware based processor to ensure accuracy of the output.

  17. Cytotoxicity of Doxycycline Effluent Generated by the Fenton Process

    PubMed Central

    Borghi, Alexandre Augusto; Stephano, Marco Antônio; Monteiro de Souza, Paula; Alves Palma, Mauri Sérgio

    2014-01-01

    This study aims at determining the Minimum Inhibitory Concentration with Escherichia coli ATCC 25922 and cytotoxicity to L929 cells (ATCC CCL-1) of the waste generated by doxycycline degradation by the Fenton process. This process has shown promise in this treatment thanks mainly to the fact that the waste did not show any relevant inhibitory effect on the test organism and no cytotoxicity to L-929 cells, thus demonstrating that the antibiotic properties were inactivated. PMID:25379532

  18. Assessment of destabilizing factor for automatic control systems in propulsion systems of mechatronic and maritime transport objects

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Kapitonov, A. A.

    2017-10-01

    It is known that many of today’s ships and vessels have a shaft generator as a part of their power plants. Modern automatic control systems used in the world’s fleet do not enable their shaft generators to operate in parallel with the main diesel generators for long-term sustenance of the total load of the ship network. On the other hand, according to our calculations and experiments, a shaft generator operated in parallel with the main power plant helps save at least 10% of fuel while making the power system of the ship more efficient, reliable, and eco-friendly. The fouling and corrosion of the propeller as well as the weather conditions of navigation affect its modulus of resistance. It changes the free component of the transient process of shaft generator stress frequency changes in transient processes. While the shaft generator and the diesel generator of the ship power plant are paralleled, there emerges an angle between their EMF. This results in equalizing currents generated between them. The altering torque in the drive-shaft line—propeller system causes torsional fluctuations of the ship shaft line. To compensate for the effect of destabilizing factors and torsional fluctuations of the shaft line on the dynamic characteristics of the transient process that alters the RPM of the main engine, sliding mode controls can be used. To synthesize such a control, one has to evaluate the effect of destabilizing factors.

  19. Amyloid-β Production Via Cleavage of Amyloid-β Protein Precursor is Modulated by Cell Density

    PubMed Central

    Zhang, Can; Browne, Andrew; DiVito, Jason R.; Stevenson, Jesse A.; Romano, Donna; Dong, Yuanlin; Xie, Zhongcong; Tanzi, Rudolph E.

    2012-01-01

    Mounting evidence suggests that Alzheimer disease (AD) is caused by the accumulation of the small peptide, Aβ, a proteolytic cleavage product of amyloid-β protein precursor (AβPP; or APP). Aβ is generated through a serial cleavage of APP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. APP can also be processed by α-secretase, which cleaves APP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on APP processing and Aβ generation. Here we assessed the effects of cell density on APP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42:Aβ40. These results also indicate that cell density is a significant modulator of APP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g. novel drugs on APP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect APP processing and Aβ levels in the AD brain. PMID:20847415

  20. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  1. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process.

    PubMed

    Yao, Weikun; Wang, Xiaofeng; Yang, Hongwei; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin; Wang, Yujue

    2016-01-01

    This study compared the removal of pharmaceuticals from secondary effluents of wastewater treatment plants (WWTPs) by conventional ozonation and the electro-peroxone (E-peroxone) process, which involves electrochemically generating H2O2 in-situ from O2 in sparged O2 and O3 gas mixture (i.e., ozone generator effluent) during ozonation. Several pharmaceuticals with kO3 ranging from <0.1 to 6.8 × 10(5) M(-1) s(-1) were spiked into four secondary effluents collected from different WWTPs, and then treated by ozonation and the E-peroxone process. Results show that both processes can rapidly remove ozone reactive pharmaceuticals (diclofenac and gemfibrozil), while the E-peroxone process can considerably accelerate the removal of ozone-refractory pharmaceuticals (e.g., ibuprofen and clofibric acid) via indirect oxidation with OH generated from the reaction of sparged O3 with electro-generated H2O2. Compared with ozonation, the E-peroxone process enhanced the removal kinetics of ozone-refractory pharmaceuticals in the four secondary effluents by ∼40-170%, and the enhancement was more pronounced in secondary effluents that had relatively lower effluent organic matter (EfOM). Due to its higher efficiency for removing ozone-refractory pharmaceuticals, the E-peroxone process reduced the reaction time and electrical energy consumption required to remove ≥90% of all spiked pharmaceuticals from the secondary effluents as compared to ozonation. These results indicate that the E-peroxone process may provide a simple and effective way to improve existing ozonation system for pharmaceutical removal from secondary effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula.

    PubMed

    Curtin, Shaun J; Xiong, Yer; Michno, Jean-Michel; Campbell, Benjamin W; Stec, Adrian O; Čermák, Tomas; Starker, Colby; Voytas, Daniel F; Eamens, Andrew L; Stupar, Robert M

    2018-06-01

    Processing of double-stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL-effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi-allelic double mutant for the two soya bean paralogous Double-stranded RNA-binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9-generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ-line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer-like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer-like3 gene and the GmHen1a gene was observed in the T 0 generation, but these mutations failed to transmit to the T 1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole-genome sequencing to reveal a spectrum of non-germ-line-targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Automatic Item Generation via Frame Semantics: Natural Language Generation of Math Word Problems.

    ERIC Educational Resources Information Center

    Deane, Paul; Sheehan, Kathleen

    This paper is an exploration of the conceptual issues that have arisen in the course of building a natural language generation (NLG) system for automatic test item generation. While natural language processing techniques are applicable to general verbal items, mathematics word problems are particularly tractable targets for natural language…

  4. Why Do National Board Certified Teachers from Generation X Leave the Classroom?

    ERIC Educational Resources Information Center

    Crain, Julie Christi

    2013-01-01

    This qualitative multiple case study focused on National Board Certified teachers from Generation X who have left the classroom. The study explored aspects of the teaching profession, the National Board Certification process, and Generation X as potential influences for National Board Certified teachers from Generation X to leave the classroom.…

  5. To create or to recall? Neural mechanisms underlying the generation of creative new ideas☆

    PubMed Central

    Benedek, Mathias; Jauk, Emanuel; Fink, Andreas; Koschutnig, Karl; Reishofer, Gernot; Ebner, Franz; Neubauer, Aljoscha C.

    2014-01-01

    This fMRI study investigated brain activation during creative idea generation using a novel approach allowing spontaneous self-paced generation and expression of ideas. Specifically, we addressed the fundamental question of what brain processes are relevant for the generation of genuinely new creative ideas, in contrast to the mere recollection of old ideas from memory. In general, creative idea generation (i.e., divergent thinking) was associated with extended activations in the left prefrontal cortex and the right medial temporal lobe, and with deactivation of the right temporoparietal junction. The generation of new ideas, as opposed to the retrieval of old ideas, was associated with stronger activation in the left inferior parietal cortex which is known to be involved in mental simulation, imagining, and future thought. Moreover, brain activation in the orbital part of the inferior frontal gyrus was found to increase as a function of the creativity (i.e., originality and appropriateness) of ideas pointing to the role of executive processes for overcoming dominant but uncreative responses. We conclude that the process of idea generation can be generally understood as a state of focused internally-directed attention involving controlled semantic retrieval. Moreover, left inferior parietal cortex and left prefrontal regions may subserve the flexible integration of previous knowledge for the construction of new and creative ideas. PMID:24269573

  6. The mesoscale forcing of a midlatitude upper-tropospheric jet streak by a simulated convective system. 2: Kinetic energy and resolution analysis

    NASA Technical Reports Server (NTRS)

    Wolf, Bart J.; Johnson, D. R.

    1995-01-01

    A kinetic energy (KE) analysis of the forcing of a mesoscale upper-tropospheric jet streak by organized diabatic processes within the simulated convective system (SCS) that was discussed in Part 1 is presented in this study. The relative contributions of the ageostrophic components of motion to the generation of KE of the convectively generated jet streak are compared, along with the KE generation by the rotational (nondivergent) and irrotational (divergent) mass transport. The sensitivity of the numerical simulations of SCS development to resolution is also briefly examined. Analysis within isentropic coordinates provides for an explicit determination of the influence of the diabatic processes on the generation of KE. The upper-level production of specific KE is due predominatly to the inertial advective ageostrophic component (IAD), and as such represents the primary process through which the KE of the convectively generated jet streak is realized. A secondary contribution by the inertial diabatic (IDI) term is observed. Partitioning the KE generation into its rotational and irrotational components reveals that the latter, which is directly linked to the diabatic heating within the SCS through isentropic continuity requirements, is the ultimate source of KE generation as the global area integral of generation by the rotational component vanishes. Comparison with an identical dry simulation reveals that the net generation of KE must be attributed to latent heating. Both the IAD and IDI ageostrophic components play important roles in this regard. Examination of results from simulations conducted at several resolutions supports the previous findings in that the effects of diabatic processes and ageostrophic motion on KE generation remain consistent. Resolution does impact the location and timing of SCS development, a result that has important implications in forecasting the onset of convection that develops from evolution of the large-scale flow and moisture transport. Marked differences are observed in the momentum field aloft subsequent to the life cycle of the SCS in the 1 deg, 30-level base case (MP130) simulation discussed in Part 1 versus its 2 deg counterparts in that the MP130 simulation with higher spatial resolution contains from 14% to 30% more total KE.

  7. [United Plackett-Burman and Box-Behnken design to control formation of indirubin in process of preparing indigo naturalis].

    PubMed

    Liu, Zeyu; Su, Zhetong; Yang, Ming; Zou, Wenquan

    2010-10-01

    To screen the factors that affect indirubin-generated significantly in the process of preparing indigo naturalis, optimize level combination and determine the optimum technology for indirubin-generated. Using concentration of indirubin (mg x g(-1)) that generated by fresh leaf as an index, Plackett-Burman design, Box-Behnken design response surface analysis as the statistical method, we screened the significantly influencing factors and the optimal level combination. The soaking and making indirubin process in preparing indigo naturalis was identified as the wax is not removed before immersion with immersion pH 7, solvent volume-leaf weight (mL: g)15, soaked not avoided light, soaking 48 h, temperature 60 degrees C, ventilation time of 180 min, and added ammonia water to adjust pH to 10.5. The soaking and making indirubin process in preparing indigo naturalis is optimized systematically. It clarify the various factors on the impact of the active ingredient indirubin which controlled by industrialized production become reality in the process of preparing indigo naturalis, at the same time, it lay the foundation for processing principle of indigo naturalis.

  8. ULSGEN (Uplink Summary Generator)

    NASA Technical Reports Server (NTRS)

    Wang, Y.-F.; Schrock, M.; Reeve, T.; Nguyen, K.; Smith, B.

    2014-01-01

    Uplink is an important part of spacecraft operations. Ensuring the accuracy of uplink content is essential to mission success. Before commands are radiated to the spacecraft, the command and sequence must be reviewed and verified by various teams. In most cases, this process requires collecting the command data, reviewing the data during a command conference meeting, and providing physical signatures by designated members of various teams to signify approval of the data. If commands or sequences are disapproved for some reason, the whole process must be restarted. Recording data and decision history is important for traceability reasons. Given that many steps and people are involved in this process, an easily accessible software tool for managing the process is vital to reducing human error which could result in uplinking incorrect data to the spacecraft. An uplink summary generator called ULSGEN was developed to assist this uplink content approval process. ULSGEN generates a web-based summary of uplink file content and provides an online review process. Spacecraft operations personnel view this summary as a final check before actual radiation of the uplink data. .

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myronakis, M; Cai, W; Dhou, S

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing,more » our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc.« less

  10. Hydrocarbon generation and expulsion in shale Vs. carbonate source rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leythaeuser, D.; Krooss, B.; Hillebrand, T.

    1993-09-01

    For a number of commercially important source rocks of shale and of carbonate lithologies, which were studied by geochemical, microscopical, and petrophysical techniques, a systematic comparison was made of the processes on how hydrocarbon generation and migration proceed with maturity progress. In this way, several fundamental differences between both types of source rocks were recognized, which are related to differences of sedimentary facies and, more importantly, of diagenetic processes responsible for lithification. Whereas siliciclastic sediments lithify mainly by mechanical compaction, carbonate muds get converted into lithified rocks predominantly by chemical diagenesis. With respect to their role as hydrocarbon source rocks,more » pressure solution processes appear to be key elements. During modest burial stages and prior to the onset of hydrocarbon generation reactions by thermal decomposition of kerogen, pressure solution seams and stylolites. These offer favorable conditions for hydrocarbon generation and expulsion-a three-dimensional kerogen network and high organic-matter concentrations that lead to effective saturation of the internal pore fluid system once hydrocarbon generation has started. As a consequence, within such zones pore fluids get overpressured, leading ultimately to fracturing. Petroleum expulsion can then occur at high efficiencies and in an explosive fashion, whereby clay minerals and residual kerogen particles are squeezed in a toothpaste-like fashion into newly created fractures. In order to elucidate several of the above outlined steps of hydrocarbon generation and migration processes, open-system hydrous pyrolysis experiments were performed. This approach permits one to monitor changes in yield and composition of hydrocarbon products generated and expelled at 10[degrees]C temperature increments over temperature range, which mimics in the laboratory the conditions prevailing in nature over the entire liquid window interval.« less

  11. Ecological extension of the theory of evolution by natural selection from a perspective of Western and Eastern holistic philosophy.

    PubMed

    Nakajima, Toshiyuki

    2017-12-01

    Evolution by natural selection requires the following conditions: (1) a particular selective environment; (2) variation of traits in the population; (3) differential survival/reproduction among the types of organisms; and (4) heritable traits. However, the traditional (standard) model does not clearly explain how and why these conditions are generated or determined. What generates a selective environment? What generates new types? How does a certain type replace, or coexist with, others? In this paper, based on the holistic philosophy of Western and Eastern traditions, I focus on the ecosystem as a higher-level system and generator of conditions that induce the evolution of component populations; I also aim to identify the ecosystem processes that generate those conditions. In particular, I employ what I call the scientific principle of dependent-arising (SDA), which is tailored for scientific use and is based on Buddhism principle called "pratītya-samutpāda" in Sanskrit. The SDA principle asserts that there exists a higher-level system, or entity, which includes a focal process of a system as a part within it; this determines or generates the conditions required for the focal process to work in a particular way. I conclude that the ecosystem generates (1) selective environments for component species through ecosystem dynamics; (2) new genetic types through lateral gene transfer, hybridization, and symbiogenesis among the component species of the ecosystem; (3) mechanistic processes of replacement of an old type with a new one. The results of this study indicate that the ecological extension of the theoretical model of adaptive evolution is required for better understanding of adaptive evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. GALEN: a third generation terminology tool to support a multipurpose national coding system for surgical procedures.

    PubMed

    Trombert-Paviot, B; Rodrigues, J M; Rogers, J E; Baud, R; van der Haring, E; Rassinoux, A M; Abrial, V; Clavel, L; Idir, H

    2000-09-01

    Generalised architecture for languages, encyclopedia and nomenclatures in medicine (GALEN) has developed a new generation of terminology tools based on a language independent model describing the semantics and allowing computer processing and multiple reuses as well as natural language understanding systems applications to facilitate the sharing and maintaining of consistent medical knowledge. During the European Union 4 Th. framework program project GALEN-IN-USE and later on within two contracts with the national health authorities we applied the modelling and the tools to the development of a new multipurpose coding system for surgical procedures named CCAM in a minority language country, France. On one hand, we contributed to a language independent knowledge repository and multilingual semantic dictionaries for multicultural Europe. On the other hand, we support the traditional process for creating a new coding system in medicine which is very much labour consuming by artificial intelligence tools using a medically oriented recursive ontology and natural language processing. We used an integrated software named CLAW (for classification workbench) to process French professional medical language rubrics produced by the national colleges of surgeons domain experts into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation, on one hand, we generate with the LNAT natural language generator controlled French natural language to support the finalization of the linguistic labels (first generation) in relation with the meanings of the conceptual system structure. On the other hand, the Claw classification manager proves to be very powerful to retrieve the initial domain experts rubrics list with different categories of concepts (second generation) within a semantic structured representation (third generation) bridge to the electronic patient record detailed terminology.

  13. Task-specific Aspects of Goal-directed Word Generation Identified via Simultaneous EEG-fMRI.

    PubMed

    Shapira-Lichter, Irit; Klovatch, Ilana; Nathan, Dana; Oren, Noga; Hendler, Talma

    2016-09-01

    Generating words according to a given rule relies on retrieval-related search and postretrieval control processes. Using fMRI, we recently characterized neural patterns of word generation in response to episodic, semantic, and phonemic cues by comparing free recall of wordlists, category fluency, and letter fluency [Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences, U.S.A., 110, 4950-4955, 2013]. Distinct selectivity for each condition was evident, representing discrete aspects of word generation-related memory retrieval. For example, the precuneus, implicated in processing spatiotemporal information, emerged as a key contributor to the episodic condition, which uniquely requires this information. Gamma band is known to play a central role in memory, and increased gamma power has been observed before word generation. Yet, gamma modulation in response to task demands has not been investigated. To capture the task-specific modulation of gamma power, we analyzed the EEG data recorded simultaneously with the aforementioned fMRI, focusing on the activity locked to and immediately preceding word articulation. Transient increases in gamma power were identified in a parietal electrode immediately before episodic and semantic word generation, however, within a different time frame relative to articulation. Gamma increases were followed by an alpha-theta decrease in the episodic condition, a gamma decrease in the semantic condition. This pattern indicates a task-specific modulation of the gamma signal corresponding to the specific demands of each word generation task. The gamma power and fMRI signal from the precuneus were correlated during the episodic condition, implying the existence of a common cognitive construct uniquely required for this task, possibly the reactivation or processing of spatiotemporal information.

  14. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  15. Geography and glocal scale - generational conversion/Geografia i skala glokalna - przemiana generacyjna

    NASA Astrophysics Data System (ADS)

    Pirveli, Marika; Lewczuk, Barbara

    2013-12-01

    The proposed text presents a conceptual change in the scope of some of the key concepts in the light of the two dictionaries (Britannica and Human Geography Dictionary) and Anglo-Saxon publications about the future of geography. Then, it combines the concept of references to the ongoing interdisciplinary studies included in the structure of the University of the Second and Third Generation. Applications built this way are of two types: (1) referring to a fundamental change in the process within the human perception of the environment for generations X and Y, and (2) referring to the process of glocalization, glocal scale and premises of the University of the Third Generation (3GU)

  16. [Vitamin K3-induced activation of molecular oxygen in glioma cells].

    PubMed

    Krylova, N G; Kulagova, T A; Semenkova, G N; Cherenkevich, S N

    2009-01-01

    It has been shown by the method of fluorescent analysis that the rate of hydrogen peroxide generation in human U251 glioma cells under the effect of lipophilic (menadione) or hydrophilic (vikasol) analogues of vitamin K3 was different. Analyzing experimental data we can conclude that menadione underwent one- and two-electron reduction by intracellular reductases in glioma cells. Reduced forms of menadione interact with molecular oxygen leading to reactive oxygen species (ROS) generation. The theoretical model of ROS generation including two competitive processes of one- and two-electron reduction of menadione has been proposed. Rate constants of ROS generation mediated by one-electron reduction process have been estimated.

  17. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less

  18. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type.

    PubMed

    Keane, Michael; Stone, Samuel; Chen, Bean; Slaven, James; Schwegler-Berry, Diane; Antonini, James

    2009-02-01

    Occupational exposure to welding fumes is a known health hazard. To isolate elements in stainless steel welding fumes with high potential for adverse health outcomes, fumes were generated using a robotic gas metal arc system, using four shield gases of varying oxygen content. The objective was to measure Cr(VI) concentrations in a broad spectrum of gas metal arc welding processes, and identify processes of exceptionally high or low Cr(VI) content. The gases used were 95% Ar/5% O(2), 98% Ar/2% O(2), 95% Ar/5%CO(2), and 75% He/25% Ar. The welder was operated in axial spray mode (Ar/O(2), Ar/CO(2)), short-circuit (SC) mode (Ar/CO(2) low voltage and He/Ar), and pulsed axial-spray mode (98% Ar/2% O(2)). Results indicate large differences in Cr(VI) in the fumes, with Ar/O(2) (Pulsed)>Ar/O(2)>Ar/CO(2)>Ar/CO(2) (SC)>He/Ar; values were 3000+/-300, 2800+/-85, 2600+/-120, 1400+/-190, and 320+/-290 ppm respectively (means +/- standard errors for 2 runs and 3 replicates per run). Respective rates of Cr(VI) generation were 1.5, 3.2, 4.4, 1.3, and 0.46 microg/min; generation rates were also calculated in terms of microg Cr(VI) per metre of wire used. The generation rates of Cr(VI) increased with increasing O(3) concentrations. Particle size measurements indicated similar distributions, but somewhat higher >0.6 microm fractions for the short-circuit mode samples. Fumes were also sampled into 2 selected size ranges, a microspatter fraction (>or=0.6 microm) and a fine (<0.6 microm) fraction; analysis indicated that Cr(VI) is primarily associated with particles <0.6 microm. The conclusion of the study is that Cr(VI) concentrations vary significantly with welding type and shield gas type, and this presents an opportunity to tailor welding practices to lessen Cr(VI) exposures in workplaces by selecting low Cr(VI)-generating processes. Short-circuit processes generated less Cr(VI) than axial-spray methods, and inert gas shielding gave lower Cr(VI) content than shielding with active gases. A short circuit He/Ar shielded process and a pulsed axial spray Ar/O(2) process were both identified as having substantially lower Cr(VI) generation rates per unit of wire used relative to the other processes studied.

  19. Next Generation Cloud-based Science Data Systems and Their Implications on Data and Software Stewardship, Preservation, and Provenance

    NASA Astrophysics Data System (ADS)

    Hua, H.; Manipon, G.; Starch, M.

    2017-12-01

    NASA's upcoming missions are expected to be generating data volumes at least an order of magnitude larger than current missions. A significant increase in data processing, data rates, data volumes, and long-term data archive capabilities are needed. Consequently, new challenges are emerging that impact traditional data and software management approaches. At large-scales, next generation science data systems are exploring the move onto cloud computing paradigms to support these increased needs. New implications such as costs, data movement, collocation of data systems & archives, and moving processing closer to the data, may result in changes to the stewardship, preservation, and provenance of science data and software. With more science data systems being on-boarding onto cloud computing facilities, we can expect more Earth science data records to be both generated and kept in the cloud. But at large scales, the cost of processing and storing global data may impact architectural and system designs. Data systems will trade the cost of keeping data in the cloud with the data life-cycle approaches of moving "colder" data back to traditional on-premise facilities. How will this impact data citation and processing software stewardship? What are the impacts of cloud-based on-demand processing and its affect on reproducibility and provenance. Similarly, with more science processing software being moved onto cloud, virtual machines, and container based approaches, more opportunities arise for improved stewardship and preservation. But will the science community trust data reprocessed years or decades later? We will also explore emerging questions of the stewardship of the science data system software that is generating the science data records both during and after the life of mission.

  20. Analysis of quality raw data of second generation sequencers with Quality Assessment Software.

    PubMed

    Ramos, Rommel Tj; Carneiro, Adriana R; Baumbach, Jan; Azevedo, Vasco; Schneider, Maria Pc; Silva, Artur

    2011-04-18

    Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated. We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads. Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.

  1. Integration of health management and support systems is key to achieving cost reduction and operational concept goals of the 2nd generation reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Koon, Phillip L.; Greene, Scott

    2002-07-01

    Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.

  2. 40 CFR 761.185 - Certification program and retention of records by importers and persons generating PCBs in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., if no processes or imports require reports at the time, within 90 days of having processes or imports... information: (i) Theoretical analysis. Manufacturers records must include: the reaction or reactions believed... records must include: the reaction or reactions believed to be generating PCBs and the levels of PCBs...

  3. 40 CFR 761.185 - Certification program and retention of records by importers and persons generating PCBs in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., if no processes or imports require reports at the time, within 90 days of having processes or imports... information: (i) Theoretical analysis. Manufacturers records must include: the reaction or reactions believed... records must include: the reaction or reactions believed to be generating PCBs and the levels of PCBs...

  4. 40 CFR 761.185 - Certification program and retention of records by importers and persons generating PCBs in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., if no processes or imports require reports at the time, within 90 days of having processes or imports... information: (i) Theoretical analysis. Manufacturers records must include: the reaction or reactions believed... records must include: the reaction or reactions believed to be generating PCBs and the levels of PCBs...

  5. 40 CFR 761.185 - Certification program and retention of records by importers and persons generating PCBs in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., if no processes or imports require reports at the time, within 90 days of having processes or imports... information: (i) Theoretical analysis. Manufacturers records must include: the reaction or reactions believed... records must include: the reaction or reactions believed to be generating PCBs and the levels of PCBs...

  6. Integrating Cultural Perspectives of First Generation Latino Students and Families into the College Admissions Process

    ERIC Educational Resources Information Center

    Rosso, Ryan R.

    2011-01-01

    First generation college-bound Latino students and their families are placed at a disadvantage in the college admissions process for a variety of reasons. Their cultural perspectives in relation to education and family combined with the increasingly widening gap between the working class and professional middle class has left many Latino families…

  7. South Carolina | Midmarket Solar Policies in the United States | Solar

    Science.gov Websites

    voluntary renewable energy goal of 2% distributed energy in 2021. Carve-out: 0.25% of total generation from energy portfolio standard, but a goal for distributed generation by 2021. The Distributed Energy Resource Fast Track Process Study Process System size limit: Not specified; South Carolina Public Service

  8. Dynamic Processes in Nanostructured Crystals Under Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Kvasov, N. T.; Shimanski, V. I.; Safronov, I. V.; Komarov, N. D.

    2018-02-01

    The paper presents detailed investigations of dynamic processes occurring in nanostructured Si(Fe) material under the radiation exposure, namely: heating, thermoelastic stress generation, elastic disturbances of the surrounding medium similar to weak shock waves, and dislocation generation. The performance calculations are proposed for elastic properties of the nanostructured material with a glance to size effects in nanoparticles.

  9. Past-Tense Generation from Form versus Meaning: Behavioural Data and Simulation Evidence

    ERIC Educational Resources Information Center

    Woollams, Anna M.; Joanisse, Marc; Patterson, Karalyn

    2009-01-01

    The standard task used to study inflectional processing of verbs involves presentation of the stem form from which the participant is asked to generate the past tense. This task reveals a processing disadvantage for irregular relative to regular English verbs, more pronounced for lower-frequency items. Dual- and single-mechanism theories of…

  10. Generating and Using Examples in the Proving Process

    ERIC Educational Resources Information Center

    Sandefur, J.; Mason, J.; Stylianides, G. J.; Watson, A.

    2013-01-01

    We report on our analysis of data from a dataset of 26 videotapes of university students working in groups of 2 and 3 on different proving problems. Our aim is to understand the role of example generation in the proving process, focusing on deliberate changes in representation and symbol manipulation. We suggest and illustrate four aspects of…

  11. Dielectric-Particle Injector For Processing Of Materials

    NASA Technical Reports Server (NTRS)

    Leung, Philip L.; Gabriel, Stephen B.

    1992-01-01

    Device generates electrically charged particles of solid, or droplets of liquid, fabricated from dielectric material and projects them electrostatically, possibly injecting them into electrostatic-levitation chamber for containerless processing. Dielectric-particle or -droplet injector charges dielectric particles or droplets on zinc plate with photo-electrons generated by ultraviolet illumination, then ejects charged particles or droplets electrostatically from plate.

  12. Chemistry for Kids: Generating Carbon Dioxide in Elementary School Chemistry and Using a Computer To Write about It.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; Yoshida, Sarah

    This material describes an activity using vinegar and baking soda to generate carbon dioxide, and writing a report using the Appleworks word processing program for grades 3 to 8 students. Time requirement, relevant process skills, vocabulary, mathematics skills, computer skills, and materials are listed. Activity procedures including class…

  13. 40 CFR 761.185 - Certification program and retention of records by importers and persons generating PCBs in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturing processes in which PCBs are generated when the PCB level in products leaving any manufacturing... imported products when the PCB concentration of products being imported is greater than 2 µg/g for any... process waste disposal. (2) Whether determinations of compliance are based on actual monitoring of PCB...

  14. Using Blogs to Share Learner-Generated Content

    ERIC Educational Resources Information Center

    Dowling, Sean

    2013-01-01

    Learner-generated content (LGC) has always been produced as part of the learning process; however, it often generally goes no further than the teacher. Research has shown that by exposing LGC to a wider audience, students are motivated to produce work of a higher quality. The process of publishing and sharing LGC also helps students develop key…

  15. 78 FR 21907 - Energy Answers Arecibo, LLC: Notice of Intent To Prepare a Supplemental Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... response to this Notice will inform RUS decision-making in its Section 106 review process. Any party... facility would process approximately 2100 tons of municipal waste per day and generate a net capacity of 77 megawatts (MW). The Puerto Rico Electric Power Authority will purchase power generated from the facility...

  16. Drop impact on flowing liquid films: asymmetric splashing

    NASA Astrophysics Data System (ADS)

    Ismail, Renad; Che, Zhizhao; Rotkovitz, Lauren; Adebayo, Idris; Matar, Omar

    2015-11-01

    The splashing of droplets on flowing liquid films is studied experimentally using high-speed photography. The flowing liquid films are generated on an inclined substrate. The flow rate of the liquid film, the inclination angle, and the droplet speed are controlled and their effects on the splashing process studied. Due to the flow in the liquid film and the oblique impact direction, the splashing process is asymmetric. The propagation of the asymmetric crown and the generation of secondary droplets on the rim of the crown are analysed through image processing. The results show that the flow in the liquid films significantly affects the propagation of the liquid crown and the generation of secondary droplets. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  17. New generation of meteorology cameras

    NASA Astrophysics Data System (ADS)

    Janout, Petr; Blažek, Martin; Páta, Petr

    2017-12-01

    A new generation of the WILLIAM (WIde-field aLL-sky Image Analyzing Monitoring system) camera includes new features such as monitoring of rain and storm clouds during the day observation. Development of the new generation of weather monitoring cameras responds to the demand for monitoring of sudden weather changes. However, new WILLIAM cameras are ready to process acquired image data immediately, release warning against sudden torrential rains, and send it to user's cell phone and email. Actual weather conditions are determined from image data, and results of image processing are complemented by data from sensors of temperature, humidity, and atmospheric pressure. In this paper, we present the architecture, image data processing algorithms of mentioned monitoring camera and spatially-variant model of imaging system aberrations based on Zernike polynomials.

  18. Testing Strategies for Model-Based Development

    NASA Technical Reports Server (NTRS)

    Heimdahl, Mats P. E.; Whalen, Mike; Rajan, Ajitha; Miller, Steven P.

    2006-01-01

    This report presents an approach for testing artifacts generated in a model-based development process. This approach divides the traditional testing process into two parts: requirements-based testing (validation testing) which determines whether the model implements the high-level requirements and model-based testing (conformance testing) which determines whether the code generated from a model is behaviorally equivalent to the model. The goals of the two processes differ significantly and this report explores suitable testing metrics and automation strategies for each. To support requirements-based testing, we define novel objective requirements coverage metrics similar to existing specification and code coverage metrics. For model-based testing, we briefly describe automation strategies and examine the fault-finding capability of different structural coverage metrics using tests automatically generated from the model.

  19. Pomeron calculus in zero transverse dimensions: Summation of pomeron loops and generating functional for multiparticle production processes

    NASA Astrophysics Data System (ADS)

    Levin, E.; Prygarin, A.

    2008-02-01

    In this paper we address two problems in pomeron calculus in zero transverse dimensions: the summation of the pomeron loops and the calculation of the processes of multiparticle generation. We introduce a new generating functional for these processes and obtain the evolution equation for it. We argue that in the kinematic range given by 1 ≪ln(1/α_{text{S}}2) ≪α_{text{S}} Y ≪1/α_{text{S}}, we can reduce the pomeron calculus to the exchange of non-interacting pomerons with the renormalized amplitude of their interaction with the target. Therefore, the summation of the pomeron loops can be performed using the Mueller Patel Salam Iancu approximation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damtie, Fikeraddis A., E-mail: Fikeraddis.Damtie@teorfys.lu.se; Wacker, Andreas, E-mail: Andreas.Wacker@fysik.lu.se; Karki, Khadga J., E-mail: Khadga.Karki@chemphys.lu.se

    Multiple exciton generation (MEG) is a process in which more than one electron hole pair is generated per absorbed photon. It allows us to increase the efficiency of solar energy harvesting. Experimental studies have shown the multiple exciton generation yield of 1.2 in isolated colloidal quantum dots. However real photoelectric devices require the extraction of electron hole pairs to electric contacts. We provide a systematic study of the corresponding quantum coherent processes including extraction and injection and show that a proper design of extraction and injection rates enhances the yield significantly up to values around 1.6.

  1. A distributed pipeline for DIDSON data processing

    USGS Publications Warehouse

    Li, Liling; Danner, Tyler; Eickholt, Jesse; McCann, Erin L.; Pangle, Kevin; Johnson, Nicholas

    2018-01-01

    Technological advances in the field of ecology allow data on ecological systems to be collected at high resolution, both temporally and spatially. Devices such as Dual-frequency Identification Sonar (DIDSON) can be deployed in aquatic environments for extended periods and easily generate several terabytes of underwater surveillance data which may need to be processed multiple times. Due to the large amount of data generated and need for flexibility in processing, a distributed pipeline was constructed for DIDSON data making use of the Hadoop ecosystem. The pipeline is capable of ingesting raw DIDSON data, transforming the acoustic data to images, filtering the images, detecting and extracting motion, and generating feature data for machine learning and classification. All of the tasks in the pipeline can be run in parallel and the framework allows for custom processing. Applications of the pipeline include monitoring migration times, determining the presence of a particular species, estimating population size and other fishery management tasks.

  2. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  3. Sandia MEMS Visualization Tools v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarberry, Victor; Jorgensen, Craig R.; Young, Andrew I.

    This is a revision to the Sandia MEMS Visualization Tools. It replaces all previous versions. New features in this version: Support for AutoCAD 2014 and 2015 . This CD contains an integrated set of electronic files that: a) Provides a 2D Process Visualizer that generates cross-section images of devices constructed using the SUMMiT V fabrication process. b) Provides a 3D Visualizer that generates 3D images of devices constructed using the SUMMiT V fabrication process. c) Provides a MEMS 3D Model generator that creates 3D solid models of devices constructed using the SUMMiT V fabrication process. While there exists some filesmore » on the CD that are used in conjunction with software package AutoCAD , these files are not intended for use independent of the CD. Note that the customer must purchase his/her own copy of AutoCAD to use with these files.« less

  4. On storm movement and its applications

    NASA Astrophysics Data System (ADS)

    Niemczynowicz, Janusz

    Rainfall-runoff models applicable for design and analysis of sewage systems in urban areas are further developed in order to represent better different physical processes going on on an urban catchment. However, one important part of the modelling procedure, the generation of the rainfall input is still a weak point. The main problem is lack of adequate rainfall data which represent temporal and spatial variations of the natural rainfall process. Storm movement is a natural phenomenon which influences urban runoff. However, the rainfall movement and its influence on runoff generation process is not represented in presently available urban runoff simulation models. Physical description of the rainfall movement and its parameters is given based on detailed measurements performed on twelve gauges in Lund, Sweden. The paper discusses the significance of the rainfall movement on the runoff generation process and gives suggestions how the rainfall movement parameters may be used in runoff modelling.

  5. A second generation 50 Mbps VLSI level zero processing system prototype

    NASA Technical Reports Server (NTRS)

    Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby

    1994-01-01

    Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.

  6. Fashion garment manufacturing - FGM and cyclability theory

    NASA Astrophysics Data System (ADS)

    Mendes, F. D.; Dos Santos, M. C. L.

    2017-10-01

    This article, derived from an ongoing research, presents the possibilities of reducing the inappropriate disposal of textile residues generated by the fabric cutting sector of the Fashion Garment Manufacturing (FGM). The raw material used is very varied, resulting in a large number of productive processes. FGM produces clothing that has as its main features a short life cycle, a high rate of diversification and differentiation, and small production batches, resulting in few similar parts. The production process is differentiated according to the characteristics of the fabric and the look of the garment. During the production process, at least 10% of textile waste is generated during the cutting process, which is constantly discarded in an inadequate way. The Cyclability theory is researched aiming at the possibility of reduction in the generation of waste and elimination of inappropriate disposal. The case study presents the action research carried out in three small Brazilian companies to study the applicability of the Cyclability theory.

  7. Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking

    PubMed Central

    Heinonen, Jarmo; Numminen, Jussi; Hlushchuk, Yevhen; Antell, Henrik; Taatila, Vesa; Suomala, Jyrki

    2016-01-01

    Scientific findings have suggested a two-fold structure of the cognitive process. By using the heuristic thinking mode, people automatically process information that tends to be invariant across days, whereas by using the explicit thinking mode people explicitly process information that tends to be variant compared to typical previously learned information patterns. Previous studies on creativity found an association between creativity and the brain regions in the prefrontal cortex, the anterior cingulate cortex, the default mode network and the executive network. However, which neural networks contribute to the explicit mode of thinking during idea generation remains an open question. We employed an fMRI paradigm to examine which brain regions were activated when participants (n = 16) mentally generated alternative uses for everyday objects. Most previous creativity studies required participants to verbalize responses during idea generation, whereas in this study participants produced mental alternatives without verbalizing. This study found activation in the left anterior insula when contrasting idea generation and object identification. This finding suggests that the insula (part of the brain’s salience network) plays a role in facilitating both the central executive and default mode networks to activate idea generation. We also investigated closely the effect of the serial order of idea being generated on brain responses: The amplitude of fMRI responses correlated positively with the serial order of idea being generated in the anterior cingulate cortex, which is part of the central executive network. Positive correlation with the serial order was also observed in the regions typically assigned to the default mode network: the precuneus/cuneus, inferior parietal lobule and posterior cingulate cortex. These networks support the explicit mode of thinking and help the individual to convert conventional mental models to new ones. The serial order correlated negatively with the BOLD responses in the posterior presupplementary motor area, left premotor cortex, right cerebellum and left inferior frontal gyrus. This finding might imply that idea generation without a verbal processing demand reflecting lack of need for new object identification in idea generation events. The results of the study are consistent with recent creativity studies, which emphasize that the creativity process involves working memory capacity to spontaneously shift between different kinds of thinking modes according to the context. PMID:27627760

  8. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    NASA Astrophysics Data System (ADS)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  9. Early stage hot spot analysis through standard cell base random pattern generation

    NASA Astrophysics Data System (ADS)

    Jeon, Joong-Won; Song, Jaewan; Kim, Jeong-Lim; Park, Seongyul; Yang, Seung-Hune; Lee, Sooryong; Kang, Hokyu; Madkour, Kareem; ElManhawy, Wael; Lee, SeungJo; Kwan, Joe

    2017-04-01

    Due to limited availability of DRC clean patterns during the process and RET recipe development, OPC recipes are not tested with high pattern coverage. Various kinds of pattern can help OPC engineer to detect sensitive patterns to lithographic effects. Random pattern generation is needed to secure robust OPC recipe. However, simple random patterns without considering real product layout style can't cover patterning hotspot in production levels. It is not effective to use them for OPC optimization thus it is important to generate random patterns similar to real product patterns. This paper presents a strategy for generating random patterns based on design architecture information and preventing hotspot in early process development stage through a tool called Layout Schema Generator (LSG). Using LSG, we generate standard cell based on random patterns reflecting real design cell structure - fin pitch, gate pitch and cell height. The output standard cells from LSG are applied to an analysis methodology to assess their hotspot severity by assigning a score according to their optical image parameters - NILS, MEEF, %PV band and thus potential hotspots can be defined by determining their ranking. This flow is demonstrated on Samsung 7nm technology optimizing OPC recipe and early enough in the process avoiding using problematic patterns.

  10. Efficiency and economics of large scale hydrogen liquefaction. [for future generation aircraft requirements

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1975-01-01

    Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.

  11. Purification process for .sup.153Gd produced in natural europium targets

    DOEpatents

    Johnsen, Amanda M; Soderquist, Chuck Z; McNamara, Bruce K; Risher, Darrell R

    2013-04-23

    An alteration of the traditional zinc/zinc-amalgam reduction procedure which eliminates both the hazardous mercury and dangerous hydrogen gas generation. In order to avoid the presence of water and hydrated protons in the working solution, which can oxidize Eu.sup.2+ and cause hydrogen gas production, a process utilizing methanol as the process solvent is described. While methanol presents some flammability hazard in a radiological hot cell, it can be better managed and is less of a flammability hazard than hydrogen gas generation.

  12. A Novel Algorithm for the Generation of Distinct Kinematic Chain

    NASA Astrophysics Data System (ADS)

    Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao

    2016-07-01

    Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.

  13. A Novel Algorithm for the Generation of Distinct Kinematic Chain

    NASA Astrophysics Data System (ADS)

    Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao

    2018-06-01

    Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.

  14. Use of parallel computing in mass processing of laser data

    NASA Astrophysics Data System (ADS)

    Będkowski, J.; Bratuś, R.; Prochaska, M.; Rzonca, A.

    2015-12-01

    The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.

  15. Reducing shingle waste at a manufacturing facility: 1990 MNTAP summer intern report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menke, D.

    1990-12-31

    CertainTeed manufactures roofing shingles at it`s Shakopee, MN facility. Two process coating lines, and one assembly line, produce fifteen shingle types in fifteen different colors. The wastes generated by this process were the result of planned and unplanned variations in the continuous production process. Planned variations included changes in color, while felt breaks were common unplanned variations. Five options were identified that could reduce the amount of waste generated: Using a standard procedure for recovering from felt breaks, Creating a process cushion to maintain continuous production in the event of temporary shutdowns, An automated color change process, Manufacture of amore » new product from waste material, Minor process changes to reduce the frequency of breaks.« less

  16. Recovery of strontium activity from a strontium-82/rubidium-82 generator

    DOEpatents

    Taylor, Wayne A.; Phillips, Dennis R.; Sosnowski, Kenneth M.

    1999-10-12

    Strontium-82 is recovered from spent strontium-82/rubidium-82 generators to provide a source of strontium-82 for additional strontium-82/rubidium-82 generators. The process involves stripping of the strontium-82 from used strontium-82/rubidium-82 generators followed by purification of the strontium-82 material to remove additional metal contaminants to desired levels.

  17. Effective Training for Millennial Students

    ERIC Educational Resources Information Center

    Werth, Eric P.; Werth, Loredana

    2011-01-01

    A generational shift is occurring in training environments worldwide, a shift that promises to bring with it a dramatic and long-lasting impact. Just as years ago, those of the Baby Boomer generation passed the torch to Generation X, today the process is starting anew with Generation X and those who have come to be known as the Millennials.…

  18. A Statistical Method to Distinguish Functional Brain Networks

    PubMed Central

    Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.

    2017-01-01

    One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045

  19. A Statistical Method to Distinguish Functional Brain Networks.

    PubMed

    Fujita, André; Vidal, Maciel C; Takahashi, Daniel Y

    2017-01-01

    One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism ( p < 0.001).

  20. Exact and conceptual repetition dissociate conceptual memory tests: problems for transfer appropriate processing theory.

    PubMed

    McDermott, K B; Roediger, H L

    1996-03-01

    Three experiments examined whether a conceptual implicit memory test (specifically, category instance generation) would exhibit repetition effects similar to those found in free recall. The transfer appropriate processing account of dissociations among memory tests led us to predict that the tests would show parallel effects; this prediction was based upon the theory's assumption that conceptual tests will behave similarly as a function of various independent variables. In Experiment 1, conceptual repetition (i.e., following a target word [e.g., puzzles] with an associate [e.g., jigsaw]) did not enhance priming on the instance generation test relative to the condition of simply presenting the target word once, although this manipulation did affect free recall. In Experiment 2, conceptual repetition was achieved by following a picture with its corresponding word (or vice versa). In this case, there was an effect of conceptual repetition on free recall but no reliable effect on category instance generation or category cued recall. In addition, we obtained a picture superiority effect in free recall but not in category instance generation. In the third experiment, when the same study sequence was used as in Experiment 1, but with instructions that encouraged relational processing, priming on the category instance generation task was enhanced by conceptual repetition. Results demonstrate that conceptual memory tests can be dissociated and present problems for Roediger's (1990) transfer appropriate processing account of dissociations between explicit and implicit tests.

  1. Antibodies and Selection of Monoclonal Antibodies.

    PubMed

    Hanack, Katja; Messerschmidt, Katrin; Listek, Martin

    Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology.

  2. Neighborhood Deprivation during Early Childhood and Conduct Problems in Middle Childhood: Mediation by Aggressive Response Generation.

    PubMed

    Galán, Chardée A; Shaw, Daniel S; Dishion, Thomas J; Wilson, Melvin N

    2017-07-01

    The tremendous negative impact of conduct problems to the individual and society has provided the impetus for identifying risk factors, particularly in early childhood. Exposure to neighborhood deprivation in early childhood is a robust predictor of conduct problems in middle childhood. Efforts to identify and test mediating mechanisms by which neighborhood deprivation confers increased risk for behavioral problems have predominantly focused on peer relationships and community-level social processes. Less attention has been dedicated to potential cognitive mediators of this relationship, such as aggressive response generation, which refers to the tendency to generate aggressive solutions to ambiguous social stimuli with negative outcomes. In this study, we examined aggressive response generation, a salient component of social information processing, as a mediating process linking neighborhood deprivation to later conduct problems at age 10.5. Participants (N = 731; 50.5 % male) were drawn from a multisite randomized prevention trial that includes an ethnically diverse and low-income sample of male and female children and their primary caregivers followed prospectively from toddlerhood to middle childhood. Results indicated that aggressive response generation partially mediated the relationship between neighborhood deprivation and parent- and teacher-report of conduct problems, but not youth-report. Results suggest that the detrimental effects of neighborhood deprivation on youth adjustment may occur by altering the manner in which children process social information.

  3. Neighborhood Deprivation during Early Childhood and Conduct Problems in Middle Childhood: Mediation by Aggressive Response Generation

    PubMed Central

    Shaw, Daniel S.; Dishion, Thomas J.; Wilson, Melvin N.

    2018-01-01

    The tremendous negative impact of conduct problems to the individual and society has provided the impetus for identifying risk factors, particularly in early childhood. Exposure to neighborhood deprivation in early childhood is a robust predictor of conduct problems in middle childhood. Efforts to identify and test mediating mechanisms by which neighborhood deprivation confers increased risk for behavioral problems have predominantly focused on peer relationships and community-level social processes. Less attention has been dedicated to potential cognitive mediators of this relationship, such as aggressive response generation, which refers to the tendency to generate aggressive solutions to ambiguous social stimuli with negative outcomes. In this study, we examined aggressive response generation, a salient component of social information processing, as a mediating process linking neighborhood deprivation to later conduct problems at age 10.5. Participants (N = 731; 50.5 % male) were drawn from a multisite randomized prevention trial that includes an ethnically diverse and low-income sample of male and female children and their primary caregivers followed prospectively from toddlerhood to middle childhood. Results indicated that aggressive response generation partially mediated the relationship between neighborhood deprivation and parent- and teacher-report of conduct problems, but not youth-report. Results suggest that the detrimental effects of neighborhood deprivation on youth adjustment may occur by altering the manner in which children process social information. PMID:27696324

  4. Fabrication High Resolution Metrology Target By Step And Repeat Method

    NASA Astrophysics Data System (ADS)

    Dusa, Mircea

    1983-10-01

    Based on the photolithography process generally used to generate high resolution masks for semiconductor I.C.S, we found a very useful industrial application of laser technology.First, we have generated high resolution metrology targets which are used in industrial measurement laser interferometers as difra.ction gratings. Secondi we have generated these targets using step and repeat machine, with He-Ne laser interferometer controlled state, as a pattern generator, due to suitable computer programming.Actually, high resolution metrology target, means two chromium plates, one of which is called the" rule" the other one the "vernier". In Fig.1 we have the configuration of the rule and the vernier. The rule has a succesion of 3 μM lines generated as a difraction grating on a 4 x 4 inch chromium blank. The vernier has several exposed fields( areas) having 3 - 15 μm lines, fields placed on very precise position on the chromium blank surface. High degree of uniformity, tight CD tolerances, low defect density required by the targets, creates specialised problems during processing. Details of the processing, together with experimental results will be presented. Before we start to enter into process details, we have to point out that the dimensional requirements of the reticle target, are quite similar or perhaps more strict than LSI master casks. These requirements presented in Fig.2.

  5. A model of human decision making in multiple process monitoring situations

    NASA Technical Reports Server (NTRS)

    Greenstein, J. S.; Rouse, W. B.

    1982-01-01

    Human decision making in multiple process monitoring situations is considered. It is proposed that human decision making in many multiple process monitoring situations can be modeled in terms of the human's detection of process related events and his allocation of attention among processes once he feels event have occurred. A mathematical model of human event detection and attention allocation performance in multiple process monitoring situations is developed. An assumption made in developing the model is that, in attempting to detect events, the human generates estimates of the probabilities that events have occurred. An elementary pattern recognition technique, discriminant analysis, is used to model the human's generation of these probability estimates. The performance of the model is compared to that of four subjects in a multiple process monitoring situation requiring allocation of attention among processes.

  6. Using Certification to Promote Uptake of Real-World Evidence by Payers.

    PubMed

    Segal, Jodi B; Kallich, Joel D; Oppenheim, Emma R; Garrison, Louis P; Iqbal, Sheikh Usman; Kessler, Marla; Alexander, G Caleb

    2016-03-01

    Most randomized controlled trials are unable to generate information about a product's real-world effectiveness. Therefore, payers use real-world evidence (RWE) generated in observational studies to make decisions regarding formulary inclusion and coverage. While some payers generate their own RWE, most cautiously rely on RWE produced by manufacturers who have a strong financial interest in obtaining coverage for their products. We propose a process by which an independent body would certify observational studies as generating valid and unbiased estimates of the effectiveness of the intervention under consideration. This proposed process includes (a) establishing transparent criteria for assessment, (b) implementing a process for receipt and review of observational study protocols from interested parties, (c) reviewing the submitted protocol and requesting any necessary revisions, (d) reviewing the study results, (e) assigning a certification status to the submitted evidence, and (f) communicating the certification status to all who seek to use this evidence for decision making. Accrediting organizations such as the National Center for Quality Assurance and the Joint Commission have comparable goals of providing assurance about quality to those who look to their accreditation results. Although we recognize potential barriers, including a slowing of evidence generation and costs, we anticipate that processes can be streamlined, such as when familiar methods or familiar datasets are used. The financial backing for such activities remains uncertain, as does identification of organizations that might serve this certification function. We suggest that the rigor and transparency that will be required with such a process, and the unassailable evidence that it will produce, will be valuable to decision makers.

  7. Patterned mask inspection technology with Projection Electron Microscope (PEM) technique for 11 nm half-pitch (hp) generation EUV masks

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Yoshikawa, Shoji; Suematsu, Kenichi; Terao, Kenji

    2015-07-01

    High-sensitivity EUV mask pattern defect detection is one of the major issues in order to realize the device fabrication by using the EUV lithography. We have already designed a novel Projection Electron Microscope (PEM) optics that has been integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code), and which seems to be quite promising for 16 nm hp generation EUVL Patterned mask Inspection (PI). Defect inspection sensitivity was evaluated by capturing an electron image generated at the mask by focusing onto an image sensor. The progress of the novel PEM optics performance is not only about making an image sensor with higher resolution but also about doing a better image processing to enhance the defect signal. In this paper, we describe the experimental results of EUV patterned mask inspection using the above-mentioned system. The performance of the system is measured in terms of defect detectability for 11 nm hp generation EUV mask. To improve the inspection throughput for 11 nm hp generation defect detection, it would require a data processing rate of greater than 1.5 Giga- Pixel-Per-Second (GPPS) that would realize less than eight hours of inspection time including the step-and-scan motion associated with the process. The aims of the development program are to attain a higher throughput, and enhance the defect detection sensitivity by using an adequate pixel size with sophisticated image processing resulting in a higher processing rate.

  8. 'Best practice' development and transfer in the NHS: the importance of process as well as product knowledge.

    PubMed

    Newell, Sue; Edelman, Linda; Scarbrough, Harry; Swan, Jacky; Bresnen, Mike

    2003-02-01

    A core prescription from the knowledge management movement is that the successful management of organizational knowledge will prevent firms from 'reinventing the wheel', in particular through the transfer of 'best practices'. Our findings challenge this logic. They suggest instead that knowledge is emergent and enacted in practice, and that normally those involved in a given practice have only a partial understanding of the overall practice. Generating knowledge about current practice is therefore a precursor to changing that practice. In this sense, knowledge transfer does not occur independently of or in sequence to knowledge generation, but instead the process of knowledge generation and its transfer are inexorably intertwined. Thus, rather than transferring 'product' knowledge about the new 'best practice' per se, our analysis suggests that it is more useful to transfer 'process' knowledge about effective ways to generate the knowledge of existing practice, which is the essential starting point for attempts to change that practice.

  9. Effect of fat content on aroma generation during processing of dry fermented sausages.

    PubMed

    Olivares, Alicia; Navarro, José Luis; Flores, Mónica

    2011-03-01

    Dry fermented sausages with different fat contents were produced (10%, 20% and 30%). The effect of fat content and ripening time on sensory characteristics, lipolysis, lipid oxidation and volatile compounds generation was studied. Also, the key aroma components were identified using gas chromatography (GC) and olfactometry. High fat sausages showed the highest lipolysis and lipid oxidation, determined by free fatty acid content and thiobarbituric acid reactive substances (TBARS), respectively. A total of 95 volatile compounds were identified using SPME, GC and mass spectrometry (MS). Fat reduction decreased the generation of lipid derived volatile compounds during processing while those generated from bacterial metabolism increased, although only at the first stages of processing. The consumers preference in aroma and overall quality of high and medium fat sausages was related to the aroma compounds hexanal, 2-nonenal, 2,4-nonadienal, ethyl butanoate and 1-octen-3-ol which contributed green, medicinal, tallowy, fruity and mushroom notes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  10. The tale of hearts and reason: the influence of mood on decision making.

    PubMed

    Laborde, Sylvain; Raab, Markus

    2013-08-01

    In decision-making research, one important aspect of real-life decisions has so far been neglected: the mood of the decision maker when generating options. The authors tested the use of the take-the-first (TTF) heuristic and extended the TTF model to understand how mood influences the option-generation process of individuals in two studies, the first using a between-subjects design (30 nonexperts, 30 near-experts, and 30 experts) and the second conceptually replicating the first using a within-subject design (30 nonexperts). Participants took part in an experimental option-generation task, with 31 three-dimensional videos of choices in team handball. Three moods were elicited: positive, neutral, and negative. The findings (a) replicate previous results concerning TTF and (b) show that the option-generation process was associated with the physiological component of mood, supporting the neurovisceral integration model. The extension of TTF to processing emotional factors is an important step forward in explaining fast choices in real-life situations.

  11. Reduce on the Cost of Photovoltaic Power Generation for Polycrystalline Silicon Solar Cells by Double Printing of Ag/Cu Front Contact Layer

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Zhou; Chen, Jianlin; Liao, Lida; Chen, Jian; Li, Cong; Li, Wei

    2018-06-01

    With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.

  12. Programming Native CRISPR Arrays for the Generation of Targeted Immunity.

    PubMed

    Hynes, Alexander P; Labrie, Simon J; Moineau, Sylvain

    2016-05-03

    The adaptive immune system of prokaryotes, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes), results in specific cleavage of invading nucleic acid sequences recognized by the cell's "memory" of past encounters. Here, we exploited the properties of native CRISPR-Cas systems to program the natural "memorization" process, efficiently generating immunity not only to a bacteriophage or plasmid but to any specifically chosen DNA sequence. CRISPR-Cas systems have entered the public consciousness as genome editing tools due to their readily programmable nature. In industrial settings, natural CRISPR-Cas immunity is already exploited to generate strains resistant to potentially disruptive viruses. However, the natural process by which bacteria acquire new target specificities (adaptation) is difficult to study and manipulate. The target against which immunity is conferred is selected stochastically. By biasing the immunization process, we offer a means to generate customized immunity, as well as provide a new tool to study adaptation. Copyright © 2016 Hynes et al.

  13. Stochastic modeling of the hypothalamic pulse generator activity.

    PubMed

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  14. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.

    PubMed

    Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju

    2018-04-25

    Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.

  15. Unstructured Grids for Sonic Boom Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Nayani, Sudheer N.

    2015-01-01

    An evaluation of two methods for improving the process for generating unstructured CFD grids for sonic boom analysis and design has been conducted. The process involves two steps: the generation of an inner core grid using a conventional unstructured grid generator such as VGRID, followed by the extrusion of a sheared and stretched collar grid through the outer boundary of the core grid. The first method evaluated, known as COB, automatically creates a cylindrical outer boundary definition for use in VGRID that makes the extrusion process more robust. The second method, BG, generates the collar grid by extrusion in a very efficient manner. Parametric studies have been carried out and new options evaluated for each of these codes with the goal of establishing guidelines for best practices for maintaining boom signature accuracy with as small a grid as possible. In addition, a preliminary investigation examining the use of the CDISC design method for reducing sonic boom utilizing these grids was conducted, with initial results confirming the feasibility of a new remote design approach.

  16. Deduction Electrified: ERPs Elicited by the Processing of Words in Conditional Arguments

    ERIC Educational Resources Information Center

    Bonnefond, Mathilde; Van der Henst, Jean-Baptiste

    2013-01-01

    This study investigates the ERP components associated with the processing of words that are critical to generating and rejecting deductive conditional Modus Ponens arguments ("If P then Q; P//"Therefore, "Q"). The generation of a logical inference is investigated by placing a verb in the minor premise that matches the one used in the antecedent of…

  17. Inhibitory Control as a Core Process of Creative Problem Solving and Idea Generation from Childhood to Adulthood

    ERIC Educational Resources Information Center

    Cassotti, Mathieu; Agogué, Marine; Camarda, Anaëlle; Houdé, Olivier; Borst, Grégoire

    2016-01-01

    Developmental cognitive neuroscience studies tend to show that the prefrontal brain regions (known to be involved in inhibitory control) are activated during the generation of creative ideas. In the present article, we discuss how a dual-process model of creativity--much like the ones proposed to account for decision making and reasoning--could…

  18. Multi-Sensor Data Fusion Project

    DTIC Science & Technology

    2000-02-28

    seismic network by detecting T phases generated by underground events ( generally earthquakes ) and associating these phases to seismic events. The...between underwater explosions (H), underground sources, mostly earthquake - generated (7), and noise detections (N). The phases classified as H are the only...processing for infrasound sensors is most similar to seismic array processing with the exception that the detections are based on a more sophisticated

  19. Entering the Era of Third Generation Services: A Comparative Study of Reforms in Social and Health Care Services

    ERIC Educational Resources Information Center

    Laitinen, Ilpo; Stenvall, Jari

    2016-01-01

    This article discusses what kinds of organisational and change processes take place when shifting to customer-oriented service concept, here called "third generation services". Our interest lies in the learning process that produces the development of services in cities and regions in new ways and how to develop services in practice so…

  20. The Development of Close Relationships in Japan and the United States: Paths of Symbiotic Harmony and Generative Tension.

    ERIC Educational Resources Information Center

    Rothbaum, Fred; Pott, Martha; Azuma, Hiroshi; Miyake, Kazuo; Weisz, John

    2000-01-01

    Compares paths of development in Japan (symbiotic harmony) and the United States (generative tension) of parent-child and adult mate relationships, challenging assumptions that certain processes are central in all relationships or that U.S. relationships are less valued or weaker than Japan's. Suggests need to investigate processes underlying, and…

  1. A Qualitative Exploration of First Generation College Students and the Use of Facebook in the College Choice Selection Process

    ERIC Educational Resources Information Center

    Coker, Cindy E.

    2015-01-01

    The purpose of this exploratory phenomenological narrative qualitative study was to investigate the influence of Facebook on first-generation college students' selection of a college framed within Hossler and Gallagher's (1987) college process model. The three questions which guided this research explored the influence of the social media website…

  2. Thermal Regulation of Heat Transfer Processes

    DTIC Science & Technology

    2014-10-02

    determine the contrasts of thermophysical properties of composites and thin films , and various approaches to regulate heat transport processes. In the...nanofluids, 2) thermal regulation of optical properties in thin film , and 3) thermal regulation of phase transition for efficient steam generation...stress generated during the crystals growth forces CNTs to contact with each other and form a conductive percolation network. Hence the composite

  3. The Use of Uas for Rapid 3d Mapping in Geomatics Education

    NASA Astrophysics Data System (ADS)

    Teo, Tee-Ann; Tian-Yuan Shih, Peter; Yu, Sz-Cheng; Tsai, Fuan

    2016-06-01

    With the development of technology, UAS is an advance technology to support rapid mapping for disaster response. The aim of this study is to develop educational modules for UAS data processing in rapid 3D mapping. The designed modules for this study are focused on UAV data processing from available freeware or trial software for education purpose. The key modules include orientation modelling, 3D point clouds generation, image georeferencing and visualization. The orientation modelling modules adopts VisualSFM to determine the projection matrix for each image station. Besides, the approximate ground control points are measured from OpenStreetMap for absolute orientation. The second module uses SURE and the orientation files from previous module for 3D point clouds generation. Then, the ground point selection and digital terrain model generation can be archived by LAStools. The third module stitches individual rectified images into a mosaic image using Microsoft ICE (Image Composite Editor). The last module visualizes and measures the generated dense point clouds in CloudCompare. These comprehensive UAS processing modules allow the students to gain the skills to process and deliver UAS photogrammetric products in rapid 3D mapping. Moreover, they can also apply the photogrammetric products for analysis in practice.

  4. The role of optimization in the next generation of computer-based design tools

    NASA Technical Reports Server (NTRS)

    Rogan, J. Edward

    1989-01-01

    There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.

  5. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    NASA Astrophysics Data System (ADS)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  6. A comparison of conscious and automatic memory processes for picture and word stimuli: a process dissociation analysis.

    PubMed

    McBride, Dawn M; Anne Dosher, Barbara

    2002-09-01

    Four experiments were conducted to evaluate explanations of picture superiority effects previously found for several tasks. In a process dissociation procedure (Jacoby, 1991) with word stem completion, picture fragment completion, and category production tasks, conscious and automatic memory processes were compared for studied pictures and words with an independent retrieval model and a generate-source model. The predictions of a transfer appropriate processing account of picture superiority were tested and validated in "process pure" latent measures of conscious and unconscious, or automatic and source, memory processes. Results from both model fits verified that pictures had a conceptual (conscious/source) processing advantage over words for all tasks. The effects of perceptual (automatic/word generation) compatibility depended on task type, with pictorial tasks favoring pictures and linguistic tasks favoring words. Results show support for an explanation of the picture superiority effect that involves an interaction of encoding and retrieval processes.

  7. Analysis of Hospital Processes with Process Mining Techniques.

    PubMed

    Orellana García, Arturo; Pérez Alfonso, Damián; Larrea Armenteros, Osvaldo Ulises

    2015-01-01

    Process mining allows for discovery, monitoring, and improving processes identified in information systems from their event logs. In hospital environments, process analysis has been a crucial factor for cost reduction, control and proper use of resources, better patient care, and achieving service excellence. This paper presents a new component for event logs generation in the Hospital Information System or HIS, developed at University of Informatics Sciences. The event logs obtained are used for analysis of hospital processes with process mining techniques. The proposed solution intends to achieve the generation of event logs in the system with high quality. The performed analyses allowed for redefining functions in the system and proposed proper flow of information. The study exposed the need to incorporate process mining techniques in hospital systems to analyze the processes execution. Moreover, we illustrate its application for making clinical and administrative decisions for the management of hospital activities.

  8. Experimental investigations on the effect of process parameters with the use of minimum quantity solid lubrication in turning

    NASA Astrophysics Data System (ADS)

    Makhesana, Mayur A.; Patel, K. M.; Mawandiya, B. K.

    2018-04-01

    Turning process is a very basic process in any field of mechanical application. During turning process, most of the energy is converted into heat because of the friction between work piece and tool. Heat generation can affect the surface quality of the work piece and tool life. To reduce the heat generation, Conventional Lubrication process is used in most of the industry. Minimum quantity lubrication has been an effective alternative to improve the performance of machining process. In this present work, effort has been made to study the effect of various process parameters on the surface roughness and power consumption during turning of EN8 steel material. Result revealed the effect of depth of cut and feed on the obtained surface roughness value. Further the effect of solid lubricant has been also studied and optimization of process parameters is also done for the turning process.

  9. Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density.

    PubMed

    Zhang, Can; Browne, Andrew; Divito, Jason R; Stevenson, Jesse A; Romano, Donna; Dong, Yuanlin; Xie, Zhongcong; Tanzi, Rudolph E

    2010-01-01

    Mounting evidence suggests that Alzheimer's disease (AD) is caused by the accumulation of the small peptide, amyloid-β (Aβ), a proteolytic cleavage product of amyloid-β protein precursor (AβPP). Aβ is generated through a serial cleavage of AβPP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. AβPP can also be processed by α-secretase, which cleaves AβPP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on AβPP processing and Aβ generation. Here we assessed the effects of cell density on AβPP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42: Aβ40. These results also indicate that cell density is a significant modulator of AβPP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g., novel drugs on AβPP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect AβPP processing and Aβ levels in the AD brain.

  10. An integrated software system for geometric correction of LANDSAT MSS imagery

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Esilva, A. J. F. M.; Camara-Neto, G.; Serra, P. R. M.; Desousa, R. C. M.; Mitsuo, Fernando Augusta, II

    1984-01-01

    A system for geometrically correcting LANDSAT MSS imagery includes all phases of processing, from receiving a raw computer compatible tape (CCT) to the generation of a corrected CCT (or UTM mosaic). The system comprises modules for: (1) control of the processing flow; (2) calculation of satellite ephemeris and attitude parameters, (3) generation of uncorrected files from raw CCT data; (4) creation, management and maintenance of a ground control point library; (5) determination of the image correction equations, using attitude and ephemeris parameters and existing ground control points; (6) generation of corrected LANDSAT file, using the equations determined beforehand; (7) union of LANDSAT scenes to produce and UTM mosaic; and (8) generation of output tape, in super-structure format.

  11. The next generation

    NASA Technical Reports Server (NTRS)

    Yudkin, Howard

    1988-01-01

    The next generation of computer systems are studied by examining the processes and methodologies. The present generation is ok for small projects, but not so good for large projects. They are not good for addressing the iterative nature of requirements, resolution, and implementation. They do not address complexity issues of requirements stabilization. They do not explicitly address reuse opportunities, and they do not help with people shortages. Therefore, there is a need to define and automate improved software engineering processes. Some help may be gained by reuse and prototyping, which are two sides of the same coin. Reuse library parts are used to generate good approximations to desired solutions, i.e., prototypes. And rapid prototype composition implies use of preexistent parts, i.e., reusable parts.

  12. Evaluating the Process of Generating a Clinical Trial Protocol

    PubMed Central

    Franciosi, Lui G.; Butterfield, Noam N.; MacLeod, Bernard A.

    2002-01-01

    The research protocol is the principal document in the conduct of a clinical trial. Its generation requires knowledge about the research problem, the potential experimental confounders, and the relevant Good Clinical Practices for conducting the trial. However, such information is not always available to authors during the writing process. A checklist of over 80 items has been developed to better understand the considerations made by authors in generating a protocol. It is based on the most cited requirements for designing and implementing the randomised controlled trial. Items are categorised according to the trial's research question, experimental design, statistics, ethics, and standard operating procedures. This quality assessment tool evaluates the extent that a generated protocol deviates from the best-planned clinical trial.

  13. Multi-processing control system for the SEL 840MP (MPCS/1) users guide. Volume 2: Operations guide

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The generation and operational use of the SEL 840MP multiprocessing control system (MPCS) are considered. System initialization, job task table generation, the MPCS command language, display library generation, and system error summary are reviewed.

  14. Generative Processes: Thick Drawing

    ERIC Educational Resources Information Center

    Wallick, Karl

    2012-01-01

    This article presents techniques and theories of generative drawing as a means for developing complex content in architecture design studios. Appending the word "generative" to drawing adds specificity to the most common representation tool and clarifies that such drawings are not singularly about communication or documentation but are…

  15. Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.

  16. Form--a matter of generation: the relation of generation, form, and function in the epigenetic theory of Caspar F. Wolff.

    PubMed

    Witt, Elke

    2008-12-01

    The question, how organisms obtain their specific complex and functional forms, was widely discussed during the eighteenth century. The theory of preformation, which was the dominant theory of generation, was challenged by different alternative epigenetic theories. By the end of the century it was the vitalist approach most famously advocated by Johann Friedrich Blumenbach that prevailed. Yet the alternative theory of generation brought forward by Caspar Friedrich Wolff was an important contribution to the treatment of this question. He turned his attention from the properties of matter and the forces acting on it towards the level of the processes of generation in order to explain the constitution of organismic forms. By regarding organic structures and forms to be the result of the lawfulness of ongoing processes, he opened up the possibility of a functional but non-teleological explanation of generation, and thereby provided an important complement to materialist and vitalist approaches.

  17. Social Information Processing Mediates the Intergenerational Transmission of Aggressiveness in Romantic Relationships

    PubMed Central

    Fite, Jennifer E.; Bates, John E.; Holtzworth-Munroe, Amy; Dodge, Kenneth A.; Nay, Sandra Y.; Pettit, Gregory S.

    2012-01-01

    This study explored the K. A. Dodge (1986) model of social information processing as a mediator of the association between interparental relationship conflict and subsequent offspring romantic relationship conflict in young adulthood. The authors tested 4 social information processing stages (encoding, hostile attributions, generation of aggressive responses, and positive evaluation of aggressive responses) in separate models to explore their independent effects as potential mediators. There was no evidence of mediation for encoding and attributions. However, there was evidence of significant mediation for both the response generation and response evaluation stages of the model. Results suggest that the ability of offspring to generate varied social responses and effectively evaluate the potential outcome of their responses at least partially mediates the intergenerational transmission of relationship conflict. PMID:18540765

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, Andy; /Edinburgh U.; Butterworth, Jonathan

    We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays;more » the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the Ariadne, Herwig++, Pythia 8 and Sherpa generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. This review is aimed at phenomenologists wishing to understand better how parton-level predictions are translated into hadron-level events as well as experimentalists wanting a deeper insight into the tools available for signal and background simulation at the LHC.« less

  19. Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim

    2017-04-01

    Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.

  20. Approaches to informed consent for hypothesis-testing and hypothesis-generating clinical genomics research.

    PubMed

    Facio, Flavia M; Sapp, Julie C; Linn, Amy; Biesecker, Leslie G

    2012-10-10

    Massively-parallel sequencing (MPS) technologies create challenges for informed consent of research participants given the enormous scale of the data and the wide range of potential results. We propose that the consent process in these studies be based on whether they use MPS to test a hypothesis or to generate hypotheses. To demonstrate the differences in these approaches to informed consent, we describe the consent processes for two MPS studies. The purpose of our hypothesis-testing study is to elucidate the etiology of rare phenotypes using MPS. The purpose of our hypothesis-generating study is to test the feasibility of using MPS to generate clinical hypotheses, and to approach the return of results as an experimental manipulation. Issues to consider in both designs include: volume and nature of the potential results, primary versus secondary results, return of individual results, duty to warn, length of interaction, target population, and privacy and confidentiality. The categorization of MPS studies as hypothesis-testing versus hypothesis-generating can help to clarify the issue of so-called incidental or secondary results for the consent process, and aid the communication of the research goals to study participants.

  1. Consistent simulation of direct-photon production in hadron collisions including associated two-jet production

    NASA Astrophysics Data System (ADS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2016-05-01

    We have developed an event generator for direct-photon production in hadron collisions, including associated 2-jet production in the framework of the GR@PPA event generator. The event generator consistently combines γ + 2-jet production processes with the lowest-order γ + jet and photon-radiation (fragmentation) processes from quantum chromodynamics (QCD) 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the large hadron collider (LHC) concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the γ + 2-jet is very large, especially in low photon-pT ( ≲ 50 GeV) regions. Discrepancies observed at low pT, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.

  2. PAST-TENSE GENERATION FROM FORM VERSUS MEANING: BEHAVIOURAL DATA AND SIMULATION EVIDENCE

    PubMed Central

    Woollams, Anna M.; Joanisse, Marc; Patterson, Karalyn

    2009-01-01

    The standard task used to study inflectional processing of verbs involves presentation of the stem form from which the participant is asked to generate the past tense. This task reveals a processing disadvantage for irregular relative to regular English verbs, more pronounced for lower-frequency items. Dual- and single-mechanism theories of inflectional morphology are both able to account for this pattern; but the models diverge in their predictions concerning the magnitude of the regularity effect expected when the task involves past-tense generation from meaning. In this study, we asked normal speakers to generate the past tense from either form (verb stem) or meaning (action picture). The robust regularity effect observed in the standard form condition was no longer reliable when participants were required to generate the past tense from meaning. This outcome would appear problematic for dual-mechanism theories to the extent that they assume the process of inflection requires stem retrieval. By contrast, it supports single-mechanism models that consider stem retrieval to be task-dependent. We present a single-mechanism model of verb inflection incorporating distributed phonological and semantic representations that reproduces this task-dependent pattern. PMID:20161125

  3. Modeling and Simulation of the Economics of Mining in the Bitcoin Market

    PubMed Central

    Marchesi, Michele

    2016-01-01

    In January 3, 2009, Satoshi Nakamoto gave rise to the “Bitcoin Blockchain”, creating the first block of the chain hashing on his computer’s central processing unit (CPU). Since then, the hash calculations to mine Bitcoin have been getting more and more complex, and consequently the mining hardware evolved to adapt to this increasing difficulty. Three generations of mining hardware have followed the CPU’s generation. They are GPU’s, FPGA’s and ASIC’s generations. This work presents an agent-based artificial market model of the Bitcoin mining process and of the Bitcoin transactions. The goal of this work is to model the economy of the mining process, starting from GPU’s generation, the first with economic significance. The model reproduces some “stylized facts” found in real-time price series and some core aspects of the mining business. In particular, the computational experiments performed can reproduce the unit root property, the fat tail phenomenon and the volatility clustering of Bitcoin price series. In addition, under proper assumptions, they can reproduce the generation of Bitcoins, the hashing capability, the power consumption, and the mining hardware and electrical energy expenditures of the Bitcoin network. PMID:27768691

  4. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.« less

  5. Fast generation of computer-generated holograms using wavelet shrinkage.

    PubMed

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-01-09

    Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.

  6. The Impact of Generation and Country of Origin on the Mental Health of Children of Immigrants

    ERIC Educational Resources Information Center

    Montazer, Shirin; Wheaton, Blair

    2011-01-01

    The authors reexamine the study of generational differences in adjustment among the children of immigrants by arguing that the country of origin defines and shapes the adaptation process across generations. Using a sample of children in Toronto, the authors demonstrate that generational differences in the mental health of children occur only in…

  7. Integrated-Circuit Pseudorandom-Number Generator

    NASA Technical Reports Server (NTRS)

    Steelman, James E.; Beasley, Jeff; Aragon, Michael; Ramirez, Francisco; Summers, Kenneth L.; Knoebel, Arthur

    1992-01-01

    Integrated circuit produces 8-bit pseudorandom numbers from specified probability distribution, at rate of 10 MHz. Use of Boolean logic, circuit implements pseudorandom-number-generating algorithm. Circuit includes eight 12-bit pseudorandom-number generators, outputs are uniformly distributed. 8-bit pseudorandom numbers satisfying specified nonuniform probability distribution are generated by processing uniformly distributed outputs of eight 12-bit pseudorandom-number generators through "pipeline" of D flip-flops, comparators, and memories implementing conditional probabilities on zeros and ones.

  8. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage. [aircraft engine blade cooling

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1984-01-01

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  9. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Guang; Nie, You-Qi; Liang, Hao

    2016-07-15

    We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilizedmore » interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.« less

  10. Vortex generating flow passage design for increased film-cooling effectiveness and surface coverage

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    The fluid mechanics of the basic discrete hole film cooling process is described as an inclined jet in crossflow and a cusp shaped coolant flow channel contour that increases the efficiency of the film cooling process is hypothesized. The design concept requires the channel to generate a counter rotating vortex pair secondary flow within the jet stream by virture of flow passage geometry. The interaction of the vortex structures generated by both geometry and crossflow was examined in terms of film cooling effectiveness and surface coverage. Comparative data obtained with this vortex generating coolant passage showed up to factors of four increases in both effectiveness and surface coverage over that obtained with a standard round cross section flow passage. A streakline flow visualization technique was used to support the concept of the counter rotating vortex pair generating capability of the flow passage design.

  11. The Overgrid Interface for Computational Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Computational simulations using overset grids typically involve multiple steps and a variety of software modules. A graphical interface called OVERGRID has been specially designed for such purposes. Data required and created by the different steps include geometry, grids, domain connectivity information and flow solver input parameters. The interface provides a unified environment for the visualization, processing, generation and diagnosis of such data. General modules are available for the manipulation of structured grids and unstructured surface triangulations. Modules more specific for the overset approach include surface curve generators, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, Cartesian box grid generators, and domain connectivity: pre-processing tools. An interface provides automatic selection and viewing of flow solver boundary conditions, and various other flow solver inputs. For problems involving multiple components in relative motion, a module is available to build the component/grid relationships and to prescribe and animate the dynamics of the different components.

  12. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    PubMed

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  13. Systems and methods for determining a spacecraft orientation

    NASA Technical Reports Server (NTRS)

    Harman, Richard R (Inventor); Luquette, Richard J (Inventor); Lee, Michael H (Inventor)

    2004-01-01

    Disclosed are systems and methods of determining or estimating an orientation of a spacecraft. An exemplary system generates telemetry data, including star observations, in a satellite. A ground station processes the telemetry data with data from a star catalog, to generate display data which, in this example, includes observed stars overlaid with catalog stars. An operator views the display and generates an operator input signal using a mouse device, to pair up observed and catalog stars. Circuitry in the ground station then processes two pairs of observed and catalog stars, to determine an orientation of the spacecraft.

  14. Study of the modifications needed for efficient operation of NASTRAN on the Control Data Corporation STAR-100 computer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.

  15. Declarative Business Process Modelling and the Generation of ERP Systems

    NASA Astrophysics Data System (ADS)

    Schultz-Møller, Nicholas Poul; Hølmer, Christian; Hansen, Michael R.

    We present an approach to the construction of Enterprise Resource Planning (ERP) Systems, which is based on the Resources, Events and Agents (REA) ontology. This framework deals with processes involving exchange and flow of resources in a declarative, graphically-based manner describing what the major entities are rather than how they engage in computations. We show how to develop a domain-specific language on the basis of REA, and a tool which automatically can generate running web-applications. A main contribution is a proof-of-concept showing that business-domain experts can generate their own applications without worrying about implementation details.

  16. A viscous flow analysis for the tip vortex generation process

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Briley, W. R.

    1979-01-01

    A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.

  17. Apparatus for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1995-01-01

    An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  18. Apparatus for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1995-03-14

    An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  19. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity of 5 mm/min was used to irrigate a corrupted soil sample. The experiment was undertaken for several different slopes, under the condition of no vegetation cover. The results of the rainfall simulation experiment complied with the expectations of a strong relationship between the slope gradient, and the amount of surface runoff generated. The experiments with higher slope gradients were characterised by larger volumes of surface runoff generated, and by shorter times after which it occurred. The experiments with rainfall simulators in both laboratory and field conditions play an important role in better understanding of runoff generation processes. The results of such small scale experiments could be used to estimate some of the parameters of complex hydrological models, which are used to model rainfall-runoff and erosion processes at catchment scale.

  20. Long-Term Interactions of Streamflow Generation and River Basin Morphology

    NASA Astrophysics Data System (ADS)

    Huang, X.; Niemann, J.

    2005-12-01

    It is well known that the spatial patterns and dynamics of streamflow generation processes depend on river basin topography, but the impact of streamflow generation processes on the long-term evolution of river basins has not drawn as much attention. Fluvial erosion processes are driven by streamflow, which can be produced by Horton runoff, Dunne runoff, and groundwater discharge. In this analysis, we hypothesize that the dominant streamflow generation process in a basin affects the spatial patterns of fluvial erosion and that the nature of these patterns changes for storm events with differing return periods. Furthermore, we hypothesize that differences in the erosion patterns modify the topography over the long term in a way that promotes and/or inhibits the other streamflow generation mechanisms. In order to test these hypotheses, a detailed hydrologic model is imbedded into an existing landscape evolution model. Precipitation events are simulated with a Poisson process and have random intensities and durations. The precipitation is partitioned between Horton runoff and infiltration to groundwater using a specified infiltration capacity. Groundwater flow is described by a two-dimensional Dupuit equation for a homogeneous, isotropic, unconfined aquifer with an irregular underlying impervious layer. Dunne runoff occurs when precipitation falls on locations where the water table reaches the land surface. The combined hydrologic/geomorphic model is applied to the WE-38 basin, an experimental watershed in Pennsylvania that has substantial available hydrologic data. First, the hydrologic model is calibrated to reproduce the observed streamflow for 1990 using the observed rainfall as the input. Then, the relative roles of Horton runoff, Dunne runoff, and groundwater discharge are controlled by varying the infiltration capacity of the soil. For each infiltration capacity, the hydrologic and geomorphic behavior of the current topography is analyzed and the long-term evolution of the basin is simulated. The results indicate that the topography can be divided into three types of locations (unsaturated, saturated, and intermittently saturated) which control the patterns of streamflow generation for events with different return periods. The results also indicate that the streamflow generation processes can produce different geomorphic effective events at upstream and downstream locations. The model also suggests that a topography dominated by groundwater discharge evolves over a long period of time to a shape that tends to inhibit the development of saturated areas and Dunne runoff.

  1. Neuroscientific Model of Motivational Process

    PubMed Central

    Kim, Sung-il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment. PMID:23459598

  2. Neuroscientific model of motivational process.

    PubMed

    Kim, Sung-Il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment.

  3. Experience and Its Generation

    ERIC Educational Resources Information Center

    Youqing, Chen

    2006-01-01

    Experience is an activity that arouses emotions and generates meanings based on vivid sensation and profound comprehension. It is emotional, meaningful, and personal, playing a key role in the course of forming and developing one's qualities. The psychological process of experience generation consists of such links as sensing things, arousing…

  4. Supplement a to compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Fifth edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less

  5. Statistical auditing of toxicology reports.

    PubMed

    Deaton, R R; Obenchain, R L

    1994-06-01

    Statistical auditing is a new report review process used by the quality assurance unit at Eli Lilly and Co. Statistical auditing allows the auditor to review the process by which the report was generated, as opposed to the process by which the data was generated. We have the flexibility to use different sampling techniques and still obtain thorough coverage of the report data. By properly implementing our auditing process, we can work smarter rather than harder and continue to help our customers increase the quality of their products (reports). Statistical auditing is helping our quality assurance unit meet our customers' need, while maintaining or increasing the quality of our regulatory obligations.

  6. Parametric and Generative Design Techniques for Digitalization in Building Industry: the Case Study of Glued- Laminated-Timber Industry

    NASA Astrophysics Data System (ADS)

    Pasetti Monizza, G.; Matt, D. T.; Benedetti, C.

    2016-11-01

    According to Wortmann classification, the Building Industry (BI) can be defined as engineer-to-order (ETO) industry: the engineering-process starts only when an order is acquired. This definition implies that every final product (building) is almost unique’ and processes cannot be easily standardized or automated. Because of this, BI is one of the less efficient industries today’ mostly leaded by craftsmanship. In the last years’ several improvements in process efficiency have been made focusing on manufacturing and installation processes only. In order to improve the efficiency of design and engineering processes as well, the scientific community agrees that the most fruitful strategy should be Front-End Design (FED). Nevertheless, effective techniques and tools are missing. This paper discusses outcomes of a research activity that aims at highlighting whether Parametric and Generative Design techniques allow reducing wastes of resources and improving the overall efficiency of the BI, by pushing the Digitalization of design and engineering processes of products. Focusing on the Glued-Laminated-Timber industry, authors will show how Parametric and Generative Design techniques can be introduced in a standard supply-chain system, highlighting potentials and criticism on the supply-chain system as a whole.

  7. Probe for optically monitoring progress of in-situ vitrification of soil

    DOEpatents

    Timmerman, Craig L.; Oma, Kenton H.; Davis, Karl C.

    1988-01-01

    A detector system for sensing the progress of an ISV process along an expected path comprises multiple sensors each having an input port. The input ports are distributed along the expected path of the ISV process between a starting location and an expected ending location. Each sensor generates an electrical signal representative of the temperature in the vicinity of its input port. A signal processor is coupled to the sensors to receive an electrical signal generated by a sensor, and generate a signal which is encoded with information which identifies the sensor and whether the ISV process has reached the sensor's input port. A transmitter propagates the encoded signal. The signal processor and the transmitter are below ground at a location beyond the expected ending location of the ISV process in the direction from the starting location to the expected ending location. A signal receiver and a decoder are located above ground for receiving the encoded signal propagated by the transmitter, decoding the encoded signal and providing a human-perceptible indication of the progress of the ISV process.

  8. Probe for optically monitoring progress of in-situ vitrification of soil

    DOEpatents

    Timmerman, C.L.; Oma, K.H.; Davis, K.C.

    1988-08-09

    A detector system for sensing the progress of an ISV process along an expected path comprises multiple sensors each having an input port. The input ports are distributed along the expected path of the ISV process between a starting location and an expected ending location. Each sensor generates an electrical signal representative of the temperature in the vicinity of its input port. A signal processor is coupled to the sensors to receive an electrical signal generated by a sensor, and generate a signal which is encoded with information which identifies the sensor and whether the ISV process has reached the sensor's input port. A transmitter propagates the encoded signal. The signal processor and the transmitter are below ground at a location beyond the expected ending location of the ISV process in the direction from the starting location to the expected ending location. A signal receiver and a decoder are located above ground for receiving the encoded signal propagated by the transmitter, decoding the encoded signal and providing a human-perceptible indication of the progress of the ISV process. 7 figs.

  9. Processing of Mars Exploration Rover Imagery for Science and Operations Planning

    NASA Technical Reports Server (NTRS)

    Alexander, Douglass A.; Deen, Robert G.; Andres, Paul M.; Zamani, Payam; Mortensen, Helen B.; Chen, Amy C.; Cayanan, Michael K.; Hall, Jeffrey R.; Klochko, Vadim S.; Pariser, Oleg; hide

    2006-01-01

    The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image sensors to the Mars surface. These cameras were essential for operations, science, and public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet Propulsion Laboratory was responsible for the first-order processing of all of the images returned by these cameras. This processing included reconstruction of the original images, systematic and ad hoc generation of a wide variety of products derived from those images, and delivery of the data to a variety of customers, within tight time constraints. A combination of automated and manual processes was developed to meet these requirements, with significant inheritance from prior missions. This paper describes the image products generated by MIPL for MER and the processes used to produce and deliver them.

  10. Monitoring the effect of low-level laser therapy in healing process of skin with second harmonic generation imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoman; Yu, Biying; Weng, Cuncheng; Li, Hui

    2014-11-01

    The 632nm wavelength low intensity He-Ne laser was used to irradiated on 15 mice which had skin wound. The dynamic changes and wound healing processes were observed with nonlinear spectral imaging technology. We observed that:(1)The wound healing process was accelerated by the low-level laser therapy(LLLT);(2)The new tissues produced second harmonic generation (SHG) signals. Collagen content and microstructure differed dramatically at different time pointed along the wound healing. Our observation shows that the low intensity He-Ne laser irradiation can accelerate the healing process of skin wound in mice, and SHG imaging technique can be used to observe wound healing process, which is useful for quantitative characterization of wound status during wound healing process.

  11. Overcoming Barriers to Technology Adoption in Small Manufacturing Enterprises (SMEs)

    DTIC Science & Technology

    2003-06-01

    automates quote-generation, order - processing workflow management, perform- ance analysis, and accounting functions. Ultimately, it will enable Magdic...that Magdic imple- ment an MES instead. The MES, in addition to solving the problem of document manage- ment, would automate quote-generation, order ... processing , workflow management, perform- ance analysis, and accounting functions. To help Magdic personnel learn about the MES, TIDE personnel provided

  12. External Acoustic Liners for Multi-Functional Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Czech, Michael J. (Inventor); Howerton, Brian M. (Inventor); Thomas, Russell H. (Inventor); Nark, Douglas M. (Inventor)

    2017-01-01

    Acoustic liners for aircraft noise reduction include one or more chambers that are configured to provide a pressure-release surface such that the engine noise generation process is inhibited and/or absorb sound by converting the sound into heat energy. The size and shape of the chambers can be selected to inhibit the noise generation process and/or absorb sound at selected frequencies.

  13. Children's Struggles with the Writing Process: Exploring Storytelling, Visual Arts, and Keyboarding to Promote Narrative Story Writing

    ERIC Educational Resources Information Center

    Dunn, Michael W.; Finley, Susan

    2010-01-01

    Composing text is an essential skill for students. Assignments, tests, and emailing are a few examples of the many tasks which require students to generate thoughts and put them into prose. For many students, choosing a topic, creating an outline, generating an initial draft, and making edits to produce a final copy is a fluid process which poses…

  14. Hermetic turbine generator

    DOEpatents

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  15. Method and Tool for Design Process Navigation and Automatic Generation of Simulation Models for Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji

    Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.

  16. An engineering approach to automatic programming

    NASA Technical Reports Server (NTRS)

    Rubin, Stuart H.

    1990-01-01

    An exploratory study of the automatic generation and optimization of symbolic programs using DECOM - a prototypical requirement specification model implemented in pure LISP was undertaken. It was concluded, on the basis of this study, that symbolic processing languages such as LISP can support a style of programming based upon formal transformation and dependent upon the expression of constraints in an object-oriented environment. Such languages can represent all aspects of the software generation process (including heuristic algorithms for effecting parallel search) as dynamic processes since data and program are represented in a uniform format.

  17. Measuring the Kinetic and Mechanical Properties of Non-Processive Myosins using Optical Tweezers

    PubMed Central

    Greenberg, Michael J.; Shuman, Henry; Ostap, E. Michael

    2017-01-01

    The myosin superfamily of molecular motors utilizes energy from ATP hydrolysis to generate force and motility along actin filaments in a diverse array of cellular processes. These motors are structurally, kinetically, and mechanically tuned to their specific molecular roles in the cell. Optical trapping techniques have played a central role in elucidating the mechanisms by which myosins generate force and in exposing the remarkable diversity of myosin functions. Here, we present thorough methods for measuring and analyzing interactions between actin and non-processive myosins using optical trapping techniques. PMID:27844441

  18. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  19. Synthesis: Intertwining product and process

    NASA Technical Reports Server (NTRS)

    Weiss, David M.

    1990-01-01

    Synthesis is a proposed systematic process for rapidly creating different members of a program family. Family members are described by variations in their requirements. Requirements variations are mapped to variations on a standard design to generate production quality code and documentation. The approach is made feasible by using principles underlying design for change. Synthesis incorporates ideas from rapid prototyping, application generators, and domain analysis. The goals of Synthesis and the Synthesis process are discussed. The technology needed and the feasibility of the approach are also briefly discussed. The status of current efforts to implement Synthesis methodologies is presented.

  20. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  1. Engineering and economic analysis for the utilization of geothermal fluids in a cane sugar processing plant. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humme, J.T.; Tanaka, M.T.; Yokota, M.H.

    1979-07-01

    The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less

  2. Integrated mild gasification processing at the Homer City Electric Power Generating Station site. Final report, July 1989--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Zawadzki, E.A.

    1993-07-01

    A new process for the production of commercial grade coke, char, and carbon products has been evaluated by Penelec/NYSEG. The process, developed by Coal Technology Corporation, CTC, utilizes a unique screw reactor to produce a devolatilized char from a wide variety of coals for the production of commercial grade coke for use in blast furnaces, foundries, and other processes requiring high quality coke. This process is called the CTC Mild Gasification Process (MGP). The process economics are significantly enhanced by integrating the new technology into an existing power generating complex. Cost savings are realized by the coke producer, the cokemore » user, and the electric utility company. Site specific economic studies involving the Homer City Generating Station site in Western Pennsylvania, confirmed that an integrated MGP at the Homer City site, using coal fines produced at the Homer City Coal Preparation Plant, would reduce capital and operating costs significantly and would enable the HC Owners to eliminate thermal dryers, obtain low cost fuel in the form of combustible gases and liquids, and obtain lower cost replacement coal on the spot market. A previous report, identified as the Interim Report on the Project, details the technical and economic studies.« less

  3. Determination of inorganic and organic priority pollutants in biosolids from meat processing industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Rennio F. de; Institute of Environmental Engineering; Tambosi, Jose L.

    2009-09-15

    The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content - polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) - were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards. Toxic equivalent factors were evaluated for the biosolids, and the results proved that these wastesmore » can be safely deposited on land or used in combustion/incineration plants. Since no previous data were found for meat processing waste, comparisons were made using municipal sewage sludge data reported in the literature. Since, this report monitored part of the priority pollutants established by the US EPA for meat and poultry processing wastewater and sludge, the results verified that low pollution loads are generated by the meat processing plant located in the southern part of Brazil. However, the BS generated in the treatment processes are in accordance with the limits established for waste disposal and even for soil fertilizer.« less

  4. Photochemically-induced acid generation from 18-molybdodiphosphate and 18-tungstodiphosphate within poly(2-hydroxyethyl methacrylate) films.

    PubMed

    Douvas, Antonios M; Kapella, Anna; Dimotikali, Dimitra; Argitis, Panagiotis

    2009-06-01

    The capability of ammonium 18-molybdodiphosphate, (NH(4))(6)P(2)Mo(18)O(62) (Mo(18)(6-)), and ammonium 18-tungstodiphosphate, (NH(4))(6)P(2)W(18)O(62) (W(18)(6-)), to photochemically generate acid within films of a polymer with hydroxylic functional groups (namely, within poly(2-hydroxyethyl methacrylate) (PHEMA) films) is demonstrated. Upon UV irradiation, both 2:18 polyoxometalates (POMs) investigated are reduced with concomitant oxidation of PHEMA and generation of acid, which subsequently catalyzes the cross-linking of PHEMA. The photoacid generation is mainly evidenced by monitoring the protonation of an appropriate acid indicator (4-dimethylamino-4'-nitrostilbene) with UV spectroscopy and by photolithographic imaging experiments. By comparing the efficiency of both POMs to induce acid-catalyzed cross-linking of PHEMA under similar conditions, the W(18)(6-) ion is found to be more efficient in photoacid generation than the Mo(18)(6-) ion. Imaging of the POM-containing PHEMA films through UV photolithographic processing is demonstrated. In that process, both POMs can be entirely leached during the development step by using pure water as a developer, resulting in patterned PHEMA films. This characteristic renders the investigated POMs attractive materials for applications, especially in the area of biomaterials, where removal of the photoacid generator from the film at the end of the process is desirable.

  5. Re-evaluating the generation of a "proteasome-independent" MHC class I-restricted CD8 T cell epitope.

    PubMed

    Wherry, E John; Golovina, Tatiana N; Morrison, Susan E; Sinnathamby, Gomathinayagam; McElhaugh, Michael J; Shockey, David C; Eisenlohr, Laurence C

    2006-02-15

    The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.

  6. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System

    NASA Astrophysics Data System (ADS)

    Xiao, Heng; Gou, Xiaolong; Yang, Suwen

    2011-05-01

    Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for the development and application of thermoelectric generators, particularly for the design and optimization of TE modules.

  7. All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect

    NASA Astrophysics Data System (ADS)

    Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2018-05-01

    Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.

  8. 26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  9. Activating Generative Learning in Organizations through Optimizing Relational Strategies

    ERIC Educational Resources Information Center

    Park, Mary Kay

    2010-01-01

    Using a grounded theory method, this dissertation seeks to discover how relationships impact organizational generative learning. An organization is a socially constructed reality and organizational learning is situated in the process of co-participation. To discover the link between relationships and generative learning this study considers the…

  10. Mapping Their Road to University: First-Generation Students' Choice and Decision of University

    ERIC Educational Resources Information Center

    Kutty, Faridah Mydin

    2014-01-01

    This paper describes a qualitative case study that investigated the aspirations and decision-making process of first-generation students concerning university education. The participants comprised of 16 first-generation students at a research university. Data were obtained through interviews and analyzed using thematic analysis method. The…

  11. 75 FR 74042 - Intent To Prepare an Environmental Impact Statement and To Conduct Scoping Meetings...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... proposed Project would consist of up to 100 wind turbine generators with a combined total generating... its wind generation turbines and related facilities. Available overview information indicates this... process for the wind turbine strings and associated facilities considered sensitive resources, and the...

  12. The Company of Others: Generating Knowhow in Later Life

    ERIC Educational Resources Information Center

    Kimberley, Helen; Golding, Barry; Simons, Bonnie

    2016-01-01

    This paper explores some important aspects of the generation of practical knowledge through later life. It is about the relationship between knowledge generation, agency and capability, developed informally through the life experiences in and through the Company of Others. It emphasises how the everyday processes of socialisation create invaluable…

  13. Guiding New Product Idea Generation

    ERIC Educational Resources Information Center

    Park, Y.

    2003-01-01

    The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…

  14. Is Analytic Information Processing a Feature of Expertise in Medicine?

    ERIC Educational Resources Information Center

    McLaughlin, Kevin; Rikers, Remy M.; Schmidt, Henk G.

    2008-01-01

    Diagnosing begins by generating an initial diagnostic hypothesis by automatic information processing. Information processing may stop here if the hypothesis is accepted, or analytical processing may be used to refine the hypothesis. This description portrays analytic processing as an optional extra in information processing, leading us to…

  15. Different patterns of language activation in post-stroke aphasia are detected by overt and covert versions of the verb generation fMRI task

    PubMed Central

    Allendorfer, Jane B.; Kissela, Brett M.; Holland, Scott K.; Szaflarski, Jerzy P.

    2012-01-01

    Summary Background Post-stroke language functions depend on the relative contributions of the dominant and non-dominant hemispheres. Thus, we aimed to identify the neural correlates of overt and covert verb generation in adult post-stroke aphasia. Material/Methods Sixteen aphasic LMCA stroke patients (SPs) and 32 healthy controls (HCs) underwent language testing followed by fMRI while performing an overt event-related verb generation task (ER-VGT) isolating activations related to noun-verb semantic processing or to articulation and auditory processing, and a covert block design verb generation task (BD-VGT). Results BD-VGT activation patterns were consistent with previous studies, while ER-VGT showed different patterns in SPs relative to HCs including less left-hemispheric involvement during semantic processing and predominantly right-sided activation related to articulation and auditory processing. ER-VGT intra-scanner performance was positively associated with activation during semantic associations in the left middle temporal gyrus for HCs (p=0.031) and left middle frontal gyrus for SPs (p=0.042). Increased activation in superior frontal/cingulate gyri was associated with better intra-scanner performance (p=0.020). Lesion size negatively impacted verbal fluency tested with Controlled Oral Word Association Test (p=0.0092) and the Semantic Fluency Test (p=0.033) and trended towards a negative association with verb generation performance on the event-related verb generation task (p=0.081). Conclusions Greater retention of pre-stroke language skills is associated with greater involvement of the left hemisphere with different cortical recruitment patterns observed in SPs versus HCs. Post-stroke verbal fluency may depend more upon the structural and functional integrity of the dominant left hemisphere language network rather than the shift to contralateral homologues. PMID:22367124

  16. NCC Simulation Model: Simulating the operations of the network control center, phase 2

    NASA Technical Reports Server (NTRS)

    Benjamin, Norman M.; Paul, Arthur S.; Gill, Tepper L.

    1992-01-01

    The simulation of the network control center (NCC) is in the second phase of development. This phase seeks to further develop the work performed in phase one. Phase one concentrated on the computer systems and interconnecting network. The focus of phase two will be the implementation of the network message dialogues and the resources controlled by the NCC. These resources are requested, initiated, monitored and analyzed via network messages. In the NCC network messages are presented in the form of packets that are routed across the network. These packets are generated, encoded, decoded and processed by the network host processors that generate and service the message traffic on the network that connects these hosts. As a result, the message traffic is used to characterize the work done by the NCC and the connected network. Phase one of the model development represented the NCC as a network of bi-directional single server queues and message generating sources. The generators represented the external segment processors. The served based queues represented the host processors. The NCC model consists of the internal and external processors which generate message traffic on the network that links these hosts. To fully realize the objective of phase two it is necessary to identify and model the processes in each internal processor. These processes live in the operating system of the internal host computers and handle tasks such as high speed message exchanging, ISN and NFE interface, event monitoring, network monitoring, and message logging. Inter process communication is achieved through the operating system facilities. The overall performance of the host is determined by its ability to service messages generated by both internal and external processors.

  17. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  18. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Yu, Danlin

    2010-11-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. ArF halftone PSM cleaning process optimization for next-generation lithography

    NASA Astrophysics Data System (ADS)

    Son, Yong-Seok; Jeong, Seong-Ho; Kim, Jeong-Bae; Kim, Hong-Seok

    2000-07-01

    ArF lithography which is expected for the next generation optical lithography is adapted for 0.13 micrometers design-rule and beyond. ArF half-tone phase shift mask (HT PSM) will be applied as 1st generation of ArF lithography. Also ArF PSM cleaning demands by means of tighter controls related to phase angle, transmittance and contamination on the masks. Phase angle on ArF HT PSM should be controlled within at least +/- 3 degree and transmittance controlled within at least +/- 3 percent after cleaning process and pelliclization. In the cleaning process of HT PSM, requires not only the remove the particle on mask, but also control to half-tone material for metamorphosis. Contamination defects on the Qz of half tone type PSM is not easy to remove on the photomask surface. New technology and methods of cleaning will be developed in near future, but we try to get out for limit contamination on the mask, without variation of phase angle and transmittance after cleaning process.

  20. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  1. Novel applications of Tablet PCs to investigate expert cognition in the geosciences

    NASA Astrophysics Data System (ADS)

    Turner, Sheldon; Libarkin, Julie

    2012-05-01

    In this paper, we present new methodologies developed to investigate cognitive processes related to perceiving and interpreting Earth phenomena. This area of study, known as geocognition, is an emerging and vital aspect of geoscience. Geocognition gives geoscientists an understanding of how people conceptualize earth processes. For example, geocognition research can be used to generate effective strategies for increasing public scientific literacy in this new era of climate change and energy crisis. We collected spatial visualization and working memory data using a Camtasia add-on for PowerPoint to generate a unique set of static drawings and videos of the drawing process. Analyzing these data provides unique insight into the underlying cognitive processes. For example, quantitative patterns that emerge within a subpopulation of novices or experts show us the common errors and patterns in how objects are drawn, including drawing order and time spent drawing. We believe that these unique data will contribute to the ongoing efforts to generate new understanding of the nature of geoscientific expertise.

  2. The reduction of dioxin emissions from the processes of heat and power generation.

    PubMed

    Wielgosiński, Grzegorz

    2011-05-01

    The first reports that it is possible to emit dioxins from the heat and power generation sector are from the beginning of the 1980s. Detailed research proved that the emission of dioxins might occur during combustion of hard coal, brown coal, and furnace oil as well as coke-oven gas. The emission of dioxins occurs in wood incineration; wood that is clean and understood as biomass; or, in particular, wood waste (polluted). This paper thoroughly discusses the mechanism of dioxin formation in thermal processes, first and foremost in combustion processes. The parameters influencing the quantity of dioxins formed and the dependence of their quantity on the conditions of combustion are highlighted. Furthermore, the methods of reducing dioxin emissions from combustion processes (primary and secondary) are discussed. The most efficacious methods that may find application in the heat and power generation sector are proposed; this is relevant from the point of view of the implementation of the Stockholm Convention resolutions in Poland with regard to persistent organic pollutants.

  3. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction

    PubMed Central

    Griffin, William A.; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  4. Dielectric Properties of Generation 3 Pamam Dendrimer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ristić, Sanja; Mijović, Jovan

    2008-08-01

    Broadband dielectric relaxation spectroscopy (DRS) was employed to study molecular dynamics of blends composed of generation 3 poly(amidoamine) (PAMAM) dendrimers with ethylenediamine core and amino surface groups and four linear polymers: poly(propylene oxide)—PPO, two block copolymers, poly(propylene oxide)/poly(ethylene oxide)—PPO/PEO with different mol ratios (29/6 and 10/31) and poly(ethylene oxide)—PEO. The results were generated over a broad range of frequency. Dielectric spectra of dendrimers in PPO matrix reveal slight shift of normal and segmental processes to higher frequency with increasing concentration of dendrimers. In the 29PPO/6PEO matrix, no effect of concentration on the average relaxation time for normal and segmental processes was observed. In the 10PPO/31PEO matrix the relaxation time of the segmental process increases with increasing dendrimer concentration, while in the PEO matrix, local processes in dendrimers slow down. A detailed analysis of the effect of concentration of dendrimers and morphology of polymer matrix on the dielectric properties of dendrimer nanocomposites will be presented.

  5. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  6. Press fluid pre-treatment optimisation of the integrated generation of solid fuel and biogas from biomass (IFBB) process approach.

    PubMed

    Corton, John; Toop, Trisha; Walker, Jonathan; Donnison, Iain S; Fraser, Mariecia D

    2014-10-01

    The integrated generation of solid fuel and biogas from biomass (IFBB) system is an innovative approach to maximising energy conversion from low input high diversity (LIHD) biomass. In this system water pre-treated and ensiled LIHD biomass is pressed. The press fluid is anaerobically digested to produce methane that is used to power the process. The fibrous fraction is densified and then sold as a combustion fuel. Two process options designed to concentrate the press fluid were assessed to ascertain their influence on productivity in an IFBB like system: sedimentation and the omission of pre-treatment water. By concentrating press fluid and not adding water during processing, energy production from methane was increased by 75% per unit time and solid fuel productivity increased by 80% per unit of fluid produced. The additional energy requirements for pressing more biomass in order to generate equal volumes of feedstock were accounted for in these calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Application of genetic algorithm in integrated setup planning and operation sequencing

    NASA Astrophysics Data System (ADS)

    Kafashi, Sajad; Shakeri, Mohsen

    2011-01-01

    Process planning is an essential component for linking design and manufacturing process. Setup planning and operation sequencing is two main tasks in process planning. Many researches solved these two problems separately. Considering the fact that the two functions are complementary, it is necessary to integrate them more tightly so that performance of a manufacturing system can be improved economically and competitively. This paper present a generative system and genetic algorithm (GA) approach to process plan the given part. The proposed approach and optimization methodology analyses the TAD (tool approach direction), tolerance relation between features and feature precedence relations to generate all possible setups and operations using workshop resource database. Based on these technological constraints the GA algorithm approach, which adopts the feature-based representation, optimizes the setup plan and sequence of operations using cost indices. Case study show that the developed system can generate satisfactory results in optimizing the setup planning and operation sequencing simultaneously in feasible condition.

  8. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollikkathara, Naushad, E-mail: naushadkp@gmail.co; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to formmore » a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.« less

  9. Uncoupled hydrogen and volatile fatty acids generation in a two-step biotechnological anaerobic process fed with actual site wastewater.

    PubMed

    Monti, Matilde; Scoma, Alberto; Martinez, Gonzalo; Bertin, Lorenzo; Fava, Fabio

    2015-05-25

    Among agro-wastes, olive mill wastewater (OMW) truly qualifies as a high impact organic residue due to its biochemical-rich composition and high annual production. In the present investigation, dephenolized OMW (OMWdeph) was employed as the feedstock for a biotechnological two-stage anaerobic process dedicated to the production of biohydrogen and volatile fatty acids (VFAs), respectively. To this end, two identically configured packed-bed biofilm reactors were operated sequentially. In the first, the hydraulic retention time was set to 1 day, whereas in the second it was equal to 5 days. The rationale was to decouple the hydrolysis of the organic macronutrients held by the OMWdeph, so as to quantitatively generate a biogas enriched in H2 (first stage aim), for the acidogenesis of the residual components left after hydrolysis, to then produce a highly concentrated mixture of VFAs (second stage aim). Results showed that the generation of H2 and VFAs was effectively split, with carbohydrates and lipids, respectively, being the main substrates of the two processes. About 250 ml H2 L(-1) day(-1) was produced, corresponding to a yield of 0.36 mol mol(-1) of consumed carbohydrates (expressed as glucose equivalents). The overall concentration of VFAs in the acidogenic process was 13.80 g COD L(-1), so that 2.76 g COD L(-1) day(-1) was obtained. Second generation biorefineries use a selected fraction of an organic waste to conduct a microbiologically-driven pathway towards the generation of one target molecule. With the proposed approach, a greater value of the waste was attained, since the multi-purpose two-stage process did not entail competition for substrates between the first and the second steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Off-target model based OPC

    NASA Astrophysics Data System (ADS)

    Lu, Mark; Liang, Curtis; King, Dion; Melvin, Lawrence S., III

    2005-11-01

    Model-based Optical Proximity correction has become an indispensable tool for achieving wafer pattern to design fidelity at current manufacturing process nodes. Most model-based OPC is performed considering the nominal process condition, with limited consideration of through process manufacturing robustness. This study examines the use of off-target process models - models that represent non-nominal process states such as would occur with a dose or focus variation - to understands and manipulate the final pattern correction to a more process robust configuration. The study will first examine and validate the process of generating an off-target model, then examine the quality of the off-target model. Once the off-target model is proven, it will be used to demonstrate methods of generating process robust corrections. The concepts are demonstrated using a 0.13 μm logic gate process. Preliminary indications show success in both off-target model production and process robust corrections. With these off-target models as tools, mask production cycle times can be reduced.

  11. Trial Maneuver Generation and Selection in the Paladin Tactical Decision Generation System

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.; McManus, John W.; Goodrich, Kenneth H.

    1992-01-01

    To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the "best" maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.

  12. Trial maneuver generation and selection in the Paladin tactical decision generation system

    NASA Technical Reports Server (NTRS)

    Chappell, Alan R.; Mcmanus, John W.; Goodrich, Kenneth H.

    1993-01-01

    To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real-time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the 'best' maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.

  13. Origin of Plasmon Lineshape and Enhanced Hot Electron Generation in Metal Nanoparticles.

    PubMed

    You, Xinyuan; Ramakrishna, S; Seideman, Tamar

    2018-01-04

    Plasmon-generated hot carriers are currently being studied intensively for their role in enhancing the efficiency of photovoltaic and photocatalytic processes. Theoretical studies of the hot electrons subsystem have generated insight, but we show that a unified quantum-mechanical treatment of the plasmon and hot electrons reveals new physical phenomena. Instead of a unidirectional energy transfer process in Landau damping, back energy transfer is predicted in small metal nanoparticles (MNPs) within a model-Hamiltonian approach. As a result, the single Lorentzian plasmonic line shape is modulated by a multipeak structure, whose individual line width provides a direct way to probe the electronic dephasing. More importantly, the hot electron generation can be enhanced greatly by matching the incident energy to the peaks of the modulated line shape.

  14. Solar thermochemical splitting of water to generate hydrogen

    PubMed Central

    Rao, C. N. R.; Dey, Sunita

    2017-01-01

    Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the high-temperature two-step process. It is noteworthy that the multistep process based on the Mn(II)/Mn(III) oxide system can be carried out at 700 °C or 750 °C. The two-step process has been achieved at 1,300 °C/900 °C by using yttrium-based rare earth manganites. It seems possible to render this high-temperature process as an isothermal process. Thermodynamics and kinetics of H2O splitting are largely controlled by the inherent redox properties of the materials. Interestingly, under the conditions of H2O splitting in the high-temperature process CO2 can also be decomposed to CO, providing a feasible method for generating the industrially important syngas (CO+H2). Although carbonate formation can be addressed as a hurdle during CO2 splitting, the problem can be avoided by a suitable choice of experimental conditions. The choice of the solar reactor holds the key for the commercialization of thermochemical fuel production. PMID:28522461

  15. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation.

    PubMed

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal-oxide-semiconductor-compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm 2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance.

  16. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation

    PubMed Central

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    Abstract For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal–oxide–semiconductor–compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance. PMID:29868148

  17. Need to Knowledge (NtK) Model: an evidence-based framework for generating technological innovations with socio-economic impacts.

    PubMed

    Flagg, Jennifer L; Lane, Joseph P; Lockett, Michelle M

    2013-02-15

    Traditional government policies suggest that upstream investment in scientific research is necessary and sufficient to generate technological innovations. The expected downstream beneficial socio-economic impacts are presumed to occur through non-government market mechanisms. However, there is little quantitative evidence for such a direct and formulaic relationship between public investment at the input end and marketplace benefits at the impact end. Instead, the literature demonstrates that the technological innovation process involves a complex interaction between multiple sectors, methods, and stakeholders. The authors theorize that accomplishing the full process of technological innovation in a deliberate and systematic manner requires an operational-level model encompassing three underlying methods, each designed to generate knowledge outputs in different states: scientific research generates conceptual discoveries; engineering development generates prototype inventions; and industrial production generates commercial innovations. Given the critical roles of engineering and business, the entire innovation process should continuously consider the practical requirements and constraints of the commercial marketplace.The Need to Knowledge (NtK) Model encompasses the activities required to successfully generate innovations, along with associated strategies for effectively communicating knowledge outputs in all three states to the various stakeholders involved. It is intentionally grounded in evidence drawn from academic analysis to facilitate objective and quantitative scrutiny, and industry best practices to enable practical application. The Need to Knowledge (NtK) Model offers a practical, market-oriented approach that avoids the gaps, constraints and inefficiencies inherent in undirected activities and disconnected sectors. The NtK Model is a means to realizing increased returns on public investments in those science and technology programs expressly intended to generate beneficial socio-economic impacts.

  18. Need to Knowledge (NtK) Model: an evidence-based framework for generating technological innovations with socio-economic impacts

    PubMed Central

    2013-01-01

    Background Traditional government policies suggest that upstream investment in scientific research is necessary and sufficient to generate technological innovations. The expected downstream beneficial socio-economic impacts are presumed to occur through non-government market mechanisms. However, there is little quantitative evidence for such a direct and formulaic relationship between public investment at the input end and marketplace benefits at the impact end. Instead, the literature demonstrates that the technological innovation process involves a complex interaction between multiple sectors, methods, and stakeholders. Discussion The authors theorize that accomplishing the full process of technological innovation in a deliberate and systematic manner requires an operational-level model encompassing three underlying methods, each designed to generate knowledge outputs in different states: scientific research generates conceptual discoveries; engineering development generates prototype inventions; and industrial production generates commercial innovations. Given the critical roles of engineering and business, the entire innovation process should continuously consider the practical requirements and constraints of the commercial marketplace. The Need to Knowledge (NtK) Model encompasses the activities required to successfully generate innovations, along with associated strategies for effectively communicating knowledge outputs in all three states to the various stakeholders involved. It is intentionally grounded in evidence drawn from academic analysis to facilitate objective and quantitative scrutiny, and industry best practices to enable practical application. Summary The Need to Knowledge (NtK) Model offers a practical, market-oriented approach that avoids the gaps, constraints and inefficiencies inherent in undirected activities and disconnected sectors. The NtK Model is a means to realizing increased returns on public investments in those science and technology programs expressly intended to generate beneficial socio-economic impacts. PMID:23414369

  19. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System.

    PubMed

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.

  20. Recovery of metal values from copper slag and reuse of residual secondary slag.

    PubMed

    Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney

    2017-12-01

    Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System

    PubMed Central

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun

    2017-01-01

    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275

  2. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polese, Luigi Gentile; Brackney, Larry

    An image-based occupancy sensor includes a motion detection module that receives and processes an image signal to generate a motion detection signal, a people detection module that receives the image signal and processes the image signal to generate a people detection signal, a face detection module that receives the image signal and processes the image signal to generate a face detection signal, and a sensor integration module that receives the motion detection signal from the motion detection module, receives the people detection signal from the people detection module, receives the face detection signal from the face detection module, and generatesmore » an occupancy signal using the motion detection signal, the people detection signal, and the face detection signal, with the occupancy signal indicating vacancy or occupancy, with an occupancy indication specifying that one or more people are detected within the monitored volume.« less

  4. Experiments with Test Case Generation and Runtime Analysis

    NASA Technical Reports Server (NTRS)

    Artho, Cyrille; Drusinsky, Doron; Goldberg, Allen; Havelund, Klaus; Lowry, Mike; Pasareanu, Corina; Rosu, Grigore; Visser, Willem; Koga, Dennis (Technical Monitor)

    2003-01-01

    Software testing is typically an ad hoc process where human testers manually write many test inputs and expected test results, perhaps automating their execution in a regression suite. This process is cumbersome and costly. This paper reports preliminary results on an approach to further automate this process. The approach consists of combining automated test case generation based on systematically exploring the program's input domain, with runtime analysis, where execution traces are monitored and verified against temporal logic specifications, or analyzed using advanced algorithms for detecting concurrency errors such as data races and deadlocks. The approach suggests to generate specifications dynamically per input instance rather than statically once-and-for-all. The paper describes experiments with variants of this approach in the context of two examples, a planetary rover controller and a space craft fault protection system.

  5. The heuristic-analytic theory of reasoning: extension and evaluation.

    PubMed

    Evans, Jonathan St B T

    2006-06-01

    An extensively revised heuristic-analytic theory of reasoning is presented incorporating three principles of hypothetical thinking. The theory assumes that reasoning and judgment are facilitated by the formation of epistemic mental models that are generated one at a time (singularity principle) by preconscious heuristic processes that contextualize problems in such a way as to maximize relevance to current goals (relevance principle). Analytic processes evaluate these models but tend to accept them unless there is good reason to reject them (satisficing principle). At a minimum, analytic processing of models is required so as to generate inferences or judgments relevant to the task instructions, but more active intervention may result in modification or replacement of default models generated by the heuristic system. Evidence for this theory is provided by a review of a wide range of literature on thinking and reasoning.

  6. Safety Assurance in NextGen

    NASA Technical Reports Server (NTRS)

    HarrisonFleming, Cody; Spencer, Melissa; Leveson, Nancy; Wilkinson, Chris

    2012-01-01

    The generation of minimum operational, safety, performance, and interoperability requirements is an important aspect of safely integrating new NextGen components into the Communication Navigation Surveillance and Air Traffic Management (CNS/ATM) system. These requirements are used as part of the implementation and approval processes. In addition, they provide guidance to determine the levels of design assurance and performance that are needed for each element of the new NextGen procedures, including aircraft, operator, and Air Navigation and Service Provider. Using the enhanced Airborne Traffic Situational Awareness for InTrail Procedure (ATSA-ITP) as an example, this report describes some limitations of the current process used for generating safety requirements and levels of required design assurance. An alternative process is described, as well as the argument for why the alternative can generate more comprehensive requirements and greater safety assurance than the current approach.

  7. Automated speech understanding: the next generation

    NASA Astrophysics Data System (ADS)

    Picone, J.; Ebel, W. J.; Deshmukh, N.

    1995-04-01

    Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical models implemented using a complex software paradigm. Such systems are now capable of understanding continuous speech input for vocabularies of several thousand words in operational environments. The current generation of deployed systems, based on small vocabularies of isolated words, will soon be replaced by a new technology offering natural language access to vast information resources such as the Internet, and provide completely automated voice interfaces for mundane tasks such as travel planning and directory assistance.

  8. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis

    PubMed Central

    Muraille, Eric

    2018-01-01

    Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life. PMID:29487592

  9. Use of near-infrared spectroscopy (NIRs) in the biopharmaceutical industry for real-time determination of critical process parameters and integration of advanced feedback control strategies using MIDUS control.

    PubMed

    Vann, Lucas; Sheppard, John

    2017-12-01

    Control of biopharmaceutical processes is critical to achieve consistent product quality. The most challenging unit operation to control is cell growth in bioreactors due to the exquisitely sensitive and complex nature of the cells that are converting raw materials into new cells and products. Current monitoring capabilities are increasing, however, the main challenge is now becoming the ability to use the data generated in an effective manner. There are a number of contributors to this challenge including integration of different monitoring systems as well as the functionality to perform data analytics in real-time to generate process knowledge and understanding. In addition, there is a lack of ability to easily generate strategies and close the loop to feedback into the process for advanced process control (APC). The current research aims to demonstrate the use of advanced monitoring tools along with data analytics to generate process understanding in an Escherichia coli fermentation process. NIR spectroscopy was used to measure glucose and critical amino acids in real-time to help in determining the root cause of failures associated with different lots of yeast extract. First, scale-down of the process was required to execute a simple design of experiment, followed by scale-up to build NIR models as well as soft sensors for advanced process control. In addition, the research demonstrates the potential for a novel platform technology that enables manufacturers to consistently achieve "goldenbatch" performance through monitoring, integration, data analytics, understanding, strategy design and control (MIDUS control). MIDUS control was employed to increase batch-to-batch consistency in final product titers, decrease the coefficient of variability from 8.49 to 1.16%, predict possible exhaust filter failures and close the loop to prevent their occurrence and avoid lost batches.

  10. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  11. PDS4 Bundle Creation Governance Using BPMN

    NASA Astrophysics Data System (ADS)

    Radulescu, C.; Levoe, S. R.; Algermissen, S. S.; Rye, E. D.; Hardman, S. H.

    2015-06-01

    The AMMOS-PDS Pipeline Service (APPS) provides a Bundle Builder tool, which governs the process of creating, and ultimately generates, PDS4 bundles incrementally, as science products are being generated.

  12. Lessons Learned From Developing Three Generations of Remote Sensing Science Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt; Fleig, Albert J.

    2005-01-01

    The Biospheric Information Systems Branch at NASA s Goddard Space Flight Center has developed three generations of Science Investigator-led Processing Systems for use with various remote sensing instruments. The first system is used for data from the MODIS instruments flown on NASA s Earth Observing Systems @OS) Terra and Aqua Spacecraft launched in 1999 and 2002 respectively. The second generation is for the Ozone Measuring Instrument flying on the EOS Aura spacecraft launched in 2004. We are now developing a third generation of the system for evaluation science data processing for the Ozone Mapping and Profiler Suite (OMPS) to be flown by the NPOESS Preparatory Project (NPP) in 2006. The initial system was based on large scale proprietary hardware, operating and database systems. The current OMI system and the OMPS system being developed are based on commodity hardware, the LINUX Operating System and on PostgreSQL, an Open Source RDBMS. The new system distributes its data archive across multiple server hosts and processes jobs on multiple processor boxes. We have created several instances of this system, including one for operational processing, one for testing and reprocessing and one for applications development and scientific analysis. Prior to receiving the first data from OMI we applied the system to reprocessing information from the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) instruments flown from 1978 until now. The system was able to process 25 years (108,000 orbits) of data and produce 800,000 files (400 GiB) of level 2 and level 3 products in less than a week. We will describe the lessons we have learned and tradeoffs between system design, hardware, operating systems, operational staffing, user support and operational procedures. During each generational phase, the system has become more generic and reusable. While the system is not currently shrink wrapped we believe it is to the point where it could be readily adopted, with substantial cost savings, for other similar tasks.

  13. Proteolytic Processing of Angiotensin-I in Human Blood Plasma

    PubMed Central

    Hildebrand, Diana; Merkel, Philipp; Eggers, Lars Florian; Schlüter, Hartmut

    2013-01-01

    In mammalian species, except humans, N-terminal processing of the precursor peptide angiotensin I (ANG-1-10) into ANG-2-10 or ANG-3-10 was reported. Here we hypothesize that aminopeptidase-generated angiotensins bearing the same C-terminus as ANG-1-10 are also present in humans. We demonstrate the time dependent generation of ANG-2-10, ANG-3-10, ANG-4-10, ANG-5-10 and ANG-6-10 from the precursor ANG-1-10 by human plasma proteins. The endogenous presence of ANG-4-10, ANG-5-10 and ANG-6-10 in human plasma was confirmed by an immuno-fluorescence assay. Generation of ANG-2-10, ANG-3-10 and ANG-4-10 from ANG-1-10 by immobilized human plasma proteins was sensitive to the cysteine/serine protease inhibitor antipain. The metal ion chelator EDTA inhibited Ang-6-10-generation. Incubation of the substrates ANG-3-10, ANG-4-10 and ANG-5-10 with recombinant aminopeptidase N (APN) resulted in a successive N-terminal processing, finally releasing ANG-6-10 as a stable end product, demonstrating a high similarity concerning the processing pattern of the angiotensin peptides compared to the angiotensin generating activity in plasma. Recombinant ACE-1 hydrolyzed the peptides ANG-2-10, ANG-3-10, ANG-4-10 and ANG-5-10 into ANG-2-8, ANG-3-8, ANG-4-8 and ANG-5-8. Since ANG-2-10 was processed into ANG-2-8, ANG-4-8 and ANG-5-8 by plasma proteases the angiotensin peptides bearing the same C-terminus as ANG-1-10 likely have a precursor function in human plasma. Our results confirm the hypothesis of aminopeptidase mediated processing of ANG-1-10 in humans. We show the existence of an aminopeptidase mediated pathway in humans that bypasses the known ANG-1-8-carboxypeptidase pathway. This expands the knowledge about the known human renin angiotensin system, showing how efficiently the precursor ANG-1-10 is used by nature. PMID:23724017

  14. Characteristics of molecular weight distribution of dissolved organic matter in bromide-containing water and disinfection by-product formation properties during treatment processes.

    PubMed

    Zhang, Ying; Zhang, Ning; Zhao, Peng; Niu, Zhiguang

    2018-03-01

    The characteristics of dissolved organic matter (DOM) and bromide ion concentration have a significant influence on the formation of disinfection by-products (DBPs). In order to identify the main DBP precursors, DOM was divided into five fractions based on molecular weight (MW), trihalomethane formation potential and haloacetic acid formation potential were determined for fractions, and the change in contents of different fractions and total DBPs during treatment processes (pre-chlorination, coagulation, sand filtration, disinfection) were studied. Moreover, the relationship between bromide concentration and DBP generation characteristics in processes was also analyzed. The results showed that the main DBP precursors were the fraction with MW <1kDa and fraction with MW 3-10kDa, and the DBP's generation ability of lower molecular weight DOM (<10kDa) was higher than that of higher molecular weight DOM. During different processes, pre-chlorination and disinfection had limited effect on removing organics but could alter the MW distribution, and coagulation and filtration could effectively remove organics with higher MW. For DBPs, trihalomethanes (THMs) were mainly generated in pre-chlorination and disinfection, while haloacetic acids (HAAs) were mostly generated during pre-chlorination; coagulation and sand filtration had little effect on THMs but resulted in a slight removal of HAAs. In addition, the results of ANOVA tests suggested that molecular sizes and treatment processes have significant influence on DBP formation. With increasing bromide concentration, the brominated DBPs significantly increased, but the bromine incorporation factor in the processes was basically consistent at each concentration. Copyright © 2017. Published by Elsevier B.V.

  15. Worklist handling in workflow-enabled radiological application systems

    NASA Astrophysics Data System (ADS)

    Wendler, Thomas; Meetz, Kirsten; Schmidt, Joachim; von Berg, Jens

    2000-05-01

    For the next generation integrated information systems for health care applications, more emphasis has to be put on systems which, by design, support the reduction of cost, the increase inefficiency and the improvement of the quality of services. A substantial contribution to this will be the modeling. optimization, automation and enactment of processes in health care institutions. One of the perceived key success factors for the system integration of processes will be the application of workflow management, with workflow management systems as key technology components. In this paper we address workflow management in radiology. We focus on an important aspect of workflow management, the generation and handling of worklists, which provide workflow participants automatically with work items that reflect tasks to be performed. The display of worklists and the functions associated with work items are the visible part for the end-users of an information system using a workflow management approach. Appropriate worklist design and implementation will influence user friendliness of a system and will largely influence work efficiency. Technically, in current imaging department information system environments (modality-PACS-RIS installations), a data-driven approach has been taken: Worklist -- if present at all -- are generated from filtered views on application data bases. In a future workflow-based approach, worklists will be generated by autonomous workflow services based on explicit process models and organizational models. This process-oriented approach will provide us with an integral view of entire health care processes or sub- processes. The paper describes the basic mechanisms of this approach and summarizes its benefits.

  16. Simulation based optimization on automated fibre placement process

    NASA Astrophysics Data System (ADS)

    Lei, Shi

    2018-02-01

    In this paper, a software simulation (Autodesk TruPlan & TruFiber) based method is proposed to optimize the automate fibre placement (AFP) process. Different types of manufacturability analysis are introduced to predict potential defects. Advanced fibre path generation algorithms are compared with respect to geometrically different parts. Major manufacturing data have been taken into consideration prior to the tool paths generation to achieve high success rate of manufacturing.

  17. Visualization Support for an Army Reconnaissance Mission

    DTIC Science & Technology

    1994-02-01

    transform an aerial photographic image into an orthophoto image. In this process, the horizontal coordinates and elevation of a point on the ground are...to the corresponding horizontal position on the orthophoto . The result is a new digital image without relief displacement. This orthophoto image will...process, the orthophotos were generated. The generation of one orthophoto for every other photo was sufficient to ensure complete coverage of the test

  18. PMR polyimides-review and update

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Alston, W. B.

    1982-01-01

    Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides are commercially available and the PMR concept is used by other investigators. The current status of first and second generation PMR polyimides were reviewed. Emphasis is given to the chemistry, processing and applications of the first generation material known as PMR-15.

  19. Influence of COMT genotype and affective distractors on the processing of self-generated thought.

    PubMed

    Kilford, Emma J; Dumontheil, Iroise; Wood, Nicholas W; Blakemore, Sarah-Jayne

    2015-06-01

    The catechol-O-methyltransferase (COMT) enzyme is a major determinant of prefrontal dopamine levels. The Val(158)Met polymorphism affects COMT enzymatic activity and has been associated with variation in executive function and affective processing. This study investigated the effect of COMT genotype on the flexible modulation of the balance between processing self-generated and processing stimulus-oriented information, in the presence or absence of affective distractors. Analyses included 124 healthy adult participants, who were also assessed on standard working memory (WM) tasks. Relative to Val carriers, Met homozygotes made fewer errors when selecting and manipulating self-generated thoughts. This effect was partly accounted for by an association between COMT genotype and visuospatial WM performance. We also observed a complex interaction between the influence of affective distractors, COMT genotype and sex on task accuracy: male, but not female, participants showed a sensitivity to the affective distractors that was dependent on COMT genotype. This was not accounted for by WM performance. This study provides novel evidence of the role of dopaminergic genetic variation on the ability to select and manipulate self-generated thoughts. The results also suggest sexually dimorphic effects of COMT genotype on the influence of affective distractors on executive function. © The Author (2014). Published by Oxford University Press.

  20. A Learning Framework for Winner-Take-All Networks with Stochastic Synapses.

    PubMed

    Mostafa, Hesham; Cauwenberghs, Gert

    2018-06-01

    Many recent generative models make use of neural networks to transform the probability distribution of a simple low-dimensional noise process into the complex distribution of the data. This raises the question of whether biological networks operate along similar principles to implement a probabilistic model of the environment through transformations of intrinsic noise processes. The intrinsic neural and synaptic noise processes in biological networks, however, are quite different from the noise processes used in current abstract generative networks. This, together with the discrete nature of spikes and local circuit interactions among the neurons, raises several difficulties when using recent generative modeling frameworks to train biologically motivated models. In this letter, we show that a biologically motivated model based on multilayer winner-take-all circuits and stochastic synapses admits an approximate analytical description. This allows us to use the proposed networks in a variational learning setting where stochastic backpropagation is used to optimize a lower bound on the data log likelihood, thereby learning a generative model of the data. We illustrate the generality of the proposed networks and learning technique by using them in a structured output prediction task and a semisupervised learning task. Our results extend the domain of application of modern stochastic network architectures to networks where synaptic transmission failure is the principal noise mechanism.

Top