Grid generation on trimmed Bezier and NURBS quilted surfaces
NASA Technical Reports Server (NTRS)
Woan, Chung-Jin; Clever, Willard C.; Tam, Clement K.
1995-01-01
This paper presents some recently added capabilities to RAGGS, Rockwell Automated Grid Generation System. Included are the trimmed surface handling and display capability and structures and unstructured grid generation on trimmed Bezier and NURBS (non-uniform rational B-spline surfaces) quilted surfaces. Samples are given to demonstrate the new capabilities.
Quantumness-generating capability of quantum dynamics
NASA Astrophysics Data System (ADS)
Li, Nan; Luo, Shunlong; Mao, Yuanyuan
2018-04-01
We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.
Accelerator system and method of accelerating particles
NASA Technical Reports Server (NTRS)
Wirz, Richard E. (Inventor)
2010-01-01
An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.
NASA Technical Reports Server (NTRS)
Berg, R. F.; Holcomb, J. E.; Kelroy, E. A.; Levine, D. A.; Mee, C., III
1970-01-01
Generalized information storage and retrieval system capable of generating and maintaining a file, gathering statistics, sorting output, and generating final reports for output is reviewed. File generation and file maintenance programs written for the system are general purpose routines.
Control System for the LLNL Kicker Pulse Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Anaya, R M; Cook, E G
2002-06-18
A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.
2015-06-29
requirements for the system’s ground components to the generating capabilities of standard Marine Corps generators ). The Navy did not fully address two...dedicated generators to power the ground control stations. Recommendations The Navy and Marine Corps should consider the following recommendations in...components to the generating capabilities of standard Marine Corps generators ). The Navy did not fully address two recommendations (strengthening
Mixed-Initiative Planning in MAPGEN: Capabilities and Shortcomings
NASA Technical Reports Server (NTRS)
Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna
2005-01-01
MAPGEN (Mixed-initiative Activity Plan GENerator) is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist the Mars Exploration Rover mission operations staff in generating the daily activity plans. This paper describes the mixed-initiative capabilities of MAPGEN, identifies shortcomings with the deployed system, and discusses ongoing work to address some of these shortcomings.
A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses
NASA Astrophysics Data System (ADS)
Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao
2016-01-01
A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.
The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft
NASA Astrophysics Data System (ADS)
Iyengar, Mrinal; Lange, Davis
2006-05-01
Goodrich's DB-110 Reconnaissance Airborne Pod for TORnado (RAPTOR) and Data Link Ground Station (DLGS) have been used operationally for several years by the Royal Air Force (RAF). A variant of the RAPTOR DB-110 Sensor System is currently being used by the Japan Maritime Self Defense Force (JMSDF). Recently, the DB-110 system was flown on the Predator B Unmanned Aerial Vehicle (UAV), demonstrating the DB-110 system's utility on unmanned reconnaissance aircraft. The DB-110 is a dual-band EO and IR imaging capability for long, medium, and short standoff ranges, including oblique and over-flight imaging, in a single sensor package. The DB-110 system has also proven performance for real-time high bandwidth data link imagery transmission. Goodrich has leveraged this operational experience in building a 3rd Generation DB-110 system including new Reconnaissance Airborne Pod and Ground System, to be first used by the Polish Air Force. This 3rd Generation system maintains all the capability of the current 2nd Generation DB-110 system and adds several new features. The 3rd Generation system upgrades include an increase in resolution via new focal planes, addition of a third ("super-wide") field of view, and new avionics. This paper summarizes the Goodrich DB-110 3rd Generation System in terms of its basic design and capabilities. Recent demonstration of the DB-110 on the Predator B UAV is overviewed including sample imagery.
Multiple layer optical memory system using second-harmonic-generation readout
Boyd, Gary T.; Shen, Yuen-Ron
1989-01-01
A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.
Automated extraction of knowledge for model-based diagnostics
NASA Technical Reports Server (NTRS)
Gonzalez, Avelino J.; Myler, Harley R.; Towhidnejad, Massood; Mckenzie, Frederic D.; Kladke, Robin R.
1990-01-01
The concept of accessing computer aided design (CAD) design databases and extracting a process model automatically is investigated as a possible source for the generation of knowledge bases for model-based reasoning systems. The resulting system, referred to as automated knowledge generation (AKG), uses an object-oriented programming structure and constraint techniques as well as internal database of component descriptions to generate a frame-based structure that describes the model. The procedure has been designed to be general enough to be easily coupled to CAD systems that feature a database capable of providing label and connectivity data from the drawn system. The AKG system is capable of defining knowledge bases in formats required by various model-based reasoning tools.
NASA Astrophysics Data System (ADS)
Eriksson, L.; Wienhard, K.; Eriksson, M.; Casey, M. E.; Knoess, C.; Bruckbauer, T.; Hamill, J.; Mulnix, T.; Vollmar, S.; Bendriem, B.; Heiss, W. D.; Nutt, R.
2002-06-01
The first and second generation of the Exact and Exact HR family of scanners has been evaluated in terms of noise equivalent count rate (NEC) and count-rate capabilities. The new National Electrical Manufacturers Association standard was used for the evaluation. In spite of improved electronics and improved count-rate capabilities, the peak NEC was found to be fairly constant between the generations. The results are discussed in terms of the different electronic solutions for the two generations and its implications on system dead time and NEC count-rate capability.
Core Technical Capability Laboratory Management System
NASA Technical Reports Server (NTRS)
Shaykhian, Linda; Dugger, Curtis; Griffin, Laurie
2008-01-01
The Core Technical Capability Lab - oratory Management System (CTCLMS) consists of dynamically generated Web pages used to access a database containing detailed CTC lab data with the software hosted on a server that allows users to have remote access.
AN ULTRAVIOLET-VISIBLE SPECTROPHOTOMETER AUTOMATION SYSTEM. PART III: PROGRAM DOCUMENTATION
The Ultraviolet-Visible Spectrophotometer (UVVIS) automation system accomplishes 'on-line' spectrophotometric quality assurance determinations, report generations, plot generations and data reduction for chlorophyll or color analysis. This system also has the capability to proces...
Bolton, Matthew L.; Bass, Ellen J.; Siminiceanu, Radu I.
2012-01-01
Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human-automation interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring. We discuss how our method could be used to evaluate larger applications and recommend future paths of development. PMID:23105914
A flexible flight display research system using a ground-based interactive graphics terminal
NASA Technical Reports Server (NTRS)
Hatfield, J. J.; Elkins, H. C.; Batson, V. M.; Poole, W. L.
1975-01-01
Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed.
Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)
NASA Astrophysics Data System (ADS)
Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.
2000-08-01
Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.
Hypothetical Scenario Generator for Fault-Tolerant Diagnosis
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.
Integration of Variable Speed Pumped Hydro Storage in Automatic Generation Control Systems
NASA Astrophysics Data System (ADS)
Fulgêncio, N.; Moreira, C.; Silva, B.
2017-04-01
Pumped storage power (PSP) plants are expected to be an important player in modern electrical power systems when dealing with increasing shares of new renewable energies (NRE) such as solar or wind power. The massive penetration of NRE and consequent replacement of conventional synchronous units will significantly affect the controllability of the system. In order to evaluate the capability of variable speed PSP plants participation in the frequency restoration reserve (FRR) provision, taking into account the expected performance in terms of improved ramp response capability, a comparison with conventional hydro units is presented. In order to address this issue, a three area test network was considered, as well as the corresponding automatic generation control (AGC) systems, being responsible for re-dispatching the generation units to re-establish power interchange between areas as well as the system nominal frequency. The main issue under analysis in this paper is related to the benefits of the fast response of variable speed PSP with respect to its capability of providing fast power balancing in a control area.
SWAN: An expert system with natural language interface for tactical air capability assessment
NASA Technical Reports Server (NTRS)
Simmons, Robert M.
1987-01-01
SWAN is an expert system and natural language interface for assessing the war fighting capability of Air Force units in Europe. The expert system is an object oriented knowledge based simulation with an alternate worlds facility for performing what-if excursions. Responses from the system take the form of generated text, tables, or graphs. The natural language interface is an expert system in its own right, with a knowledge base and rules which understand how to access external databases, models, or expert systems. The distinguishing feature of the Air Force expert system is its use of meta-knowledge to generate explanations in the frame and procedure based environment.
An Intelligent CAI Monitor and Generative Tutor. Interim Report.
ERIC Educational Resources Information Center
Koffman, Elliot B.; And Others
Design techniques for generative computer-assisted-instructional (CAI) systems are described in this report. These are systems capable of generating problems for students and of deriving and monitoring solutions; problem difficulty, instructional pace, and depth of monitoring are all individually tailored and parts of the solution algorithms can…
Automated Test Case Generation for an Autopilot Requirement Prototype
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Rungta, Neha; Feary, Michael
2011-01-01
Designing safety-critical automation with robust human interaction is a difficult task that is susceptible to a number of known Human-Automation Interaction (HAI) vulnerabilities. It is therefore essential to develop automated tools that provide support both in the design and rapid evaluation of such automation. The Automation Design and Evaluation Prototyping Toolset (ADEPT) enables the rapid development of an executable specification for automation behavior and user interaction. ADEPT supports a number of analysis capabilities, thus enabling the detection of HAI vulnerabilities early in the design process, when modifications are less costly. In this paper, we advocate the introduction of a new capability to model-based prototyping tools such as ADEPT. The new capability is based on symbolic execution that allows us to automatically generate quality test suites based on the system design. Symbolic execution is used to generate both user input and test oracles user input drives the testing of the system implementation, and test oracles ensure that the system behaves as designed. We present early results in the context of a component in the Autopilot system modeled in ADEPT, and discuss the challenges of test case generation in the HAI domain.
Measuring Performance with Library Automated Systems.
ERIC Educational Resources Information Center
OFarrell, John P.
2000-01-01
Investigates the capability of three library automated systems to generate some of the datasets necessary to form the ISO (International Standards Organization) standard on performance measurement within libraries, based on research in Liverpool John Moores University (United Kingdom). Concludes that the systems are weak in generating the…
NASA Astrophysics Data System (ADS)
Kim, G. H.; Kim, A. R.; Kim, S.; Park, M.; Yu, I. K.; Seong, K. C.; Won, Y. J.
2011-11-01
Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... capability of each transmission system and the costs that support the generation capability of the CVP system...) operates the water control and delivery system and all of the power plants with the exception of the San... existing formula rate methodologies for power; CVP, COTP, and PACI transmission; transmission of Western...
School Building Design: The Building as an Instructional Tool.
ERIC Educational Resources Information Center
Rakestraw, William E.
1979-01-01
Concepts used in the design of a Dallas school make the building an integral part of the instructional program. These concepts include instrumented resource consumption, wind powered electrical generating capabilities, solar powered domestic hot water system, grey water cycling and sampling capabilities, and mechanical systems monitoring.…
Hybrid Network Architectures for the Next Generation NAS
NASA Technical Reports Server (NTRS)
Madubata, Christian
2003-01-01
To meet the needs of the 21st Century NAS, an integrated, network-centric infrastructure is essential that is characterized by secure, high bandwidth, digital communication systems that support precision navigation capable of reducing position errors for all aircraft to within a few meters. This system will also require precision surveillance systems capable of accurately locating all aircraft, and automatically detecting any deviations from an approved path within seconds and be able to deliver high resolution weather forecasts - critical to create 4- dimensional (space and time) profiles for up to 6 hours for all atmospheric conditions affecting aviation, including wake vortices. The 21st Century NAS will be characterized by highly accurate digital data bases depicting terrain, obstacle, and airport information no matter what visibility conditions exist. This research task will be to perform a high-level requirements analysis of the applications, information and services required by the next generation National Airspace System. The investigation and analysis is expected to lead to the development and design of several national network-centric communications architectures that would be capable of supporting the Next Generation NAS.
NEXT Ion Propulsion System Development Status and Capabilities
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Benson, Scott W.
2008-01-01
NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.
DOT National Transportation Integrated Search
2009-03-01
To prepare for forecasted air traffic : growth, the Federal Aviation : Administration (FAA), including its : Joint Planning and Development : Office (JPDO) and Air Traffic : Organization (ATO), is planning for : and implementing the Next : Generation...
NEXT GENERATION AERIAL REFUELING: CRITICAL CAPABILITY FOR PENETRATING CHINESE DENIED ENVIRONMENTS
2015-10-26
defensive systems capability reduces aircraft damage, saves aircrew lives and keeps the tanker engaged in supplying a critical resource to the...legacy KC- 135. Additionally, there are requirement for a defensive system , which enhances the pilots situational awareness. The defensive system ...1 The ALR-69(V) is the world’s first all-digital radar warning receiver (RWR). The RWR system detects, identifies
Coherence-generating power of quantum dephasing processes
NASA Astrophysics Data System (ADS)
Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo
2018-03-01
We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.
Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)
NASA Astrophysics Data System (ADS)
Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.
2015-05-01
The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.
NASA Technical Reports Server (NTRS)
Kaul, Upender K. (Inventor)
2009-01-01
Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.
Electrodynamic Tethers. 1: Power Generator in LEO. 2: Thrust for Propulsion and Power Storage
NASA Technical Reports Server (NTRS)
Mccoy, J. E.
1984-01-01
An electrodynamic tether consists of a long insulated wire in space whose orbital motion cuts across lines of magnetic flux to produce an induce voltage that in typical low orbits averages about 200 v/km. Such a system should be capable of generating substantial electrical power, at the expense of IXB drag acting on its orbital energy. If a reverse current is driven against the induced voltage, the system should act as a motor producing IXB thrust. A reference system was designed, capable of generating 20 KW of power into an electrical load located anywhere along the wire at the expense of 2.6N (20,000 J/sec) drag on the wire. In an ideal system, the conversion between mechanical and electrical energy would reach 100% efficiency. In the actual system part of the 20 KW is lost to internal resistance of the wire, plasma and ionosphere, while the drag force is increased by residual air drag. The 20 KW PMG system as designed is estimated to provide 18.7 KW net power to the load at total drag loss of 20.4 KJ/sec, or an overall efficiency of 92%. Similar systems using heavier wire appear capable of producing power levels in excess of 1 Megawatt at voltages of 2-4 KV, with conversion efficiency between mechanical and electrical power better than 95%. The hollow cathode based system should be readily reversible from generator to motor operation by driving a reverse current using onboard power.
Advanced Pumped Storage Hydropower and Ancillary Services Provision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Mohanpurkar, Manish
This paper presents a high-level overview of the capability of advanced pumped storage hydropower to provide ancillary services including frequency regulation and oscillation damping. Type 3 and Type 4 generators are discussed. The examples given are for a small power system that uses a diesel generator as the main generator and a very large system that uses a gas turbine as the main generator.
Real-time scene and signature generation for ladar and imaging sensors
NASA Astrophysics Data System (ADS)
Swierkowski, Leszek; Christie, Chad L.; Antanovskii, Leonid; Gouthas, Efthimios
2014-05-01
This paper describes development of two key functionalities within the VIRSuite scene simulation program, broadening its scene generation capabilities and increasing accuracy of thermal signatures. Firstly, a new LADAR scene generation module has been designed. It is capable of simulating range imagery for Geiger mode LADAR, in addition to the already existing functionality for linear mode systems. Furthermore, a new 3D heat diffusion solver has been developed within the VIRSuite signature prediction module. It is capable of calculating the temperature distribution in complex three-dimensional objects for enhanced dynamic prediction of thermal signatures. With these enhancements, VIRSuite is now a robust tool for conducting dynamic simulation for missiles with multi-mode seekers.
Next Generation Internet Overview
NASA Technical Reports Server (NTRS)
desJardins, R.
1998-01-01
Various issues associated with next generation Internet are presented in viewgraph form. Specific topics include: 1) Internet architecture; 2) NASA's advanced networking; 3) Internet capability, capacity and applications; and 4) Systems engineering.
NASA Technical Reports Server (NTRS)
Brady, Tye; Bailey, Erik; Crain, Timothy; Paschall, Stephen
2011-01-01
NASA has embarked on a multiyear technology development effort to develop a safe and precise lunar landing capability. The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is investigating a range of landing hazard detection methods while developing a hazard avoidance capability to best field test the proper set of relevant autonomous GNC technologies. Ultimately, the advancement of these technologies through the ALHAT Project will provide an ALHAT System capable of enabling next generation lunar lander vehicles to globally land precisely and safely regardless of lighting condition. This paper provides an overview of the ALHAT System and describes recent validation experiments that have advanced the highly capable GNC architecture.
Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman; Thio, Tzer Hwai Gilbert; Al-Faqheri, Wisam; Madou, Marc
2015-01-01
The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc's rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film's vibration during the disc's rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62 °C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms.
NASA Astrophysics Data System (ADS)
Hakim, Lukmanul; Kubokawa, Junji; Yorino, Naoto; Zoka, Yoshifumi; Sasaki, Yutaka
Advancements have been made towards inclusion of both static and dynamic security into transfer capability calculation. However, to the authors' knowledge, work on considering corrective controls into the calculation has not been reported yet. Therefore, we propose a Total Transfer Capability (TTC) assessment considering transient stability corrective controls. The method is based on the Newton interior point method for nonlinear programming and transfer capability is approached as a maximization of power transfer with both static and transient stability constraints are incorporated into our Transient Stability Constrained Optimal Power Flow (TSCOPF) formulation. An interconnected power system is simulated to be subjected to a severe unbalanced 3-phase 4-line to ground fault and following the fault, generator and load are shed in a pre-defined sequence to mimic actual corrective controls. In a deregulated electricity market, both generator companies and large load customers are encouraged to actively participate in maintaining power system stability as corrective controls upon agreement of compensation for being shed following a disturbance. Implementation of this proposal on the actual power system operation should be carried out through combining it with the existing transient stabilization controller system. Utilization of these corrective controls results in increasing TTC as suggested in our numerical simulation. As Lagrange multipliers can also describe sensitivity of both inequality and equality constraints to the objective function, then selection of which generator or load to be shed can be carried out on the basis of values of Lagrange multipliers of its respective generator's rotor angle stability and active power balance equation. Hence, the proposal in this paper can be utilized by system operator to assess the maximum TTC for specific loads and network conditions.
NASA Technical Reports Server (NTRS)
Yao, X. S.; Maleki, L.
1995-01-01
We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.
Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed Computation System
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.
2010-01-01
The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the development of the CFIMS concept and documents the first design realization.
Performance Tests of High Speed ZRV Oil Skimmer.
1980-06-01
clarified by recirculation through a 2,000 gpm diatomaceous earth filter system to permit full use of a sophisticated underwater photography and video...generator and beach, and a filter system. The wave generator and adsorber beach have capabilities of producing regular waves to 2.25 feet high and to 92
NASA's Next Generation Space Geodesy Program
NASA Technical Reports Server (NTRS)
Pearlman, M. R.; Frey, H. V.; Gross, R. S.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Merkowitz, S. M.; Noll, C. E.; Pavilis, E. C.;
2012-01-01
Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard s Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA s contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.
NASA's Next Generation Space Geodesy Program
NASA Technical Reports Server (NTRS)
Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.;
2012-01-01
Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA's contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.
Analysis of the Capability Portfolio Review (CPR)
2014-06-01
facilitated by the MRM feature. PAT allows the analyst to quickly change how summary depictions are generated. Choices include; simple linear...database with supporting software that documents relationships between warfighting activities, the UJTL, systems, ACTDs, roadmaps, and capability areas. It
Ma, Z.; Mehos, M.; Glatzmaier, G.; ...
2015-05-01
Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less
NASA Technical Reports Server (NTRS)
Mccann, Robert S.; Spirkovska, Lilly; Smith, Irene
2013-01-01
Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated.
NASA Technical Reports Server (NTRS)
Huang, Adam
2016-01-01
The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.
Coherent Frequency Reference System for the NASA Deep Space Network
NASA Technical Reports Server (NTRS)
Tucker, Blake C.; Lauf, John E.; Hamell, Robert L.; Gonzaler, Jorge, Jr.; Diener, William A.; Tjoelker, Robert L.
2010-01-01
The NASA Deep Space Network (DSN) requires state-of-the-art frequency references that are derived and distributed from very stable atomic frequency standards. A new Frequency Reference System (FRS) and Frequency Reference Distribution System (FRD) have been developed, which together replace the previous Coherent Reference Generator System (CRG). The FRS and FRD each provide new capabilities that significantly improve operability and reliability. The FRS allows for selection and switching between frequency standards, a flywheel capability (to avoid interruptions when switching frequency standards), and a frequency synthesis system (to generate standardized 5-, 10-, and 100-MHz reference signals). The FRS is powered by redundant, specially filtered, and sustainable power systems and includes a monitor and control capability for station operations to interact and control the frequency-standard selection process. The FRD receives the standardized 5-, 10-, and 100-MHz reference signals and distributes signals to distribution amplifiers in a fan out fashion to dozens of DSN users that require the highly stable reference signals. The FRD is also powered by redundant, specially filtered, and sustainable power systems. The new DSN Frequency Distribution System, which consists of the FRS and FRD systems described here, is central to all operational activities of the NASA DSN. The frequency generation and distribution system provides ultra-stable, coherent, and very low phase-noise references at 5, l0, and 100 MHz to between 60 and 100 separate users at each Deep Space Communications Complex.
Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration
NASA Technical Reports Server (NTRS)
Ferguson, Scott; Mazzoleni, Andre
2016-01-01
Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.
Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc
Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman; Thio, Tzer Hwai Gilbert; Al-Faqheri, Wisam; Madou, Marc
2015-01-01
The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc’s rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film’s vibration during the disc’s rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62°C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms. PMID:26422249
Study of μDBO overlay target size reduction for application broadening
NASA Astrophysics Data System (ADS)
Calado, Victor; Dépré, Jérôme; Massacrier, Clément; Tarabrin, Sergey; van Haren, Richard; Dettoni, Florent; Bouyssou, Régis; Dezauzier, Christophe
2018-03-01
With these proceedings we present μ-diffraction-based overlay (μDBO) targets that are well below the currently supported minimum size of 10×10 μm2 . We have been capable of measuring overlay targets as small as 4×4 μm2 with our latest generation YieldStar system. Furthermore we find an excellent precision (TMU < 0.33 nm for 6 × 6 μm2 ) without any compromise on throughput (MAM time < 60 ms). At last a study that compares four generations of YieldStar systems show clearly that the latest generation YieldStar systems is much better capable of reading small overlay targets such that the performance of a 16 × 16 μm2 on an early generation YieldStar 2nd-gen is comparable to that of a 8 × 8 μm2 on the latest YieldStar 5th-gen. This work enables a smaller metrology footprint, more placement flexibility and in-die overlay metrology solutions.
Mission Critical Computer Resources Management Guide
1988-09-01
Support Analyzers, Management, Generators Environments Word Workbench Processors Showroom System Structure HO Compilers IMath 1OperatingI Functions I...Simulated Automated, On-Line Generators Support Exercises Catalog, Function Environments Formal Spec Libraries Showroom System Structure I ADA Trackers I...shown in Figure 13-2. In this model, showrooms of larger more capable piecesare developed off-line for later integration and use in multiple systems
MAPGEN: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Ai-Chang, Mitchell; Bresina, John; Hsu, Jennifer; Jonsson, Ari; Kanefsky, Bob; McCurdy, Michael; Morris, Paul; Rajan, Kanna; Vera, Alonso; Yglesias, Jeffrey
2004-01-01
This document describes the Mixed initiative Activity Plan Generation system MAPGEN. This system is one of the critical tools in the Mars Exploration Rover mission surface operations, where it is used to build activity plans for each of the rovers, each Martian day. The MAPGEN system combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The constraint-based planning component provides active constraint and rule enforcement, automated planning capabilities, and a variety of tools and functions that are useful for building activity plans in an interactive fashion. In this demonstration, we will show the capabilities of the system and demonstrate how the system has been used in actual Mars rover operations. In contrast to the demonstration given at ICAPS 03, significant improvement have been made to the system. These include various additional capabilities that are based on automated reasoning and planning techniques, as well as a new Constraint Editor support tool. The Constraint Editor (CE) as part of the process for generating these command loads, the MAPGEN tool provides engineers and scientists an intelligent activity planning tool that allows them to more effectively generate complex plans that maximize the science return each day. The key to the effectiveness of the MAPGEN tool is an underlying constraint-based planning and reasoning engine.
Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
NASA Astrophysics Data System (ADS)
Arda, Samet Egemen
A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.
Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Jirapong, Peeraool; Ongsakul, Weerakorn
2008-10-01
This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel; Makarov, PNNL Yuri; Subbarao, PNNL Kris
RUT software is designed for use by the Balancing Authorities to predict and display additional requirements caused by the variability and uncertainty in load and generation. The prediction is made for the next operating hours as well as for the next day. The tool predicts possible deficiencies in generation capability and ramping capability. This deficiency of balancing resources can cause serious risks to power system stability and also impact real-time market energy prices. The tool dynamically and adaptively correlates changing system conditions with the additional balancing needs triggered by the interplay between forecasted and actual load and output of variablemore » resources. The assessment is performed using a specially developed probabilistic algorithm incorporating multiple sources of uncertainty including wind, solar and load forecast errors. The tool evaluates required generation for a worst case scenario, with a user-specified confidence level.« less
Survey of aircraft electrical power systems
NASA Technical Reports Server (NTRS)
Lee, C. H.; Brandner, J. J.
1972-01-01
Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.
2011-06-01
designed to augment and eventually replace the currently oversubscribed UHF Follow- On ( UFO ) System. MUOS adapts a commercial third generation (3G...towers) with the goal of providing a more capable UHF SATCOM system. This research aims at investigating the differences between the legacy UFO and...improvements. The study finds that MUOS can tolerate a traffic demand rate of about 83 calls/messages per second whereas UFO saturates at roughly 4 calls
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Jones, Thomas C.; Doggett, W. R.; Brady, Jeffrey S.; Berry, Felecia C.; Ganoe, George G.; Anderson, Eric; King, Bruce D.; Mercer, David C.
2011-01-01
The first generation of a versatile high performance device for performing payload handling and assembly operations on planetary surfaces, the Lightweight Surface Manipulation System (LSMS), has been designed and built. Over the course of its development, conventional crane type payload handling configurations and operations have been successfully demonstrated and the range of motion, types of operations and the versatility greatly expanded. This enhanced set of 1st generation LSMS hardware is now serving as a laboratory test-bed allowing the continuing development of end effectors, operational techniques and remotely controlled and automated operations. This paper describes the most recent LSMS and test-bed development activities, that have focused on two major efforts. The first effort was to complete a preliminary design of the 2nd generation LSMS that has the capability for limited mobility and can reposition itself between lander decks, mobility chassis, and fixed base locations. A major portion of this effort involved conducting a study to establish the feasibility of, and define, the specifications for a lightweight cable-drive waist joint. The second effort was to continue expanding the versatility and autonomy of large planetary surface manipulators using the 1st generation LSMS as a test-bed. This has been accomplished by increasing manipulator capabilities and efficiencies through both design changes and tool and end effector development. A software development effort has expanded the operational capabilities of the LSMS test-bed to include; autonomous operations based on stored paths, use of a vision system for target acquisition and tracking, and remote command and control over a communications bridge.
River Devices to Recover Energy with Advanced Materials (River DREAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Daniel P.
2013-07-03
The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize andmore » model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.« less
Reconfigurable Image Generator
NASA Technical Reports Server (NTRS)
Archdeacon, John L. (Inventor); Iwai, Nelson H. (Inventor); Kato, Kenji H. (Inventor); Sweet, Barbara T. (Inventor)
2017-01-01
A RiG may simulate visual conditions of a real world environment, and generate the necessary amount of pixels in a visual simulation at rates up to 120 frames per second. RiG may also include a database generation system capable of producing visual databases suitable to drive the visual fidelity required by the RiG.
Applying Hierarchical Model Calibration to Automatically Generated Items.
ERIC Educational Resources Information Center
Williamson, David M.; Johnson, Matthew S.; Sinharay, Sandip; Bejar, Isaac I.
This study explored the application of hierarchical model calibration as a means of reducing, if not eliminating, the need for pretesting of automatically generated items from a common item model prior to operational use. Ultimately the successful development of automatic item generation (AIG) systems capable of producing items with highly similar…
Computer-Generated, Three-Dimensional Character Animation: A Report and Analysis.
ERIC Educational Resources Information Center
Kingsbury, Douglas Lee
This master's thesis details the experience gathered in the production "Snoot and Muttly," a short character animation with 3-D computer generated images, and provides an analysis of the computer-generated 3-D character animation system capabilities. Descriptions are provided of the animation environment at the Ohio State University…
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash
2017-12-01
Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.
Pulse generation and preamplification for long pulse beamlines of Orion laser facility.
Hillier, David I; Winter, David N; Hopps, Nicholas W
2010-06-01
We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.
Final Report: Assessment of Combined Heat and Power Premium Power Applications in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norwood, Zack; Lipman, Tim; Marnay, Chris
2008-09-30
This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities. Through a series of three case studies, key trade-offs are analyzed with regard to the provision of black-out ridethrough capability with the CHP systems and the resutling ability to avoid the need for at least some diesel backup generator capacity located at the case study sites. Each of the selected sites currently have a CHP or combined heating, cooling, and power (CCHP) system in addition to diesel backup generators. In all cases the CHP/CCHP system have a smallmore » fraction of the electrical capacity of the diesel generators. Although none of the selected sites currently have the ability to run the CHP systems as emergency backup power, all could be retrofitted to provide this blackout ride-through capability, and new CHP systems can be installed with this capability. The following three sites/systems were used for this analysis: (1) Sierra Nevada Brewery - Using 1MW of installed Molten Carbonate Fuel Cells operating on a combination of digestor gas (from the beer brewing process) and natural gas, this facility can produce electricty and heat for the brewery and attached bottling plant. The major thermal load on-site is to keep the brewing tanks at appropriate temperatures. (2) NetApp Data Center - Using 1.125 MW of Hess Microgen natural gas fired reciprocating engine-generators, with exhaust gas and jacket water heat recovery attached to over 300 tons of of adsorption chillers, this combined cooling and power system provides electricity and cooling to a data center with a 1,200 kW peak electrical load. (3) Kaiser Permanente Hayward Hospital - With 180kW of Tecogen natural gas fired reciprocating engine-generators this CHP system generates steam for space heating, and hot water for a city hospital. For all sites, similar assumptions are made about the economic and technological constraints of the power generation system. Using the Distributed Energy Resource Customer Adoption Model (DER-CAM) developed at the Lawrence Berkeley National Laboratory, we model three representative scenarios and find the optimal operation scheduling, yearly energy cost, and energy technology investments for each scenario below: Scenario 1 - Diesel generators and CHP/CCHP equipment as installed in the current facility. Scenario 1 represents a baseline forced investment in currently installed energy equipment. Scenario 2 - Existing CHP equipment installed with blackout ride-through capability to replace approximately the same capacity of diesel generators. In Scenario 2 the cost of the replaced diesel units is saved, however additional capital cost for the controls and switchgear for blackout ride-through capability is necessary. Scenario 3 - Fully optimized site analysis, allowing DER-CAM to specify the number of diesel and CHP/CCHP units (with blackout ride-through capability) that should be installed ignoring any constraints on backup generation. Scenario 3 allows DER-CAM to optimize scheduling and number of generation units from the currently available technologies at a particular site. The results of this analysis, using real data to model the optimal schedulding of hypothetical and actual CHP systems for a brewery, data center, and hospital, lead to some interesting conclusions. First, facilities with high heating loads will typically prove to be the most appropriate for CHP installation from a purely economic standpoint. Second, absorption/adsorption cooling systems may only be economically feasible if the technology for these chillers can increase above current best system efficiency. At a coefficient of performance (COP) of 0.8, for instance, an adsorption chiller paired with a natural gas generator with waste heat recovery at a facility with large cooling loads, like a data center, will cost no less on a yearly basis than purchasing electricity and natural gas directly from a utility. Third, at marginal additional cost, if the reliability of CHP systems proves to be at least as high as diesel generators (which we expect to be the case), the CHP system could replace the diesel generator at little or no additional cost. This is true if the thermal to electric (relative) load of those facilities was already high enough to economically justify a CHP system. Last, in terms of greenhouse gas emissions, the modeled CHP and CCHP systems provide some degree of decreased emissions relative to systems with less CHP installed. The emission reduction can be up to 10% in the optimized case (Scenario 3) in the application with the highest relative thermal load, in this case the hospital. Although these results should be qualified because they are only based on the three case studies, the general results and lessons learned are expected to be applicable across a broad range of potential and existing CCHP systems.« less
The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.;
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.
A 99 percent purity molecular sieve oxygen generator
NASA Technical Reports Server (NTRS)
Miller, G. W.
1991-01-01
Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Jones, Thomas C.; Doggett, William R.; Roithmayr, Carlos M.; King, Bruce D.; Mikulas, Marting M.
2009-01-01
The objective of this paper is to describe and summarize the results of the development efforts for the Lunar Surface Manipulation System (LSMS) with respect to increasing the performance, operational versatility, and automation. Three primary areas of development are covered, including; the expansion of the operational envelope and versatility of the current LSMS test-bed, the design of a second generation LSMS, and the development of automation and remote control capability. The first generation LSMS, which has been designed, built, and tested both in lab and field settings, is shown to have increased range of motion and operational versatility. Features such as fork lift mode, side grappling of payloads, digging and positioning of lunar regolith, and a variety of special end effectors are described. LSMS operational viability depends on bei nagble to reposition its base from an initial position on the lander to a mobility chassis or fixed locations around the lunar outpost. Preliminary concepts are presented for the second generation LSMS design, which will perform this self-offload capability. Incorporating design improvements, the second generation will have longer reach and three times the payload capability, yet it will have approximately equivalent mass to the first generation. Lastly, this paper covers improvements being made to the control system of the LSMS test-bed, which is currently operated using joint velocity control with visual cues. These improvements include joint angle sensors, inverse kinematics, and automated controls.
NASA Technical Reports Server (NTRS)
Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen
2017-01-01
The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankinds understand of the universe and extending human presence into the solar system.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.
2017-01-01
The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system.
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.
Early Performance Results from the GOES-R Product Generation System
NASA Astrophysics Data System (ADS)
Marley, S.; Weiner, A.; Kalluri, S. N.; Hansen, D.; Dittberner, G.
2013-12-01
Enhancements to remote sensing capabilities for the next generation of Geostationary Operational Environmental Satellite (GOES R-series) scheduled to be launched in 2015 require high performance computing capabilities to output meteorological observations and products at low latency compared to the legacy processing systems. GOES R-series (GOES-R, -S, -T, and -U) represents a generational change in both spacecraft and instrument capability, and the GOES Re-Broadcast (GRB) data which contains calibrated and navigated radiances from all the instruments will be at a data rate of 31 Mb/sec compared to the current 2.11 Mb/sec from existing GOES satellites. To keep up with the data processing rates, the Product Generation (PG) system in the ground segment is designed on a Service Based Architecture (SBA). Each algorithm is executed as a service and subscribes to the data it needs to create higher level products via an enterprise service bus. Various levels of product data are published and retrieved from a data fabric. Together, the SBA and the data fabric provide a flexible, scalable, high performance architecture that meets the needs of product processing now and can grow to accommodate new algorithms in the future. The algorithms are linked together in a precedence chain starting from Level 0 to Level 1b and higher order Level 2 products that are distributed to data distribution nodes for external users. Qualification testing for more than half the product algorithms has so far been completed the PG system.
NASA Technical Reports Server (NTRS)
Scaffidi, C. A.; Stocklin, F. J.; Feldman, M. B.
1971-01-01
An L-band telemetry system designed to provide the capability of near-real-time processing of calibration data is described. The system also provides the capability of performing computerized spacecraft simulations, with the aircraft as a data source, and evaluating the network response. The salient characteristics of a telemetry analysis and simulation program (TASP) are discussed, together with the results of TASP testing. The results of the L-band system testing have successfully demonstrated the capability of near-real-time processing of telemetry test data, the control of the ground-received signal to within + or - 0.5 db, and the computer generation of test signals.
Next Generation Loading System for Detonators and Primers
Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed
A numerical investigation of a thermodielectric power generation system
NASA Astrophysics Data System (ADS)
Sklar, Akiva A.
The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that consists of four processes; the first process is a charging process, during which an electric field is applied to a thermodielectric material, causing it to acquire electrical charge on its surface (this process is analogous to the isentropic compression process of a Brayton cycle). The second process is a heating process in which the temperature of the dielectric material is increased via heat transfer from an external source. During this process, the thermodielectric material is forced to eject a portion of its surface charge because its charge storing capability decreases as the temperature increases; the ejected charge is intended for capture by external circuitry connected to the thermodielectric material, where it can be routed to an electrochemical storage device or an electromechanical device requiring high voltage direct current. The third process is a discharging process, during which the applied electric field is reduced to its initial strength (analogous to the isentropic expansion process of a Brayton cycle). The final process is a cooling process in which the temperature of the dielectric material is decreased via heat transfer from an external source, returning it to its initial temperature. Previously, predicting the performance of a thermodielectric power generator was hindered by a poor understanding of the material's thermodynamic properties and the effect unsteady heat transfer losses have on system performance. In order to improve predictive capabilities in this study, a thermodielectric equation of state was developed that relates the strength of the applied electric field, the amount of surface charge stored by the thermodielectric material, and its temperature. This state equation was then used to derive expressions for the material's thermodynamic states (internal energy, entropy), which were subsequently used to determine the optimum material properties for power generation. Next, a numerical simulation code was developed to determine the heat transfer capabilities of a micro-scale parallel plate heat recuperator (MPPHR), a device designed specifically to (a) provide the unsteady heating and cooling necessary for thermodielectric power generation and (b) minimize the unsteady heat transfer losses of the system. The simulation code was used to find the optimum heat transfer and heat recuperation regimes of the MPPHR. The previously derived thermodynamic equations that describe the behavior of the thermodielectric materials were then incorporated into the model for the walls of the parallel plate channel in the numerical simulation code, creating a tool capable of determining the thermodynamic performance of an MTDPG, in terms of the thermal efficiency, percent Carnot efficiency, and energy/power density. A detailed parameterization of the MTDPG with the simulation code yielded the critical non-dimensional numbers that determine the relationship between the heat exchange/recuperation abilities of the flow and the power generation capabilities of the thermodielectric materials. These relationships were subsequently used to optimize the performance of an MTDPG with an operating temperature range of 300--500 °K. The optimization predicted that the MTDPG could provide a thermal efficiency of 29.7 percent with the potential to reach 34 percent. These thermal efficiencies correspond to 74.2 and 85 percent of the Carnot efficiency, respectively. The power density of this MTDPG depends on the operating frequency and can exceed 1,000,000 W/m3.
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
Design of portable electric and magnetic field generators
NASA Astrophysics Data System (ADS)
Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.
2000-11-01
Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Hoberecht, Mark
2003-01-01
NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.
Prototype Flight Management Capabilities to Explore Temporal RNP Concepts
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Williams, David H.; Allen, Bonnie Danette; Palmer, Michael T.
2008-01-01
Next Generation Air Transportation System (NextGen) concepts of operation may require aircraft to fly planned trajectories in four dimensions three spatial dimensions and time. A prototype 4D flight management capability is being developed by NASA to facilitate the development of these concepts. New trajectory generation functions extend today's flight management system (FMS) capabilities that meet a single Required Time of Arrival (RTA) to trajectory solutions that comply with multiple RTA constraints. When a solution is not possible, a constraint management capability relaxes constraints to achieve a trajectory solution that meets the most important constraints as specified by candidate NextGen concepts. New flight guidance functions provide continuous guidance to the aircraft s flight control system to enable it to fly specified 4D trajectories. Guidance options developed for research investigations include a moving time window with varying tolerances that are a function of proximity to imposed constraints, and guidance that recalculates the aircraft s planned trajectory as a function of the estimation of current compliance. Compliance tolerances are related to required navigation performance (RNP) through the extension of existing RNP concepts for lateral containment. A conceptual temporal RNP implementation and prototype display symbology are proposed.
Absorption machine with desorber-resorber
Biermann, Wendell J.
1985-01-01
An absorption refrigeration system utilizing a low temperature desorber and intermediate temperature resorber. The system operates at three temperatures and three pressures to increase the efficiency of the system and is capable of utilizing a lower generator temperature than previously used.
NASA Astrophysics Data System (ADS)
Pradeep, M. V. K.; Balbir, S. M. S.; Norani, M. M.
2016-11-01
Demand for electricity in Malaysia has seen a substantial hike in light of the nation's rapid economic development. The current method of generating electricity is through the combustion of fossil fuels which has led to the detrimental effects on the environment besides causing social and economic outbreaks due to its highly volatile prices. Thus the need for a sustainable energy source is paramount and one that is quickly gaining acceptance is solar energy. However, due to the various environmental and geographical factors that affect the generation of solar electricity, the capability of solar electricity generating system (SEGS) is unable to compete with the high conversion efficiencies of conventional energy sources. In order to effectively monitor SEGS, this study is proposing a performance monitoring system that is capable of detecting drops in the system's performance for parallel networks through a diagnostic mechanism. The performance monitoring system consists of microcontroller connected to relevant sensors for data acquisition. The acquired data is transferred to a microcomputer for software based monitoring and analysis. In order to enhance the interception of sunlight by the SEGS, a sensor based sun tracking system is interfaced to the same controller to allow the PV to maneuver itself autonomously to an angle of maximum sunlight exposure.
Cyber-Physical Human Systems: Putting People in the Loop.
Sowe, Sulayman K; Zettsu, Koji; Simmon, Eric; de Vaulx, Frederic; Bojanova, Irena
2016-01-01
This article outlines the challenge to understand how to integrate people into a new generation of cyber-physical-human systems (CPHSs) and proposes a human service capability description model to help.
Digital image processing of bone - Problems and potentials
NASA Technical Reports Server (NTRS)
Morey, E. R.; Wronski, T. J.
1980-01-01
The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.
1988-08-10
addrsesed to it, the wall-receptacle module energizes a relay. Modules can be built to use a triac instead and have the capacity to increase or decrease... modulated by other constraints for a safe, functional ana effective power distribution system. 2.2.3 BackuR Equipment Alternate power sources are...environments have limited sensor capability and no remote control capability. However, future enhancements to current equipment, such as frequency- modulated
A digital flight control system verification laboratory
NASA Technical Reports Server (NTRS)
De Feo, P.; Saib, S.
1982-01-01
A NASA/FAA program has been established for the verification and validation of digital flight control systems (DFCS), with the primary objective being the development and analysis of automated verification tools. In order to enhance the capabilities, effectiveness, and ease of using the test environment, software verification tools can be applied. Tool design includes a static analyzer, an assertion generator, a symbolic executor, a dynamic analysis instrument, and an automated documentation generator. Static and dynamic tools are integrated with error detection capabilities, resulting in a facility which analyzes a representative testbed of DFCS software. Future investigations will ensue particularly in the areas of increase in the number of software test tools, and a cost effectiveness assessment.
NASA Technical Reports Server (NTRS)
Hayashi, Miwa; Ravinder, Ujwala; McCann, Robert S.; Beutter, Brent; Spirkovska, Lily
2009-01-01
Performance enhancements associated with selected forms of automation were quantified in a recent human-in-the-loop evaluation of two candidate operational concepts for fault management on next-generation spacecraft. The baseline concept, called Elsie, featured a full-suite of "soft" fault management interfaces. However, operators were forced to diagnose malfunctions with minimal assistance from the standalone caution and warning system. The other concept, called Besi, incorporated a more capable C&W system with an automated fault diagnosis capability. Results from analyses of participants' eye movements indicate that the greatest empirical benefit of the automation stemmed from eliminating the need for text processing on cluttered, text-rich displays.
Next Generation MODTRAN for Improved Atmospheric Correction of Spectral Imagery
2016-01-29
DoD operational and research sensor and data processing systems, particularly those involving the removal of atmospheric effects, commonly referred...atmospheric correction process. Given the ever increasing capabilities of spectral sensors to quickly generate enormous quantities of data, combined...many DoD operational and research sensor and data processing systems, particularly those involving the removal of atmospheric effects, commonly
US Advanced Freight and Passenger MAGLEV System
NASA Technical Reports Server (NTRS)
Morena, John J.; Danby, Gordon; Powell, James
1996-01-01
Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.
DOT National Transportation Integrated Search
2009-03-01
"To prepare for forecasted air traffic growth, the Federal Aviation Administration (FAA), including its Joint Planning and Development Office (JPDO) and Air Traffic Organization (ATO), is planning for and implementing the Next Generation Air Transpor...
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.
1974-01-01
The multipurpose ventricular actuating system is a pneumatic signal generating device that provides controlled driving pressures for actuating pulsatile blood pumps. Overall system capabilities, the timing circuitry, and calibration instruction are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liss, W.; Dybel, M.; West, R.
This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less
NASA Astrophysics Data System (ADS)
Swain, Snehaprava; Ray, Pravat Kumar
2016-12-01
In this paper a three phase fault analysis is done on a DFIG based grid integrated wind energy system. A Novel Active Crowbar Protection (NACB_P) system is proposed to enhance the Fault-ride through (FRT) capability of DFIG both for symmetrical as well as unsymmetrical grid faults. Hence improves the power quality of the system. The protection scheme proposed here is designed with a capacitor in series with the resistor unlike the conventional Crowbar (CB) having only resistors. The major function of the capacitor in the protection circuit is to eliminate the ripples generated in the rotor current and to protect the converter as well as the DC-link capacitor. It also compensates reactive power required by the DFIG during fault. Due to these advantages the proposed scheme enhances the FRT capability of the DFIG and also improves the power quality of the whole system. Experimentally the fault analysis is done on a 3hp slip ring induction generator and simulation results are carried out on a 1.7 MVA DFIG based WECS under different types of grid faults in MATLAB/Simulation and functionality of the proposed scheme is verified.
NASA Astrophysics Data System (ADS)
Buford, James A., Jr.; Cosby, David; Bunfield, Dennis H.; Mayhall, Anthony J.; Trimble, Darian E.
2007-04-01
AMRDEC has successfully tested hardware and software for Real-Time Scene Generation for IR and SAL Sensors on COTS PC based hardware and video cards. AMRDEC personnel worked with nVidia and Concurrent Computer Corporation to develop a Scene Generation system capable of frame rates of at least 120Hz while frame locked to an external source (such as a missile seeker) with no dropped frames. Latency measurements and image validation were performed using COTS and in-house developed hardware and software. Software for the Scene Generation system was developed using OpenSceneGraph.
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Tuell, Grady
2010-04-01
The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.
A compact free space quantum key distribution system capable of daylight operation
NASA Astrophysics Data System (ADS)
Benton, David M.; Gorman, Phillip M.; Tapster, Paul R.; Taylor, David M.
2010-06-01
A free space quantum key distribution system has been demonstrated. Consideration has been given to factors such as field of view and spectral width, to cut down the deleterious effect from background light levels. Suitable optical sources such as lasers and RCLEDs have been investigated as well as optimal wavelength choices, always with a view to building a compact and robust system. The implementation of background reduction measures resulted in a system capable of operating in daylight conditions. An autonomous system was left running and generating shared key material continuously for over 7 days.
Variable-speed wind power system with improved energy capture via multilevel conversion
Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay
2005-05-31
A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.
Verification testing of ExcelTec's on-site hypochlorite generation system ClorTec T-12 system was conducted for 30 days between 3/6-5/4/2000. The system is capable of producing at least one pound of chlorine in the form of sodium hypochlorite solution containing 0.8% +/- 0.1%) ch...
EOID System Model Validation, Metrics, and Synthetic Clutter Generation
2003-09-30
Our long-term goal is to accurately predict the capability of the current generation of laser-based underwater imaging sensors to perform Electro ... Optic Identification (EOID) against relevant targets in a variety of realistic environmental conditions. The models will predict the impact of
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.;
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).
Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems
NASA Astrophysics Data System (ADS)
Williams, John W.; Potter, Gary E.
2002-11-01
QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.
Integrated geometry and grid generation system for complex configurations
NASA Technical Reports Server (NTRS)
Akdag, Vedat; Wulf, Armin
1992-01-01
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.
Manufacturing Magic and Computational Creativity
Williams, Howard; McOwan, Peter W.
2016-01-01
This paper describes techniques in computational creativity, blending mathematical modeling and psychological insight, to generate new magic tricks. The details of an explicit computational framework capable of creating new magic tricks are summarized, and evaluated against a range of contemporary theories about what constitutes a creative system. To allow further development of the proposed system we situate this approach to the generation of magic in the wider context of other areas of application in computational creativity in performance arts. We show how approaches in these domains could be incorporated to enhance future magic generation systems, and critically review possible future applications of such magic generating computers. PMID:27375533
Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System
NASA Astrophysics Data System (ADS)
Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin
2008-09-01
The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.
Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh
2017-12-01
A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.
Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindran, V. R.; Sreelakshmi, C.; Vibin
2008-09-26
The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CTmore » image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.« less
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.
Archived Data User Service self evaluation report : FAST
DOT National Transportation Integrated Search
2000-11-01
The Archived Data User Service (ADUS) is a recent addition to the National Intelligent Transportation System (ITS) Architecture. This user service required ITS system to have the capability to receive, collect and archive ITS-generated operational...
Pulsed Energy Systems for Generating Plasmas
NASA Technical Reports Server (NTRS)
Rose, M. Franklin; Shotts, Z.
2005-01-01
This paper will describe the techniques needed to electrically generate highly ionized dense plasmas for a variety of applications. The components needed in pulsed circuits are described in terms of general performance parameters currently available from commercial vendors. Examples of pulsed systems using these components are described and technical data from laboratory experiments presented. Experimental data are given for point designs, capable of multi-megawatt power levels.
Use of magnetic sails for advanced exploration missions
NASA Technical Reports Server (NTRS)
Andrews, Dana G.; Zubrin, Robert M.
1990-01-01
The magnetic sail, or magsail, is a field effect device which interacts with the ambient solar wind or interstellar medium over a considerable volume of space to generate drag and lift forces. Two theories describing the method of thrust generation are analyzed and data results are presented. The techniques for maintaining superconductor temperatures in interplanetary space are analyzed and low risk options presented. Comparisons are presented showing mission performance differences between currently proposed spacecraft using chemical and electric propulsion systems, and a Magsail propelled spacecraft capable of generating an average thrust of 250 Newtons at a radius of one A.U. The magsail also provides unique capabilities for interstellar missions, in that at relativistic speeds the magnetic field would ionize and deflect the interstellar medium producing a large drag force. This would make it an ideal brake for decelerating a spacecraft from relativistic speeds and then maneuvering within the target star system.
FY17 Status Report on NEAMS Neutronics Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Jung, Y. S.; Smith, M. A.
2017-09-30
Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less
NASA Technical Reports Server (NTRS)
Wetzler, E.; Peterson, W.; Putnam, M.
1974-01-01
The economic value of an ERTS system in the area of inland water resources management is investigated. Benefits are attributed to new capabilities for managing inland water resources in the field of power generation, agriculture, and urban water supply. These benefits are obtained in the area of equal capability (cost savings) and increased capability (equal budget), and are estimated by applying conservative assumptions to Federal budgeting information, Congressional appropriation hearings, and ERTS technical capabilities.
A New Primary Dew-Point Generator at TUBITAK UME
NASA Astrophysics Data System (ADS)
Oğuz Aytekin, S.; Karaböce, N.; Heinonen, M.; Sairanen, H.
2018-05-01
An implementation of a new low-range primary humidity generator as a part of an international collaboration between TUBITAK UME and VTT MIKES was initiated as a EURAMET Project Number 1259. The dew-point generator was designed and constructed within the scope of the cooperation between TUBITAK UME and VTT MIKES in order to extend the dew-point temperature measurement capability of Humidity Laboratory of TUBITAK UME down to - 80 °C. The system was thoroughly characterized and validated at TUBITAK UME to support the evidence for dew-point temperature uncertainties. The new generator has a capability of operating in the range of - 80 °C to +10 °C, but at the moment, it was characterized down to - 60 °C. The core of the generator system is a saturator which is fully immersed in a liquid bath. Dry air is supplied to the saturator through a temperature-controlled pre-saturator. The operation of the system is based on the single-pressure generation method with a single pass, i.e., the dew-point temperature is only controlled by the saturator temperature, and the humidity-controlled air is not returned to the system after leaving of the saturator. The metrological performance of the saturator was investigated thoroughly at both National Metrology Institutes. The pre-saturator was also tested using a thermostatic bath at VTT MIKES prior to sending them to TUBITAK UME. This paper describes the principle and design of the generator in detail. The dew-point measurement system and the corresponding uncertainty analysis of the dew-point temperature scale realized with the generator in the range from - 60 °C to 10 °C is also presented.
NASA Astrophysics Data System (ADS)
Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep
2017-04-01
In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.
USDA-ARS?s Scientific Manuscript database
Background: Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surve...
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Trefny, Charles J.; Pack, William D.
1995-01-01
The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.
Spinning Reserve From Hotel Load Response: Initial Progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueck, John D; Kirby, Brendan J
2008-11-01
This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby andmore » Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial testing showed that the units respond very quickly. Problems with local power quality generated false low frequency signals which required testing to be stopped. This should not be a problem in actual operation since the frequency trip points will be staggered to generate a droop curve which mimics generator governor response. The actual trip frequencies will also be low enough to avoid power quality problems. The actual trip frequencies are too low to generate test events with sufficient regularity to complete testing in a reasonable amount of time. Frequency response testing will resume once the local power quality problem is fully understood and reasonable test frequency settings can be determined. Overall the preliminary testing was extremely successful. The hotel response capability matches the power system reliability need, being faster than generation response and inherently available when the power system is under the most stress (times of high system and hotel load). Periodic testing is scheduled throughout the winter and spring to characterize hotel response capability under a full range of conditions. More extensive testing will resume when summer outdoor temperatures are again high enough to fully test hotel response.« less
Aircraft Photovoltaic Power-Generating System.
NASA Astrophysics Data System (ADS)
Doellner, Oscar Leonard
Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.
Automated software development workstation
NASA Technical Reports Server (NTRS)
1986-01-01
Engineering software development was automated using an expert system (rule-based) approach. The use of this technology offers benefits not available from current software development and maintenance methodologies. A workstation was built with a library or program data base with methods for browsing the designs stored; a system for graphical specification of designs including a capability for hierarchical refinement and definition in a graphical design system; and an automated code generation capability in FORTRAN. The workstation was then used in a demonstration with examples from an attitude control subsystem design for the space station. Documentation and recommendations are presented.
An unstructured-grid software system for solving complex aerodynamic problems
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Pirzadeh, Shahyar; Parikh, Paresh
1995-01-01
A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.
High rate science data handling on Space Station Freedom
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.; Masline, Richard C.
1990-01-01
A study by NASA's User Information System Working Group for Space Station Freedom (SSF) has determined that the proposed onboard Data Management System, as initially configured, will be incapable of handling the data-generation rates typical of numerous scientific sensor payloads; many of these generate data at rates in excess of 10 Mbps, and there are at least four cases of rates in excess of 300 Mbps. The SSF Working Group has accordingly suggested an alternative conceptual architecture based on technology expected to achieve space-qualified status by 1995. The architecture encompasses recorders with rapid data-ingest capabilities and massive storage capabilities, optical delay lines allowing the recording of only the phenomena of interest, and data flow-compressing image processors.
Space Tug Docking Study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1976-01-01
Results of a detailed systems analysis of the entire rendezvous and docking operation to be performed by the all-up space tug are presented. Specific areas investigated include: generating of operational requirements and a data base of candidate operational techniques and subsystem mechanizations; selection and ranking of integrated system designs capable of meeting the requirements generated; and definition of this simulation/demonstration program required to select and prove the most effective manual, autonomous, and hybrid rendezvous and docking systems.
Data Visualization and Animation Lab (DVAL) overview
NASA Technical Reports Server (NTRS)
Stacy, Kathy; Vonofenheim, Bill
1994-01-01
The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.
Ground-based telescope pointing and tracking optimization using a neural controller.
Mancini, D; Brescia, M; Schipani, P
2003-01-01
Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and reliability.
Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steven
2016-07-11
Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less
Deployable Propulsion, Power and Communications Systems for Solar System Exploration
NASA Technical Reports Server (NTRS)
Johnson, L.; Carr, J.; Boyd, D.
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.
Network Communication as a Service-Oriented Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, William; Johnston, William; Metzger, Joe
2008-01-08
In widely distributed systems generally, and in science-oriented Grids in particular, software, CPU time, storage, etc., are treated as"services" -- they can be allocated and used with service guarantees that allows them to be integrated into systems that perform complex tasks. Network communication is currently not a service -- it is provided, in general, as a"best effort" capability with no guarantees and only statistical predictability. In order for Grids (and most types of systems with widely distributed components) to be successful in performing the sustained, complex tasks of large-scale science -- e.g., the multi-disciplinary simulation of next generation climate modelingmore » and management and analysis of the petabytes of data that will come from the next generation of scientific instrument (which is very soon for the LHC at CERN) -- networks must provide communication capability that is service-oriented: That is it must be configurable, schedulable, predictable, and reliable. In order to accomplish this, the research and education network community is undertaking a strategy that involves changes in network architecture to support multiple classes of service; development and deployment of service-oriented communication services, and; monitoring and reporting in a form that is directly useful to the application-oriented system so that it may adapt to communications failures. In this paper we describe ESnet's approach to each of these -- an approach that is part of an international community effort to have intra-distributed system communication be based on a service-oriented capability.« less
Wind Power: A Renewable Energy Source for Mars Transit Vehicle
NASA Technical Reports Server (NTRS)
Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)
1998-01-01
The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.
Comparison of two total energy systems for a diesel power generation plant. [deep space network
NASA Technical Reports Server (NTRS)
Chai, V. W.
1979-01-01
The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.
Firefly: an optical lithographic system for the fabrication of holographic security labels
NASA Astrophysics Data System (ADS)
Calderón, Jorge; Rincón, Oscar; Amézquita, Ricardo; Pulido, Iván.; Amézquita, Sebastián.; Bernal, Andrés.; Romero, Luis; Agudelo, Viviana
2016-03-01
This paper introduces Firefly, an optical lithography origination system that has been developed to produce holographic masters of high quality. This mask-less lithography system has a resolution of 418 nm half-pitch, and generates holographic masters with the optical characteristics required for security applications of level 1 (visual verification), level 2 (pocket reader verification) and level 3 (forensic verification). The holographic master constitutes the main core of the manufacturing process of security holographic labels used for the authentication of products and documents worldwide. Additionally, the Firefly is equipped with a software tool that allows for the hologram design from graphic formats stored in bitmaps. The software is capable of generating and configuring basic optical effects such as animation and color, as well as effects of high complexity such as Fresnel lenses, engraves and encrypted images, among others. The Firefly technology gathers together optical lithography, digital image processing and the most advanced control systems, making possible a competitive equipment that challenges the best technologies in the industry of holographic generation around the world. In this paper, a general description of the origination system is provided as well as some examples of its capabilities.
DESIGN OF AN ANAEROBIC DIGESTER AND FUEL CELL SYSTEM FOR ENERGY GENERATION FROM DAIRY WASTE
Dairy waste was found to have a natural population of microorganisms capable of seeding an MFC. Dairy wastewater also proved to be a very effective substrate. Different graphite electrode materials provided varying levels of electrical energy generation, demonstrating with gr...
Impact of self-healing capability on network robustness
NASA Astrophysics Data System (ADS)
Shang, Yilun
2015-04-01
A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.
Impact of self-healing capability on network robustness.
Shang, Yilun
2015-04-01
A wide spectrum of real-life systems ranging from neurons to botnets display spontaneous recovery ability. Using the generating function formalism applied to static uncorrelated random networks with arbitrary degree distributions, the microscopic mechanism underlying the depreciation-recovery process is characterized and the effect of varying self-healing capability on network robustness is revealed. It is found that the self-healing capability of nodes has a profound impact on the phase transition in the emergence of percolating clusters, and that salient difference exists in upholding network integrity under random failures and intentional attacks. The results provide a theoretical framework for quantitatively understanding the self-healing phenomenon in varied complex systems.
Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong
2014-09-24
We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Taylor, N. L.
1983-01-01
To response to a need for improved computer-generated plots that are acceptable to the Langley publication process, the LaRC Graphics Output System has been modified to encompass the publication requirements, and a guideline has been established. This guideline deals only with the publication requirements of computer-generated plots. This report explains the capability that authors of NASA technical reports can use to obtain publication--quality computer-generated plots or the Langley publication process. The rules applied in developing this guideline and examples illustrating the rules are included.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
2015-01-01
Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD) Manual v.1.2 The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that there is 95% confidence that the POD is greater than 90% (90/95 POD). Design of experiments for validating probability of detection capability of nondestructive evaluation (NDE) systems (DOEPOD) is a methodology that is implemented via software to serve as a diagnostic tool providing detailed analysis of POD test data, guidance on establishing data distribution requirements, and resolving test issues. DOEPOD demands utilization of observance of occurrences. The DOEPOD capability has been developed to provide an efficient and accurate methodology that yields observed POD and confidence bounds for both Hit-Miss or signal amplitude testing. DOEPOD does not assume prescribed POD logarithmic or similar functions with assumed adequacy over a wide range of flaw sizes and inspection system technologies, so that multi-parameter curve fitting or model optimization approaches to generate a POD curve are not required. DOEPOD applications for supporting inspector qualifications is included.
Airborne Electro-Optical Sensor Simulation System. Final Report.
ERIC Educational Resources Information Center
Hayworth, Don
The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…
DOT National Transportation Integrated Search
2014-05-01
This project seeks to develop a rapidly deployable, low-cost, and wireless system for bridge : weigh-in-motion (BWIM) and nondestructive evaluation (NDE). The system is proposed to : assist in monitoring transportation infrastructure safety, for the ...
NASA Astrophysics Data System (ADS)
Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Shen, Yunze; Qin, Lifeng; Ma, Jialu; Zhu, Jingtao; Ren, Jin
2014-06-01
The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m-2 s-1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.
NASA Technical Reports Server (NTRS)
Withington, J. R.; Williams, W. F.
1982-01-01
Williams and Withington (1979) have considered a prototype X-S-band feedhorn which enabled simultaneous X- and S-band reception from a Cassegrain antenna. This feedhorn has quite successfully demonstrated an alternate method to the standard Deep Space Network (DSN) system of multiple subreflectors and dichroic plate for dual-band reception. In connection with a Network Consolidation Program, involving centralized control of existing antennas and construction of new reflector antennas, a second-generation feedhorn/combiner was conceived to show that this common-aperture feedhorn system was capable of performing all necessary functions the DSN would be called upon to perform with existing and future X-S-band spacecraft. Attention is given to the feedhorn concept, the combiner concept, the first and the second generation of the horn, Sand X-band tuning, and planned capabilities. The feedhorn greatly extends the state of the art in DSN performance and will enhance DSN capabilities in the future.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.
1991-01-01
In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.
Biological Imaging Capability in the ABRS Facility on ISS
NASA Technical Reports Server (NTRS)
Cox, David R.; Murdoch, T.; Regan, M. F.; Meshlberger, R. J.; Mortenson, T. E.; Albino, S. A.; Paul, A. L.; Ferl, R. J.
2010-01-01
This slide presentation reviews the Advanced Biological Research System (ABRS) on the International Space Station (ISS) and its biological imaging capability. The ABRS is an environmental control chamber. It has two indpendently controlled Experiment Research Chambers (ERCs) with temperature, relative humidity and carbon dioxide controls. ABRS is a third generation plant growth system. Several experiments are reviewed, with particular interest in the use of Green Fluorescent Protein (GFP) a non-destructive plant stress reporting mechanism, naturally found in jellyfish.
g-LIMIT: A Vibration Isolation System for the Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
1998-01-01
For many microgravity science experiments using the Microgravity Science Glovebox (MSG), the ambient acceleration environment will exceed desirable levels. To provide a more quiescent acceleration environment, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is the next generation of technology developed for and demonstrated by STABLE on the USML-2 mission in October 1995. Although g-LIMIT is a sub-rack level isolation system that can be used in a variety of applications, g-LIMIT is uniquely optimized for MSG implementation. Standard MSG structural and umbilical interfaces will be used so that the isolation mount is transparent to the user with no additional accommodation requirements. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a minimum-volume package. In addition, this system provides the unique capability for measuring absolute acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating pristine accelerations to enhance experiment operations. g-LIMIT is scheduled for flight during the UF-2 mission and will be available to glovebox investigators immediately after characterization testing.
Sulis, William H
2017-10-01
Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.
Deployable Propulsion, Power and Communication Systems for Solar System Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; Carr, John A.; Boyd, Darren
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.
Terrain Commander: a next-generation remote surveillance system
NASA Astrophysics Data System (ADS)
Finneral, Henry J.
2003-09-01
Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.
Options for rural electrification in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vera, J.G.
1992-09-01
This paper summarizes a study which examined 19 commercially available options for electrifying remote communities in Mexico. Characteristics of a typical community are defined and, using 7 of the technologies, power systems are designed capable of supporting this community. The performance of these systems is evaluated with respect to their ability to satisfy 11 technical design objectives, 5 socioeconomic objectives, and their impact on the environment. A photovoltaic- diesel generator hybrid system with wind generator option is recommended for the typical community.
NASA Technical Reports Server (NTRS)
Titterington, W. A.; Erickson, A. C.
1975-01-01
An advanced six-man rated oxygen generation system has been fabricated and tested as part of a NASA/JSC technology development program for a long lived, manned spacecraft life support system. Details of the design and tests results are presented. The system is based on the Solid Polymer Electrolyte (SPE) water electrolysis technology and its nominal operating conditions are 2760 kN/sq m (400 psia) and 355 K (180 F) with an electrolysis module current density capability up to 350 mA/sq cm (326 ASF). The system is centered on a 13-cell SPE water electrolysis module having a single cell active area of 214 sq cm (33 sq in) and it incorporates instrumentation and controls for single pushbutton automatic startup/shutdown, component fault detection and isolation, and self-contained sensors and controls for automatic safe emergency shutdown. The system has been tested in both the orbital cyclic and continuous mode of operation. Various parametric tests have been completed to define the system capability for potential application in spacecraft environmental systems.
Intramedullary nailing: evolutions of femoral intramedullary nailing: first to fourth generations.
Russell, Thomas A
2011-12-01
Intramedullary femoral nailing is the gold standard for femoral shaft fixation but only in the past 27 years. This rapid replacement of closed traction and cast techniques in North America was a controversial and contentious evolution in surgery. As we enter the fourth generation of implant design, capabilities, and surgical technique, it is important to understand the driving forces for this technology. These forces included changes in radiographic imaging capabilities, biomaterial design and computer-assisted manufacturing, and the recognition of the importance of mobilization of the trauma patient to avoid systemic complications and optimize functional recovery.
Software Surface Modeling and Grid Generation Steering Committee
NASA Technical Reports Server (NTRS)
Smith, Robert E. (Editor)
1992-01-01
It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.
Defense Science Board Task Force Report on Next-Generation Unmanned Undersea Systems
2016-10-01
active learning occurs in an environment that extends beyondchoreographed demonstrations designed to validate pre -determined hypotheses. Finally, when...4 OPNAV N99 should coordinate a broad-based design , development, and experimental effort to bypass traditional limitations for unmanned undersea...approaches that could facilitate rapid experimentation , operational demonstration of capabilities, and deployment of initial capabilities that show
A Forest Fire Sensor Web Concept with UAVSAR
NASA Astrophysics Data System (ADS)
Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.
2008-12-01
We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.
User's manual for flight Simulator Display System (FSDS)
NASA Technical Reports Server (NTRS)
Egerdahl, C. C.
1979-01-01
The capabilities of the flight simulator display system (FSDS) are described. FSDS is a color raster scan display generator designed to meet the special needs of Flight Simulation Laboratories. The FSDS can update (revise) the images it generates every 16.6 mS, with limited support from a host processor. This corresponds to the standard TV vertical rate of 60 Hertz, and allows the system to carry out display functions in a time critical environment. Rotation of a complex image in the television raster with minimal hardware is possible with the system.
Klumpner, Thomas T; Kountanis, Joanna A; Langen, Elizabeth S; Smith, Roger D; Tremper, Kevin K
2018-06-26
Maternal early warning systems reduce maternal morbidity. We developed an electronic maternal surveillance system capable of visually summarizing the labor and delivery census and identifying changes in clinical status. Automatic page alerts to clinical providers, using an algorithm developed at our institution, were incorporated in an effort to improve early detection of maternal morbidity. We report the frequency of pages generated by the system. To our knowledge, this is the first time such a system has been used in peripartum care. Alert criteria were developed after review of maternal early warning systems, including the Maternal Early Warning Criteria (MEWC). Careful consideration was given to the frequency of pages generated by the surveillance system. MEWC notification criteria were liberalized and a paging algorithm was created that triggered paging alerts to first responders (nurses) and then managing services due to the assumption that paging all clinicians for each vital sign triggering MEWC would generate an inordinate number of pages. For preliminary analysis, to determine the effect of our automated paging algorithm on alerting frequency, the paging frequency of this system was compared to the frequency of vital signs meeting the Maternal Early Warning Criteria (MEWC). This retrospective analysis was limited to a sample of 34 patient rooms uniquely capable of storing every vital sign reported by the bedside monitor. Over a 91-day period, from April 1 to July 1, 2017, surveillance was conducted from 64 monitored beds, and the obstetrics service received one automated page every 2.3 h. The most common triggers for alerts were for hypertension and tachycardia. For the subset of 34 patient rooms uniquely capable of real-time recording, one vital sign met the MEWC every 9.6 to 10.3 min. Anecdotally, the system was well-received. This novel electronic maternal surveillance system is designed to reduce cognitive bias and improve timely clinical recognition of maternal deterioration. The automated paging algorithm developed for this software dramatically reduces paging frequency compared to paging for isolated vital sign abnormalities alone. Long-term, prospective studies will be required to determine its impact on patient outcomes.
Robotics technology developments in the United States space telerobotics program
NASA Technical Reports Server (NTRS)
Lavery, David
1994-01-01
In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000. As a result of redefining the development approach for space robotic systems, and capitalizing on opportunities associated with the assembly and maintenance of the space station, the space robotics community is preparing a whole new generation of operational robotic capabilities. Expanding on the capabilities of earlier manipulation systems such as the Viking and Surveyor soil scoops, the Russian Lunakhods, and the Shuttle Remote Manipulator System (RMS), these new space robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces.
Fiber laser-microscope system for femtosecond photodisruption of biological samples
Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.
2012-01-01
We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105
The Automated Logistics Element Planning System (ALEPS)
NASA Technical Reports Server (NTRS)
Schwaab, Douglas G.
1992-01-01
ALEPS, which is being developed to provide the SSF program with a computer system to automate logistics resupply/return cargo load planning and verification, is presented. ALEPS will make it possible to simultaneously optimize both the resupply flight load plan and the return flight reload plan for any of the logistics carriers. In the verification mode ALEPS will support the carrier's flight readiness reviews and control proper execution of the approved plans. It will also support the SSF inventory management system by providing electronic block updates to the inventory database on the cargo arriving at or departing the station aboard a logistics carrier. A prototype drawer packing algorithm is described which is capable of generating solutions for 3D packing of cargo items into a logistics carrier storage accommodation. It is concluded that ALEPS will provide the capability to generate and modify optimized loading plans for the logistics elements fleet.
Coral Reef Remote Sensing Using Simulated VIIRS and LDCM Imagery
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.; Blonski, Slawomir; Moore, Roxzana
2008-01-01
The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems-the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM)- might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA s ICON/CREWS DST.
Coral Reef Remote Sensing using Simulated VIIRS and LDCM Imagery
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.
2007-01-01
The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM) might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA's ICON/CREWS DST.
NASA Technical Reports Server (NTRS)
Hodgkins, R. L.; Osgood, D. R.
1968-01-01
System, named Hydra, generates charts, graphs, and printed matter on slides or conventional negatives and positives, and combines these media with a capability of storage on magnetic tape for future updating to accommodate engineering changes or contract modifications to be readily added to basic data.
A new technology for manufacturing scheduling derived from space system operations
NASA Technical Reports Server (NTRS)
Hornstein, R. S.; Willoughby, J. K.
1993-01-01
A new technology for producing finite capacity schedules has been developed in response to complex requirements for operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications. This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques associated with Materials Resources Planning (MRPII) and with factory simulation are not adequate for shop-floor work planning and control. The technology has three components. The first is a set of data structures that accommodate an extremely general description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of each factory. Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows work-in-process (WIP) to be generated and used; it permits constraints to be imposed or intermediate as well as finished goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule. Applications have been successful in both discrete and process manufacturing environments. The availability of a high-quality finite capacity production planning capability enhances the data management capabilities of MRP II systems. These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent functional capabilities and/or extensibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None available
For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department ofmore » Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.« less
NASA Technical Reports Server (NTRS)
1980-01-01
A survey instrument was developed and implemented in order to evaluate the current needs for natural resource information in Arizona and to determine which state agencies have information systems capable of coordinating, accessing and analyzing the data. Data and format requirements were determined for the following categories: air quality, animals, cultural resources, geology, land use, soils, water, vegetation, ownership, and social and economic aspects. Hardware and software capabilities were assessed and a data processing plan was developed. Possible future applications with the next generation LANDSAT were also identified.
Planning and Execution for an Autonomous Aerobot
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.
2010-01-01
The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.
Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabiti, C.; Epiney, A.; Talbot, P.
This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity costmore » and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.« less
Electrostatic Assembly of Nanomaterials for Hybrid Electrodes and Supercapacitors
NASA Astrophysics Data System (ADS)
Hammond, Paula
2015-03-01
Electrostatic assembly methods have been used to generate a range of new materials systems of interest for electrochemical energy and storage applications. Over the past several years, it has been demonstrated that carbon nanotubes, metals, metal oxides, polymeric nanomaterials, and biotemplated materials systems can be incorporated into ultrathin films to generate supercapacitors and battery electrodes that illustrate significant energy density and power. The unique ability to control the incorporation of such a broad range of materials at the nanometer length scale allows tailoring of the final properties of these unique composite systems, as well as the capability of creating complex micron-scale to nanoporous morphologies based on the scale of the nanomaterial that is absorbed within the structure, or the conditions of self-assembly. Recently we have expanded these capabilities to achieve new electrodes that are templated atop electrospun polmer fiber scaffolds, in which the polymer can be selectively removed to achieve highly porous materials. Spray-layer-by-layer and filtration methods of functionalized multiwall carbon nanotubes and polyaniline nanofibers enable the generation of electrode systems with unusually high surface. Incorporation of psuedocapacitive nanoparticles can enhance capacitive properties, and other catalytic or metallic nanoparticles can be implemented to enhance electrochemical or catalytic function.
The Nike Laser Facility and its Capabilities
NASA Astrophysics Data System (ADS)
Serlin, V.; Aglitskiy, Y.; Chan, L. Y.; Karasik, M.; Kehne, D. M.; Oh, J.; Obenschain, S. P.; Weaver, J. L.
2013-10-01
The Nike laser is a 56-beam krypton fluoride (KrF) system that provides 3 to 4 kJ of laser energy on target. The laser uses induced spatial incoherence to achieve highly uniform focal distributions. 44 beams are overlapped onto target with peak intensities up to 1016 W/cm2. The effective time-averaged illumination nonuniformity is < 0 . 2 %. Nike produces highly uniform ablation pressures on target allowing well-controlled experiments at pressures up to 20 Mbar. The other 12 laser beams are used to generate diagnostic x-rays radiographing the primary laser-illuminated target. The facility includes a front end that generates the desired temporal and spatial laser profiles, two electron-beam pumped KrF amplifiers, a computer-controlled optical system, and a vacuum target chamber for experiments. Nike is used to study the physics and technology issues of direct-drive laser fusion, such as, hydrodynamic and laser-plasma instabilities, studies of the response of materials to extreme pressures, and generation of X rays from laser-heated targets. Nike features a computer-controlled data acquisition system, high-speed, high-resolution x-ray and visible imaging systems, x-ray and visible spectrometers, and cryogenic target capability. Work supported by DOE/NNSA.
Realtime multi-plot graphics system
NASA Technical Reports Server (NTRS)
Shipkowski, Michael S.
1990-01-01
The increased complexity of test operations and customer requirements at Langley Research Center's National Transonic Facility (NTF) surpassed the capabilities of the initial realtime graphics system. The analysis of existing hardware and software and the enhancements made to develop a new realtime graphics system are described. The result of this effort is a cost effective system, based on hardware already in place, that support high speed, high resolution, generation and display of multiple realtime plots. The enhanced graphics system (EGS) meets the current and foreseeable future realtime graphics requirements of the NTF. While this system was developed to support wind tunnel operations, the overall design and capability of the system is applicable to other realtime data acquisition systems that have realtime plot requirements.
Optimal generator bidding strategies for power and ancillary services
NASA Astrophysics Data System (ADS)
Morinec, Allen G.
As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a generator operating point in the P-Q plane. Four computer programs were developed to automatically perform the market auction simulations using the equal incremental cost rule. The software calculates the payoffs for the two competing competitors, dispatches six generators, and allocates ancillary services for 64 combinations of bidding strategies, three levels of system demand, and three different types of competitors. Matrix Game theory was utilized to calculate Nash Equilibrium solutions and mixed-strategy Nash solutions as the optimal generator bidding strategies. A method to incorporate ancillary services into the generation bidding strategy, to assure an adequate supply of ancillary services, and to allocate these necessary resources to the on-line units was devised. The optimal generator bid strategy in a power auction was shown to be the Nash Equilibrium solution found in two-player variable-sum matrix games.
Power transmission by laser beam from lunar-synchronous satellite
NASA Technical Reports Server (NTRS)
Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.
1993-01-01
The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.
Lisiecki, R S; Voigt, H F
1995-08-01
A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.
Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment
NASA Astrophysics Data System (ADS)
Pitarka, A.
2014-12-01
Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
NASA Astrophysics Data System (ADS)
Duquet, Jean Remi; Bergeron, Pierre; Blodgett, Dale E.; Couture, Jean; Macieszczak, Maciej; Mayrand, Michel; Chalmers, Bruce A.; Paradis, Stephane
1998-03-01
The Research and Development group at Lockheed Martin Canada, in collaboration with the Defence Research Establishment Valcartier, has undertaken a research project in order to capture and analyze the real-time and functional requirements of a next generation Command and Control System (CCS) for the Canadian Patrol Frigates, integrating Multi- Sensor Data Fusion (MSDF), Situation and Threat Assessment (STA) and Resource Management (RM). One important aspect of the project is to define how the use of Artificial Intelligence may optimize the performance of an integrated, real-time MSDF/STA/RM system. A closed-loop simulation environment is being developed to facilitate the evaluation of MSDF/STA/RM concepts, algorithms and architectures. This environment comprises (1) a scenario generator, (2) complex sensor, hardkill and softkill weapon models, (3) a real-time monitoring tool, (4) a distributed Knowledge-Base System (KBS) shell. The latter is being completely redesigned and implemented in-house since no commercial KBS shell could adequately satisfy all the project requirements. The closed- loop capability of the simulation environment, together with its `simulated real-time' capability, allows the interaction between the MSDF/STA/RM system and the environment targets during the execution of a scenario. This capability is essential to measure the performance of many STA and RM functionalities. Some benchmark scenarios have been selected to demonstrate quantitatively the capabilities of the selected MSDF/STA/RM algorithms. The paper describes the simulation environment and discusses the MSDF/STA/RM functionalities currently implemented and their performance as an automatic CCS.
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Cataldo, Robert L.
2015-01-01
This study looks at the applicability of utilizing the Segmented Thermoelectric Modular Radioisotope Thermoelectric Generator (STEM-RTG) or a high-power radioisotope generator to replace the Advanced Stirling Radioisotope Generator (ASRG), which had been identified as the baseline power system for a number of planetary exploration mission studies. Nine different Discovery-Class missions were examined to determine the applicability of either the STEM-RTG or the high-power SRG power systems in replacing the ASRG. The nine missions covered exploration across the solar system and included orbiting spacecraft, landers and rovers. Based on the evaluation a ranking of the applicability of each alternate power system to the proposed missions was made.
Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.
Engineering study for the functional design of a multiprocessor system
NASA Technical Reports Server (NTRS)
Miller, J. S.; Vandever, W. H.; Stanten, S. F.; Avakian, A. E.; Kosmala, A. L.
1972-01-01
The results are presented of a study to generate a functional system design of a multiprocessing computer system capable of satisfying the computational requirements of a space station. These data management system requirements were specified to include: (1) real time control, (2) data processing and storage, (3) data retrieval, and (4) remote terminal servicing.
Zero-G Condensing Heat Exchanger with Integral Disinfection
NASA Technical Reports Server (NTRS)
Burke, Kenneth A. (Inventor)
2012-01-01
The system that operates in a zero gravity environment and has an integral ozone generating capability is disclosed. The system contributes to the control of metabolic water vapors in the air, and also provided disinfection of any resulting condensate within the system, as well as disinfection of the air stream that flows throughout the disclosed system.
Nascom System Development Plan: System Description, Capabilities and Plans
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Communications (Nascom) System Development Plan (NSDP), reissued annually, describes the organization of Nascom, how it obtains communication services, its current systems, its relationship with other NASA centers and International Partner Agencies, some major spaceflight projects which generate significant operational communication support requirements, and major Nascom projects in various stages of development or implementation.
Performance evaluation of a second-generation elastic loop mobility system
NASA Technical Reports Server (NTRS)
Melzer, K. J.; Swanson, G. D.
1974-01-01
Tests were conducted to evaluate the mobility performance of a second-generation Elastic Loop Mobility System (ELMS II). Performance on level test lanes and slopes of lunar soil simulant (LSS) and obstacle-surmounting and crevasse-crossing capabilities were investigated. In addition, internal losses and contact pressure distributions were evaluated. To evaluate the soft-soil performance, two basic soil conditions were tested: loose (LSS1) and dense (LSS5). These conditions embrace the spectrum of soil strengths tested during recent studies for NASA related to the mobility performance of the LRV. Data indicated that for the tested range of the various performance parameters, performance was independent of unit load (contact pressure) and ELMS II drum angular velocity, but was influenced by soil strength and ELMS pitch mode. Power requirements were smaller at a given system output for dense soil than for loose soil. The total system output in terms of pull developed or slope-climbing capability was larger for the ELMS II operating in restrained-pitch mode than in free-pitch mode.
Single phase inverter for a three phase power generation and distribution system
NASA Technical Reports Server (NTRS)
Lindena, S. J.
1976-01-01
A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.
Development of a low-cost biogas filtration system to achieve higher-power efficient AC generator
NASA Astrophysics Data System (ADS)
Mojica, Edison E.; Ardaniel, Ar-Ar S.; Leguid, Jeanlou G.; Loyola, Andrea T.
2018-02-01
The paper focuses on the development of a low-cost biogas filtration system for alternating current generator to achieve higher efficiency in terms of power production. A raw biogas energy comprises of 57% combustible element and 43% non-combustible elements containing carbon dioxide (36%), water vapor (5%), hydrogen sulfide (0.5%), nitrogen (1%), oxygen (0 - 2%), and ammonia (0 - 1%). The filtration system composes of six stages: stage 1 is the water scrubber filter intended to remove the carbon dioxide and traces of hydrogen sulfide; stage 2 is the silica gel filter intended to reduce the water vapor; stage 3 is the iron sponge filter intended to remove the remaining hydrogen sulfide; stage 4 is the sodium hydroxide solution filter intended to remove the elemental sulfur formed during the interaction of the hydrogen sulfide and the iron sponge and for further removal of carbon dioxide; stage 5 is the silica gel filter intended to further eliminate the water vapor gained in stage 4; and, stage 6 is the activated carbon filter intended to remove the carbon dioxide. The filtration system was able to lower the non-combustible elements by 72% and thus, increasing the combustible element by 54.38%. The unfiltered biogas is capable of generating 16.3 kW while the filtered biogas is capable of generating 18.6 kW. The increased in methane concentration resulted to 14.11% increase in the power output. The outcome resulted to better engine performance in the generation of electricity.
Non-iterative Voltage Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Vyakaranam, Bharat; Hou, Zhangshuan
2014-09-30
This report demonstrates promising capabilities and performance characteristics of the proposed method using several power systems models. The new method will help to develop a new generation of highly efficient tools suitable for real-time parallel implementation. The ultimate benefit obtained will be early detection of system instability and prevention of system blackouts in real time.
Exploration Medical Capability System Engineering Overview
NASA Technical Reports Server (NTRS)
Mindock, J.; McGuire, K.
2018-01-01
Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.
Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory
NASA Astrophysics Data System (ADS)
Dichter, W.; Doris, K.; Conkling, C.
1982-06-01
A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.
NASA Technical Reports Server (NTRS)
Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David
1987-01-01
The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.
Effect of outer wing separation on lift and thrust generation in a flapping wing system.
Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol
2011-09-01
We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.
Advanced Noise Control Fan: A 20-Year Retrospective
NASA Technical Reports Server (NTRS)
Sutliff, Dan
2016-01-01
The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2009-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Orbital Space Plane (OSP) Program
NASA Technical Reports Server (NTRS)
McKenzie, Patrick M.
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
Orbital Space Plane (OSP) Program at Lockheed Martin
NASA Technical Reports Server (NTRS)
Ford, Robert
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November 2002 to focus the overall theme of safer, more affordable space transportation along two paths the Orbital Space Plane (OSP) and the Next Generation Launch Technology programs. The Orbital Space Plane program has the goal of providing rescue capability from the International Space Station by 2008 or earlier and transfer capability for crew (and contingency cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2d Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 31d Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system design level of maturity by December 2003. This paper and presentation will update the aerospace community on the progress of the OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
NASA Technical Reports Server (NTRS)
Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)
2001-01-01
The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.
Wind turbine ring/shroud drive system
Blakemore, Ralph W.
2005-10-04
A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.
Development of XUV projection lithography at 60 to 80 nm
NASA Astrophysics Data System (ADS)
Newnam, B. E.; Viswanathan, V. K.
The rationale, design, component properties, properties, and potential capabilities of extreme-ultraviolet (XUV) projection lithography systems using 60-80 nm illumination and single-surface reflectors are described. These systems are evaluated for potential application to high-volume production of future generations of gigabit chips.
Development of XUV projection lithography at 60-80 nm (Poster Paper)
NASA Astrophysics Data System (ADS)
Newnam, Brian E.; Viswanathan, Vriddhachalam K.
1992-07-01
The rationale, design, component properties, and potential capabilities of extreme-ultraviolet (XUV) projection lithography systems using 60 - 80 nm illumination and single-surface reflectors are described. These systems are evaluated for potential application to high-volume production of future generations of gigabit chips.
DSN telemetry system data records
NASA Technical Reports Server (NTRS)
Gatz, E. C.
1976-01-01
The DSN telemetry system now includes the capability to provide a complete magnetic tape record, within 24 hours of reception, of all telemetry data received from a spacecraft. This record, the intermediate data record, is processed and generated almost entirely automatically, and provides a detailed accounting of any missing data.
Demonstration of new PCSD capabilities
NASA Technical Reports Server (NTRS)
Gough, M.
1986-01-01
The new, more flexible and more friendly graphics capabilities to be available in later releases of the Pilot Climate Data System were demonstrated. The LIMS-LAMAT data set was chosen to illustrate these new capabilities. Pseudocolor and animation were used to represent the third and fourth dimensions, expanding the analytical capabilities available through the traditional two-dimensional x-y plot. In the new version, variables for the axes are chosen by scrolling through viable selections. This scrolling feature is a function of the new user interface customization. The new graphics are extremely user friendly and should free the scientist to look at data and converse with it, without doing any programming. The system is designed to rapidly plot any variable versus any other variable and animate by any variable. Any one plot in itself is not extraordinary; however, the fact that a user can generate the plots instead of a programmer distinguishes the graphics capabilities of the PCDS from other software packages. In addition, with the new CDF design, the system will become more generic, and the new graphics will become much more rigorous in the area of correlative studies.
2015-09-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 AGENDA 1. Non-Tactical Vehicle-to-Grid (V2G) Projects • Smart Power...Vehicle Technology Expo and the Battery Show Conference Novi, MI, 15-17 Sep 2015 2 For the Nation • Help stabilize smart grid and can generate revenue...demonstration of a smart , aggregated, ad-hoc capable, vehicle to grid (V2G) and Vehicle to Vehicle (V2V) capable fleet power system to support
NPSS Overview to TAFW Multidisciplinary Simulation Capabilities
NASA Technical Reports Server (NTRS)
Owen, Karl
2002-01-01
The Numerical Propulsion System Simulation (NPSS) is a concerted effort by NASA Glenn Research Center, the aerospace industry, and academia to develop an advanced engineering environment or integrated collection of software programs for the analysis and design of aircraft engines and, eventually, space transportation components. NPSS is now being applied by GE ground power to ground power generation with the view of expanding the capability to nontraditional power plant applications (example: fuel cells) and NPSS has an interest in in-space power and will be developing those simulation capabilities.
Device for generation of pulsed corona discharge
Gutsol, Alexander F [San Ramon, CA; Fridman, Alexander [Marlton, NJ; Blank, Kenneth [Philadelphia, PA; Korobtsev, Sergey [Moscow, RU; Shiryaevsky, Valery [Moscow, RU; Medvedev, Dmitry [Moscow, RU
2012-05-08
The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.
Interactive degraded document enhancement and ground truth generation
NASA Astrophysics Data System (ADS)
Bal, G.; Agam, G.; Frieder, O.; Frieder, G.
2008-01-01
Degraded documents are frequently obtained in various situations. Examples of degraded document collections include historical document depositories, document obtained in legal and security investigations, and legal and medical archives. Degraded document images are hard to to read and are hard to analyze using computerized techniques. There is hence a need for systems that are capable of enhancing such images. We describe a language-independent semi-automated system for enhancing degraded document images that is capable of exploiting inter- and intra-document coherence. The system is capable of processing document images with high levels of degradations and can be used for ground truthing of degraded document images. Ground truthing of degraded document images is extremely important in several aspects: it enables quantitative performance measurements of enhancement systems and facilitates model estimation that can be used to improve performance. Performance evaluation is provided using the historical Frieder diaries collection.1
A Prototype Therapy System for Transcutaneous Application of Boiling Histotripsy.
Maxwell, Adam D; Yuldashev, Petr V; Kreider, Wayne; Khokhlova, Tatiana D; Schade, George R; Hall, Timothy L; Sapozhnikov, Oleg A; Bailey, Michael R; Khokhlova, Vera A
2017-10-01
Boiling histotripsy (BH) is a method of focused ultrasound surgery that noninvasively applies millisecond-length pulses with high-amplitude shock fronts to generate liquefied lesions in tissue. Such a technique requires unique outputs compared to a focused ultrasound thermal therapy apparatus, particularly to achieve high in situ pressure levels through intervening tissue. This paper describes the design and characterization of a system capable of producing the necessary pressure to transcutaneously administer BH therapy through clinically relevant overlying tissue paths using pulses with duration up to 10 ms. A high-voltage electronic pulser was constructed to drive a 1-MHz focused ultrasound transducer to produce shock waves with amplitude capable of generating boiling within the pulse duration in tissue. The system output was characterized by numerical modeling with the 3-D Westervelt equation using boundary conditions established by acoustic holography measurements of the source field. Such simulations were found to be in agreement with directly measured focal waveforms. An existing derating method for nonlinear therapeutic fields was used to estimate in situ pressure levels at different tissue depths. The system was tested in ex vivo bovine liver samples to create BH lesions at depths up to 7 cm. Lesions were also created through excised porcine body wall (skin, adipose, and muscle) with 3-5 cm thickness. These results indicate that the system is capable of producing the necessary output for transcutaneous ablation with BH.
Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.
2009-01-01
Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.
A Strategic Approach to Medical Care for Exploration Missions
NASA Technical Reports Server (NTRS)
Antonsen, E.; Canga, M.
2016-01-01
Exploration missions will present significant new challenges to crew health, including effects of variable gravity environments, limited communication with Earth-based personnel for diagnosis and consultation for medical events, limited resupply, and limited ability for crew return. Providing health care capabilities for exploration class missions will require system trades be performed to identify a minimum set of requirements and crosscutting capabilities which can be used in design of exploration medical systems. Current and future medical data, information, and knowledge must be cataloged and put in formats that facilitate querying and analysis. These data may then be used to inform the medical research and development program through analysis of risk trade studies between medical care capabilities and system constraints such as mass, power, volume, and training. These studies will be used to define a Medical Concept of Operations to facilitate stakeholder discussions on expected medical capability for exploration missions. Medical Capability as a quantifiable variable is proposed as a surrogate risk metric and explored for trade space analysis that can improve communication between the medical and engineering approaches to mission design. The resulting medical system approach selected will inform NASA mission architecture, vehicle, and subsystem design for the next generation of spacecraft.
Analysis methods for wind turbine control and electrical system dynamics
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.
1995-01-01
The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.
NASA Technical Reports Server (NTRS)
Balas, M. J.; Kaufman, H.; Wen, J.
1985-01-01
A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS.
Towards the Next Generation of Space Environment Prediction Capabilities.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.
2015-12-01
Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.
Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.
Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y
2002-01-01
To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.
Domain specific software architectures: Command and control
NASA Technical Reports Server (NTRS)
Braun, Christine; Hatch, William; Ruegsegger, Theodore; Balzer, Bob; Feather, Martin; Goldman, Neil; Wile, Dave
1992-01-01
GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing.
2006 Pacific Northwest Loads and Resources Study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration.
2006-03-01
The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determiningmore » BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of both the Federal system and the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This surplus energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These energy deficits will be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. This study incorporates information on Pacific Northwest (PNW) regional retail loads, contract obligations, and contract resources. This loads and resources analysis simulates the operation of the power system in the PNW. The simulated hydro operation incorporates plant characteristics, streamflows, and non-power requirements from the current Pacific Northwest Coordination Agreement (PNCA). Additional resource capability estimates were provided by BPA, PNW Federal agency, public agency, cooperative, U.S. Bureau of Reclamation (USBR), and investor-owned utility (IOU) customers furnished through annual PNUCC data submittals for 2005 and/or direct submittals to BPA. The 2006 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2006 White Book analysis updates the 2004 White Book. This analysis shows projections of the Federal system and region's yearly average annual energy consumption and resource availability for the study period, OY 2007-2016. The study also presents projections of Federal system and region expected 1-hour monthly peak demand, monthly energy demand, monthly 1-hour peak generating capability, and monthly energy generation for OY 2007, 2011, and 2016. BPA is investigating a new approach in capacity planning depicting the monthly Federal system 120-hour peak generating capability and 120-hour peak surplus/deficit for OY 2007, 2011, and 2016. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.« less
Background and system description of the Mod 1 wind turbine generator
NASA Technical Reports Server (NTRS)
Ernst, E. H.
1978-01-01
The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.
Next Generation Multimedia Distributed Data Base Systems
NASA Technical Reports Server (NTRS)
Pendleton, Stuart E.
1997-01-01
The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.
NASA Technical Reports Server (NTRS)
1975-01-01
Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.
MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN
Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze
2016-01-01
A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504
Automated Software Development Workstation (ASDW)
NASA Technical Reports Server (NTRS)
Fridge, Ernie
1990-01-01
Software development is a serious bottleneck in the construction of complex automated systems. An increase of the reuse of software designs and components has been viewed as a way to relieve this bottleneck. One approach to achieving software reusability is through the development and use of software parts composition systems. A software parts composition system is a software development environment comprised of a parts description language for modeling parts and their interfaces, a catalog of existing parts, a composition editor that aids a user in the specification of a new application from existing parts, and a code generator that takes a specification and generates an implementation of a new application in a target language. The Automated Software Development Workstation (ASDW) is an expert system shell that provides the capabilities required to develop and manipulate these software parts composition systems. The ASDW is now in Beta testing at the Johnson Space Center. Future work centers on responding to user feedback for capability and usability enhancement, expanding the scope of the software lifecycle that is covered, and in providing solutions to handling very large libraries of reusable components.
Feasibility of potable water generators to meet vessel numeric ballast water discharge limits.
Albert, Ryan J; Viveiros, Edward; Falatko, Debra S; Tamburri, Mario N
2017-07-15
Ballast water is taken on-board vessels into ballast water tanks to maintain vessel draft, buoyancy, and stability. Unmanaged ballast water contains aquatic organisms that, when transported and discharged to non-native waters, may establish as invasive species. Technologies capable of achieving regulatory limits designed to decrease the likelihood of invasion include onboard ballast water management systems. However, to date, the treatment development and manufacturing marketplace is limited to large vessels with substantial ballast requirements. For smaller vessels or vessels with reduced ballast requirements, we evaluated the feasibility of meeting the discharge limits by generating ballast water using onboard potable water generators. Case studies and parametric analyses demonstrated the architectural feasibility of installing potable water generators onboard actual vessels with minimal impacts for most vessel types evaluated. Furthermore, land-based testing of a potable water generator demonstrated capability to meet current numeric discharge limits for living organisms in all size classes. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.; Shaw, Jonathon A.
1994-04-01
This paper is concerned with the flow modelling capabilities of an advanced CFD simulation system known by the acronym SAUNA. This system is aimed primarily at complex aircraft configurations and possesses a unique grid generation strategy in its use of block-structured, unstructured or hybrid grids, depending on the geometric complexity of the addressed configuration. The main focus of the paper is in demonstrating the recently developed multi-grid, block-structured grid, viscous flow capability of SAUNA, through its evaluation on a number of configurations. Inviscid predictions are also presented, both as a means of interpreting the viscous results and with a view to showing more completely the capabilities of SAUNA. It is shown that accuracy and flexibility are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
Capacity expansion model of wind power generation based on ELCC
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Wu, Shengyu
2018-02-01
Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.
Demonstrations of Deployable Systems for Robotic Precursor Missions
NASA Technical Reports Server (NTRS)
Dervan, J.; Johnson, L.; Lockett, T.; Carr, J.; Boyd, D.
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that serve as enabling technologies for exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, deployment systems, and miniaturized electronics, new mission-level capabilities will be demonstrated aboard small spacecraft enabling a new generation of frequent, inexpensive, and highly capable robotic precursor missions with goals extensible to future human exploration. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication as demonstrated by recent advances on the Near Earth Asteroid (NEA) Scout and Lightweight Integrated Solar Array and anTenna (LISA-T) projects.
Photoelectrochemical molecular comb
Thundat, Thomas G [Knoxville, TN; Ferrell, Thomas L [Knoxville, TN; Brown,; Gilbert, M [Knoxville, TN
2007-05-01
A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least to electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
Photoelectrochemical molecular comb
Thundat, Thomas G [Knoxville, TN; Ferrell, Thomas L [Knoxville, TN; Brown, Gilbert M [Knoxville, TN
2012-02-07
A method, system, and apparatus are provided for separating molecules, such as biomolecules. The method, system, and apparatus utilize an electrochemical cell having at least two electrodes, one electrode comprising a photo-sensitive material capable of generating a photopotential. Molecules are moved through an electrolyte medium between the at least two electrodes based upon localized photopotentials.
NETL- High-Pressure Combustion Research Facility
None
2018-02-14
NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.
Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics
NASA Astrophysics Data System (ADS)
Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.
2013-12-01
In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.
Vessel structural support system
Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.
1992-01-01
Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.
Next generation solid boosters
NASA Technical Reports Server (NTRS)
Lund, R. K.
1991-01-01
Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.
NASA Technical Reports Server (NTRS)
Dryer, Jay
2017-01-01
This briefing is an overview of NASA's hypersonic portfolio and core capabilities. The scope of work is fundamental research spanning technology readiness and system complexity levels; critical technologies enabling re-usable hypersonic systems; system-level research, design, analysis, validation; and, engage, invigorate and train the next generation of engineers. This briefing was requested by the Aeronautics Subcommittee of the NASA Advisory Council.
JIMM: the next step for mission-level models
NASA Astrophysics Data System (ADS)
Gump, Jamieson; Kurker, Robert G.; Nalepka, Joseph P.
2001-09-01
The (Simulation Based Acquisition) SBA process is one in which the planning, design, and test of a weapon system or other product is done through the more effective use of modeling and simulation, information technology, and process improvement. This process results in a product that is produced faster, cheaper, and more reliably than its predecessors. Because the SBA process requires realistic and detailed simulation conditions, it was necessary to develop a simulation tool that would provide a simulation environment acceptable for doing SBA analysis. The Joint Integrated Mission Model (JIMM) was created to help define and meet the analysis, test and evaluation, and training requirements of a Department of Defense program utilizing SBA. Through its generic nature of representing simulation entities, its data analysis capability, and its robust configuration management process, JIMM can be used to support a wide range of simulation applications as both a constructive and a virtual simulation tool. JIMM is a Mission Level Model (MLM). A MLM is capable of evaluating the effectiveness and survivability of a composite force of air and space systems executing operational objectives in a specific scenario against an integrated air and space defense system. Because MLMs are useful for assessing a system's performance in a realistic, integrated, threat environment, they are key to implementing the SBA process. JIMM is a merger of the capabilities of one legacy model, the Suppressor MLM, into another, the Simulated Warfare Environment Generator (SWEG) MLM. By creating a more capable MLM, JIMM will not only be a tool to support the SBA initiative, but could also provide the framework for the next generation of MLMs.
Managing Data From Signal-Propagation Experiments
NASA Technical Reports Server (NTRS)
Kantak, A. V.
1989-01-01
Computer programs generate characteristic plots from amplitudes and phases. Software system enables minicomputer to process data on amplitudes and phases of signals received during experiments in ground-mobile/satellite radio propagation. Takes advantage of file-handling capabilities of UNIX operating system and C programming language. Interacts with user, under whose guidance programs in FORTRAN language generate plots of spectra or other curves of types commonly used to characterize signals. FORTRAN programs used to process file-handling outputs into any of several useful forms.
Control System Development for Power Generation from Small-Scale Compressed Air Energy Storage
2017-06-01
Gannon Co-Advisor: Andrea Holmes THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting...capable of a dark start. The term dark start refers to a power generation system that does not require electrical energy in the form of batteries or...Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 ii THIS PAGE
Recursive computer architecture for VLSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treleaven, P.C.; Hopkins, R.P.
1982-01-01
A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.
Hospital cost accounting: implementing the system successfully.
Burik, D; Duvall, T J
1985-05-01
To successfully implement a cost accounting system, certain key steps should be undertaken. These steps include developing and installing software; developing cost center budgets and inter-cost center allocations; developing service item standard costs; generating cost center level and patient level standard cost reports and reconciling these costs to actual costs; generating product line profitability reports and reconciling these reports to the financial statements; and providing ad hoc reporting capabilities. By following these steps, potential problems in the implementation process can be anticipated and avoided.
Static feed water electrolysis module
NASA Technical Reports Server (NTRS)
Powell, J. D.; Schubert, F. H.; Jensen, F. C.
1974-01-01
An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.
A Strategic Approach to Medical Care for Exploration Missions
NASA Technical Reports Server (NTRS)
Canga, Michael A.; Shah, Ronak V.; Mindock, Jennifer A.; Antonsen, Erik L.
2016-01-01
Exploration missions will present significant new challenges to crew health, including effects of variable gravity environments, limited communication with Earth-based personnel for diagnosis and consultation for medical events, limited resupply, and limited ability for crew return. Providing health care capabilities for exploration class missions will require system trades be performed to identify a minimum set of requirements and crosscutting capabilities, which can be used in design of exploration medical systems. Medical data, information, and knowledge collected during current space missions must be catalogued and put in formats that facilitate querying and analysis. These data are used to inform the medical research and development program through analysis of risk trade studies between medical care capabilities and system constraints such as mass, power, volume, and training. Medical capability as a quantifiable variable is proposed as a surrogate risk metric and explored for trade space analysis that can improve communication between the medical and engineering approaches to mission design. The resulting medical system design approach selected will inform NASA mission architecture, vehicle, and subsystem design for the next generation of spacecraft.
Flywheel energy storage for electromechanical actuation systems
NASA Technical Reports Server (NTRS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
1991-01-01
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
Flywheel energy storage for electromechanical actuation systems
NASA Astrophysics Data System (ADS)
Hockney, Richard L.; Goldie, James H.; Kirtley, James L.
The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.
NASA Technical Reports Server (NTRS)
Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.
1985-01-01
As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.
Computer-aided communication satellite system analysis and optimization
NASA Technical Reports Server (NTRS)
Stagl, T. W.; Morgan, N. H.; Morley, R. E.; Singh, J. P.
1973-01-01
The capabilities and limitations of the various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. A satellite Telecommunication analysis and Modeling Program (STAMP) for costing and sensitivity analysis work in application of communication satellites to educational development is given. The modifications made to STAMP include: extension of the six beam capability to eight; addition of generation of multiple beams from a single reflector system with an array of feeds; an improved system costing to reflect the time value of money, growth in earth terminal population with time, and to account for various measures of system reliability; inclusion of a model for scintillation at microwave frequencies in the communication link loss model; and, an updated technological environment.
Technical concept of the UK Tornado stand-off reconnaissance system
NASA Astrophysics Data System (ADS)
Dyer, Gavin R.
1996-11-01
The operational limitations exposed during the Gulf War have led to the formulation of a requirement for anew generation of tactical reconnaissance pod for the Royal Air Force Tornado aircraft. The pod will contain a high resolution Electro-Optical sensor capable of day and night-time operations, digital recording of the imagery for airborne replay and ground exploitation, and a data-link for real time/near real time imagery transmission. The program requirement includes a deployable ground exploitation system to provide a comprehensive independent capability. The interoperability of the air and ground segments with other systems is addressed through NATO standardization agreements. This system will provide the Tornado with a highly flexible stand-off imaging system for day/night operations from a range of altitudes.
High pressure/high temperature thermogravimetric apparatus. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calo, J.M.; Suuberg, E.M.
1999-12-01
The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C andmore » 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.« less
Flexible Coordination in Resource-Constrained Domains
1994-07-01
Experiments (TIEs) with planning technologies developed at both BBN (FMERG) and SRI ( SOCAP ). We have also exported scheduling support capabilities provided by...SRI’s SOCAP course of action (COA) plan generator. "* Development and demonstration of distributed, multi-level deployment scheduling - Through analysis...scheduler was adapted for integration with the SOCAP planning system to provide feedback on transportation feasibility during generation of the
Automatic rule generation for high-level vision
NASA Technical Reports Server (NTRS)
Rhee, Frank Chung-Hoon; Krishnapuram, Raghu
1992-01-01
Many high-level vision systems use rule-based approaches to solving problems such as autonomous navigation and image understanding. The rules are usually elaborated by experts. However, this procedure may be rather tedious. In this paper, we propose a method to generate such rules automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.
Pollution characterization of liquid waste of the factory complex Fertial (Arzew, Algeria).
Redouane, Fares; Mourad, Lounis
2016-03-01
The industrial development in Algeria has made a worrying situation for all socioeconomic stakeholders. Indeed, this economic growth is marked in recent years by the establishment of factories and industrial plants that discharge liquid waste in marine shorelines. These releases could destabilize the environmental balance in the coming years, hence the need to support the processing of all sources of pollution. Remediation of such discharges requires several steps of identifying the various pollutants to their treatments. Therefore, the authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial. The authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.
Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo
2003-05-20
A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
1991-01-01
The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.
Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2003-01-01
This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.
Agent independent task planning
NASA Technical Reports Server (NTRS)
Davis, William S.
1990-01-01
Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.
World wide matching of registration metrology tools of various generations
NASA Astrophysics Data System (ADS)
Laske, F.; Pudnos, A.; Mackey, L.; Tran, P.; Higuchi, M.; Enkrich, C.; Roeth, K.-D.; Schmidt, K.-H.; Adam, D.; Bender, J.
2008-10-01
Turn around time/cycle time is a key success criterion in the semiconductor photomask business. Therefore, global mask suppliers typically allocate work loads based on fab capability and utilization capacity. From a logistical point of view, the manufacturing location of a photomask should be transparent to the customer (mask user). Matching capability of production equipment and especially metrology tools is considered a key enabler to guarantee cross site manufacturing flexibility. Toppan, with manufacturing sites in eight countries worldwide, has an on-going program to match the registration metrology systems of all its production sites. This allows for manufacturing flexibility and risk mitigation.In cooperation with Vistec Semiconductor Systems, Toppan has recently completed a program to match the Vistec LMS IPRO systems at all production sites worldwide. Vistec has developed a new software feature which allows for significantly improved matching of LMS IPRO(x) registration metrology tools of various generations. We will report on the results of the global matching campaign of several of the leading Toppan sites.
Development of a morphing structure with the incorporation of central pattern generators
NASA Astrophysics Data System (ADS)
Bliss, Thomas K.; Bart-Smith, Hilary; Iwasaki, Tetsuya
2006-03-01
The Manta Ray, Manta birostris, is an amazing creature, propelling itself through the water with the elegant and complex flapping of its wings. Achieving outstanding efficiencies, engineers are looking for ways to mimic its flight through the water and harness its propulsive techniques. This study combines two biologically inspired aspects to achieve this goal: morphing structures actuated with a biomimetic neural network control system. It is believed that this combination will prove capable of producing the oscillatory motions necessary for locomotion. In this paper, a four-truss structure with three actuators is chosen and its performance capabilities are analyzed. A synthetic central pattern generator, which provides the fundamental control mechanisms for rhythmic motion in animals, is designed to realize an oscillatory control of the three actuators. The control system is simulated using Matlab, then combined with LabVIEW to control the four-truss structure. The system's performance is analyzed, with specific attention to both transient and steady-state behavior.
Nuclear Engine System Simulation (NESS). Version 2.0: Program user's guide
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman
1993-01-01
This Program User's Guide discusses the Nuclear Thermal Propulsion (NTP) engine system design features and capabilities modeled in the Nuclear Engine System Simulation (NESS): Version 2.0 program (referred to as NESS throughout the remainder of this document), as well as its operation. NESS was upgraded to include many new modeling capabilities not available in the original version delivered to NASA LeRC in Dec. 1991, NESS's new features include the following: (1) an improved input format; (2) an advanced solid-core NERVA-type reactor system model (ENABLER 2); (3) a bleed-cycle engine system option; (4) an axial-turbopump design option; (5) an automated pump-out turbopump assembly sizing option; (6) an off-design gas generator engine cycle design option; (7) updated hydrogen properties; (8) an improved output format; and (9) personal computer operation capability. Sample design cases are presented in the user's guide that demonstrate many of the new features associated with this upgraded version of NESS, as well as design modeling features associated with the original version of NESS.
Actionable Capability for Social and Economic Systems (ACSES)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Steven J; Brecke, Peter K; Carmichael, Theodore D
The foundation of the Actionable Capability for Social and Economic Systems (ACSES) project is a useful regional-scale social-simulation system. This report is organized into five chapters that describe insights that were gained concerning the five key feasibility questions pertaining to such a system: (1) Should such a simulation system exist, would the current state of data sets or collectible data sets be adequate to support such a system? (2) By comparing different agent-based simulation systems, is it feasible to compare simulation systems and select one appropriate for a given application with agents behaving according to modern social theory rather thanmore » ad hoc rule sets? (3) Provided that a selected simulation system for a region of interest could be constructed, can the simulation system be updated with new and changing conditions so that the universe of potential outcomes are constrained by events on the ground as they evolve? (4) As these results are constrained by evolving events on the ground, is it feasible to still generate surprise and emerging behavior to suggest outcomes from novel courses of action? (5) As these systems may for the first time require large numbers (hundreds of millions) of agents operating with complexities demanded of modern social theories, can results still be generated within actionable decision cycles?« less
Operational algorithm development and refinement approaches
NASA Astrophysics Data System (ADS)
Ardanuy, Philip E.
2003-11-01
Next-generation polar and geostationary systems, such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and the Geostationary Operational Environmental Satellite (GOES)-R, will deploy new generations of electro-optical reflective and emissive capabilities. These will include low-radiometric-noise, improved spatial resolution multi-spectral and hyperspectral imagers and sounders. To achieve specified performances (e.g., measurement accuracy, precision, uncertainty, and stability), and best utilize the advanced space-borne sensing capabilities, a new generation of retrieval algorithms will be implemented. In most cases, these advanced algorithms benefit from ongoing testing and validation using heritage research mission algorithms and data [e.g., the Earth Observing System (EOS)] Moderate-resolution Imaging Spectroradiometer (MODIS) and Shuttle Ozone Limb Scattering Experiment (SOLSE)/Limb Ozone Retreival Experiment (LORE). In these instances, an algorithm's theoretical basis is not static, but rather improves with time. Once frozen, an operational algorithm can "lose ground" relative to research analogs. Cost/benefit analyses provide a basis for change management. The challenge is in reconciling and balancing the stability, and "comfort," that today"s generation of operational platforms provide (well-characterized, known, sensors and algorithms) with the greatly improved quality, opportunities, and risks, that the next generation of operational sensors and algorithms offer. By using the best practices and lessons learned from heritage/groundbreaking activities, it is possible to implement an agile process that enables change, while managing change. This approach combines a "known-risk" frozen baseline with preset completion schedules with insertion opportunities for algorithm advances as ongoing validation activities identify and repair areas of weak performance. This paper describes an objective, adaptive implementation roadmap that takes into account the specific maturities of each system"s (sensor and algorithm) technology to provide for a program that contains continuous improvement while retaining its manageability.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
NASA Astrophysics Data System (ADS)
Pilone, D.; Gilman, J.; Baynes, K.; Shum, D.
2015-12-01
This talk introduces a new NASA Earth Observing System Data and Information System (EOSDIS) capability to automatically generate and maintain derived, Virtual Product information allowing DAACs and Data Providers to create tailored and more discoverable variations of their products. After this talk the audience will be aware of the new EOSDIS Virtual Product capability, applications of it, and how to take advantage of it. Much of the data made available in the EOSDIS are organized for generation and archival rather than for discovery and use. The EOSDIS Common Metadata Repository (CMR) is launching a new capability providing automated generation and maintenance of user-oriented Virtual Product information. DAACs can easily surface variations on established data products tailored to specific uses cases and users, leveraging DAAC exposed services such as custom ordering or access services like OPeNDAP for on-demand product generation and distribution. Virtual Data Products enjoy support for spatial and temporal information, keyword discovery, association with imagery, and are fully discoverable by tools such as NASA Earthdata Search, Worldview, and Reverb. Virtual Product generation has applicability across many use cases: - Describing derived products such as Surface Kinetic Temperature information (AST_08) from source products (ASTER L1A) - Providing streamlined access to data products (e.g. AIRS) containing many (>800) data variables covering an enormous variety of physical measurements - Attaching additional EOSDIS offerings such as Visual Metadata, external services, and documentation metadata - Publishing alternate formats for a product (e.g. netCDF for HDF products) with the actual conversion happening on request - Publishing granules to be modified by on-the-fly services, like GES-DISC's Data Quality Screening Service - Publishing "bundled" products where granules from one product correspond to granules from one or more other related products
ERIC Educational Resources Information Center
Goclowski, John C.; Baran, H. Anthony
This report gives a managerial overview of the Life Cycle Cost Impact Modeling System (LCCIM), which was designed to provide the Air Force with an in-house capability of assessing the life cycle cost impact of weapon system design alternatives. LCCIM consists of computer programs and the analyses which the user must perform to generate input data.…
Solar power satellite system definition study. Volume 1, phase 1: Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.
Engineering Supply Management System: The Next Generation
1991-09-01
010 Partia! receipts 0018 Automatic inventory update 0 048 Discrepant material 0 004 Order processing requirements Transaction reversal capability 0 012...August 1991. 2-5 sys.em’s modules that support the DEH’s needs are the Sales Order Processing , Register Sales, Purchase Order Processing , Inventory...modular system developed by PIC Business Systems, Incorporated. This system possesses Order Processing , Inventory Management, Purchase Orders, and
A Timer for Synchronous Digital Systems
NASA Technical Reports Server (NTRS)
McKenney, Elizabeth; Irwin, Philip
2003-01-01
The Real-Time Interferometer Control Systems Testbed (RICST) timing board is a VersaModule Eurocard (VME)-based board that can generate up to 16 simultaneous, phase-locked timing signals at a rate defined by the user. It can also generate all seven VME interrupt requests (IRQs). The RICST timing board is suitable mainly for robotic, aerospace, and real-time applications. Several circuit boards on the market are capable of generating periodic IRQs. Most are associated with Global Positioning System (GPS) receivers and Inter Range Instrumentation Group (IRIG) time-code generators, whereas this board uses either an internal VME clock or an externally generated clock signal to synchronize multiple components of the system. The primary advantage of this board is that there is no discernible jitter in the output clock waveforms because the signals are divided down from a high-frequency clock signal instead of being phase-locked from a lower frequency. The primary disadvantage to this board, relative to other periodic-IRQ-generating boards, is that it is more difficult to synchronize the system to wall clock time.
Design and development of the spinning mode synthesizer
NASA Technical Reports Server (NTRS)
Seiner, J. M.; Reethof, G.
1973-01-01
Design and development of a flexible source of spinning modes which is capable of generating independent spinning waves of controlled complexity and spin speed without the introduction of broad band elements is reported. These features were accomplished through the use of eight commercial loudspeakers located in an equally spaced circular array with diameter of 11 inches and properly phased so that the system could generate a spinning wave. The constructed apparatus was tested in an anechoic environment and found capable of generating a plane, one and two lobed spinning wave of high quality with a sound pressure level of 120 db and at frequencies ranging from 1500 to 2500 Hz at a distance of 4 ft in the far field. The wave speeds investigated varied from 8000 to 18000 rad/sec which represent supersonic peripheral speeds.
Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2
NASA Technical Reports Server (NTRS)
Lopes, Leonard V., Dr.; Burley, Casey L.
2011-01-01
The requirements, constraints, and design of NASA's next generation Aircraft NOise Prediction Program (ANOPP2) are introduced. Similar to its predecessor (ANOPP), ANOPP2 provides the U.S. Government with an independent aircraft system noise prediction capability that can be used as a stand-alone program or within larger trade studies that include performance, emissions, and fuel burn. The ANOPP2 framework is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. ANOPP2 integrates noise prediction and propagation methods, including those found in ANOPP, into a unified system that is compatible for use within general aircraft analysis software. The design of the system is described in terms of its functionality and capability to perform predictions accounting for distributed sources, installation effects, and propagation through a non-uniform atmosphere including refraction and the influence of terrain. The philosophy of mixed fidelity noise prediction through the use of nested Ffowcs Williams and Hawkings surfaces is presented and specific issues associated with its implementation are identified. Demonstrations for a conventional twin-aisle and an unconventional hybrid wing body aircraft configuration are presented to show the feasibility and capabilities of the system. Isolated model-scale jet noise predictions are also presented using high-fidelity and reduced order models, further demonstrating ANOPP2's ability to provide predictions for model-scale test configurations.
Graphical Visualization of Human Exploration Capabilities
NASA Technical Reports Server (NTRS)
Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex
2016-01-01
NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description of planned future work to modify the computer program to include additional data and of alternate capability roadmap formats currently under consideration.
Double heterojunction nanowire photocatalysts for hydrogen generation.
Tongying, P; Vietmeyer, F; Aleksiuk, D; Ferraudi, G J; Krylova, G; Kuno, M
2014-04-21
Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.
Grid sensitivity capability for large scale structures
NASA Technical Reports Server (NTRS)
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
Using Generative Representations to Evolve Robots. Chapter 1
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
Recent research has demonstrated the ability of evolutionary algorithms to automatically design both the physical structure and software controller of real physical robots. One of the challenges for these automated design systems is to improve their ability to scale to the high complexities found in real-world problems. Here we claim that for automated design systems to scale in complexity they must use a representation which allows for the hierarchical creation and reuse of modules, which we call a generative representation. Not only is the ability to reuse modules necessary for functional scalability, but it is also valuable for improving efficiency in testing and construction. We then describe an evolutionary design system with a generative representation capable of hierarchical modularity and demonstrate it for the design of locomoting robots in simulation. Finally, results from our experiments show that evolution with our generative representation produces better robots than those evolved with a non-generative representation.
Space Spurred Computer Graphics
NASA Technical Reports Server (NTRS)
1983-01-01
Dicomed Corporation was asked by NASA in the early 1970s to develop processing capabilities for recording images sent from Mars by Viking spacecraft. The company produced a film recorder which increased the intensity levels and the capability for color recording. This development led to a strong technology base resulting in sophisticated computer graphics equipment. Dicomed systems are used to record CAD (computer aided design) and CAM (computer aided manufacturing) equipment, to update maps and produce computer generated animation.
Multimission image processing and science data visualization
NASA Technical Reports Server (NTRS)
Green, William B.
1993-01-01
The Operational Science Analysis (OSA) Functional area supports science instrument data display, analysis, visualization and photo processing in support of flight operations of planetary spacecraft managed by the Jet Propulsion Laboratory (JPL). This paper describes the data products generated by the OSA functional area, and the current computer system used to generate these data products. The objectives on a system upgrade now in process are described. The design approach to development of the new system are reviewed, including use of the Unix operating system and X-Window display standards to provide platform independence, portability, and modularity within the new system, is reviewed. The new system should provide a modular and scaleable capability supporting a variety of future missions at JPL.
High power broadband millimeter wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1999-05-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
High Power Broadband Millimeter Wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1998-04-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
Introducing Mira, Argonne's Next-Generation Supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-03-19
Mira, the new petascale IBM Blue Gene/Q system installed at the ALCF, will usher in a new era of scientific supercomputing. An engineering marvel, the 10-petaflops machine is capable of carrying out 10 quadrillion calculations per second.
Open Source Next Generation Visualization Software for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Trimble, Jay; Rinker, George
2016-01-01
Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).
DEAN: A program for dynamic engine analysis
NASA Technical Reports Server (NTRS)
Sadler, G. G.; Melcher, K. J.
1985-01-01
The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig.
A knowledge-based approach to automated flow-field zoning for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1989-01-01
An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.
Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samayoa, Jose
2010-05-12
Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber laser’s exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.
Generative Representations for Computer-Automated Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2006-01-01
With the increasing computational power of computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design systems is the representation with which they encode designs. If the representation cannot encode a certain design, then the design system cannot produce it. To be able to produce new types of designs, and not just optimize pre-defined parameterizations, evolutionary design systems must use generative representations. Generative representations are assembly procedures, or algorithms, for constructing a design thereby allowing for truly novel design solutions to be encoded. In addition, by enabling modularity, regularity and hierarchy, the level of sophistication that can be evolved is increased. We demonstrate the advantages of generative representations on two different design domains: the evolution of spacecraft antennas and the evolution of 3D objects.
Modeling and Simulation of U-tube Steam Generator
NASA Astrophysics Data System (ADS)
Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei
2018-03-01
The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.
McCahill, Peter W; Noste, Erin E; Rossman, A J; Callaway, David W
2014-12-01
Disasters create major strain on energy infrastructure in affected communities. Advances in microgrid technology offer the potential to improve "off-grid" mobile disaster medical response capabilities beyond traditional diesel generation. The Carolinas Medical Center's mobile emergency medical unit (MED-1) Green Project (M1G) is a multi-phase project designed to demonstrate the benefits of integrating distributive generation (DG), high-efficiency batteries, and "smart" energy utilization in support of major out-of-hospital medical response operations. Carolinas MED-1 is a mobile medical facility composed of a fleet of vehicles and trailers that provides comprehensive medical care capacities to support disaster response and special-event operations. The M1G project partnered with local energy companies to deploy energy analytics and an energy microgrid in support of mobile clinical operations for the 2012 Democratic National Convention (DNC) in Charlotte, North Carolina (USA). Energy use data recorded throughout the DNC were analyzed to create energy utilization models that integrate advanced battery technology, solar photovoltaic (PV), and energy conservation measures (ECM) to improve future disaster response operations. The generators that supply power for MED-1 have a minimum loading ratio (MLR) of 30 kVA. This means that loads below 30 kW lead to diesel fuel consumption at the same rate as a 30 kW load. Data gathered from the two DNC training and support deployments showed the maximum load of MED-1 to be around 20 kW. This discrepancy in MLR versus actual load leads to significant energy waste. The lack of an energy storage system reduces generator efficiency and limits integration of alternative energy generation strategies. A storage system would also allow for alternative generation sources, such as PV, to be incorporated. Modeling with a 450 kWh battery bank and 13.5 kW PV array showed a 2-fold increase in potential deployment times using the same amount of fuel versus the current conventional system. The M1G Project demonstrated that the incorporation of a microgrid energy management system and a modern battery system maximize the MED-1 generators' output. Using a 450 kWh battery bank and 13.5 kW PV array, deployment operations time could be more than doubled before refueling. This marks a dramatic increase in patient care capabilities and has significant public health implications. The results highlight the value of smart-microgrid technology in developing energy independent mobile medical capabilities and expanding cost-effective, high-quality medical response.
NASA Astrophysics Data System (ADS)
Papapostolou, Vasileios; Zhang, Hang; Feenstra, Brandon J.; Polidori, Andrea
2017-12-01
A state-of-the-art integrated chamber system has been developed for evaluating the performance of low-cost air quality sensors. The system contains two professional grade chamber enclosures. A 1.3 m3 stainless-steel outer chamber and a 0.11 m3 Teflon-coated stainless-steel inner chamber are used to create controlled aerosol and gaseous atmospheres, respectively. Both chambers are temperature and relative humidity controlled with capability to generate a wide range of environmental conditions. The system is equipped with an integrated zero-air system, an ozone and two aerosol generation systems, a dynamic dilution calibrator, certified gas cylinders, an array of Federal Reference Method (FRM), Federal Equivalent Method (FEM), and Best Available Technology (BAT) reference instruments and an automated control and sequencing software. Our experiments have demonstrated that the chamber system is capable of generating stable and reproducible aerosol and gas concentrations at low, medium, and high levels. This paper discusses the development of the chamber system along with the methods used to quantitatively evaluate sensor performance. Considering that a significant number of academic and research institutions, government agencies, public and private institutions, and individuals are becoming interested in developing and using low-cost air quality sensors, it is important to standardize the procedures used to evaluate their performance. The information discussed herein provides a roadmap for entities who are interested in characterizing air quality sensors in a rigorous, systematic and reproducible manner.
Naval Surface Warfare Center Carderock Division, Technical Digest
2001-12-01
Survivability Systems: An Overview Fred J. Fisch 139 Modeling and Simulation of Weapons Effects on Ships Robert R. Wunderlick 143 Intelligent Networks ...communications capability of forces afloat to support emerging network -centric warfare doc- trines. Stealth, for our next generation of warships...fully-inte- grated, fully- networked electronic countermeasures system, developed in parallel and in close coordination with sister systems. An
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Johnson, R. Wayne
2005-01-01
Next generation space-based robotics systems will be constructed using distributed architectures where electronics capable of working in the extreme environments of the planets of the solar system are integrated with the sensors and actuators in plug-and-play modules and are connected through common multiple redundant data and power buses.
A second-generation relaxed eddy accumulation system was built and tested with the capability to measure vertical biogenic volatile organic compound (VOC) fluxes at levels as low as 10 µg C m−2 hr−1. The system features a continuous, integrated gas-phase ozo...
A Communications Modeling System for Swarm-Based Sensors
2003-09-01
6-10 6.6. Digital and Swarm System Performance Measures . . . . . . . . . . 6-21 7.1. Simulation computing hardware...detection and monitoring, and advances in computational capabilities have provided for embedded data analysis and the generation of information from raw... computing and manufacturing technology have made such systems possible. In order to harness this potential for Air Force applica- tions, a method of
Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar
NASA Astrophysics Data System (ADS)
Stedronsky, Richard
2014-05-01
The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.
USDA-ARS?s Scientific Manuscript database
A rapid computer-aided program for profiling glucosinolates, “GLS-Finder", was developed. GLS-Finder is a Matlab script based expert system that is capable for qualitative and semi-quantitative analysis of glucosinolates in samples using data generated by ultra-high performance liquid chromatograph...
Is There Computer Graphics after Multimedia?
ERIC Educational Resources Information Center
Booth, Kellogg S.
Computer graphics has been driven by the desire to generate real-time imagery subject to constraints imposed by the human visual system. The future of computer graphics, when off-the-shelf systems have full multimedia capability and when standard computing engines render imagery faster than real-time, remains to be seen. A dedicated pipeline for…
Totally Connected Healthcare with TV White Spaces.
Katzis, Konstantinos; Jones, Richard W; Despotou, Georgios
2017-01-01
Recent technological advances in electronics, wireless communications and low cost medical sensors generated a plethora of Wearable Medical Devices (WMDs), which are capable of generating considerably large amounts of new, unstructured real-time data. This contribution outlines how this data can be propagated to a healthcare system through the internet, using long distance Radio Access Networks (RANs) and proposes a novel communication system architecture employing White Space Devices (WSD) to provide seamless connectivity to its users. Initial findings indicate that the proposed communication system can facilitate broadband services over a large geographical area taking advantage of the freely available TV White Spaces (TVWS).
NASA Technical Reports Server (NTRS)
Lueck, Dale E.; Parrish, Clyde F.; Delgado, H. (Technical Monitor)
2000-01-01
As an alternative to magnetic propulsion for launch assist, the authors propose a pneumatic launch assist system. Using off the shelf components, coupled with familiar steel and concrete construction, a launch assist system can be brought from the initial feasibility stage, through a flight capable 5000 kg. demonstrator to a deployed full size launch assist system in 10 years. The final system would be capable of accelerating a 450,000 kg. vehicle to 270 meters per second. The CELT system uses commercially available compressors and valves to build a fail-safe system in less than half the time of a full Mag-Lev (magnetic levitation) system, and at a small fraction of the development cost. The resulting system could be ready in time to support some Gen 2 (generation 2) vehicles, as well as the proposed Gen 3 vehicle.
A database management capability for Ada
NASA Technical Reports Server (NTRS)
Chan, Arvola; Danberg, SY; Fox, Stephen; Landers, Terry; Nori, Anil; Smith, John M.
1986-01-01
The data requirements of mission critical defense systems have been increasing dramatically. Command and control, intelligence, logistics, and even weapons systems are being required to integrate, process, and share ever increasing volumes of information. To meet this need, systems are now being specified that incorporate data base management subsystems for handling storage and retrieval of information. It is expected that a large number of the next generation of mission critical systems will contain embedded data base management systems. Since the use of Ada has been mandated for most of these systems, it is important to address the issues of providing data base management capabilities that can be closely coupled with Ada. A comprehensive distributed data base management project has been investigated. The key deliverables of this project are three closely related prototype systems implemented in Ada. These three systems are discussed.
Human Spaceflight Safety for the Next Generation on Orbital Space Systems
NASA Technical Reports Server (NTRS)
Mango, Edward J.
2011-01-01
The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives. The primary role of the CCP is to enable and ensure safe human spaceflight and processes for the next generation of earth orbital space systems. The architecture of the Program delineates the process for investment performance in safe orbital systems, Crew Transportation System (CTS) certification, and CTS Flight Readiness. A series of six technical documents build up the architecture to address the top-level CTS requirements and standards. They include Design Reference Missions, with the near term focus on ISS crew services, Certification and Service Requirements, Technical Management Processes, and Technical and Operations Standards Evaluation Processes.
The Medusa Sea Floor Monitoring System
NASA Astrophysics Data System (ADS)
Flynn, F. T.; Schultz, A.; Gupta, M.; Powers, L.; Klinkhammer, G.
2004-12-01
The Medusa Sea Floor Monitoring System (MSMS) is a technology development project that is designed to enable fundamental research into understanding the potential for and limits to chemolithoautotrophic life. This is life within which inorganic carbon is converted to organic carbon and where only inorganic compounds serve as electron acceptors and electron donors. Such life forms are postulated to be capable of surviving in a Europan ocean. If we can prove that such life forms exist on Earth it would provide credence to the hypothesis that they might exist on other planets or moons in our Solar System. It has been hypothesized that one environment which might foster such life is associated with sub-seafloor hydrothermal vent structures. The goal of the MSMS project is to develop an instrument capable of testing this hypothesis. The MSMS instrument is an evolution of a sea floor monitoring system developed by Dr. Adam Schultz. Its design is the result of many generations of hardware and dive programs. Medusa provides the capability to measure and sample effluent and influent sea floor hydraulic flows associated with hydrothermal vent structures, active sea mounds, and sea floor bore holes. Through this proposal we are developing the next generation Medusa system and initiating the integration of several select chemical and biological sensors into the Medusa backbone. These sensors are an in situ flow-through spectral chemistry system, a cavity ringdown 12C/13C system, and an intrinsic fluorescence instrument. der way. This instrument can be used to target and discriminate between biological samples for automated sample collection
NASA Astrophysics Data System (ADS)
Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin
2018-02-01
A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.
Automated, Parametric Geometry Modeling and Grid Generation for Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Harrand, Vincent J.; Uchitel, Vadim G.; Whitmire, John B.
2000-01-01
The objective of this Phase I project is to develop a highly automated software system for rapid geometry modeling and grid generation for turbomachinery applications. The proposed system features a graphical user interface for interactive control, a direct interface to commercial CAD/PDM systems, support for IGES geometry output, and a scripting capability for obtaining a high level of automation and end-user customization of the tool. The developed system is fully parametric and highly automated, and, therefore, significantly reduces the turnaround time for 3D geometry modeling, grid generation and model setup. This facilitates design environments in which a large number of cases need to be generated, such as for parametric analysis and design optimization of turbomachinery equipment. In Phase I we have successfully demonstrated the feasibility of the approach. The system has been tested on a wide variety of turbomachinery geometries, including several impellers and a multi stage rotor-stator combination. In Phase II, we plan to integrate the developed system with turbomachinery design software and with commercial CAD/PDM software.
Performance Analysis of Garbage Collection and Dynamic Reordering in a Lisp System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Llames, Rene Lim
1991-01-01
Generation based garbage collection and dynamic reordering of objects are two techniques for improving the efficiency of memory management in Lisp and similar dynamic language systems. An analysis of the effect of generation configuration is presented, focusing on the effect of a number of generations and generation capabilities. Analytic timing and survival models are used to represent garbage collection runtime and to derive structural results on its behavior. The survival model provides bounds on the age of objects surviving a garbage collection at a particular level. Empirical results show that execution time is most sensitive to the capacity of the youngest generation. A technique called scanning for transport statistics, for evaluating the effectiveness of reordering independent of main memory size, is presented.
Exploration Medical Cap Ability System Engineering Overview
NASA Technical Reports Server (NTRS)
McGuire, K.; Mindock, J.
2018-01-01
Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.
Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.
2013-01-01
The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.
FPGA Based Adaptive Rate and Manifold Pattern Projection for Structured Light 3D Camera System †
Lee, Sukhan
2018-01-01
The quality of the captured point cloud and the scanning speed of a structured light 3D camera system depend upon their capability of handling the object surface of a large reflectance variation in the trade-off of the required number of patterns to be projected. In this paper, we propose and implement a flexible embedded framework that is capable of triggering the camera single or multiple times for capturing single or multiple projections within a single camera exposure setting. This allows the 3D camera system to synchronize the camera and projector even for miss-matched frame rates such that the system is capable of projecting different types of patterns for different scan speed applications. This makes the system capturing a high quality of 3D point cloud even for the surface of a large reflectance variation while achieving a high scan speed. The proposed framework is implemented on the Field Programmable Gate Array (FPGA), where the camera trigger is adaptively generated in such a way that the position and the number of triggers are automatically determined according to camera exposure settings. In other words, the projection frequency is adaptive to different scanning applications without altering the architecture. In addition, the proposed framework is unique as it does not require any external memory for storage because pattern pixels are generated in real-time, which minimizes the complexity and size of the application-specific integrated circuit (ASIC) design and implementation. PMID:29642506
AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Chowdhury, Badrul H.
2005-01-01
ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side redundancies and including emergency generators on both ac and dc sides is proposed. The generation frequency is 400 Hz mostly because of the technology maturity at this frequency in the aerospace industry. Power will be distributed to several ac load distribution buses through solid state variable speed, constant frequency converters on the ac side. A segmented dc ring bus supplied from ac/dc converters and with the capability of connecting/disconnecting the segments will supply power to multiple de load distribution buses. The system will have the capability of reverse flow from dc to ac side in the case of an extreme emergency on the main ac generation side.
Automated speech understanding: the next generation
NASA Astrophysics Data System (ADS)
Picone, J.; Ebel, W. J.; Deshmukh, N.
1995-04-01
Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical models implemented using a complex software paradigm. Such systems are now capable of understanding continuous speech input for vocabularies of several thousand words in operational environments. The current generation of deployed systems, based on small vocabularies of isolated words, will soon be replaced by a new technology offering natural language access to vast information resources such as the Internet, and provide completely automated voice interfaces for mundane tasks such as travel planning and directory assistance.
Highly Reconfigurable Beamformer Stimulus Generator
NASA Astrophysics Data System (ADS)
Vaviļina, E.; Gaigals, G.
2018-02-01
The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.
The 2nd Generation Real Time Mission Monitor (RTMM) Development
NASA Technical Reports Server (NTRS)
Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica;
2009-01-01
The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more efficiently plan, prepare and execute missions, as well as to playback and review past mission data. To paraphrase the old television commercial RTMM doesn t make the airborne science, it makes the airborne science easier.
Design of an intelligent information system for in-flight emergency assistance
NASA Technical Reports Server (NTRS)
Feyock, Stefan; Karamouzis, Stamos
1991-01-01
The present research has as its goal the development of AI tools to help flight crews cope with in-flight malfunctions. The relevant tasks in such situations include diagnosis, prognosis, and recovery plan generation. Investigation of the information requirements of these tasks has shown that the determination of paths figures largely: what components or systems are connected to what others, how are they connected, whether connections satisfying certain criteria exist, and a number of related queries. The formulation of such queries frequently requires capabilities of the second-order predicate calculus. An information system is described that features second-order logic capabilities, and is oriented toward efficient formulation and execution of such queries.
Quiet Short-Haul Research Airplane (QSRA) model select panel functional description
NASA Technical Reports Server (NTRS)
Watson, D. M.
1982-01-01
The QSRA, when equipped with programmable color cathode ray tube displays, a head up display, a general purpose digital computer and a microwave landing system receiver, will provide a capability to do handling qualities studies and terminal area operating systems experiments as well as to enhance an experimenter's ability to obtain repeatable aircraft performance data. The operating systems experiments include the capability to generate minimum fuel approach and departure paths and to conduct precision approaches to a STOLport runway. The mode select panel is designed to provide both the flexibility needed for a variety of flight test experiments and the minimum workload operation required by pilots flying into congested terminal traffic areas.
Compact accelerator for medical therapy
Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.
2010-05-04
A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.
The Laser Communications Relay and the Path to the Next Generation Near Earth Relay
NASA Technical Reports Server (NTRS)
Israel, David J.
2015-01-01
NASA Goddard Space Flight Center is currently developing the Laser Communications Relay Demonstration (LCRD) as a Path to the Next Generation Near Earth Space Communication Network. The current NASA Space Network or Tracking and Data Relay Satellite System is comprised of a constellation of Tracking and Data Relay Satellites (TDRS) in geosynchronous orbit and associated ground stations and operation centers. NASA is currently targeting a next generation of relay capability on orbit in the 2025 timeframe.
NeXOS, developing and evaluating a new generation of insitu ocean observation systems.
NASA Astrophysics Data System (ADS)
Delory, Eric; del Rio, Joaquin; Golmen, Lars; Roar Hareide, Nils; Pearlman, Jay; Rolin, Jean-Francois; Waldmann, Christoph; Zielinski, Oliver
2017-04-01
Ocean biological, chemical or physical processes occur over widely varying scales in space and time: from micro- to kilometer scales, from less than seconds to centuries. While space systems supply important data and information, insitu data is necessary for comprehensive modeling and forecasting of ocean dynamics. Yet, collection of in-situ observation on these scales is inherently challenging and remains generally difficult and costly in time and resources. This paper address the innovations and significant developments for a new generation of insitu sensors in FP7 European Union project "Next generation, Cost- effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management" or "NeXOS" for short. Optical and acoustics sensors are the focus of NeXOS but NeXOS moves beyond just sensors as systems that simultaneously address multiple objectives and applications are becoming increasingly important. Thus NeXOS takes a perspective of both sensors and sensor systems with significant advantages over existing observing capabilities via the implementation of innovations such as multiplatform integration, greater reliability through better antifouling management and greater sensor and data interoperability through use of OGC standards. This presentation will address the sensor system development and field-testing of the new NeXOS sensor systems. This is being done on multiple platforms including profiling floats, gliders, ships, buoys and subsea stations. The implementation of a data system based on SWE and PUCK furthers interoperability across measurements and platforms. This presentation will review the sensor system capabilities, the status of field tests and recommendations for long-term ocean monitoring.
Next Generation CAD/CAM/CAE Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)
1997-01-01
This document contains presentations from the joint UVA/NASA Workshop on Next Generation CAD/CAM/CAE Systems held at NASA Langley Research Center in Hampton, Virginia on March 18-19, 1997. The presentations focused on current capabilities and future directions of CAD/CAM/CAE systems, aerospace industry projects, and university activities related to simulation-based design. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the potential of emerging CAD/CAM/CAE technology for use in intelligent simulation-based design and to provide guidelines for focused future research leading to effective use of CAE systems for simulating the entire life cycle of aerospace systems.
Energy Storage Opportunities and Capabilities in a Type 3 Wind Turbine Generator: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy
Wind power plants and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both governor and/or inertial response) to the grid by a control action; thus, the reduction of available online inertia as conventional power plants are retired can be compensated by designing renewable power plant controls to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation and control strategy chosen. The cost of energy storage is expected to drop over time, and global research activities on energy storage are very active, funded bothmore » by the private industry and governments. Different industry sectors (e.g., transportation, energy) are the major drivers of the recent storage research and development. This work investigates the opportunities and capabilities of deploying energy storage in renewable power plants. In particular, we focus on wind power plants with doubly-fed induction generators, or Type 3 wind turbine generator (WTGs). We find that the total output power of a system with Type 3 WTGs with energy storage can deliver a power boost during inertial response that is up to 45% higher than one without energy storage without affecting the torque limit, thus enabling an effective delivery of ancillary services to the grid.« less
Seminar on Understanding Digital Control and Analysis in Vibration Test Systems, part 2
NASA Technical Reports Server (NTRS)
1975-01-01
A number of techniques for dealing with important technical aspects of the random vibration control problem are described. These include the generation of pseudo-random and true random noise, the control spectrum estimation problem, the accuracy/speed tradeoff, and control correction strategies. System hardware, the operator-system interface, safety features, and operational capabilities of sophisticated digital random vibration control systems are also discussed.
NASA Astrophysics Data System (ADS)
Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji
2016-03-01
Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.
NASA Astrophysics Data System (ADS)
Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel
2015-02-01
Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.
A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji
Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.
Risk Quantification for Sustaining Coastal Military Installation Assets and Mission Capabilities
2014-06-01
Sustaining Coastal Military Assets and 5a. CONTRACT NUMBER Mission Capabilities: Final Technical Report 5b. GRANT NUMBER 6. AUTHOR(S) Burks-Copes...critical assets system wide: 1) Hurricane winds have been generated using the Planetary Boundary Layer (PBL) wind model TC96 (Thompson and Cardone 1996...mean air density, pc is pressure representing the tropical cyclone, CD is the drag coefficient, and h is the depth of the PBL (Thompson and Cardone
Ground-Based Icing Condition Remote Sensing System Definition
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Koenig, George G.
2001-01-01
This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system, it is also recommended that NASA continue to foster the development of Multi-Band Radar and airborne microwave radiometer technologies.
Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements
NASA Technical Reports Server (NTRS)
Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.
2012-01-01
NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.
Geometry and Function Definition for Discrete Analysis and Its Relationship to the Design Data Base.
1977-08-01
clarif y its dependenc e on the design process as a whole . The model generation capabilities of a state—of—the—art structural analysis system ( GIFTS ...a whole. The model generat ion capabilit ies of a state—of—the—art structural analysis system ( GIFTS 4), heav ily oriented toward s pre— and post...independentl y at a later stage. Ii . 1,1 ~1E TP IC HIER.ARCHY ~)F DEFINITION IN GIFTS ‘+ A three-d imensional object , to be designed or analyz ed
Spacecraft configuration study for second generation mobile satellite system
NASA Technical Reports Server (NTRS)
Louie, M.; Vonstentzsch, W.; Zanella, F.; Hayes, R.; Mcgovern, F.; Tyner, R.
1985-01-01
A high power, high performance communicatons satellite bus being developed is designed to satisfy a broad range of multimission payload requirements in a cost effective manner and is compatible with both STS and expendable launchers. Results are presented of tradeoff studies conducted to optimize the second generation mobile satellite system for its mass, power, and physical size. Investigations of the 20-meter antenna configuration, transponder linearization techniques, needed spacecraft modifications, and spacecraft power, dissipation, mass, and physical size indicate that the advanced spacecraft bus is capable of supporting the required payload for the satellite.
NASA Astrophysics Data System (ADS)
Bai, Xian-Xu; Zhong, Wei-Min; Zou, Qi; Zhu, An-Ding; Sun, Jun
2018-07-01
Based on the structural design concept of ‘functional integration’, this paper proposes the principle of a power-generated magnetorheological energy absorber with velocity self-sensing capability (PGMREA), which realizes the integration of controllable damping mechanism and mechanical energy-electrical energy conversion mechanism in structure profile and multiple functions in function profile, including controllable damping, power generation and velocity self-sensing. The controllable damping mechanism consists of an annular gap and a ball screw. The annular gap fulfilled with MR fluid that operates in pure shear mode under controllable electromagnetic field. The rotational damping torque generated from the controllable damping mechanism is translated to a linear damping force via the ball screw. The mechanical energy-electrical energy conversion mechanism is realized by the ball screw and a generator composed of a permanent magnet rotor and a generator stator. The ball screw based mechanical energy-electrical energy conversion mechanism converts the mechanical energy of excitations to electrical energy for storage or directly to power the controllable damping mechanism of the PGMREA. The velocity self-sensing capability of the PGMREA is achieved via signal processing using the mechanical energy-electrical energy conversion information. Based on the principle of the proposed PGMREA, the mathematical model of the PGMREA is established, including the damping force, generated power and self-sensing velocity. The electromagnetic circuit of the PGMREA is simulated and verified via a finite element analysis software ANSYS. The developed PGMREA prototype is experimentally tested on a servo-hydraulic testing system. The model-based predicted results and the experimental results are compared and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epiney, Aaron Simon; Chen, Jun; Rabiti, Cristian
Continued effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year (FY) 2016. The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status of their progress. Several tasks have been accomplished. First, a synthetic time history generator has been developed in RAVEN, which consists of Fourier series and autoregressive moving average model. The former is used to capture the seasonal trend in historical data, while the latter is to characterizemore » the autocorrelation in residue time series (e.g., measurements with seasonal trends subtracted). As demonstration, both synthetic wind speed and grid demand are generated, showing matching statistics with database. In order to build a design and operations optimizer in RAVEN, a new type of sampler has been developed with highly object-oriented design. In particular, simultaneous perturbation stochastic approximation algorithm is implemented. The optimizer is capable to drive the model to optimize a scalar objective function without constraint in the input space, while the constraints handling is a work in progress and will be implemented to improve the optimization capability. Furthermore, a simplified cash flow model of the performance of an NHES in the electric market has been developed in Python and used as external model in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces. Finally, an example calculation is performed that shows the integration and proper data passing in RAVEN of the synthetic time history generator, the cash flow model and the optimizer. It has been shown that the developed Python models external to RAVEN are able to communicate with RAVEN and each other through the newly developed RAVEN capability called “EnsembleModel”.« less
An Economic Analysis of Residential Photovoltaic Systems with and without Energy Storage
NASA Astrophysics Data System (ADS)
Kizito, Rodney
Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of high solar supply but low consumption. This allows the investor to use the stored energy when the cost of conventional utility power is high, while also allowing for excess stored energy to be sold back to the grid. This paper aims to investigate the overall returns for investor's investing in solely PV and ES-based PV systems by using a return of investment (ROI) economic analysis. The analysis is carried out over three scenarios: (1) residence without a PV system or ES, (2) residence with just a PV system, and (3) residence with both a PV system and ES. Due to the variation in solar exposure across the regions of the United States, this paper performs an analysis for eight of the top solar market states separately, accounting for the specific solar generation capabilities of each state. A Microsoft Excel tool is provided for computation of the ROI in scenario 2 and 3. A benefit-cost ration (BCR) is used to depict the annual economic performance of the PV system (scenario 2) and PV + ES system (scenario 3). The tool allows the user to adjust the variables and parameters to satisfy the users' specific investment situation.
DAC-board based X-band EPR spectrometer with arbitrary waveform control
NASA Astrophysics Data System (ADS)
Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi
2013-10-01
We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.
Development of Cryogenic Engine for GSLV MkIII: Technological Challenges
NASA Astrophysics Data System (ADS)
Praveen, RS; Jayan, N.; Bijukumar, KS; Jayaprakash, J.; Narayanan, V.; Ayyappan, G.
2017-02-01
Cryogenic engine capable of delivering 200 kN thrust is being developed for the first time in the country by ISRO for powering the upper stage of GSLV Mk-III, the next generation launch vehicle of ISRO capable of launching four tonne class satellites to Geo-synchronous Transfer Orbit(GTO). Development of this engine started a decade ago when various sub-systems development and testing were taken up. Starting with injector element development, the design, realization and testing of the major sub-systems viz the gas generator, turbopumps, start-up system and thrust chamber have been successfully done in a phased manner before conducting a series of developmental tests in the integrated engine mode. Apart from the major sub-systems, many critical components like the igniter, control components etc were independently developed and qualified. During the development program many challenges were faced in almost all areas of propulsion engineering. Systems engineering of the engine was another key challenge in the realization. This paper gives an outlook on various technological challenges faced in the key areas related to the engine development, insight to the solutions and measures taken to overcome the challenges.
Advanced techniques in reliability model representation and solution
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Nicol, David M.
1992-01-01
The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.
Water electrolysis system refurbishment and testing
NASA Technical Reports Server (NTRS)
Greenough, B. M.
1972-01-01
The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
NASA Astrophysics Data System (ADS)
Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg
2016-04-01
In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.
A spacecraft integrated power/attitude control system
NASA Technical Reports Server (NTRS)
Keckler, C. R.; Jacobs, K. L.
1974-01-01
A study to determine the viability and application of a system capable of performing the dual function of power storage/generation and attitude control has been conducted. Results from the study indicate that an integrated power/attitude control system (IPACS) can satisfy future mission requirements while providing significant savings in weight, volume, and cost over conventional systems. A failure-mode configuration of an IPACS was applied to a shuttle-launched RAM free-flyer and simulated using make-do hardware linked to a hybrid computer. Data from the simulation runs indicate that control interactions resulting from heavy power demands have minimal effect on system control effectiveness. The system was shown to be capable of meeting the stringent pointing requirements of 1 arc-second while operating under the influence of an orbital disturbance environment and during periods of momentum variations imposed by energy transfer requirements.
A Unique Photon Bombardment System for Space Applications
NASA Technical Reports Server (NTRS)
Klein, E. J.
1993-01-01
The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.
Space-based solar power conversion and delivery systems (study), engineering analysis
NASA Technical Reports Server (NTRS)
Nathan, C. A.
1975-01-01
A systems analysis of synchronous, orbit-based power generation and relay systems that could be operational in the 1990's is described along with a comparison with earth-based systems to be operational in the same time frame. Operational and economic requirements for the orbiting systems and near term research activities which will be required to assure feasibility, development, launch and operational capabilities of such systems in the post- 1990 time frame are examined.
Elements of a modern turbomachinery design system
NASA Astrophysics Data System (ADS)
Jennions, Ian K.
1994-05-01
The aerodynamic design system at GE Aircraft Engines (GEAE) consists of many parts: throughflow, secondary flow, geometry generators, blade-to-blade and fully three-dimensional (3D) analysis. This paper describes each of these elements and discusses optimization and computer architecture issues. Emphasis is placed on those areas in which the company is thought to have special capability.
Sequences, Series, and Mathematica.
ERIC Educational Resources Information Center
Mathews, John H.
1992-01-01
Describes how the computer algebra system Mathematica can be used to enhance the teaching of the topics of sequences and series. Examines its capabilities to find exact, approximate, and graphically generated approximate solutions to problems from these topics and to understand proofs about sequences. (MDH)
NASA Technical Reports Server (NTRS)
May, Todd A.
2011-01-01
SLS is a national capability that empowers entirely new exploration for missions of national importance. Program key tenets are safety, affordability, and sustainability. SLS builds on a solid foundation of experience and current capacities to enable a timely initial capability and evolve to a flexible heavy-lift capability through competitive opportunities: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability and performance The road ahead promises to be an exciting journey for present and future generations, and we look forward to working with you to continue America fs space exploration.
Advanced Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Borowski, Stanley K.
2010-01-01
Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust-to-weight ratio. This presentation will discuss potential space fission propulsion options ranging from first generation systems to highly advanced systems. Ongoing research that shows promise for enabling second generation NTP systems with Isp greater than 1000 s will be discussed, as will the potential for liquid, gas, or plasma core systems. Space fission propulsion systems could also be used in conjunction with simple (water-based) propellant depots to enable routine, affordable missions to various destinations (e.g. moon, Mars, asteroids) once in-space infrastructure is sufficiently developed. As fuel and material technologies advance, very high performance Nuclear Electric Propulsion (NEP) systems may also become viable. These systems could enable sophisticated science missions, highly efficient cargo delivery, and human missions to numerous destinations. Commonalities between NTP, fission power systems, and NEP will be discussed.
Spacecraft Data Simulator for the test of level zero processing systems
NASA Technical Reports Server (NTRS)
Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem
1994-01-01
The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Wu, Hongyu; Florita, Anthony R.
The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less
Wang, Qin; Wu, Hongyu; Florita, Anthony R.; ...
2016-11-11
The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1987-01-01
Analysis results for multiple steam generator blow down caused by an auxiliary feedwater steam-line break performed with the RETRAN-02 MOD 003 computer code are presented to demonstrate the capabilities of the RETRAN code to predict system transient response for verifying changes in operational procedures and supporting plant equipment modifications. A typical four-loop Westinghouse pressurized water reactor was modeled using best-estimate versus worst case licensing assumptions. This paper presents analyses performed to evaluate the necessity of implementing an auxiliary feedwater steam-line isolation modification. RETRAN transient analysis can be used to determine core cooling capability response, departure from nucleate boiling ratio (DNBR)more » status, and reactor trip signal actuation times.« less
Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; El-Saidany, Hany A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Voronoi technique was used to calculate the local void ratio distribution of granular materials. It was implemented in an application-oriented image processing and analysis algorithm capable of extracting object edges, separating adjacent particles, obtaining the centroid of each particle, generating Voronoi polygons, and calculating the local void ratio. Details of the algorithm capabilities and features are presented. Verification calculations included performing manual digitization of synthetic images using Oda's method and Voronoi polygon system. The developed algorithm yielded very accurate measurements of the local void ratio distribution. Voronoi tessellation has the advantage, compared to Oda's method, of offering a well-defined polygon generation criterion that can be implemented in an algorithm to automatically calculate local void ratio of particulate materials.
Development of an angle-scanning spectropolarimeter: Preliminary results
NASA Astrophysics Data System (ADS)
Nouri, Sahar A.; Gregory, Don A.; Fuller, Kirk
2018-02-01
A fixed-angle spectropolarimeter capable of measuring the Mueller matrix of particle deposits and conventional optical elements over the 300-1100 nm spectral range has been built, calibrated and extensively tested. A second generation of this instrument is being built which can scan from 0° to near 180° in both scattering angle and sample orientation, enabling studies of the bidirectional Mueller matrices of nanoparticle arrays, atmospheric aerosol deposits, and nano- and microstructured surfaces. This system will also provide a much needed metrology capability for fully characterizing the performance of optical devices and device components from the near-infrared through the medium wave ultraviolet. Experimental results taken using the first generation fixed-angle arrangement will be presented along with the rationale for building the second.
Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.
Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln
2016-02-16
This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton).
A Summary of Actinide Enrichment Technologies and Capability Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Bradley D.; Robinson, Sharon M.
2017-01-01
The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities. This program should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an electromagnetic isotope separation (EMIS) device would have the capability to meet the future needs of the user community for enriched actinides. Themore » EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.« less
Foliage penetration by using 4-D point cloud data
NASA Astrophysics Data System (ADS)
Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.
2012-06-01
Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.
A Design of Finite Memory Residual Generation Filter for Sensor Fault Detection
NASA Astrophysics Data System (ADS)
Kim, Pyung Soo
2017-04-01
In the current paper, a residual generation filter with finite memory structure is proposed for sensor fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite measurements and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noisefree systems. The proposed residual generation filter is specified to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate the capability of the proposed residual generation filter, extensive simulations are performed for the discretized DC motor system with two types of sensor faults, incipient soft bias-type fault and abrupt bias-type fault. In particular, according to diverse noise levels and windows lengths, meaningful simulation results are given for the abrupt bias-type fault.
Smart pitch control strategy for wind generation system using doubly fed induction generator
NASA Astrophysics Data System (ADS)
Raza, Syed Ahmed
A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.
Nuclear Hybrid Energy System Model Stability Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, Michael Scott; Cetiner, Sacit M.; Fugate, David W.
2017-04-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idahomore » National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.« less
NASA Armstrong's Approach to Store Separation Analysis
NASA Technical Reports Server (NTRS)
Acuff, Chris; Bui, Trong
2015-01-01
Presentation will an overview of NASA Armstrong's store separation capabilities and how they have been applied recently. Objective of the presentation is to brief Generation Orbit and other potential partners on NASA Armstrong's store separation capabilities. It will include discussions on the use of NAVSEP and Cart3D, as well as some Python scripting work to perform the analysis, and a short overview of this methodology applied to the Towed Glider Air Launch System. Collaboration with potential customers in this area could lead to funding for the further development of a store separation capability at NASA Armstrong, which would boost the portfolio of engineering expertise at the center.
Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities
NASA Technical Reports Server (NTRS)
Ross, Richard W.
2001-01-01
The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.
Mean Line Pump Flow Model in Rocket Engine System Simulation
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Lavelle, Thomas M.
2000-01-01
A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.
Safe, Affordable, Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Minimal two-sphere model of the generation of fluid flow at low Reynolds numbers.
Leoni, M; Bassetti, B; Kotar, J; Cicuta, P; Cosentino Lagomarsino, M
2010-03-01
Locomotion and generation of flow at low Reynolds number are subject to severe limitations due to the irrelevance of inertia: the "scallop theorem" requires that the system have at least two degrees of freedom, which move in non-reciprocal fashion, i.e. breaking time-reversal symmetry. We show here that a minimal model consisting of just two spheres driven by harmonic potentials is capable of generating flow. In this pump system the two degrees of freedom are the mean and relative positions of the two spheres. We have performed and compared analytical predictions, numerical simulation and experiments, showing that a time-reversible drive is sufficient to induce flow.
Design Optimization of Gas Generator Hybrid Propulsion Boosters
NASA Technical Reports Server (NTRS)
Weldon, Vincent; Phillips, Dwight; Fink, Larry
1990-01-01
A methodology used in support of a study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specific optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.
Optimized random phase only holograms.
Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto
2018-02-15
We propose a simple and efficient technique capable of generating Fourier phase only holograms with a reconstruction quality similar to the results obtained with the Gerchberg-Saxton (G-S) algorithm. Our proposal is to use the traditional G-S algorithm to optimize a random phase pattern for the resolution, pixel size, and target size of the general optical system without any specific amplitude data. This produces an optimized random phase (ORAP), which is used for fast generation of phase only holograms of arbitrary amplitude targets. This ORAP needs to be generated only once for a given optical system, avoiding the need for costly iterative algorithms for each new target. We show numerical and experimental results confirming the validity of the proposal.
Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.
NASA Technical Reports Server (NTRS)
Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.
1990-01-01
The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.
Usage of Multi-Mission Radioisotope Thermoelectric Generators (MMRTGs) for Future Potential Missions
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.; Cairns-Gallimore, Dirk; Otting, Bill; Johnson, Steve; Woerner, Dave
2016-01-01
The goal of NASAs Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), evaluates the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This presentation focuses on the needs of the mission community and provides users a better understanding of how to integrate the MMRTG (Multi-Mission Radioisotope Thermoelectric Generator).
Generative Representations for Computer-Automated Design Systems
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
With the increasing computational power of Computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design programs is the representation with which they encode designs. If the representation cannot encode a certain design, then the design program cannot produce it. Similarly, a poor representation makes some types of designs extremely unlikely to be created. Here we define generative representations as those representations which can create and reuse organizational units within a design and argue that reuse is necessary for design systems to scale to more complex and interesting designs. To support our argument we describe GENRE, an evolutionary design program that uses both a generative and a non-generative representation, and compare the results of evolving designs with both types of representations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessette, Norman
The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portablemore » generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.« less
The JPL telerobotic Manipulator Control and Mechanization (MCM) subsystem
NASA Technical Reports Server (NTRS)
Hayati, Samad; Lee, Thomas S.; Tso, Kam; Backes, Paul; Kan, Edwin; Lloyd, J.
1989-01-01
The Manipulator Control and Mechanization (MCM) subsystem of the telerobot system provides the real-time control of the robot manipulators in autonomous and teleoperated modes and real time input/output for a variety of sensors and actuators. Substantial hardware and software are included in this subsystem which interfaces in the hierarchy of the telerobot system with the other subsystems. The other subsystems are: run time control, task planning and reasoning, sensing and perception, and operator control subsystem. The architecture of the MCM subsystem, its capabilities, and details of various hardware and software elements are described. Important improvements in the MCM subsystem over the first version are: dual arm coordinated trajectory generation and control, addition of integrated teleoperation, shared control capability, replacement of the ultimate controllers with motor controllers, and substantial increase in real time processing capability.
Lightweight Trauma Module - LTM
NASA Technical Reports Server (NTRS)
Hatfield, Thomas
2008-01-01
Current patient movement items (PMI) supporting the military's Critical Care Air Transport Team (CCATT) mission as well as the Crew Health Care System for space (CHeCS) have significant limitations: size, weight, battery duration, and dated clinical technology. The LTM is a small, 20 lb., system integrating diagnostic and therapeutic clinical capabilities along with onboard data management, communication services and automated care algorithms to meet new Aeromedical Evacuation requirements. The Lightweight Trauma Module is an Impact Instrumentation, Inc. project with strong Industry, DoD, NASA, and Academia partnerships aimed at developing the next generation of smart and rugged critical care tools for hazardous environments ranging from the battlefield to space exploration. The LTM is a combination ventilator/critical care monitor/therapeutic system with integrated automatic control systems. Additional capabilities are provided with small external modules.
The feasibility study for electronic imaging system with the photoheliograph
NASA Technical Reports Server (NTRS)
Svensson, E. L.; Schaff, F. L.
1972-01-01
The development of the electronic subsystems used for the photoheliograph and its application for a high resolution study of the sun are discussed. Basic considerations are as follows: (1) determination of characteristics of solar activity within the spectral response of the photoheliograph, (2) determination of the space vehicles capable of carrying the photoheliograph, (3) analysis of the capability of the ground based data gathering network to assimilate the generated information, and (4) the characteristics of the photoheliograph and the associated spectral filters.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi
2010-01-01
The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
NASA Astrophysics Data System (ADS)
Worrall, Michael Jason
One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the uranium dioxide TRISO particles, and the moderating material is changed from beryllium oxide to graphite. These changes result in an increased core size, but the same long-term power generation potential is achieved. Additionally, small amounts of erbium are added to the hydride matrix to further extend core lifetime.
A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics
NASA Technical Reports Server (NTRS)
Gorospe, George E., Jr.; Kulkarni, Chetan S.
2017-01-01
This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.
Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model
Joshi, Chaitanya; Irish, Elinor K.; Spiller, Timothy P.
2017-01-01
Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities. PMID:28358025
MODELS-3/CMAQ APPLICATIONS WHICH ILLUSTRATE CAPABILITY AND FUNCTIONALITY
The Models-3/CMAQ developed by the U.S. Environmental Protections Agency (USEPA) is a third generation multiscale, multi-pollutant air quality modeling system within a high-level, object-oriented computer framework (Models-3). It has been available to the scientific community ...
Collecting Unsolicited User-Generated Change Requests
2015-12-01
change requests, although the core principles of the steps apply equally to non- software change requests ( Champagne and April, 2014:pp 6-9). The...Capabilities Integration and Development System (JCIDS). JCIDS Manual. Washington: CJCS, 12 February 2015. Champagne , Roger and Alain April. “Software
Optical Characterization Laboratory | Energy Systems Integration Facility |
Laboratory offers the following capabilities. Solar Thermal Calibration The Optical Characterization collectors for solar thermal energy generation to enable the study of increasingly stable (less intermittent Characterization Laboratory's environmental characterization hub offers high-temperature/humidity thermal chambers
Certification Considerations for Adaptive Systems
NASA Technical Reports Server (NTRS)
Bhattacharyya, Siddhartha; Cofer, Darren; Musliner, David J.; Mueller, Joseph; Engstrom, Eric
2015-01-01
Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach.
Rapid solution of large-scale systems of equations
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony; Wieseman, Carol; Hoadley, Sherwood Tiffany; Mukhopadhyay, Vivek
1991-01-01
Described here is the development and implementation of on-line, near real time controller performance evaluation (CPE) methods capability. Briefly discussed are the structure of data flow, the signal processing methods used to process the data, and the software developed to generate the transfer functions. This methodology is generic in nature and can be used in any type of multi-input/multi-output (MIMO) digital controller application, including digital flight control systems, digitally controlled spacecraft structures, and actively controlled wind tunnel models. Results of applying the CPE methodology to evaluate (in near real time) MIMO digital flutter suppression systems being tested on the Rockwell Active Flexible Wing (AFW) wind tunnel model are presented to demonstrate the CPE capability.
Man-vehicle systems research facility: Design and operating characteristics
NASA Technical Reports Server (NTRS)
1983-01-01
The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.
Trial Maneuver Generation and Selection in the Paladin Tactical Decision Generation System
NASA Technical Reports Server (NTRS)
Chappell, Alan R.; McManus, John W.; Goodrich, Kenneth H.
1992-01-01
To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the "best" maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.
Trial maneuver generation and selection in the Paladin tactical decision generation system
NASA Technical Reports Server (NTRS)
Chappell, Alan R.; Mcmanus, John W.; Goodrich, Kenneth H.
1993-01-01
To date, increased levels of maneuverability and controllability in aircraft have been postulated as tactically advantageous, but little research has studied maneuvers or tactics that make use of these capabilities. In order to help fill this void, a real-time tactical decision generation system for air combat engagements, Paladin, has been developed. Paladin models an air combat engagement as a series of discrete decisions. A detailed description of Paladin's decision making process is presented. This includes the sources of data used, methods of generating reasonable maneuvers for the Paladin aircraft, and selection criteria for choosing the 'best' maneuver. Simulation results are presented that show Paladin to be relatively insensitive to errors introduced into the decision process by estimation of future positional and geometric data.
MAPGEN Planner: Mixed-Initiative Activity Planning for the Mars Exploration Rover Mission
NASA Technical Reports Server (NTRS)
Ai-Chang, Mitch; Bresina, John; Charest, Leonard; Hsu, Jennifer; Jonsson, Ari K.; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey
2003-01-01
This document describes the Mixed-initiative Activity Plan Generation system MAPGEN. The system is be- ing developed as one of the tools to be used during surface operations of NASA's Mars Exploration Rover mission (MER). However, the core technology is general and can be adapted to different missions and applications. The motivation for the system is to better support users that need to rapidly build activity plans that have to satisfy complex rules and fit within resource limits. The system therefore combines an existing tool for activity plan editing and resource modeling, with an advanced constraint-based reasoning and planning framework. The demonstration will show the key capabilities of the automated reasoning and planning component of the system, with emphasis on how these capabilities will be used during surface operations of the MER mission.
Hybrid membrane--PSA system for separating oxygen from air
Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA
2011-01-25
A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.
Archiving Software Systems: Approaches to Preserve Computational Capabilities
NASA Astrophysics Data System (ADS)
King, T. A.
2014-12-01
A great deal of effort is made to preserve scientific data. Not only because data is knowledge, but it is often costly to acquire and is sometimes collected under unique circumstances. Another part of the science enterprise is the development of software to process and analyze the data. Developed software is also a large investment and worthy of preservation. However, the long term preservation of software presents some challenges. Software often requires a specific technology stack to operate. This can include software, operating systems and hardware dependencies. One past approach to preserve computational capabilities is to maintain ancient hardware long past its typical viability. On an archive horizon of 100 years, this is not feasible. Another approach to preserve computational capabilities is to archive source code. While this can preserve details of the implementation and algorithms, it may not be possible to reproduce the technology stack needed to compile and run the resulting applications. This future forward dilemma has a solution. Technology used to create clouds and process big data can also be used to archive and preserve computational capabilities. We explore how basic hardware, virtual machines, containers and appropriate metadata can be used to preserve computational capabilities and to archive functional software systems. In conjunction with data archives, this provides scientist with both the data and capability to reproduce the processing and analysis used to generate past scientific results.
NASA Astrophysics Data System (ADS)
Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.
2017-02-01
Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.
Optical Imaging and Radiometric Modeling and Simulation
NASA Technical Reports Server (NTRS)
Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.
2010-01-01
OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge diffusion modulation transfer function (MTF).
Entry System Design Considerations for Mars Landers
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae; Powell, Richard W.; Graves, Claude A.; Carman, Gilbert L.
2001-01-01
The objective for the next generation or Mars landers is to enable a safe landing at specific locations of scientific interest. The 1st generation entry, descent and landing systems, ex. Viking and Pathfinder, provided successful landing on Mars but by design were limited to large scale, 100s of km, landing sites with minimal local hazards. The 2 nd generation landers, or smart landers, will provide scientists with access to previously unachievable landing sites by providing precision landing to less than 10 km of a target landing site, with the ability to perform local hazard avoidance, and provide hazard tolerance. This 2nd generation EDL system can be utilized for a range of robotic missions with vehicles sized for science payloads from the small 25-70 kg, Viking, Pathfinder, Mars Polar Lander and Mars Exploration Rover-class, to the large robotic Mars Sample Return, 300 kg plus, science payloads. The 2nd generation system can also be extended to a 3nd generation EDL system with pinpoint landing, 10's of meters of landing accuracy, for more capable robotic or human missions. This paper will describe the design considerations for 2nd generation landers. These landers are currently being developed by a consortium of NASA centers, government agencies, industry and academic institutions. The extension of this system and additional considerations required for a 3nd generation human mission to Mars will be described.
NASA Technical Reports Server (NTRS)
Kadlec, E. G.
1979-01-01
The developing Darrieus VAWT technology whose ultimate objective is economically feasible, industry-produced, commercially marketed wind energy systems is reviewed. First-level aerodynamic, structural, and system analyses capabilities which support and evaluate the system designs are discussed. The characteristics of current technology designs are presented and their cost effectiveness is assessed. Potential improvements identified are also presented along with their cost benefits.
Security Controls in the Stockpoint Logistics Integrated Communications Environment (SPLICE).
1985-03-01
call programs as authorized after checks by the Terminal Management Subsystem on SAS databases . SAS overlays the TANDEM GUARDIAN operating system to...Security Access Profile database (SAP) and a query capability generating various security reports. SAS operates with the System Monitor (SMON) subsystem...system to DDN and other components. The first SAS component to be reviewed is the SAP database . SAP is organized into two types of files. Relational
Capability-Based Modeling Methodology: A Fleet-First Approach to Architecture
2014-02-01
reconnaissance (ISR) aircraft , or unmanned systems . Accordingly, a mission architecture used to model SAG operations for a given Fleet unit should include all...would use an ISR aircraft to increase fidelity of a targeting solution; another mission thread to show how unmanned systems can augment targeting... unmanned systems . Therefore, an architect can generate, from a comprehensive SAG mission architecture, individual mission threads that model how a SAG
The development of Nb-based advanced intermetallic alloys for structural applications
NASA Astrophysics Data System (ADS)
Subramanian, P. R.; Mendiratta, M. G.; Dimiduk, D. M.
1996-01-01
A new generation of refractory material systems with significant increases in temperature capability is required to meet the demands of future aerospace applications. Such materials require a balance of properties such as low-temperature damage tolerance, high-temperature strength, creep resistance, and superior environmental stability for implementation in advanced aerospace systems. Systems incorporating niobium-based beta alloys and intermetallic compounds have the potential for meeting these requirements.
NASA Astrophysics Data System (ADS)
Palmintier, Bryan S.
This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or strict carbon policies. Operational flexibility describes a power system's ability to respond to predictable and unexpected changes in generation or demand. Planning and policy models have traditionally not directly captured the technical operating constraints that determine operational flexibility. However, as demonstrated in this dissertation, this capability becomes increasingly important with the greater flexibility required by significant renewables (>= 20%) and the decreased flexibility inherent in some low-carbon generation technologies. Incorporating flexibility can significantly change optimal generation and energy mixes, lower system costs, improve policy impact estimates, and enable system designs capable of meeting strict regulatory targets. Methodologically, this work presents a new clustered formulation that tractably combines a range of normally distinct power system models, from hourly unit-commitment operations to long-term generation planning. This formulation groups similar generators into clusters to reduce problem size, while still retaining the individual unit constraints required to accurately capture operating reserves and other flexibility drivers. In comparisons against traditional unit commitment formulations, errors were generally less than 1% while run times decreased by several orders of magnitude (e.g., 5000x). Extensive numerical simulations, using a realistic Texas-based power system show that ignoring flexibility can underestimate carbon emissions by 50% or result in significant load and wind shedding to meet environmental regulations. Contributions of this dissertation include: 1. Demonstrating that operational flexibility can have an important impact on power system planning, and describing when and how these impacts occur; 2. Demonstrating that a failure to account for operational flexibility can result in undesirable outcomes for both utility planners and policy analysts; and 3. Extending the state of the art for electric power system models by introducing a tractable method for incorporating unit commitment based operational flexibility at full 876o hourly resolution directly into planning optimization. Together these results encourage and offer a new flexibility-aware approach for capacity planning and accompanying policy design that can enable cleaner, less expensive electric power systems for the future. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Next Generation NASA Initiative for Space Geodesy
NASA Technical Reports Server (NTRS)
Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.;
2012-01-01
Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.
INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peet M. Soot; Dale R. Jesse; Michael E. Smith
2005-08-01
An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.« less
Letter to the Editor on 'Single-Arc IMRT?'.
Otto, Karl
2009-04-21
In the note 'Single Arc IMRT?' (Bortfeld and Webb 2009 Phys. Med. Biol. 54 N9-20), Bortfeld and Webb present a theoretical investigation of static gantry IMRT (S-IMRT), single-arc IMRT and tomotherapy. Based on their assumptions they conclude that single-arc IMRT is inherently limited in treating complex cases without compromising delivery efficiency. Here we present an expansion of their work based on the capabilities of the Varian RapidArc single-arc IMRT system. Using the same theoretical framework we derive clinically deliverable single-arc IMRT plans based on these specific capabilities. In particular, we consider the range of leaf motion, the ability to rapidly and continuously vary the dose rate and the choice of collimator angle used for delivery. In contrast to the results of Bortfeld and Webb, our results show that single-arc IMRT plans can be generated that closely match the theoretical optimum. The disparity in the results of each investigation emphasizes that the capabilities of the delivery system, along with the ability of the optimization algorithm to exploit those capabilities, are of particular importance in single-arc IMRT. We conclude that, given the capabilities available with the RapidArc system, single-arc IMRT can produce complex treatment plans that are delivered efficiently (in approximately 2 min).
Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-06-04
We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.
A hybrid mobile-based patient location tracking system for personal healthcare applications.
Chew, S H; Chong, P A; Gunawan, E; Goh, K W; Kim, Y; Soh, C B
2006-01-01
In the next generation of Infocommunications, mobile Internet-enabled devices and third generation mobile communication networks have become reality, location based services (LBS) are expected to be a major area of growth. Providing information, content and services through positioning technologies forms the platform for new services for users and developers, as well as creating new revenue channels for service providers. These crucial advances in location based services have opened up new opportunities in real time patient tracking for personal healthcare applications. In this paper, a hybrid mobile-based location technique using the global positioning system (GPS) and cellular mobile network infrastructure is employed to provide the location tracking capability. This function will be integrated into the patient location tracking system (PLTS) to assist caregivers or family members in locating patients such as elderly or dependents when required, especially in emergencies. The capability of this PLTS is demonstrated through a series of location detection tests conducted over different operating conditions. Although the model is at its initial stage of development, it has shown relatively good accuracy for position tracking and potential of using integrated wireless technology to enhance the existing personal healthcare communication system through location based services.
NASA Technical Reports Server (NTRS)
Sawyer, Kevin; Jacobsen, Robert; Aiken, Edwin W. (Technical Monitor)
1995-01-01
NASA Ames Research Center and the US Army are developing the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) using a Sikorsky UH-60 helicopter for the purpose of flight systems research. A primary use of the RASCAL is in-flight simulation for which the visual scene will use computer generated imagery and synthetic vision. This research is made possible in part to a full color wide field of view Helmet Mounted Display (HMD) system that provides high performance color imagery suitable for daytime operations in a flight-rated package. This paper describes the design and performance characteristics of the HMD system. Emphasis is placed on the design specifications, testing, and integration into the aircraft of Kaiser Electronics' RASCAL HMD system that was designed and built under contract for NASA. The optical performance and design of the Helmet mounted display unit will be discussed as well as the unique capabilities provided by the system's Programmable Display Generator (PDG).
Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)
NASA Technical Reports Server (NTRS)
Christhilf, David m.; Bacon, Barton J.
2006-01-01
The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.
US Navy SHF SATCOM: Past, present and future
NASA Astrophysics Data System (ADS)
Bushnell, Christopher J.
1994-06-01
This thesis discusses the Navy's Super High Frequency Satellite Communications (SHF SATCOM) capabilities prior to Desert Shield/Desert Storm, and the requirements for future systems that were generated due to Navy SATCOM shortcomings during the Gulf War. The four-phased evolutionary approach the Navy has designed (based on post-war requirements) to provide itself with a medium for SHF SATCOM into the 21st Century, as well as the Defense Satellite Communications Systems (DSCS), are examined in detail. Decreasing defense budgets have begun to have a significant impact on future military satellite communication (MILSATCOM) systems. A cost comparison between utilization of DSCS III satellites and the INMARSAT commercial SATCOM system is presented. Recommended improvements to current MILSATCOM procedures and training practices are proposed that could improve operational C4I capabilities. Finally, this study determines that future SATCOM architectures should include a mixture of commercial systems and MILSATCOM systems to provide both cost savings and command and control protection.
Solar Thermoelectricity via Advanced Latent Heat Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.
2016-05-31
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less
Solar thermoelectricity via advanced latent heat storage
NASA Astrophysics Data System (ADS)
Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.
2016-05-01
We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.
Establishing a Cyber Warrior Force
2004-09-01
Cyber Warfare is widely touted to be the next generation of warfare. As America’s reliance on automated systems and information technology increases...so too does the potential vulnerability to cyber attack. Nation and non-nation states are developing the capability to wage cyber warfare . Historically
Connecting, Protecting, and Informing the Next Generation of First Responders
2015-12-10
SLED is the Bluetooth Indoor Proximity System (BLIPS) that uses beacons to track first responders’ progress through indoor spaces. As first...Outfitting BLIPS with Bluetooth and Wi-Fi capability became a learning experience for two co- operative education students from Rensselaer Polytechnic
Building biochips: a protein production pipeline
NASA Astrophysics Data System (ADS)
de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.
2004-06-01
Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.
Stochastic simulation of power systems with integrated renewable and utility-scale storage resources
NASA Astrophysics Data System (ADS)
Degeilh, Yannick
The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i.e., respond to quick variations in the loads and renewable resource outputs in a manner that maintains the power balance, by incorporating appropriate ramping requirement constraints in the formulation of the SOP. The simulation approach makes use of Monte Carlo simulation techniques to represent the impacts of the sources of uncertainty on the side-by-side power system and market operations. As such, we systematically sample the "input'' random processes -- namely the buyer demands, renewable resource outputs and conventional generation resource available capacities -- to generate the realizations, or sample paths, that we use in the emulation of the transmission-constrained day-ahead markets via SOP . As a result, we obtain realizations of the market outcomes and storage resource operations that we can use to approximate their statistics. The approach not only has the capability to emulate the side-by-side power system and energy market operations with the explicit representation of the chronology of time-dependent phenomena -- including storage cycles of charge/discharge -- and constraints imposed by the transmission network in terms of deliverability of the energy, but also to provide the figures of merit for all metrics to assess the economics, reliability and the environmental impacts of the performance of those operations. Our efforts to address the implementational aspects of the methodology so as to ensure computational tractability for large-scale systems over longer periods include relaxing the SOP, the use of a "warm-start'' technique as well as representative simulation periods, parallelization and variance reduction techniques. Our simulation approach is useful in power system planning, operations and investment analysis. There is a broad range of applications of the simulation methodology to resource planning studies, production costing issues, investment analysis, transmission utilization, reliability analysis, environmental assessments, policy formulation and to answer quantitatively various what-if questions. We demonstrate the capabilities of the simulation approach by carrying out various studies on modified IEEE 118- and WECC 240-bus systems. The results of our representative case studies effectively illustrate the synergies among wind and ESRs. Our investigations clearly indicate that energy storage and wind resources tend to complement each other in the reduction of wholesale purchase payments in the DAMs and the improvement of system reliability. In addition, we observe that CO2 emission impacts with energy storage depend on the resource mix characteristics. An important finding is that storage seems to attenuate the "diminishing returns'' associated with increased penetration of wind generation. Our studies also evidence the limited ability of integrated ESRs to enhance the wind resource capability to replace conventional resources from purely a system reliability perspective. Some useful insights into the siting of ESRs are obtained and they indicate the potentially significant impacts of such decisions on the network congestion patterns and, consequently, on the LMPs. Simulation results further indicate that the explicit representation of ramping requirements on the conventional units at the DAM level causes the expected total wholesale purchase payments to increase, thereby mitigating the benefits of wind integration. The stricter ramping requirements are also shown to impact the revenues of generators that do not even provide any ramp capability services.
Centrifugal and Axial Pump Design and Off-Design Performance Prediction
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1995-01-01
A meanline pump-flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump-flow code PUMPA was written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design-point rotor efficiency and slip factors are obtained from empirical correlations to rotor-specific speed and geometry. The pump code can model axial, inducer, mixed-flow, and centrifugal pumps and can model multistage pumps in series. The rapid input setup and computer run time for this meanline pump flow code make it an effective analysis and conceptual design tool. The map-generation capabilities of the code provide the information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of PUMPA permit the user to do parametric design space exploration of candidate pump configurations and to provide head-flow maps for engine system evaluation.
Computer-automated silica aerosol generator and animal inhalation exposure system
McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G.
2015-01-01
Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20mg/m3, for durations lasting up to 8h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m3 of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles. PMID:23796015
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor)
2003-01-01
A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.
NASA Astrophysics Data System (ADS)
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
A second generation 50 Mbps VLSI level zero processing system prototype
NASA Technical Reports Server (NTRS)
Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby
1994-01-01
Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.
NASA Technical Reports Server (NTRS)
Generazio, Edward R. (Inventor)
2012-01-01
A method of validating a probability of detection (POD) testing system using directed design of experiments (DOE) includes recording an input data set of observed hit and miss or analog data for sample components as a function of size of a flaw in the components. The method also includes processing the input data set to generate an output data set having an optimal class width, assigning a case number to the output data set, and generating validation instructions based on the assigned case number. An apparatus includes a host machine for receiving the input data set from the testing system and an algorithm for executing DOE to validate the test system. The algorithm applies DOE to the input data set to determine a data set having an optimal class width, assigns a case number to that data set, and generates validation instructions based on the case number.
Object-oriented knowledge representation for expert systems
NASA Technical Reports Server (NTRS)
Scott, Stephen L.
1991-01-01
Object oriented techniques have generated considerable interest in the Artificial Intelligence (AI) community in recent years. This paper discusses an approach for representing expert system knowledge using classes, objects, and message passing. The implementation is in version 4.3 of NASA's C Language Integrated Production System (CLIPS), an expert system tool that does not provide direct support for object oriented design. The method uses programmer imposed conventions and keywords to structure facts, and rules to provide object oriented capabilities.
Satellite and Missile Data Generation for AIS.
1979-12-01
8217..lI SATELLITE AND MISSILE DATA SGENERATION FOR AIS Operating Systems, Inc. S Dr. Georgette M4. T. Silva Dr. Christine A. Montgomery APPROVED FOR PUBLIC...Same " UNCLASSIFIEDSame S .. DECLASSIFI CATION DOWNGRADING N/ASCH E D ULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release...provislon.of adequate system control. 1-6 1.2.2 Current Capabilities of 031’ s Message Text Processing System. The OSI message text analysis system has the
Advanced optical components for next-generation photonic networks
NASA Astrophysics Data System (ADS)
Yoo, S. J. B.
2003-08-01
Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.
10 Steps to Building an Architecture for Space Surveillance Projects
NASA Astrophysics Data System (ADS)
Gyorko, E.; Barnhart, E.; Gans, H.
Space surveillance is an increasingly complex task, requiring the coordination of a multitude of organizations and systems, while dealing with competing capabilities, proprietary processes, differing standards, and compliance issues. In order to fully understand space surveillance operations, analysts and engineers need to analyze and break down their operations and systems using what are essentially enterprise architecture processes and techniques. These techniques can be daunting to the first- time architect. This paper provides a summary of simplified steps to analyze a space surveillance system at the enterprise level in order to determine capabilities, services, and systems. These steps form the core of an initial Model-Based Architecting process. For new systems, a well defined, or well architected, space surveillance enterprise leads to an easier transition from model-based architecture to model-based design and provides a greater likelihood that requirements are fulfilled the first time. Both new and existing systems benefit from being easier to manage, and can be sustained more easily using portfolio management techniques, based around capabilities documented in the model repository. The resulting enterprise model helps an architect avoid 1) costly, faulty portfolio decisions; 2) wasteful technology refresh efforts; 3) upgrade and transition nightmares; and 4) non-compliance with DoDAF directives. The Model-Based Architecting steps are based on a process that Harris Corporation has developed from practical experience architecting space surveillance systems and ground systems. Examples are drawn from current work on documenting space situational awareness enterprises. The process is centered on DoDAF 2 and its corresponding meta-model so that terminology is standardized and communicable across any disciplines that know DoDAF architecting, including acquisition, engineering and sustainment disciplines. Each step provides a guideline for the type of data to collect, and also the appropriate views to generate. The steps include 1) determining the context of the enterprise, including active elements and high level capabilities or goals; 2) determining the desired effects of the capabilities and mapping capabilities against the project plan; 3) determining operational performers and their inter-relationships; 4) building information and data dictionaries; 5) defining resources associated with capabilities; 6) determining the operational behavior necessary to achieve each capability; 7) analyzing existing or planned implementations to determine systems, services and software; 8) cross-referencing system behavior to operational behavioral; 9) documenting system threads and functional implementations; and 10) creating any required textual documentation from the model.
Advanced Aerospace Materials by Design
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu
2004-01-01
The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.
Driving imaging and overlay performance to the limits with advanced lithography optimization
NASA Astrophysics Data System (ADS)
Mulkens, Jan; Finders, Jo; van der Laan, Hans; Hinnen, Paul; Kubis, Michael; Beems, Marcel
2012-03-01
Immersion lithography is being extended to 22-nm and even below. Next to generic scanner system improvements, application specific solutions are needed to follow the requirements for CD control and overlay. Starting from the performance budgets, this paper discusses how to improve (in volume manufacturing environment) CDU towards 1-nm and overlay towards 3-nm. The improvements are based on deploying the actuator capabilities of the immersion scanner. The latest generation immersion scanners have extended the correction capabilities for overlay and imaging, offering freeform adjustments of lens, illuminator and wafer grid. In order to determine the needed adjustments the recipe generation per user application is based on a combination wafer metrology data and computational lithography methods. For overlay, focus and CD metrology we use an angle resolved optical scatterometer.
NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.
Methodology for Conducting Analyses of Army Capabilities
1992-06-01
31 Determine Sensitivity of Operations to Functions ........................ 34 Generate Capability Issues ...40 Package and Prioritize Issues ..................................... 40 IDENTIFY AND ASSESS CAPABILITY IMPROVEMENTS .................. 43 Generate...identify critical issues , and make force modernization recommendations to Headquarters, Depart- ment of the Army (HQDA). The work described in this report
Eckart, J Dana; Sobral, Bruno W S
2003-01-01
The emergent needs of the bioinformatics community challenge current information systems. The pace of biological data generation far outstrips Moore's Law. Therefore, a gap continues to widen between the capabilities to produce biological (molecular and cell) data sets and the capability to manage and analyze these data sets. As a result, Federal investments in large data set generation produces diminishing returns in terms of the community's capabilities of understanding biology and leveraging that understanding to make scientific and technological advances that improve society. We are building an open framework to address various data management issues including data and tool interoperability, nomenclature and data communication standardization, and database integration. PathPort, short for Pathogen Portal, employs a generic, web-services based framework to deal with some of the problems identified by the bioinformatics community. The motivating research goal of a scalable system to provide data management and analysis for key pathosystems, especially relating to molecular data, has resulted in a generic framework using two major components. On the server-side, we employ web-services. On the client-side, a Java application called ToolBus acts as a client-side "bus" for contacting data and tools and viewing results through a single, consistent user interface.
Reconfigurable metasurface aperture for security screening and microwave imaging
NASA Astrophysics Data System (ADS)
Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.
2017-05-01
Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Diana L.; Costello, Ronan; Babarit, Aurelien
Capabilities and functions are hierarchical structures (i.e. taxonomies) that are used in a systems engineering framework to identify complimentary requirements for the system: what the system must do to achieve what it must be. In the case of capabilities, the taxonomy embodies the list of characteristics that are desired, from the perspective of the stakeholders, for the system to be successful. In terms of the functions, the hierarchy represents the solution agnostic (i.e. independent of specific design embodiments) elements that are needed to meet the stakeholder requirements. This paper will focus on the development of the functions. The functions definemore » the fundamental elements of the solution that must be provided in order to achieve the mission and deliver the capabilities. They identify the behaviors the farm must possess, i.e. the farm must be able to generate and deliver electricity from wave power. High-level functions are independent of the technology or design used to implement the function. However, detailed functions may begin to border on specific design choices. Hence a strong effort has been made to maintain functions that are design agnostic.« less
Bae, Sam Y; Korniski, Ronald J; Shearn, Michael; Manohara, Harish M; Shahinian, Hrayr
2017-01-01
High-resolution three-dimensional (3-D) imaging (stereo imaging) by endoscopes in minimally invasive surgery, especially in space-constrained applications such as brain surgery, is one of the most desired capabilities. Such capability exists at larger than 4-mm overall diameters. We report the development of a stereo imaging endoscope of 4-mm maximum diameter, called Multiangle, Rear-Viewing Endoscopic Tool (MARVEL) that uses a single-lens system with complementary multibandpass filter (CMBF) technology to achieve 3-D imaging. In addition, the system is endowed with the capability to pan from side-to-side over an angle of [Formula: see text], which is another unique aspect of MARVEL for such a class of endoscopes. The design and construction of a single-lens, CMBF aperture camera with integrated illumination to generate 3-D images, and the actuation mechanism built into it is summarized.
NASA's Space Launch System (SLS): A New National Capability
NASA Technical Reports Server (NTRS)
May, Todd A.
2012-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.
Behavioral personal digital assistants: The seventh generation of computing
Stephens, Kenneth R.; Hutchison, William R.
1992-01-01
Skinner (1985) described two divergent approaches to developing computer systems that would behave with some approximation to intelligence. The first approach, which corresponds to the mainstream of artificial intelligence and expert systems, models intelligence as a set of production rules that incorporate knowledge and a set of heuristics for inference and symbol manipulation. The alternative is a system that models the behavioral repertoire as a network of associations between antecedent stimuli and operants, and adapts when supplied with reinforcement. The latter approach is consistent with developments in the field of “neural networks.” The authors describe how an existing adaptive network software system, based on behavior analysis and developed since 1983, can be extended to provide a new generation of software systems capable of acquiring verbal behavior. This effort will require the collaboration of the academic and commercial sectors of the behavioral community, but the end result will enable a generational change in computer systems and support for behavior analytic concepts. PMID:22477053
Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei
2012-05-20
We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.
Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera
2010-01-01
A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2008-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
NASA Technical Reports Server (NTRS)
Kraft, C. C., Jr.
1977-01-01
A satellite based energy concept is described, including the advantages of the basic concept, system characteristics, cost, and environmental considerations. An outline of a plan for the further evaluation and implementation of the system is given. It is concluded that the satellite concept is competitive with other advanced power generation systems when a variety of factors are considered, including technical feasibility, cost, safety, natural resources, environment, baseload capability, location flexibility, land use, and existing industrial base for implementation.
Air ion exposure system for plants
NASA Technical Reports Server (NTRS)
Morrow, R. C.; Tibbitts, T. W.
1987-01-01
A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.
The Human-Electronic Crew: Can We Trust The Team?
1995-12-19
operates. Our source for generating and evaluating system design belief in the need for this capability has only grown requirements. In this effort, we...Requirements (Air), Ministry of Defence, UK. SESSION I - MISSION SYSTEMS Synopsis 5 Development and Evaluation of the AH - 1W Supercockpit. 6 by...and we cannot expect a sudden change in the way we go about our business. 4 SESSION I - MISSION SYSTEMS PAPER REFERENCE Development and Evaluation
Air ion exposure system for plants.
Morrow, R C; Tibbitts, T W
1987-02-01
A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.
High average power diode pumped solid state laser
NASA Astrophysics Data System (ADS)
Gao, Yue; Wang, Yanjie; Chan, Amy; Dawson, Murray; Greene, Ben
2017-03-01
A new generation of high average power pulsed multi-joule solid state laser system has been developed at EOS Space Systems for various space related tracking applications. It is a completely diode pumped, fully automated multi-stage system consisting of a pulsed single longitudinal mode oscillator, three stages of pre-amplifiers, two stages of power amplifiers, completely sealed phase conjugate mirror or stimulated Brillouin scattering (SBS) cell and imaging relay optics with spatial filters in vacuum cells. It is capable of generating pulse energy up to 4.7 J, a beam quality M 2 ~ 3, pulse width between 10-20 ns, and a pulse repetition rate between 100-200 Hz. The system has been in service for more than two years with excellent performance and reliability.
DOT National Transportation Integrated Search
2017-11-01
With the emergence of data generated from connected vehicles, connected travelers, and connected infrastructure, the capabilities of traffic management systems or centers (TMCs) will need to be improved to allow agencies to compile and benefit from u...
Laboratory 15 kV high voltage solar array facility
NASA Technical Reports Server (NTRS)
Kolecki, J. C.; Gooder, S. T.
1976-01-01
The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.
Teleoperation with virtual force feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.J.
1993-08-01
In this paper we describe an algorithm for generating virtual forces in a bilateral teleoperator system. The virtual forces are generated from a world model and are used to provide real-time obstacle avoidance and guidance capabilities. The algorithm requires that the slaves tool and every object in the environment be decomposed into convex polyhedral Primitives. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert`s polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summedmore » and applied to the manipulator/teleoperator system. Experimental results validate the whole approach, showing that it is possible to compute the algorithm and generate realistic, useful psuedo forces for a bilateral teleoperator system using standard VME bus hardware.« less
A PC-based generator of surface ECG potentials for computer electrocardiograph testing.
Franchi, D; Palagi, G; Bedini, R
1994-02-01
The system is composed of an electronic circuit, connected to a PC, whose outputs, starting from ECGs digitally collected by commercial interpretative electrocardiographs, simulate virtual patients' limb and chest electrode potentials. Appropriate software manages the D/A conversion and lines up the original short-term signal in a ring buffer to generate continuous ECG traces. The device also permits the addition of artifacts and/or baseline wanders/shifts on each lead separately. The system has been accurately tested and statistical indexes have been computed to quantify the reproduction accuracy analyzing, in the generated signal, both the errors induced on the fiducial point measurements and the capability to retain the diagnostic significance. The device integrated with an annotated ECG data base constitutes a reliable and powerful system to be used in the quality assurance testing of computer electrocardiographs.
Investigation of a high speed data handling system for use with multispectral aircraft scanners
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Meredith, B. D.
1978-01-01
A buffer memory data handling technique for use with multispectral aircraft scanners is presented which allows digital data generated at high data rates to be recorded on magnetic tape. A digital memory is used to temporarily store the data for subsequent recording at slower rates during the passive time of the scan line, thereby increasing the maximum data rate recording capability over real-time recording. Three possible implementations are described and the maximum data rate capability is defined in terms of the speed capability of the key hardware components. The maximum data rates can be used to define the maximum ground resolution achievable by a multispectral aircraft scanner using conventional data handling techniques.
NASA Technical Reports Server (NTRS)
Downward, James G.
1992-01-01
This document represents the final report for the View Generated Database (VGD) project, NAS7-1066. It documents the work done on the project up to the point at which all project work was terminated due to lack of project funds. The VGD was to provide the capability to accurately represent any real-world object or scene as a computer model. Such models include both an accurate spatial/geometric representation of surfaces of the object or scene, as well as any surface detail present on the object. Applications of such models are numerous, including acquisition and maintenance of work models for tele-autonomous systems, generation of accurate 3-D geometric/photometric models for various 3-D vision systems, and graphical models for realistic rendering of 3-D scenes via computer graphics.
Mr.CAS-A minimalistic (pure) Ruby CAS for fast prototyping and code generation
NASA Astrophysics Data System (ADS)
Ragni, Matteo
There are Computer Algebra System (CAS) systems on the market with complete solutions for manipulation of analytical models. But exporting a model that implements specific algorithms on specific platforms, for target languages or for particular numerical library, is often a rigid procedure that requires manual post-processing. This work presents a Ruby library that exposes core CAS capabilities, i.e. simplification, substitution, evaluation, etc. The library aims at programmers that need to rapidly prototype and generate numerical code for different target languages, while keeping separated mathematical expression from the code generation rules, where best practices for numerical conditioning are implemented. The library is written in pure Ruby language and is compatible with most Ruby interpreters.
Design optimization of gas generator hybrid propulsion boosters
NASA Technical Reports Server (NTRS)
Weldon, Vincent; Phillips, Dwight U.; Fink, Lawrence E.
1990-01-01
A methodology used in support of a contract study for NASA/MSFC to optimize the design of gas generator hybrid propulsion booster for uprating the National Space Transportation System (NSTS) is presented. The objective was to compare alternative configurations for this booster approach, optimizing each candidate concept on different bases, in order to develop data for a trade table on which a final decision was based. The methodology is capable of processing a large number of independent and dependent variables, adjusting the overall subsystems characteristics to arrive at a best compromise integrated design to meet various specified optimization criteria subject to selected constraints. For each system considered, a detailed weight statement was generated along with preliminary cost and reliability estimates.
FRANOPP: Framework for analysis and optimization problems user's guide
NASA Technical Reports Server (NTRS)
Riley, K. M.
1981-01-01
Framework for analysis and optimization problems (FRANOPP) is a software aid for the study and solution of design (optimization) problems which provides the driving program and plotting capability for a user generated programming system. In addition to FRANOPP, the programming system also contains the optimization code CONMIN, and two user supplied codes, one for analysis and one for output. With FRANOPP the user is provided with five options for studying a design problem. Three of the options utilize the plot capability and present an indepth study of the design problem. The study can be focused on a history of the optimization process or on the interaction of variables within the design problem.
Aircraft laser sensing of sound velocity in water - Brillouin scattering
NASA Technical Reports Server (NTRS)
Hickman, G. D.; Harding, John M.; Carnes, Michael; Pressman, AL; Kattawar, George W.; Fry, Edward S.
1991-01-01
A real-time data source for sound speed in the upper 100 m has been proposed for exploratory development. This data source is planned to be generated via a ship- or aircraft-mounted optical pulsed laser using the spontaneous Brillouin scattering technique. The system should be capable (from a single 10 ns 500 mJ pulse) of yielding range resolved sound speed profiles in water to depths of 75-100 m to an accuracy of 1 m/s. The 100 m profiles will provide the capability of rapidly monitoring the upper-ocean vertical structure. They will also provide an extensive, subsurface-data source for existing real-time, operational ocean nowcast/forecast systems.
Sensor Data Qualification System (SDQS) Implementation Study
NASA Technical Reports Server (NTRS)
Wong, Edmond; Melcher, Kevin; Fulton, Christopher; Maul, William
2009-01-01
The Sensor Data Qualification System (SDQS) is being developed to provide a sensor fault detection capability for NASA s next-generation launch vehicles. In addition to traditional data qualification techniques (such as limit checks, rate-of-change checks and hardware redundancy checks), SDQS can provide augmented capability through additional techniques that exploit analytical redundancy relationships to enable faster and more sensitive sensor fault detection. This paper documents the results of a study that was conducted to determine the best approach for implementing a SDQS network configuration that spans multiple subsystems, similar to those that may be implemented on future vehicles. The best approach is defined as one that most minimizes computational resource requirements without impacting the detection of sensor failures.
The Modular Aero-Propulsion System Simulation (MAPSS) Users' Guide
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Melcher, Kevin J.
2004-01-01
The Modular Aero-Propulsion System Simulation is a flexible turbofan engine simulation environment that provides the user a platform to develop advanced control algorithms. It is capable of testing the performance of control designs on a validated and verified generic engine model. In addition, it is able to generate state-space linear models of the engine model to aid in controller design. The engine model used in MAPSS is a generic high-pressure ratio, dual-spool, lowbypass, military-type, variable cycle turbofan engine with a digital controller. MAPSS is controlled by a graphical user interface (GUI) and this guide explains how to use it to take advantage of the capabilities of MAPSS.
A self-sensing magnetorheological damper with power generation
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-02-01
Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.
NASA Astrophysics Data System (ADS)
Boehnlein, Thomas R.; Kramb, Victoria
2018-04-01
Proper formal documentation of computer acquired NDE experimental data generated during research is critical to the longevity and usefulness of the data. Without documentation describing how and why the data was acquired, NDE research teams lose capability such as their ability to generate new information from previously collected data or provide adequate information so that their work can be replicated by others seeking to validate their research. Despite the critical nature of this issue, NDE data is still being generated in research labs without appropriate documentation. By generating documentation in series with data, equal priority is given to both activities during the research process. One way to achieve this is to use a reactive documentation system (RDS). RDS prompts an operator to document the data as it is generated rather than relying on the operator to decide when and what to document. This paper discusses how such a system can be implemented in a dynamic environment made up of in-house and third party NDE data acquisition systems without creating additional burden on the operator. The reactive documentation approach presented here is agnostic enough that the principles can be applied to any operator controlled, computer based, data acquisition system.
NASA Astrophysics Data System (ADS)
Pattini, F.; Porzio Giusto, P.
The design criteria and performance of the master clock (MCK) generator and the unique word (UW) detector are examined. A narrow band phase lock loop is used for the onboard MCK generator and it is implemented with an all-digital scheme that employs a D-type flip flop as the phase detector. The performance of the MCK generator is analyzed with a computer program which considers phase offset of the digital phase comparator. The characteristics and capabilities of the UW detector which provides strobe signals for the MCK generator and synchronization signals for the onboard switching matrix are described.
Challenges in building intelligent systems for space mission operations
NASA Technical Reports Server (NTRS)
Hartman, Wayne
1991-01-01
The purpose here is to provide a top-level look at the stewardship functions performed in space operations, and to identify the major issues and challenges that must be addressed to build intelligent systems that can realistically support operations functions. The focus is on decision support activities involving monitoring, state assessment, goal generation, plan generation, and plan execution. The bottom line is that problem solving in the space operations domain is a very complex process. A variety of knowledge constructs, representations, and reasoning processes are necessary to support effective human problem solving. Emulating these kinds of capabilities in intelligent systems offers major technical challenges that the artificial intelligence community is only beginning to address.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Nuclear Cryogenic Propulsion Stage for Mars Exploration
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Nuclear Thermal Propulsion for Advanced Space Exploration
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to complymore » with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.« less
A case study for cloud based high throughput analysis of NGS data using the globus genomics system
Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; ...
2015-01-01
Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-end NGS analysis requirements. The Globus Genomicsmore » system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.« less
New York State energy-analytic information system: first-stage implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allentuck, J.; Carroll, O.; Fiore, L.
1979-09-01
So that energy policy by state government may be formulated within the constraints imposed by policy determined at the national level - yet reflect the diverse interests of its citizens - large quantities of data and sophisticated analytic capabilities are required. This report presents the design of an energy-information/analytic system for New York State, the data for a base year, 1976, and projections of these data. At the county level, 1976 energy-supply demand data and electric generating plant data are provided as well. Data-base management is based on System 2000. Three computerized models provide the system's basic analytic capacity. Themore » Brookhaven Energy System Network Simulator provides an integrating framework while a price-response model and a weather sensitive energy demand model furnished a short-term energy response estimation capability. The operation of these computerized models is described. 62 references, 25 figures, 39 tables.« less
A case study for cloud based high throughput analysis of NGS data using the globus genomics system
Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; Rodriguez, Alex; Madduri, Ravi; Dave, Utpal; Lacinski, Lukasz; Foster, Ian; Gusev, Yuriy; Madhavan, Subha
2014-01-01
Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-endNGS analysis requirements. The Globus Genomics system is built on Amazon 's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research. PMID:26925205
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.
2017-01-01
Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.
NASA Astrophysics Data System (ADS)
Iacobucci, Joseph V.
The research objective for this manuscript is to develop a Rapid Architecture Alternative Modeling (RAAM) methodology to enable traceable Pre-Milestone A decision making during the conceptual phase of design of a system of systems. Rather than following current trends that place an emphasis on adding more analysis which tends to increase the complexity of the decision making problem, RAAM improves on current methods by reducing both runtime and model creation complexity. RAAM draws upon principles from computer science, system architecting, and domain specific languages to enable the automatic generation and evaluation of architecture alternatives. For example, both mission dependent and mission independent metrics are considered. Mission dependent metrics are determined by the performance of systems accomplishing a task, such as Probability of Success. In contrast, mission independent metrics, such as acquisition cost, are solely determined and influenced by the other systems in the portfolio. RAAM also leverages advances in parallel computing to significantly reduce runtime by defining executable models that are readily amendable to parallelization. This allows the use of cloud computing infrastructures such as Amazon's Elastic Compute Cloud and the PASTEC cluster operated by the Georgia Institute of Technology Research Institute (GTRI). Also, the amount of data that can be generated when fully exploring the design space can quickly exceed the typical capacity of computational resources at the analyst's disposal. To counter this, specific algorithms and techniques are employed. Streaming algorithms and recursive architecture alternative evaluation algorithms are used that reduce computer memory requirements. Lastly, a domain specific language is created to provide a reduction in the computational time of executing the system of systems models. A domain specific language is a small, usually declarative language that offers expressive power focused on a particular problem domain by establishing an effective means to communicate the semantics from the RAAM framework. These techniques make it possible to include diverse multi-metric models within the RAAM framework in addition to system and operational level trades. A canonical example was used to explore the uses of the methodology. The canonical example contains all of the features of a full system of systems architecture analysis study but uses fewer tasks and systems. Using RAAM with the canonical example it was possible to consider both system and operational level trades in the same analysis. Once the methodology had been tested with the canonical example, a Suppression of Enemy Air Defenses (SEAD) capability model was developed. Due to the sensitive nature of analyses on that subject, notional data was developed. The notional data has similar trends and properties to realistic Suppression of Enemy Air Defenses data. RAAM was shown to be traceable and provided a mechanism for a unified treatment of a variety of metrics. The SEAD capability model demonstrated lower computer runtimes and reduced model creation complexity as compared to methods currently in use. To determine the usefulness of the implementation of the methodology on current computing hardware, RAAM was tested with system of system architecture studies of different sizes. This was necessary since system of systems may be called upon to accomplish thousands of tasks. It has been clearly demonstrated that RAAM is able to enumerate and evaluate the types of large, complex design spaces usually encountered in capability based design, oftentimes providing the ability to efficiently search the entire decision space. The core algorithms for generation and evaluation of alternatives scale linearly with expected problem sizes. The SEAD capability model outputs prompted the discovery a new issue, the data storage and manipulation requirements for an analysis. Two strategies were developed to counter large data sizes, the use of portfolio views and top 'n' analysis. This proved the usefulness of the RAAM framework and methodology during Pre-Milestone A capability based analysis. (Abstract shortened by UMI.).
The reusable launch vehicle technology program
NASA Astrophysics Data System (ADS)
Cook, S.
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
The reusable launch vehicle technology program
NASA Technical Reports Server (NTRS)
Cook, S.
1995-01-01
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics
1981-08-01
the capabilities/limitations of the human visual perceptual processing system and improve the training effectiveness of visual simulation systems...Myron Braunstein of the University of California at Irvine performed all the work in the perceptual area. Mr. Timothy A. Zimmerlin contributed the... work . Thus, while some areas are related, each is resolved independently in order to focus on the basic perceptual limitation. In addition, the
A blueprint for demonstrating quantum supremacy with superconducting qubits
NASA Astrophysics Data System (ADS)
Neill, C.; Roushan, P.; Kechedzhi, K.; Boixo, S.; Isakov, S. V.; Smelyanskiy, V.; Megrant, A.; Chiaro, B.; Dunsworth, A.; Arya, K.; Barends, R.; Burkett, B.; Chen, Y.; Chen, Z.; Fowler, A.; Foxen, B.; Giustina, M.; Graff, R.; Jeffrey, E.; Huang, T.; Kelly, J.; Klimov, P.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, J. M.
2018-04-01
A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.
Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi
2010-10-30
IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5more » kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.« less
NASA Astrophysics Data System (ADS)
Gvillo, D.; Ragheb, M.; Parker, M.; Swartz, S.
1987-05-01
A Production-Rule Analysis System is developed for Nuclear Plant Monitoring. The signals generated by the Zion-1 Plant are considered. A Situation-Assessment and Decision-Aid capability is provided for monitoring the integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems. A total of 41 signals are currently fed as facts to an Inference Engine functioning in the backward-chaining mode and built along the same structure as the E-Mycin system. The Goal-Tree constituting the Knowledge Base was generated using a representation in the form of Fault Trees deduced from plant procedures information. The system is constructed in support of the Data Analysis and Emergency Preparedness tasks at the Illinois Radiological Emergency Assessment Center (REAC).
Next Generation Advanced Video Guidance Sensor
NASA Technical Reports Server (NTRS)
Lee, Jimmy; Spencer, Susan; Bryan, Tom; Johnson, Jimmie; Robertson, Bryan
2008-01-01
The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. The United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport. Systems (COTS) Automated Rendezvous and Docking (AR&D). AVGS has a proven pedigree, based on extensive ground testing and flight demonstrations. The AVGS on the Demonstration of Autonomous Rendezvous Technology (DART)mission operated successfully in "spot mode" out to 2 km. The first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. Parts obsolescence issues prevent the construction of more AVGS. units, and the next generation sensor must be updated to support the CEV and COTS programs. The flight proven AR&D sensor is being redesigned to update parts and add additional. capabilities for CEV and COTS with the development of the Next, Generation AVGS (NGAVGS) at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities might include greater sensor range, auto ranging, and real-time video output. This paper presents an approach to sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, parts selection and test plans for the NGAVGS will be addressed to provide a highly reliable flight qualified sensor. Expanded capabilities through innovative use of existing capabilities will also be discussed.
NASA Technical Reports Server (NTRS)
Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.;
2006-01-01
The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurie, Carol
2017-02-01
This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.
Managing Complexity in Next Generation Robotic Spacecraft: From a Software Perspective
NASA Technical Reports Server (NTRS)
Reinholtz, Kirk
2008-01-01
This presentation highlights the challenges in the design of software to support robotic spacecraft. Robotic spacecraft offer a higher degree of autonomy, however currently more capabilities are required, primarily in the software, while providing the same or higher degree of reliability. The complexity of designing such an autonomous system is great, particularly while attempting to address the needs for increased capabilities and high reliability without increased needs for time or money. The efforts to develop programming models for the new hardware and the integration of software architecture are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Office of Energy Efficiency and Renewable Energy
This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal
The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned bymore » Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahowald, Hallie B.; Wright, Marjorie Alys
2014-01-16
Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for allmore » waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.« less
Breathing simulator of workers for respirator performance test.
Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio
2015-01-01
Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.
Calculation of ground vibration spectra from heavy military vehicles
NASA Astrophysics Data System (ADS)
Krylov, V. V.; Pickup, S.; McNuff, J.
2010-07-01
The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arndt, S.A.
1997-07-01
The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for codemore » use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities.« less
Acousto-ultrasonic system for the inspection of composite armored vehicles
NASA Astrophysics Data System (ADS)
Godinez, Valery F.; Carlos, Mark F.; Delamere, Michael; Hoch, William; Fotopoulos, Christos; Dai, Weiming; Raju, Basavaraju B.
2001-04-01
In this paper the design and implementation of a unique acousto-ultrasonics system for the inspection of composite armored vehicles is discussed. The system includes a multi-sensor probe with a position-tracking device mounted on a computer controlled scanning bridge. The system also includes an arbitrary waveform generator with a multiplexer and a multi-channel acoustic emission board capable of simultaneously collecting and processing up to four acoustic signals in real time. C-scans of an armored vehicle panel with defects are presented.
The quantitative control and matching of an optical false color composite imaging system
NASA Astrophysics Data System (ADS)
Zhou, Chengxian; Dai, Zixin; Pan, Xizhe; Li, Yinxi
1993-10-01
Design of an imaging system for optical false color composite (OFCC) capable of high-precision density-exposure time control and color balance is presented. The system provides high quality FCC image data that can be analyzed using a quantitative calculation method. The quality requirement to each part of the image generation system is defined, and the distribution of satellite remote sensing image information is analyzed. The proposed technology makes it possible to present the remote sensing image data more effectively and accurately.
Next Generation Tanker: Optimizing Air Refueling Capabilities in 2030 with a Divested KC-10 Fleet
2015-06-19
and Acquisition of Our Next Generation Tanker (No. AFIT/ GMO /ENS/02E-15). 33 Appendix A: Advanced Air Refueling Capability Concepts Standard... advantage of advanced technologies for the purpose of increasing aircraft range. This capability could allow basing of forces and operations outside
Hardware simulation of fuel cell/gas turbine hybrids
NASA Astrophysics Data System (ADS)
Smith, Thomas Paul
Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.
Information systems on human resources for health: a global review
2012-01-01
Background Although attainment of the health-related Millennium Development Goals relies on countries having adequate numbers of human resources for health (HRH) and their appropriate distribution, global understanding of the systems used to generate information for monitoring HRH stock and flows, known as human resources information systems (HRIS), is minimal. While HRIS are increasingly recognized as integral to health system performance assessment, baseline information regarding their scope and capability around the world has been limited. We conducted a review of the available literature on HRIS implementation processes in order to draw this baseline. Methods Our systematic search initially retrieved 11 923 articles in four languages published in peer-reviewed and grey literature. Following the selection of those articles which detailed HRIS implementation processes, reviews of their contents were conducted using two-person teams, each assigned to a national system. A data abstraction tool was developed and used to facilitate objective assessment. Results Ninety-five articles with relevant HRIS information were reviewed, mostly from the grey literature, which comprised 84 % of all documents. The articles represented 63 national HRIS and two regionally integrated systems. Whereas a high percentage of countries reported the capability to generate workforce supply and deployment data, few systems were documented as being used for HRH planning and decision-making. Of the systems examined, only 23 % explicitly stated they collect data on workforce attrition. The majority of countries experiencing crisis levels of HRH shortages (56 %) did not report data on health worker qualifications or professional credentialing as part of their HRIS. Conclusion Although HRIS are critical for evidence-based human resource policy and practice, there is a dearth of information about these systems, including their current capabilities. The absence of standardized HRIS profiles (including documented processes for data collection, management, and use) limits understanding of the availability and quality of information that can be used to support effective and efficient HRH strategies and investments at the national, regional, and global levels. PMID:22546089
Space Logistics: Launch Capabilities
NASA Technical Reports Server (NTRS)
Furnas, Randall B.
1989-01-01
The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.
NASA Astrophysics Data System (ADS)
Holland, Alexander F.; Pearson, Jens; Lysford, Wilson; Straub, Jeremy
2016-05-01
This paper presents work on the development of Origami-style solar panels and their adaption and efficacy for use in Earth orbit. It focuses on the enabling capability of this technology for the generation and transmission of power. The proposed approach provides increased collection (solar panel) and transmission (microwave radiation) surface area, as compared to other systems with similar mass and volume. An overview of the system is presented, including its pre-deployment configuration, the deployment process and its final configuration. Its utility for wireless power transmission mission is then considered. An economic discussion is then presented to consider how the mass and volume efficiencies provided enable the system to approach target willingness-to-pay values that were presented and considered in prior work. A key consideration regarding the use of wireless power transfer in Earth orbit is the reliability of the technology. This has several different areas of consideration. It must reliably supply power to its customers (or they would have to have local generation capabilities sufficient for their needs, defeating the benefit of this system). It must also be shown to reliably supply power only to designated locations (and not inadvertently or otherwise beam power at other locations). The effect of the system design (including the Origami structure and deployment / rigidity mechanisms) is considered to assess whether the use of this technology may impair either of these key mission/safety-critical goals. This analysis is presented and a discussion of mitigation techniques to several prospective problems is presented, before concluding with a discussion of future work.
21. VIEW EAST OF GENERATOR IN SOUTH END OF GRANITEVILLE ...
21. VIEW EAST OF GENERATOR IN SOUTH END OF GRANITEVILLE MILL BASEMENT. A LEFFEL HYDRAULIC VERTICAL SHAFT TYPE F TURBINE CAPABLE OF PRODUCING 615HP AT 327RPM WITH 40 FEET OF HEAD PRESSURE SITS BELOW THE GENERATOR SHOWN AT LEFT CENTER OF THE PHOTOGRAPH. THIS IS COUPLED TO THE WESTINGHOUSE THREE-PHASE, 60 CYCLE ALTERNATING CURRENT GENERATOR IN THE PHOTO. THE GENERATOR DELIVERED 583 KVA AT 600 VOLTS. IT WAS RATED AT 640 AMPHERES. EXCITATION POWER WAS PROVIDED BY A SMALLER GENERATOR MOUNTED VERTICALLY ON TOP OF THE SHAFT COMMON TO BOTH GENERATORS. THE EXCITER, AT TOP LEFT CENTER, PROVIDED 125 VOLTS AT 60 AMPERES. CONTROL PANEL IS AT THE RIGHT OF THE PHOTO. THIS SYSTEM RAN UNTIL THE EARLY 1990s. - Graniteville Mill, Marshall Street, Graniteville, Aiken County, SC
HIAD Advancements and Extension of Mission Applications
NASA Technical Reports Server (NTRS)
Johnson, R. Keith; Cheatwood, F. McNeil; Calomino, Anthony M.; Hughes, Stephen J.; Korzun, Ashley M.; DiNonno, John M.; Lindell, Mike C.; Swanson, Greg T.
2016-01-01
The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has made significant advancements over the last decade with flight test demonstrations and ground development campaigns. The first generation (Gen-1) design and materials were flight tested with the successful third Inflatable Reentry Vehicle Experiment flight test of a 3-m HIAD (IRVE-3). Ground development efforts incorporated materials with higher thermal capabilities for the inflatable structure (IS) and flexible thermal protection system (F-TPS) as a second generation (Gen-2) system. Current efforts and plans are focused on extending capabilities to improve overall system performance and reduce areal weight, as well as expand mission applicability. F-TPS materials that offer greater thermal resistance, and ability to be packed to greater density, for a given thickness are being tested to demonstrated thermal performance benefits and manufacturability at flight-relevant scale. IS materials and construction methods are being investigated to reduce mass, increase load capacities, and improve durability for packing. Previous HIAD systems focused on symmetric geometries using stacked torus construction. Flight simulations and trajectory analysis show that symmetrical HIADs may provide L/D up to 0.25 via movable center of gravity (CG) offsets. HIAD capabilities can be greatly expanded to suit a broader range of mission applications with asymmetric shapes and/or modulating L/D. Various HIAD concepts are being developed to provide greater control to improve landing accuracy and reduce dependency upon propulsion systems during descent and landing. Concepts being studied include a canted stack torus design, control surfaces, and morphing configurations that allow the shape to be actively manipulated for flight control. This paper provides a summary of recent HIAD development activities, and plans for future HIAD developments including advanced materials, improved construction techniques, and alternate geometry concepts that will greatly expand HIAD mission applications.
World's Most Efficient Solar Cell
on the cost effectiveness and revenue-generating capabilities of high-power space satellites over the ) and Spectrolab. The high efficiency makes the cells attractive for use in solar concentrator systems ." Similar high-efficiency solar cells - invented and developed over 10 years at NREL before being
This work will provide the production framework for next-generation treatment technologies capable of targeting diverse chemical pollutants over a range of water chemistries and application scales. Tangible outcomes include a wealth of demonstration data and standard operat...
COMPENDEX/TEXT-PAC: RETROSPECTIVE SEARCH.
ERIC Educational Resources Information Center
Standera, Oldrich
The Text-Pac System is capable of generating indexes and bulletins to provide a current information service without the selectivity feature. Indexes of the accumulated data base may also be used as a basis for manual retrospective searching. The manual search involves searching computer-prepared indexes from a machine readable data base produced…
DOT National Transportation Integrated Search
1976-07-01
Several new capabilities have been added to the DYNALIST II computer program. These include: (1) a component matrix generator that operates as a 3-D finite element modeling program where elements consist of rigid bodies, flexural bodies, wheelsets, s...
Solar cell system having alternating current output
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1980-01-01
A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.
Next-Generation Long-Range Strike: Combating the Tyranny of Distance
2011-02-16
and other subsystems such as fuel, hydraulics, ejection seats , etc. from proven and fielded systems. To enable the optionally manned capability...weapon is a very difficult target to engage. Surface-to- air missile kinematics simply cannot match that of a hypersonic weapon enabling more targets to
TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING.
Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris
2017-04-01
The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h-1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. © The Author 2016. Published by Oxford University Press.
TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING
Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris
2017-01-01
Abstract The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h−1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. PMID:27909154
Extension of Generalized Fluid System Simulation Program's Fluid Property Database
NASA Technical Reports Server (NTRS)
Patel, Kishan
2011-01-01
This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.
Distributed generation capabilities of the national energy modeling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris
2003-01-01
This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. Themore » goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.« less
The g-LIMIT Microgravity Vibration Isolation System for the Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Ryan, Stephen G. (Technical Monitor)
2001-01-01
For many microgravity science experiments in the International Space Station, the ambient acceleration environment will be exceed desirable levels. To provide a more quiescent acceleration environment to the microgravity payloads, a vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being designed. g-LIMIT is a sub-rack level isolation system for the Microgravity Science Glovebox that can be tailored to a variety of applications. Scheduled for launch on the UF-1 mission, the initial implementation of g-LIMIT will be a Characterization Test in the Microgravity Science Glovebox. g-LIMIT will be available to glovebox investigators immediately after characterization testing. Standard MSG structural and umbilical interfaces will be used so that the interface requirements are minimized. g-LIMIT consists of three integrated isolator modules, each of which is comprised of a dual axis actuator, two axes of acceleration sensing, two axes of position sensing, control electronics, and data transmission capabilities in a small-volume package. In addition, this system provides the unique capability for measuring quasi-steady acceleration of the experiment independent of accelerometers as a by-product of the control system and will have the capability of generating user-specified pristine accelerations to enhance experiment operations.
SOL - SIZING AND OPTIMIZATION LANGUAGE COMPILER
NASA Technical Reports Server (NTRS)
Scotti, S. J.
1994-01-01
SOL is a computer language which is geared to solving design problems. SOL includes the mathematical modeling and logical capabilities of a computer language like FORTRAN but also includes the additional power of non-linear mathematical programming methods (i.e. numerical optimization) at the language level (as opposed to the subroutine level). The language-level use of optimization has several advantages over the traditional, subroutine-calling method of using an optimizer: first, the optimization problem is described in a concise and clear manner which closely parallels the mathematical description of optimization; second, a seamless interface is automatically established between the optimizer subroutines and the mathematical model of the system being optimized; third, the results of an optimization (objective, design variables, constraints, termination criteria, and some or all of the optimization history) are output in a form directly related to the optimization description; and finally, automatic error checking and recovery from an ill-defined system model or optimization description is facilitated by the language-level specification of the optimization problem. Thus, SOL enables rapid generation of models and solutions for optimum design problems with greater confidence that the problem is posed correctly. The SOL compiler takes SOL-language statements and generates the equivalent FORTRAN code and system calls. Because of this approach, the modeling capabilities of SOL are extended by the ability to incorporate existing FORTRAN code into a SOL program. In addition, SOL has a powerful MACRO capability. The MACRO capability of the SOL compiler effectively gives the user the ability to extend the SOL language and can be used to develop easy-to-use shorthand methods of generating complex models and solution strategies. The SOL compiler provides syntactic and semantic error-checking, error recovery, and detailed reports containing cross-references to show where each variable was used. The listings summarize all optimizations, listing the objective functions, design variables, and constraints. The compiler offers error-checking specific to optimization problems, so that simple mistakes will not cost hours of debugging time. The optimization engine used by and included with the SOL compiler is a version of Vanderplatt's ADS system (Version 1.1) modified specifically to work with the SOL compiler. SOL allows the use of the over 100 ADS optimization choices such as Sequential Quadratic Programming, Modified Feasible Directions, interior and exterior penalty function and variable metric methods. Default choices of the many control parameters of ADS are made for the user, however, the user can override any of the ADS control parameters desired for each individual optimization. The SOL language and compiler were developed with an advanced compiler-generation system to ensure correctness and simplify program maintenance. Thus, SOL's syntax was defined precisely by a LALR(1) grammar and the SOL compiler's parser was generated automatically from the LALR(1) grammar with a parser-generator. Hence unlike ad hoc, manually coded interfaces, the SOL compiler's lexical analysis insures that the SOL compiler recognizes all legal SOL programs, can recover from and correct for many errors and report the location of errors to the user. This version of the SOL compiler has been implemented on VAX/VMS computer systems and requires 204 KB of virtual memory to execute. Since the SOL compiler produces FORTRAN code, it requires the VAX FORTRAN compiler to produce an executable program. The SOL compiler consists of 13,000 lines of Pascal code. It was developed in 1986 and last updated in 1988. The ADS and other utility subroutines amount to 14,000 lines of FORTRAN code and were also updated in 1988.
Advanced software development workstation project: Engineering scripting language. Graphical editor
NASA Technical Reports Server (NTRS)
1992-01-01
Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.
NASA Technical Reports Server (NTRS)
1977-01-01
A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.
Two and three dimensional grid generation by an algebraic homotopy procedure
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1990-01-01
An algebraic method for generating two- and three-dimensional grid systems for aerospace vehicles is presented. The method is based on algebraic procedures derived from homotopic relations for blending between inner and outer boundaries of any given configuration. Stable properties of homotopic maps have been exploited to provide near-orthogonality and specified constant spacing at the inner boundary. The method has been successfully applied to analytically generated blended wing-body configurations as well as discretely defined geometries such as the High-Speed Civil Transport Aircraft. Grid examples representative of the capabilities of the method are presented.
NASA Technical Reports Server (NTRS)
1975-01-01
NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.
French wind generator systems. [as auxiliary power sources for electrical networks
NASA Technical Reports Server (NTRS)
Noel, J. M.
1973-01-01
The experimental design of a wind driven generator with a rated power of 800 kilovolt amperes and capable of being connected to the main electrical network is reported. The rotor is a three bladed propeller; each blade is twisted but the fixed pitch is adjustable. The asynchronous 800-kilovolt ampere generator is driven by the propeller through a gearbox. A dissipating resistor regulates the machine under no-load conditions. The first propeller on the machine lasted 18 months; replacement of the rigid propeller with a flexible structure resulted in breakdown due to flutter effects.
NASA Technical Reports Server (NTRS)
Emmons, D. L.; Huxtable, D. D.; Blevins, D. R.
1974-01-01
An investigation was conducted to establish the capability of a monopropellant hydrazine catalytic gas generator to meet the requirements specified for the Space Shuttle APU. Detailed analytical and experimental studies were conducted on potential problem areas including long-term nitriding effects on materials, design variables affecting catalyst life, vehicle vibration effects, and catalyst oxidation/contamination. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The objective of the first test series was to demonstrate the capability of the gas generator to successfully complete 20 simulated Space Shuttle missions in steady-state operation. The gas generator was then refurbished and subjected to a second series of tests to demonstrate the pulse-mode capability of the gas generator during 20 simulated missions. The third series of tests was conducted with a refurbished reactor to further demonstrate pulse-mode capability with a modified catalyst bed.
NASA Astrophysics Data System (ADS)
Kalluri, S. N.; Haman, B.; Vititoe, D.
2014-12-01
The ground system under development for Geostationary Operational Environmental Satellite-R (GOES-R) series of weather satellite has completed a key milestone in implementing the science algorithms that process raw sensor data to higher level products in preparation for launch. Real time observations from GOES-R are expected to make significant contributions to Earth and space weather prediction, and there are stringent requirements to product weather products at very low latency to meet NOAA's operational needs. Simulated test data from all the six GOES-R sensors are being processed by the system to test and verify performance of the fielded system. Early results show that the system development is on track to meet functional and performance requirements to process science data. Comparison of science products generated by the ground system from simulated data with those generated by the algorithm developers show close agreement among data sets which demonstrates that the algorithms are implemented correctly. Successful delivery of products to AWIPS and the Product Distribution and Access (PDA) system from the core system demonstrate that the external interfaces are working.
Object-Oriented Modeling of an Energy Harvesting System Based on Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Nesarajah, Marco; Frey, Georg
This paper deals with the modeling of an energy harvesting system based on thermoelectric generators (TEG), and the validation of the model by means of a test bench. TEGs are capable to improve the overall energy efficiency of energy systems, e.g. combustion engines or heating systems, by using the remaining waste heat to generate electrical power. Previously, a component-oriented model of the TEG itself was developed in Modelica® language. With this model any TEG can be described and simulated given the material properties and the physical dimension. Now, this model was extended by the surrounding components to a complete model of a thermoelectric energy harvesting system. In addition to the TEG, the model contains the cooling system, the heat source, and the power electronics. To validate the simulation model, a test bench was built and installed on an oil-fired household heating system. The paper reports results of the measurements and discusses the validity of the developed simulation models. Furthermore, the efficiency of the proposed energy harvesting system is derived and possible improvements based on design variations tested in the simulation model are proposed.
Program for Generating Graphs and Charts
NASA Technical Reports Server (NTRS)
Ackerson, C. T.
1986-01-01
Office Automation Pilot (OAP) Graphics Database system offers IBM personal computer user assistance in producing wide variety of graphs and charts and convenient data-base system, called chart base, for creating and maintaining data associated with graphs and charts. Thirteen different graphics packages available. Access graphics capabilities obtained in similar manner. User chooses creation, revision, or chartbase-maintenance options from initial menu; Enters or modifies data displayed on graphic chart. OAP graphics data-base system written in Microsoft PASCAL.
Anti-islanding Protection of Distributed Generation Using Rate of Change of Impedance
NASA Astrophysics Data System (ADS)
Shah, Pragnesh; Bhalja, Bhavesh
2013-08-01
Distributed Generation (DG), which is interlinked with distribution system, has inevitable effect on distribution system. Integrating DG with the utility network demands an anti-islanding scheme to protect the system. Failure to trip islanded generators can lead to problems such as threats to personnel safety, out-of-phase reclosing, and degradation of power quality. In this article, a new method for anti-islanding protection based on impedance monitoring of distribution network is carried out in presence of DG. The impedance measured between two phases is used to derive the rate of change of impedance (dz/dt), and its peak values are used for final trip decision. Test data are generated using PSCAD/EMTDC software package and the performance of the proposed method is evaluated in MatLab software. The simulation results show the effectiveness of the proposed scheme as it is capable to detect islanding condition accurately. Subsequently, it is also observed that the proposed scheme does not mal-operate during other disturbances such as short circuit and switching event.
Instrumentation, Control, and Intelligent Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-09-01
Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a majormore » center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.« less
Re-engineering the Multimission Command System at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim
1994-01-01
The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.