Sample records for generation scheduling problem

  1. A New Lagrangian Relaxation Method Considering Previous Hour Scheduling for Unit Commitment Problem

    NASA Astrophysics Data System (ADS)

    Khorasani, H.; Rashidinejad, M.; Purakbari-Kasmaie, M.; Abdollahi, A.

    2009-08-01

    Generation scheduling is a crucial challenge in power systems especially under new environment of liberalization of electricity industry. A new Lagrangian relaxation method for unit commitment (UC) has been presented for solving generation scheduling problem. This paper focuses on the economical aspect of UC problem, while the previous hour scheduling as a very important issue is studied. In this paper generation scheduling of present hour has been conducted by considering the previous hour scheduling. The impacts of hot/cold start-up cost have been taken in to account in this paper. Case studies and numerical analysis presents significant outcomes while it demonstrates the effectiveness of the proposed method.

  2. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  3. Automatic Generation of Heuristics for Scheduling

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Bresina, John L.; Rodgers, Stuart M.

    1997-01-01

    This paper presents a technique, called GenH, that automatically generates search heuristics for scheduling problems. The impetus for developing this technique is the growing consensus that heuristics encode advice that is, at best, useful in solving most, or typical, problem instances, and, at worst, useful in solving only a narrowly defined set of instances. In either case, heuristic problem solvers, to be broadly applicable, should have a means of automatically adjusting to the idiosyncrasies of each problem instance. GenH generates a search heuristic for a given problem instance by hill-climbing in the space of possible multi-attribute heuristics, where the evaluation of a candidate heuristic is based on the quality of the solution found under its guidance. We present empirical results obtained by applying GenH to the real world problem of telescope observation scheduling. These results demonstrate that GenH is a simple and effective way of improving the performance of an heuristic scheduler.

  4. Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1989-01-01

    A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.

  5. Compiling Planning into Scheduling: A Sketch

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Crawford, James M.; Smith, David E.

    2004-01-01

    Although there are many approaches for compiling a planning problem into a static CSP or a scheduling problem, current approaches essentially preserve the structure of the planning problem in the encoding. In this pape: we present a fundamentally different encoding that more accurately resembles a scheduling problem. We sketch the approach and argue, based on an example, that it is possible to automate the generation of such an encoding for problems with certain properties and thus produce a compiler of planning into scheduling problems. Furthermore we argue that many NASA problems exhibit these properties and that such a compiler would provide benefits to both theory and practice.

  6. Space power system scheduling using an expert system

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Biefeld, E.; Costello, L.; Klein, J. W.

    1986-01-01

    A most pressing problem in space exploration is timely spacecraft power system sequence generation, which requires the scheduling of a set of loads given a set of resource constraints. This is particularly important after an anomaly or failure. This paper discusses the power scheduling problem and how the software program, Plan-It, can be used as a consultant for scheduling power system activities. Modeling of power activities, human interface, and two of the many strategies used by Plan-It are discussed. Preliminary results showing the development of a conflict-free sequence from an initial sequence with conflicts is presented. It shows that a 4-day schedule can be generated in a matter of a few minutes, which provides sufficient time in many cases to aid the crew in the replanning of loads and generation use following a failure or anomaly.

  7. A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan

    NASA Astrophysics Data System (ADS)

    Bhongade, A. S.; Khodke, P. M.

    2014-04-01

    Manufacturing systems, in which, several parts are processed through machining workstations and later assembled to form final products, is common. Though scheduling of such problems are solved using heuristics, available solution approaches can provide solution for only moderate sized problems due to large computation time required. In this work, scheduling approach is developed for such flow-shop manufacturing system having machining workstations followed by assembly workstations. The initial schedule is generated using Disjunctive method and genetic algorithm (GA) is applied further for generating schedule for large sized problems. GA is found to give near optimal solution based on the deviation of makespan from lower bound. The lower bound of makespan of such problem is estimated and percent deviation of makespan from lower bounds is used as a performance measure to evaluate the schedules. Computational experiments are conducted on problems developed using fractional factorial orthogonal array, varying the number of parts per product, number of products, and number of workstations (ranging upto 1,520 number of operations). A statistical analysis indicated the significance of all the three factors considered. It is concluded that GA method can obtain optimal makespan.

  8. Cost-efficient scheduling of FAST observations

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi

    2018-03-01

    A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.

  9. Scheduling the resident 80-hour work week: an operations research algorithm.

    PubMed

    Day, T Eugene; Napoli, Joseph T; Kuo, Paul C

    2006-01-01

    The resident 80-hour work week requires that programs now schedule duty hours. Typically, scheduling is performed in an empirical "trial-and-error" fashion. However, this is a classic "scheduling" problem from the field of operations research (OR). It is similar to scheduling issues that airlines must face with pilots and planes routing through various airports at various times. The authors hypothesized that an OR approach using iterative computer algorithms could provide a rational scheduling solution. Institution-specific constraints of the residency problem were formulated. A total of 56 residents are rotating through 4 hospitals. Additional constraints were dictated by the Residency Review Committee (RRC) rules or the specific surgical service. For example, at Hospital 1, during the weekday hours between 6 am and 6 pm, there will be a PGY4 or PGY5 and a PGY2 or PGY3 on-duty to cover Service "A." A series of equations and logic statements was generated to satisfy all constraints and requirements. These were restated in the Optimization Programming Language used by the ILOG software suite for solving mixed integer programming problems. An integer programming solution was generated to this resource-constrained assignment problem. A total of 30,900 variables and 12,443 constraints were required. A total of man-hours of programming were used; computer run-time was 25.9 hours. A weekly schedule was generated for each resident that satisfied the RRC regulations while fulfilling all stated surgical service requirements. Each required between 64 and 80 weekly resident duty hours. The authors conclude that OR is a viable approach to schedule resident work hours. This technique is sufficiently robust to accommodate changes in resident numbers, service requirements, and service and hospital rotations.

  10. The comparison of predictive scheduling algorithms for different sizes of job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.; Krenczyk, D.

    2016-08-01

    In the paper a survey of predictive and reactive scheduling methods is done in order to evaluate how the ability of prediction of reliability characteristics influences over robustness criteria. The most important reliability characteristics are: Mean Time to Failure, Mean Time of Repair. Survey analysis is done for a job shop scheduling problem. The paper answers the question: what method generates robust schedules in the case of a bottleneck failure occurrence before, at the beginning of planned maintenance actions or after planned maintenance actions? Efficiency of predictive schedules is evaluated using criteria: makespan, total tardiness, flow time, idle time. Efficiency of reactive schedules is evaluated using: solution robustness criterion and quality robustness criterion. This paper is the continuation of the research conducted in the paper [1], where the survey of predictive and reactive scheduling methods is done only for small size scheduling problems.

  11. Constraint monitoring in TOSCA

    NASA Technical Reports Server (NTRS)

    Beck, Howard

    1992-01-01

    The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.

  12. A derived heuristics based multi-objective optimization procedure for micro-grid scheduling

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deb, Kalyanmoy; Fang, Yanjun

    2017-06-01

    With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.

  13. Automated Scheduling Via Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  14. Generation of Look-Up Tables for Dynamic Job Shop Scheduling Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Oktaviandri, Muchamad; Hassan, Adnan; Mohd Shaharoun, Awaluddin

    2016-02-01

    Majority of existing scheduling techniques are based on static demand and deterministic processing time, while most job shop scheduling problem are concerned with dynamic demand and stochastic processing time. As a consequence, the solutions obtained from the traditional scheduling technique are ineffective wherever changes occur to the system. Therefore, this research intends to develop a decision support tool (DST) based on promising artificial intelligent that is able to accommodate the dynamics that regularly occur in job shop scheduling problem. The DST was designed through three phases, i.e. (i) the look-up table generation, (ii) inverse model development and (iii) integration of DST components. This paper reports the generation of look-up tables for various scenarios as a part in development of the DST. A discrete event simulation model was used to compare the performance among SPT, EDD, FCFS, S/OPN and Slack rules; the best performances measures (mean flow time, mean tardiness and mean lateness) and the job order requirement (inter-arrival time, due dates tightness and setup time ratio) which were compiled into look-up tables. The well-known 6/6/J/Cmax Problem from Muth and Thompson (1963) was used as a case study. In the future, the performance measure of various scheduling scenarios and the job order requirement will be mapped using ANN inverse model.

  15. A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan

    NASA Astrophysics Data System (ADS)

    Rameshkumar, K.; Rajendran, C.

    2018-02-01

    In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.

  16. Coordinating space telescope operations in an integrated planning and scheduling architecture

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela

    1992-01-01

    The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.

  17. A System for Automatically Generating Scheduling Heuristics

    NASA Technical Reports Server (NTRS)

    Morris, Robert

    1996-01-01

    The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.

  18. Multi-trip vehicle routing and scheduling problem with time window in real life

    NASA Astrophysics Data System (ADS)

    Sze, San-Nah; Chiew, Kang-Leng; Sze, Jeeu-Fong

    2012-09-01

    This paper studies a manpower scheduling problem with multiple maintenance operations and vehicle routing considerations. Service teams located at a common service centre are required to travel to different customer sites. All customers must be served within given time window, which are known in advance. The scheduling process must take into consideration complex constraints such as a meal break during the team's shift, multiple travelling trips, synchronisation of service teams and working shifts. The main objective of this study is to develop a heuristic that can generate high quality solution in short time for large problem instances. A Two-stage Scheduling Heuristic is developed for different variants of the problem. Empirical results show that the proposed solution performs effectively and efficiently. In addition, our proposed approximation algorithm is very flexible and can be easily adapted to different scheduling environments and operational requirements.

  19. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James

    2014-01-01

    NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating optimal space-data communications schedules.

  20. A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints

    NASA Astrophysics Data System (ADS)

    Hazarika, Durlav; Das, Ranjay

    2018-04-01

    This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.

  1. Investigations into Generalization of Constraint-Based Scheduling Theories with Applications to Space Telescope Observation Scheduling

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven S.

    1996-01-01

    This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.

  2. Analysis of Feeder Bus Network Design and Scheduling Problems

    PubMed Central

    Almasi, Mohammad Hadi; Karim, Mohamed Rehan

    2014-01-01

    A growing concern for public transit is its inability to shift passenger's mode from private to public transport. In order to overcome this problem, a more developed feeder bus network and matched schedules will play important roles. The present paper aims to review some of the studies performed on Feeder Bus Network Design and Scheduling Problem (FNDSP) based on three distinctive parts of the FNDSP setup, namely, problem description, problem characteristics, and solution approaches. The problems consist of different subproblems including data preparation, feeder bus network design, route generation, and feeder bus scheduling. Subsequently, descriptive analysis and classification of previous works are presented to highlight the main characteristics and solution methods. Finally, some of the issues and trends for future research are identified. This paper is targeted at dealing with the FNDSP to exhibit strategic and tactical goals and also contributes to the unification of the field which might be a useful complement to the few existing reviews. PMID:24526890

  3. Uncertainty management by relaxation of conflicting constraints in production process scheduling

    NASA Technical Reports Server (NTRS)

    Dorn, Juergen; Slany, Wolfgang; Stary, Christian

    1992-01-01

    Mathematical-analytical methods as used in Operations Research approaches are often insufficient for scheduling problems. This is due to three reasons: the combinatorial complexity of the search space, conflicting objectives for production optimization, and the uncertainty in the production process. Knowledge-based techniques, especially approximate reasoning and constraint relaxation, are promising ways to overcome these problems. A case study from an industrial CIM environment, namely high-grade steel production, is presented to demonstrate how knowledge-based scheduling with the desired capabilities could work. By using fuzzy set theory, the applied knowledge representation technique covers the uncertainty inherent in the problem domain. Based on this knowledge representation, a classification of jobs according to their importance is defined which is then used for the straightforward generation of a schedule. A control strategy which comprises organizational, spatial, temporal, and chemical constraints is introduced. The strategy supports the dynamic relaxation of conflicting constraints in order to improve tentative schedules.

  4. Online Optimization Method for Operation of Generators in a Micro Grid

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi

    Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.

  5. Dynamic scheduling and planning parallel observations on large Radio Telescope Arrays with the Square Kilometre Array in mind

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes

    2011-12-01

    Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the literature: The inability of a GA to properly improve schedules and the generation of schedules with frequent interruptions. Finally, we demonstrate the scheduling framework for several operating telescopes: (1) Dynamic re-scheduling with the AUT Warkworth 12m telescope, (2) Scheduling for the Australian Mopra 22m telescope and scheduling for the Allen Telescope Array. Furthermore, we discuss the applicability of the presented scheduling framework to the Atacama Large Millimeter/submillimeter Array (ALMA, in construction) and the SKA. In particular, during the development phase of the SKA, this dynamic, scalable scheduling framework can accommodate changing conditions.

  6. Integrated resource scheduling in a distributed scheduling environment

    NASA Technical Reports Server (NTRS)

    Zoch, David; Hall, Gardiner

    1988-01-01

    The Space Station era presents a highly-complex multi-mission planning and scheduling environment exercised over a highly distributed system. In order to automate the scheduling process, customers require a mechanism for communicating their scheduling requirements to NASA. A request language that a remotely-located customer can use to specify his scheduling requirements to a NASA scheduler, thus automating the customer-scheduler interface, is described. This notation, Flexible Envelope-Request Notation (FERN), allows the user to completely specify his scheduling requirements such as resource usage, temporal constraints, and scheduling preferences and options. The FERN also contains mechanisms for representing schedule and resource availability information, which are used in the inter-scheduler inconsistency resolution process. Additionally, a scheduler is described that can accept these requests, process them, generate schedules, and return schedule and resource availability information to the requester. The Request-Oriented Scheduling Engine (ROSE) was designed to function either as an independent scheduler or as a scheduling element in a network of schedulers. When used in a network of schedulers, each ROSE communicates schedule and resource usage information to other schedulers via the FERN notation, enabling inconsistencies to be resolved between schedulers. Individual ROSE schedules are created by viewing the problem as a constraint satisfaction problem with a heuristically guided search strategy.

  7. Technology for planning and scheduling under complex constraints

    NASA Astrophysics Data System (ADS)

    Alguire, Karen M.; Pedro Gomes, Carla O.

    1997-02-01

    Within the context of law enforcement, several problems fall into the category of planning and scheduling under constraints. Examples include resource and personnel scheduling, and court scheduling. In the case of court scheduling, a schedule must be generated considering available resources, e.g., court rooms and personnel. Additionally, there are constraints on individual court cases, e.g., temporal and spatial, and between different cases, e.g., precedence. Finally, there are overall objectives that the schedule should satisfy such as timely processing of cases and optimal use of court facilities. Manually generating a schedule that satisfies all of the constraints is a very time consuming task. As the number of court cases and constraints increases, this becomes increasingly harder to handle without the assistance of automatic scheduling techniques. This paper describes artificial intelligence (AI) technology that has been used to develop several high performance scheduling applications including a military transportation scheduler, a military in-theater airlift scheduler, and a nuclear power plant outage scheduler. We discuss possible law enforcement applications where we feel the same technology could provide long-term benefits to law enforcement agencies and their operations personnel.

  8. Space communications scheduler: A rule-based approach to adaptive deadline scheduling

    NASA Technical Reports Server (NTRS)

    Straguzzi, Nicholas

    1990-01-01

    Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.

  9. Knowledge-based design of generate-and-patch problem solvers that solve global resource assignment problems

    NASA Technical Reports Server (NTRS)

    Voigt, Kerstin

    1992-01-01

    We present MENDER, a knowledge based system that implements software design techniques that are specialized to automatically compile generate-and-patch problem solvers that satisfy global resource assignments problems. We provide empirical evidence of the superior performance of generate-and-patch over generate-and-test: even with constrained generation, for a global constraint in the domain of '2D-floorplanning'. For a second constraint in '2D-floorplanning' we show that even when it is possible to incorporate the constraint into a constrained generator, a generate-and-patch problem solver may satisfy the constraint more rapidly. We also briefly summarize how an extended version of our system applies to a constraint in the domain of 'multiprocessor scheduling'.

  10. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  11. Empirical results on scheduling and dynamic backtracking

    NASA Technical Reports Server (NTRS)

    Boddy, Mark S.; Goldman, Robert P.

    1994-01-01

    At the Honeywell Technology Center (HTC), we have been working on a scheduling problem related to commercial avionics. This application is large, complex, and hard to solve. To be a little more concrete: 'large' means almost 20,000 activities, 'complex' means several activity types, periodic behavior, and assorted types of temporal constraints, and 'hard to solve' means that we have been unable to eliminate backtracking through the use of search heuristics. At this point, we can generate solutions, where solutions exist, or report failure and sometimes why the system failed. To the best of our knowledge, this is among the largest and most complex scheduling problems to have been solved as a constraint satisfaction problem, at least that has appeared in the published literature. This abstract is a preliminary report on what we have done and how. In the next section, we present our approach to treating scheduling as a constraint satisfaction problem. The following sections present the application in more detail and describe how we solve scheduling problems in the application domain. The implemented system makes use of Ginsberg's Dynamic Backtracking algorithm, with some minor extensions to improve its utility for scheduling. We describe those extensions and the performance of the resulting system. The paper concludes with some general remarks, open questions and plans for future work.

  12. Scheduling IT Staff at a Bank: A Mathematical Programming Approach

    PubMed Central

    Labidi, M.; Mrad, M.; Gharbi, A.; Louly, M. A.

    2014-01-01

    We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules. PMID:24772032

  13. Scheduling IT staff at a bank: a mathematical programming approach.

    PubMed

    Labidi, M; Mrad, M; Gharbi, A; Louly, M A

    2014-01-01

    We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules.

  14. Development of Watch Schedule Using Rules Approach

    NASA Astrophysics Data System (ADS)

    Jurkevicius, Darius; Vasilecas, Olegas

    The software for schedule creation and optimization solves a difficult, important and practical problem. The proposed solution is an online employee portal where administrator users can create and manage watch schedules and employee requests. Each employee can login with his/her own account and see his/her assignments, manage requests, etc. Employees set as administrators can perform the employee scheduling online, manage requests, etc. This scheduling software allows users not only to see the initial and optimized watch schedule in a simple and understandable form, but also to create special rules and criteria and input their business. The system using rules automatically will generate watch schedule.

  15. Meta-RaPS Algorithm for the Aerial Refueling Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Kaplan, Sezgin; Arin, Arif; Rabadi, Ghaith

    2011-01-01

    The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on multiple tankers (machines). ARSP assumes that jobs have different release times and due dates, The total weighted tardiness is used to evaluate schedule's quality. Therefore, ARSP can be modeled as a parallel machine scheduling with release limes and due dates to minimize the total weighted tardiness. Since ARSP is NP-hard, it will be more appropriate to develop a pproimate or heuristic algorithm to obtain solutions in reasonable computation limes. In this paper, Meta-Raps-ATC algorithm is implemented to create high quality solutions. Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a recent and promising meta heuristic that is applied by introducing randomness to a construction heuristic. The Apparent Tardiness Rule (ATC), which is a good rule for scheduling problems with tardiness objective, is used to construct initial solutions which are improved by an exchanging operation. Results are presented for generated instances.

  16. Generating effective project scheduling heuristics by abstraction and reconstitution

    NASA Technical Reports Server (NTRS)

    Janakiraman, Bhaskar; Prieditis, Armand

    1992-01-01

    A project scheduling problem consists of a finite set of jobs, each with fixed integer duration, requiring one or more resources such as personnel or equipment, and each subject to a set of precedence relations, which specify allowable job orderings, and a set of mutual exclusion relations, which specify jobs that cannot overlap. No job can be interrupted once started. The objective is to minimize project duration. This objective arises in nearly every large construction project--from software to hardware to buildings. Because such project scheduling problems are NP-hard, they are typically solved by branch-and-bound algorithms. In these algorithms, lower-bound duration estimates (admissible heuristics) are used to improve efficiency. One way to obtain an admissible heuristic is to remove (abstract) all resources and mutual exclusion constraints and then obtain the minimal project duration for the abstracted problem; this minimal duration is the admissible heuristic. Although such abstracted problems can be solved efficiently, they yield inaccurate admissible heuristics precisely because those constraints that are central to solving the original problem are abstracted. This paper describes a method to reconstitute the abstracted constraints back into the solution to the abstracted problem while maintaining efficiency, thereby generating better admissible heuristics. Our results suggest that reconstitution can make good admissible heuristics even better.

  17. The terminal area automated path generation problem

    NASA Technical Reports Server (NTRS)

    Hsin, C.-C.

    1977-01-01

    The automated terminal area path generation problem in the advanced Air Traffic Control System (ATC), has been studied. Definitions, input, output and the interrelationships with other ATC functions have been discussed. Alternatives in modeling the problem have been identified. Problem formulations and solution techniques are presented. In particular, the solution of a minimum effort path stretching problem (path generation on a given schedule) has been carried out using the Newton-Raphson trajectory optimization method. Discussions are presented on the effect of different delivery time, aircraft entry position, initial guess on the boundary conditions, etc. Recommendations are made on real-world implementations.

  18. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James L.

    2010-01-01

    NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.

  19. Automatic generation of efficient orderings of events for scheduling applications

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1994-01-01

    In scheduling a set of tasks, it is often not known with certainty how long a given event will take. We call this duration uncertainty. Duration uncertainty is a primary obstacle to the successful completion of a schedule. If a duration of one task is longer than expected, the remaining tasks are delayed. The delay may result in the abandonment of the schedule itself, a phenomenon known as schedule breakage. One response to schedule breakage is on-line, dynamic rescheduling. A more recent alternative is called proactive rescheduling. This method uses statistical data about the durations of events in order to anticipate the locations in the schedule where breakage is likely prior to the execution of the schedule. It generates alternative schedules at such sensitive points, which can be then applied by the scheduler at execution time, without the delay incurred by dynamic rescheduling. This paper proposes a technique for making proactive error management more effective. The technique is based on applying a similarity-based method of clustering to the problem of identifying similar events in a set of events.

  20. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    DOE PAGES

    Yaw, Sean; Mumey, Brendan

    2017-10-28

    Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less

  1. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaw, Sean; Mumey, Brendan

    Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less

  2. A novel hybrid genetic algorithm to solve the make-to-order sequence-dependent flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.

    2014-04-01

    Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

  3. A Strategy for Autogeneration of Space Shuttle Ground Processing Simulation Models for Project Makespan Estimations

    NASA Technical Reports Server (NTRS)

    Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.

    2005-01-01

    Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.

  4. An innovative artificial bee colony algorithm and its application to a practical intercell scheduling problem

    NASA Astrophysics Data System (ADS)

    Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong

    2018-06-01

    In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.

  5. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.

    PubMed

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.

  6. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path

    PubMed Central

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901

  7. A comparison of mixed-integer linear programming models for workforce scheduling with position-dependent processing times

    NASA Astrophysics Data System (ADS)

    Moreno-Camacho, Carlos A.; Montoya-Torres, Jairo R.; Vélez-Gallego, Mario C.

    2018-06-01

    Only a few studies in the available scientific literature address the problem of having a group of workers that do not share identical levels of productivity during the planning horizon. This study considers a workforce scheduling problem in which the actual processing time is a function of the scheduling sequence to represent the decline in workers' performance, evaluating two classical performance measures separately: makespan and maximum tardiness. Several mathematical models are compared with each other to highlight the advantages of each approach. The mathematical models are tested with randomly generated instances available from a public e-library.

  8. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing

    NASA Astrophysics Data System (ADS)

    Suma, T.; Murugesan, R.

    2018-04-01

    The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.

  9. Automated Long - Term Scheduling for the SOFIA Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Civeit, Thomas

    2013-01-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  10. APGEN Scheduling: 15 Years of Experience in Planning Automation

    NASA Technical Reports Server (NTRS)

    Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel

    2014-01-01

    In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.

  11. A ranking algorithm for spacelab crew and experiment scheduling

    NASA Technical Reports Server (NTRS)

    Grone, R. D.; Mathis, F. H.

    1980-01-01

    The problem of obtaining an optimal or near optimal schedule for scientific experiments to be performed on Spacelab missions is addressed. The current capabilities in this regard are examined and a method of ranking experiments in order of difficulty is developed to support the existing software. Experimental data is obtained from applying this method to the sets of experiments corresponding to Spacelab mission 1, 2, and 3. Finally, suggestions are made concerning desirable modifications and features of second generation software being developed for this problem.

  12. An ant colony optimization heuristic for an integrated production and distribution scheduling problem

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Chia; Li, Vincent C.; Chiang, Chia-Ju

    2014-04-01

    Make-to-order or direct-order business models that require close interaction between production and distribution activities have been adopted by many enterprises in order to be competitive in demanding markets. This article considers an integrated production and distribution scheduling problem in which jobs are first processed by one of the unrelated parallel machines and then distributed to corresponding customers by capacitated vehicles without intermediate inventory. The objective is to find a joint production and distribution schedule so that the weighted sum of total weighted job delivery time and the total distribution cost is minimized. This article presents a mathematical model for describing the problem and designs an algorithm using ant colony optimization. Computational experiments illustrate that the algorithm developed is capable of generating near-optimal solutions. The computational results also demonstrate the value of integrating production and distribution in the model for the studied problem.

  13. Collective neurodynamic optimization for economic emission dispatch problem considering valve point effect in microgrid.

    PubMed

    Wang, Tiancai; He, Xing; Huang, Tingwen; Li, Chuandong; Zhang, Wei

    2017-09-01

    The economic emission dispatch (EED) problem aims to control generation cost and reduce the impact of waste gas on the environment. It has multiple constraints and nonconvex objectives. To solve it, the collective neurodynamic optimization (CNO) method, which combines heuristic approach and projection neural network (PNN), is attempted to optimize scheduling of an electrical microgrid with ten thermal generators and minimize the plus of generation and emission cost. As the objective function has non-derivative points considering valve point effect (VPE), differential inclusion approach is employed in the PNN model introduced to deal with them. Under certain conditions, the local optimality and convergence of the dynamic model for the optimization problem is analyzed. The capability of the algorithm is verified in a complicated situation, where transmission loss and prohibited operating zones are considered. In addition, the dynamic variation of load power at demand side is considered and the optimal scheduling of generators within 24 h is described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A DAG Scheduling Scheme on Heterogeneous Computing Systems Using Tuple-Based Chemical Reaction Optimization

    PubMed Central

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977

  15. A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization.

    PubMed

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

  16. Automated Planning for a Deep Space Communications Station

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Fisher, Forest; Mutz, Darren; Chien, Steve

    1999-01-01

    This paper describes the application of Artificial Intelligence planning techniques to the problem of antenna track plan generation for a NASA Deep Space Communications Station. Me described system enables an antenna communications station to automatically respond to a set of tracking goals by correctly configuring the appropriate hardware and software to provide the requested communication services. To perform this task, the Automated Scheduling and Planning Environment (ASPEN) has been applied to automatically produce antenna trucking plans that are tailored to support a set of input goals. In this paper, we describe the antenna automation problem, the ASPEN planning and scheduling system, how ASPEN is used to generate antenna track plans, the results of several technology demonstrations, and future work utilizing dynamic planning technology.

  17. Developing optimal nurses work schedule using integer programming

    NASA Astrophysics Data System (ADS)

    Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena

    2017-08-01

    Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.

  18. On the asymptotic optimality and improved strategies of SPTB heuristic for open-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Bai, Danyu; Zhang, Zhihai

    2014-08-01

    This article investigates the open-shop scheduling problem with the optimal criterion of minimising the sum of quadratic completion times. For this NP-hard problem, the asymptotic optimality of the shortest processing time block (SPTB) heuristic is proven in the sense of limit. Moreover, three different improvements, namely, the job-insert scheme, tabu search and genetic algorithm, are introduced to enhance the quality of the original solution generated by the SPTB heuristic. At the end of the article, a series of numerical experiments demonstrate the convergence of the heuristic, the performance of the improvements and the effectiveness of the quadratic objective.

  19. PLAN-IT-2: The next generation planning and scheduling tool

    NASA Technical Reports Server (NTRS)

    Eggemeyer, William C.; Cruz, Jennifer W.

    1990-01-01

    PLAN-IT is a scheduling program which has been demonstrated and evaluated in a variety of scheduling domains. The capability enhancements being made for the next generation of PLAN-IT, called PLAN-IT-2 is discussed. PLAN-IT-2 represents a complete rewrite of the original PLAN-IT incorporating major changes as suggested by the application experiences with the original PLAN-IT. A few of the enhancements described are additional types of constraints, such as states and resettable-depletables (batteries), dependencies between constraints, multiple levels of activity planning during the scheduling process, pattern constraint searching for opportunities as opposed to just minimizing the amount of conflicts, additional customization construction features for display and handling of diverse multiple time systems, and reduction in both the size and the complexity for creating the knowledge-base to address the different problem domains.

  20. Skipping Strategy (SS) for Initial Population of Job-Shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Abdolrazzagh-Nezhad, M.; Nababan, E. B.; Sarim, H. M.

    2018-03-01

    Initial population in job-shop scheduling problem (JSSP) is an essential step to obtain near optimal solution. Techniques used to solve JSSP are computationally demanding. Skipping strategy (SS) is employed to acquire initial population after sequence of job on machine and sequence of operations (expressed in Plates-jobs and mPlates-jobs) are determined. The proposed technique is applied to benchmark datasets and the results are compared to that of other initialization techniques. It is shown that the initial population obtained from the SS approach could generate optimal solution.

  1. Maximizing the nurses' preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Jafari, Hamed; Salmasi, Nasser

    2015-09-01

    The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.

  2. Solving a Production Scheduling Problem by Means of Two Biobjective Metaheuristic Procedures

    NASA Astrophysics Data System (ADS)

    Toncovich, Adrián; Oliveros Colay, María José; Moreno, José María; Corral, Jiménez; Corral, Rafael

    2009-11-01

    Production planning and scheduling problems emphasize the need for the availability of management tools that can help to assure proper service levels to customers, maintaining, at the same time, the production costs at acceptable levels and maximizing the utilization of the production facilities. In this case, a production scheduling problem that arises in the context of the activities of a company dedicated to the manufacturing of furniture for children and teenagers is addressed. Two bicriteria metaheuristic procedures are proposed to solve the sequencing problem in a production equipment that constitutes the bottleneck of the production process of the company. The production scheduling problem can be characterized as a general flow shop with sequence dependant setup times and additional inventory constraints. Two objectives are simultaneously taken into account when the quality of the candidate solutions is evaluated: the minimization of completion time of all jobs, or makespan, and the minimization of the total flow time of all jobs. Both procedures are based on a local search strategy that responds to the structure of the simulated annealing metaheuristic. In this case, both metaheuristic approaches generate a set of solutions that provides an approximation to the optimal Pareto front. In order to evaluate the performance of the proposed techniques a series of experiments was conducted. After analyzing the results, it can be said that the solutions provided by both approaches are adequate from the viewpoint of the quality as well as the computational effort involved in their generation. Nevertheless, a further refinement of the proposed procedures should be implemented with the aim of facilitating a quasi-automatic definition of the solution parameters.

  3. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  4. A Study on Real-Time Scheduling Methods in Holonic Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Iwamura, Koji; Taimizu, Yoshitaka; Sugimura, Nobuhiro

    Recently, new architectures of manufacturing systems have been proposed to realize flexible control structures of the manufacturing systems, which can cope with the dynamic changes in the volume and the variety of the products and also the unforeseen disruptions, such as failures of manufacturing resources and interruptions by high priority jobs. They are so called as the autonomous distributed manufacturing system, the biological manufacturing system and the holonic manufacturing system. Rule-based scheduling methods were proposed and applied to the real-time production scheduling problems of the HMS (Holonic Manufacturing System) in the previous report. However, there are still remaining problems from the viewpoint of the optimization of the whole production schedules. New procedures are proposed, in the present paper, to select the production schedules, aimed at generating effective production schedules in real-time. The proposed methods enable the individual holons to select suitable machining operations to be carried out in the next time period. Coordination process among the holons is also proposed to carry out the coordination based on the effectiveness values of the individual holons.

  5. Extended precedence preservative crossover for job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd

    2013-04-01

    Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.

  6. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  7. The application of connectionism to query planning/scheduling in intelligent user interfaces

    NASA Technical Reports Server (NTRS)

    Short, Nicholas, Jr.; Shastri, Lokendra

    1990-01-01

    In the mid nineties, the Earth Observing System (EOS) will generate an estimated 10 terabytes of data per day. This enormous amount of data will require the use of sophisticated technologies from real time distributed Artificial Intelligence (AI) and data management. Without regard to the overall problems in distributed AI, efficient models were developed for doing query planning and/or scheduling in intelligent user interfaces that reside in a network environment. Before intelligent query/planning can be done, a model for real time AI planning and/or scheduling must be developed. As Connectionist Models (CM) have shown promise in increasing run times, a connectionist approach to AI planning and/or scheduling is proposed. The solution involves merging a CM rule based system to a general spreading activation model for the generation and selection of plans. The system was implemented in the Rochester Connectionist Simulator and runs on a Sun 3/260.

  8. Maintaining consistency between planning hierarchies: Techniques and applications

    NASA Technical Reports Server (NTRS)

    Zoch, David R.

    1987-01-01

    In many planning and scheduling environments, it is desirable to be able to view and manipulate plans at different levels of abstraction, allowing the users the option of viewing and manipulating either a very detailed representation of the plan or a high-level more abstract version of the plan. Generating a detailed plan from a more abstract plan requires domain-specific planning/scheduling knowledge; the reverse process of generating a high-level plan from a detailed plan Reverse Plan Maintenance, or RPM) requires having the system remember the actions it took based on its domain-specific knowledge and its reasons for taking those actions. This reverse plan maintenance process is described as implemented in a specific planning and scheduling tool, The Mission Operations Planning Assistant (MOPA), as well as the applications of RPM to other planning and scheduling problems; emphasizing the knowledge that is needed to maintain the correspondence between the different hierarchical planning levels.

  9. A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Jolai, Fariborz; Assadipour, Ghazal

    Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.

  10. Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.R.

    This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.

  11. Microgrid Optimal Scheduling With Chance-Constrained Islanding Capability

    DOE PAGES

    Liu, Guodong; Starke, Michael R.; Xiao, B.; ...

    2017-01-13

    To facilitate the integration of variable renewable generation and improve the resilience of electricity sup-ply in a microgrid, this paper proposes an optimal scheduling strategy for microgrid operation considering constraints of islanding capability. A new concept, probability of successful islanding (PSI), indicating the probability that a microgrid maintains enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation after instantaneously islanding from the main grid, is developed. The PSI is formulated as mixed-integer linear program using multi-interval approximation taking into account the probability distributions of forecast errors of wind, PV and load. With themore » goal of minimizing the total operating cost while preserving user specified PSI, a chance-constrained optimization problem is formulated for the optimal scheduling of mirogrids and solved by mixed integer linear programming (MILP). Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling strategy. Lastly, we verify the relationship between PSI and various factors.« less

  12. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    PubMed

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  13. Advanced timeline systems

    NASA Technical Reports Server (NTRS)

    Bulfin, R. L.; Perdue, C. A.

    1994-01-01

    The Mission Planning Division of the Mission Operations Laboratory at NASA's Marshall Space Flight Center is responsible for scheduling experiment activities for space missions controlled at MSFC. In order to draw statistically relevant conclusions, all experiments must be scheduled at least once and may have repeated performances during the mission. An experiment consists of a series of steps which, when performed, provide results pertinent to the experiment's functional objective. Since these experiments require a set of resources such as crew and power, the task of creating a timeline of experiment activities for the mission is one of resource constrained scheduling. For each experiment, a computer model with detailed information of the steps involved in running the experiment, including crew requirements, processing times, and resource requirements is created. These models are then loaded into the Experiment Scheduling Program (ESP) which attempts to create a schedule which satisfies all resource constraints. ESP uses a depth-first search technique to place each experiment into a time interval, and a scoring function to evaluate the schedule. The mission planners generate several schedules and choose one with a high value of the scoring function to send through the approval process. The process of approving a mission timeline can take several months. Each timeline must meet the requirements of the scientists, the crew, and various engineering departments as well as enforce all resource restrictions. No single objective is considered in creating a timeline. The experiment scheduling problem is: given a set of experiments, place each experiment along the mission timeline so that all resource requirements and temporal constraints are met and the timeline is acceptable to all who must approve it. Much work has been done on multicriteria decision making (MCDM). When there are two criteria, schedules which perform well with respect to one criterion will often perform poorly with respect to the other. One schedule dominates another if it performs strictly better on one criterion, and no worse on the other. Clearly, dominated schedules are undesireable. A nondominated schedule can be generated by some sort of optimization problem. Generally there are two approaches: the first is a hierarchical approach while the second requires optimizing a weighting or scoring function.

  14. Advance Resource Provisioning in Bulk Data Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balman, Mehmet

    2012-10-01

    Today?s scientific and business applications generate mas- sive data sets that need to be transferred to remote sites for sharing, processing, and long term storage. Because of increasing data volumes and enhancement in current net- work technology that provide on-demand high-speed data access between collaborating institutions, data handling and scheduling problems have reached a new scale. In this paper, we present a new data scheduling model with ad- vance resource provisioning, in which data movement operations are defined with earliest start and latest comple- tion times. We analyze time-dependent resource assign- ment problem, and propose a new methodology to improvemore » the current systems by allowing researchers and higher-level meta-schedulers to use data-placement as-a-service, so they can plan ahead and submit transfer requests in advance. In general, scheduling with time and resource conflicts is NP-hard. We introduce an efficient algorithm to organize multiple requests on the fly, while satisfying users? time and resource constraints. We successfully tested our algorithm in a simple benchmark simulator that we have developed, and demonstrated its performance with initial test results.« less

  15. Nurse Scheduling by Cooperative GA with Effective Mutation Operator

    NASA Astrophysics Data System (ADS)

    Ohki, Makoto

    In this paper, we propose an effective mutation operators for Cooperative Genetic Algorithm (CGA) to be applied to a practical Nurse Scheduling Problem (NSP). The nurse scheduling is a very difficult task, because NSP is a complex combinatorial optimizing problem for which many requirements must be considered. In real hospitals, the schedule changes frequently. The changes of the shift schedule yields various problems, for example, a fall in the nursing level. We describe a technique of the reoptimization of the nurse schedule in response to a change. The conventional CGA is superior in ability for local search by means of its crossover operator, but often stagnates at the unfavorable situation because it is inferior to ability for global search. When the optimization stagnates for long generation cycle, a searching point, population in this case, would be caught in a wide local minimum area. To escape such local minimum area, small change in a population should be required. Based on such consideration, we propose a mutation operator activated depending on the optimization speed. When the optimization stagnates, in other words, when the optimization speed decreases, the mutation yields small changes in the population. Then the population is able to escape from a local minimum area by means of the mutation. However, this mutation operator requires two well-defined parameters. This means that user have to consider the value of these parameters carefully. To solve this problem, we propose a periodic mutation operator which has only one parameter to define itself. This simplified mutation operator is effective over a wide range of the parameter value.

  16. A discrete artificial bee colony algorithm incorporating differential evolution for the flow-shop scheduling problem with blocking

    NASA Astrophysics Data System (ADS)

    Han, Yu-Yan; Gong, Dunwei; Sun, Xiaoyan

    2015-07-01

    A flow-shop scheduling problem with blocking has important applications in a variety of industrial systems but is underrepresented in the research literature. In this study, a novel discrete artificial bee colony (ABC) algorithm is presented to solve the above scheduling problem with a makespan criterion by incorporating the ABC with differential evolution (DE). The proposed algorithm (DE-ABC) contains three key operators. One is related to the employed bee operator (i.e. adopting mutation and crossover operators of discrete DE to generate solutions with good quality); the second is concerned with the onlooker bee operator, which modifies the selected solutions using insert or swap operators based on the self-adaptive strategy; and the last is for the local search, that is, the insert-neighbourhood-based local search with a small probability is adopted to improve the algorithm's capability in exploitation. The performance of the proposed DE-ABC algorithm is empirically evaluated by applying it to well-known benchmark problems. The experimental results show that the proposed algorithm is superior to the compared algorithms in minimizing the makespan criterion.

  17. A Novel Algorithm Combining Finite State Method and Genetic Algorithm for Solving Crude Oil Scheduling Problem

    PubMed Central

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031

  18. Performance of Quantum Annealers on Hard Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Pokharel, Bibek; Venturelli, Davide; Rieffel, Eleanor

    Quantum annealers have been employed to attack a variety of optimization problems. We compared the performance of the current D-Wave 2X quantum annealer to that of the previous generation D-Wave Two quantum annealer on scheduling-type planning problems. Further, we compared the effect of different anneal times, embeddings of the logical problem, and different settings of the ferromagnetic coupling JF across the logical vertex-model on the performance of the D-Wave 2X quantum annealer. Our results show that at the best settings, the scaling of expected anneal time to solution for D-WAVE 2X is better than that of the DWave Two, but still inferior to that of state of the art classical solvers on these problems. We discuss the implication of our results for the design and programming of future quantum annealers. Supported by NASA Ames Research Center.

  19. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry

    1989-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  20. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry

    1990-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  1. Demand side management in recycling and electricity retail pricing

    NASA Astrophysics Data System (ADS)

    Kazan, Osman

    This dissertation addresses several problems from the recycling industry and electricity retail market. The first paper addresses a real-life scheduling problem faced by a national industrial recycling company. Based on their practices, a scheduling problem is defined, modeled, analyzed, and a solution is approximated efficiently. The recommended application is tested on the real-life data and randomly generated data. The scheduling improvements and the financial benefits are presented. The second problem is from electricity retail market. There are well-known patterns in daily usage in hours. These patterns change in shape and magnitude by seasons and days of the week. Generation costs are multiple times higher during the peak hours of the day. Yet most consumers purchase electricity at flat rates. This work explores analytic pricing tools to reduce peak load electricity demand for retailers. For that purpose, a nonlinear model that determines optimal hourly prices is established based on two major components: unit generation costs and consumers' utility. Both are analyzed and estimated empirically in the third paper. A pricing model is introduced to maximize the electric retailer's profit. As a result, a closed-form expression for the optimal price vector is obtained. Possible scenarios are evaluated for consumers' utility distribution. For the general case, we provide a numerical solution methodology to obtain the optimal pricing scheme. The models recommended are tested under various scenarios that consider consumer segmentation and multiple pricing policies. The recommended model reduces the peak load significantly in most cases. Several utility companies offer hourly pricing to their customers. They determine prices using historical data of unit electricity cost over time. In this dissertation we develop a nonlinear model that determines optimal hourly prices with parameter estimation. The last paper includes a regression analysis of the unit generation cost function obtained from Independent Service Operators. A consumer experiment is established to replicate the peak load behavior. As a result, consumers' utility function is estimated and optimal retail electricity prices are computed.

  2. Optimization of municipal waste collection scheduling and routing using vehicle assignment problem (case study of Surabaya city waste collection)

    NASA Astrophysics Data System (ADS)

    Ramdhani, M. N.; Baihaqi, I.; Siswanto, N.

    2018-04-01

    Waste collection and disposal become a major problem for many metropolitan cities. Growing population, limited vehicles, and increased road traffic make the waste transportation become more complex. Waste collection involves some key considerations, such as vehicle assignment, vehicle routes, and vehicle scheduling. In the scheduling process, each vehicle has a scheduled departure that serve each route. Therefore, vehicle’s assignments should consider the time required to finish one assigment on that route. The objective of this study is to minimize the number of vehicles needed to serve all routes by developing a mathematical model which uses assignment problem approach. The first step is to generated possible routes from the existing routes, followed by vehicle assignments for those certain routes. The result of the model shows fewer vehicles required to perform waste collection asa well as the the number of journeys that the vehicle to collect the waste to the landfill. The comparison of existing conditions with the model result indicates that the latter’s has better condition than the existing condition because each vehicle with certain route has an equal workload, all the result’s model has the maximum of two journeys for each route.

  3. Scalable approximate policies for Markov decision process models of hospital elective admissions.

    PubMed

    Zhu, George; Lizotte, Dan; Hoey, Jesse

    2014-05-01

    To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Scheduling Software for Complex Scenarios

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Preparing a vehicle and its payload for a single launch is a complex process that involves thousands of operations. Because the equipment and facilities required to carry out these operations are extremely expensive and limited in number, optimal assignment and efficient use are critically important. Overlapping missions that compete for the same resources, ground rules, safety requirements, and the unique needs of processing vehicles and payloads destined for space impose numerous constraints that, when combined, require advanced scheduling. Traditional scheduling systems use simple algorithms and criteria when selecting activities and assigning resources and times to each activity. Schedules generated by these simple decision rules are, however, frequently far from optimal. To resolve mission-critical scheduling issues and predict possible problem areas, NASA historically relied upon expert human schedulers who used their judgment and experience to determine where things should happen, whether they will happen on time, and whether the requested resources are truly necessary.

  5. PS: A nonprocedural language with data types and modules

    NASA Technical Reports Server (NTRS)

    Gokhale, M. B.

    1986-01-01

    The Problem Specification (PS) nonprocedural language is a very high level language for algorithm specification. PS is suitable for nonprogrammers, who can specify a problem using mathematically-oriented equations; for expert programmers, who can prototype different versions of a software system for evaluation; and for those who wish to use specifications for portions (if not all) of a program. PS has data types and modules similar to Modula-2. The compiler generates C code. PS is first shown by example, and then efficiency issues in scheduling and code generation are discussed.

  6. Profit-based conventional resource scheduling with renewable energy penetration

    NASA Astrophysics Data System (ADS)

    Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.

    2017-08-01

    Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.

  7. A space station onboard scheduling assistant

    NASA Technical Reports Server (NTRS)

    Brindle, A. F.; Anderson, B. H.

    1988-01-01

    One of the goals for the Space Station is to achieve greater autonomy, and have less reliance on ground commanding than previous space missions. This means that the crew will have to take an active role in scheduling and rescheduling their activities onboard, perhaps working from preliminary schedules generated on the ground. Scheduling is a time intensive task, whether performed manually or automatically, so the best approach to solving onboard scheduling problems may involve crew members working with an interactive software scheduling package. A project is described which investigates a system that uses knowledge based techniques for the rescheduling of experiments within the Materials Technology Laboratory of the Space Station. Particular attention is paid to: (1) methods for rapid response rescheduling to accommodate unplanned changes in resource availability, (2) the nature of the interface to the crew, (3) the representation of the many types of data within the knowledge base, and (4) the possibility of applying rule-based and constraint-based reasoning methods to onboard activity scheduling.

  8. Impact of Feed Delivery Pattern on Aerial Particulate Matter and Behavior of Feedlot Cattle †

    PubMed Central

    Mitloehner, Frank M.; Dailey, Jeff W.; Morrow, Julie L.; McGlone, John J.

    2017-01-01

    Simple Summary Fine particulate matter (with less than 2.5 microns diameter; aka PM2.5) are a human and animal health concern because they can carry microbes and chemicals into the lungs. Particulate matter (PM) in general emitted from cattle feedlots can reach high concentrations. When feedlot cattle were given an altered feeding schedule (ALT) that more closely reflected their biological feeding times compared with conventional morning feeding (CON), PM2.5 generation at peak times was substantially lowered. Average daily generation of PM2.5 was decreased by 37% when cattle behavior was redirected away from PM-generating behaviors and toward evening feeding behaviors. Behavioral problems such as agonistic (i.e., aggressive) and bulling (i.e., mounting each other) behaviors also were reduced several fold among ALT compared with CON cattle. Intake of feed was less and daily body weight gain tended to be less with the altered feeding schedule while efficiency of feed utilization was not affected. Although ALT may pose a challenge in feed delivery and labor scheduling, cattle had fewer behavioral problems and reduced PM2.5 generation when feed delivery times matched with the natural drive to eat in a crepuscular pattern. Abstract Fine particulate matter with less than 2.5 microns diameter (PM2.5) generated by cattle in feedlots is an environmental pollutant and a potential human and animal health issue. The objective of this study was to determine if a feeding schedule affects cattle behaviors that promote PM2.5 in a commercial feedlot. The study used 2813 crossbred steers housed in 14 adjacent pens at a large-scale commercial West Texas feedlot. Treatments were conventional feeding at 0700, 1000, and 1200 (CON) or feeding at 0700, 1000, and 1830 (ALT), the latter feeding time coincided with dusk. A mobile behavior lab was used to quantify behaviors of steers that were associated with generation of PM2.5 (e.g., fighting, mounting of peers, and increased locomotion). PM2.5 samplers measured respirable particles with a mass median diameter ≤2.5 μm (PM2.5) every 15 min over a period of 7 d in April and May. Simultaneously, the ambient temperature, humidity, wind speed and direction, precipitation, air pressure, and solar radiation were measured with a weather station. Elevated downwind PM2.5 concentrations were measured at dusk, when cattle that were fed according to the ALT vs. the CON feeding schedule, demonstrated less PM2.5-generating behaviors (p < 0.05). At dusk, steers on ALT vs. CON feeding schedules ate or were waiting to eat (standing in second row behind feeding cattle) at much greater rates (p < 0.05). Upwind PM2.5 concentrations were similar between the treatments. Downwind PM2.5 concentrations averaged over 24 h were lower from ALT compared with CON pens (0.072 vs. 0.115 mg/m3, p < 0.01). However, dry matter intake (DMI) was less (p < 0.05), and average daily gain (ADG) tended to be less (p < 0.1) in cattle that were fed according to the ALT vs. the CON feeding schedules, whereas feed efficiency (aka gain to feed, G:F) was not affected. Although ALT feeding may pose a challenge in feed delivery and labor scheduling, cattle exhibited fewer PM2.5-generating behaviors and reduced generation of PM2.5 when feed delivery times matched the natural desires of cattle to eat in a crepuscular pattern. PMID:28257061

  9. Intelligent Planning and Scheduling for Controlled Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leon, V. Jorge

    1996-01-01

    Planning in Controlled Ecological Life Support Systems (CELSS) requires special look ahead capabilities due to the complex and long-term dynamic behavior of biological systems. This project characterizes the behavior of CELSS, identifies the requirements of intelligent planning systems for CELSS, proposes the decomposition of the planning task into short-term and long-term planning, and studies the crop scheduling problem as an initial approach to long-term planning. CELSS is studied in the realm of Chaos. The amount of biomass in the system is modeled using a bounded quadratic iterator. The results suggests that closed ecological systems can exhibit periodic behavior when imposed external or artificial control. The main characteristics of CELSS from the planning and scheduling perspective are discussed and requirements for planning systems are given. Crop scheduling problem is identified as an important component of the required long-term lookahead capabilities of a CELSS planner. The main characteristics of crop scheduling are described and a model is proposed to represent the problem. A surrogate measure of the probability of survival is developed. The measure reflects the absolute deviation of the vital reservoir levels from their nominal values. The solution space is generated using a probability distribution which captures both knowledge about the system and the current state of affairs at each decision epoch. This probability distribution is used in the context of an evolution paradigm. The concepts developed serve as the basis for the development of a simple crop scheduling tool which is used to demonstrate its usefulness in the design and operation of CELSS.

  10. The Idea Notebook.

    ERIC Educational Resources Information Center

    Journal of Experiential Education, 1981

    1981-01-01

    A new journal feature shares practical ideas in experiential education in less than 800 words. This issue presents an initiative problem, rules for rope push, exercise illustrating dependence on schedules, how to experience a handicap, maple sugaring project, assignment bridging the generation gap, simulating literary experiences, and local…

  11. Linear-parameter-varying gain-scheduled control of aerospace systems

    NASA Astrophysics Data System (ADS)

    Barker, Jeffrey Michael

    The dynamics of many aerospace systems vary significantly as a function of flight condition. Robust control provides methods of guaranteeing performance and stability goals across flight conditions. In mu-syntthesis, changes to the dynamical system are primarily treated as uncertainty. This method has been successfully applied to many control problems, and here is applied to flutter control. More recently, two techniques for generating robust gain-scheduled controller have been developed. Linear fractional transformation (LFT) gain-scheduled control is an extension of mu-synthesis in which the plant and controller are explicit functions of parameters measurable in real-time. This LFT gain-scheduled control technique is applied to the Benchmark Active Control Technology (BACT) wing, and compared with mu-synthesis control. Linear parameter-varying (LPV) gain-scheduled control is an extension of Hinfinity control to parameter varying systems. LPV gain-scheduled control directly incorporates bounds on the rate of change of the scheduling parameters, and often reduces conservatism inherent in LFT gain-scheduled control. Gain-scheduled LPV control of the BACT wing compares very favorably with the LFT controller. Gain-scheduled LPV controllers are generated for the lateral-directional and longitudinal axes of the Innovative Control Effectors (ICE) aircraft and implemented in nonlinear simulations and real-time piloted nonlinear simulations. Cooper-Harper and pilot-induced oscillation ratings were obtained for an initial design, a reference aircraft and a redesign. Piloted simulation results for the initial LPV gain-scheduled control of the ICE aircraft are compared with results for a conventional fighter aircraft in discrete pitch and roll angle tracking tasks. The results for the redesigned controller are significantly better than both the previous LPV controller and the conventional aircraft.

  12. Constraint-based integration of planning and scheduling for space-based observatory management

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven F.

    1994-01-01

    Progress toward the development of effective, practical solutions to space-based observatory scheduling problems within the HSTS scheduling framework is reported. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) short-term observation scheduling problem. The work was motivated by the limitations of the current solution and, more generally, by the insufficiency of classical planning and scheduling approaches in this problem context. HSTS has subsequently been used to develop improved heuristic solution techniques in related scheduling domains and is currently being applied to develop a scheduling tool for the upcoming Submillimeter Wave Astronomy Satellite (SWAS) mission. The salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research are summarized. Then, some key problem decomposition techniques underlying the integrated planning and scheduling approach to the HST problem are described; research results indicate that these techniques provide leverage in solving space-based observatory scheduling problems. Finally, more recently developed constraint-posting scheduling procedures and the current SWAS application focus are summarized.

  13. A meta-heuristic method for solving scheduling problem: crow search algorithm

    NASA Astrophysics Data System (ADS)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.

  14. Multi-time Scale Joint Scheduling Method Considering the Grid of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Zhijun, E.; Wang, Weichen; Cao, Jin; Wang, Xin; Kong, Xiangyu; Quan, Shuping

    2018-01-01

    Renewable new energy power generation prediction error like wind and light, brings difficulties to dispatch the power system. In this paper, a multi-time scale robust scheduling method is set to solve this problem. It reduces the impact of clean energy prediction bias to the power grid by using multi-time scale (day-ahead, intraday, real time) and coordinating the dispatching power output of various power supplies such as hydropower, thermal power, wind power, gas power and. The method adopts the robust scheduling method to ensure the robustness of the scheduling scheme. By calculating the cost of the abandon wind and the load, it transforms the robustness into the risk cost and optimizes the optimal uncertainty set for the smallest integrative costs. The validity of the method is verified by simulation.

  15. Integration of scheduling and discrete event simulation systems to improve production flow planning

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.

    2016-08-01

    The increased availability of data and computer-aided technologies such as MRPI/II, ERP and MES system, allowing producers to be more adaptive to market dynamics and to improve production scheduling. Integration of production scheduling and computer modelling, simulation and visualization systems can be useful in the analysis of production system constraints related to the efficiency of manufacturing systems. A integration methodology based on semi-automatic model generation method for eliminating problems associated with complexity of the model and labour-intensive and time-consuming process of simulation model creation is proposed. Data mapping and data transformation techniques for the proposed method have been applied. This approach has been illustrated through examples of practical implementation of the proposed method using KbRS scheduling system and Enterprise Dynamics simulation system.

  16. A primary shift rotation nurse scheduling using zero-one linear goal programming.

    PubMed

    Huarng, F

    1999-01-01

    In this study, the author discusses the effect of nurse shift schedules on circadian rhythm and some important ergonomics criteria. The author also reviews and compares different nurse shift scheduling methods via the criteria of flexibility, fairness, continuity in shift assignments, nurses' preferences, and ergonomics principles. In this article, a primary shift rotation system is proposed to provide better continuity in shift assignments to satisfy nurses' preferences. The primary shift rotation system is modeled as a zero-one linear goal programming (LGP) problem. To generate the shift assignment for a unit with 13 nurses, the zero-one LGP model takes less than 3 minutes on average, whereas the head nurses spend approximately 2 to 3 hours on shift scheduling. This study reports the process of implementing the primary shift rotation system.

  17. Balancing antagonistic time and resource utilization constraints in over-subscribed scheduling problems

    NASA Technical Reports Server (NTRS)

    Smith, Stephen F.; Pathak, Dhiraj K.

    1991-01-01

    In this paper, we report work aimed at applying concepts of constraint-based problem structuring and multi-perspective scheduling to an over-subscribed scheduling problem. Previous research has demonstrated the utility of these concepts as a means for effectively balancing conflicting objectives in constraint-relaxable scheduling problems, and our goal here is to provide evidence of their similar potential in the context of HST observation scheduling. To this end, we define and experimentally assess the performance of two time-bounded heuristic scheduling strategies in balancing the tradeoff between resource setup time minimization and satisfaction of absolute time constraints. The first strategy considered is motivated by dispatch-based manufacturing scheduling research, and employs a problem decomposition that concentrates local search on minimizing resource idle time due to setup activities. The second is motivated by research in opportunistic scheduling and advocates a problem decomposition that focuses attention on the goal activities that have the tightest temporal constraints. Analysis of experimental results gives evidence of differential superiority on the part of each strategy in different problem solving circumstances. A composite strategy based on recognition of characteristics of the current problem solving state is then defined and tested to illustrate the potential benefits of constraint-based problem structuring and multi-perspective scheduling in over-subscribe scheduling problems.

  18. Integrated scheduling of a container handling system with simultaneous loading and discharging operations

    NASA Astrophysics Data System (ADS)

    Li, Chen; Lu, Zhiqiang; Han, Xiaole; Zhang, Yuejun; Wang, Li

    2016-03-01

    The integrated scheduling of container handling systems aims to optimize the coordination and overall utilization of all handling equipment, so as to minimize the makespan of a given set of container tasks. A modified disjunctive graph is proposed and a mixed 0-1 programming model is formulated. A heuristic algorithm is presented, in which the original problem is divided into two subproblems. In the first subproblem, contiguous bay crane operations are applied to obtain a good quay crane schedule. In the second subproblem, proper internal truck and yard crane schedules are generated to match the given quay crane schedule. Furthermore, a genetic algorithm based on the heuristic algorithm is developed to search for better solutions. The computational results show that the proposed algorithm can efficiently find high-quality solutions. They also indicate the effectiveness of simultaneous loading and discharging operations compared with separate ones.

  19. Diverse task scheduling for individualized requirements in cloud manufacturing

    NASA Astrophysics Data System (ADS)

    Zhou, Longfei; Zhang, Lin; Zhao, Chun; Laili, Yuanjun; Xu, Lida

    2018-03-01

    Cloud manufacturing (CMfg) has emerged as a new manufacturing paradigm that provides ubiquitous, on-demand manufacturing services to customers through network and CMfg platforms. In CMfg system, task scheduling as an important means of finding suitable services for specific manufacturing tasks plays a key role in enhancing the system performance. Customers' requirements in CMfg are highly individualized, which leads to diverse manufacturing tasks in terms of execution flows and users' preferences. We focus on diverse manufacturing tasks and aim to address their scheduling issue in CMfg. First of all, a mathematical model of task scheduling is built based on analysis of the scheduling process in CMfg. To solve this scheduling problem, we propose a scheduling method aiming for diverse tasks, which enables each service demander to obtain desired manufacturing services. The candidate service sets are generated according to subtask directed graphs. An improved genetic algorithm is applied to searching for optimal task scheduling solutions. The effectiveness of the scheduling method proposed is verified by a case study with individualized customers' requirements. The results indicate that the proposed task scheduling method is able to achieve better performance than some usual algorithms such as simulated annealing and pattern search.

  20. Decomposability and scalability in space-based observatory scheduling

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Stephen F.

    1992-01-01

    In this paper, we discuss issues of problem and model decomposition within the HSTS scheduling framework. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) scheduling problem, motivated by the limitations of the current solution and, more generally, the insufficiency of classical planning and scheduling approaches in this problem context. We first summarize the salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research. Then, we describe some key problem decomposition techniques supported by HSTS and underlying our integrated planning and scheduling approach, and we discuss the leverage they provide in solving space-based observatory scheduling problems.

  1. An Algorithm for Automatically Modifying Train Crew Schedule

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Kataoka, Kenji; Kojima, Teruhito; Asami, Masayuki

    Once the break-down of the train schedule occurs, the crew schedule as well as the train schedule has to be modified as quickly as possible to restore them. In this paper, we propose an algorithm for automatically modifying a crew schedule that takes all constraints into consideration, presenting a model of the combined problem of crews and trains. The proposed algorithm builds an initial solution by relaxing some of the constraint conditions, and then uses a Taboo-search method to revise this solution in order to minimize the degree of constraint violation resulting from these relaxed conditions. Then we show not only that the algorithm can generate a constraint satisfaction solution, but also that the solution will satisfy the experts. That is, we show the proposed algorithm is capable of producing a usable solution in a short time by applying to actual cases of train-schedule break-down, and that the solution is at least as good as those produced manually, by comparing the both solutions with several point of view.

  2. AI techniques for a space application scheduling problem

    NASA Technical Reports Server (NTRS)

    Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.

    1991-01-01

    Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).

  3. Iterative repair for scheduling and rescheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Deale, Michael

    1991-01-01

    An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.

  4. A mission planning concept and mission planning system for future manned space missions

    NASA Technical Reports Server (NTRS)

    Wickler, Martin

    1994-01-01

    The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.

  5. SOFIA's Choice: Automating the Scheduling of Airborne Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Norvig, Peter (Technical Monitor)

    1999-01-01

    This paper describes the problem of scheduling observations for an airborne telescope. Given a set of prioritized observations to choose from, and a wide range of complex constraints governing legitimate choices and orderings, how can we efficiently and effectively create a valid flight plan which supports high priority observations? This problem is quite different from scheduling problems which are routinely solved automatically in industry. For instance, the problem requires making choices which lead to other choices later, and contains many interacting complex constraints over both discrete and continuous variables. Furthermore, new types of constraints may be added as the fundamental problem changes. As a result of these features, this problem cannot be solved by traditional scheduling techniques. The problem resembles other problems in NASA and industry, from observation scheduling for rovers and other science instruments to vehicle routing. The remainder of the paper is organized as follows. In 2 we describe the observatory in order to provide some background. In 3 we describe the problem of scheduling a single flight. In 4 we compare flight planning and other scheduling problems and argue that traditional techniques are not sufficient to solve this problem. We also mention similar complex scheduling problems which may benefit from efforts to solve this problem. In 5 we describe an approach for solving this problem based on research into a similar problem, that of scheduling observations for a space-borne probe. In 6 we discuss extensions of the flight planning problem as well as other problems which are similar to flight planning. In 7 we conclude and discuss future work.

  6. Multi-stage rescheduling of generation, load shedding and short-term transmission capacity for emergency state control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogh, B.; Chow, J.H.; Javid, H.S.

    1983-05-01

    A multi-stage formulation of the problem of scheduling generation, load shedding and short term transmission capacity for the alleviation of a viability emergency is presented. The formulation includes generation rate of change constraints, a linear network solution, and a model of the short term thermal overload capacity of transmission lines. The concept of rotating transmission line overloads for emergency state control is developed. The ideas are illustrated by a numerical example.

  7. Hybrid robust predictive optimization method of power system dispatch

    DOEpatents

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  8. Practical quantum appointment scheduling

    NASA Astrophysics Data System (ADS)

    Touchette, Dave; Lovitz, Benjamin; Lütkenhaus, Norbert

    2018-04-01

    We propose a protocol based on coherent states and linear optics operations for solving the appointment-scheduling problem. Our main protocol leaks strictly less information about each party's input than the optimal classical protocol, even when considering experimental errors. Along with the ability to generate constant-amplitude coherent states over two modes, this protocol requires the ability to transfer these modes back-and-forth between the two parties multiple times with very low losses. The implementation requirements are thus still challenging. Along the way, we develop tools to study quantum information cost of interactive protocols in the finite regime.

  9. Modelling Temporal Schedule of Urban Trains Using Agent-Based Simulation and NSGA2-BASED Multiobjective Optimization Approaches

    NASA Astrophysics Data System (ADS)

    Sahelgozin, M.; Alimohammadi, A.

    2015-12-01

    Increasing distances between locations of residence and services leads to a large number of daily commutes in urban areas. Developing subway systems has been taken into consideration of transportation managers as a response to this huge amount of travel demands. In developments of subway infrastructures, representing a temporal schedule for trains is an important task; because an appropriately designed timetable decreases Total passenger travel times, Total Operation Costs and Energy Consumption of trains. Since these variables are not positively correlated, subway scheduling is considered as a multi-criteria optimization problem. Therefore, proposing a proper solution for subway scheduling has been always a controversial issue. On the other hand, research on a phenomenon requires a summarized representation of the real world that is known as Model. In this study, it is attempted to model temporal schedule of urban trains that can be applied in Multi-Criteria Subway Schedule Optimization (MCSSO) problems. At first, a conceptual framework is represented for MCSSO. Then, an agent-based simulation environment is implemented to perform Sensitivity Analysis (SA) that is used to extract the interrelations between the framework components. These interrelations is then taken into account in order to construct the proposed model. In order to evaluate performance of the model in MCSSO problems, Tehran subway line no. 1 is considered as the case study. Results of the study show that the model was able to generate an acceptable distribution of Pareto-optimal solutions which are applicable in the real situations while solving a MCSSO is the goal. Also, the accuracy of the model in representing the operation of subway systems was significant.

  10. Noncontingent reinforcement without extinction plus differential reinforcement of alternative behavior during treatment of problem behavior.

    PubMed

    Fritz, Jennifer N; Jackson, Lynsey M; Stiefler, Nicole A; Wimberly, Barbara S; Richardson, Amy R

    2017-07-01

    The effects of noncontingent reinforcement (NCR) without extinction during treatment of problem behavior maintained by social positive reinforcement were evaluated for five individuals diagnosed with autism spectrum disorder. A continuous NCR schedule was gradually thinned to a fixed-time 5-min schedule. If problem behavior increased during NCR schedule thinning, a continuous NCR schedule was reinstated and NCR schedule thinning was repeated with differential reinforcement of alternative behavior (DRA) included. Results showed an immediate decrease in all participants' problem behavior during continuous NCR, and problem behavior maintained at low levels during NCR schedule thinning for three participants. Problem behavior increased and maintained at higher rates during NCR schedule thinning for two other participants; however, the addition of DRA to the intervention resulted in decreased problem behavior and increased mands. © 2017 Society for the Experimental Analysis of Behavior.

  11. A comprehensive approach to reactive power scheduling in restructured power systems

    NASA Astrophysics Data System (ADS)

    Shukla, Meera

    Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.

  12. Job shop scheduling problem with late work criterion

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.

  13. An algorithm for a single machine scheduling problem with sequence dependent setup times and scheduling windows

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1975-01-01

    An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.

  14. Research on Production Scheduling System with Bottleneck Based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke

    Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.

  15. Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode

    NASA Astrophysics Data System (ADS)

    Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.

    2012-12-01

    Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive and negative swinging angle and the computation of time window are analyzed and discussed. And many strategies to improve the efficiency of this model are also put forward. In order to solve the model, we bring forward the conception of activity sequence map. By using the activity sequence map, the activity choice and the start time of the activity can be divided. We also bring forward three neighborhood operators to search the result space. The front movement remaining time and the back movement remaining time are used to analyze the feasibility to generate solution from neighborhood operators. Lastly, the algorithm to solve the problem and model is put forward based genetic algorithm. Population initialization, crossover operator, mutation operator, individual evaluation, collision decrease operator, select operator and collision elimination operator is designed in the paper. Finally, the scheduling result and the simulation for a practical example on 5 satellites and 100 point targets with swinging mode is given, and the scheduling performances are also analyzed while the swinging angle in 0, 5, 10, 15, 25. It can be shown by the result that the model and the algorithm are more effective than those ones without swinging mode.

  16. Two-MILP models for scheduling elective surgeries within a private healthcare facility.

    PubMed

    Khlif Hachicha, Hejer; Zeghal Mansour, Farah

    2016-11-05

    This paper deals with an Integrated Elective Surgery-Scheduling Problem (IESSP) that arises in a privately operated healthcare facility. It aims to optimize the resource utilization of the entire surgery process including pre-operative, per-operative and post-operative activities. Moreover, it addresses a specific feature of private facilities where surgeons are independent service providers and may conduct their surgeries in different private healthcare facilities. Thus, the problem requires the assignment of surgery patients to hospital beds, operating rooms and recovery beds as well as their sequencing over a 1-day period while taking into account surgeons' availability constraints. We present two Mixed Integer Linear Programs (MILP) that model the IESSP as a three-stage hybrid flow-shop scheduling problem with recirculation, resource synchronization, dedicated machines, and blocking constraints. To assess the empirical performance of the proposed models, we conducted experiments on real-world data of a Tunisian private clinic: Clinique Ennasr and on randomly generated instances. Two criteria were minimised: the patients' average length of stay and the number of patients' overnight stays. The computational results show that the proposed models can solve instances with up to 44 surgical cases in a reasonable CPU time using a general-purpose MILP solver.

  17. Completable scheduling: An integrated approach to planning and scheduling

    NASA Technical Reports Server (NTRS)

    Gervasio, Melinda T.; Dejong, Gerald F.

    1992-01-01

    The planning problem has traditionally been treated separately from the scheduling problem. However, as more realistic domains are tackled, it becomes evident that the problem of deciding on an ordered set of tasks to achieve a set of goals cannot be treated independently of the problem of actually allocating resources to the tasks. Doing so would result in losing the robustness and flexibility needed to deal with imperfectly modeled domains. Completable scheduling is an approach which integrates the two problems by allowing an a priori planning module to defer particular planning decisions, and consequently the associated scheduling decisions, until execution time. This allows a completable scheduling system to maximize plan flexibility by allowing runtime information to be taken into consideration when making planning and scheduling decision. Furthermore, through the criteria of achievability placed on deferred decision, a completable scheduling system is able to retain much of the goal-directedness and guarantees of achievement afforded by a priori planning. The completable scheduling approach is further enhanced by the use of contingent explanation-based learning, which enables a completable scheduling system to learn general completable plans from example and improve its performance through experience. Initial experimental results show that completable scheduling outperforms classical scheduling as well as pure reactive scheduling in a simple scheduling domain.

  18. Optimizing human activity patterns using global sensitivity analysis.

    PubMed

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  19. Quantifying Scheduling Challenges for Exascale System Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondragon, Oscar; Bridges, Patrick G.; Jones, Terry R

    2015-01-01

    The move towards high-performance computing (HPC) ap- plications comprised of coupled codes and the need to dra- matically reduce data movement is leading to a reexami- nation of time-sharing vs. space-sharing in HPC systems. In this paper, we discuss and begin to quantify the perfor- mance impact of a move away from strict space-sharing of nodes for HPC applications. Specifically, we examine the po- tential performance cost of time-sharing nodes between ap- plication components, we determine whether a simple coor- dinated scheduling mechanism can address these problems, and we research how suitable simple constraint-based opti- mization techniques are for solvingmore » scheduling challenges in this regime. Our results demonstrate that current general- purpose HPC system software scheduling and resource al- location systems are subject to significant performance de- ciencies which we quantify for six representative applica- tions. Based on these results, we discuss areas in which ad- ditional research is needed to meet the scheduling challenges of next-generation HPC systems.« less

  20. Computer-aided programming for message-passing system; Problems and a solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.Y.; Gajski, D.D.

    1989-12-01

    As the number of processors and the complexity of problems to be solved increase, programming multiprocessing systems becomes more difficult and error-prone. Program development tools are necessary since programmers are not able to develop complex parallel programs efficiently. Parallel models of computation, parallelization problems, and tools for computer-aided programming (CAP) are discussed. As an example, a CAP tool that performs scheduling and inserts communication primitives automatically is described. It also generates the performance estimates and other program quality measures to help programmers in improving their algorithms and programs.

  1. Scheduling optimization of design stream line for production research and development projects

    NASA Astrophysics Data System (ADS)

    Liu, Qinming; Geng, Xiuli; Dong, Ming; Lv, Wenyuan; Ye, Chunming

    2017-05-01

    In a development project, efficient design stream line scheduling is difficult and important owing to large design imprecision and the differences in the skills and skill levels of employees. The relative skill levels of employees are denoted as fuzzy numbers. Multiple execution modes are generated by scheduling different employees for design tasks. An optimization model of a design stream line scheduling problem is proposed with the constraints of multiple executive modes, multi-skilled employees and precedence. The model considers the parallel design of multiple projects, different skills of employees, flexible multi-skilled employees and resource constraints. The objective function is to minimize the duration and tardiness of the project. Moreover, a two-dimensional particle swarm algorithm is used to find the optimal solution. To illustrate the validity of the proposed method, a case is examined in this article, and the results support the feasibility and effectiveness of the proposed model and algorithm.

  2. A hybrid dynamic harmony search algorithm for identical parallel machines scheduling

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Pan, Quan-Ke; Wang, Ling; Li, Jun-Qing

    2012-02-01

    In this article, a dynamic harmony search (DHS) algorithm is proposed for the identical parallel machines scheduling problem with the objective to minimize makespan. First, an encoding scheme based on a list scheduling rule is developed to convert the continuous harmony vectors to discrete job assignments. Second, the whole harmony memory (HM) is divided into multiple small-sized sub-HMs, and each sub-HM performs evolution independently and exchanges information with others periodically by using a regrouping schedule. Third, a novel improvisation process is applied to generate a new harmony by making use of the information of harmony vectors in each sub-HM. Moreover, a local search strategy is presented and incorporated into the DHS algorithm to find promising solutions. Simulation results show that the hybrid DHS (DHS_LS) is very competitive in comparison to its competitors in terms of mean performance and average computational time.

  3. Dynamic vehicle routing with time windows in theory and practice.

    PubMed

    Yang, Zhiwei; van Osta, Jan-Paul; van Veen, Barry; van Krevelen, Rick; van Klaveren, Richard; Stam, Andries; Kok, Joost; Bäck, Thomas; Emmerich, Michael

    2017-01-01

    The vehicle routing problem is a classical combinatorial optimization problem. This work is about a variant of the vehicle routing problem with dynamically changing orders and time windows. In real-world applications often the demands change during operation time. New orders occur and others are canceled. In this case new schedules need to be generated on-the-fly. Online optimization algorithms for dynamical vehicle routing address this problem but so far they do not consider time windows. Moreover, to match the scenarios found in real-world problems adaptations of benchmarks are required. In this paper, a practical problem is modeled based on the procedure of daily routing of a delivery company. New orders by customers are introduced dynamically during the working day and need to be integrated into the schedule. A multiple ant colony algorithm combined with powerful local search procedures is proposed to solve the dynamic vehicle routing problem with time windows. The performance is tested on a new benchmark based on simulations of a working day. The problems are taken from Solomon's benchmarks but a certain percentage of the orders are only revealed to the algorithm during operation time. Different versions of the MACS algorithm are tested and a high performing variant is identified. Finally, the algorithm is tested in situ: In a field study, the algorithm schedules a fleet of cars for a surveillance company. We compare the performance of the algorithm to that of the procedure used by the company and we summarize insights gained from the implementation of the real-world study. The results show that the multiple ant colony algorithm can get a much better solution on the academic benchmark problem and also can be integrated in a real-world environment.

  4. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    NASA Astrophysics Data System (ADS)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  5. Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J; Ma, X; Singh, K

    2008-10-09

    With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generatemore » performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.« less

  6. An Optimization Model for Scheduling Problems with Two-Dimensional Spatial Resource Constraint

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher; Rabadi, Ghaith

    2010-01-01

    Traditional scheduling problems involve determining temporal assignments for a set of jobs in order to optimize some objective. Some scheduling problems also require the use of limited resources, which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and other areas of logistics and supply chain management. This scheduling problem involves a twodimensional rectangular area as a limited resource. Each job, in addition to having temporal requirements, has a width and a height and utilizes a certain amount of space inside the area. We propose an optimization model for scheduling the jobs while respecting all temporal and spatial constraints.

  7. The Design, Pedagogy and Practice of an Integrated Public Affairs Leadership Course

    ERIC Educational Resources Information Center

    Sandfort, Jodi; Gerdes, Kevin

    2017-01-01

    Current world events demand public affairs leadership training that generates among professionals a sense of capability, agency, and responsibility to engage in complex public problems. In this paper, we describe a unique course operated in the US focused on achieving these learning outcomes. It uses an unconventional schedule and course design…

  8. A synergetic combination of small and large neighborhood schemes in developing an effective procedure for solving the job shop scheduling problem.

    PubMed

    Amirghasemi, Mehrdad; Zamani, Reza

    2014-01-01

    This paper presents an effective procedure for solving the job shop problem. Synergistically combining small and large neighborhood schemes, the procedure consists of four components, namely (i) a construction method for generating semi-active schedules by a forward-backward mechanism, (ii) a local search for manipulating a small neighborhood structure guided by a tabu list, (iii) a feedback-based mechanism for perturbing the solutions generated, and (iv) a very large-neighborhood local search guided by a forward-backward shifting bottleneck method. The combination of shifting bottleneck mechanism and tabu list is used as a means of the manipulation of neighborhood structures, and the perturbation mechanism employed diversifies the search. A feedback mechanism, called repeat-check, detects consequent repeats and ignites a perturbation when the total number of consecutive repeats for two identical makespan values reaches a given threshold. The results of extensive computational experiments on the benchmark instances indicate that the combination of these four components is synergetic, in the sense that they collectively make the procedure fast and robust.

  9. An Implicit Enumeration Algorithm with Binary-Valued Constraints.

    DTIC Science & Technology

    1986-03-01

    problems is the National Basketball Association ( NBA -) schedul- ing problems developed by Bean (1980), as discussed in detail in the Appendix. These...fY! X F L- %n~ P ’ % -C-10 K7 K: K7 -L- -7".i - W. , W V APPENDIX The NBA Scheduling Problem §A.1 Formulation The National Basketball Association...16 2.2 4.9 40.2 15.14 §6.2.3 NBA Scheduling Problem The last set of testing problems involves the NBA scheduling problem. A detailed description of

  10. Exploiting Identical Generators in Unit Commitment

    DOE PAGES

    Knueven, Ben; Ostrowski, Jim; Watson, Jean -Paul

    2017-12-14

    Here, we present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from the academic literature and another based on real-world operator data. Our computationalmore » tests demonstrate that when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Further, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.« less

  11. Exploiting Identical Generators in Unit Commitment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knueven, Ben; Ostrowski, Jim; Watson, Jean -Paul

    Here, we present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from the academic literature and another based on real-world operator data. Our computationalmore » tests demonstrate that when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Further, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.« less

  12. A computer based approach for Material, Manpower and Equipment managementin the Construction Projects

    NASA Astrophysics Data System (ADS)

    Sasidhar, Jaladanki; Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.

    2017-07-01

    The success of any construction project will depend on efficient management of resources in a perfect manner to complete the project with a reasonable budget and time and the quality cannot be compromised. The efficient and timely procurement of material, deployment of adequate labor at correct time and mobilization of machinery lacking in time, all of them causes delay, lack of quality and finally affect the project cost. It is known factor that Project cost can be controlled by taking corrective actions on mobilization of resources at a right time. This research focuses on integration of management systems with the computer to generate the model which uses OOM data structure which decides to include automatic commodity code generation, automatic takeoff execution, intelligent purchase order generation, and components of design and schedule integration to overcome the problems of stock out. To overcome the problem in equipment management system inventory management module is suggested and the data set of equipment registration number, equipment number, description, date of purchase, manufacturer, equipment price, market value, life of equipment, production data of the equipment which includes equipment number, date, name of the job, hourly rate, insurance, depreciation cost of the equipment, taxes, storage cost, interest, oil, grease, and fuel consumption, etc. is analyzed and the decision support systems to overcome the problem arising out improper management is generated. The problem on labor is managed using scheduling, Strategic management of human resources. From the generated support systems tool, the resources are mobilized at a right time and help the project manager to finish project in time and thereby save the abnormal project cost and also provides the percentage that can be improved and also research focuses on determining the percentage of delays that are caused by lack of management of materials, manpower and machinery in different types of projects and how the percentage various from project to project.

  13. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  14. An FMS Dynamic Production Scheduling Algorithm Considering Cutting Tool Failure and Cutting Tool Life

    NASA Astrophysics Data System (ADS)

    Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.

    2016-02-01

    This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.

  15. Managing Small Spacecraft Projects: Less is Not Easier

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn

    2012-01-01

    Managing small, low cost missions (class C or D) is not necessarily easier than managing a full flagship mission. Yet, small missions are typically considered easier to manage and used as a training ground for developing the next generation of project managers. While limited resources can be a problem for small missions, in reality most of the issues inherent in managing small projects are not the direct result of limited resources. Instead, problems encountered by managers of small spacecraft missions often derive from 1) the perception that managing small projects is easier if something is easier it needs less rigor and formality in execution, 2) the perception that limited resources necessitate or validate omitting standard management practices, 3) less stringent or unclear guidelines or policies for small projects, and 4) stakeholder expectations that are not consistent with the size and nature of the project. For example, the size of a project is sometimes used to justify not building a full, detailed integrated master schedule. However, while a small schedule slip may not be a problem for a large mission, it can indicate a serious problem for a small mission with a short development phase, highlighting the importance of the schedule for early identification of potential issues. Likewise, stakeholders may accept a higher risk posture early in the definition of a low-cost mission, but as launch approaches this acceptance may change. This presentation discusses these common misconceptions about managing small, low cost missions, the problems that can result, and possible solutions.

  16. Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Haisheng; Xu, Rui; Chen, Huaping

    2018-04-01

    To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.

  17. Mission Operations Planning and Scheduling System (MOPSS)

    NASA Technical Reports Server (NTRS)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  18. Improved Results for Route Planning in Stochastic Transportation Networks

    NASA Technical Reports Server (NTRS)

    Boyan, Justin; Mitzenmacher, Michael

    2000-01-01

    In the bus network problem, the goal is to generate a plan for getting from point X to point Y within a city using buses in the smallest expected time. Because bus arrival times are not determined by a fixed schedule but instead may be random. the problem requires more than standard shortest path techniques. In recent work, Datar and Ranade provide algorithms in the case where bus arrivals are assumed to be independent and exponentially distributed. We offer solutions to two important generalizations of the problem, answering open questions posed by Datar and Ranade. First, we provide a polynomial time algorithm for a much wider class of arrival distributions, namely those with increasing failure rate. This class includes not only exponential distributions but also uniform, normal, and gamma distributions. Second, in the case where bus arrival times are independent and geometric discrete random variable,. we provide an algorithm for transportation networks of buses and trains, where trains run according to a fixed schedule.

  19. Bridging the Gap Between Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Frank, Jeremy; Jonsson, Ari K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Planning research in Artificial Intelligence (AI) has often focused on problems where there are cascading levels of action choice and complex interactions between actions. In contrast. Scheduling research has focused on much larger problems where there is little action choice, but the resulting ordering problem is hard. In this paper, we give an overview of M planning and scheduling techniques, focusing on their similarities, differences, and limitations. We also argue that many difficult practical problems lie somewhere between planning and scheduling, and that neither area has the right set of tools for solving these vexing problems.

  20. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  1. Interactive computer aided shift scheduling.

    PubMed

    Gaertner, J

    2001-12-01

    This paper starts with a discussion of computer aided shift scheduling. After a brief review of earlier approaches, two conceptualizations of this field are introduced: First, shift scheduling as a field that ranges from extremely stable rosters at one pole to rather market-like approaches on the other pole. Unfortunately, already small alterations of a scheduling problem (e.g., the number of groups, the number of shifts) may call for rather different approaches and tools. Second, their environment shapes scheduling problems and scheduling has to be done within idiosyncratic organizational settings. This calls for the amalgamation of scheduling with other tasks (e.g., accounting) and for reflections whether better solutions might become possible by changes in the problem definition (e.g., other service levels, organizational changes). Therefore shift scheduling should be understood as a highly connected problem. Building upon these two conceptualizations, a few examples of software that ease scheduling in some areas of this field are given and future research questions are outlined.

  2. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  3. Integrated scheduling and resource management. [for Space Station Information System

    NASA Technical Reports Server (NTRS)

    Ward, M. T.

    1987-01-01

    This paper examines the problem of integrated scheduling during the Space Station era. Scheduling for Space Station entails coordinating the support of many distributed users who are sharing common resources and pursuing individual and sometimes conflicting objectives. This paper compares the scheduling integration problems of current missions with those anticipated for the Space Station era. It examines the facilities and the proposed operations environment for Space Station. It concludes that the pattern of interdependecies among the users and facilities, which are the source of the integration problem is well structured, allowing a dividing of the larger problem into smaller problems. It proposes an architecture to support integrated scheduling by scheduling efficiently at local facilities as a function of dependencies with other facilities of the program. A prototype is described that is being developed to demonstrate this integration concept.

  4. Applications of dynamic scheduling technique to space related problems: Some case studies

    NASA Astrophysics Data System (ADS)

    Nakasuka, Shinichi; Ninomiya, Tetsujiro

    1994-10-01

    The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.

  5. Generating variable and random schedules of reinforcement using Microsoft Excel macros.

    PubMed

    Bancroft, Stacie L; Bourret, Jason C

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values.

  6. Solving a real-world problem using an evolving heuristically driven schedule builder.

    PubMed

    Hart, E; Ross, P; Nelson, J

    1998-01-01

    This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.

  7. Unification theory of optimal life histories and linear demographic models in internal stochasticity.

    PubMed

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of "Stochastic Control Theory" in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path-integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models.

  8. Unification Theory of Optimal Life Histories and Linear Demographic Models in Internal Stochasticity

    PubMed Central

    Oizumi, Ryo

    2014-01-01

    Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of “Stochastic Control Theory” in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path–integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models. PMID:24945258

  9. Testing Task Schedulers on Linux System

    NASA Astrophysics Data System (ADS)

    Jelenković, Leonardo; Groš, Stjepan; Jakobović, Domagoj

    Testing task schedulers on Linux operating system proves to be a challenging task. There are two main problems. The first one is to identify which properties of the scheduler to test. The second problem is how to perform it, e.g., which API to use that is sufficiently precise and in the same time supported on most platforms. This paper discusses the problems in realizing test framework for testing task schedulers and presents one potential solution. Observed behavior of the scheduler is the one used for “normal” task scheduling (SCHED_OTHER), unlike one used for real-time tasks (SCHED_FIFO, SCHED_RR).

  10. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  11. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    PubMed

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  12. Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows

    NASA Astrophysics Data System (ADS)

    Jittamai, Phongchai

    This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system composing of pipes, pumps, valves and storage facilities used to transport different types of liquids. Typically, products delivered by pipelines are petroleum of different grades moving either from production facilities to refineries or from refineries to distributors. Time-windows, which are generally used in logistics and scheduling areas, are incorporated in this study. The distribution of multiple products into oil pipeline subject to delivery time-windows is modeled as multicommodity network flow structure and mathematically formulated. The main focus of this dissertation is the investigation of operating issues and problem complexity of single-source pipeline problems and also providing solution methodology to compute input schedule that yields minimum total time violation from due delivery time-windows. The problem is proved to be NP-complete. The heuristic approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to compute input schedule for the pipeline problem. This algorithm is implemented in no longer than O(T·E) time. This dissertation also extends the study to examine some operating attributes and problem complexity of multiple-source pipelines. The multiple-source pipeline problem is also NP-complete. A heuristic algorithm modified from the one used in single-source pipeline problems is introduced. This algorithm can also be implemented in no longer than O(T·E) time. Computational results are presented for both methodologies on randomly generated problem sets. The computational experience indicates that reversed-flow algorithms provide good solutions in comparison with the optimal solutions. Only 25% of the problems tested were more than 30% greater than optimal values and approximately 40% of the tested problems were solved optimally by the algorithms.

  13. An adaptive random search for short term generation scheduling with network constraints.

    PubMed

    Marmolejo, J A; Velasco, Jonás; Selley, Héctor J

    2017-01-01

    This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.

  14. Two-machine flow shop scheduling integrated with preventive maintenance planning

    NASA Astrophysics Data System (ADS)

    Wang, Shijin; Liu, Ming

    2016-02-01

    This paper investigates an integrated optimisation problem of production scheduling and preventive maintenance (PM) in a two-machine flow shop with time to failure of each machine subject to a Weibull probability distribution. The objective is to find the optimal job sequence and the optimal PM decisions before each job such that the expected makespan is minimised. To investigate the value of integrated scheduling solution, computational experiments on small-scale problems with different configurations are conducted with total enumeration method, and the results are compared with those of scheduling without maintenance but with machine degradation, and individual job scheduling combined with independent PM planning. Then, for large-scale problems, four genetic algorithm (GA) based heuristics are proposed. The numerical results with several large problem sizes and different configurations indicate the potential benefits of integrated scheduling solution and the results also show that proposed GA-based heuristics are efficient for the integrated problem.

  15. A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.

  16. Aspects of job scheduling

    NASA Technical Reports Server (NTRS)

    Phillips, K.

    1976-01-01

    A mathematical model for job scheduling in a specified context is presented. The model uses both linear programming and combinatorial methods. While designed with a view toward optimization of scheduling of facility and plant operations at the Deep Space Communications Complex, the context is sufficiently general to be widely applicable. The general scheduling problem including options for scheduling objectives is discussed and fundamental parameters identified. Mathematical algorithms for partitioning problems germane to scheduling are presented.

  17. Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros

    PubMed Central

    Bancroft, Stacie L; Bourret, Jason C

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values. PMID:18595286

  18. User requirements for a patient scheduling system

    NASA Technical Reports Server (NTRS)

    Zimmerman, W.

    1979-01-01

    A rehabilitation institute's needs and wants from a scheduling system were established by (1) studying the existing scheduling system and the variables that affect patient scheduling, (2) conducting a human-factors study to establish the human interfaces that affect patients' meeting prescribed therapy schedules, and (3) developing and administering a questionnaire to the staff which pertains to the various interface problems in order to identify staff requirements to minimize scheduling problems and other factors that may limit the effectiveness of any new scheduling system.

  19. Planning additional drilling campaign using two-space genetic algorithm: A game theoretical approach

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa; Ozer, Umit

    2013-03-01

    Grade and tonnage are the most important technical uncertainties in mining ventures because of the use of estimations/simulations, which are mostly generated from drill data. Open pit mines are planned and designed on the basis of the blocks representing the entire orebody. Each block has different estimation/simulation variance reflecting uncertainty to some extent. The estimation/simulation realizations are submitted to mine production scheduling process. However, the use of a block model with varying estimation/simulation variances will lead to serious risk in the scheduling. In the medium of multiple simulations, the dispersion variances of blocks can be thought to regard technical uncertainties. However, the dispersion variance cannot handle uncertainty associated with varying estimation/simulation variances of blocks. This paper proposes an approach that generates the configuration of the best additional drilling campaign to generate more homogenous estimation/simulation variances of blocks. In other words, the objective is to find the best drilling configuration in such a way as to minimize grade uncertainty under budget constraint. Uncertainty measure of the optimization process in this paper is interpolation variance, which considers data locations and grades. The problem is expressed as a minmax problem, which focuses on finding the best worst-case performance i.e., minimizing interpolation variance of the block generating maximum interpolation variance. Since the optimization model requires computing the interpolation variances of blocks being simulated/estimated in each iteration, the problem cannot be solved by standard optimization tools. This motivates to use two-space genetic algorithm (GA) approach to solve the problem. The technique has two spaces: feasible drill hole configuration with minimization of interpolation variance and drill hole simulations with maximization of interpolation variance. Two-space interacts to find a minmax solution iteratively. A case study was conducted to demonstrate the performance of approach. The findings showed that the approach could be used to plan a new drilling campaign.

  20. A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk

    NASA Astrophysics Data System (ADS)

    Bearden, David Allen

    Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (<500 kg) satellite design. Small satellite missions are of particular interest because they are often developed under rigid programmatic (cost and schedule) constraints and are motivated to introduce advanced technologies into the design. MERIT is demonstrated for programs procured under varying conditions and constraints such as stringent performance goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance, cost, and schedule; assessment of system level impacts of technology insertion; procedures for estimating uncertainties (risks) associated with advanced technology; and application of heuristics to facilitate informed system-level technology utilization decisions earlier in the conceptual design phase. MERIT extends the state of the art in technology insertion assessment selection practice and, if adopted, may aid designers in determining the configuration of complex systems that meet essential requirements in a timely, cost-effective manner.

  1. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    PubMed Central

    Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  2. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    PubMed

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  3. New preemptive scheduling for OBS networks considering cascaded wavelength conversion

    NASA Astrophysics Data System (ADS)

    Gao, Xingbo; Bassiouni, Mostafa A.; Li, Guifang

    2009-05-01

    In this paper we introduce a new preemptive scheduling technique for next generation optical burst-switched networks considering the impact of cascaded wavelength conversions. It has been shown that when optical bursts are transmitted all optically from source to destination, each wavelength conversion performed along the lightpath may cause certain signal-to-noise deterioration. If the distortion of the signal quality becomes significant enough, the receiver would not be able to recover the original data. Accordingly, subject to this practical impediment, we improve a recently proposed fair channel scheduling algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in optical burst switching. In our scheme, the dynamic priority associated with each burst is based on a constraint threshold and the number of already conducted wavelength conversions among other factors for this burst. When contention occurs, a new arriving superior burst may preempt another scheduled one according to their priorities. Extensive simulation results have shown that the proposed scheme further improves fairness and achieves burst loss reduction as well.

  4. Evaluation of scheduling techniques for payload activity planning

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley F.

    1991-01-01

    Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.

  5. Artificial intelligence approaches to astronomical observation scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  6. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  7. Deep Space Network Scheduling Using Evolutionary Computational Methods

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Lee, Seugnwon; Wang, Yeou-Fang; Terrile, Richard J.

    2007-01-01

    The paper presents the specific approach taken to formulate the problem in terms of gene encoding, fitness function, and genetic operations. The genome is encoded such that a subset of the scheduling constraints is automatically satisfied. Several fitness functions are formulated to emphasize different aspects of the scheduling problem. The optimal solutions of the different fitness functions demonstrate the trade-off of the scheduling problem and provide insight into a conflict resolution process.

  8. Enhanced Specification and Verification for Timed Planning

    DTIC Science & Technology

    2009-02-28

    Scheduling Problem The job-shop scheduling problem ( JSSP ) is a generic resource allocation problem in which common resources (“machines”) are required...interleaving of all processes Pi with the non-delay and mutual exclusion constraints: JSSP =̂ |||0<i6n Pi Where mutual-exclusion( JSSP ) For every complete...execution of JSSP (which terminates), its associated sched- ule S is a feasible schedule. An optimal schedule is a trace of JSSP with the minimum ending

  9. Improving Resource Selection and Scheduling Using Predictions. Chapter 1

    NASA Technical Reports Server (NTRS)

    Smith, Warren

    2003-01-01

    The introduction of computational grids has resulted in several new problems in the area of scheduling that can be addressed using predictions. The first problem is selecting where to run an application on the many resources available in a grid. Our approach to help address this problem is to provide predictions of when an application would start to execute if submitted to specific scheduled computer systems. The second problem is gaining simultaneous access to multiple computer systems so that distributed applications can be executed. We help address this problem by investigating how to support advance reservations in local scheduling systems. Our approaches to both of these problems are based on predictions for the execution time of applications on space- shared parallel computers. As a side effect of this work, we also discuss how predictions of application run times can be used to improve scheduling performance.

  10. Modified Parameters of Harmony Search Algorithm for Better Searching

    NASA Astrophysics Data System (ADS)

    Farraliza Mansor, Nur; Abal Abas, Zuraida; Samad Shibghatullah, Abdul; Rahman, Ahmad Fadzli Nizam Abdul

    2017-08-01

    The scheduling and rostering problems are deliberated as integrated due to they depend on each other whereby the input of rostering problems is a scheduling problems. In this research, the integrated scheduling and rostering bus driver problems are defined as maximising the balance of the assignment of tasks in term of distribution of shifts and routes. It is essential to achieve is fairer among driver because this can bring to increase in driver levels of satisfaction. The latest approaches still unable to address the fairness problem that has emerged, thus this research proposes a strategy to adopt an amendment of a harmony search algorithm in order to address the fairness issue and thus the level of fairness will be escalate. The harmony search algorithm is classified as a meta-heuristics algorithm that is capable of solving hard and combinatorial or discrete optimisation problems. In this respect, the three main operators in HS, namely the Harmony Memory Consideration Rate (HMCR), Pitch Adjustment Rate (PAR) and Bandwidth (BW) play a vital role in balancing local exploitation and global exploration. These parameters influence the overall performance of the HS algorithm, and therefore it is crucial to fine-tune them. The contributions to this research are the HMCR parameter using step function while the fret spacing concept on guitars that is associated with mathematical formulae is also applied in the BW parameter. The model of constant step function is introduced in the alteration of HMCR parameter. The experimental results revealed that our proposed approach is superior than parameter adaptive harmony search algorithm. In conclusion, this proposed approach managed to generate a fairer roster and was thus capable of maximising the balancing distribution of shifts and routes among drivers, which contributed to the lowering of illness, incidents, absenteeism and accidents.

  11. Experiments with a decision-theoretic scheduler

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Holt, Gerhard; Mayer, Andrew

    1992-01-01

    This paper describes DTS, a decision-theoretic scheduler designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems, and using probabilistic inference to aggregate this information in light of features of a given problem. BPS, the Bayesian Problem-Solver, introduced a similar approach to solving single-agent and adversarial graph search problems, yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.

  12. Producing Satisfactory Solutions to Scheduling Problems: An Iterative Constraint Relaxation Approach

    NASA Technical Reports Server (NTRS)

    Chien, S.; Gratch, J.

    1994-01-01

    One drawback to using constraint-propagation in planning and scheduling systems is that when a problem has an unsatisfiable set of constraints such algorithms typically only show that no solution exists. While, technically correct, in practical situations, it is desirable in these cases to produce a satisficing solution that satisfies the most important constraints (typically defined in terms of maximizing a utility function). This paper describes an iterative constraint relaxation approach in which the scheduler uses heuristics to progressively relax problem constraints until the problem becomes satisfiable. We present empirical results of applying these techniques to the problem of scheduling spacecraft communications for JPL/NASA antenna resources.

  13. Timeline Resource Analysis Program (TRAP): User's manual and program document

    NASA Technical Reports Server (NTRS)

    Sessler, J. G.

    1981-01-01

    The Timeline Resource Analysis Program (TRAP), developed for scheduling and timelining problems, is described. Given an activity network, TRAP generates timeline plots, resource histograms, and tabular summaries of the network, schedules, and resource levels. It is written in ANSI FORTRAN for the Honeywell SIGMA 5 computer and operates in the interactive mode using the TEKTRONIX 4014-1 graphics terminal. The input network file may be a standard SIGMA 5 file or one generated using the Interactive Graphics Design System. The timeline plots can be displayed in two orderings: according to the sequence in which the tasks were read on input, and a waterfall sequence in which the tasks are ordered by start time. The input order is especially meaningful when the network consists of several interacting subnetworks. The waterfall sequence is helpful in assessing the project status at any point in time.

  14. Physical Principle for Generation of Randomness

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2009-01-01

    A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)

  15. Production scheduling with ant colony optimization

    NASA Astrophysics Data System (ADS)

    Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu

    2017-10-01

    The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.

  16. The role of the production scheduling system in rescheduling

    NASA Astrophysics Data System (ADS)

    Kalinowski, K.; Grabowik, C.; Kempa, W.; Paprocka, I.

    2015-11-01

    The paper presents the rescheduling problem in the context of cooperation between production scheduling system (PSS) and other units in an integrated manufacturing environment - decision makers and software systems. The main aim is to discuss the PSS functionality for maximizing automation of the rescheduling process, reducing the response time and improving the quality of generated solutions. PSSs operate in the meeting of tactical and operational level of planning and control, and play an important role in the production preparation and control. On the basis of information about orders, technology and production system state (e.g. resources availability) they prepare and/or update a detailed plan of production flow - a schedule. All necessary data for scheduling and rescheduling are usually collected in other systems both from organizational and technical production preparation, e.g. ERP, PLM, MES, CAPP or others, as well as they are entered directly by the decision- makers/operators. Data acquired in this way are often incomplete and inconsistent. Therefore the existing rescheduling software works according to interactive method - rather support but does not replace the human decision maker in tasks planning. When rescheduling, due to the limited amount of time to make a decision this interaction is particularly important. An additional problem arises in data acquisition, in the process of data exchanging between systems or in the identification of new data sources and their processing. Different approaches to rescheduling were characterized, including those solutions, where all these operations are carried out by an autonomous system and those in which scheduling is performed only upon request from the outside, for the newly created scheduling data representing the current state of the production system.

  17. Sensibility study in a flexible job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Curralo, Ana; Pereira, Ana I.; Barbosa, José; Leitão, Paulo

    2013-10-01

    This paper proposes the impact assessment of the jobs order in the optimal time of operations in a Flexible Job Shop Scheduling Problem. In this work a real assembly cell was studied: the AIP-PRIMECA cell at the Université de Valenciennes et du Hainaut-Cambrésis, in France, which is considered as a Flexible Job Shop problem. The problem consists in finding the machines operations schedule, taking into account the precedence constraints. The main objective is to minimize the batch makespan, i.e. the finish time of the last operation completed in the schedule. Shortly, the present study consists in evaluating if the jobs order affects the optimal time of the operations schedule. The genetic algorithm was used to solve the optimization problem. As a conclusion, it's assessed that the jobs order influence the optimal time.

  18. Self-balancing dynamic scheduling of electrical energy for energy-intensive enterprises

    NASA Astrophysics Data System (ADS)

    Gao, Yunlong; Gao, Feng; Zhai, Qiaozhu; Guan, Xiaohong

    2013-06-01

    Balancing production and consumption with self-generation capacity in energy-intensive enterprises has huge economic and environmental benefits. However, balancing production and consumption with self-generation capacity is a challenging task since the energy production and consumption must be balanced in real time with the criteria specified by power grid. In this article, a mathematical model for minimising the production cost with exactly realisable energy delivery schedule is formulated. And a dynamic programming (DP)-based self-balancing dynamic scheduling algorithm is developed to obtain the complete solution set for such a multiple optimal solutions problem. For each stage, a set of conditions are established to determine whether a feasible control trajectory exists. The state space under these conditions is partitioned into subsets and each subset is viewed as an aggregate state, the cost-to-go function is then expressed as a function of initial and terminal generation levels of each stage and is proved to be a staircase function with finite steps. This avoids the calculation of the cost-to-go of every state to resolve the issue of dimensionality in DP algorithm. In the backward sweep process of the algorithm, an optimal policy is determined to maximise the realisability of energy delivery schedule across the entire time horizon. And then in the forward sweep process, the feasible region of the optimal policy with the initial and terminal state at each stage is identified. Different feasible control trajectories can be identified based on the region; therefore, optimising for the feasible control trajectory is performed based on the region with economic and reliability objectives taken into account.

  19. Preliminary Evaluation of BIM-based Approaches for Schedule Delay Analysis

    NASA Astrophysics Data System (ADS)

    Chou, Hui-Yu; Yang, Jyh-Bin

    2017-10-01

    The problem of schedule delay commonly occurs in construction projects. The quality of delay analysis depends on the availability of schedule-related information and delay evidence. More information used in delay analysis usually produces more accurate and fair analytical results. How to use innovative techniques to improve the quality of schedule delay analysis results have received much attention recently. As Building Information Modeling (BIM) technique has been quickly developed, using BIM and 4D simulation techniques have been proposed and implemented. Obvious benefits have been achieved especially in identifying and solving construction consequence problems in advance of construction. This study preforms an intensive literature review to discuss the problems encountered in schedule delay analysis and the possibility of using BIM as a tool in developing a BIM-based approach for schedule delay analysis. This study believes that most of the identified problems can be dealt with by BIM technique. Research results could be a fundamental of developing new approaches for resolving schedule delay disputes.

  20. Further Evaluation of the Use of Multiple Schedules for Behavior Maintained by Negative Reinforcement.

    PubMed

    Campos, Claudia; Leon, Yanerys; Sleiman, Andressa; Urcuyo, Beatriz

    2017-03-01

    One potential limitation of functional communication training (FCT) is that after the functional communication response (FCR) is taught, the response may be emitted at high rates or inappropriate times. Thus, schedule thinning is often necessary. Previous research has demonstrated that multiple schedules can facilitate schedule thinning by establishing discriminative control of the communication response while maintaining low rates of problem behavior. To date, most applied research evaluating the clinical utility of multiple schedules has done so in the context of behavior maintained by positive reinforcement (e.g., attention or tangible items). This study examined the use of a multiple schedule with alternating Fixed Ratio (FR 1)/extinction (EXT) components for two individuals with developmental disabilities who emitted escape-maintained problem behavior. Although problem behavior remained low during all FCT and multiple schedule phases, the use of the multiple schedule alone did not result in discriminated manding.

  1. Applications of Optimal Building Energy System Selection and Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated bymore » description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.« less

  2. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Baxter, Doug

    1988-01-01

    The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution.

  3. Concepts for design of an energy management system incorporating dispersed storage and generation

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Koerner, T.; Nightingale, D.

    1981-01-01

    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.

  4. Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching

    NASA Astrophysics Data System (ADS)

    Shen, Kaiming; Yu, Wei

    2018-05-01

    This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.

  5. The Ames-Lockheed orbiter processing scheduling system

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Gargan, Robert

    1991-01-01

    A general purpose scheduling system and its application to Space Shuttle Orbiter Processing at the Kennedy Space Center (KSC) are described. Orbiter processing entails all the inspection, testing, repair, and maintenance necessary to prepare the Shuttle for launch and takes place within the Orbiter Processing Facility (OPF) at KSC, the Vehicle Assembly Building (VAB), and on the launch pad. The problems are extremely combinatoric in that there are thousands of tasks, resources, and other temporal considerations that must be coordinated. Researchers are building a scheduling tool that they hope will be an integral part of automating the planning and scheduling process at KSC. The scheduling engine is domain independent and is also being applied to Space Shuttle cargo processing problems as well as wind tunnel scheduling problems.

  6. An investigation of the use of temporal decomposition in space mission scheduling

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley E.; Narayanan, Venkat

    1994-01-01

    This research involves an examination of techniques for solving scheduling problems in long-duration space missions. The mission timeline is broken up into several time segments, which are then scheduled incrementally. Three methods are presented for identifying the activities that are to be attempted within these segments. The first method is a mathematical model, which is presented primarily to illustrate the structure of the temporal decomposition problem. Since the mathematical model is bound to be computationally prohibitive for realistic problems, two heuristic assignment procedures are also presented. The first heuristic method is based on dispatching rules for activity selection, and the second heuristic assigns performances of a model evenly over timeline segments. These heuristics are tested using a sample Space Station mission and a Spacelab mission. The results are compared with those obtained by scheduling the missions without any problem decomposition. The applicability of this approach to large-scale mission scheduling problems is also discussed.

  7. Analysis of Issues for Project Scheduling by Multiple, Dispersed Schedulers (distributed Scheduling) and Requirements for Manual Protocols and Computer-based Support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1991-01-01

    Although computerized operations have significant gains realized in many areas, one area, scheduling, has enjoyed few benefits from automation. The traditional methods of industrial engineering and operations research have not proven robust enough to handle the complexities associated with the scheduling of realistic problems. To address this need, NASA has developed the computer-aided scheduling system (COMPASS), a sophisticated, interactive scheduling tool that is in wide-spread use within NASA and the contractor community. Therefore, COMPASS provides no explicit support for the large class of problems in which several people, perhaps at various locations, build separate schedules that share a common pool of resources. This research examines the issue of distributing scheduling, as applied to application domains characterized by the partial ordering of tasks, limited resources, and time restrictions. The focus of this research is on identifying issues related to distributed scheduling, locating applicable problem domains within NASA, and suggesting areas for ongoing research. The issues that this research identifies are goals, rescheduling requirements, database support, the need for communication and coordination among individual schedulers, the potential for expert system support for scheduling, and the possibility of integrating artificially intelligent schedulers into a network of human schedulers.

  8. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  9. Reinforcement learning in scheduling

    NASA Technical Reports Server (NTRS)

    Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad

    1994-01-01

    The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.

  10. Generically Used Expert Scheduling System (GUESS): User's Guide Version 1.0

    NASA Technical Reports Server (NTRS)

    Liebowitz, Jay; Krishnamurthy, Vijaya; Rodens, Ira

    1996-01-01

    This user's guide contains instructions explaining how to best operate the program GUESS, a generic expert scheduling system. GUESS incorporates several important features for a generic scheduler, including automatic scheduling routines to generate a 'first' schedule for the user, a user interface that includes Gantt charts and enables the human scheduler to manipulate schedules manually, diagnostic report generators, and a variety of scheduling techniques. The current version of GUESS runs on an IBM PC or compatible in the Windows 3.1 or Windows '95 environment.

  11. Generating Test Templates via Automated Theorem Proving

    NASA Technical Reports Server (NTRS)

    Kancherla, Mani Prasad

    1997-01-01

    Testing can be used during the software development process to maintain fidelity between evolving specifications, program designs, and code implementations. We use a form of specification-based testing that employs the use of an automated theorem prover to generate test templates. A similar approach was developed using a model checker on state-intensive systems. This method applies to systems with functional rather than state-based behaviors. This approach allows for the use of incomplete specifications to aid in generation of tests for potential failure cases. We illustrate the technique on the cannonical triangle testing problem and discuss its use on analysis of a spacecraft scheduling system.

  12. Genetic algorithm parameters tuning for resource-constrained project scheduling problem

    NASA Astrophysics Data System (ADS)

    Tian, Xingke; Yuan, Shengrui

    2018-04-01

    Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.

  13. Application of decentralized cooperative problem solving in dynamic flexible scheduling

    NASA Astrophysics Data System (ADS)

    Guan, Zai-Lin; Lei, Ming; Wu, Bo; Wu, Ya; Yang, Shuzi

    1995-08-01

    The object of this study is to discuss an intelligent solution to the problem of task-allocation in shop floor scheduling. For this purpose, the technique of distributed artificial intelligence (DAI) is applied. Intelligent agents (IAs) are used to realize decentralized cooperation, and negotiation is realized by using message passing based on the contract net model. Multiple agents, such as manager agents, workcell agents, and workstation agents, make game-like decisions based on multiple criteria evaluations. This procedure of decentralized cooperative problem solving makes local scheduling possible. And by integrating such multiple local schedules, dynamic flexible scheduling for the whole shop floor production can be realized.

  14. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  15. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGES

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  16. Genetic algorithm to solve the problems of lectures and practicums scheduling

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

  17. Decision-theoretic control of EUVE telescope scheduling

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Mayer, Andrew

    1993-01-01

    This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.

  18. Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1995-01-01

    A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.

  19. Optimum-AIV: A planning and scheduling system for spacecraft AIV

    NASA Technical Reports Server (NTRS)

    Arentoft, M. M.; Fuchs, Jens J.; Parrod, Y.; Gasquet, Andre; Stader, J.; Stokes, I.; Vadon, H.

    1991-01-01

    A project undertaken for the European Space Agency (ESA) is presented. The project is developing a knowledge based software system for planning and scheduling of activities for spacecraft assembly, integration, and verification (AIV). The system extends into the monitoring of plan execution and the plan repair phase. The objectives are to develop an operational kernel of a planning, scheduling, and plan repair tool, called OPTIMUM-AIV, and to provide facilities which will allow individual projects to customize the kernel to suit its specific needs. The kernel shall consist of a set of software functionalities for assistance in initial specification of the AIV plan, in verification and generation of valid plans and schedules for the AIV activities, and in interactive monitoring and execution problem recovery for the detailed AIV plans. Embedded in OPTIMUM-AIV are external interfaces which allow integration with alternative scheduling systems and project databases. The current status of the OPTIMUM-AIV project, as of Jan. 1991, is that a further analysis of the AIV domain has taken place through interviews with satellite AIV experts, a software requirement document (SRD) for the full operational tool was approved, and an architectural design document (ADD) for the kernel excluding external interfaces is ready for review.

  20. Designing a fuzzy scheduler for hard real-time systems

    NASA Technical Reports Server (NTRS)

    Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami

    1992-01-01

    In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.

  1. DTS: Building custom, intelligent schedulers

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Mayer, Andrew

    1994-01-01

    DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.

  2. Improving Hospital-wide Patient Scheduling Decisions by Clinical Pathway Mining.

    PubMed

    Gartner, Daniel; Arnolds, Ines V; Nickel, Stefan

    2015-01-01

    Recent research has highlighted the need for solving hospital-wide patient scheduling problems. Inpatient scheduling, patient activities have to be scheduled on scarce hospital resources such that temporal relations between activities (e.g. for recovery times) are ensured. Common objectives are, among others, the minimization of the length of stay (LOS). In this paper, we consider a hospital-wide patient scheduling problem with LOS minimization based on uncertain clinical pathways. We approach the problem in three stages: First, we learn most likely clinical pathways using a sequential pattern mining approach. Second, we provide a mathematical model for patient scheduling and finally, we combine the two approaches. In an experimental study carried out using real-world data, we show that our approach outperforms baseline approaches on two metrics.

  3. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.

    PubMed

    Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei

    2017-12-01

    As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.

  4. A hybrid online scheduling mechanism with revision and progressive techniques for autonomous Earth observation satellite

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Xing, Lining; Chen, Yingwu

    2017-11-01

    The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.

  5. Effective preemptive scheduling scheme for optical burst-switched networks with cascaded wavelength conversion consideration

    NASA Astrophysics Data System (ADS)

    Gao, Xingbo

    2010-03-01

    We introduce a new preemptive scheduling technique for next-generation optical burst switching (OBS) networks considering the impact of cascaded wavelength conversions. It has been shown that when optical bursts are transmitted all optically from source to destination, each wavelength conversion performed along the lightpath may cause certain signal-to-noise deterioration. If the distortion of the signal quality becomes significant enough, the receiver would not be able to recover the original data. Accordingly, subject to this practical impediment, we improve a recently proposed fair channel scheduling algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in OBS environments. In our scheme, the dynamic priority associated with each burst is based on a constraint threshold and the number of already conducted wavelength conversions among other factors for this burst. When contention occurs, a new arriving superior burst may preempt another scheduled one according to their priorities. Extensive simulation results have shown that the proposed scheme further improves fairness and achieves burst loss reduction as well.

  6. Interleaved Observation Execution and Rescheduling on Earth Observing Systems

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Frank, Jeremy; Smith, David; Morris, Robert; Dungan, Jennifer

    2003-01-01

    Observation scheduling for Earth orbiting satellites solves the following problem: given a set of requests for images of the Earth, a set of instruments for acquiring those images distributed on a collecting of orbiting satellites, and a set of temporal and resource constraints, generate a set of assignments of instruments and viewing times to those requests that satisfy those constraints. Observation scheduling is often construed as a constrained optimization problem with the objective of maximizing the overall utility of the science data acquired. The utility of an image is typically based on the intrinsic importance of acquiring it (for example, its importance in meeting a mission or science campaign objective) as well as the expected value of the data given current viewing conditions (for example, if the image is occluded by clouds, its value is usually diminished). Currently, science observation scheduling for Earth Observing Systems is done on the ground, for periods covering a day or more. Schedules are uplinked to the satellites and are executed rigorously. An alternative to this scenario is to do some of the decision-making about what images are to be acquired on-board. The principal argument for this capability is that the desirability of making an observation can change dynamically, because of changes in meteorological conditions (e.g. cloud cover), unforeseen events such as fires, floods, or volcanic eruptions, or un-expected changes in satellite or ground station capability. Furthermore, since satellites can only communicate with the ground between 5% to 10% of the time, it may be infeasible to make the desired changes to the schedule on the ground, and uplink the revisions in time for the on-board system to execute them. Examples of scenarios that motivate an on-board capability for revising schedules include the following. First, if a desired visual scene is completely obscured by clouds, then there is little point in taking it. In this case, satellite resources, such as power and storage space can be better utilized taking another image that is higher quality. Second, if an unexpected but important event occurs (such as a fire, flood, or volcanic eruption), there may be good reason to take images of it, instead of expending satellite resources on some of the lower priority scheduled observations. Finally, if there is unexpected loss of capability, it may be impossible to carry out the schedule of planned observations. For example, if a ground station goes down temporarily, a satellite may not be able to free up enough storage space to continue with the remaining schedule of observations. This paper describes an approach for interleaving execution of observation schedules with dynamic schedule revision based on changes to the expected utility of the acquired images. We describe the problem in detail, formulate an algorithm for interleaving schedule revision and execution, and discuss refinements to the algorithm based on the need for search efficiency. We summarize with a brief discussion of the tests performed on the system.

  7. Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study

    NASA Astrophysics Data System (ADS)

    Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke

    2018-06-01

    In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.

  8. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  9. Spike: Artificial intelligence scheduling for Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  10. Scheduler Design Criteria: Requirements and Considerations

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2016-01-01

    This presentation covers fundamental requirements and considerations for developing schedulers in airport operations. We first introduce performance and functional requirements for airport surface schedulers. Among various optimization problems in airport operations, we focus on airport surface scheduling problem, including runway and taxiway operations. We then describe a basic methodology for airport surface scheduling such as node-link network model and scheduling algorithms previously developed. Next, we explain how to design a mathematical formulation in more details, which consists of objectives, decision variables, and constraints. Lastly, we review other considerations, including optimization tools, computational performance, and performance metrics for evaluation.

  11. What work schedule characteristics constitute a problem to the individual? A representative study of Swedish shift workers.

    PubMed

    Åkerstedt, Torbjörn; Kecklund, Göran

    2017-03-01

    The purpose was to investigate which detailed characteristics of shift schedules that are seen as problems to those exposed. A representative national sample of non-day workers (N = 2031) in Sweden was asked whether they had each of a number of particular work schedule characteristics and, if yes, to what extent this constituted a "big problem in life". It was also inquired whether the individual's work schedules had negative consequences for fatigue, sleep and social life. The characteristic with the highest percentage reporting a big problem was "short notice (<1 month) of a new work schedule" (30.5%), <11 h off between shifts (27.8%), and split duty (>1.5 h break at mid-shift, 27.2%). Overtime (>10 h/week), night work, morning work, day/night shifts showed lower prevalences of being a "big problem". Women indicated more problems in general. Short notice was mainly related to negative social effects, while <11 h off between shifts was related to disturbed sleep, fatigue and social difficulties. It was concluded that schedules involving unpredictable working hours (short notice), short daily rest between shifts, and split duty shifts constitute big problems. The results challenge current views of what aspects of shift work need improvement, and negative social consequences seem more important than those related to health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model

    PubMed Central

    Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong

    2014-01-01

    Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005

  13. A bicriteria heuristic for an elective surgery scheduling problem.

    PubMed

    Marques, Inês; Captivo, M Eugénia; Vaz Pato, Margarida

    2015-09-01

    Resource rationalization and reduction of waiting lists for surgery are two main guidelines for hospital units outlined in the Portuguese National Health Plan. This work is dedicated to an elective surgery scheduling problem arising in a Lisbon public hospital. In order to increase the surgical suite's efficiency and to reduce the waiting lists for surgery, two objectives are considered: maximize surgical suite occupation and maximize the number of surgeries scheduled. This elective surgery scheduling problem consists of assigning an intervention date, an operating room and a starting time for elective surgeries selected from the hospital waiting list. Accordingly, a bicriteria surgery scheduling problem arising in the hospital under study is presented. To search for efficient solutions of the bicriteria optimization problem, the minimization of a weighted Chebyshev distance to a reference point is used. A constructive and improvement heuristic procedure specially designed to address the objectives of the problem is developed and results of computational experiments obtained with empirical data from the hospital are presented. This study shows that by using the bicriteria approach presented here it is possible to build surgical plans with very good performance levels. This method can be used within an interactive approach with the decision maker. It can also be easily adapted to other hospitals with similar scheduling conditions.

  14. Performance evaluation of different types of particle representation procedures of Particle Swarm Optimization in Job-shop Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Izah Anuar, Nurul; Saptari, Adi

    2016-02-01

    This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.

  15. End-to-End Network QoS via Scheduling of Flexible Resource Reservation Requests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S.; Katramatos, D.; Yu, D.

    2011-11-14

    Modern data-intensive applications move vast amounts of data between multiple locations around the world. To enable predictable and reliable data transfer, next generation networks allow such applications to reserve network resources for exclusive use. In this paper, we solve an important problem (called SMR3) to accommodate multiple and concurrent network reservation requests between a pair of end-sites. Given the varying availability of bandwidth within the network, our goal is to accommodate as many reservation requests as possible while minimizing the total time needed to complete the data transfers. We first prove that SMR3 is an NP-hard problem. Then we solvemore » it by developing a polynomial-time heuristic, called RRA. The RRA algorithm hinges on an efficient mechanism to accommodate large number of requests by minimizing the bandwidth wastage. Finally, via numerical results, we show that RRA constructs schedules that accommodate significantly larger number of requests compared to other, seemingly efficient, heuristics.« less

  16. A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling.

    PubMed

    Hart, Emma; Sim, Kevin

    2016-01-01

    We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conquer approach in which each heuristic solves a unique subset of the instance set considered. NELLI-GP extends an existing ensemble method called NELLI by introducing a novel heuristic generator that evolves heuristics composed of linear sequences of dispatching rules: each rule is represented using a tree structure and is itself evolved. Following a training period, the ensemble is shown to outperform both existing dispatching rules and a standard genetic programming algorithm on a large set of new test instances. In addition, it obtains superior results on a set of 210 benchmark problems from the literature when compared to two state-of-the-art hyper-heuristic approaches. Further analysis of the relationship between heuristics in the evolved ensemble and the instances each solves provides new insights into features that might describe similar instances.

  17. Estimation of distribution algorithm with path relinking for the blocking flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2018-05-01

    This article presents an effective estimation of distribution algorithm, named P-EDA, to solve the blocking flow-shop scheduling problem (BFSP) with the makespan criterion. In the P-EDA, a Nawaz-Enscore-Ham (NEH)-based heuristic and the random method are combined to generate the initial population. Based on several superior individuals provided by a modified linear rank selection, a probabilistic model is constructed to describe the probabilistic distribution of the promising solution space. The path relinking technique is incorporated into EDA to avoid blindness of the search and improve the convergence property. A modified referenced local search is designed to enhance the local exploitation. Moreover, a diversity-maintaining scheme is introduced into EDA to avoid deterioration of the population. Finally, the parameters of the proposed P-EDA are calibrated using a design of experiments approach. Simulation results and comparisons with some well-performing algorithms demonstrate the effectiveness of the P-EDA for solving BFSP.

  18. Scheduling Onboard Processing for the Proposed HyspIRI Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mclaren, David; Rabideau, Gregg; Mandl, Daniel; Hengemihle, Jerry

    2011-01-01

    The proposed Hyspiri mission is evaluating a X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However the HyspIRI VSWIR and TIR instruments will produce 1 Gbps data while the DB capability is 15 M bps for a 60x oversubscription. In order to address this data volume mismatch a DB concept has been developed thatdetermines which data to downlink based on both: 1. The type of surface the spacecraft is overflying and 2. Onboard processing of the data to detect events. For example when the spacecraft is overflying polar regions it might downlink a snow/ice product. Additionally the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected. The process of determining which products to generate when, based on request prioritization and onboard processing and downlink constraints is inherently a prioritized scheduling problem - we describe work to develop an automated solution to this problem.

  19. Ensuring the Reliable Operation of the Power Grid: State-Based and Distributed Approaches to Scheduling Energy and Contingency Reserves

    NASA Astrophysics Data System (ADS)

    Prada, Jose Fernando

    Keeping a contingency reserve in power systems is necessary to preserve the security of real-time operations. This work studies two different approaches to the optimal allocation of energy and reserves in the day-ahead generation scheduling process. Part I presents a stochastic security-constrained unit commitment model to co-optimize energy and the locational reserves required to respond to a set of uncertain generation contingencies, using a novel state-based formulation. The model is applied in an offer-based electricity market to allocate contingency reserves throughout the power grid, in order to comply with the N-1 security criterion under transmission congestion. The objective is to minimize expected dispatch and reserve costs, together with post contingency corrective redispatch costs, modeling the probability of generation failure and associated post contingency states. The characteristics of the scheduling problem are exploited to formulate a computationally efficient method, consistent with established operational practices. We simulated the distribution of locational contingency reserves on the IEEE RTS96 system and compared the results with the conventional deterministic method. We found that assigning locational spinning reserves can guarantee an N-1 secure dispatch accounting for transmission congestion at a reasonable extra cost. The simulations also showed little value of allocating downward reserves but sizable operating savings from co-optimizing locational nonspinning reserves. Overall, the results indicate the computational tractability of the proposed method. Part II presents a distributed generation scheduling model to optimally allocate energy and spinning reserves among competing generators in a day-ahead market. The model is based on the coordination between individual generators and a market entity. The proposed method uses forecasting, augmented pricing and locational signals to induce efficient commitment of generators based on firm posted prices. It is price-based but does not rely on multiple iterations, minimizes information exchange and simplifies the market clearing process. Simulations of the distributed method performed on a six-bus test system showed that, using an appropriate set of prices, it is possible to emulate the results of a conventional centralized solution, without need of providing make-whole payments to generators. Likewise, they showed that the distributed method can accommodate transactions with different products and complex security constraints.

  20. Optimizing an F-16 Squadron Weekly Pilot Schedule for the Turkish Air Force

    DTIC Science & Technology

    2010-03-01

    disrupted schedules are rescheduled , minimizing the total number of changes with respect to the previous schedule’s objective function. Output...producing rosters for a nursing staff in a large general hospital (Dowsland, 1998) and afterwards Aickelin and Dowsland use an Indirect Genetic...algorithm to improve the solutions of the nurse scheduling problem which is similar to the fighter squadron pilot scheduling problem (Aickelin and

  1. Scheduling language and algorithm development study. Volume 1, phase 2: Design considerations for a scheduling and resource allocation system

    NASA Technical Reports Server (NTRS)

    Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.

    1975-01-01

    Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.

  2. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  3. Co-evolution for Problem Simplification

    NASA Technical Reports Server (NTRS)

    Haith, Gary L.; Lohn, Jason D.; Cplombano, Silvano P.; Stassinopoulos, Dimitris

    1999-01-01

    This paper explores a co-evolutionary approach applicable to difficult problems with limited failure/success performance feedback. Like familiar "predator-prey" frameworks this algorithm evolves two populations of individuals - the solutions (predators) and the problems (prey). The approach extends previous work by rewarding only the problems that match their difficulty to the level of solut,ion competence. In complex problem domains with limited feedback, this "tractability constraint" helps provide an adaptive fitness gradient that, effectively differentiates the candidate solutions. The algorithm generates selective pressure toward the evolution of increasingly competent solutions by rewarding solution generality and uniqueness and problem tractability and difficulty. Relative (inverse-fitness) and absolute (static objective function) approaches to evaluating problem difficulty are explored and discussed. On a simple control task, this co-evolutionary algorithm was found to have significant advantages over a genetic algorithm with either a static fitness function or a fitness function that changes on a hand-tuned schedule.

  4. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  5. A Systematic Multi-Time Scale Solution for Regional Power Grid Operation

    NASA Astrophysics Data System (ADS)

    Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.

    2017-10-01

    Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.

  6. Decomposition of timed automata for solving scheduling problems

    NASA Astrophysics Data System (ADS)

    Nishi, Tatsushi; Wakatake, Masato

    2014-03-01

    A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.

  7. A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.

    PubMed

    Hajri, S; Liouane, N; Hammadi, S; Borne, P

    2000-01-01

    Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.

  8. Scheduling in the Face of Uncertain Resource Consumption and Utility

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Dearden, Richard

    2003-01-01

    We discuss the problem of scheduling tasks that consume uncertain amounts of a resource with known capacity and where the tasks have uncertain utility. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We show that the problems are NP- complete, and present some results that characterize the behavior of some simple heuristics over a variety of problem classes.

  9. The Traffic Management Advisor

    NASA Technical Reports Server (NTRS)

    Nedell, William; Erzberger, Heinz; Neuman, Frank

    1990-01-01

    The traffic management advisor (TMA) is comprised of algorithms, a graphical interface, and interactive tools for controlling the flow of air traffic into the terminal area. The primary algorithm incorporated in it is a real-time scheduler which generates efficient landing sequences and landing times for arrivals within about 200 n.m. from touchdown. A unique feature of the TMA is its graphical interface that allows the traffic manager to modify the computer-generated schedules for specific aircraft while allowing the automatic scheduler to continue generating schedules for all other aircraft. The graphical interface also provides convenient methods for monitoring the traffic flow and changing scheduling parameters during real-time operation.

  10. Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.

  11. Contingency rescheduling of spacecraft operations

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.; Gohring, John R.

    1988-01-01

    Spacecraft activity scheduling was a focus of attention in artificial intelligence recently. Several scheduling systems were devised which more-or-less successfully address various aspects of the activity scheduling problem, though most of these are not yet mature, with the notable expection of NASA's ESP. Few current scheduling systems, however, make any attempt to deal fully with the problem of modifying a schedule in near-real-time in the event of contingencies which may arise during schedule execution. These contingencies can include resources becoming unavailable unpredictably, a change in spacecraft conditions or environment, or the need to perform an activity not scheduled. In these cases it becomes necessary to repair an existing schedule, disrupting ongoing operations as little as possible. Normal scheduling is just a part of that which must be accomplished during contingency rescheduling. A prototype system named MAESTRO was developed for spacecraft activity scheduling. MAESTRO is briefly described with a focus on recent work in the area of real-time contingency handling. Included is a discussion of some of the complexities of the scheduling problem and how they affect contingency rescheduling, such as temporal constraints between activities, activities which may be interrupted and continued in any of several ways, and different ways to choose a resource complement which will allow continuation of an activity. Various heuristics used in MAESTRO for contingency rescheduling is discussed, as are operational concerns such as interaction of the scheduler with spacecraft subsystems controllers.

  12. Using Multiple Schedules During Functional Communication Training to Promote Rapid Transfer of Treatment Effects

    PubMed Central

    Fisher, Wayne W.; Greer, Brian D.; Fuhrman, Ashley M.; Querim, Angie C.

    2016-01-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects from one setting to the next and from one therapist to the next. With two children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. PMID:26384141

  13. A Simulation Based Approach to Optimize Berth Throughput Under Uncertainty at Marine Container Terminals

    NASA Technical Reports Server (NTRS)

    Golias, Mihalis M.

    2011-01-01

    Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.

  14. Using multiple schedules during functional communication training to promote rapid transfer of treatment effects.

    PubMed

    Fisher, Wayne W; Greer, Brian D; Fuhrman, Ashley M; Querim, Angie C

    2015-12-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and therapists. With 2 children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. © Society for the Experimental Analysis of Behavior.

  15. Capability of the Maximax&Maximin selection operator in the evolutionary algorithm for a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Tein, Lim Huai

    2016-08-01

    A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.

  16. Automated medical resident rotation and shift scheduling to ensure quality resident education and patient care.

    PubMed

    Smalley, Hannah K; Keskinocak, Pinar

    2016-03-01

    At academic teaching hospitals around the country, the majority of clinical care is provided by resident physicians. During their training, medical residents often rotate through various hospitals and/or medical services to maximize their education. Depending on the size of the training program, manually constructing such a rotation schedule can be cumbersome and time consuming. Further, rules governing allowable duty hours for residents have grown more restrictive in recent years (ACGME 2011), making day-to-day shift scheduling of residents more difficult (Connors et al., J Thorac Cardiovasc Surg 137:710-713, 2009; McCoy et al., May Clin Proc 86(3):192, 2011; Willis et al., J Surg Edu 66(4):216-221, 2009). These rules limit lengths of duty periods, allowable duty hours in a week, and rest periods, to name a few. In this paper, we present two integer programming models (IPs) with the goals of (1) creating feasible assignments of residents to rotations over a one-year period, and (2) constructing night and weekend call-shift schedules for the individual rotations. These models capture various duty-hour rules and constraints, provide the ability to test multiple what-if scenarios, and largely automate the process of schedule generation, solving these scheduling problems more effectively and efficiently compared to manual methods. Applying our models on data from a surgical residency program, we highlight the infeasibilities created by increased duty-hour restrictions placed on residents in conjunction with current scheduling paradigms.

  17. Scheduling multirobot operations in manufacturing by truncated Petri nets

    NASA Astrophysics Data System (ADS)

    Chen, Qin; Luh, J. Y.

    1995-08-01

    Scheduling of operational sequences in manufacturing processes is one of the important problems in automation. Methods of applying Petri nets to model and analyze the problem with constraints on precedence relations, multiple resources allocation, etc. have been available in literature. Searching for an optimum schedule can be implemented by combining the branch-and-bound technique with the execution of the timed Petri net. The process usually produces a large Petri net which is practically not manageable. This disadvantage, however, can be handled by a truncation technique which divides the original large Petri net into several smaller size subnets. The complexity involved in the analysis of each subnet individually is greatly reduced. However, when the locally optimum schedules of the resulting subnets are combined together, it may not yield an overall optimum schedule for the original Petri net. To circumvent this problem, algorithms are developed based on the concepts of Petri net execution and modified branch-and-bound process. The developed technique is applied to a multi-robot task scheduling problem of the manufacturing work cell.

  18. Scheduling in the Face of Uncertain Resource Consumption and Utility

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Frank, Jeremy; Dearden, Richard

    2003-01-01

    We discuss the problem of scheduling tasks that consume a resource with known capacity and where the tasks have varying utility. We consider problems in which the resource consumption and utility of each activity is described by probability distributions. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We first show that while some of these problems are NP-complete, others are only NP-Hard. We then describe various heuristic search algorithms to solve these problems and their drawbacks. Finally, we present empirical results that characterize the behavior of these heuristics over a variety of problem classes.

  19. Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.

  20. Aeon: Synthesizing Scheduling Algorithms from High-Level Models

    NASA Astrophysics Data System (ADS)

    Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal

    This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.

  1. Optimization-based manufacturing scheduling with multiple resources and setup requirements

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Luh, Peter B.; Thakur, Lakshman S.; Moreno, Jack, Jr.

    1998-10-01

    The increasing demand for on-time delivery and low price forces manufacturer to seek effective schedules to improve coordination of multiple resources and to reduce product internal costs associated with labor, setup and inventory. This study describes the design and implementation of a scheduling system for J. M. Product Inc. whose manufacturing is characterized by the need to simultaneously consider machines and operators while an operator may attend several operations at the same time, and the presence of machines requiring significant setup times. The scheduling problem with these characteristics are typical for many manufacturers, very difficult to be handled, and have not been adequately addressed in the literature. In this study, both machine and operators are modeled as resources with finite capacities to obtain efficient coordination between them, and an operator's time can be shared by several operations at the same time to make full use of the operator. Setups are explicitly modeled following our previous work, with additional penalties on excessive setups to reduce setup costs and avoid possible scraps. An integer formulation with a separable structure is developed to maximize on-time delivery of products, low inventory and small number of setups. Within the Lagrangian relaxation framework, the problem is decomposed into individual subproblems that are effectively solved by using dynamic programming with additional penalties embedded in state transitions. Heuristics is then developed to obtain a feasible schedule following on our previous work with new mechanism to satisfy operator capacity constraints. The method has been implemented using the object-oriented programming language C++ with a user-friendly interface, and numerical testing shows that the method generates high quality schedules in a timely fashion. Through simultaneous consideration of machines and operators, machines and operators are well coordinated to facilitate the smooth flow of parts through the system. The explicit modeling of setups and the associated penalties let parts with same setup requirements clustered together to avoid excessive setups.

  2. Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints

    NASA Astrophysics Data System (ADS)

    Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.

    2018-01-01

    Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.

  3. Open shop scheduling problem to minimize total weighted completion time

    NASA Astrophysics Data System (ADS)

    Bai, Danyu; Zhang, Zhihai; Zhang, Qiang; Tang, Mengqian

    2017-01-01

    A given number of jobs in an open shop scheduling environment must each be processed for given amounts of time on each of a given set of machines in an arbitrary sequence. This study aims to achieve a schedule that minimizes total weighted completion time. Owing to the strong NP-hardness of the problem, the weighted shortest processing time block (WSPTB) heuristic is presented to obtain approximate solutions for large-scale problems. Performance analysis proves the asymptotic optimality of the WSPTB heuristic in the sense of probability limits. The largest weight block rule is provided to seek optimal schedules in polynomial time for a special case. A hybrid discrete differential evolution algorithm is designed to obtain high-quality solutions for moderate-scale problems. Simulation experiments demonstrate the effectiveness of the proposed algorithms.

  4. Design of a universal logic block for fault-tolerant realization of any logic operation in trapped-ion quantum circuits

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Dousti, M. J.; Shafaei, A.; Pedram, M.

    2014-05-01

    This paper presents a physical mapping tool for quantum circuits, which generates the optimal universal logic block (ULB) that can, on average, perform any logical fault-tolerant (FT) quantum operations with the minimum latency. The operation scheduling, placement, and qubit routing problems tackled by the quantum physical mapper are highly dependent on one another. More precisely, the scheduling solution affects the quality of the achievable placement solution due to resource pressures that may be created as a result of operation scheduling, whereas the operation placement and qubit routing solutions influence the scheduling solution due to resulting distances between predecessor and current operations, which in turn determines routing latencies. The proposed flow for the quantum physical mapper captures these dependencies by applying (1) a loose scheduling step, which transforms an initial quantum data flow graph into one that explicitly captures the no-cloning theorem of the quantum computing and then performs instruction scheduling based on a modified force-directed scheduling approach to minimize the resource contention and quantum circuit latency, (2) a placement step, which uses timing-driven instruction placement to minimize the approximate routing latencies while making iterative calls to the aforesaid force-directed scheduler to correct scheduling levels of quantum operations as needed, and (3) a routing step that finds dynamic values of routing latencies for the qubits. In addition to the quantum physical mapper, an approach is presented to determine the single best ULB size for a target quantum circuit by examining the latency of different FT quantum operations mapped onto different ULB sizes and using information about the occurrence frequency of operations on critical paths of the target quantum algorithm to weigh these latencies. Experimental results show an average latency reduction of about 40 % compared to previous work.

  5. Multi-objective generation scheduling with hybrid energy resources

    NASA Astrophysics Data System (ADS)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly emission targets. Since minimizing the emissions and fuel cost are conflicting objectives, a practical approach based on multi-objective optimization is applied to obtain compromised solutions in a single simulation run using genetic algorithm. These solutions are known as non-inferior or Pareto-optimal solutions, graphically illustrated by the trade-off curves between criterions fuel cost and pollutant emission. The efficacy of the proposed approach is illustrated with the help of different sample test cases. This research would be useful for society, electric utilities, consultants, regulatory bodies, policy makers and planners.

  6. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    PubMed Central

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  7. Sensitivity and bias under conditions of equal and unequal academic task difficulty.

    PubMed

    Reed, Derek D; Martens, Brian K

    2008-01-01

    We conducted an experimental analysis of children's relative problem-completion rates across two workstations under conditions of equal (Experiment 1) and unequal (Experiment 2) problem difficulty. Results were described using the generalized matching equation and were evaluated for degree of schedule versus stimulus control. Experiment 1 involved a symmetrical choice arrangement in which the children could earn points exchangeable for rewards contingent on correct math problem completion. Points were delivered according to signaled variable-interval schedules at each workstation. For 2 children, relative rates of problem completion appeared to have been controlled by the schedule requirements in effect and matched relative rates of reinforcement, with sensitivity values near 1 and bias values near 0. Experiment 2 involved increasing the difficulty of math problems at one of the workstations. Sensitivity values for all 3 participants were near 1, but a substantial increase in bias toward the easier math problems was observed. This bias was possibly associated with responding at the more difficult workstation coming under stimulus control rather than schedule control.

  8. A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.

    PubMed

    Lee, I; Sikora, R; Shaw, M J

    1997-01-01

    Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.

  9. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  10. Steam generator tube integrity flaw acceptance criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochet, B.

    1997-02-01

    The author discusses the establishment of a flaw acceptance criteria with respect to flaws in steam generator tubing. The problem is complicated because different countries take different approaches to the problem. The objectives in general are grouped in three broad areas: to avoid the unscheduled shutdown of the reactor during normal operation; to avoid tube bursts; to avoid excessive leak rates in the event of an accidental overpressure event. For each degradation mechanism in the tubes it is necessary to know answers to an array of questions, including: how well does NDT testing perform against this problem; how rapidly doesmore » such degradation develop; how well is this degradation mechanism understood. Based on the above information it is then possible to come up with a policy to look at flaw acceptance. Part of this criteria is a schedule for the frequency of in-service inspection and also a policy for when to plug flawed tubes. The author goes into a broad discussion of each of these points in his paper.« less

  11. An Integrated Constraint Programming Approach to Scheduling Sports Leagues with Divisional and Round-robin Tournaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson, Mats; Johansson, Mikael; Larson, Jeffrey

    Previous approaches for scheduling a league with round-robin and divisional tournaments involved decomposing the problem into easier subproblems. This approach, used to schedule the top Swedish handball league Elitserien, reduces the problem complexity but can result in suboptimal schedules. This paper presents an integrated constraint programming model that allows to perform the scheduling in a single step. Particular attention is given to identifying implied and symmetry-breaking constraints that reduce the computational complexity significantly. The experimental evaluation of the integrated approach takes considerably less computational effort than the previous approach.

  12. Performance of Extended Local Clustering Organization (LCO) for Large Scale Job-Shop Scheduling Problem (JSP)

    NASA Astrophysics Data System (ADS)

    Konno, Yohko; Suzuki, Keiji

    This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.

  13. Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon C.; Zhu, Zhifan; Jeong, Myeongsook; Kim, Hyounkong; Oh, Eunmi; Hong, Sungkwon

    2017-01-01

    This study aims to develop a controllers decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).

  14. Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon Chul; Zhu, Zhifan; Jeong, Myeong-Sook; Kim, Hyoun Kyoung; Oh, Eunmi; Hong, Sungkwon

    2017-01-01

    This study aims to develop a controllers' decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).

  15. Multi-Objective Scheduling for the Cluster II Constellation

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2011-01-01

    This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.

  16. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.

    PubMed

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.

  17. Multiobjective optimisation design for enterprise system operation in the case of scheduling problem with deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei

    2016-03-01

    The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.

  18. Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2017-08-01

    Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.

  19. Automatic programming via iterated local search for dynamic job shop scheduling.

    PubMed

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2015-01-01

    Dispatching rules have been commonly used in practice for making sequencing and scheduling decisions. Due to specific characteristics of each manufacturing system, there is no universal dispatching rule that can dominate in all situations. Therefore, it is important to design specialized dispatching rules to enhance the scheduling performance for each manufacturing environment. Evolutionary computation approaches such as tree-based genetic programming (TGP) and gene expression programming (GEP) have been proposed to facilitate the design task through automatic design of dispatching rules. However, these methods are still limited by their high computational cost and low exploitation ability. To overcome this problem, we develop a new approach to automatic programming via iterated local search (APRILS) for dynamic job shop scheduling. The key idea of APRILS is to perform multiple local searches started with programs modified from the best obtained programs so far. The experiments show that APRILS outperforms TGP and GEP in most simulation scenarios in terms of effectiveness and efficiency. The analysis also shows that programs generated by APRILS are more compact than those obtained by genetic programming. An investigation of the behavior of APRILS suggests that the good performance of APRILS comes from the balance between exploration and exploitation in its search mechanism.

  20. Dypas: A dynamic payload scheduler for shuttle missions

    NASA Technical Reports Server (NTRS)

    Davis, Stephen

    1988-01-01

    Decision and analysis systems have had broad and very practical application areas in the human decision making process. These software systems range from the help sections in simple accounting packages, to the more complex computer configuration programs. Dypas is a decision and analysis system that aids prelaunch shutlle scheduling, and has added functionality to aid the rescheduling done in flight. Dypas is written in Common Lisp on a Symbolics Lisp machine. Dypas differs from other scheduling programs in that it can draw its knowledge from different rule bases and apply them to different rule interpretation schemes. The system has been coded with Flavors, an object oriented extension to Common Lisp on the Symbolics hardware. This allows implementation of objects (experiments) to better match the problem definition, and allows a more coherent solution space to be developed. Dypas was originally developed to test a programmer's aptitude toward Common Lisp and the Symbolics software environment. Since then the system has grown into a large software effort with several programmers and researchers thrown into the effort. Dypas is currently using two expert systems and three inferencing procedures to generate a many object schedule. The paper will review the abilities of Dypas and comment on its functionality.

  1. The application of artificial intelligence to astronomical scheduling problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike to other problem domains, and plans for the future evolution of the system.

  2. Non-Evolutionary Algorithms for Scheduling Dependent Tasks in Distributed Heterogeneous Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne F. Boyer; Gurdeep S. Hura

    2005-09-01

    The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less

  3. Scheduling Future Water Supply Investments Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.

    2014-12-01

    Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).

  4. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  5. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  6. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  7. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  8. Integrated Dynamic Process Planning and Scheduling in Flexible Manufacturing Systems via Autonomous Agents

    NASA Astrophysics Data System (ADS)

    Nejad, Hossein Tehrani Nik; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka

    Process planning and scheduling are important manufacturing planning activities which deal with resource utilization and time span of manufacturing operations. The process plans and the schedules generated in the planning phase shall be modified in the execution phase due to the disturbances in the manufacturing systems. This paper deals with a multi-agent architecture of an integrated and dynamic system for process planning and scheduling for multi jobs. A negotiation protocol is discussed, in this paper, to generate the process plans and the schedules of the manufacturing resources and the individual jobs, dynamically and incrementally, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans and schedules are searched and generated to cope with both the dynamic status and the disturbances of the manufacturing systems. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans and schedules in the dynamic manufacturing environment. A simulation software has been developed to carry out case studies, aimed at verifying the performance of the proposed multi-agent architecture.

  9. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.

    1986-01-01

    A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  10. Planning as a Precursor to Scheduling for Space Station Payload Operations

    NASA Technical Reports Server (NTRS)

    Howell, Eric; Maxwell, Theresa

    1995-01-01

    Contemporary schedulers attempt to solve the problem of best fitting a set of activities into an available timeframe while still satisfying the necessary constraints. This approach produces results which are optimized for the region of time the scheduler is able to process, satisfying the near term goals of the operation. In general the scheduler is not able to reason about the activities which precede or follow the window into which it is inputs to scheduling so that the intermediate placing activities. This creates a problem for operations which are composed of many activities spanning long durations (which exceed the scheduler's reasoning horizon) such as the continuous operations environment for payload operations on the Space Station. Not only must the near term scheduling objectives be met, but somehow the results of near term scheduling must be made to support the attainment of long term goals.

  11. Spike: AI scheduling for Hubble Space Telescope after 18 months of orbital operations

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    This paper is a progress report on the Spike scheduling system, developed by the Space Telescope Science Institute for long-term scheduling of Hubble Space Telescope (HST) observations. Spike is an activity-based scheduler which exploits artificial intelligence (AI) techniques for constraint representation and for scheduling search. The system has been in operational use since shortly after HST launch in April 1990. Spike was adopted for several other satellite scheduling problems; of particular interest was the demonstration that the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. We describe the recent progress made in scheduling search techniques, the lessons learned from early HST operations, and the application of Spike to other problem domains. We also describe plans for the future evolution of the system.

  12. Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model

    NASA Astrophysics Data System (ADS)

    Nouri, Houssem Eddine; Belkahla Driss, Olfa; Ghédira, Khaled

    2018-03-01

    The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.

  13. Stochastic Modeling of Airlines' Scheduled Services Revenue

    NASA Technical Reports Server (NTRS)

    Hamed, M. M.

    1999-01-01

    Airlines' revenue generated from scheduled services account for the major share in the total revenue. As such, predicting airlines' total scheduled services revenue is of great importance both to the governments (in case of national airlines) and private airlines. This importance stems from the need to formulate future airline strategic management policies, determine government subsidy levels, and formulate governmental air transportation policies. The prediction of the airlines' total scheduled services revenue is dealt with in this paper. Four key components of airline's scheduled services are considered. These include revenues generated from passenger, cargo, mail, and excess baggage. By addressing the revenue generated from each schedule service separately, air transportation planners and designers arc able to enhance their ability to formulate specific strategies for each component. Estimation results clearly indicate that the four stochastic processes (scheduled services components) are represented by different Box-Jenkins ARIMA models. The results demonstrate the appropriateness of the developed models and their ability to provide air transportation planners with future information vital to the planning and design processes.

  14. Stochastic Modeling of Airlines' Scheduled Services Revenue

    NASA Technical Reports Server (NTRS)

    Hamed, M. M.

    1999-01-01

    Airlines' revenue generated from scheduled services account for the major share in the total revenue. As such, predicting airlines' total scheduled services revenue is of great importance both to the governments (in case of national airlines) and private airlines. This importance stems from the need to formulate future airline strategic management policies, determine government subsidy levels, and formulate governmental air transportation policies. The prediction of the airlines' total scheduled services revenue is dealt with in this paper. Four key components of airline's scheduled services are considered. These include revenues generated from passenger, cargo, mail, and excess baggage. By addressing the revenue generated from each schedule service separately, air transportation planners and designers are able to enhance their ability to formulate specific strategies for each component. Estimation results clearly indicate that the four stochastic processes (scheduled services components) are represented by different Box-Jenkins ARIMA models. The results demonstrate the appropriateness of the developed models and their ability to provide air transportation planners with future information vital to the planning and design processes.

  15. Escalator: An Autonomous Scheduling Scheme for Convergecast in TSCH

    PubMed Central

    Oh, Sukho; Hwang, DongYeop; Kim, Ki-Hyung; Kim, Kangseok

    2018-01-01

    Time Slotted Channel Hopping (TSCH) is widely used in the industrial wireless sensor networks due to its high reliability and energy efficiency. Various timeslot and channel scheduling schemes have been proposed for achieving high reliability and energy efficiency for TSCH networks. Recently proposed autonomous scheduling schemes provide flexible timeslot scheduling based on the routing topology, but do not take into account the network traffic and packet forwarding delays. In this paper, we propose an autonomous scheduling scheme for convergecast in TSCH networks with RPL as a routing protocol, named Escalator. Escalator generates a consecutive timeslot schedule along the packet forwarding path to minimize the packet transmission delay. The schedule is generated autonomously by utilizing only the local routing topology information without any additional signaling with other nodes. The generated schedule is guaranteed to be conflict-free, in that all nodes in the network could transmit packets to the sink in every slotframe cycle. We implement Escalator and evaluate its performance with existing autonomous scheduling schemes through a testbed and simulation. Experimental results show that the proposed Escalator has lower end-to-end delay and higher packet delivery ratio compared to the existing schemes regardless of the network topology. PMID:29659508

  16. Escalator: An Autonomous Scheduling Scheme for Convergecast in TSCH.

    PubMed

    Oh, Sukho; Hwang, DongYeop; Kim, Ki-Hyung; Kim, Kangseok

    2018-04-16

    Time Slotted Channel Hopping (TSCH) is widely used in the industrial wireless sensor networks due to its high reliability and energy efficiency. Various timeslot and channel scheduling schemes have been proposed for achieving high reliability and energy efficiency for TSCH networks. Recently proposed autonomous scheduling schemes provide flexible timeslot scheduling based on the routing topology, but do not take into account the network traffic and packet forwarding delays. In this paper, we propose an autonomous scheduling scheme for convergecast in TSCH networks with RPL as a routing protocol, named Escalator. Escalator generates a consecutive timeslot schedule along the packet forwarding path to minimize the packet transmission delay. The schedule is generated autonomously by utilizing only the local routing topology information without any additional signaling with other nodes. The generated schedule is guaranteed to be conflict-free, in that all nodes in the network could transmit packets to the sink in every slotframe cycle. We implement Escalator and evaluate its performance with existing autonomous scheduling schemes through a testbed and simulation. Experimental results show that the proposed Escalator has lower end-to-end delay and higher packet delivery ratio compared to the existing schemes regardless of the network topology.

  17. Multi-time scale energy management of wind farms based on comprehensive evaluation technology

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.

    2017-11-01

    A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.

  18. Coordination between Generation and Transmission Maintenance Scheduling by Means of Multi-agent Technique

    NASA Astrophysics Data System (ADS)

    Nagata, Takeshi; Tao, Yasuhiro; Utatani, Masahiro; Sasaki, Hiroshi; Fujita, Hideki

    This paper proposes a multi-agent approach to maintenance scheduling in restructured power systems. The restructuring of electric power industry has resulted in market-based approaches for unbundling a multitude of service provided by self-interested entities such as power generating companies (GENCOs), transmission providers (TRANSCOs) and distribution companies (DISCOs). The Independent System Operator (ISO) is responsible for the security of the system operation. The schedule submitted to ISO by GENCOs and TRANSCOs should satisfy security and reliability constraints. The proposed method consists of several GENCO Agents (GAGs), TARNSCO Agents (TAGs) and a ISO Agent(IAG). The IAG’s role in maintenance scheduling is limited to ensuring that the submitted schedules do not cause transmission congestion or endanger the system reliability. From the simulation results, it can be seen the proposed multi-agent approach could coordinate between generation and transmission maintenance schedules.

  19. Periodic Heterogeneous Vehicle Routing Problem With Driver Scheduling

    NASA Astrophysics Data System (ADS)

    Mardiana Panggabean, Ellis; Mawengkang, Herman; Azis, Zainal; Filia Sari, Rina

    2018-01-01

    The paper develops a model for the optimal management of logistic delivery of a given commodity. The company has different type of vehicles with different capacity to deliver the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We propose a combined approach of heuristic algorithm and exact method to solve the problem.

  20. Strategic Gang Scheduling for Railroad Maintenance

    DOT National Transportation Integrated Search

    2012-08-14

    We address the railway track maintenance scheduling problem. The problem stems from the : significant percentage of the annual budget invested by the railway industry for maintaining its railway : tracks. The process requires consideration of human r...

  1. Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

    NASA Astrophysics Data System (ADS)

    Lazarev, A. A.

    2009-02-01

    An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.

  2. Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte

    1992-01-01

    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.

  3. Job Scheduling in a Heterogeneous Grid Environment

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  4. Simulated annealing with probabilistic analysis for solving traveling salesman problems

    NASA Astrophysics Data System (ADS)

    Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan

    2013-09-01

    Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.

  5. Guidance and Control Software,

    DTIC Science & Technology

    1980-05-01

    commitments of function, cost, and schedule . The phrase "software engineering" was intended to contrast with the phrase "computer science" the latter aims...the software problems of cost, delivery schedule , and quality were gradually being recognized at the highest management levels. Thus, in a project... schedule dates. Although the analysis of software problems indicated that the entire software development process (figure 1) needed new methods, only

  6. High performance techniques for space mission scheduling

    NASA Technical Reports Server (NTRS)

    Smith, Stephen F.

    1994-01-01

    In this paper, we summarize current research at Carnegie Mellon University aimed at development of high performance techniques and tools for space mission scheduling. Similar to prior research in opportunistic scheduling, our approach assumes the use of dynamic analysis of problem constraints as a basis for heuristic focusing of problem solving search. This methodology, however, is grounded in representational assumptions more akin to those adopted in recent temporal planning research, and in a problem solving framework which similarly emphasizes constraint posting in an explicitly maintained solution constraint network. These more general representational assumptions are necessitated by the predominance of state-dependent constraints in space mission planning domains, and the consequent need to integrate resource allocation and plan synthesis processes. First, we review the space mission problems we have considered to date and indicate the results obtained in these application domains. Next, we summarize recent work in constraint posting scheduling procedures, which offer the promise of better future solutions to this class of problems.

  7. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  8. Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio; Ross, Kevin

    2009-01-01

    Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.

  9. A new multi-objective optimization model for preventive maintenance and replacement scheduling of multi-component systems

    NASA Astrophysics Data System (ADS)

    Moghaddam, Kamran S.; Usher, John S.

    2011-07-01

    In this article, a new multi-objective optimization model is developed to determine the optimal preventive maintenance and replacement schedules in a repairable and maintainable multi-component system. In this model, the planning horizon is divided into discrete and equally-sized periods in which three possible actions must be planned for each component, namely maintenance, replacement, or do nothing. The objective is to determine a plan of actions for each component in the system while minimizing the total cost and maximizing overall system reliability simultaneously over the planning horizon. Because of the complexity, combinatorial and highly nonlinear structure of the mathematical model, two metaheuristic solution methods, generational genetic algorithm, and a simulated annealing are applied to tackle the problem. The Pareto optimal solutions that provide good tradeoffs between the total cost and the overall reliability of the system can be obtained by the solution approach. Such a modeling approach should be useful for maintenance planners and engineers tasked with the problem of developing recommended maintenance plans for complex systems of components.

  10. Cell transmission model of dynamic assignment for urban rail transit networks.

    PubMed

    Xu, Guangming; Zhao, Shuo; Shi, Feng; Zhang, Feilian

    2017-01-01

    For urban rail transit network, the space-time flow distribution can play an important role in evaluating and optimizing the space-time resource allocation. For obtaining the space-time flow distribution without the restriction of schedules, a dynamic assignment problem is proposed based on the concept of continuous transmission. To solve the dynamic assignment problem, the cell transmission model is built for urban rail transit networks. The priority principle, queuing process, capacity constraints and congestion effects are considered in the cell transmission mechanism. Then an efficient method is designed to solve the shortest path for an urban rail network, which decreases the computing cost for solving the cell transmission model. The instantaneous dynamic user optimal state can be reached with the method of successive average. Many evaluation indexes of passenger flow can be generated, to provide effective support for the optimization of train schedules and the capacity evaluation for urban rail transit network. Finally, the model and its potential application are demonstrated via two numerical experiments using a small-scale network and the Beijing Metro network.

  11. A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements

    NASA Astrophysics Data System (ADS)

    Pu, Xun; Lu, XianLiang

    2011-10-01

    Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.

  12. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  13. A new distributed systems scheduling algorithm: a swarm intelligence approach

    NASA Astrophysics Data System (ADS)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  14. Solution and reasoning reuse in space planning and scheduling applications

    NASA Technical Reports Server (NTRS)

    Verfaillie, Gerard; Schiex, Thomas

    1994-01-01

    In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.

  15. Toward interactive scheduling systems for managing medical resources.

    PubMed

    Oddi, A; Cesta, A

    2000-10-01

    Managers of medico-hospital facilities are facing two general problems when allocating resources to activities: (1) to find an agreement between several and contrasting requirements; (2) to manage dynamic and uncertain situations when constraints suddenly change over time due to medical needs. This paper describes the results of a research aimed at applying constraint-based scheduling techniques to the management of medical resources. A mixed-initiative problem solving approach is adopted in which a user and a decision support system interact to incrementally achieve a satisfactory solution to the problem. A running prototype is described called Interactive Scheduler which offers a set of functionalities for a mixed-initiative interaction to cope with the medical resource management. Interactive Scheduler is endowed with a representation schema used for describing the medical environment, a set of algorithms that address the specific problems of the domain, and an innovative interaction module that offers functionalities for the dialogue between the support system and its user. A particular contribution of this work is the explicit representation of constraint violations, and the definition of scheduling algorithms that aim at minimizing the amount of constraint violations in a solution.

  16. Multiagent scheduling method with earliness and tardiness objectives in flexible job shops.

    PubMed

    Wu, Zuobao; Weng, Michael X

    2005-04-01

    Flexible job-shop scheduling problems are an important extension of the classical job-shop scheduling problems and present additional complexity. Such problems are mainly due to the existence of a considerable amount of overlapping capacities with modern machines. Classical scheduling methods are generally incapable of addressing such capacity overlapping. We propose a multiagent scheduling method with job earliness and tardiness objectives in a flexible job-shop environment. The earliness and tardiness objectives are consistent with the just-in-time production philosophy which has attracted significant attention in both industry and academic community. A new job-routing and sequencing mechanism is proposed. In this mechanism, two kinds of jobs are defined to distinguish jobs with one operation left from jobs with more than one operation left. Different criteria are proposed to route these two kinds of jobs. Job sequencing enables to hold a job that may be completed too early. Two heuristic algorithms for job sequencing are developed to deal with these two kinds of jobs. The computational experiments show that the proposed multiagent scheduling method significantly outperforms the existing scheduling methods in the literature. In addition, the proposed method is quite fast. In fact, the simulation time to find a complete schedule with over 2000 jobs on ten machines is less than 1.5 min.

  17. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  18. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem

    PubMed Central

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764

  19. Evolutionarily stable learning schedules and cumulative culture in discrete generation models.

    PubMed

    Aoki, Kenichi; Wakano, Joe Yuichiro; Lehmann, Laurent

    2012-06-01

    Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  1. Learning Search Control Knowledge for Deep Space Network Scheduling

    NASA Technical Reports Server (NTRS)

    Gratch, Jonathan; Chien, Steve; DeJong, Gerald

    1993-01-01

    While the general class of most scheduling problems is NP-hard in worst-case complexity, in practice, for specific distributions of problems and constraints, domain-specific solutions have been shown to perform in much better than exponential time.

  2. Vehicle and driver scheduling for public transit.

    DOT National Transportation Integrated Search

    2009-08-01

    The problem of driver scheduling involves the construction of a legal set of shifts, including allowance : of overtime, which cover the blocks in a particular vehicle schedule. A shift is the work scheduled to be performed by : a driver in one day, w...

  3. An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai

    Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.

  4. Predit: A temporal predictive framework for scheduling systems

    NASA Technical Reports Server (NTRS)

    Paolucci, E.; Patriarca, E.; Sem, M.; Gini, G.

    1992-01-01

    Scheduling can be formalized as a Constraint Satisfaction Problem (CSP). Within this framework activities belonging to a plan are interconnected via temporal constraints that account for slack among them. Temporal representation must include methods for constraints propagation and provide a logic for symbolic and numerical deductions. In this paper we describe a support framework for opportunistic reasoning in constraint directed scheduling. In order to focus the attention of an incremental scheduler on critical problem aspects, some discrete temporal indexes are presented. They are also useful for the prediction of the degree of resources contention. The predictive method expressed through our indexes can be seen as a Knowledge Source for an opportunistic scheduler with a blackboard architecture.

  5. A New Model for Solving Time-Cost-Quality Trade-Off Problems in Construction

    PubMed Central

    Fu, Fang; Zhang, Tao

    2016-01-01

    A poor quality affects project makespan and its total costs negatively, but it can be recovered by repair works during construction. We construct a new non-linear programming model based on the classic multi-mode resource constrained project scheduling problem considering repair works. In order to obtain satisfactory quality without a high increase of project cost, the objective is to minimize total quality cost which consists of the prevention cost and failure cost according to Quality-Cost Analysis. A binary dependent normal distribution function is adopted to describe the activity quality; Cumulative quality is defined to determine whether to initiate repair works, according to the different relationships among activity qualities, namely, the coordinative and precedence relationship. Furthermore, a shuffled frog-leaping algorithm is developed to solve this discrete trade-off problem based on an adaptive serial schedule generation scheme and adjusted activity list. In the program of the algorithm, the frog-leaping progress combines the crossover operator of genetic algorithm and a permutation-based local search. Finally, an example of a construction project for a framed railway overpass is provided to examine the algorithm performance, and it assist in decision making to search for the appropriate makespan and quality threshold with minimal cost. PMID:27911939

  6. Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning

    NASA Astrophysics Data System (ADS)

    Schumacher, André; Haanpää, Harri

    We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with ns2 simulations.

  7. A Solution Method of Scheduling Problem with Worker Allocation by a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Osawa, Akira; Ida, Kenichi

    In a scheduling problem with worker allocation (SPWA) proposed by Iima et al, the worker's skill level to each machine is all the same. However, each worker has a different skill level for each machine in the real world. For that reason, we propose a new model of SPWA in which a worker has the different skill level to each machine. To solve the problem, we propose a new GA for SPWA consisting of the following new three procedures, shortening of idle time, modifying infeasible solution to feasible solution, and a new selection method for GA. The effectiveness of the proposed algorithm is clarified by numerical experiments using benchmark problems for job-shop scheduling.

  8. Psychometric Properties of the Disability Assessment Schedule (DAS) for Behavior Problems: An Independent Investigation

    ERIC Educational Resources Information Center

    Tsakanikos, Elias; Underwood, Lisa; Sturmey, Peter; Bouras, Nick; McCarthy, Jane

    2011-01-01

    The present study employed the Disability Assessment Schedule (DAS) to assess problem behaviors in a large sample of adults with ID (N = 568) and evaluate the psychometric properties of this instrument. Although the DAS problem behaviors were found to be internally consistent (Cronbach's [alpha] = 0.87), item analysis revealed one weak item…

  9. Scheduling: A guide for program managers

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.

  10. Intelligent scheduling of execution for customized physical fitness and healthcare system.

    PubMed

    Huang, Chung-Chi; Liu, Hsiao-Man; Huang, Chung-Lin

    2015-01-01

    Physical fitness and health of white collar business person is getting worse and worse in recent years. Therefore, it is necessary to develop a system which can enhance physical fitness and health for people. Although the exercise prescription can be generated after diagnosing for customized physical fitness and healthcare. It is hard to meet individual execution needs for general scheduling of physical fitness and healthcare system. So the main purpose of this research is to develop an intelligent scheduling of execution for customized physical fitness and healthcare system. The results of diagnosis and prescription for customized physical fitness and healthcare system will be generated by fuzzy logic Inference. Then the results of diagnosis and prescription for customized physical fitness and healthcare system will be scheduled and executed by intelligent computing. The scheduling of execution is generated by using genetic algorithm method. It will improve traditional scheduling of exercise prescription for physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent scheduling of execution for customized physical fitness and healthcare system.

  11. Scheduling for energy and reliability management on multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Qi, Xuan

    Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.

  12. Dataflow Design Tool: User's Manual

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1996-01-01

    The Dataflow Design Tool is a software tool for selecting a multiprocessor scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. The software tool implements graph-search algorithms and analysis techniques based on the dataflow paradigm. Dataflow analyses provided by the software are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool provides performance optimization through the inclusion of artificial precedence constraints among the schedulable tasks. The user interface and tool capabilities are described. Examples are provided to demonstrate the analysis, scheduling, and optimization functions facilitated by the tool.

  13. W-MAC: A Workload-Aware MAC Protocol for Heterogeneous Convergecast in Wireless Sensor Networks

    PubMed Central

    Xia, Ming; Dong, Yabo; Lu, Dongming

    2011-01-01

    The power consumption and latency of existing MAC protocols for wireless sensor networks (WSNs) are high in heterogeneous convergecast, where each sensor node generates different amounts of data in one convergecast operation. To solve this problem, we present W-MAC, a workload-aware MAC protocol for heterogeneous convergecast in WSNs. A subtree-based iterative cascading scheduling mechanism and a workload-aware time slice allocation mechanism are proposed to minimize the power consumption of nodes, while offering a low data latency. In addition, an efficient schedule adjustment mechanism is provided for adapting to data traffic variation and network topology change. Analytical and simulation results show that the proposed protocol provides a significant energy saving and latency reduction in heterogeneous convergecast, and can effectively support data aggregation to further improve the performance. PMID:22163753

  14. Solving cyclical nurse scheduling problem using preemptive goal programming

    NASA Astrophysics Data System (ADS)

    Sundari, V. E.; Mardiyati, S.

    2017-07-01

    Nurse scheduling system in a hospital is being modeled as a preemptive goal programming problem that is solved by using LINGO software with the objective function to minimize deviation variable at each goal. The scheduling is done cyclically, so every nurse is treated fairly since they have the same work shift portion with the other nurses. By paying attention to the hospital's rules regarding nursing work shift cyclically, it can be obtained that numbers of nurse needed in every ward are 18 nurses and the numbers of scheduling periods are 18 periods where every period consists of 21 days.

  15. Flexible Coordination in Resource-Constrained Domains

    DTIC Science & Technology

    1994-07-01

    Experiments (TIEs) with planning technologies developed at both BBN (FMERG) and SRI ( SOCAP ). We have also exported scheduling support capabilities provided by...SRI’s SOCAP course of action (COA) plan generator. "* Development and demonstration of distributed, multi-level deployment scheduling - Through analysis...scheduler was adapted for integration with the SOCAP planning system to provide feedback on transportation feasibility during generation of the

  16. A Mixed Integer Linear Program for Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Jung, Yoon Chul

    2009-01-01

    Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced delays as compared to FCFS, and the magnitude of the savings depends on the queue and departure fix structure. The MILP assumes deterministic aircraft arrival times at the runway queues. However, due to taxi time uncertainty, aircraft might arrive either earlier or later than these deterministic times. Thus, to incorporate this uncertainty, we present a method for using the MILP with "overlap discounted rolling planning horizon". The approach is based on valuing near-term decision results more than future ones. We develop a model of taxitime uncertainty based on real-world data, and then compare the baseline FCFS delays with delays using the above MILP in a simple rolling-horizon method and in the overlap discounted scheme.

  17. Block Scheduling in High Schools.

    ERIC Educational Resources Information Center

    Irmsher, Karen

    1996-01-01

    Block Scheduling has been considered a cure for a lengthy list of educational problems. This report reviews the literature on block schedules and describes some Oregon high schools that have integrated block scheduling. Major disadvantages included resistance to change and requirements that teachers change their teaching strategies. There is…

  18. Fireworks Algorithm with Enhanced Fireworks Interaction.

    PubMed

    Zhang, Bei; Zheng, Yu-Jun; Zhang, Min-Xia; Chen, Sheng-Yong

    2017-01-01

    As a relatively new metaheuristic in swarm intelligence, fireworks algorithm (FWA) has exhibited promising performance on a wide range of optimization problems. This paper aims to improve FWA by enhancing fireworks interaction in three aspects: 1) Developing a new Gaussian mutation operator to make sparks learn from more exemplars; 2) Integrating the regular explosion operator of FWA with the migration operator of biogeography-based optimization (BBO) to increase information sharing; 3) Adopting a new population selection strategy that enables high-quality solutions to have high probabilities of entering the next generation without incurring high computational cost. The combination of the three strategies can significantly enhance fireworks interaction and thus improve solution diversity and suppress premature convergence. Numerical experiments on the CEC 2015 single-objective optimization test problems show the effectiveness of the proposed algorithm. The application to a high-speed train scheduling problem also demonstrates its feasibility in real-world optimization problems.

  19. SOFIA'S Challenge: Scheduling Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2005-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can generate flights enables humans to assess and analyze complex tradeoffs between fuel consumption, estimated science quality and the percentage of scheduled observations. Due to the changing nature of SOFIA scheduling problems, this functionality will play a crucial role in optimizing science and minimizing costs during operations. In the full paper, we will summarize the technical challenges that have been met in order to build this system. These include: design of the search algorithm, design of appropriate heuristics and approximations, and reduction in the size of the search space. We will also describe technical challenges that are currently being addressed, including the extension of the existing approach to handle new solution criteria. Finally, we will describe a variety of cultural challenges that the astronomical community must address in order to successfully use SOFIA, and describe how the AFT can be used to address some of these challenges. Specifically, many of the intended science users are accustomed to using ground-based or space-based observatories; we will identify some differences that arise due to the nature of airborne observatories, and how the AFT can be extended to provide useful services to ease these cultural differences.

  20. Vehicle Scheduling Schemes for Commercial and Emergency Logistics Integration

    PubMed Central

    Li, Xiaohui; Tan, Qingmei

    2013-01-01

    In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models. PMID:24391724

  1. Vehicle scheduling schemes for commercial and emergency logistics integration.

    PubMed

    Li, Xiaohui; Tan, Qingmei

    2013-01-01

    In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models.

  2. Towards Evolving Electronic Circuits for Autonomous Space Applications

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Haith, Gary L.; Colombano, Silvano P.; Stassinopoulos, Dimitris

    2000-01-01

    The relatively new field of Evolvable Hardware studies how simulated evolution can reconfigure, adapt, and design hardware structures in an automated manner. Space applications, especially those requiring autonomy, are potential beneficiaries of evolvable hardware. For example, robotic drilling from a mobile platform requires high-bandwidth controller circuits that are difficult to design. In this paper, we present automated design techniques based on evolutionary search that could potentially be used in such applications. First, we present a method of automatically generating analog circuit designs using evolutionary search and a circuit construction language. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm, we present experimental results for five design tasks. Second, we investigate the use of coevolution in automated circuit design. We examine fitness evaluation by comparing the effectiveness of four fitness schedules. The results indicate that solution quality is highest with static and co-evolving fitness schedules as compared to the other two dynamic schedules. We discuss these results and offer two possible explanations for the observed behavior: retention of useful information, and alignment of problem difficulty with circuit proficiency.

  3. Strengthened MILP formulation for certain gas turbine unit commitment problems

    DOE PAGES

    Pan, Kai; Guan, Yongpei; Watson, Jean -Paul; ...

    2015-05-22

    In this study, we derive a strengthened MILP formulation for certain gas turbine unit commitment problems, in which the ramping rates are no smaller than the minimum generation amounts. This type of gas turbines can usually start-up faster and have a larger ramping rate, as compared to the traditional coal-fired power plants. Recently, the number of this type of gas turbines increases significantly due to affordable gas prices and their scheduling flexibilities to accommodate intermittent renewable energy generation. In this study, several new families of strong valid inequalities are developed to help reduce the computational time to solve these typesmore » of problems. Meanwhile, the validity and facet-defining proofs are provided for certain inequalities. Finally, numerical experiments on a modified IEEE 118-bus system and the power system data based on recent studies verify the effectiveness of applying our formulation to model and solve this type of gas turbine unit commitment problems, including reducing the computational time to obtain an optimal solution or obtaining a much smaller optimality gap, as compared to the default CPLEX, when the time limit is reached with no optimal solutions obtained.« less

  4. Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy.

    PubMed

    Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng

    2012-06-01

    Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.

  5. Education and Social Equity: With a Special Focus on Scheduled Castes and Scheduled Tribes in Elementary Education. CREATE Pathways to Access. Research Monograph No. 19

    ERIC Educational Resources Information Center

    Sedwal, Mona; Kamat, Sangeeta

    2008-01-01

    The Scheduled Castes (SCs, also known as Dalits) and Scheduled Tribes (STs, also known as Adivasis) are among the most socially and educationally disadvantaged groups in India. This paper examines issues concerning school access and equity for Scheduled Caste and Scheduled Tribe communities and also highlights their unique problems, which may…

  6. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  7. Using the principles of circadian physiology enhances shift schedule design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.J.; Moore-Ede, M.C.

    1987-01-01

    Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance andmore » alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.« less

  8. EUROPA2: Plan Database Services for Planning and Scheduling Applications

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Frank, Jeremy; Jonsson, Ari; McGann, Conor

    2004-01-01

    NASA missions require solving a wide variety of planning and scheduling problems with temporal constraints; simple resources such as robotic arms, communications antennae and cameras; complex replenishable resources such as memory, power and fuel; and complex constraints on geometry, heat and lighting angles. Planners and schedulers that solve these problems are used in ground tools as well as onboard systems. The diversity of planning problems and applications of planners and schedulers precludes a one-size fits all solution. However, many of the underlying technologies are common across planning domains and applications. We describe CAPR, a formalism for planning that is general enough to cover a wide variety of planning and scheduling domains of interest to NASA. We then describe EUROPA(sub 2), a software framework implementing CAPR. EUROPA(sub 2) provides efficient, customizable Plan Database Services that enable the integration of CAPR into a wide variety of applications. We describe the design of EUROPA(sub 2) from the perspective of both modeling, customization and application integration to different classes of NASA missions.

  9. Transformation reborn: A new generation expert system for planning HST operations

    NASA Technical Reports Server (NTRS)

    Gerb, Andrew

    1991-01-01

    The Transformation expert system (TRANS) converts proposals for astronomical observations with the Hubble Space Telescope (HST) into detailed observing plans. It encodes expert knowledge to solve problems faced in planning and commanding HST observations to enable their processing by the Science Operations Ground System (SOGS). Among these problems are determining an acceptable order of executing observations, grouping of observations to enhance efficiency and schedulability, inserting extra observations when necessary, and providing parameters for commanding HST instruments. TRANS is currently an operational system and plays a critical role in the HST ground system. It was originally designed using forward-chaining provided by the OPS5 expert system language, but has been reimplemented using a procedural knowledge base. This reimplementation was forced by the explosion in the amount of OPS5 code required to specify the increasingly complicated situations requiring expert-level intervention by the TRANS knowledge base. This problem was compounded by the difficulty of avoiding unintended interaction between rules. To support the TRANS knowledge base, XCL, a small but powerful extension to Commom Lisp was implemented. XCL allows a compact syntax for specifying assignments and references to object attributes. XCL also allows the capability to iterate over objects and perform keyed lookup. The reimplementation of TRANS has greatly diminished the effort needed to maintain and enhance it. As a result of this, its functions have been expanded to include warnings about observations that are difficult or impossible to schedule or command, providing data to aid SPIKE, an intelligent planning system used for HST long-term scheduling, and providing information to the Guide Star Selection System (GSSS) to aid in determination of the long range availability of guide stars.

  10. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  11. Hypertext-based design of a user interface for scheduling

    NASA Technical Reports Server (NTRS)

    Woerner, Irene W.; Biefeld, Eric

    1993-01-01

    Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.

  12. Integrated production and distribution scheduling problems related to fixed delivery departure dates and weights of late orders.

    PubMed

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time.

  13. Integrated Production and Distribution Scheduling Problems Related to Fixed Delivery Departure Dates and Weights of Late Orders

    PubMed Central

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time. PMID:25785285

  14. A generalized network flow model for the multi-mode resource-constrained project scheduling problem with discounted cash flows

    NASA Astrophysics Data System (ADS)

    Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan

    2015-02-01

    An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.

  15. PRACTICAL: Planning and Resource Allocation in C2-Domains With Time Critical Algorithms (PRACTICAL: Planning en Allocatie in C2-Domeinen Met Tijdkritische Algoritmen)

    DTIC Science & Technology

    1993-02-01

    the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively. In the Command...demonstrator CALIGULA for the problem of allocating frequencies to a radio link network. The problems in the domain of scheduling are dealt with. which has...demonstrating the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively

  16. An expert system for scheduling requests for communications Links between TDRSS and ERBS

    NASA Technical Reports Server (NTRS)

    Mclean, David R.; Littlefield, Ronald G.; Beyer, David S.

    1987-01-01

    An ERBS-TDRSS Contact Planning System (ERBS-TDRSS CPS) is described which uses a graphics interface and the NASA Transportable Interference Engine. The procedure involves transfer of the ERBS-TDRSS Ground Track Orbit Prediction data to the ERBS flight operations area, where the ERBS-TDRSS CPS automatically generates requests for TDRSS service. As requested events are rejected, alternative context sensitive strategies are employed to generate new requested events until a schedule is completed. A report generator builds schedule requests for separate ERBS-TDRSS contacts.

  17. Intercell scheduling: A negotiation approach using multi-agent coalitions

    NASA Astrophysics Data System (ADS)

    Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde

    2016-10-01

    Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.

  18. A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ida, Kenichi; Osawa, Akira

    In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.

  19. Active Solution Space and Search on Job-shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo

    In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.

  20. Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags

    NASA Astrophysics Data System (ADS)

    ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu

    2017-05-01

    Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.

  1. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    PubMed Central

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  2. Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.

    PubMed

    Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  3. Learning dominance relations in combinatorial search problems

    NASA Technical Reports Server (NTRS)

    Yu, Chee-Fen; Wah, Benjamin W.

    1988-01-01

    Dominance relations commonly are used to prune unnecessary nodes in search graphs, but they are problem-dependent and cannot be derived by a general procedure. The authors identify machine learning of dominance relations and the applicable learning mechanisms. A study of learning dominance relations using learning by experimentation is described. This system has been able to learn dominance relations for the 0/1-knapsack problem, an inventory problem, the reliability-by-replication problem, the two-machine flow shop problem, a number of single-machine scheduling problems, and a two-machine scheduling problem. It is considered that the same methodology can be extended to learn dominance relations in general.

  4. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  5. Split delivery vehicle routing problem with time windows: a case study

    NASA Astrophysics Data System (ADS)

    Latiffianti, E.; Siswanto, N.; Firmandani, R. A.

    2018-04-01

    This paper aims to implement an extension of VRP so called split delivery vehicle routing problem (SDVRP) with time windows in a case study involving pickups and deliveries of workers from several points of origin and several destinations. Each origin represents a bus stop and the destination represents either site or office location. An integer linear programming of the SDVRP problem is presented. The solution was generated using three stages of defining the starting points, assigning busses, and solving the SDVRP with time windows using an exact method. Although the overall computational time was relatively lengthy, the results indicated that the produced solution was better than the existing routing and scheduling that the firm used. The produced solution was also capable of reducing fuel cost by 9% that was obtained from shorter total distance travelled by the shuttle buses.

  6. Scheduling Results for the THEMIS Observation Scheduling Tool

    NASA Technical Reports Server (NTRS)

    Mclaren, David; Rabideau, Gregg; Chien, Steve; Knight, Russell; Anwar, Sadaat; Mehall, Greg; Christensen, Philip

    2011-01-01

    We describe a scheduling system intended to assist in the development of instrument data acquisitions for the THEMIS instrument, onboard the Mars Odyssey spacecraft, and compare results from multiple scheduling algorithms. This tool creates observations of both (a) targeted geographical regions of interest and (b) general mapping observations, while respecting spacecraft constraints such as data volume, observation timing, visibility, lighting, season, and science priorities. This tool therefore must address both geometric and state/timing/resource constraints. We describe a tool that maps geometric polygon overlap constraints to set covering constraints using a grid-based approach. These set covering constraints are then incorporated into a greedy optimization scheduling algorithm incorporating operations constraints to generate feasible schedules. The resultant tool generates schedules of hundreds of observations per week out of potential thousands of observations. This tool is currently under evaluation by the THEMIS observation planning team at Arizona State University.

  7. Systemic Sustainability in RtI Using Intervention-Based Scheduling Methodologies

    ERIC Educational Resources Information Center

    Dallas, William P.

    2017-01-01

    This study evaluated a scheduling methodology referred to as intervention-based scheduling to address the problem of practice regarding the fidelity of implementing Response to Intervention (RtI) in an existing school schedule design. Employing panel data, this study used fixed-effects regressions and first differences ordinary least squares (OLS)…

  8. Scheduling Independent Partitions in Integrated Modular Avionics Systems

    PubMed Central

    Du, Chenglie; Han, Pengcheng

    2016-01-01

    Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013

  9. An Interactive Decision Support System for Scheduling Fighter Pilot Training

    DTIC Science & Technology

    2002-03-26

    Deitel , H.M. and Deitel , P.J. C: How to Program , 2nd ed., Prentice Hall, 1994. 8. Deitel , H.M. and Deitel , P.J. How to Program Java...Visual Basic Programming language, the Excel tool is modified in several ways. Scheduling Dispatch rules are implemented to automatically generate... programming language, the Excel tool was modified in several ways. Scheduling dispatch rules are implemented to automatically generate

  10. Temporal planning for transportation planning and scheduling

    NASA Technical Reports Server (NTRS)

    Frederking, Robert E.; Muscettola, Nicola

    1992-01-01

    In this paper we describe preliminary work done in the CORTES project, applying the Heuristic Scheduling Testbed System (HSTS) to a transportation planning and scheduling domain. First, we describe in more detail the transportation problems that we are addressing. We then describe the fundamental characteristics of HSTS and we concentrate on the representation of multiple capacity resources. We continue with a more detailed description of the transportation planning problem that we have initially addressed in HSTS and of its solution. Finally we describe future directions for our research.

  11. Decision-making and problem-solving methods in automation technology

    NASA Technical Reports Server (NTRS)

    Hankins, W. W.; Pennington, J. E.; Barker, L. K.

    1983-01-01

    The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming.

  12. Call Admission Control on Single Node Networks under Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) Scheduler

    NASA Astrophysics Data System (ADS)

    Hanada, Masaki; Nakazato, Hidenori; Watanabe, Hitoshi

    Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

  13. Scheduler software for tracking and data relay satellite system loading analysis: User manual and programmer guide

    NASA Technical Reports Server (NTRS)

    Craft, R.; Dunn, C.; Mccord, J.; Simeone, L.

    1980-01-01

    A user guide and programmer documentation is provided for a system of PRIME 400 minicomputer programs. The system was designed to support loading analyses on the Tracking Data Relay Satellite System (TDRSS). The system is a scheduler for various types of data relays (including tape recorder dumps and real time relays) from orbiting payloads to the TDRSS. Several model options are available to statistically generate data relay requirements. TDRSS time lines (representing resources available for scheduling) and payload/TDRSS acquisition and loss of sight time lines are input to the scheduler from disk. Tabulated output from the interactive system includes a summary of the scheduler activities over time intervals specified by the user and overall summary of scheduler input and output information. A history file, which records every event generated by the scheduler, is written to disk to allow further scheduling on remaining resources and to provide data for graphic displays or additional statistical analysis.

  14. Graph Coloring Used to Model Traffic Lights.

    ERIC Educational Resources Information Center

    Williams, John

    1992-01-01

    Two scheduling problems, one involving setting up an examination schedule and the other describing traffic light problems, are modeled as colorings of graphs consisting of a set of vertices and edges. The chromatic number, the least number of colors necessary for coloring a graph, is employed in the solutions. (MDH)

  15. Concurrent Reinforcement Schedules for Problem Behavior and Appropriate Behavior: Experimental Applications of the Matching Law

    ERIC Educational Resources Information Center

    Borrero, Carrie S. W.; Vollmer, Timothy R.; Borrero, John C.; Bourret, Jason C.; Sloman, Kimberly N.; Samaha, Andrew L.; Dallery, Jesse

    2010-01-01

    This study evaluated how children who exhibited functionally equivalent problem and appropriate behavior allocate responding to experimentally arranged reinforcer rates. Relative reinforcer rates were arranged on concurrent variable-interval schedules and effects on relative response rates were interpreted using the generalized matching equation.…

  16. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems.

    PubMed

    Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G

    2016-01-01

    This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.

  17. Shiftwork Scheduling for the 1990s.

    ERIC Educational Resources Information Center

    Coleman, Richard M.

    1989-01-01

    The author discusses the problems of scheduling shift work, touching on such topics as employee desires, health requirements, and business needs. He presents a method for developing shift schedules that addresses these three areas. Implementation hints are also provided. (CH)

  18. Efficient bounding schemes for the two-center hybrid flow shop scheduling problem with removal times.

    PubMed

    Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly

    2014-01-01

    We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.

  19. Efficient Bounding Schemes for the Two-Center Hybrid Flow Shop Scheduling Problem with Removal Times

    PubMed Central

    2014-01-01

    We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures. PMID:25610911

  20. Design and architecture of the Mars relay network planning and analysis framework

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Lee, C. H.

    2002-01-01

    In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.

  1. Study on optimization of the short-term operation of cascade hydropower stations by considering output error

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Wang, Boquan; Zhang, Pu; Liu, Minghao; Li, Chuangang

    2017-06-01

    The study of reservoir deterministic optimal operation can improve the utilization rate of water resource and help the hydropower stations develop more reasonable power generation schedules. However, imprecise forecasting inflow may lead to output error and hinder implementation of power generation schedules. In this paper, output error generated by the uncertainty of the forecasting inflow was regarded as a variable to develop a short-term reservoir optimal operation model for reducing operation risk. To accomplish this, the concept of Value at Risk (VaR) was first applied to present the maximum possible loss of power generation schedules, and then an extreme value theory-genetic algorithm (EVT-GA) was proposed to solve the model. The cascade reservoirs of Yalong River Basin in China were selected as a case study to verify the model, according to the results, different assurance rates of schedules can be derived by the model which can present more flexible options for decision makers, and the highest assurance rate can reach 99%, which is much higher than that without considering output error, 48%. In addition, the model can greatly improve the power generation compared with the original reservoir operation scheme under the same confidence level and risk attitude. Therefore, the model proposed in this paper can significantly improve the effectiveness of power generation schedules and provide a more scientific reference for decision makers.

  2. An Extended Deterministic Dendritic Cell Algorithm for Dynamic Job Shop Scheduling

    NASA Astrophysics Data System (ADS)

    Qiu, X. N.; Lau, H. Y. K.

    The problem of job shop scheduling in a dynamic environment where random perturbation exists in the system is studied. In this paper, an extended deterministic Dendritic Cell Algorithm (dDCA) is proposed to solve such a dynamic Job Shop Scheduling Problem (JSSP) where unexpected events occurred randomly. This algorithm is designed based on dDCA and makes improvements by considering all types of signals and the magnitude of the output values. To evaluate this algorithm, ten benchmark problems are chosen and different kinds of disturbances are injected randomly. The results show that the algorithm performs competitively as it is capable of triggering the rescheduling process optimally with much less run time for deciding the rescheduling action. As such, the proposed algorithm is able to minimize the rescheduling times under the defined objective and to keep the scheduling process stable and efficient.

  3. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment.

    PubMed

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.

  4. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment

    PubMed Central

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505

  5. Optimisation of assembly scheduling in VCIM systems using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-09-01

    Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is quite different from one in traditional production systems because of the difference in the working principles of the two systems. In this article, the assembly scheduling problem in VCIM systems is modeled and then an integrated approach based on genetic algorithm (GA) is proposed to search for a global optimised solution to the problem. Because of dynamic nature of the scheduling problem, a novel GA with unique chromosome representation and modified genetic operations is developed herein. Robustness of the proposed approach is verified by a numerical example.

  6. Some single-machine scheduling problems with learning effects and two competing agents.

    PubMed

    Li, Hongjie; Li, Zeyuan; Yin, Yunqiang

    2014-01-01

    This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective functions addressed in this study include the maximum cost, the total weighted completion time, and the discounted total weighted completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The computational complexity of the problems is discussed and solution algorithms where possible are presented.

  7. Single machine total completion time minimization scheduling with a time-dependent learning effect and deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping

    2012-05-01

    In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.

  8. Commercial Impact and Optimum Capacity Determination of Pumped Storage Hydro Plant for a Practical Power System

    NASA Astrophysics Data System (ADS)

    Latha, P. G.; Anand, S. R.; Imthias, Ahamed T. P.; Sreejith, P. S., Dr.

    2013-06-01

    This paper attempts to study the commercial impact of pumped storage hydro plant on the operation of a stressed power system. The paper further attempts to compute the optimum capacity of the pumped storage scheme that can be provided on commercial basis for a practical power system. Unlike the analysis of commercial aspects of pumped storage scheme attempted in several papers, this paper is presented from the point of view of power system management of a practical system considering the impact of the scheme on the economic operation of the system. A realistic case study is presented as the many factors that influence the pumped storage operation vary widely from one system to another. The suitability of pumped storage for the particular generation mix of a system is well explored in the paper. To substantiate the economic impact of pumped storage on the system, the problem is formulated as a short-term hydrothermal scheduling problem involving power purchase which optimizes the quantum of power to be scheduled and the duration of operation. The optimization model is formulated using an algebraic modeling language, AMPL, which is then solved using the advanced MILP solver CPLEX.

  9. A study of the financial history of the U.S. scheduled airlines and the improvement of airline profitability through technology

    NASA Technical Reports Server (NTRS)

    Wilcox, D. E.

    1975-01-01

    The financial history of the U.S. scheduled airline industry was investigated to determine the causes of the erratic profit performance of the industry and to evaluate potential economic gains from technology advances of recent years. Operational and economic factors affecting past and future profitability of the industry are discussed, although no attempt was made to examine the profitability of individual carriers. The results of the study indicate that the profit erosion of the late 1960's and early 1970's was due more to excess capacity than to inadequate fare levels, but airline problems were severely compounded by the rapid fuel price escalation in 1974 and 1975. Near-term solutions to the airline financial problems depend upon the course of action by the industry and the CAB and the general economic health of the nation. For the longer term, the only acceptable alternative to continued fare increases is a reduction in unit operating costs through technological advance. The next generation of transports is expected to incorporate technologies developed under Government sponsorship in the 1960's and 1970's with significant improvements in fuel consumption and operating costs.

  10. Industrial Processes to Reduce Generation of Hazardous Waste at DoD Facilities. Phase III Report. Appendix C. Workshop Manual Centralized Vehicle Wash Racks and Scheduled Maintenance Facilities, Fort Lewis, Washington.

    DTIC Science & Technology

    1985-12-01

    Lobster Shop - 759-2165. 4013 Ruston Way. Known for excellent seafood. Nautical The Bay Co. - 752-6661. 3327 Ruston Way. Various entrees. CI Shenanigans ...se- RCRA permit is inappropriate." Ac- forms of financial responsibility for rious potential health problem in New cording to Rogers and Darrah, under...admini- strative, monitoring, and financial standards for them. EPA will use these independently enforceable standards to issue permits to owners

  11. Electricity Usage Scheduling in Smart Building Environments Using Smart Devices

    PubMed Central

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860

  12. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  13. Electricity usage scheduling in smart building environments using smart devices.

    PubMed

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.

  14. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    PubMed Central

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-01-01

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807

  15. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.

    PubMed

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-11-28

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.

  16. Scheduling real-time, periodic jobs using imprecise results

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Natarajan, Swaminathan

    1987-01-01

    A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated.

  17. A note on resource allocation scheduling with group technology and learning effects on a single machine

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu

    2017-09-01

    In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.

  18. Algorithms for Scheduling and Network Problems

    DTIC Science & Technology

    1991-09-01

    time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and

  19. Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments.

    PubMed

    Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio

    2011-11-01

    We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.

  20. Nonstandard maternal work schedules during infancy: Implications for children's early behavior problems

    PubMed Central

    Daniel, Stephanie S.; Grzywacz, Joseph G.; Leerkes, Esther; Tucker, Jenna; Han, Wen-Jui

    2009-01-01

    This paper examines the associations between maternal nonstandard work schedules during infancy and children's early behavior problems, and the extent to which infant temperament may moderate these associations. Hypothesized associations were tested using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care (Phase I). Analyses focused on mothers who returned to work by the time the child was 6 months of age, and who worked an average of at least 35 h per week from 6 through 36 months. At 24 and 36 months, children whose mothers worked a nonstandard schedule had higher internalizing and externalizing behaviors. Modest, albeit inconsistent, evidence suggests that temperamentally reactive children may be more vulnerable to maternal work schedules. Maternal depressive symptoms partially mediated associations between nonstandard maternal work schedules and child behavior outcomes. PMID:19233479

  1. Aiding USAF/UPT (Undergraduate Pilot Training) Aircrew Scheduling Using Network Flow Models.

    DTIC Science & Technology

    1986-06-01

    51 3.4 Heuristic Modifications ............ 55 CHAPTER 4 STUDENT SCHEDULING PROBLEM (LEVEL 2) 4.0 Introduction 4.01 Constraints ............. 60 4.02...Covering" Complete Enumeration . . .. . 71 4.14 Heuristics . ............. 72 4.2 Heuristic Method for the Level 2 Problem 4.21 Step I ............... 73...4.22 Step 2 ............... 74 4.23 Advantages to the Heuristic Method. .... .. 78 4.24 Problems with the Heuristic Method. . ... 79 :,., . * CHAPTER5

  2. Observations on SOFIA Observation Scheduling: Search and Inference in the Face of Discrete and Continuous Constraints

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Gross, Michael; Kuerklu, Elif

    2003-01-01

    We did cool stuff to reduce the number of IVPs and BVPs needed to schedule SOFIA by restricting the problem. The restriction costs us little in terms of the value of the flight plans we can build. The restriction allowed us to reformulate part of the search problem as a zero-finding problem. The result is a simplified planning model and significant savings in computation time.

  3. A methodological proposal for the development of an HPC-based antenna array scheduler

    NASA Astrophysics Data System (ADS)

    Bonvallet, Roberto; Hoffstadt, Arturo; Herrera, Diego; López, Daniela; Gregorio, Rodrigo; Almuna, Manuel; Hiriart, Rafael; Solar, Mauricio

    2010-07-01

    As new astronomy projects choose interferometry to improve angular resolution and to minimize costs, preparing and optimizing schedules for an antenna array becomes an increasingly critical task. This problem shares similarities with the job-shop problem, which is known to be a NP-hard problem, making a complete approach infeasible. In the case of ALMA, 18000 projects per season are expected, and the best schedule must be found in the order of minutes. The problem imposes severe difficulties: the large domain of observation projects to be taken into account; a complex objective function, composed of several abstract, environmental, and hardware constraints; the number of restrictions imposed and the dynamic nature of the problem, as weather is an ever-changing variable. A solution can benefit from the use of High-Performance Computing for the final implementation to be deployed, but also for the development process. Our research group proposes the use of both metaheuristic search and statistical learning algorithms, in order to create schedules in a reasonable time. How these techniques will be applied is yet to be determined as part of the ongoing research. Several algorithms need to be implemented, tested and evaluated by the team. This work presents the methodology proposed to lead the development of the scheduler. The basic functionality is encapsulated into software components implemented on parallel architectures. These components expose a domain-level interface to the researchers, enabling then to develop early prototypes for evaluating and comparing their proposed techniques.

  4. Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron.

    DTIC Science & Technology

    1987-06-01

    Security Classification) Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron 12. PERSONAL AUTHOR(S) Thomas J. Kopf...Because of the great number of possible scheduling alternatives, it is difficult to find an optimal solution to-the scheduling problem. Additionally...changes to the original schedule make it even more difficult to find an optimal solution. The emergence of capable microcompu- ters, decision support

  5. Scheduling of hybrid types of machines with two-machine flowshop as the first type and a single machine as the second type

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Chih; Su, Ling-Huey

    2018-02-01

    This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.

  6. Single-machine group scheduling problems with deteriorating and learning effect

    NASA Astrophysics Data System (ADS)

    Xingong, Zhang; Yong, Wang; Shikun, Bai

    2016-07-01

    The concepts of deteriorating jobs and learning effects have been individually studied in many scheduling problems. However, most studies considering the deteriorating and learning effects ignore the fact that production efficiency can be increased by grouping various parts and products with similar designs and/or production processes. This phenomenon is known as 'group technology' in the literature. In this paper, a new group scheduling model with deteriorating and learning effects is proposed, where learning effect depends not only on job position, but also on the position of the corresponding job group; deteriorating effect depends on its starting time of the job. This paper shows that the makespan and the total completion time problems remain polynomial optimal solvable under the proposed model. In addition, a polynomial optimal solution is also presented to minimise the maximum lateness problem under certain agreeable restriction.

  7. Scheduling of an aircraft fleet

    NASA Technical Reports Server (NTRS)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  8. An Optimization of Manufacturing Systems using a Feedback Control Scheduling Model

    NASA Astrophysics Data System (ADS)

    Ikome, John M.; Kanakana, Grace M.

    2018-03-01

    In complex production system that involves multiple process, unplanned disruption often turn to make the entire production system vulnerable to a number of problems which leads to customer’s dissatisfaction. However, this problem has been an ongoing problem that requires a research and methods to streamline the entire process or develop a model that will address it, in contrast to this, we have developed a feedback scheduling model that can minimize some of this problem and after a number of experiment, it shows that some of this problems can be eliminated if the correct remedial actions are implemented on time.

  9. Heuristic methods for the single machine scheduling problem with different ready times and a common due date

    NASA Astrophysics Data System (ADS)

    Birgin, Ernesto G.; Ronconi, Débora P.

    2012-10-01

    The single machine scheduling problem with a common due date and non-identical ready times for the jobs is examined in this work. Performance is measured by the minimization of the weighted sum of earliness and tardiness penalties of the jobs. Since this problem is NP-hard, the application of constructive heuristics that exploit specific characteristics of the problem to improve their performance is investigated. The proposed approaches are examined through a computational comparative study on a set of 280 benchmark test problems with up to 1000 jobs.

  10. Optimizing integrated airport surface and terminal airspace operations under uncertainty

    NASA Astrophysics Data System (ADS)

    Bosson, Christabelle S.

    In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is performed for the Los Angeles environment and probabilistic distributions of pertinent uncertainty sources are obtained. A sensitivity analysis is then carried out to assess the methodology performance and find optimal sampling parameters. Finally, simulations of increasing traffic density in the presence of uncertainty are conducted first for integrated arrivals and departures, then for integrated surface and air operations. To compare the optimization results and show the benefits of integrated operations, two aircraft separation methods are implemented that offer different routing options. The simulations of integrated air operations and the simulations of integrated air and surface operations demonstrate that significant traveling time savings, both total and individual surface and air times, can be obtained when more direct routes are allowed to be traveled even in the presence of uncertainty. The resulting routings induce however extra take off delay for departing flights. As a consequence, some flights cannot meet their initial assigned runway slot which engenders runway position shifting when comparing resulting runway sequences computed under both deterministic and stochastic conditions. The optimization is able to compute an optimal runway schedule that represents an optimal balance between total schedule delays and total travel times.

  11. Optimal load scheduling in commercial and residential microgrids

    NASA Astrophysics Data System (ADS)

    Ganji Tanha, Mohammad Mahdi

    Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.

  12. Scheduling Projects with Multiskill Learning Effect

    PubMed Central

    2014-01-01

    We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost. PMID:24683355

  13. Scheduling projects with multiskill learning effect.

    PubMed

    Zha, Hong; Zhang, Lianying

    2014-01-01

    We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost.

  14. Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    DTIC Science & Technology

    2016-09-09

    prenticeship Scheduling (COVAS), which performs ma- chine learning using human expert demonstration, in conjunction with optimization, to automatically and ef...ficiently produce optimal solutions to challenging real- world scheduling problems. COVAS first learns a policy from human scheduling demonstration via...apprentice- ship learning , then uses this initial solution to provide a tight bound on the value of the optimal solution, thereby substantially

  15. Exploring a QoS Driven Scheduling Approach for Peer-to-Peer Live Streaming Systems with Network Coding

    PubMed Central

    Cui, Laizhong; Lu, Nan; Chen, Fu

    2014-01-01

    Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968

  16. Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin

    2014-10-01

    Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.

  17. Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros

    ERIC Educational Resources Information Center

    Bancroft, Stacie L.; Bourret, Jason C.

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time.…

  18. Multicore job scheduling in the Worldwide LHC Computing Grid

    NASA Astrophysics Data System (ADS)

    Forti, A.; Pérez-Calero Yzquierdo, A.; Hartmann, T.; Alef, M.; Lahiff, A.; Templon, J.; Dal Pra, S.; Gila, M.; Skipsey, S.; Acosta-Silva, C.; Filipcic, A.; Walker, R.; Walker, C. J.; Traynor, D.; Gadrat, S.

    2015-12-01

    After the successful first run of the LHC, data taking is scheduled to restart in Summer 2015 with experimental conditions leading to increased data volumes and event complexity. In order to process the data generated in such scenario and exploit the multicore architectures of current CPUs, the LHC experiments have developed parallelized software for data reconstruction and simulation. However, a good fraction of their computing effort is still expected to be executed as single-core tasks. Therefore, jobs with diverse resources requirements will be distributed across the Worldwide LHC Computing Grid (WLCG), making workload scheduling a complex problem in itself. In response to this challenge, the WLCG Multicore Deployment Task Force has been created in order to coordinate the joint effort from experiments and WLCG sites. The main objective is to ensure the convergence of approaches from the different LHC Virtual Organizations (VOs) to make the best use of the shared resources in order to satisfy their new computing needs, minimizing any inefficiency originated from the scheduling mechanisms, and without imposing unnecessary complexities in the way sites manage their resources. This paper describes the activities and progress of the Task Force related to the aforementioned topics, including experiences from key sites on how to best use different batch system technologies, the evolution of workload submission tools by the experiments and the knowledge gained from scale tests of the different proposed job submission strategies.

  19. Solving Open Job-Shop Scheduling Problems by SAT Encoding

    NASA Astrophysics Data System (ADS)

    Koshimura, Miyuki; Nabeshima, Hidetomo; Fujita, Hiroshi; Hasegawa, Ryuzo

    This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.

  20. ABOLISHING AND ESTABLISHING OPERATION ANALYSES OF SOCIAL ATTENTION AS POSITIVE REINFORCEMENT FOR PROBLEM BEHAVIOR

    PubMed Central

    McGinnis, Molly A; Houchins-Juárez, Nealetta; McDaniel, Jill L; Kennedy, Craig H

    2010-01-01

    Three participants whose problem behavior was maintained by contingent attention were exposed to 45-min presessions in which attention was withheld, provided on a fixed-time (FT) 15-s schedule, or provided on an FT 120-s schedule. Following each presession, participants were then tested in a 15-min session similar to the social attention condition of an analogue functional analysis. The results showed establishing operation conditions increased problem behavior during tests and that abolishing operation conditions decreased problem behavior during tests. PMID:20808502

  1. Abolishing and establishing operation analyses of social attention as positive reinforcement for problem behavior.

    PubMed

    McGinnis, Molly A; Houchins-Juárez, Nealetta; McDaniel, Jill L; Kennedy, Craig H

    2010-03-01

    Three participants whose problem behavior was maintained by contingent attention were exposed to 45-min presessions in which attention was withheld, provided on a fixed-time (FT) 15-s schedule, or provided on an FT 120-s schedule. Following each presession, participants were then tested in a 15-min session similar to the social attention condition of an analogue functional analysis. The results showed establishing operation conditions increased problem behavior during tests and that abolishing operation conditions decreased problem behavior during tests.

  2. Departure Trajectory Synthesis and the Intercept Problem

    NASA Technical Reports Server (NTRS)

    Bolender, Michael A.; Slater, G. L.

    1997-01-01

    Two areas of the departure problem in air traffic control are discussed. The first topic is the generation of climb-out trajectories to a fix. The trajectories would be utilized by a scheduling algorithm to allocate runways, sequence the proposed departures, and assign a departure time. The second area is concerned with finding horizontal trajectories to merge aircraft from the TRACON to an open slot in the en-route environment. Solutions are presented for the intercept problem for two cases: (1) the aircraft is traveling at the speed of the aircraft in the jetway; (2) the merging aircraft has to accelerate to reach the speed of the aircraft in the en-route stream. An algorithm is given regarding the computation of a solution for the latter case. For the former, a set of equations is given that allows us to numerically solve for the coordinate where the merge will occur.

  3. Short-term scheduling of an open-pit mine with multiple objectives

    NASA Astrophysics Data System (ADS)

    Blom, Michelle; Pearce, Adrian R.; Stuckey, Peter J.

    2017-05-01

    This article presents a novel algorithm for the generation of multiple short-term production schedules for an open-pit mine, in which several objectives, of varying priority, characterize the quality of each solution. A short-term schedule selects regions of a mine site, known as 'blocks', to be extracted in each week of a planning horizon (typically spanning 13 weeks). Existing tools for constructing these schedules use greedy heuristics, with little optimization. To construct a single schedule in which infrastructure is sufficiently utilized, with production grades consistently close to a desired target, a planner must often run these heuristics many times, adjusting parameters after each iteration. A planner's intuition and experience can evaluate the relative quality and mineability of different schedules in a way that is difficult to automate. Of interest to a short-term planner is the generation of multiple schedules, extracting available ore and waste in varying sequences, which can then be manually compared. This article presents a tool in which multiple, diverse, short-term schedules are constructed, meeting a range of common objectives without the need for iterative parameter adjustment.

  4. Runway Scheduling Using Generalized Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar

    2011-01-01

    A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.

  5. Planning and Resource Management in an Intelligent Automated Power Management System

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1991-01-01

    Power system management is a process of guiding a power system towards the objective of continuous supply of electrical power to a set of loads. Spacecraft power system management requires planning and scheduling, since electrical power is a scarce resource in space. The automation of power system management for future spacecraft has been recognized as an important R&D goal. Several automation technologies have emerged including the use of expert systems for automating human problem solving capabilities such as rule based expert system for fault diagnosis and load scheduling. It is questionable whether current generation expert system technology is applicable for power system management in space. The objective of the ADEPTS (ADvanced Electrical Power management Techniques for Space systems) is to study new techniques for power management automation. These techniques involve integrating current expert system technology with that of parallel and distributed computing, as well as a distributed, object-oriented approach to software design. The focus of the current study is the integration of new procedures for automatically planning and scheduling loads with procedures for performing fault diagnosis and control. The objective is the concurrent execution of both sets of tasks on separate transputer processors, thus adding parallelism to the overall management process.

  6. User-Assisted Store Recycling for Dynamic Task Graph Schedulers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt, Mehmet Can; Krishnamoorthy, Sriram; Agrawal, Gagan

    The emergence of the multi-core era has led to increased interest in designing effective yet practical parallel programming models. Models based on task graphs that operate on single-assignment data are attractive in several ways: they can support dynamic applications and precisely represent the available concurrency. However, they also require nuanced algorithms for scheduling and memory management for efficient execution. In this paper, we consider memory-efficient dynamic scheduling of task graphs. Specifically, we present a novel approach for dynamically recycling the memory locations assigned to data items as they are produced by tasks. We develop algorithms to identify memory-efficient store recyclingmore » functions by systematically evaluating the validity of a set of (user-provided or automatically generated) alternatives. Because recycling function can be input data-dependent, we have also developed support for continued correct execution of a task graph in the presence of a potentially incorrect store recycling function. Experimental evaluation demonstrates that our approach to automatic store recycling incurs little to no overheads, achieves memory usage comparable to the best manually derived solutions, often produces recycling functions valid across problem sizes and input parameters, and efficiently recovers from an incorrect choice of store recycling functions.« less

  7. Projecting Future Scheduled Airline Demand, Schedules and NGATS Benefits Using TSAM

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel; Smith, Jeremy; Viken, Jeff; Trani, Antonio; Baik, Hojong; Hinze, Nickolas; Ashiabor, Senanu

    2006-01-01

    The Transportation Systems Analysis Model (TSAM) developed by Virginia Tech s Air Transportation Systems Lab and NASA Langley can provide detailed analysis of the effects on the demand for air travel of a full range of NASA and FAA aviation projects. TSAM has been used to project the passenger demand for very light jet (VLJ) air taxi service, scheduled airline demand growth and future schedules, Next Generation Air Transportation System (NGATS) benefits, and future passenger revenues for the Airport and Airway Trust Fund. TSAM can project the resulting demand when new vehicles and/or technology is inserted into the long distance (100 or more miles one-way) transportation system, as well as, changes in demand as a result of fare yield increases or decreases, airport transit times, scheduled flight times, ticket taxes, reductions or increases in flight delays, and so on. TSAM models all long distance travel in the contiguous U.S. and determines the mode choice of the traveler based on detailed trip costs, travel time, schedule frequency, purpose of the trip (business or non-business), and household income level of the traveler. Demand is modeled at the county level, with an airport choice module providing up to three airports as part of the mode choice. Future enplanements at airports can be projected for different scenarios. A Fratar algorithm and a schedule generator are applied to generate future flight schedules. This paper presents the application of TSAM to modeling future scheduled air passenger demand and resulting airline schedules, the impact of NGATS goals and objectives on passenger demand, along with projections for passenger fee receipts for several scenarios for the FAA Airport and Airway Trust Fund.

  8. Comparison of multiobjective evolutionary algorithms for operations scheduling under machine availability constraints.

    PubMed

    Frutos, M; Méndez, M; Tohmé, F; Broz, D

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.

  9. Planning and Scheduling for Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Frank, J. D.

    2005-12-01

    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory resources and to reduce the costs of communication. Planning and scheduling is generally a heavy consumer of time, memory and energy resources. This means careful thought must be given to how much planning and scheduling should be done on the sensors themselves, and how much to do elsewhere. The difficulty of planning and scheduling is exacerbated when reasoning about uncertainty. More time, memory and energy is needed to solve such problems, leading either to more expensive sensors, or suboptimal plans. For example, scientifically interesting events may happen at random times, making it difficult to ensure that sufficient resources are availanble. Since uncertainty is usually lowest in proximity to the sensors themselves, this argues for planning and scheduling onboard the sensors. However, cost minimization dictates sensors be kept as simple as possible, reducing the amount of planning and scheduling they can do themselves. Furthermore, coordinating each sensor's independent plans can be difficult. In the full presentation, we will critically review the planning and scheduling systems used by previously fielded sensor networks. We do so primarily from the perspective of the computational sciences, with a focus on taming computational complexity when operating sensor networks. The case studies are derived from sensor networks based on UAVs, satellites, and planetary rovers. Planning and scheduling considerations include multi-sensor coordination, optimizing science value, onboard power management, onboard memory, planning movement actions to acquire data, and managing communications.These case studies offer lessons for future designs of environmental sensor networks.

  10. A Sustainable City Planning Algorithm Based on TLBO and Local Search

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Lin, Li; Huang, Xuanxuan; Liu, Yiming; Zhang, Yonggang

    2017-09-01

    Nowadays, how to design a city with more sustainable features has become a center problem in the field of social development, meanwhile it has provided a broad stage for the application of artificial intelligence theories and methods. Because the design of sustainable city is essentially a constraint optimization problem, the swarm intelligence algorithm of extensive research has become a natural candidate for solving the problem. TLBO (Teaching-Learning-Based Optimization) algorithm is a new swarm intelligence algorithm. Its inspiration comes from the “teaching” and “learning” behavior of teaching class in the life. The evolution of the population is realized by simulating the “teaching” of the teacher and the student “learning” from each other, with features of less parameters, efficient, simple thinking, easy to achieve and so on. It has been successfully applied to scheduling, planning, configuration and other fields, which achieved a good effect and has been paid more and more attention by artificial intelligence researchers. Based on the classical TLBO algorithm, we propose a TLBO_LS algorithm combined with local search. We design and implement the random generation algorithm and evaluation model of urban planning problem. The experiments on the small and medium-sized random generation problem showed that our proposed algorithm has obvious advantages over DE algorithm and classical TLBO algorithm in terms of convergence speed and solution quality.

  11. Innately Split Model for Job-shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ikeda, Kokolo; Kobayashi, Sigenobu

    Job-shop Scheduling Problem (JSP) is one of the most difficult benchmark problems. GA approaches often fail searching the global optimum because of the deception UV-structure of JSPs. In this paper, we introduce a novel framework model of GA, Innately Split Model (ISM) which prevents UV-phenomenon, and discuss on its power particularly. Next we analyze the structure of JSPs with the help of the UV-structure hypothesys, and finally we show ISM's excellent performance on JSP.

  12. Autonomously generating operations sequences for a Mars Rover using AI-based planning

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg

    2001-01-01

    This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.

  13. An Introduction to Sked

    NASA Technical Reports Server (NTRS)

    Gipson, John

    2010-01-01

    In this note I give an overview of the VLBI scheduling software sked. I describe some of the algorithms used in automatic scheduling and some sked commands which have been introduced at users requests. I also give a cookbook for generating some schedules.

  14. Path planning and energy management of solar-powered unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Kaplan, Adam

    Many of the applications pertinent to unmanned vehicles, such as environmental research and analysis, communications, and information-surveillance and reconnaissance, benefit from prolonged vehicle operation time. Conventional efforts to increase the operational time of electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient components and the identification of energy efficient search patterns, while little attention has been paid to the vehicle's mission-level path plan and power management. This thesis explores the formulation and generation of integrated motion-plans and power-schedules for solar-panel equipped mobile robots operating under strict energy constraints, which cannot be effectively addressed through conventional motion planning algorithms. Transit problems are considered to design time-optimal paths using both Balkcom-Mason and Pseudo-Dubins curves. Additionally, a more complicated problem to generate mission plans for vehicles which must persistently travel between certain locations, similar to the traveling salesperson problem (TSP), is presented. A comparison between one of the common motion-planning algorithms and experimental results of the prescribed algorithms, made possible by use of a test environment and mobile robot designed and developed specifically for this research, are presented and discussed.

  15. Design and Scheduling of Microgrids using Benders Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Ayyanar, Raja

    2016-11-21

    The distribution feeder laterals in a distribution feeder with relatively high PV generation as compared to the load can be operated as microgrids to achieve reliability, power quality and economic benefits. However, renewable resources are intermittent and stochastic in nature. A novel approach for sizing and scheduling an energy storage system and microturbine for reliable operation of microgrids is proposed. The size and schedule of an energy storage system and microturbine are determined using Benders' decomposition, considering PV generation as a stochastic resource.

  16. A collaborative scheduling model for the supply-hub with multiple suppliers and multiple manufacturers.

    PubMed

    Li, Guo; Lv, Fei; Guan, Xu

    2014-01-01

    This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment.

  17. A Collaborative Scheduling Model for the Supply-Hub with Multiple Suppliers and Multiple Manufacturers

    PubMed Central

    Lv, Fei; Guan, Xu

    2014-01-01

    This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment. PMID:24892104

  18. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less

  19. Oral drug self-administration: an overview of laboratory animal studies.

    PubMed

    Meisch, R A

    2001-06-01

    Many abused drugs can be established as orally delivered reinforcers for rhesus monkeys and other animals. Benzodiazepines, barbiturates, opioids, psychomotor stimulants, dissociative anesthetics, and ethanol can come to serve as reinforcers when taken by mouth. The principal problems in establishing drugs as reinforcers by the oral route of administration are (1) aversive taste, (2) delay in onset of central nervous system effects, and (3) consumption of low volumes of drug solution. Strategies have been devised to successfully overcome these problems, and orally delivered drugs can be established as effective reinforcers. Reinforcing actions are demonstrated by consumption of greater volumes of drug solution than volumes of the water vehicle, and supporting evidence for reinforcing effects consists of the maintenance of behavior under intermittent schedules of reinforcement and the generation of orderly dose-response functions. This article presents an overview of studies of behavior reinforced by oral drug reinforcement. Factors that control oral drug intake include dose, schedule of reinforcement, food restriction, and alternative reinforcers. Many drugs, administered by the experimenter, can alter oral drug reinforcement. Relative reinforcing effects can be assessed by choice procedures and by persistence of behavior across increases in schedule size. In general, reinforcing effects increase directly with dose. Rhesus monkeys prefer combinations of reinforcing drugs to the component drugs. The taste of drug solutions may act as a conditioned reinforcer and a discriminative stimulus. Consequences of drug intake include tolerance and physiological dependence. Findings with orally self-administered drugs are similar to many findings with other positive reinforcers, including intravenously self-administered drugs.

  20. Imaging Tasks Scheduling for High-Altitude Airship in Emergency Condition Based on Energy-Aware Strategy

    PubMed Central

    Zhimeng, Li; Chuan, He; Dishan, Qiu; Jin, Liu; Manhao, Ma

    2013-01-01

    Aiming to the imaging tasks scheduling problem on high-altitude airship in emergency condition, the programming models are constructed by analyzing the main constraints, which take the maximum task benefit and the minimum energy consumption as two optimization objectives. Firstly, the hierarchy architecture is adopted to convert this scheduling problem into three subproblems, that is, the task ranking, value task detecting, and energy conservation optimization. Then, the algorithms are designed for the sub-problems, and the solving results are corresponding to feasible solution, efficient solution, and optimization solution of original problem, respectively. This paper makes detailed introduction to the energy-aware optimization strategy, which can rationally adjust airship's cruising speed based on the distribution of task's deadline, so as to decrease the total energy consumption caused by cruising activities. Finally, the application results and comparison analysis show that the proposed strategy and algorithm are effective and feasible. PMID:23864822

  1. Minimizing conflicts: A heuristic repair method for constraint-satisfaction and scheduling problems

    NASA Technical Reports Server (NTRS)

    Minton, Steve; Johnston, Mark; Philips, Andrew; Laird, Phil

    1992-01-01

    This paper describes a simple heuristic approach to solving large-scale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a value-ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. The heuristic can be used with a variety of different search strategies. We demonstrate empirically that on the n-queens problem, a technique based on this approach performs orders of magnitude better than traditional backtracking techniques. We also describe a scheduling application where the approach has been used successfully. A theoretical analysis is presented both to explain why this method works well on certain types of problems and to predict when it is likely to be most effective.

  2. A random-key encoded harmony search approach for energy-efficient production scheduling with shared resources

    NASA Astrophysics Data System (ADS)

    Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.

    2015-11-01

    When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.

  3. Applications of colored petri net and genetic algorithms to cluster tool scheduling

    NASA Astrophysics Data System (ADS)

    Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng

    2005-12-01

    In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.

  4. Implementation and adherence issues in a workplace treadmill desk intervention.

    PubMed

    Tudor-Locke, Catrine; Hendrick, Chelsea A; Duet, Megan T; Swift, Damon L; Schuna, John M; Martin, Corby K; Johnson, William D; Church, Timothy S

    2014-10-01

    We report experiences, observations, and general lessons learned, specifically with regards to participant recruitment and adherence, while implementing a 6-month randomized controlled treadmill desk intervention (the WorkStation Pilot Study) in a real-world office-based health insurance workplace. Despite support from the company's upper administration, relatively few employees responded to the company-generated e-mail to participate in the study. Ultimately only 41 overweight/obese participants were deemed eligible and enrolled from a recruitment pool of 728 workers. Participants allocated to the Treadmill Desk Group found the treadmill desk difficult to use for 45 min twice a day as scheduled. Overall attendance averaged 45%-50% of all possible scheduled sessions. The most frequently reported reasons for missing sessions included work conflict (35%), out of office (30%), and illness/injury/drop-out (20%). Although focus groups indicated consistently positive comments about treadmill desks, an apparent challenge was fitting a rigid schedule of shared use to an equally rigid and demanding work schedule punctuated with numerous tasks and obligations that could not easily be interrupted. Regardless, we documented that sedentary office workers average ∼43 min of light-intensity (∼2 METs) treadmill walking daily in response to a scheduled, facilitated, and shared access workplace intervention. Workstation alternatives that combine computer-based work with light-intensity physical activity are a potential solution to health problems associated with excessive sedentary behavior; however, there are numerous administrative, capital, and human resource challenges confronting employers considering providing treadmill desks to workers in a cost-effective and equitable manner.

  5. Naval Postgraduate School Scheduling Support System (NPS4)

    DTIC Science & Technology

    1992-03-01

    NPSS ...... .................. 156 2. Final Exam Scheduler .. .......... 159 F. PRESENTATION SYSTEM ... ............. . 160 G. USER INTERFACE... NPSS ...... .................. 185 2. Final Exam Model ... ............ 186 3. The Class Schedulers .. .......... 186 4. Assessment of Problem Model...Information Distribution ....... 150 4.13 NPSS Optimization Process .... ............ . 157 4.14 NPSS Performance ..... ................ . 159 4.15 Department

  6. A scheduling algorithm for Spacelab telescope observations

    NASA Technical Reports Server (NTRS)

    Grone, B.

    1982-01-01

    An algorithm is developed for sequencing and scheduling of observations of stellar targets by equipment on Spacelab. The method is a general one. The scheduling problem is defined and examined. The method developed for its solution is documented. Suggestions for further development and implementation of this method are made.

  7. Periodic, On-Demand, and User-Specified Information Reconciliation

    NASA Technical Reports Server (NTRS)

    Kolano, Paul

    2007-01-01

    Automated sequence generation (autogen) signifies both a process and software used to automatically generate sequences of commands to operate various spacecraft. Autogen requires fewer workers than are needed for older manual sequence-generation processes and reduces sequence-generation times from weeks to minutes. The autogen software comprises the autogen script plus the Activity Plan Generator (APGEN) program. APGEN can be used for planning missions and command sequences. APGEN includes a graphical user interface that facilitates scheduling of activities on a time line and affords a capability to automatically expand, decompose, and schedule activities.

  8. Binary Trees and Parallel Scheduling Algorithms.

    DTIC Science & Technology

    1980-09-01

    been pro- cessed for p. time units. If a job does not complete by its due time, it is tardy. In a nonpreemptive schedule, job i is scheduled to process...the preemptive schedule obtained by the algorithm of section 2.1.2 also minimizes 5Ti, this problem is easily solved in parallel. When lci is to e...August 1978, pp. 657-661. 14. Horn, W. A., "Some simple scheduling algorithms," Naval Res. Logist . Qur., Vol. 21, pp. 177-185, 1974. i5. Hforowitz, E

  9. New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times

    NASA Astrophysics Data System (ADS)

    Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid

    2017-09-01

    In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.

  10. An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Afshar Nadjafi, Behrouz; Shadrokh, Shahram

    This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.

  11. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and windmore » forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.« less

  12. Better approximation guarantees for job-shop scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, L.A.; Paterson, M.; Srinivasan, A.

    1997-06-01

    Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first polynomial-time approximation algorithm for this problem that has a good (polylogarithmic) approximation guarantee. We improve the approximation guarantee of their work, and present further improvements for some important NP-hard special cases of this problem (e.g., in the preemptive case where machines can suspend work on operations and later resume). We also present NC algorithms with improved approximation guarantees for some NP-hard special cases.

  13. Continual planning and scheduling for managing patient tests in hospital laboratories.

    PubMed

    Marinagi, C C; Spyropoulos, C D; Papatheodorou, C; Kokkotos, S

    2000-10-01

    Hospital laboratories perform examination tests upon patients, in order to assist medical diagnosis or therapy progress. Planning and scheduling patient requests for examination tests is a complicated problem because it concerns both minimization of patient stay in hospital and maximization of laboratory resources utilization. In the present paper, we propose an integrated patient-wise planning and scheduling system which supports the dynamic and continual nature of the problem. The proposed combination of multiagent and blackboard architecture allows the dynamic creation of agents that share a set of knowledge sources and a knowledge base to service patient test requests.

  14. Closing the Referral Loop: an Analysis of Primary Care Referrals to Specialists in a Large Health System.

    PubMed

    Patel, Malhar P; Schettini, Priscille; O'Leary, Colin P; Bosworth, Hayden B; Anderson, John B; Shah, Kevin P

    2018-05-01

    Ideally, a referral from a primary care physician (PCP) to a specialist results in a completed specialty appointment with results available to the PCP. This is defined as "closing the referral loop." As health systems grow more complex, regulatory bodies increase vigilance, and reimbursement shifts towards value, closing the referral loop becomes a patient safety, regulatory, and financial imperative. To assess the ability of a large health system to close the referral loop, we used electronic medical record (EMR)-generated data to analyze referrals from a large primary care network to 20 high-volume specialties between July 1, 2015 and June 30, 2016. The primary metric was documented specialist appointment completion rate. Explanatory analyses included documented appointment scheduling rate, individual clinic differences, appointment wait times, and geographic distance to appointments. Of the 103,737 analyzed referral scheduling attempts, only 36,072 (34.8%) resulted in documented complete appointments. Low documented appointment scheduling rates (38.9% of scheduling attempts lacked appointment dates), individual clinic differences in closing the referral loop, and significant differences in wait times and distances to specialists between complete and incomplete appointments drove this gap. Other notable findings include high variation in wait times among specialties and correlation between high wait times and low documented appointment completion rates. The rate of closing the referral loop in this health system is low. Low appointment scheduling rates, individual clinic differences, and patient access issues of wait times and geographic proximity explain much of the gap. This problem is likely common among large health systems with complex provider networks and referral scheduling. Strategies that improve scheduling, decrease variation among clinics, and improve patient access will likely improve rates of closing the referral loop. More research is necessary to determine the impact of these changes and other potential driving factors.

  15. An Improved Memetic Algorithm for Break Scheduling

    NASA Astrophysics Data System (ADS)

    Widl, Magdalena; Musliu, Nysret

    In this paper we consider solving a complex real life break scheduling problem. This problem of high practical relevance arises in many working areas, e.g. in air traffic control and other fields where supervision personnel is working. The objective is to assign breaks to employees such that various constraints reflecting legal demands or ergonomic criteria are satisfied and staffing requirement violations are minimised.

  16. Abolishing and Establishing Operation Analyses of Social Attention as Positive Reinforcement for Problem Behavior

    ERIC Educational Resources Information Center

    McGinnis, Molly A.; Houchins-Juarez, Nealetta; McDaniel, Jill L.; Kennedy, Craig H.

    2010-01-01

    Three participants whose problem behavior was maintained by contingent attention were exposed to 45-min presessions in which attention was withheld, provided on a fixed-time (FT) 15-s schedule, or provided on an FT 120-s schedule. Following each presession, participants were then tested in a 15-min session similar to the social attention condition…

  17. Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman

    2012-01-01

    In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.

  18. Evaluation of fixed momentary dro schedules under signaled and unsignaled arrangements.

    PubMed

    Hammond, Jennifer L; Iwata, Brian A; Fritz, Jennifer N; Dempsey, Carrie M

    2011-01-01

    Fixed momentary schedules of differential reinforcement of other behavior (FM DRO) generally have been ineffective as treatment for problem behavior. Because most early research on FM DRO included presentation of a signal at the end of the DRO interval, it is unclear whether the limited effects of FM DRO were due to (a) the momentary response requirement of the schedule per se or (b) discrimination of the contingency made more salient by the signal. To separate these two potential influences, we compared the effects of signaled versus unsignaled FM DRO with 4 individuals with developmental disabilities whose problem behavior was maintained by social-positive reinforcement. During signaled FM DRO, the experimenter presented a visual stimulus 3 s prior to the end of the DRO interval and delivered reinforcement contingent on the absence of problem behavior at the second the interval elapsed. Unsignaled DRO was identical except that interval termination was not signaled. Results indicated that signaled FM DRO was effective in decreasing 2 subjects' problem behavior, whereas an unsignaled schedule was required for the remaining 2 subjects. These results suggest that the response requirement per se of FM DRO may not be problematic if it is not easily discriminated.

  19. Surgery scheduling optimization considering real life constraints and comprehensive operation cost of operating room.

    PubMed

    Xiang, Wei; Li, Chong

    2015-01-01

    Operating Room (OR) is the core sector in hospital expenditure, the operation management of which involves a complete three-stage surgery flow, multiple resources, prioritization of the various surgeries, and several real-life OR constraints. As such reasonable surgery scheduling is crucial to OR management. To optimize OR management and reduce operation cost, a short-term surgery scheduling problem is proposed and defined based on the survey of the OR operation in a typical hospital in China. The comprehensive operation cost is clearly defined considering both under-utilization and overutilization. A nested Ant Colony Optimization (nested-ACO) incorporated with several real-life OR constraints is proposed to solve such a combinatorial optimization problem. The 10-day manual surgery schedules from a hospital in China are compared with the optimized schedules solved by the nested-ACO. Comparison results show the advantage using the nested-ACO in several measurements: OR-related time, nurse-related time, variation in resources' working time, and the end time. The nested-ACO considering real-life operation constraints such as the difference between first and following case, surgeries priority, and fixed nurses in pre/post-operative stage is proposed to solve the surgery scheduling optimization problem. The results clearly show the benefit of using the nested-ACO in enhancing the OR management efficiency and minimizing the comprehensive overall operation cost.

  20. Decision support system for the operating room rescheduling problem.

    PubMed

    van Essen, J Theresia; Hurink, Johann L; Hartholt, Woutske; van den Akker, Bernd J

    2012-12-01

    Due to surgery duration variability and arrivals of emergency surgeries, the planned Operating Room (OR) schedule is disrupted throughout the day which may lead to a change in the start time of the elective surgeries. These changes may result in undesirable situations for patients, wards or other involved departments, and therefore, the OR schedule has to be adjusted. In this paper, we develop a decision support system (DSS) which assists the OR manager in this decision by providing the three best adjusted OR schedules. The system considers the preferences of all involved stakeholders and only evaluates the OR schedules that satisfy the imposed resource constraints. The decision rules used for this system are based on a thorough analysis of the OR rescheduling problem. We model this problem as an Integer Linear Program (ILP) which objective is to minimize the deviation from the preferences of the considered stakeholders. By applying this ILP to instances from practice, we determined that the given preferences mainly lead to (i) shifting a surgery and (ii) scheduling a break between two surgeries. By using these changes in the DSS, the performed simulation study shows that less surgeries are canceled and patients and wards are more satisfied, but also that the perceived workload of several departments increases to compensate this. The system can also be used to judge the acceptability of a proposed initial OR schedule.

  1. Asymptotic analysis of SPTA-based algorithms for no-wait flow shop scheduling problem with release dates.

    PubMed

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.

  2. A parallel-machine scheduling problem with two competing agents

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Chiung; Chung, Yu-Hsiang; Wang, Jen-Ya

    2017-06-01

    Scheduling with two competing agents has become popular in recent years. Most of the research has focused on single-machine problems. This article considers a parallel-machine problem, the objective of which is to minimize the total completion time of jobs from the first agent given that the maximum tardiness of jobs from the second agent cannot exceed an upper bound. The NP-hardness of this problem is also examined. A genetic algorithm equipped with local search is proposed to search for the near-optimal solution. Computational experiments are conducted to evaluate the proposed genetic algorithm.

  3. Asymptotic Analysis of SPTA-Based Algorithms for No-Wait Flow Shop Scheduling Problem with Release Dates

    PubMed Central

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms. PMID:24764774

  4. AN EVALUATION OF ANTECEDENT EXERCISE ON BEHAVIOR MAINTAINED BY AUTOMATIC REINFORCEMENT USING A THREE-COMPONENT MULTIPLE SCHEDULE

    PubMed Central

    Morrison, Heather; Roscoe, Eileen M; Atwell, Amy

    2011-01-01

    We evaluated antecedent exercise for treating the automatically reinforced problem behavior of 4 individuals with autism. We conducted preference assessments to identify leisure and exercise items that were associated with high levels of engagement and low levels of problem behavior. Next, we conducted three 3-component multiple-schedule sequences: an antecedent-exercise test sequence, a noncontingent leisure-item control sequence, and a social-interaction control sequence. Within each sequence, we used a 3-component multiple schedule to evaluate preintervention, intervention, and postintervention effects. Problem behavior decreased during the postintervention component relative to the preintervention component for 3 of the 4 participants during the exercise-item assessment; however, the effects could not be attributed solely to exercise for 1 of these participants. PMID:21941383

  5. Comparison of Multiobjective Evolutionary Algorithms for Operations Scheduling under Machine Availability Constraints

    PubMed Central

    Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502

  6. Dynamic Network Selection for Multicast Services in Wireless Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Jin, Le; He, Feng; Cheng, Hanwen; Wu, Lenan

    In next generation mobile multimedia communications, different wireless access networks are expected to cooperate. However, it is a challenging task to choose an optimal transmission path in this scenario. This paper focuses on the problem of selecting the optimal access network for multicast services in the cooperative mobile and broadcasting networks. An algorithm is proposed, which considers multiple decision factors and multiple optimization objectives. An analytic hierarchy process (AHP) method is applied to schedule the service queue and an artificial neural network (ANN) is used to improve the flexibility of the algorithm. Simulation results show that by applying the AHP method, a group of weight ratios can be obtained to improve the performance of multiple objectives. And ANN method is effective to adaptively adjust weight ratios when users' new waiting threshold is generated.

  7. A novel Web-based graduate medical education management system including ACGME compliance algorithms.

    PubMed

    Gauger, Paul G; Davis, Janice W; Orr, Peter J

    2002-09-01

    Administration of graduate medical education programs has become more difficult as compliance with ACGME work guidelines has assumed increased importance. These guidelines have caused many changes in the resident work environment, including the emergence of complicated cross-cover arrangements. Many participating residents (each with his or her own individual scheduling requirements) usually generate these schedules. Accordingly, schedules are often not submitted in a timely fashion and they may not be in compliance with the ACGME guidelines for maximum on-call assignments and mandatory days off. Our objective was the establishment of a Web-based system that guides residents in creating on-call schedules that follow ACGME guidelines while still allowing maximum flexibility -- thus allowing each resident to maintain an internal locus of control. A versatile and scalable system with password-protected user (resident) and administrator interfaces was created. An entire academic year is included, and past months and years are automatically archived. The residents log on within the first 15 days of the preceding month and choose their positions in a schedule template. They then make adjustments while receiving immediate summary feedback on compliance with ACGME guidelines. The schedule is electronically submitted to the educational administrator for final approval. If a cross-cover system is required, the program automatically generates an optimal schedule using both of the approved participating service schedules. The residents then have an additional five-day period to make adjustments in the cross-cover schedule while still receiving compliance feedback. The administrator again provides final approval electronically. The communication interface automatically pages or e-mails the residents when schedules are updated or approved. Since the information exists in a relational database, simple reporting tools are included to extract the information necessary to generate records for institutional GME management. Implementation of this program has been met with great enthusiasm from the institutional stakeholders. Specifically, residents have embraced the ability to directly control their schedules and have gained appreciation for the regulatory matrix in which they function. Institutional administrators have praised the improvement in compliance and the ease of documentation. We anticipate that the system will also meet with approval from reviewing regulatory bodies, as it generates and stores accurate information about the resident work environment. This program is robust and versatile enough to be modified for any GME training program in the country.

  8. Space Shuttle processing - A case study in artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mollikarimi, Cindy; Gargan, Robert; Zweben, Monte

    1991-01-01

    A scheduling system incorporating AI is described and applied to the automated processing of the Space Shuttle. The unique problem of addressing the temporal, resource, and orbiter-configuration requirements of shuttle processing is described with comparisons to traditional project management for manufacturing processes. The present scheduling system is developed to handle the late inputs and complex programs that characterize shuttle processing by incorporating fixed preemptive scheduling, constraint-based simulated annealing, and the characteristics of an 'anytime' algorithm. The Space-Shuttle processing environment is modeled with 500 activities broken down into 4000 subtasks and with 1600 temporal constraints, 8000 resource constraints, and 3900 state requirements. The algorithm is shown to scale to very large problems and maintain anytime characteristics suggesting that an automated scheduling process is achievable and potentially cost-effective.

  9. Multi-Satellite Observation Scheduling for Large Area Disaster Emergency Response

    NASA Astrophysics Data System (ADS)

    Niu, X. N.; Tang, H.; Wu, L. X.

    2018-04-01

    an optimal imaging plan, plays a key role in coordinating multiple satellites to monitor the disaster area. In the paper, to generate imaging plan dynamically according to the disaster relief, we propose a dynamic satellite task scheduling method for large area disaster response. First, an initial robust scheduling scheme is generated by a robust satellite scheduling model in which both the profit and the robustness of the schedule are simultaneously maximized. Then, we use a multi-objective optimization model to obtain a series of decomposing schemes. Based on the initial imaging plan, we propose a mixed optimizing algorithm named HA_NSGA-II to allocate the decomposing results thus to obtain an adjusted imaging schedule. A real disaster scenario, i.e., 2008 Wenchuan earthquake, is revisited in terms of rapid response using satellite resources and used to evaluate the performance of the proposed method with state-of-the-art approaches. We conclude that our satellite scheduling model can optimize the usage of satellite resources so as to obtain images in disaster response in a more timely and efficient manner.

  10. Security System Software

    NASA Technical Reports Server (NTRS)

    1993-01-01

    C Language Integration Production System (CLIPS), a NASA-developed expert systems program, has enabled a security systems manufacturer to design a new generation of hardware. C.CURESystem 1 Plus, manufactured by Software House, is a software based system that is used with a variety of access control hardware at installations around the world. Users can manage large amounts of information, solve unique security problems and control entry and time scheduling. CLIPS acts as an information management tool when accessed by C.CURESystem 1 Plus. It asks questions about the hardware and when given the answer, recommends possible quick solutions by non-expert persons.

  11. Computer-Assisted Scheduling of Army Unit Training: An Application of Simulated Annealing.

    ERIC Educational Resources Information Center

    Hart, Roland J.; Goehring, Dwight J.

    This report of an ongoing research project intended to provide computer assistance to Army units for the scheduling of training focuses on the feasibility of simulated annealing, a heuristic approach for solving scheduling problems. Following an executive summary and brief introduction, the document is divided into three sections. First, the Army…

  12. Mothers' Night Work and Children's Behavior Problems

    ERIC Educational Resources Information Center

    Dunifon, Rachel; Kalil, Ariel; Crosby, Danielle A.; Su, Jessica Houston

    2013-01-01

    Many mothers work in jobs with nonstandard schedules (i.e., schedules that involve work outside of the traditional 9-5, Monday through Friday schedule); this is particularly true for economically disadvantaged mothers. In the present article, we used longitudinal data from the Fragile Families and Child Wellbeing Survey (n = 2,367 mothers of…

  13. The Isolation of Motivational, Motoric, and Schedule Effects on Operant Performance: A Modeling Approach

    ERIC Educational Resources Information Center

    Brackney, Ryan J.; Cheung, Timothy H. C.; Neisewander, Janet L.; Sanabria, Federico

    2011-01-01

    Dissociating motoric and motivational effects of pharmacological manipulations on operant behavior is a substantial challenge. To address this problem, we applied a response-bout analysis to data from rats trained to lever press for sucrose on variable-interval (VI) schedules of reinforcement. Motoric, motivational, and schedule factors (effort…

  14. Temporal and Resource Reasoning for Planning, Scheduling and Execution in Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Hunsberger, Luke; Tsamardinos, Ioannis

    2005-01-01

    This viewgraph slide tutorial reviews methods for planning and scheduling events. The presentation reviews several methods and uses several examples of scheduling events for the successful and timely completion of the overall plan. Using constraint based models the presentation reviews planning with time, time representations in problem solving and resource reasoning.

  15. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root Cooling Schedule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-06-13

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less

  16. Prescriptions for schedule II opioids and benzodiazepines increase after the introduction of computer-generated prescriptions.

    PubMed

    McGerald, Genevieve; Dvorkin, Ronald; Levy, David; Lovell-Rose, Stephanie; Sharma, Adhi

    2009-06-01

    Prescriptions for controlled substances decrease when regulatory barriers are put in place. The converse has not been studied. The objective was to determine whether a less complicated prescription writing process is associated with a change in the prescribing patterns of controlled substances in the emergency department (ED). The authors conducted a retrospective nonconcurrent cohort study of all patients seen in an adult ED between April 19, 2005, and April 18, 2007, who were discharged with a prescription. Prior to April 19, 2006, a specialized prescription form stored in a locked cabinet was obtained from the nursing staff to write a prescription for benzodiazepines or Schedule II opioids. After April 19, 2006, New York State mandated that all prescriptions, regardless of schedule classification, be generated on a specialized bar-coded prescription form. The main outcome of the study was to compare the proportion of Schedule III-V opioids to Schedule II opioids and benzodiazepines prescribed in the ED before and after the introduction of a less cumbersome prescription writing process. Of the 26,638 charts reviewed, 2.1% of the total number of prescriptions generated were for a Schedule II controlled opioid before the new system was implemented compared to 13.6% after (odds ratio [OR] = 7.3, 95% confidence interval [CI] = 6.4 to 8.4). The corresponding percentages for Schedule III-V opioids were 29.9% to 18.1% (OR = 0.52, 95% CI = 0.49 to 0.55) and for benzodiazepines 1.4% to 3.9% (OR = 2.8, 95% CI = 2.4 to 3.4). Patients were more likely to receive a prescription for a Schedule II opioid or a benzodiazepine after a more streamlined computer-generated prescription writing process was introduced in this ED. (c) 2009 by the Society for Academic Emergency Medicine.

  17. Towards a dynamical scheduler for ALMA: a science - software collaboration

    NASA Astrophysics Data System (ADS)

    Avarias, Jorge; Toledo, Ignacio; Espada, Daniel; Hibbard, John; Nyman, Lars-Ake; Hiriart, Rafael

    2016-07-01

    State-of-the art astronomical facilities are costly to build and operate, hence it is essential that these facilities must be operated as much efficiently as possible, trying to maximize the scientific output and at the same time minimizing overhead times. Over the latest decades the scheduling problem has drawn attention of research because new facilities have been demonstrated that is unfeasible to try to schedule observations manually, due the complexity to satisfy the astronomical and instrumental constraints and the number of scientific proposals to be reviewed and evaluated in near real-time. In addition, the dynamic nature of some constraints make this problem even more difficult. The Atacama Large Millimeter/submillimeter Array (ALMA) is a major collaboration effort between European (ESO), North American (NRAO) and East Asian countries (NAOJ), under operations on the Chilean Chajnantor plateau, at 5.000 meters of altitude. During normal operations at least two independent arrays are available, aiming to achieve different types of science. Since ALMA does not observe in the visible spectrum, observations are not limited to night time only, thus a 24/7 operation with little downtime as possible is expected when full operations state will have been reached. However, during preliminary operations (early-science) ALMA has been operated on tied schedules using around half of the whole day-time to conduct scientific observations. The purpose of this paper is to explain how the observation scheduling and its optimization is done within ALMA, giving details about the problem complexity, its similarities and differences with traditional scheduling problems found in the literature. The paper delves into the current recommendation system implementation and the difficulties found during the road to its deployment in production.

  18. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  19. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  20. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  1. A planning language for activity scheduling

    NASA Technical Reports Server (NTRS)

    Zoch, David R.; Lavallee, David; Weinstein, Stuart; Tong, G. Michael

    1991-01-01

    Mission planning and scheduling of spacecraft operations are becoming more complex at NASA. Described here are a mission planning process; a robust, flexible planning language for spacecraft and payload operations; and a software scheduling system that generates schedules based on planning language inputs. The mission planning process often involves many people and organizations. Consequently, a planning language is needed to facilitate communication, to provide a standard interface, and to represent flexible requirements. The software scheduling system interprets the planning language and uses the resource, time duration, constraint, and alternative plan flexibilities to resolve scheduling conflicts.

  2. Software For Integer Programming

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1992-01-01

    Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.

  3. A Comparison of Earned Value Management and Earned Schedule as Schedule Predictors on DoD ACAT I Programs

    DTIC Science & Technology

    2013-03-01

    33 Mario Vanhoucke and Stephan Vandevoorde – “Measuring the Accuracy of Earned Value/Earned Schedule Forecasting Predictors” (2007...technical problem to the present day ‘ super projects’” (Clark and Lorenzoni, 1997: 2). Cost engineering has “application regardless of industry...large construction projects, but also the acceptance of earned schedule principles on an international scale. Mario Vanhoucke and Stephan Vandevoorde

  4. A Network Flow Approach to the Initial Skills Training Scheduling Problem

    DTIC Science & Technology

    2007-12-01

    include (but are not limited to) queuing theory, stochastic analysis and simulation. After the demand schedule has been estimated, it can be ...software package has already been purchased and is in use by AFPC, AFPC has requested that the new algorithm be programmed in this language as well ...the discussed outputs from those schedules. Required Inputs A single input file details the students to be scheduled as well as the courses

  5. Range and mission scheduling automation using combined AI and operations research techniques

    NASA Technical Reports Server (NTRS)

    Arbabi, Mansur; Pfeifer, Michael

    1987-01-01

    Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.

  6. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.

    PubMed

    Xiang, Wei; Yin, Jiao; Lim, Gino

    2015-02-01

    Operating room (OR) surgery scheduling determines the individual surgery's operation start time and assigns the required resources to each surgery over a schedule period, considering several constraints related to a complete surgery flow and the multiple resources involved. This task plays a decisive role in providing timely treatments for the patients while balancing hospital resource utilization. The originality of the present study is to integrate the surgery scheduling problem with real-life nurse roster constraints such as their role, specialty, qualification and availability. This article proposes a mathematical model and an ant colony optimization (ACO) approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-level ant graph model is developed to solve such combinatorial optimization problems because of its computational complexity. The outer ant graph represents surgeries, while the inner graph is a dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related, and resource-related pheromone, fitting for a two-level model are defined. The iteration-best and feasible update strategy and local pheromone update rules are adopted to emphasize the information related to the good solution in makespan, and the balanced utilization of resources as well. The performance of the proposed ACO algorithm is then evaluated using the test cases from (1) the published literature data with complete nurse roster constraints, and 2) the real data collected from a hospital in China. The scheduling results using the proposed ACO approach are compared with the test case from both the literature and the real life hospital scheduling. Comparison results with the literature shows that the proposed ACO approach has (1) an 1.5-h reduction in end time; (2) a reduction in variation of resources' working time, i.e. 25% for ORs, 50% for nurses in shift 1 and 86% for nurses in shift 2; (3) an 0.25h reduction in individual maximum overtime (OT); and (4) an 42% reduction in the total OT of nurses. Comparison results with the real 10-workday hospital scheduling further show the advantage of the ACO in several measurements. Instead of assigning all surgeries by a surgeon to only one OR and the same nurses by traditional manual approach in hospital, ACO realizes a more balanced surgery arrangement by assigning the surgeries to different ORs and nurses. It eventually leads to shortening the end time within the confidential interval of [7.4%, 24.6%] with 95% confidence level. The ACO approach proposed in this paper efficiently solves the surgery scheduling problem with daily nurse roster while providing a shortened end time and relatively balanced resource allocations. It also supports the advantage of integrating the surgery scheduling with the nurse scheduling and the efficiency of systematic optimization considering a complete three-stage surgery flow and resources involved. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Bulk Leisure--Problem or Blessing?

    ERIC Educational Resources Information Center

    Beland, Robert M.

    1983-01-01

    With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)

  8. Energy latency tradeoffs for medium access and sleep scheduling in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Gang, Lu

    Wireless sensor networks are expected to be used in a wide range of applications from environment monitoring to event detection. The key challenge is to provide energy efficient communication; however, latency remains an important concern for many applications that require fast response. The central thesis of this work is that energy efficient medium access and sleep scheduling mechanisms can be designed without necessarily sacrificing application-specific latency performance. We validate this thesis through results from four case studies that cover various aspects of medium access and sleep scheduling design in wireless sensor networks. Our first effort, DMAC, is to design an adaptive low latency and energy efficient MAC for data gathering to reduce the sleep latency. We propose staggered schedule, duty cycle adaptation, data prediction and the use of more-to-send packets to enable seamless packet forwarding under varying traffic load and channel contentions. Simulation and experimental results show significant energy savings and latency reduction while ensuring high data reliability. The second research effort, DESS, investigates the problem of designing sleep schedules in arbitrary network communication topologies to minimize the worst case end-to-end latency (referred to as delay diameter). We develop a novel graph-theoretical formulation, derive and analyze optimal solutions for the tree and ring topologies and heuristics for arbitrary topologies. The third study addresses the problem of minimum latency joint scheduling and routing (MLSR). By constructing a novel delay graph, the optimal joint scheduling and routing can be solved by M node-disjoint paths algorithm under multiple channel model. We further extended the algorithm to handle dynamic traffic changes and topology changes. A heuristic solution is proposed for MLSR under single channel interference. In the fourth study, EEJSPC, we first formulate a fundamental optimization problem that provides tunable energy-latency-throughput tradeoffs with joint scheduling and power control and present both exponential and polynomial complexity solutions. Then we investigate the problem of minimizing total transmission energy while satisfying transmission requests within a latency bound, and present an iterative approach which converges rapidly to the optimal parameter settings.

  9. Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems.

    PubMed

    Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao

    2017-12-20

    Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm.

  10. Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems

    PubMed Central

    Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao

    2017-01-01

    Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm. PMID:29261135

  11. Protocols for distributive scheduling

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.; Fox, Barry

    1993-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of space shuttle mission planning.

  12. Distributed project scheduling at NASA: Requirements for manual protocols and computer-based support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1992-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of Space Shuttle mission planning.

  13. Production scheduling and rescheduling with genetic algorithms.

    PubMed

    Bierwirth, C; Mattfeld, D C

    1999-01-01

    A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.

  14. NextGen Operational Improvements: Will they Improve Human Performance

    NASA Technical Reports Server (NTRS)

    Beard, Bettina L.; Johnston, James C.; Holbrook, Jon

    2013-01-01

    Modernization of the National Airspace System depends critically on the development of advanced technology, including cutting-edge automation, controller decision-support tools and integrated on-demand information. The Next Generation Air Transportation System national plan envisions air traffic control tower automation that proposes solutions for seven problems: 1) departure metering, 2) taxi routing, 3) taxi and runway scheduling, 4) departure runway assignments, 5) departure flow management, 6) integrated arrival and departure scheduling and 7) runway configuration management. Government, academia and industry are simultaneously pursuing the development of these tools. For each tool, the development process typically begins by assessing its potential benefits, and then progresses to designing preliminary versions of the tool, followed by testing the tool's strengths and weaknesses using computational modeling, human-in-the-loop simulation and/or field tests. We compiled the literature, evaluated the methodological rigor of the studies and served as referee for partisan conclusions that were sometimes overly optimistic. Here we provide the results of this review.

  15. A New Metaheuristic Algorithm for Long-Term Open-Pit Production Planning / Nowy meta-heurystyczny algorytm wspomagający długoterminowe planowanie produkcji w kopalni odkrywkowej

    NASA Astrophysics Data System (ADS)

    Sattarvand, Javad; Niemann-Delius, Christian

    2013-03-01

    Paper describes a new metaheuristic algorithm which has been developed based on the Ant Colony Optimisation (ACO) and its efficiency have been discussed. To apply the ACO process on mine planning problem, a series of variables are considered for each block as the pheromone trails that represent the desirability of the block for being the deepest point of the mine in that column for the given mining period. During implementation several mine schedules are constructed in each iteration. Then the pheromone values of all blocks are reduced to a certain percentage and additionally the pheromone value of those blocks that are used in defining the constructed schedules are increased according to the quality of the generated solutions. By repeated iterations, the pheromone values of those blocks that define the shape of the optimum solution are increased whereas those of the others have been significantly evaporated.

  16. The French 35-hour workweek: a wide-ranging social change.

    PubMed

    Prunier-Poulmaire, S; Gadbois, C

    2001-12-01

    The reduction of the legal working week to 35 hours in France has generated wide-ranging social change. We examine the resulting changes in working-time patterns as well as their repercussions on the use of the time gained and on the quality of life and health. To compensate the reduction in the length of the working week, companies have modified the working-time patterns, by extending operation time (shiftwork, atypical schedules) and by matching the on-site workforce to production requirements (flexible working hours). They have sought to make more efficient use of working time: job intensification or job compression. The effects on the off-the-job life and health are linked to the shiftwork and atypical schedules designed to increase the company's operating time, and adjustments to the company's need for flexibilization impose working time/free time patterns that are at odds with biological rhythms and social life patterns. Changes to working-time patterns have unexpected consequences for work organization: heightened difficulties for the individual and the crew. These changes may generate a range of health problems related to overwork and stress. The way some companies have adapted may call into question the usefulness of work done by employees, thus damaging their social identity and mental well-being.

  17. Applying Graph Theory to Problems in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Farrahi, Amir Hossein; Goldbert, Alan; Bagasol, Leonard Neil; Jung, Jaewoo

    2017-01-01

    Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it is shown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.

  18. Applying Graph Theory to Problems in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo

    2017-01-01

    Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.

  19. Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines

    PubMed Central

    Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing

    2014-01-01

    m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933

  20. [The social hygiene problems in the operator work of hydroelectric power station workers and the means for enhancing work capacity].

    PubMed

    Karakashian, A N; Lepeshkina, T R; Ratushnaia, A N; Glushchenko, S S; Zakharenko, M I; Lastovchenko, V B; Diordichuk, T I

    1993-01-01

    Weight, tension and harmfulness of professional activity, peculiarities of labour conditions and characteristics of work, shift dynamics of operative personnel's working capacity were studied in the course of 8-hour working day currently accepted at hydroelectric power stations (HEPS) and experimental 12-hour schedule. Working conditions classified as "admissible", positive dynamics of operators' state, their social and material contentment were a basis for 12-hour two-shift schedule to be recommended as more appropriate. At the same time, problem of optimal shift schedules for operative personnel of HEPS remains unsolved and needs to be further explored.

  1. Transportation Network Analysis and Decomposition Methods

    DOT National Transportation Integrated Search

    1978-03-01

    The report outlines research in transportation network analysis using decomposition techniques as a basis for problem solutions. Two transportation network problems were considered in detail: a freight network flow problem and a scheduling problem fo...

  2. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint Propagation techniques. A simulation platform, an analysis tool and different test case scenarios for CTA were developed to test the performance of the scheduler and are also described.

  3. Status Report on the Development of Micro-Scheduling Software for the Advanced Outage Control Center Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germain, Shawn St.; Thomas, Kenneth; Farris, Ronald

    2014-09-01

    The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependentmore » activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are optimally deployed with the least amount of delay and unproductive use of resources. The remaining sections of this report describe in more detail the scheduling challenges that occur during outages, how a Micro-Scheduling capability helps address those challenges, and provides a status update on work accomplished to date and the path forward.« less

  4. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task One Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Makarov, Yuri V.

    This is a report for task one of the tail event analysis project for BPA. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, the imbalance between generation and load becomes very significant. This type of events occurs infrequently and appears on the tails of the distribution of system power imbalance; therefore, is referred to as tail events. This report analyzes what happened during the Electric Reliability Council of Texas (ERCOT) reliability event on Februarymore » 26, 2008, which was widely reported because of the involvement of wind generation. The objective is to identify sources of the problem, solutions to it and potential improvements that can be made to the system. Lessons learned from the analysis include the following: (1) Large mismatch between generation and load can be caused by load forecast error, wind forecast error and generation scheduling control error on traditional generators, or a combination of all of the above; (2) The capability of system balancing resources should be evaluated both in capacity (MW) and in ramp rate (MW/min), and be procured accordingly to meet both requirements. The resources need to be able to cover a range corresponding to the variability of load and wind in the system, additional to other uncertainties; (3) Unexpected ramps caused by load and wind can both become the cause leading to serious issues; (4) A look-ahead tool evaluating system balancing requirement during real-time operations and comparing that with available system resources should be very helpful to system operators in predicting the forthcoming of similar events and planning ahead; and (5) Demand response (only load reduction in ERCOT event) can effectively reduce load-generation mismatch and terminate frequency deviation in an emergency situation.« less

  5. Due-Window Assignment Scheduling with Variable Job Processing Times

    PubMed Central

    Wu, Yu-Bin

    2015-01-01

    We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine, where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the problem can be solved in polynomial time. PMID:25918745

  6. Single machine scheduling with slack due dates assignment

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Hu, Xiangpei; Wang, Xuyin

    2017-04-01

    This paper considers a single machine scheduling problem in which each job is assigned an individual due date based on a common flow allowance (i.e. all jobs have slack due date). The goal is to find a sequence for jobs, together with a due date assignment, that minimizes a non-regular criterion comprising the total weighted absolute lateness value and common flow allowance cost, where the weight is a position-dependent weight. In order to solve this problem, an ? time algorithm is proposed. Some extensions of the problem are also shown.

  7. Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling.

    PubMed

    Yang, S; Wang, D

    2000-01-01

    This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.

  8. A criterion autoscheduler for long range planning

    NASA Technical Reports Server (NTRS)

    Sponsler, Jeffrey L.

    1994-01-01

    A constraint-based scheduling system called SPIKE is used to create long-term schedules for the Hubble Space Telescope. A meta-level scheduler called the Criterion Autoscheduler for Long range planning (CASL) was created to guide SPIKE's schedule generation according to the agenda of the planning scientists. It is proposed that sufficient flexibility exists in a schedule to allow high level planning heuristics to be applied without adversely affected crucial constraints such as spacecraft efficiency. This hypothesis is supported by test data which is described.

  9. Future aircraft networks and schedules

    NASA Astrophysics Data System (ADS)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents computational results of these large-scale instances. To validate the models and solution algorithms developed, this thesis also compares the daily flight schedules that it designs with the schedules of the existing airlines. Furthermore, it creates instances that represent different economic and fuel-prices conditions and derives schedules under these different conditions. In addition, it discusses the implication of using new aircraft in the future flight schedules. Finally, future research in three areas---model, computational method, and simulation for validation---is proposed.

  10. Task Scheduling in Desktop Grids: Open Problems

    NASA Astrophysics Data System (ADS)

    Chernov, Ilya; Nikitina, Natalia; Ivashko, Evgeny

    2017-12-01

    We survey the areas of Desktop Grid task scheduling that seem to be insufficiently studied so far and are promising for efficiency, reliability, and quality of Desktop Grid computing. These topics include optimal task grouping, "needle in a haystack" paradigm, game-theoretical scheduling, domain-imposed approaches, special optimization of the final stage of the batch computation, and Enterprise Desktop Grids.

  11. Optimization Models for Scheduling of Jobs

    PubMed Central

    Indika, S. H. Sathish; Shier, Douglas R.

    2006-01-01

    This work is motivated by a particular scheduling problem that is faced by logistics centers that perform aircraft maintenance and modification. Here we concentrate on a single facility (hangar) which is equipped with several work stations (bays). Specifically, a number of jobs have already been scheduled for processing at the facility; the starting times, durations, and work station assignments for these jobs are assumed to be known. We are interested in how best to schedule a number of new jobs that the facility will be processing in the near future. We first develop a mixed integer quadratic programming model (MIQP) for this problem. Since the exact solution of this MIQP formulation is time consuming, we develop a heuristic procedure, based on existing bin packing techniques. This heuristic is further enhanced by application of certain local optimality conditions. PMID:27274921

  12. Improved NSGA model for multi objective operation scheduling and its evaluation

    NASA Astrophysics Data System (ADS)

    Li, Weining; Wang, Fuyu

    2017-09-01

    Reasonable operation can increase the income of the hospital and improve the patient’s satisfactory level. In this paper, by using multi object operation scheduling method with improved NSGA algorithm, it shortens the operation time, reduces the operation costand lowers the operation risk, the multi-objective optimization model is established for flexible operation scheduling, through the MATLAB simulation method, the Pareto solution is obtained, the standardization of data processing. The optimal scheduling scheme is selected by using entropy weight -Topsis combination method. The results show that the algorithm is feasible to solve the multi-objective operation scheduling problem, and provide a reference for hospital operation scheduling.

  13. Manipulating Tabu List to Handle Machine Breakdowns in Job Shop Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Nababan, Erna Budhiarti; SalimSitompul, Opim

    2011-06-01

    Machine breakdowns in a production schedule may occur on a random basis that make the well-known hard combinatorial problem of Job Shop Scheduling Problems (JSSP) becomes more complex. One of popular techniques used to solve the combinatorial problems is Tabu Search. In this technique, moves that will be not allowed to be revisited are retained in a tabu list in order to avoid in gaining solutions that have been obtained previously. In this paper, we propose an algorithm to employ a second tabu list to keep broken machines, in addition to the tabu list that keeps the moves. The period of how long the broken machines will be kept on the list is categorized using fuzzy membership function. Our technique are tested to the benchmark data of JSSP available on the OR library. From the experiment, we found that our algorithm is promising to help a decision maker to face the event of machine breakdowns.

  14. CABINS: Case-based interactive scheduler

    NASA Technical Reports Server (NTRS)

    Miyashita, Kazuo; Sycara, Katia

    1992-01-01

    In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.

  15. Assessing Potential Energy Savings in Household Travel: Methodological and Empirical Considerations of Vehicle Capability Constraints and Multi-day Activity Patterns

    NASA Astrophysics Data System (ADS)

    Bolon, Kevin M.

    The lack of multi-day data for household travel and vehicle capability requirements is an impediment to evaluations of energy savings strategies, since (1) travel requirements vary from day-to-day, and (2) energy-saving transportation options often have reduced capability. This work demonstrates a survey methodology and modeling system for evaluating the energy-savings potential of household travel, considering multi-day travel requirements and capability constraints imposed by the available transportation resources. A stochastic scheduling model is introduced---the multi-day Household Activity Schedule Estimator (mPHASE)---which generates synthetic daily schedules based on "fuzzy" descriptions of activity characteristics using a finite-element representation of activity flexibility, coordination among household members, and scheduling conflict resolution. Results of a thirty-household pilot study are presented in which responses to an interactive computer assisted personal interview were used as inputs to the mPHASE model in order to illustrate the feasibility of generating complex, realistic multi-day household schedules. Study vehicles were equipped with digital cameras and GPS data acquisition equipment to validate the model results. The synthetically generated schedules captured an average of 60 percent of household travel distance, and exhibited many of the characteristics of complex household travel, including day-to-day travel variation, and schedule coordination among household members. Future advances in the methodology may improve the model results, such as encouraging more detailed and accurate responses by providing a selection of generated schedules during the interview. Finally, the Constraints-based Transportation Resource Assignment Model (CTRAM) is introduced. Using an enumerative optimization approach, CTRAM determines the energy-minimizing vehicle-to-trip assignment decisions, considering trip schedules, occupancy, and vehicle capability. Designed to accept either actual or synthetic schedules, results of an application of the optimization model to the 2001 and 2009 National Household Travel Survey data show that U.S. households can reduce energy use by 10 percent, on average, by modifying the assignment of existing vehicles to trips. Households in 2009 show a higher tendency to assign vehicles optimally than in 2001, and multi-vehicle households with diverse fleets have greater savings potential, indicating that fleet modification strategies may be effective, particularly under higher energy price conditions.

  16. A Study of the Operating Room Scheduling System at Tripler Army Medical Center, Hawaii

    DTIC Science & Technology

    1981-08-01

    PROCESSING CLASS V SYSTEM .... .......... . A BIBLIOGRAPHY ....... ........... . . . .. . ii ’I. INTRODUCTIO9 Development of the Problem Convinced that...of the most difficult administrativo tasks that a modern hospital must face, and proposed using a combination of a master posting sheet and a...deal with scheduling problems.9 This particular process also incorporates the two-room system doscribed earlier, and the author admits that this

  17. Scheduling Jobs and a Variable Maintenance on a Single Machine with Common Due-Date Assignment

    PubMed Central

    Wan, Long

    2014-01-01

    We investigate a common due-date assignment scheduling problem with a variable maintenance on a single machine. The goal is to minimize the total earliness, tardiness, and due-date cost. We derive some properties on an optimal solution for our problem. For a special case with identical jobs we propose an optimal polynomial time algorithm followed by a numerical example. PMID:25147861

  18. Scheduling from the perspective of the application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, F.; Wolski, R.

    1996-12-31

    Metacomputing is the aggregation of distributed and high-performance resources on coordinated networks. With careful scheduling, resource-intensive applications can be implemented efficiently on metacomputing systems at the sizes of interest to developers and users. In this paper we focus on the problem of scheduling applications on metacomputing systems. We introduce the concept of application-centric scheduling in which everything about the system is evaluated in terms of its impact on the application. Application-centric scheduling is used by virtually all metacomputer programmers to achieve performance on metacomputing systems. We describe two successful metacomputing applications to illustrate this approach, and describe AppLeS scheduling agentsmore » which generalize the application-centric scheduling approach. Finally, we show preliminary results which compare AppLeS-derived schedules with conventional strip and blocked schedules for a two-dimensional Jacobi code.« less

  19. Chandra mission scheduling on-orbit experience

    NASA Astrophysics Data System (ADS)

    Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David

    2008-07-01

    Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.

  20. A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy

    PubMed Central

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742

Top