Science.gov

Sample records for generator based variable

  1. Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-07-01

    Artificial intelligence techniques, such as fuzzy logic, neural network, and genetic algorithm, are recently showing a lot of promise in the application of power electronic systems. The paper describes the control strategy development, design, and experimental performance evaluation of a fuzzy-logic-based variable-speed wind generation system that uses a cage-type induction generator and double-sided pulsewidth-modulated (PWM) converters. The system can feed a utility grid maintaining unity power factor at all conditions or can supply an autonomous load. The fuzzy-logic-based control of the system helps to optimize efficiency and enhance performance. A complete 3.5-kW generation system has been developed, designed, and thoroughly evaluated by laboratory tests, in order to validate the predicted performance improvements. The system gives excellent performance and can easily be translated to a larger size in the field.

  2. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The paper describes a variable-speed wind generation system where fuzzy logic principles are used to optimize efficiency and enhance performance control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which either pump...

  3. FUZZY LOGIC BASED INTELLIGENT CONTROL OF A VARIABLE SPEED CAGE MACHINE WIND GENERATION SYSTEM

    EPA Science Inventory

    The report gives results of a demonstration of the successful application of fuzzy logic to enhance the performance and control of a variable-speed wind generation system. A squirrel cage induction generator feeds the power to either a double-sided pulse-width modulation converte...

  4. Fuzzy logic based intelligent control of a variable speed cage machine wind generation system

    SciTech Connect

    Simoes, M.G.; Bose, B.K.; Spiegel, R.J.

    1997-01-01

    The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.

  5. VARIABLE TIME-INTERVAL GENERATOR

    DOEpatents

    Gross, J.E.

    1959-10-31

    This patent relates to a pulse generator and more particularly to a time interval generator wherein the time interval between pulses is precisely determined. The variable time generator comprises two oscillators with one having a variable frequency output and the other a fixed frequency output. A frequency divider is connected to the variable oscillator for dividing its frequency by a selected factor and a counter is used for counting the periods of the fixed oscillator occurring during a cycle of the divided frequency of the variable oscillator. This defines the period of the variable oscillator in terms of that of the fixed oscillator. A circuit is provided for selecting as a time interval a predetermined number of periods of the variable oscillator. The output of the generator consists of a first pulse produced by a trigger circuit at the start of the time interval and a second pulse marking the end of the time interval produced by the same trigger circuit.

  6. Variable eccentric distance-based tool path generation for orthogonal turn-milling

    NASA Astrophysics Data System (ADS)

    Peng, Fangyu; Wang, Wei; Yan, Rong; Duan, Xianyin; Li, Bin

    2015-12-01

    This study proposes an algorithm for maximizing strip width in orthogonal turn-milling based on variable eccentric distance. The machining error model is first established based on the local cutting profile at the contact line. The influencing factors of the strip width are then investigated to analyze their features and determine an optimizing strategy. The optimized model for maximum machining strip width is formulated by adopting a variable eccentric distance. Hausdorff distance and Fréchet distance are introduced in this study to implement the constraint function of the machining error in the optimized model. The computing procedure is subsequently provided. Simulations and experiments have been conducted to verify the effectiveness of the proposed algorithm.

  7. Operating Reserves and Variable Generation

    SciTech Connect

    Ela, E.; Milligan, M.; Kirby, B.

    2011-08-01

    This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

  8. Novel two-stage piezoelectric-based electrical energy generators for low and variable speed rotary machinery

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Murray, R.

    2010-04-01

    A novel class of two-stage piezoelectric-based electrical energy generators is presented for rotary machinery in which the input speed is low and varies significantly, even reversing. Applications include wind mills, turbo-machinery for harvesting tidal flows, etc. Current technology using magnet-and-coil rotary generators require gearing or similar mechanisms to increase the input speed and make the generation cycle efficient. Variable speed-control mechanisms are also usually needed to achieve high mechanical to electrical energy conversion efficiency. Presented here are generators that do not require gearing or speed control mechanisms, significantly reducing complexity and cost, especially pertaining to maintenance and service. Additionally, these new generators can expand the application of energy harvesting to much slower input speeds than current technology allows. The primary novelty of this technology is the two-stage harvesting system. The harvesting environment (e.g. wind) provides input to the primary system, which is then used to successively excite a secondary system of vibratory elements into resonance - like strumming a guitar. The key advantage is that by having two decoupled systems, the low-andvarying- speed input can be converted into constant and much higher frequency vibrations. Energy is then harvested from the secondary system's vibrating elements with high efficiency using piezoelectric elements or magnet-and-coil generators. These new generators are uncomplicated, and can efficiently operate at widely varying and even reversing input speeds. Conceptual designs are presented for a number of generators and subsystems (e.g. for passing mechanical energy from the primary to the secondary system). Additionally, analysis of a complete two-stage energy harvesting system is discussed with predictions of performance and efficiency.

  9. Analysis of performance with variable stroke of a torque based renewable micro hydro power generation plant

    NASA Astrophysics Data System (ADS)

    Alam, Muhammad Mahbubul; Rahman, Md. Shad; Sultan, Rasel A.; Naif, M. Ahmed

    2016-07-01

    The most important addition of modern science is renewable energy. And the most useful and the most cheaply renewable power generation source is Hydropower. Flowing water creates energy that can be captured and turned into electricity. This is called Hydroelectric power or Hydropower. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. As far as Bangladesh is concerned, only a small fraction of electricity is generated by hydropower. The government has set a target of meeting 5 per cent of the electricity demand by 2015 by utilizing renewable energy and 10 per cent by the year 2020. Currently, renewable energies contribute to less than 1 per cent of the country's total electricity generation. The aim of our analysis is to demonstrate and observe the hydropower of our country in micro-scale by our experimental setup which is completely new in concept. This paper consists results of our findings and we find larger the number of stroke higher the rpm correspondingly higher efficiency. We find maximum rpm for 2stroke when fixed fly wheel weight was 18Kg and water was 10liter. It might help in case of utilizing this renewable energy potential at high scale.

  10. Variable frequency microprocessor clock generator

    SciTech Connect

    Branson, C.N.

    1989-04-04

    A microprocessor-based system is described comprising: a digital central microprocessor provided with a clock input and having a rate of operation determined by the frequency of a clock signal input thereto; memory means operably coupled to the central microprocessor for storing programs respectively including a plurality of instructions and addressable by the central microprocessor; peripheral device operably connected to the central microprocessor, the first peripheral device being addressable by the central microprocessor for control thereby; a system clock generator for generating a digital reference clock signal having a reference frequency rate; and frequency rate reduction circuit means connected between the clock generator and the clock input of the central microprocessor for selectively dividing the reference clock signal to generate a microprocessor clock signal as an input to the central microprocessor for clocking the central microprocessor.

  11. Variable speed generator technology options for wind turbine generators

    NASA Astrophysics Data System (ADS)

    Lipo, T. A.

    1995-05-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  12. Variable speed generator technology options for wind turbine generators

    NASA Technical Reports Server (NTRS)

    Lipo, T. A.

    1995-01-01

    The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified

  13. A three-lead, programmable, and microcontroller-based electrocardiogram generator with frequency domain characteristics of heart rate variability

    NASA Astrophysics Data System (ADS)

    Wei, Ying-Chieh; Wei, Ying-Yu; Chang, Kai-Hsiung; Young, Ming-Shing

    2012-04-01

    The objective of this study is to design and develop a programmable electrocardiogram (ECG) generator with frequency domain characteristics of heart rate variability (HRV) which can be used to test the efficiency of ECG algorithms and to calibrate and maintain ECG equipment. We simplified and modified the three coupled ordinary differential equations in McSharry's model to a single differential equation to obtain the ECG signal. This system not only allows the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave position parameters to be adjusted, but can also be used to adjust the very low frequency, low frequency, and high frequency components of HRV frequency domain characteristics. The system can be tuned to function with HRV or not. When the HRV function is on, the average heart rate can be set to a value ranging from 20 to 122 beats per minute (BPM) with an adjustable variation of 1 BPM. When the HRV function is off, the heart rate can be set to a value ranging from 20 to 139 BPM with an adjustable variation of 1 BPM. The amplitude of the ECG signal can be set from 0.0 to 330 mV at a resolution of 0.005 mV. These parameters can be adjusted either via input through a keyboard or through a graphical user interface (GUI) control panel that was developed using LABVIEW. The GUI control panel depicts a preview of the ECG signal such that the user can adjust the parameters to establish a desired ECG morphology. A complete set of parameters can be stored in the flash memory of the system via a USB 2.0 interface. Our system can generate three different types of synthetic ECG signals for testing the efficiency of an ECG algorithm or calibrating and maintaining ECG equipment.

  14. Review of Variable Generation Integration Charges

    SciTech Connect

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  15. Connecting Lines of Research on Task Model Variables, Automatic Item Generation, and Learning Progressions in Game-Based Assessment

    ERIC Educational Resources Information Center

    Graf, Edith Aurora

    2014-01-01

    In "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games," Almond, Kim, Velasquez, and Shute have prepared a thought-provoking piece contrasting the roles of task model variables in a traditional assessment of mathematics word problems to their roles in "Newton's Playground," a game designed…

  16. WECC Variable Generation Planning Reference Book: Appendices

    SciTech Connect

    Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

    2013-05-13

    The document titled “WECC Variable Generation Planning Reference Book”. This book is divided into two volumes; one is the main document (volume 1)and the other is appendices (volume 2). The main document is a collection of the best practices and the information regarding the application and impact of variables generation on power system planning. This volume (appendices) has additional information on the following topics: Probabilistic load flow problems. 2. Additional useful indices. 3. high-impact low-frequency (HILF) events. 4. Examples of wide-area nomograms. 5. Transmission line ratings, types of dynamic rating methods. 6. Relative costs per MW-km of different electric power transmission technologies. 7. Ultra-high voltage (UHV) transmission. 8.High voltage direct current (VSC-HVDC). 9. HVDC. 10. Rewiring of existing transmission lines. 11. High-temperature low sag (HTLS) conductors. 12. The direct method and energy functions for transient stability analysis in power systems. 13.Blackouts caused by voltage instability. 14. Algorithm for parameter continuation predictor-corrector methods. 15. Approximation techniques available for security regions. 16. Impacts of wind power on power system small signals stability. 17. FIDVR. 18. FACTS. 19. European planning standard and practices. 20. International experience in wind and solar energy sources. 21. Western Renewable Energy Zones (WREZ). 22. various energy storage technologies. 23. demand response. 24. BA consolidation and cooperation options. 25. generator power management requirements and 26. European planning guidelines.

  17. WECC Variable Generation Planning Reference Book

    SciTech Connect

    Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

    2013-05-14

    This planning reference book is a document reflecting a Western Electricity Coordination Council (WECC) effort to put together multiple sources of information and provide a clear, systemic, comprehensive outline of the problems, both existing and anticipated; their impacts on the system; currently used and proposed solutions by the industry and research community; planning practices; new technologies, equipment, and standards; and expected future trends. This living (periodically updated) document could help WECC and other practicing engineers, especially the younger generation of engineers joining the workforce, to get familiar with a large variety of information related to the integration of variable resources into the WECC system, bypassing in part the need for time-consuming information gathering and learning processes from more experienced engineers or from the literature.

  18. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  19. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  20. Turbo-generator control with variable valve actuation

    SciTech Connect

    Vuk, Carl T.

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  1. A random number generator for continuous random variables

    NASA Technical Reports Server (NTRS)

    Guerra, V. M.; Tapia, R. A.; Thompson, J. R.

    1972-01-01

    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.

  2. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  3. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  4. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  5. Free piston variable-stroke linear-alternator generator

    DOEpatents

    Haaland, Carsten M.

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  6. Free piston variable-stroke linear-alternator generator

    DOEpatents

    Haaland, C.M.

    1998-12-15

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.

  7. Variables Affecting the Legibility of Computer Generated Text.

    ERIC Educational Resources Information Center

    Hooper, Simon; Hannafin, Michael J.

    1986-01-01

    Discusses text displayed on computer screens and examines the effects of three layout variables--justification, line length, and leading--on reading speed and comprehension. Current literature on each variable is reviewed, and implications for the design of computer-based instruction are presented. (Author/LRW)

  8. Generating precipitation with the help of other meteorological variables

    NASA Astrophysics Data System (ADS)

    Schlabing, Dirk; Bárdossy, András

    2014-05-01

    Weather generators traditionally model dry and wet conditions separately. This necessitates not only the existence of a rain occurrence model, but also the double parametrisation of the process generating non-precipitation variables for dry and wet conditions. We propose a method to generate rain together with other meteorological variables within a single stochastic model, thus greatly reducing the number of needed parameters. Drier conditions can, to a certain extend, be seen by the values of non-precipitation variables becoming more distant to their mean values during wet conditions. Hence, this information can be used to estimate a probability of dryness. This probability is derived from values of air temperature, long and short wave radiation, relative humidity and wind speed components at every time step. Then, a continuous time series of precipitation is constructed in the standard-normal domain, comprised of the probability of dryness and transformed precipitation amounts. This time series can then be modelled with a single stochastic model such as a simple vector-autoregressive process. The generated time series is compared with measured data concerning their marginals, auto- and cross correlations as well as low-frequency variability.

  9. Integration of Variable Generation and Cost-Causation (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    Variable renewable energy generation sources, such as wind and solar energy, provide benefits such as reduced environmental impact, zero fuel consumption, and low and stable costs. Advances in both technologies can reduce capital costs and provide significant control capabilities. However, their variability and uncertainty - which change with weather conditions, time of day, and season - can cause an increase in power system operating costs compared to a fully controllable power plant. Although a number of studies have assessed integration costs, calculating them correctly is challenging because it is difficult to accurately develop a baseline scenario without variable generation that properly accounts for the energy value. It is also difficult to appropriately allocate costs given the complex, nonlinear interactions between resources and loads.

  10. Spatial uncertainty in remote sensing generated hydrological variables

    NASA Astrophysics Data System (ADS)

    Mendiguren González, Gorka; Stisen, Simon

    2016-04-01

    The use of satellite remote sensing (RS) has proven its potential to generate different hydrological variables such as Land Surface Temperature (LST), Leaf Area Index (LAI) or Evapotranspiration (ET) among others. In the case of ET different methods combine spectral and thermal information to estimate Actual ET (aET) coincident with satellite overpass. These estimates from space has become popular in the hydrological modeling community. The information obtained from RS estimates can be used to calibrate and validate hydrological models not just at single points or catchment averages, but also the simulated spatial patterns. It is a common assumption that although the RS estimates are uncertain, their strength lies in the spatial pattern information, due to the unprecedented spatial coverage of the observations. When spatial patterns obtained from remote sensing estimates are intended for evaluating the spatial patterns of distributed hydrological models, it will however be necessary to challenge that assumption. This study aims at quantifying the uncertainty of the estimated spatial pattern of temporally aggregated monthly LST and AET maps derived from the MODIS satellite. The proposed approach is based on a cluster analysis performed on hundreds of possible realizations of the estimates generated by sampling within the uncertainty of the individual pixels estimates and taking into account temporal variation and the correlation length of the error. The result is not only monthly maps of LST and AET, but also maps of the uncertainty of the spatial pattern. This type of information is critical when evaluating the spatial pattern performance of hydrological models, because the performance criteria can be adjusted for areas of high and low confidence in the observational data set. The resulting maps are finally utilized for an evaluation of the spatial performance of the 43,000 km2 national hydrological model of Denmark.

  11. Pitch-controlled variable-speed wind turbine generation

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.

    2000-03-01

    Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

  12. Metadata based mediator generation

    SciTech Connect

    Critchlow, T

    1998-03-01

    Mediators are a critical component of any data warehouse, particularly one utilizing partially materialized views; they transform data from its source format to the warehouse representation while resolving semantic and syntactic conflicts. The close relationship between mediators and databases, requires a mediator to be updated whenever an associated schema is modified. This maintenance may be a significant undertaking if a warehouse integrates several dynamic data sources. However, failure to quickly perform these updates significantly reduces the reliability of the warehouse because queries do not have access to the m current data. This may result in incorrect or misleading responses, and reduce user confidence in the warehouse. This paper describes a metadata framework, and associated software designed to automate a significant portion of the mediator generation task and thereby reduce the effort involved in adapting the schema changes. By allowing the DBA to concentrate on identifying the modifications at a high level, instead of reprogramming the mediator, turnaround time is reduced and warehouse reliability is improved.

  13. An examination of internally generated variability in long climate simulations

    SciTech Connect

    Schneider, E.K.; Kinter, J.L. III

    1994-09-01

    General circulation model experiments designed to estimate the magnitude and structure of internally generated variability and to help understand the mechanisms underlying this variability are described. The experiments consist of three multi-century integrations of a rhomboidal 15, 9 level, version of the Center for Ocean-Land-Atmosphere Studies atmospheric general circulation model: a run with fixed sea surface temperatures and equinox solar radiation, a run with seasonally varying climatological sea surface temperatures and seasonally varying solar forcing, and a run with seasonally varying solar forcing in which the state of the ocean is predicted by a 3{degree} by 3{degree}, 16 vertical level, nearly global domain version of the Geophysical Fluid Dynamics Laboratory Modular Ocean Model. No flux correction is used in the coupled model integration. Selected surface fields of the three runs are compared to each other as well as to the observed climate. Statistical properties of variability on interannual time scales are compared between the runs. Evidence is presented that climate time scale variability in the simulations is produced by random weather time scale forcing due to the integrating effect of elements of the system with long memories. The importance of ocean variability for land climate variability is demonstrated and attributed to both the memory effect and coupled atmosphere-ocean instability. 40 refs., 23 figs.

  14. Pneumatic tire-based piezoelectric power generation

    NASA Astrophysics Data System (ADS)

    Makki, Noaman; Pop-Iliev, Remon

    2011-03-01

    Plug-in Hybrid Electric Vehicles (PHEVs) and Extended Range Electric Vehicles (EREVs) currently mainly rely on Internal Combustion Engines (ICE) utilizing conventional fuels to recharge batteries in order to extend their range. Even though Piezo-based power generation devices have surfaced in recent years harvesting vibration energy, their output has only been sufficient to power up sensors and other such smaller devices. The permanent need for a cleaner power generation technique still remains. This paper investigates the possibility of using piezoceramics for power generation within the vehicle's wheel assembly by exploiting the rotational motion of the wheel and the continuously variable contact point between the pneumatic tire and the road.

  15. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  16. Photography-based image generator

    NASA Astrophysics Data System (ADS)

    Dalton, Nicholas M.; Deering, Charles S.

    1989-09-01

    A two-channel Photography Based Image Generator system was developed to drive the Helmet Mounted Laser Projector at the Naval Training System Center at Orlando, Florida. This projector is a two-channel system that displays a wide field-of-view color image with a high-resolution inset to efficiently match the pilot's visual capability. The image generator is a derivative of the LTV-developed visual system installed in the A-7E Weapon System Trainer at NAS Cecil Field. The Photography Based Image Generator is based on patented LTV technology for high resolution, multi-channel, real world visual simulation. Special provisions were developed for driving the NTSC-developed and patented Helmet Mounted Laser Projector. These include a special 1023-line raster format, an electronic image blending technique, spherical lens mapping for dome projection, a special computer interface for head/eye tracking and flight parameters, special software, and a number of data bases. Good gaze angle tracking is critical to the use of the NTSC projector in a flight simulation environment. The Photography Based Image Generator provides superior dynamic response by performing a relatively simple perspective transformation on stored, high-detail photography instead of generating this detail by "brute force" computer image generation methods. With this approach, high detail can be displayed and updated at the television field rate (60 Hz).

  17. Interannual variability of solar energy generation in Australia

    NASA Astrophysics Data System (ADS)

    Davy, R.; Troccoli, A.

    2012-04-01

    Australia has an abundant solar energy resource that is likely to be used for energy generation on a large scale. Variable sources of electricity generation require knowledge of the nature of their variability at all time scales. This study examines the effect that El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) have on solar radiation in Australia, in order to establish the role for seasonal forecasting of solar power. Calendar years are classified into their ENSO state using a sea surface temperature index. The ERA-Interim and NCEP reanalysis products are then used to estimate the effect of ENSO on global horizontal solar irradiance over the continent. A bootstrap technique is used to obtain confidence regions for the effect in both winter and summer. The main impact of ENSO occurs during winter over a large part of eastern Australia. Little impact was observed over the continent during summer. A similar analysis is conducted for the Indian Ocean Dipole (IOD) to ensure that the observed ENSO effect is not a manifestation of the IOD. This study indicates that the ENSO phenomenon may account for solar energy changes of more than 10% in some locations on a seasonal basis. We show that the solar radiation analysis is directly applicable to solar energy yield. Knowledge of this variability may influence the location of large solar generation plants. Also, there is a potential to predict solar energy a few months ahead by means of seasonal forecasting systems, which would help to assist with planning for electricity grid.

  18. Micromotor-based energy generation.

    PubMed

    Singh, Virendra V; Soto, Fernando; Kaufmann, Kevin; Wang, Joseph

    2015-06-01

    A micromotor-based strategy for energy generation, utilizing the conversion of liquid-phase hydrogen to usable hydrogen gas (H2), is described. The new motion-based H2-generation concept relies on the movement of Pt-black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt-black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen-oxygen fuel cell car by an on-board motion-based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on-site energy generation for powering external devices or meeting growing demands on the energy grid.

  19. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect

    Porter, K.; Rogers, J.

    2012-04-01

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  20. Assessment of Japan's Optimal Power Generation Mix Considering Massive Deployment of Variable Renewable Power Generation

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    This paper analyzes Japan's optimal power generation mix considering massive deployment of solar photovoltaic (PV) system and wind power generation. The extensive introduction of PV system and wind power system are expected to play an important role in addressing energy security and climate change concern in Japan. Considering this expected large-scale deployment of PV system in electric power system, it is necessary to investigate the optimal power generation mix which is technologically capable of controlling and accommodating the intermittent output-power fluctuation inherently derived from PV and wind energy system. On these backgrounds, we develop optimal power generation mix model, explicitly analyzing the impact of output fluctuation in variable renewable in detailed resolution of time interval like 10 minutes at consecutive 365 days, with the role of stationary battery technology incorporated. Simulation results reveal that considerable deployment of those variable renewables do not necessarily require the scale of battery capacity similar as that of variable renewable capacity, due to quick load following treatment by thermal power plants, pumped-storage hydro power and battery technology over renewable output fluctuation.

  1. Next generation of variable frequency drives and application guidelines

    SciTech Connect

    Sen, P.K.; Gjorvad, S.

    1999-11-01

    With the advent in power electronics, increase in power handling capacity of silicone controlled rectifiers and other power electronic devices and the use of high speed digital signal processor (DSP), new and better control principles are now utilized for the design of numerous variable frequency drives (VFDs) for large induction motors. One of the latest technologies developed is the direct torque control (DTC) devices which utilizes the electromagnetic state of the motor to control the flux in the magnetic core and hence, the torque. The response of the drive to changes in the required torque is dramatically improved. DTC provides a precise torque control without the need for a feedback device, such as an encoder or tachogenerator. This paper will discuss the next generation of VFDs utilizing DTC and its application considerations in electric power industry.

  2. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  3. High Performance Variable Speed Drive System and Generating System with Doubly Fed Machines

    NASA Astrophysics Data System (ADS)

    Tang, Yifan

    Doubly fed machines are another alternative for variable speed drive systems. The doubly fed machines, including doubly fed induction machine, self-cascaded induction machine and doubly excited brushless reluctance machine, have several attractive advantages for variable speed drive applications, the most important one being the significant cost reduction with a reduced power converter rating. With a better understanding, improved machine design, flexible power converters and innovated controllers, the doubly fed machines could favorably compete for many applications, which may also include variable speed power generations. The goal of this research is to enhance the attractiveness of the doubly fed machines for both variable speed drive and variable speed generator applications. Recognizing that wind power is one of the favorable clean, renewable energy sources that can contribute to the solution to the energy and environment dilemma, a novel variable-speed constant-frequency wind power generating system is proposed. By variable speed operation, energy capturing capability of the wind turbine is improved. The improvement can be further enhanced by effectively utilizing the doubly excited brushless reluctance machine in slip power recovery configuration. For the doubly fed machines, a stator flux two -axis dynamic model is established, based on which a flexible active and reactive power control strategy can be developed. High performance operation of the drive and generating systems is obtained through advanced control methods, including stator field orientation control, fuzzy logic control and adaptive fuzzy control. System studies are pursued through unified modeling, computer simulation, stability analysis and power flow analysis of the complete drive system or generating system with the machine, the converter and the control. Laboratory implementations and tested results with a digital signal processor system are also presented.

  4. A conceptual framework for evaluating variable speed generator options for wind energy applications

    NASA Astrophysics Data System (ADS)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-05-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  5. A conceptual framework for evaluating variable speed generator options for wind energy applications

    NASA Technical Reports Server (NTRS)

    Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.

    1995-01-01

    Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.

  6. Analyzing of Balancing Authorities Cooperation Methods with High Variable Generation Penetration

    SciTech Connect

    Makarov, Yuri V.; Zhou, Ning; Etingov, Pavel V.; Samaan, Nader A.; Ma, Jian; Diao, Ruisheng; Guttromson, Ross T.

    2010-11-02

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept is based on various forms of collaboration between individual BAs to manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as Area Control Error (ACE) diversity interchange (ADI), variable generation only BA, BA consolidation, dynamic scheduling, and regulation and load following sharing are discussed in this paper. The objective of such strategies is to allow individual BAs within a large power grid to help each other dealing with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics such as capacity, ramp rate, ramp duration, energy and cycling requirements to evaluate the performance of different virtual BA strategies.

  7. Microcomputer logarithmic time base generator

    NASA Astrophysics Data System (ADS)

    Wills, L. J.; Ly, Nhan G.

    1985-11-01

    A new circuit is introduced to generate the logarithmic time base function with good resolution. By using a single-chip microcomputer with EPROM program storage, the circuitry is simplified and can be easily reproduced. The output function covers more than six decades of time and has 590 discrete points per decade with an accuracy of one discrete point per decade or ±0.16%. The design overcomes two well-known problems in using the logarithmic time base. First because the time increments are derived from a real-time register there is a precise reference for zero time, and second a series of time base interval marks are output for correctly calibrating the time axis.

  8. Efficient Signal Processing in Random Networks that Generate Variability: A Comparison of Internally Generated and Externally Induced Variability

    NASA Astrophysics Data System (ADS)

    Dasgupta, Sakyasingha; Nishikawa, Isao; Aihara, Kazuyuki; Toyoizumi, Taro

    Source of cortical variability and its influence on signal processing remain an open question. We address the latter, by studying two types of balanced randomly connected networks of quadratic I-F neurons, with irregular spontaneous activity: (a) a deterministic network with strong connections generating noise by chaotic dynamics (b) a stochastic network with weak connections receiving noisy input. They are analytically tractable in the limit of large network-size and channel time-constant. Despite different sources of noise, spontaneous activity of these networks are identical unless majority of neurons are simultaneously recorded. However, the two networks show remarkably different sensitivity to external stimuli. In the former, input reverberates internally and can be read out over long time, but in the latter, inputs rapidly decay. This is further enhanced with activity-dependent plasticity at input synapses producing marked difference in decoding inputs from neural activity. We show, this leads to distinct performance of the two networks to integrate temporally separate signals from multiple sources, with the deterministic chaotic network activity serving as reservoir for Monte Carlo sampling to perform near optimal Bayesian integration, unlike its stochastic counterpart.

  9. Multiple THz pulse generation with variable energy ratio and delay

    NASA Astrophysics Data System (ADS)

    Ungureanu, R. G.; Grigore, O. V.; Dinca, M. P.; Cojocaru, G. V.; Ursescu, D.; Dascalu, T.

    2015-04-01

    Two methods for multiple high energetic THz pulse generation by two-color filamentation in air with controllable energy ratio and delay ranging from one to hundreds of ps were investigated. In the first method the laser pulse is split into two inside the optical stretcher of a CPA laser system, the resulting consecutive filaments occur in the same region and allows the study of the influence of the first plasma filament on the THz emission of the delayed filament. Based on a polarization sensitive thin film beam splitter placed in front of a 45° mirror, the second method produces multiple parallel consecutive filaments. Above a certain total pump level the THz energy delivered by multiple pulses exceeds the value given by a single filament for the same pump energy, thereby overcoming the THz emission saturation of the single filament.

  10. Handwriting generates variable visual input to facilitate symbol learning

    PubMed Central

    Li, Julia X.; James, Karin H.

    2015-01-01

    Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing two hypotheses: That handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5 year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: three involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and three involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the six conditions (N=72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. PMID:26726913

  11. Probabilistic Approach to Quantifying the Contribution of Variable Generation and Transmission to System Reliability: Preprint

    SciTech Connect

    Ibanez, E.; Milligan, M.

    2012-09-01

    The increasing electrical load served by variable generation (VG), such as wind and solar energy, in the United States and many other countries has stimulated an interesting line of research to better quantify the capacity value of these resources. Methods applied traditionally to thermal units based on their average outage rates do not apply to VG because of their uncertain and non-dispatchable nature. The North American Electric Reliability Corporation's Integration of Variable Generation Task Force recently released a report that highlighted the need to develop and benchmark underlying loss-of-load expectation and related metrics that reasonably and fairly calculate the contribution to planning reserves, or capacity value, of solar and wind power. As the fraction of generation coming from VG becomes more significant, their estimated capacity value will have a larger impact on system planning. In this paper, we provide a method to include VG in traditional probabilistic-based adequacy methods. This method has been implemented in the Renewable Energy Probabilistic Resource Assessment tool developed at the National Renewable Energy Laboratory. Through an example based on the U.S. Western Interconnection, this method is applied to assess the effect that transmission can have on resource adequacy. We also analyze the interactions between available transmission and capacity value for VG.

  12. Generation of ramp waves using variable areal density flyers

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.

    2016-07-01

    Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.

  13. Variable feed rate mechanism for fluidized bed asbestos generators

    SciTech Connect

    Sussman, R.G.; Gearhart, J.M.; Lippmann, M.

    1985-01-01

    A simple and inexpensive dust feed mechanism has been designed for use with a two-phase fluidized bed generator (FBG). The mechanism is especially useful for generating asbestos aerosols, but may be used with other dusts as well. Using this system, a steady state concentration (39.1 fibers/cc > 5 ..mu..m in length +/- 6.2%) of asbestos aerosol was maintained in an inhalation chamber for five hours. In addition, FBG output concentration was easily adjusted and quickly equilibrated (within 10 minutes). The system provides a good technique for generating asbestos aerosols for day-long animal exposures.

  14. High temperature VSCF (Variable Speed Constant Frequency) generator system

    NASA Astrophysics Data System (ADS)

    Maphet, Thomas Allen; McCabria, Jack Lee; Kouba, Carroll Charles; Mitchell, James Thomas; Kwiecinski, James Robert

    1989-04-01

    The high temperature VSCF generator program was designed to develop a generating system capable of withstanding constantly high oil-in temperatures of 200 C in an ambient environment of 200 C. This is a requirement due to anticipated new fighter aircraft designs that will not be capable of cooling the oil to 100 C as in today's designs due to size restrictions of the heat exchanger and/or extended operation of the aircraft at supersonic speeds. The generator uses composite material to withstand the constant use of 200 C inlet oil.

  15. Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles.

    PubMed

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang

    2016-01-01

    Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005-2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales.

  16. Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles.

    PubMed

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang

    2016-01-01

    Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005-2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales. PMID:26930402

  17. Internal Variability-Generated Uncertainty in East Asian Climate Projections Estimated with 40 CCSM3 Ensembles

    PubMed Central

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang

    2016-01-01

    Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005–2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales. PMID:26930402

  18. Laboratory implementation of variable-speed wind turbine generation

    SciTech Connect

    Zinger, D S; Miller, A A; Muljadi, E; Butterfield, C P; Robinson, M C

    1996-07-01

    To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

  19. Kilovolt Blumlein pulse generator with variable pulse duration and polarity

    NASA Astrophysics Data System (ADS)

    de Angelis, Andrea; Kolb, Juergen F.; Zeni, Luigi; Schoenbach, Karl H.

    2008-04-01

    A Blumlein pulse generator which utilizes the superposition of electrical pulses launched from two individually switched pulse forming lines has been designed and tested. By using a power metal-oxide-semiconductor field-effect transistor as a switch on each end of the Blumlein line, we were able to generate pulses with amplitudes of 1kV across a 100Ω load. Pulse duration and polarity can be controlled by the temporal delay in the triggering of the two switches. Using this technique, we have demonstrated the generation of pulses with durations between 8 and 60ns. The lower limit in pulse duration was determined by the switch closing time and the upper limit by the length of the pulse forming line. A further advantage of the concept is that pulse distortions caused by the non-negligible on-resistance of a line with a single switch can be eliminated by using switches with identical characteristics.

  20. Kilovolt Blumlein pulse generator with variable pulse duration and polarity.

    PubMed

    de Angelis, Andrea; Kolb, Juergen F; Zeni, Luigi; Schoenbach, Karl H

    2008-04-01

    A Blumlein pulse generator which utilizes the superposition of electrical pulses launched from two individually switched pulse forming lines has been designed and tested. By using a power metal-oxide-semiconductor field-effect transistor as a switch on each end of the Blumlein line, we were able to generate pulses with amplitudes of 1 kV across a 100 Omega load. Pulse duration and polarity can be controlled by the temporal delay in the triggering of the two switches. Using this technique, we have demonstrated the generation of pulses with durations between 8 and 60 ns. The lower limit in pulse duration was determined by the switch closing time and the upper limit by the length of the pulse forming line. A further advantage of the concept is that pulse distortions caused by the non-negligible on-resistance of a line with a single switch can be eliminated by using switches with identical characteristics.

  1. Multiple and variable speed electrical generator systems for large wind turbines

    NASA Astrophysics Data System (ADS)

    Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.

    A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.

  2. The evolution of aggression: can selection generate variability?

    PubMed

    Maynard Smith, J; Harper, D G

    1988-07-01

    Three models--the war of attrition, the size game and the badges of dominance game--are described, in which natural selection can maintain genetic variability for aggression. The models differ in whether or not the traits that settle contests are costly in contexts other than fighting, and also in whether signals are used. It is concluded that contests will be settled by non-costly traits only if the value of the contested resource is small relative to the cost of fighting, and that 'honest' signalling of aggressiveness is stable only if individuals giving signals that are inconsistent with their behaviour suffer costs. The literature on 'badges of dominance' in birds is reviewed. New data on great tits, greenfinches and corn buntings show that there is plumage variability within age and sex that sometimes serves to settle contests, and that, in the first two species but not the third, the badges are uncorrelated with size, and settle contests only over trivial resources.

  3. Attenuating noise generated by variable-air-volume systems

    SciTech Connect

    Stokes, R.

    1985-03-01

    Sound generated by HVAC systems is receiving much attention because they are generally the principal contributors to room background sound levels that may become irritating and distracting noise if not controlled. This article discusses the creation of a quiet working environment through an analysis of the three traditional sound paths associated with air handling systems: radiated sound, inlet or return air sound and discharge sound. Recommended standards are given as well as a brief overview of materials used to fabricate HVAC system components.

  4. Variable flexure-based fluid filter

    DOEpatents

    Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  5. Environmental mapping based on spatial variability.

    PubMed

    Kovalevskaya, Nelley; Pavlov, Vladimir

    2002-01-01

    Environmental maps show the probable environmental states of different types of land use or development of landscape in a geographic context. Remotely sensed data are particularly efficient for environmental mapping in order to outline major environmental types. Multiple schemes of image classification used in environmental mapping are either traditionally statistical or heuristic. While the former methods do not take account of spatial variability in space and aerial data, the latter ones does not lend themselves to optimal solutions we present. Novel probabilistic models of piecewise-homogeneous images are used in environmental mapping to segment real images. The models consider both an image and a land cover map. Such a pair constitutes an example of a Markov random field specified by a joint Gibbs probability distribution of images and maps. Parameters of the model are estimated by using a stochastic approximation technique. Its convergence to the desired values is studied experimentally. Addition of spatial attributes appears to be necessary in most areas where the differences in spatial data between regions in the image occur. Experiments in generating the pairs of images and environmental maps and in segmenting the simulated as well as real images are discussed. PMID:12371162

  6. Analysis And Synthesis Of Model Reference Controller For Variable Speed Wind Generators Inertial Support

    NASA Astrophysics Data System (ADS)

    Bećirović, Elvisa; Osmić, Jakub; Kušljugić, Mirza; Perić, Nedjeljko

    2015-01-01

    Model Reference Controller (MRC) for contribution of Variable Speed Wind Generators (VSWG) in inertial response of Electrical Power System (EPS) is presented and analyzed in this paper. MRC is synthesized based on a model of Generating Unit With non-Reheat Steam Turbine (GUNRST) thus enabling VSWG to emulate GUNRST response during the initial stage of dynamic frequency response ie inertial phase. Very important property of conventional steam generating units is that its contribution to inertial phase response is independent from the initial generating power. By using MRC in VSWG it is accomplished that in most common wind speed region (3-12 m/s) VSWG inertial support is almost independent from wind speed. Since in most EPSs VSWG replaces conventional steam generators, application of MRC algorithm provides that the characteristics of EPS in terms of inertial response are preserved, regardless of the growing trend of introducing VSWG. Evaluation analysis of the proposed MRC is performed on modified nine bus power system when VSWG with MRC is connected to one of the power system buses.

  7. Generation of noncircular gears for variable motion of the crank-slider mechanism

    NASA Astrophysics Data System (ADS)

    Niculescu, M.; Andrei, L.; Cristescu, A.

    2016-08-01

    The paper proposes a modified kinematics for the crank-slider mechanism of a nails machine. The variable rotational motion of the driven gear allows to slow down the velocity of the slider in the head forming phase and increases the period for the forming forces to be applied, improving the quality of the final product. The noncircular gears are designed based on a hybrid function for the gear transmission ratio whose parameters enable multiple variations of the noncircular driven gears and crack-slider mechanism kinematics, respectively. The AutoCAD graphical and programming facilities are used (i) to analyse and optimize the slider-crank mechanism output functions, in correlation with the predefined noncircular gears transmission ratio, (ii) to generate the noncircular centrodes using the kinematics hypothesis, (iii) to generate the variable geometry of the gear teeth profiles, based on the rolling method, and (iv) to produce the gears solid virtual models. The study highlights the benefits/limits that the noncircular gears transmission ratio defining hybrid functions have on both crank-slider mechanism kinematics and gears geometry.

  8. 32 nm imprint masks using variable shape beam pattern generators

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  9. A rainfall simulator based on multifractal generator

    NASA Astrophysics Data System (ADS)

    Akrour, Nawal; mallet, Cecile; barthes, Laurent; chazottes, Aymeric

    2015-04-01

    The Precipitations are due to complex meteorological phenomenon's and unlike other geophysical constituents such as water vapour concentration they present a relaxation behaviour leading to an alternation of dry and wet periods. Thus, precipitations can be described as intermittent process. The spatial and temporal variability of this phenomenon is significant and covers large scales. This high variability can cause extreme events which are difficult to observe properly because of their suddenness and their localized character. For all these reasons, the precipitations are therefore difficult to model. This study aims to adapt a one-dimensional time series model previously developed by the authors [Akrour et al., 2013, 2014] to a two-dimensional rainfall generator. The original time series model can be divided into 3 major steps : rain support generation, intra event rain rates generation using multifractal and finally calibration process. We use the same kind of methodology in the present study. Based on dataset obtained from meteorological radar of Météo France with a spatial resolution of 1 km x 1 km we present the used approach : Firstly, the extraction of rain support (rain/no rain area) allowing the retrieval of the rain support structure function (variogram) and fractal properties. This leads us to use either the rain support modelisation proposed by ScleissXXX [ref] or directly real rain support extracted from radar rain maps. Then, the generation (over rain areas) of rain rates is made thanks to a 2D multifractal Fractionnally Integrated Flux (FIF) model [ref]. This second stage is followed by a calibration/forcing step (forcing average rain rate per events) added in order to provide rain rate coherent with observed rain-rate distribution. The forcing process is based on a relation identified from the average rain rate of observed events and their surfaces. The presentation will first explain the different steps presented above, then some results

  10. Fluctuations in neighbourhood fertility generate variable signalling effort

    PubMed Central

    Taff, Conor C.; Patricelli, Gail L.; Freeman-Gallant, Corey R.

    2014-01-01

    Studies of sexual signalling generally focus on interactions between dyadic pairs, yet communication in natural populations often occurs in the context of complex social networks. The ability to survey social environments and adjust signal production appropriately should be a critical component of success in these systems, but has rarely been documented empirically. Here, we used autonomous recording devices to identify 118 472 songs produced by 26 male common yellowthroats (Geothlypis trichas) over two breeding seasons, coupled with detailed surveys of social conditions on each territory. We found strong evidence that common yellowthroat males adjusted their total song production in response to both changes in within-pair social context and changes in the fertility of neighbouring females up to 400 m away. Within the social pair, males drastically reduced their song production when mated, but the magnitude of this reduction depended on both the time of day and on the fertility status of the social mate. By contrast, when fertile females were present on nearby territories, males increased their song output, especially during daytime singing. At this time, it is unclear whether males actively gathered information on neighbouring female fertility or whether the patterns that we observed were driven by changes in social interactions that varied with neighbourhood fertility. Regardless of the mechanism employed, however, subtle changes in the social environment generated substantial variation in signalling effort. PMID:25339717

  11. Fluctuations in neighbourhood fertility generate variable signalling effort.

    PubMed

    Taff, Conor C; Patricelli, Gail L; Freeman-Gallant, Corey R

    2014-12-01

    Studies of sexual signalling generally focus on interactions between dyadic pairs, yet communication in natural populations often occurs in the context of complex social networks. The ability to survey social environments and adjust signal production appropriately should be a critical component of success in these systems, but has rarely been documented empirically. Here, we used autonomous recording devices to identify 118 472 songs produced by 26 male common yellowthroats (Geothlypis trichas) over two breeding seasons, coupled with detailed surveys of social conditions on each territory. We found strong evidence that common yellowthroat males adjusted their total song production in response to both changes in within-pair social context and changes in the fertility of neighbouring females up to 400 m away. Within the social pair, males drastically reduced their song production when mated, but the magnitude of this reduction depended on both the time of day and on the fertility status of the social mate. By contrast, when fertile females were present on nearby territories, males increased their song output, especially during daytime singing. At this time, it is unclear whether males actively gathered information on neighbouring female fertility or whether the patterns that we observed were driven by changes in social interactions that varied with neighbourhood fertility. Regardless of the mechanism employed, however, subtle changes in the social environment generated substantial variation in signalling effort.

  12. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect

    Mills, Andrew; Wiser, Ryan

    2014-03-03

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  13. Effect of age on variability in the production of text-based global inferences.

    PubMed

    Williams, Lynne J; Dunlop, Joseph P; Abdi, Hervé

    2012-01-01

    As we age, our differences in cognitive skills become more visible, an effect especially true for memory and problem solving skills (i.e., fluid intelligence). However, by contrast with fluid intelligence, few studies have examined variability in measures that rely on one's world knowledge (i.e., crystallized intelligence). The current study investigated whether age increased the variability in text based global inference generation--a measure of crystallized intelligence. Global inference generation requires the integration of textual information and world knowledge and can be expressed as a gist or lesson. Variability in generating two global inferences for a single text was examined in young-old (62 to 69 years), middle-old (70 to 76 years) and old-old (77 to 94 years) adults. The older two groups showed greater variability, with the middle elderly group being most variable. These findings suggest that variability may be a characteristic of both fluid and crystallized intelligence in aging. PMID:22590523

  14. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    NASA Astrophysics Data System (ADS)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  15. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  16. Mechanisms of Internally Generated Multidecadal Variability of SST in the Atlantic Ocean in a Coupled GCM

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Schneider, Edwin; Wu, Zhiwei

    2015-04-01

    Mechanisms of the internally generated multidecadal variability of SST in the Atlantic Ocean are investigated in a long control simulation of the Community Climate System Model version 3 with constant external forcing. The interactive ensemble (IE) coupling strategy, with an ensemble of atmospheric GCMs (AGCM) coupled to an ocean model, a sea-ice model and a land model, is used to diagnose the roles of various processes in the coupled GCM (CGCM). The noise components of heat flux, wind stress and fresh water flux of the control simulation, determined from the CGCM surface fluxes by subtracting the SST-forced surface fluxes, estimated as the ensemble mean of AGCM simulations, are applied at the ocean surface of the IE in different regions and in different combinations. The IE simulations demonstrate that the climate variability in the control simulation is predominantly forced by noise. The local noise forcing is found to be responsible for the SST variability in the Atlantic Ocean, with noise heat flux and noise wind stress playing a critical role. The control run Atlantic multidecadal variability (AMV) index is decomposed into interannual, decadal, multidecadal and centennial modes based on the ensemble empirical mode decomposition, and the multidecadal mode of 50-year period is examined in detail. The North Atlantic Oscillation (NAO) pattern in the atmosphere, dominated by the noise component, forces the AMV 50-year mode through noise heat flux and noise wind stress. The noise wind stress forcing on AMV is associated with ocean dynamics, including gyre adjustment and the Atlantic Meridional Overturning Circulation. The atmospheric response to SST, including the SST-forced heat flux and SST-forced wind stress, acts as a damping on AMV.

  17. Smoothing Control of Wind Farm Output by Using Kinetic Energy of Variable Speed Wind Power Generators

    NASA Astrophysics Data System (ADS)

    Sato, Daiki; Saitoh, Hiroumi

    This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.

  18. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  19. Carbon isotopes in xenoliths from the Hualalai Volcano, Hawaii, and the generation of isotopic variability

    SciTech Connect

    Pineau, F. ); Mathez, E.A. )

    1990-01-01

    The isotopic composition of carbon has been determined in a suite of xenoliths from lava of the 1800-1801 Kaupulehu eruption of Hualalai Volcano, Hawaii. Several lithologies are represented in the suite, including websterite, dunite, wehrlite, pyroxenite, and gabbro. In addition, there are composite xenoliths in which contacts between lithologies are preserved. Most of the xenoliths represent deformed cumulates. The contact relations in the composite samples indicate that the lithologies originated from the same source region, which, based on pressures determined from fluid inclusions, is estimated to be at a depth of {approx}20 km, or near the crust-mantle boundary. The observations and isotopic results demonstrate that isotopic variability can be generated by multistage fractionation processes such as degassing of CO{sub 2} from magma and precipitation of CO{sub 2}-rich fluids to form graphitic compounds. Such processes operated over regions the scales of which were determined by style and intensity of deformation and by lithology.

  20. Demonstration of variable speed permanent magnet generator at small, low-head hydro site

    SciTech Connect

    Brown Kinloch, David

    2015-12-18

    Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY, a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.

  1. Potential Reductions in Variability with Alternative Approaches to Balancing Area Cooperation with High Penetrations of Variable Generation

    SciTech Connect

    Milligan, M.; Kirby, B.; Beuning, S.

    2010-08-01

    The work described in this report was performed by the National Renewable Energy Laboratory (NREL) and funded by the Office of the Energy Efficiency and Renewable Energy, U.S. Department of Energy (EERE DOE). This project is a joint project with the Pacific Northwest National Laboratory. This report evaluates the physical characteristics that improve the ability of the power system to absorb variable generation. It then uses evidence from electricity markets in the Eastern Interconnection of the United States to show how large, fast energy markets can help with integration. The concept of Virtual Balancing Area is introduced, a concept that covers a broad range of cooperative measures that can be undertaken by balancing areas to help manage variability.

  2. State variable theories based on Hart's formulation

    SciTech Connect

    Korhonen, M.A.; Hannula, S.P.; Li, C.Y.

    1985-01-01

    In this paper a review of the development of a state variable theory for nonelastic deformation is given. The physical and phenomenological basis of the theory and the constitutive equations describing macroplastic, microplastic, anelastic and grain boundary sliding enhanced deformation are presented. The experimental and analytical evaluation of different parameters in the constitutive equations are described in detail followed by a review of the extensive experimental work on different materials. The technological aspects of the state variable approach are highlighted by examples of the simulative and predictive capabilities of the theory. Finally, a discussion of general capabilities, limitations and future developments of the theory and particularly the possible extensions to cover an even wider range of deformation or deformation-related phenomena is presented.

  3. Experimental investigation of a variable speed constant frequency electric generating system from a utility perspective

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.

    1985-01-01

    As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.

  4. Experimental investigation of a variable speed constant frequency electric generating system from a utility perspective

    NASA Astrophysics Data System (ADS)

    Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.

    1985-05-01

    As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.

  5. Variable speed generator application on the MOD-5A 7.3 mW wind turbine generator

    NASA Astrophysics Data System (ADS)

    Barton, Robert S.

    1995-05-01

    This paper describes the application of a Scherbiustat type variable speed subsystem in the MOD-5A Wind Turbine Generator. As designed by General Electric Company, Advanced Energy Programs Department, under contract DEN3-153 with NASA Lewis Research Center and DOE, the MOD-5A utilizes the subsystem for both starting assistance in a motoring mode and generation in a controlled airgap torque mode. Reactive power control is also provided. The Scherbiustat type arrangement of a wound rotor machine with a cycloconverter in the rotor circuit was selected after an evaluation of variable speed technologies that followed a system evaluation of drivetrain cost and risk. The paper describes the evaluation factors considered, the results of the evaluations and summarizes operating strategy and performance simulations.

  6. Variable speed generator application on the MOD-5A 7.3 mW wind turbine generator

    NASA Technical Reports Server (NTRS)

    Barton, Robert S.

    1995-01-01

    This paper describes the application of a Scherbiustat type variable speed subsystem in the MOD-5A Wind Turbine Generator. As designed by General Electric Company, Advanced Energy Programs Department, under contract DEN3-153 with NASA Lewis Research Center and DOE, the MOD-5A utilizes the subsystem for both starting assistance in a motoring mode and generation in a controlled airgap torque mode. Reactive power control is also provided. The Scherbiustat type arrangement of a wound rotor machine with a cycloconverter in the rotor circuit was selected after an evaluation of variable speed technologies that followed a system evaluation of drivetrain cost and risk. The paper describes the evaluation factors considered, the results of the evaluations and summarizes operating strategy and performance simulations.

  7. Error Generation in CATS-Based Agents

    NASA Technical Reports Server (NTRS)

    Callantine, Todd

    2003-01-01

    This research presents a methodology for generating errors from a model of nominally preferred correct operator activities, given a particular operational context, and maintaining an explicit link to the erroneous contextual information to support analyses. It uses the Crew Activity Tracking System (CATS) model as the basis for error generation. This report describes how the process works, and how it may be useful for supporting agent-based system safety analyses. The report presents results obtained by applying the error-generation process and discusses implementation issues. The research is supported by the System-Wide Accident Prevention Element of the NASA Aviation Safety Program.

  8. Simulation-Based Rule Generation Considering Readability

    PubMed Central

    Yahagi, H.; Shimizu, S.; Ogata, T.; Hara, T.; Ota, J.

    2015-01-01

    Rule generation method is proposed for an aircraft control problem in an airport. Designing appropriate rules for motion coordination of taxiing aircraft in the airport is important, which is conducted by ground control. However, previous studies did not consider readability of rules, which is important because it should be operated and maintained by humans. Therefore, in this study, using the indicator of readability, we propose a method of rule generation based on parallel algorithm discovery and orchestration (PADO). By applying our proposed method to the aircraft control problem, the proposed algorithm can generate more readable and more robust rules and is found to be superior to previous methods. PMID:27347501

  9. Ontology-Based Multiple Choice Question Generation

    PubMed Central

    Al-Yahya, Maha

    2014-01-01

    With recent advancements in Semantic Web technologies, a new trend in MCQ item generation has emerged through the use of ontologies. Ontologies are knowledge representation structures that formally describe entities in a domain and their relationships, thus enabling automated inference and reasoning. Ontology-based MCQ item generation is still in its infancy, but substantial research efforts are being made in the field. However, the applicability of these models for use in an educational setting has not been thoroughly evaluated. In this paper, we present an experimental evaluation of an ontology-based MCQ item generation system known as OntoQue. The evaluation was conducted using two different domain ontologies. The findings of this study show that ontology-based MCQ generation systems produce satisfactory MCQ items to a certain extent. However, the evaluation also revealed a number of shortcomings with current ontology-based MCQ item generation systems with regard to the educational significance of an automatically constructed MCQ item, the knowledge level it addresses, and its language structure. Furthermore, for the task to be successful in producing high-quality MCQ items for learning assessments, this study suggests a novel, holistic view that incorporates learning content, learning objectives, lexical knowledge, and scenarios into a single cohesive framework. PMID:24982937

  10. Ontology-based multiple choice question generation.

    PubMed

    Al-Yahya, Maha

    2014-01-01

    With recent advancements in Semantic Web technologies, a new trend in MCQ item generation has emerged through the use of ontologies. Ontologies are knowledge representation structures that formally describe entities in a domain and their relationships, thus enabling automated inference and reasoning. Ontology-based MCQ item generation is still in its infancy, but substantial research efforts are being made in the field. However, the applicability of these models for use in an educational setting has not been thoroughly evaluated. In this paper, we present an experimental evaluation of an ontology-based MCQ item generation system known as OntoQue. The evaluation was conducted using two different domain ontologies. The findings of this study show that ontology-based MCQ generation systems produce satisfactory MCQ items to a certain extent. However, the evaluation also revealed a number of shortcomings with current ontology-based MCQ item generation systems with regard to the educational significance of an automatically constructed MCQ item, the knowledge level it addresses, and its language structure. Furthermore, for the task to be successful in producing high-quality MCQ items for learning assessments, this study suggests a novel, holistic view that incorporates learning content, learning objectives, lexical knowledge, and scenarios into a single cohesive framework. PMID:24982937

  11. Ontology-based multiple choice question generation.

    PubMed

    Al-Yahya, Maha

    2014-01-01

    With recent advancements in Semantic Web technologies, a new trend in MCQ item generation has emerged through the use of ontologies. Ontologies are knowledge representation structures that formally describe entities in a domain and their relationships, thus enabling automated inference and reasoning. Ontology-based MCQ item generation is still in its infancy, but substantial research efforts are being made in the field. However, the applicability of these models for use in an educational setting has not been thoroughly evaluated. In this paper, we present an experimental evaluation of an ontology-based MCQ item generation system known as OntoQue. The evaluation was conducted using two different domain ontologies. The findings of this study show that ontology-based MCQ generation systems produce satisfactory MCQ items to a certain extent. However, the evaluation also revealed a number of shortcomings with current ontology-based MCQ item generation systems with regard to the educational significance of an automatically constructed MCQ item, the knowledge level it addresses, and its language structure. Furthermore, for the task to be successful in producing high-quality MCQ items for learning assessments, this study suggests a novel, holistic view that incorporates learning content, learning objectives, lexical knowledge, and scenarios into a single cohesive framework.

  12. Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach

    NASA Astrophysics Data System (ADS)

    Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver

    2016-01-01

    In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.

  13. Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation

    SciTech Connect

    Olsen, M.K.

    2004-09-01

    The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal.

  14. Description and test results of a variable speed, constant frequency generating system

    NASA Technical Reports Server (NTRS)

    Brady, F. J.

    1985-01-01

    The variable-speed, constant frequency generating system developed for the Mod-0 wind turbine is presented. This report describes the system as it existed at the conclusion of the project. The cycloconverter control circuit is described including the addition of field-oriented control. The laboratory test and actual wind turbine test results are included.

  15. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction.

    PubMed

    Coloma, M J; Hastings, A; Wims, L A; Morrison, S L

    1992-07-31

    A new family of vectors has been produced which facilitates the cloning and expression of immunoglobulin variable regions cloned by polymerase chain reaction (PCR). The vectors are designed to express the cloned variable regions joined to human constant regions and take advantage of priming in the leader sequence so that no amino acid changes will be introduced into the mature antibody molecule. Both the heavy chain and light chain vectors utilize a murine VH promoter provided with an EcoRV restriction site so that the amplified variable regions can be directly cloned into a functional promoter. For the heavy chain an NheI restriction site has been generated at the first two amino acids of CH1 and the cloned leader and variable region are fused directly to the CH1 domain of the constant region. When the leader and variable regions of the light chain were fused directly to C kappa, no expression was observed. Therefore the light chain expression vector was designed with a SalI restriction site for cloning into a splice junction 3' of the variable region; VL then is joined to C kappa by splicing. Both vectors direct the expression of functional, fully assembled immunoglobulin molecules with the expected molecular weight. Use of redundant oligomers to prime the PCR permits the cloning and expression of recombinant antibodies without any prior information as to their sequence and makes it possible to rapidly generate recombinant antibodies from any monoclonal antibody producing cell line.

  16. Implementation of a long range, distributed-volume, continuously variable turbulence generator.

    PubMed

    DiComo, Gregory; Helle, Michael; Peñano, Joe; Ting, Antonio; Schmitt-Sody, Andreas; Elle, Jennifer

    2016-07-01

    We have constructed a 180-m-long distributed, continuously variable atmospheric turbulence generator to study high-power laser beam propagation. This turbulence generator operates on the principle of free convection from a heated surface placed below the entire propagation path of the beam, similar to the situation in long-distance horizontal propagation for laser communications, power beaming, or directed energy applications. The turbulence produced by this generator has been characterized through constant-temperature anemometry, as well as by the scintillation of a low-power laser beam. PMID:27409209

  17. Implementation of a long range, distributed-volume, continuously variable turbulence generator.

    PubMed

    DiComo, Gregory; Helle, Michael; Peñano, Joe; Ting, Antonio; Schmitt-Sody, Andreas; Elle, Jennifer

    2016-07-01

    We have constructed a 180-m-long distributed, continuously variable atmospheric turbulence generator to study high-power laser beam propagation. This turbulence generator operates on the principle of free convection from a heated surface placed below the entire propagation path of the beam, similar to the situation in long-distance horizontal propagation for laser communications, power beaming, or directed energy applications. The turbulence produced by this generator has been characterized through constant-temperature anemometry, as well as by the scintillation of a low-power laser beam.

  18. Polynomial driven time base and PN generator

    NASA Technical Reports Server (NTRS)

    Brokl, S. S.

    1983-01-01

    In support of the planetary radar upgrade new hardware was designed to increase resolution and take advantage of new technology. Included is a description of the Polynomial Driven Time Base and PN Generator which is used for range gate coding in the planetary radar system.

  19. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; Liu, Yilu

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  20. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    SciTech Connect

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; Liu, Yilu

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluated the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.

  1. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1995-11-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  2. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1996-10-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy analyzed uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  3. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1996-11-01

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  4. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants

    PubMed Central

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  5. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    PubMed

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-08-22

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements.

  6. Fault Diagnosis Strategies for SOFC-Based Power Generation Plants.

    PubMed

    Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea

    2016-01-01

    The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472

  7. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  8. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    SciTech Connect

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; Hodge, Bri-Mathias; Finley, Catherine; Nakafuji, Dora; Peterson, Jack L.; Maggio, David; Marquis, Melinda

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value of adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.

  9. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    DOE PAGES

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; Sharp, Justin; Wilczak, James M.; Freedman, Jeffrey; Haupt, Sue Ellen; Cline, Joel; Bartholomy, Obadiah; Hamann, Hendrik F.; et al

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less

  10. Variability-based Active Galactic Nucleus Selection Using Image Subtraction in the SDSS and LSST Era

    NASA Astrophysics Data System (ADS)

    Choi, Yumi; Gibson, Robert R.; Becker, Andrew C.; Ivezić, Željko; Connolly, Andrew J.; MacLeod, Chelsea L.; Ruan, John J.; Anderson, Scott F.

    2014-02-01

    With upcoming all-sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based active galactic nucleus (AGN) selection will enable the construction of highly complete catalogs with minimum contamination. In this study, we generate g-band difference images and construct light curves (LCs) for QSO/AGN candidates listed in Sloan Digital Sky Survey Stripe 82 public catalogs compiled from different methods, including spectroscopy, optical colors, variability, and X-ray detection. Image differencing excels at identifying variable sources embedded in complex or blended emission regions such as Type II AGNs and other low-luminosity AGNs that may be omitted from traditional photometric or spectroscopic catalogs. To separate QSOs/AGNs from other sources using our difference image LCs, we explore several LC statistics and parameterize optical variability by the characteristic damping timescale (τ) and variability amplitude. By virtue of distinguishable variability parameters of AGNs, we are able to select them with high completeness of 93.4% and efficiency (i.e., purity) of 71.3%. Based on optical variability, we also select highly variable blazar candidates, whose infrared colors are consistent with known blazars. One-third of them are also radio detected. With the X-ray selected AGN candidates, we probe the optical variability of X-ray detected optically extended sources using their difference image LCs for the first time. A combination of optical variability and X-ray detection enables us to select various types of host-dominated AGNs. Contrary to the AGN unification model prediction, two Type II AGN candidates (out of six) show detectable variability on long-term timescales like typical Type I AGNs. This study will provide a baseline for future optical variability studies of extended sources.

  11. Variability-based active galactic nucleus selection using image subtraction in the SDSS and LSST era

    SciTech Connect

    Choi, Yumi; Gibson, Robert R.; Becker, Andrew C.; Ivezić, Željko; Connolly, Andrew J.; Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.

    2014-02-10

    With upcoming all-sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based active galactic nucleus (AGN) selection will enable the construction of highly complete catalogs with minimum contamination. In this study, we generate g-band difference images and construct light curves (LCs) for QSO/AGN candidates listed in Sloan Digital Sky Survey Stripe 82 public catalogs compiled from different methods, including spectroscopy, optical colors, variability, and X-ray detection. Image differencing excels at identifying variable sources embedded in complex or blended emission regions such as Type II AGNs and other low-luminosity AGNs that may be omitted from traditional photometric or spectroscopic catalogs. To separate QSOs/AGNs from other sources using our difference image LCs, we explore several LC statistics and parameterize optical variability by the characteristic damping timescale (τ) and variability amplitude. By virtue of distinguishable variability parameters of AGNs, we are able to select them with high completeness of 93.4% and efficiency (i.e., purity) of 71.3%. Based on optical variability, we also select highly variable blazar candidates, whose infrared colors are consistent with known blazars. One-third of them are also radio detected. With the X-ray selected AGN candidates, we probe the optical variability of X-ray detected optically extended sources using their difference image LCs for the first time. A combination of optical variability and X-ray detection enables us to select various types of host-dominated AGNs. Contrary to the AGN unification model prediction, two Type II AGN candidates (out of six) show detectable variability on long-term timescales like typical Type I AGNs. This study will provide a baseline for future optical variability studies of extended sources.

  12. Assessing the variables affecting on the rate of solid waste generation and recycling: An empirical analysis in Prespa Park.

    PubMed

    Grazhdani, Dorina

    2016-02-01

    Economic development, urbanization, and improved living standards increase the quantity and complexity of generated solid waste. Comprehensive study of the variables influencing household solid waste production and recycling rate is crucial and fundamental for exploring the generation mechanism and forecasting future dynamics of household solid waste. The present study is employed in the case study of Prespa Park. A model, based on the interrelationships of economic, demographic, housing structure and waste management policy variables influencing the rate of solid waste generation and recycling is developed and employed. The empirical analysis is based on the information derived from a field questionnaire survey conducted in Prespa Park villages for the year 2014. Another feature of this study is to test whether a household's waste generation can be decoupled from its population growth. Descriptive statistics, bivariate correlation analysis and F-tests are used to know the relationship between variables. One-way and two-way fixed effects models data analysis techniques are used to identify variables that determine the effectiveness of waste generation and recycling at household level in the study area. The results reveal that households with heterogeneous characteristics, such as education level, mean building age and income, present different challenges of waste reduction goals. Numerically, an increase of 1% in education level of population corresponds to a waste reduction of 3kg on the annual per capita basis. A village with older buildings, in the case of one year older of the median building age, corresponds to a waste generation increase of 12kg. Other economic and policy incentives such as the mean household income, pay-as-you-throw, percentage of population with access to curbside recycling, the number of drop-off recycling facilities available per 1000 persons and cumulative expenditures on recycling education per capita are also found to be effective

  13. Assessing the variables affecting on the rate of solid waste generation and recycling: An empirical analysis in Prespa Park.

    PubMed

    Grazhdani, Dorina

    2016-02-01

    Economic development, urbanization, and improved living standards increase the quantity and complexity of generated solid waste. Comprehensive study of the variables influencing household solid waste production and recycling rate is crucial and fundamental for exploring the generation mechanism and forecasting future dynamics of household solid waste. The present study is employed in the case study of Prespa Park. A model, based on the interrelationships of economic, demographic, housing structure and waste management policy variables influencing the rate of solid waste generation and recycling is developed and employed. The empirical analysis is based on the information derived from a field questionnaire survey conducted in Prespa Park villages for the year 2014. Another feature of this study is to test whether a household's waste generation can be decoupled from its population growth. Descriptive statistics, bivariate correlation analysis and F-tests are used to know the relationship between variables. One-way and two-way fixed effects models data analysis techniques are used to identify variables that determine the effectiveness of waste generation and recycling at household level in the study area. The results reveal that households with heterogeneous characteristics, such as education level, mean building age and income, present different challenges of waste reduction goals. Numerically, an increase of 1% in education level of population corresponds to a waste reduction of 3kg on the annual per capita basis. A village with older buildings, in the case of one year older of the median building age, corresponds to a waste generation increase of 12kg. Other economic and policy incentives such as the mean household income, pay-as-you-throw, percentage of population with access to curbside recycling, the number of drop-off recycling facilities available per 1000 persons and cumulative expenditures on recycling education per capita are also found to be effective

  14. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Davenport, James R. A.; Ivezic, Zeljko; Burnett, T. H.; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-20

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the {approx}30% of {gamma}-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability {tau}, and driving amplitudes on short timescales {sigma}-circumflex. Imposing cuts on minimum {tau} and {sigma}-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of {gamma}-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E {>=} 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other {gamma}-ray blazars and is likely to be the {gamma}-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is {approx}3 years in the rest frame of the jet, in contrast with the {approx}320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  15. Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  16. Selective Ligand Recognition by a Diversity-Generating Retroelement Variable Protein

    PubMed Central

    Miller, Jason L; Coq, Johanne Le; Hodes, Asher; Barbalat, Roman; Miller, Jeff F; Ghosh, Partho

    2008-01-01

    Diversity-generating retroelements (DGRs) recognize novel ligands through massive protein sequence variation, a property shared uniquely with the adaptive immune response. Little is known about how recognition is achieved by DGR variable proteins. Here, we present the structure of the Bordetella bacteriophage DGR variable protein major tropism determinant (Mtd) bound to the receptor pertactin, revealing remarkable adaptability in the static binding sites of Mtd. Despite large dissimilarities in ligand binding mode, principles underlying selective recognition were strikingly conserved between Mtd and immunoreceptors. Central to this was the differential amplification of binding strengths by avidity (i.e., multivalency), which not only relaxed the demand for optimal complementarity between Mtd and pertactin but also enhanced distinctions among binding events to provide selectivity. A quantitatively similar balance between complementarity and avidity was observed for Bordetella bacteriophage DGR as occurs in the immune system, suggesting that variable repertoires operate under a narrow set of conditions to recognize novel ligands. PMID:18532877

  17. Selective ligand recognition by a diversity-generating retroelement variable protein.

    PubMed

    Miller, Jason L; Le Coq, Johanne; Hodes, Asher; Barbalat, Roman; Miller, Jeff F; Ghosh, Partho

    2008-06-01

    Diversity-generating retroelements (DGRs) recognize novel ligands through massive protein sequence variation, a property shared uniquely with the adaptive immune response. Little is known about how recognition is achieved by DGR variable proteins. Here, we present the structure of the Bordetella bacteriophage DGR variable protein major tropism determinant (Mtd) bound to the receptor pertactin, revealing remarkable adaptability in the static binding sites of Mtd. Despite large dissimilarities in ligand binding mode, principles underlying selective recognition were strikingly conserved between Mtd and immunoreceptors. Central to this was the differential amplification of binding strengths by avidity (i.e., multivalency), which not only relaxed the demand for optimal complementarity between Mtd and pertactin but also enhanced distinctions among binding events to provide selectivity. A quantitatively similar balance between complementarity and avidity was observed for Bordetella bacteriophage DGR as occurs in the immune system, suggesting that variable repertoires operate under a narrow set of conditions to recognize novel ligands.

  18. Generation of DNA nanocircles containing mismatched bases.

    PubMed

    Xiao, Yu; Jung, Caroline; Marx, Andreas D; Winkler, Ines; Wyman, Claire; Lebbink, Joyce H G; Friedhoff, Peter; Cristovao, Michele

    2011-10-01

    The DNA mismatch repair (MMR) system recognizes and repairs errors that escaped the proofreading function of DNA polymerases. To study molecular details of the MMR mechanism, in vitro biochemical assays require specific DNA substrates carrying mismatches and strand discrimination signals. Current approaches used to generate MMR substrates are time-consuming and/or not very flexible with respect to sequence context. Here we report an approach to generate small circular DNA containing a mismatch (nanocircles). Our method is based on the nicking of PCR products resulting in single-stranded 3' overhangs, which form DNA circles after annealing and ligation. Depending on the DNA template, one can generate mismatched circles containing a single hemimethylated GATC site (for use with the bacterial system) and/or nicking sites to generate DNA circles nicked in the top or bottom strand (for assays with the bacterial or eukaryotic MMR system). The size of the circles varied (323 to 1100 bp), their sequence was determined by the template DNA, and purification of the circles was achieved by ExoI/ExoIII digestion and/or gel extraction. The quality of the nanocircles was assessed by scanning-force microscopy and their suitability for in vitro repair initiation was examined using recombinant Escherichia coli MMR proteins.

  19. Estimated parameters as independent variables - with an application to the costs of electric-generating units

    SciTech Connect

    Schmalensee, R.; Joskow, P.L.

    1984-01-01

    The cost of a piece of capital equipment, like an electric-generating unit, is a function of a variety of unit-specific attributes. Some of these attributes can be observed directly without error (such as size), but others (such as the reliability or efficiency of the equipment), cannot be. However, estimates of the unobservable quality attributes can often be obtained from time-series data on expost performance, and these estimates can in turn be used as data on the unobservable attributes that appear as exogenous variables in a cost equation. The authors consider estimation of linear models in which observation-specific (firm, plant, household, individual) attributes appear as exogenous variables, but these attributes cannot be observed directly. Rather, they assume that estimates of the relevant observation-specific attributes, along with the associated covariance matrix, can be computed using data on variables (such as ex post performance) that do not appear directly in the primary model of interest. A maximum-likelihood technique for using such estimates as independent variables in cross-section regression analysis is derived. The solution to the measurement-error problem is interpretable as nonlinear (Theil-Goldberger) mixed estimation. The method is applied to the estimation of a construction cost relationship for electric-generating units.

  20. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    SciTech Connect

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

    2011-09-10

    This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the “silver bullet” for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

  1. Virus-based piezoelectric energy generation

    NASA Astrophysics Data System (ADS)

    Lee, Byung Yang; Zhang, Jinxing; Zueger, Chris; Chung, Woo-Jae; Yoo, So Young; Wang, Eddie; Meyer, Joel; Ramesh, Ramamoorthy; Lee, Seung-Wuk

    2012-06-01

    Piezoelectric materials can convert mechanical energy into electrical energy, and piezoelectric devices made of a variety of inorganic materials and organic polymers have been demonstrated. However, synthesizing such materials often requires toxic starting compounds, harsh conditions and/or complex procedures. Previously, it was shown that hierarchically organized natural materials such as bones, collagen fibrils and peptide nanotubes can display piezoelectric properties. Here, we demonstrate that the piezoelectric and liquid-crystalline properties of M13 bacteriophage (phage) can be used to generate electrical energy. Using piezoresponse force microscopy, we characterize the structure-dependent piezoelectric properties of the phage at the molecular level. We then show that self-assembled thin films of phage can exhibit piezoelectric strengths of up to 7.8 pm V-1. We also demonstrate that it is possible to modulate the dipole strength of the phage, hence tuning the piezoelectric response, by genetically engineering the major coat proteins of the phage. Finally, we develop a phage-based piezoelectric generator that produces up to 6 nA of current and 400 mV of potential and use it to operate a liquid-crystal display. Because biotechnology techniques enable large-scale production of genetically modified phages, phage-based piezoelectric materials potentially offer a simple and environmentally friendly approach to piezoelectric energy generation.

  2. Effects of turbulence on power generation for variable-speed wind turbines

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

    1996-11-01

    One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

  3. [Rapid identification of variable star spectrum based on information entropy].

    PubMed

    Cai, Jiang-hui; Meng, Wen-jun; Sun, Shi-wei; Zhao, Xu-jun; Zhang, Ji-fu

    2012-01-01

    Variable star is very important for mankind studying cosmic origin and evolution. For studying variable star, the chief difficulty results from the filtration and identification of variable star, that is how to validly identify variable star spectra from large high-dimensional star spectra data. The traditional outlier definition tries to find the difference between the outlier data and the general model by different ways, and then the result is quantitatively analyzed and filtrated. However, the time complexity of this method is over size and its results are inscrutable and unaccountable. Information entropy is a measure of the uncertainty associated with a random variable. In the present paper, information entropy is imported as the standard of dataset common mode. A novel method is proposed to identify the variable star spectrum rapidly based on information entropy. The time complexity of this method is observably reduced and the man-made impact is effectively overcome. The preliminary experimental results based on Sloan star spectrum data show that the method is workable for rapid identification of variable star spectrum. PMID:22497171

  4. LMI-based controller design for dynamic variable structure systems

    NASA Astrophysics Data System (ADS)

    Ohtake, Hiroshi; Tanaka, Kazuo

    2005-12-01

    This paper presents controller design conditions for dynamic variable structure systems in terms of linear matrix inequalities (LMIs). In our previous paper, we proposed the dynamic variable structure system and derived its controller design conditions using switching fuzzy model-based control approach. However, the controller design conditions were given in terms of bilinear matrix inequalities (BMIs). In this paper, by introducing the augmented system which consists of the switching fuzzy model and a stable linear system, we derive new controller design conditions in terms of linear matrix inequalities (LMIs) for the dynamic variable structure systems. A simulation result shows the utility of this control approach.

  5. PCR Based Detection of Phase Variable Genes in Pakistani Based Clinical Helicobacter pylori Strains

    PubMed Central

    Ahmad, Sajjad; Ahmad, Faisal; Rahman, Faiz ur; Khan, Salman; Murad, Waheed; Mughal, Imran; ur Rahman, Amjad; Muhammad Khan, Fida; Khan, Imad; Ahmad, Hajra

    2016-01-01

    Background The distribution pattern of phase-variable genes varies from strain to strain and from region to region. The present study was carried out to investigate the distribution pattern of phase-variable genes within Pakistan-based Helicobacter pylori strains and to analyze and compare them with strains prevalent in other parts of the world. Objectives To determine the distribution pattern of phase-variable genes in H. pylori strains circulating in Pakistan. Patients and Methods Biopsy samples were collected from 85 symptomatic patients suffering from various upper gastrointestinal tract symptoms. The biopsy specimens were chopped, then inoculated on H. pylori-specific media and incubated in a Campylobacter Gas Generating kit. Positive isolates were further confirmed via staining and biochemical procedures. Primers were designed for five phase-variable genes using OligoCalc, an oligonucleotide properties calculator (version 3.26) according to parameters stipulated in the literature. Polymerase chain reaction (PCR) was performed on all positive isolates to determine the presence or absence of phase-variable genes. Results On culturing, the prevalence of H. pylori infections in the samples was 44.7%. The prevalence was higher in females than in males, and it increased with age. PCR amplification revealed that the hsdR gene was present in 79% of samples, while the mod and β-subunit genes were present in 16% and 30% of samples, respectively. The streptococcal M protein gene was found in 79%, while the fliP gene was prevalent in 56%. Conclusions The distribution patterns of phase-variable genes in Pakistani H. pylori strains were found to be somewhat different. The dominant prevalence of the hsdR gene was an interesting finding, considering its role in bacterial defense in both micro- and macroenvironments.

  6. Dual stator winding variable speed asynchronous generator: magnetic equivalent circuit with saturation, FEM analysis and experiments

    NASA Astrophysics Data System (ADS)

    Tutelea, L. N.; Muntean, N.; Deaconu, S. I.; Cunţan, C. D.

    2016-02-01

    The authors carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behaviour in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings, FEM validation of parameters and characteristics with free FEMM 4.2 computing software and the practice experimental tests for verifying them. Issue is limited to three phase range of double stator winding cage-asynchronous generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].

  7. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  8. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect

    Not Available

    2013-09-01

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  9. Spatio-temporal Variability in Midwinter Snowmelt Generated by Ground Heat Flux: Implications for Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Smith, R. S.; Moore, R. D.; Weiler, M.

    2008-12-01

    Ground heat flux is commonly ignored in the modelling of snowpack energy exchanges and snowmelt runoff due to its perceived insignificance relative to other energy sources. Snowmelt at the base of a snowpack was continuously measured during the winters of 2006/07 and 2007/08 with 4 m2 lysimeters at six sites within a 3.5 km2 continental, mountainous catchment in southeast British Columbia. Soil wetness and soil, air, and snow temperatures were also continuously measured at each site. During the 2006/07 winter season, accumulated snowmelt during a three month midwinter period with sub- zero air temperatures ranged from 11 to 107 mm, comprising 3 to 36 % as much as the annual peak snow water accumulation. Daily snowmelt regularly exceeded 1 mm at several sites while daily maximum air temperatures were well below 0°C suggesting that ground heat flux generated the midwinter snowmelt (i.e. ground melt). Temporal variability of melt was strongly associated with air temperature, even at sub-zero temperatures. Spatial variability of melt was strongly associated with soil wetness, and wetness levels at wetter sites were maintained or increased through ground melt inputs. During the 2007/08 midwinter period, accumulated ground melt did not exceed 10 mm due to extensive soil freezing prior to snowpack development. The results suggest that a positive feedback response loop exists between soil wetness, ground heat flux, and ground melt due to the association between soil thermal conductivity and soil wetness. Pre-winter soil wetness and soil temperature, and winter meteorology influence the amount of midwinter ground melt because they control the relative amounts of ground heat flux that are used for melt, soil warming, or snowpack heat conduction. Pre-winter soil hydro-thermal dynamics and midwinter ground melt might be important controls on the spatial pattern of winter/spring catchment wetness and subsequent runoff response if antecedent soil conditions and ground melt

  10. Generating superposition of up-to three photons for continuous variable quantum information processing.

    PubMed

    Yukawa, Mitsuyoshi; Miyata, Kazunori; Mizuta, Takahiro; Yonezawa, Hidehiro; Marek, Petr; Filip, Radim; Furusawa, Akira

    2013-03-11

    We develop an experimental scheme based on a continuous-wave (cw) laser for generating arbitrary superpositions of photon number states. In this experiment, we successfully generate superposition states of zero to three photons, namely advanced versions of superpositions of two and three coherent states. They are fully compatible with developed quantum teleportation and measurement-based quantum operations with cw lasers. Due to achieved high detection efficiency, we observe, without any loss correction, multiple areas of negativity of Wigner function, which confirm strongly nonclassical nature of the generated states. PMID:23482124

  11. MEGen: A Physiologically Based Pharmacokinetic Model Generator

    PubMed Central

    Loizou, George; Hogg, Alex

    2011-01-01

    Physiologically based pharmacokinetic models are being used in an increasing number of different areas. However, they are perceived as complex, data hungry, resource intensive, and time consuming. In addition, model validation and verification are hindered by the relative complexity of the equations. To begin to address these issues a web application called MEGen for the rapid construction and documentation of bespoke deterministic PBPK model code is under development. MEGen comprises a parameter database and a model code generator that produces code for use in several commercial software packages and one that is freely available. Here we present an overview of the current capabilities of MEGen, and discuss future developments. PMID:22084631

  12. Task-Based Variability in Children's Singing Accuracy

    ERIC Educational Resources Information Center

    Nichols, Bryan E.

    2013-01-01

    The purpose of this study was to explore task-based variability in children's singing accuracy performance. The research questions were: Does children's singing accuracy vary based on the nature of the singing assessment employed? Is there a hierarchy of difficulty and discrimination ability among singing assessment tasks? What is the…

  13. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement.

    PubMed

    Arambula, Diego; Wong, Wenge; Medhekar, Bob A; Guo, Huatao; Gingery, Mari; Czornyj, Elizabeth; Liu, Minghsun; Dey, Sanghamitra; Ghosh, Partho; Miller, Jeff F

    2013-05-14

    Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.

  14. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement

    PubMed Central

    Wong, Wenge; Medhekar, Bob A.; Guo, Huatao; Gingery, Mari; Czornyj, Elizabeth; Liu, Minghsun; Dey, Sanghamitra; Ghosh, Partho; Miller, Jeff F.

    2013-01-01

    Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 1026 unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 1019 distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3′end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs. PMID:23633572

  15. A Geostatistical Scaling Approach for the Generation of Non Gaussian Random Variables and Increments

    NASA Astrophysics Data System (ADS)

    Guadagnini, Alberto; Neuman, Shlomo P.; Riva, Monica; Panzeri, Marco

    2016-04-01

    We address manifestations of non-Gaussian statistical scaling displayed by many variables, Y, and their (spatial or temporal) increments. Evidence of such behavior includes symmetry of increment distributions at all separation distances (or lags) with sharp peaks and heavy tails which tend to decay asymptotically as lag increases. Variables reported to exhibit such distributions include quantities of direct relevance to hydrogeological sciences, e.g. porosity, log permeability, electrical resistivity, soil and sediment texture, sediment transport rate, rainfall, measured and simulated turbulent fluid velocity, and other. No model known to us captures all of the documented statistical scaling behaviors in a unique and consistent manner. We recently proposed a generalized sub-Gaussian model (GSG) which reconciles within a unique theoretical framework the probability distributions of a target variable and its increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. In this context, we demonstrated the feasibility of estimating all key parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random field, and explore them on one- and two-dimensional synthetic test cases.

  16. Multirhythmicity generated by slow variable diffusion in a ring of relaxation oscillators and noise-induced abnormal interspike variability.

    PubMed

    Volkov, E I; Volkov, D V

    2002-04-01

    The deterministic and noise-dependent dynamics of a ring of three Ohmically coupled electronic relaxation oscillators are considered by means of numerical simulations. Each isolated oscillator is described by a set of two ordinary differential equations with very different characteristic times. The emergence of the limit cycle via the Hopf bifurcation results from the N-shaped current-versus-voltage characteristic of the nonlinear resistor. The phase diagram is calculated for a ring of three such oscillators in the presence of small detuning. Special attention is focused on two parameter areas, one near a transition to the homogeneous and the other near the inhomogeneous stable steady state. Along with other nontrivial limit cycles, essentially asymmetrical limit cycles termed dynamic traps may arise in these two areas. A dynamic trap is a regime in which one or two oscillators do not perform full-amplitude oscillations and, correspondingly, do not generate spikes. The interspike interval (ISI) distribution in the presence of noise is calculated as a function of the coupling strength in both areas of the parameter plane. The distributions are extremely polymodal near the homogeneous steady state even if the in-phase limit cycle is dominating. The origins of this abnormal enhancement of ISI variability are discussed in detail. A similar analysis shows that nontrivial periodic attractors are observable in the vicinity of the inhomogeneous stable steady states only if the level of noise is relatively low. In this case, the dominance of the in-phase limit cycle basin results in an almost unimodal distribution of interspike intervals. PMID:12006001

  17. Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation

    SciTech Connect

    Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

    2010-02-01

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

  18. PCA-LBG-based algorithms for VQ codebook generation

    NASA Astrophysics Data System (ADS)

    Tsai, Jinn-Tsong; Yang, Po-Yuan

    2015-04-01

    Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.

  19. Modelling the variability of lag times and the first generation times of single cells of E. coli.

    PubMed

    Métris, A; Le Marc, Y; Elfwing, A; Ballagi, A; Baranyi, J

    2005-04-15

    A mathematical model combining deterministic and stochastic elements describes the growth and division of single cells. Its deterministic part is based on the model of Baranyi and Roberts [International Journal of Food Microbiology 23 (1994) 277] modelling the gradual adjustment of the cells to a new environment. The stochastic part assumes a random threshold size for the division of a single cell, which accounts for the variability of the individual generation times. Experimental results of the first division times of thousands of single cells using a microscopic flow system could be reproduced with this model, and it has the potential to be used to study the effects of different stress and environmental factors on the distribution of the lag and generation times of individual cells.

  20. Variability Analysis based on POSS1/POSS2 Photometry

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Sarkissian, Alain; Sinamyan, Parandzem K.

    2012-04-01

    We introduce accurate magnitudes as combined calculations from catalogues based on accurate measurements of POSS1- and POSS2-epoch plates. The photometric accuracy of various catalogues was established, and statistical weights for each of them have been calculated. To achieve the best possible magnitudes, we used weighted averaging of data from APM, MAPS, USNO-A2.0, USNO-B1.0 (for POSS1-epoch), and USNO-B1.0 and GSC 2.3.2 (for POSS2-epoch) catalogues. The r.m.s. accuracy of magnitudes achieved for POSS1 is 0.184 in B and 0.173 mag in R, or 0.138 in B and 0.128 in R for POSS2. By adopting those new magnitudes we examined the First Byurakan Survey (FBS) of blue stellar objects for variability, and uncovered 336 probable and possible variables among 1103 objects with POSS2-POSS1 >= 3σ of the errors, including 161 highly probable variables. We have developed methods to control and exclude accidental errors for any survey. We compared and combined our results with those given in Northern Sky Variability Survey (NSVS) database, and obtained firm candidates for variability. By such an approach it will be possible to conduct investigations of variability for large numbers of objects.

  1. Environmental variability in the early rearing environment generates behaviourally flexible cod: implications for rehabilitating wild populations.

    PubMed

    Braithwaite, Victoria A; Salvanes, Anne G V

    2005-06-01

    The release of hatchery-reared fishes for restoring threatened and endangered populations is one of the most controversial issues in applied ecology. A central issue has been to determine whether releases cause extinction of local wild populations. This may arise either through domesticated or non-local fishes hybridizing with wild fishes, or through inappropriate behavioural interactions; for example, many hatchery fishes show exaggerated aggressive and competitive behaviour and out-compete wild counterparts. The impact of the impoverished hatchery environment in shaping behaviour is only now receiving attention. Attempts to counteract hatchery-related behavioural deficiencies have utilized intensive training programmes shortly before the fishes are released. However, we show here that simple exposure to variable spatial and foraging cues in the standard hatchery environment generates fishes with enhanced behavioural traits that are probably associated with improved survival in the wild. It appears that fishes need to experience a varying and changeable environment to learn and develop flexible behaviour. Using variable hatchery rearing environments to generate suitable phenotypes in combination with a knowledge of appropriate local genotypes, rehabilitation of wild fishes is likely to succeed, where to date it has largely failed.

  2. Constraints on Microseism Generation and Sea Ice Mechanical Strength from Observations of Alaskan Microseism Variability

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.; McNamara, D. E.

    2010-12-01

    Ocean microseism is the primary source of seismic noise in the period band from 2 to 25 seconds period, and is also known to be strongly excited by waves from large storms. However, some ambiguity remains regarding the exact mechanism through which this energy is coupled to the solid Earth and, in particular, where the energy is best coupled. To partly address this concern, we examine secondary microseism variability from a set of coastal Alaskan seismic stations. In this region, sea ice forms annually, preventing large waves from forming and thereby preventing local secondary microseism generation. In a previous study, McNamara and Koper (SSA, 2010) showed that there is a clear difference in secondary seismic noise levels in the 1 to 5 second period band due to this seasonal sea ice variability, which is distinct from the more traditional seasonality in microseism levels. Here, we further quantify these changes by comparing the variability in seismic noise levels with sea ice variability as determined through NOAA satellite observations. As expected, we find that microseism levels at a particular station drop when sea ice surrounds the station. Moreover, shorter-period microseism (1-3 s) is affected primarily by local sea ice concentration, whereas longer-period microseism (>3 s) is also affected by more distant sea ice. This period dependence is quantified and is consistent with models of microseism generation in which most of the observed microseism is generated near-shore. These observations therefore potentially clarify part of the debate regarding source location of secondary microseism. In addition to the first-order attenuation effect that coincides with observed satellite measurements of sea ice, there is also a more subtle variation in microseism levels that we interpret to be due to changes in sea ice mechanical strength that are not readily captured by satellite measurements. While this second-order effect is currently poorly characterized, there is

  3. Impacts of Variability and Uncertainty in Solar Photovoltaic Generation at Multiple Timescales

    SciTech Connect

    Ela, E.; Diakov, V.; Ibanez, E.; Heaney, M.

    2013-05-01

    The characteristics of variability and uncertainty of PV solar power have been studied extensively. These characteristics can create challenges for system operators who must ensure a balance between generation and demand while obeying power system constraints at the lowest possible cost. A number of studies have looked at the impact of wind power plants, and some recent studies have also included solar PV. The simulations that are used in these studies, however, are typically fixed to one time resolution. This makes it difficult to analyze the variability across several timescales. In this study, we use a simulation tool that has the ability to evaluate both the economic and reliability impacts of PV variability and uncertainty at multiple timescales. This information should help system operators better prepare for increases of PV on their systems and develop improved mitigation strategies to better integrate PV with enhanced reliability. Another goal of this study is to understand how different mitigation strategies and methods can improve the integration of solar power more reliably and efficiently.

  4. Genetic Network Programming with Automatically Generated Macro Nodes of Variable Size

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Hatakeyama, Hiroyuki; Nakagoe, Hiroshi; Hirasawa, Kotaro; Furuzuki, Takayuki

    Recently, Genetic Network Programming (GNP) has been proposed as one of the evolutionary algorithms. It represents its solutions as directed graph structures and the distinguished abilities have been shown. However, when we apply GNP to complex problems like the real world one, GNP must have robustness against the changes of environments and evolve quickly. Therefore, we introduced Automatically Generated Macro Nodes (AGMs) to GNP (GNP with AGMs). Actually GNP with AGMs has shown higher performances than the conventional GNP in terms of the fitness and the speed of evolution. In this paper, a new mechanism, AGMs with variable size, is introduced to GNP. Conventional AGMs have the fixed number of nodes and they evolve using only genetic operations, while a new method allows AGM to add nodes by necessity and delete nodes which do not contribute to the evolution of the AGM. The proposed GNP with AGMs of variable size is expected to evolve effectively and efficiently when it is applied to agent systems and also expected to make better behavior sequences of agents more easily than the conventional GNP algorithm. In the simulations, the proposed and conventional methods are applied to a tileworld problem and they are compared with each other. From the results, GNP with AGMs of variable size shows better fitness than GNP with AGMs of fixed size and the conventional GNP when adapting ten different environments.

  5. Variability of Regional Wind Energy Generation on Intraseasonal to Interannual timescales

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, D. B.; Jascourt, S. D.; Cassidy, C.

    2012-12-01

    We produce forecasts of wind energy electrical generation in a large number of electrical interconnections in the United States, Canada and Europe. Using our data base of wind farm locations, turbine numbers and types, we are able to use reanalyzed winds from NOAA's Climate Forecast System Reanalysis to calculate the electrical power that would have been generated by the existing wind farm network for the last thirty years. We will show these time series for several electrical interconnections in North America and Europe, and discuss their correlations with various indices of the global circulation, including the North Atlantic Oscillation and the Madden-Julian Oscillation on short time scales, and the the El Niño-Southern Oscillation on longer time scales. These studies allow analysis of the expected variations of wind powered electrical generation on monthly to interannual time scales, and set the stage for coupled-climate model prediction of wind energy generation, using the NOAA Climate Forecast System.

  6. Effect of Age on Variability in the Production of Text-Based Global Inferences

    PubMed Central

    Williams, Lynne J.; Dunlop, Joseph P.; Abdi, Hervé

    2012-01-01

    As we age, our differences in cognitive skills become more visible, an effect especially true for memory and problem solving skills (i.e., fluid intelligence). However, by contrast with fluid intelligence, few studies have examined variability in measures that rely on one’s world knowledge (i.e., crystallized intelligence). The current study investigated whether age increased the variability in text based global inference generation–a measure of crystallized intelligence. Global inference generation requires the integration of textual information and world knowledge and can be expressed as a gist or lesson. Variability in generating two global inferences for a single text was examined in young-old (62 to 69 years), middle-old (70 to 76 years) and old-old (77 to 94 years) adults. The older two groups showed greater variability, with the middle elderly group being most variable. These findings suggest that variability may be a characteristic of both fluid and crystallized intelligence in aging. PMID:22590523

  7. A rule-based software test data generator

    NASA Technical Reports Server (NTRS)

    Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II

    1991-01-01

    Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.

  8. Generating temporal model using climate variables for the prediction of dengue cases in Subang Jaya, Malaysia

    PubMed Central

    Dom, Nazri Che; Hassan, A Abu; Latif, Z Abd; Ismail, Rodziah

    2013-01-01

    Objective To develop a forecasting model for the incidence of dengue cases in Subang Jaya using time series analysis. Methods The model was performed using the Autoregressive Integrated Moving Average (ARIMA) based on data collected from 2005 to 2010. The fitted model was then used to predict dengue incidence for the year 2010 by extrapolating dengue patterns using three different approaches (i.e. 52, 13 and 4 weeks ahead). Finally cross correlation between dengue incidence and climate variable was computed over a range of lags in order to identify significant variables to be included as external regressor. Results The result of this study revealed that the ARIMA (2,0,0) (0,0,1)52 model developed, closely described the trends of dengue incidence and confirmed the existence of dengue fever cases in Subang Jaya for the year 2005 to 2010. The prediction per period of 4 weeks ahead for ARIMA (2,0,0)(0,0,1)52 was found to be best fit and consistent with the observed dengue incidence based on the training data from 2005 to 2010 (Root Mean Square Error=0.61). The predictive power of ARIMA (2,0,0) (0,0,1)52 is enhanced by the inclusion of climate variables as external regressor to forecast the dengue cases for the year 2010. Conclusions The ARIMA model with weekly variation is a useful tool for disease control and prevention program as it is able to effectively predict the number of dengue cases in Malaysia.

  9. The impact of monsoon intraseasonal variability on renewable power generation in India

    NASA Astrophysics Data System (ADS)

    Dunning, C. M.; Turner, A. G.; Brayshaw, D. J.

    2015-06-01

    India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency's New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterized by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterized by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in

  10. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  11. Infant breathing rate counter based on variable resistor for pneumonia

    NASA Astrophysics Data System (ADS)

    Sakti, Novi Angga; Hardiyanto, Ardy Dwi; La Febry Andira R., C.; Camelya, Kesa; Widiyanti, Prihartini

    2016-03-01

    Pneumonia is one of the leading causes of death in new born baby in Indonesia. According to WHO in 2002, breathing rate is very important index to be the symptom of pneumonia. In the Community Health Center, the nurses count with a stopwatch for exactly one minute. Miscalculation in Community Health Center occurs because of long time concentration and focus on two object at once. This calculation errors can cause the baby who should be admitted to the hospital only be attended at home. Therefore, an accurate breathing rate counter at Community Health Center level is necessary. In this work, resistance change of variable resistor is made to be breathing rate counter. Resistance change in voltage divider can produce voltage change. If the variable resistance moves periodically, the voltage will change periodically too. The voltage change counted by software in the microcontroller. For the every mm shift at the variable resistor produce average 0.96 voltage change. The software can count the number of wave generated by shifting resistor.

  12. Continuous-variable quantum identity authentication based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ma, Hongxin; Huang, Peng; Bao, Wansu; Zeng, Guihua

    2016-06-01

    A continuous-variable quantum identity authentication protocol, which is based on quantum teleportation, is presented by employing two-mode squeezed vacuum state and coherent state. The proposed protocol can verify user's identity efficiently with a new defined fidelity parameter. Update of authentication key can also be implemented in our protocol. Moreover, the analysis shows its feasibility and security under the general Gaussian-cloner attack on authentication key, which is guaranteed by quantum entanglement, insertion of decoy state and random displacement.

  13. Precipitation variability within an urban monitoring network via microcanonical cascade generators

    NASA Astrophysics Data System (ADS)

    Licznar, P.; De Michele, C.; Adamowski, W.

    2015-01-01

    Understanding the variability of precipitation at small scales is fundamental in urban hydrology. Here we consider the case study of Warsaw, Poland, characterized by a precipitation-monitoring network of 25 gauges and microcanonical cascade models as the instrument of investigation. We address the following issues partially investigated in literature: (1) the calibration of microcanonical cascade model generators in conditions of short time series (i.e., 2.5-5 years), (2) the identification of the probability distribution of breakdown coefficients (BDCs) through ranking criteria and (3) the variability among the gauges of the monitoring network of the empirical distribution of BDCs. In particular, (1) we introduce an overlapping moving window algorithm to determine the histogram of BDCs and compare it with the classic non-overlapping moving window algorithm; (2) we compare the 2N-B distribution, a mixed distribution composed of two normal (N) and one beta (B), with the classic B distribution to represent the BDCs using the Akaike information criterion; and (3) we use the cluster analysis to identify patterns of BDC histograms among gauges and timescales. The scarce representation of the BDCs at large timescales, due to the short period of observation (~ 2.5 years), is solved through the overlapping moving window algorithm. BDC histograms are described by a 2N-B distribution. A clear evolution of this distribution is observed, in all gauges, from 2N-B for small timescales, N-B for intermediate timescales and B distribution for large timescales. The performance of the microcanonical cascades is evaluated for the considered gauges. Synthetic time series are analyzed with respect to the intermittency and the variability of intensity and compared to observed series. BDC histograms for each timescale are compared with the 25 gauges in Warsaw and with other gauges located in Poland and Germany.

  14. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on

  15. Virus-based piezoelectric energy generator

    SciTech Connect

    2012-01-01

    Lawrence Berkeley National Laboratory scientists have developed a way to generate power using harmless viruses that convert mechanical energy into electricity. The milestone could lead to tiny devices that harvest electrical energy from the vibrations of everyday tasks. The first part of the video shows how Berkeley Lab scientists harness the piezoelectric properties of the virus to convert the force of a finger tap into electricity. The second part reveals the "viral-electric" generators in action, first by pressing only one of the generators, then by pressing two at the same time, which produces more current.

  16. Low frequency variability of European weather patterns and its impact on power generation in northern Europe

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Slavov, Georgi

    2016-04-01

    It is well known that Europe is becoming increasingly reliant on the power generation from the solar and wind sources. Germany is a leader in such a trend - it is then interesting to study to what extent the low-frequency variability of the European weather patterns impacts the power production in this country. Rather than identifying such patterns starting from the weather angle, four weather regimes are identified that maximize and minimize the production of solar and wind power. The analysis of their past occurrence and trends allows us to estimate the potential amount of energy produced for any given year (assuming a constant installed capacity). It is found that the sole change in such weather regimes over the recent years is able to drive up to a 20% annual difference in power generation. This also throws an interesting challenge at the scientific community, whereby the future projection of these regimes can heavily influence both the short- and long-term Eurozone plans in terms of European renewable energy targets.

  17. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGES

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  18. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    SciTech Connect

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexing in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.

  19. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  20. Freshwater ecosystems and resilience of Pacific salmon: Habitat Management based on natural variability

    USGS Publications Warehouse

    Bisson, P.A.; Dunham, J.B.; Reeves, G.H.

    2009-01-01

    In spite of numerous habitat restoration programs in fresh waters with an aggregate annual funding of millions of dollars, many populations of Pacific salmon remain significantly imperiled. Habitat restoration strategies that address limited environmental attributes and partial salmon life-history requirements or approaches that attempt to force aquatic habitat to conform to idealized but ecologically unsustainable conditions may partly explain this lack of response. Natural watershed processes generate highly variable environmental conditions and population responses, i.e., multiple life histories, that are often not considered in restoration. Examples from several locations underscore the importance of natural variability to the resilience of Pacific salmon. The implication is that habitat restoration efforts will be more likely to foster salmon resilience if they consider processes that generate and maintain natural variability in fresh water. We identify three specific criteria for management based on natural variability: the capacity of aquatic habitat to recover from disturbance, a range of habitats distributed across stream networks through time sufficient to fulfill the requirements of diverse salmon life histories, and ecological connectivity. In light of these considerations, we discuss current threats to habitat resilience and describe how regulatory and restoration approaches can be modified to better incorporate natural variability. ?? 2009 by the author(s).

  1. Ontology-based Software for Generating Scenarios for Characterizing Searches for Nuclear Materials

    SciTech Connect

    Ward, Richard C; Sorokine, Alexandre; Schlicher, Bob G; Wright, Michael C; Kruse, Kara L

    2011-01-01

    A software environment was created in which ontologies are used to significantly expand the number and variety of scenarios for special nuclear materials (SNM) detection based on a set of simple generalized initial descriptions. A framework was built that combined advanced reasoning from ontologies with geographical and other data sources to generate a much larger list of specific detailed descriptions from a simple initial set of user-input variables. This presentation shows how basing the scenario generation on a process of inferencing from multiple ontologies, including a new SNM Detection Ontology (DO) combined with data extraction from geodatabases, provided the desired significant variability of scenarios for testing search algorithms, including unique combinations of variables not previously expected. The various components of the software environment and the resulting scenarios generated will be discussed.

  2. Variability in isotopic composition of base flow in two headwater streams of the southern Appalachians

    NASA Astrophysics Data System (ADS)

    Singh, Nitin K.; Emanuel, Ryan E.; McGlynn, Brian L.

    2016-06-01

    We investigated the influence of hillslope scale topographic characteristics and the relative position of hillslopes along streams (i.e., internal catchment structure) on the isotopic composition of base flow in first-order, forested headwater streams at Coweeta Hydrologic Laboratory. The study focused on two adjacent forested catchments with different topographic characteristics. We used stable isotopes (18O and 2H) of water together with stream gauging and geospatial analysis to evaluate relationships between internal catchment structure and the spatiotemporal variability of base flow δ18O. Base flow δ18O was variable in space and time along streams, and the temporal variability of base flow δ18O declined with increasing drainage area. Base flow became enriched in 18O moving along streams from channel heads to catchment outlets but the frequency of enrichment varied between catchments. The spatiotemporal variability in base flow δ18O was high adjacent to large hillslopes with short flow paths, and it was positively correlated with the relative arrangement of hillslopes within the catchment. These results point to influence of unique arrangement of hillslopes on the patterns of downstream enrichment. Spatial variability in base flow δ18O within the streams was relatively low during dry and wet conditions, but it was higher during the transition period between dry and wet conditions. These results suggest that the strength of topographic control on the isotopic composition of base flow can vary with catchment wetness. This study highlights that topographic control on base flow generation and isotopic composition is important even at fine spatial scales.

  3. Encoderless Model Predictive Control of Doubly-Fed Induction Generators in Variable-Speed Wind Turbine Systems

    NASA Astrophysics Data System (ADS)

    Abdelrahem, Mohamed; Hackl, Christoph; Kennel, Ralph

    2016-09-01

    In this paper, an encoderless finite-control-set model predictive control (FCS-MPC) strategy for doubly-fed induction generators (DFIGs) based on variable-speed wind turbine systems (WTSs) is proposed. According to the FCS-MPC concept, the discrete states of the power converter are taken into account and the future converter performance is predicted for each sampling period. Subsequently, the voltage vector that minimizes a predefined cost function is selected to be applied in the next sampling instant. Furthermore, a model reference adaptive system (MRAS) observer is used to estimate the rotor speed and position of the DFIG. Estimation and control performance of the proposed encoderless control method are validated by simulation results for all operation conditions. Moreover, the performance of the MRAS observer is tested under variations of the DFIG parameters.

  4. A magnetoelectric composite based signal generator

    NASA Astrophysics Data System (ADS)

    Fetisov, Y. K.; Serov, V. N.; Fetisov, L. Y.; Makovkin, S. A.; Viehland, D.; Srinivasan, G.

    2016-05-01

    Self-oscillations in an active loop consisting of a wide-band amplifier and a magnetoelectric composite in the feedback circuit have been observed. The composite with a ferroelectric lead zirconate titanate bimorph and ferromagnetic Metglas serves as a resonator that determines the frequency of oscillations and provides the feedback voltage. Under amplitude balance and phase matching conditions, the device generated signals at 2.3 kHz, at the bending resonance frequency of the composite. The oscillations were observed over a specific range of magnetic bias H. The shape of the signal generated is dependent on electrical circuit parameters and magnitude and orientation of H.

  5. Clustering-based Feature Learning on Variable Stars

    NASA Astrophysics Data System (ADS)

    Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos

    2016-04-01

    The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variable objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.

  6. Modeling Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; Glas, Cees A. W.; van der Linden, Wim J.

    2011-01-01

    An application of a hierarchical IRT model for items in families generated through the application of different combinations of design rules is discussed. Within the families, the items are assumed to differ only in surface features. The parameters of the model are estimated in a Bayesian framework, using a data-augmented Gibbs sampler. An obvious…

  7. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  8. Tethered balloon-based measurements of meteorological variables and aerosols

    NASA Technical Reports Server (NTRS)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  9. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis. PMID:26444202

  10. Estimating evaporative vapor generation from automobiles based on parking activities.

    PubMed

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S

    2015-07-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade-Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5-8% less than calculation without considering parking activity.

  11. Clonal variability and its relevance in generation of new pathotypes in the spot blotch pathogen, Bipolaris sorokiniana.

    PubMed

    Pandey, Shree P; Sharma, Sandeep; Chand, R; Shahi, P; Joshi, A K

    2008-01-01

    Spot blotch pathogen Bipolaris sorokiniana of wheat was investigated with threefold objectives: to establish a relationship between morphological and pathological variability of isolates, identify clonal genotype(s) acting as a source for the generation of new variability, and to determine the mechanism of generation of such variability in the pathogen. Isolates were collected from the leaves and seeds of field-grown wheat crop at four different sites in eastern Gangetic plains of India. Eighty-six clonal isolates derived from a single isolate (gray with white patches, Group III), which segregated in an equal proportion of parental and nonparental types, were studied. Morphological characters-i.e., colony morphology, growth rate, and sporulation-were studied along with disease-causing ability of the isolate clones. Clonal isolates were grouped into three categories. Microscopic analysis of nuclei was done to determine the causes of such variability. Morphological variability appeared to be related to the pathological variability. The isolate having epidemic potential appeared different than that acting as the reservoir for variability. The cause of such variability could be attributed either to hyphal fusion and heterokaryosis, nuclear migration and occurrence of multinucleate state, or a combination of these factors. Random Amplified Polymorphic DNA (RAPD) assay suggested that the unique fragments for different groups could be utilized as molecular markers to identify the isolates of specific groups.

  12. Next Generation Multimedia Distributed Data Base Systems

    NASA Technical Reports Server (NTRS)

    Pendleton, Stuart E.

    1997-01-01

    The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.

  13. BASE-9: Bayesian Analysis for Stellar Evolution with nine variables

    NASA Astrophysics Data System (ADS)

    Robinson, Elliot; von Hippel, Ted; Stein, Nathan; Stenning, David; Wagner-Kaiser, Rachel; Si, Shijing; van Dyk, David

    2016-08-01

    The BASE-9 (Bayesian Analysis for Stellar Evolution with nine variables) software suite recovers star cluster and stellar parameters from photometry and is useful for analyzing single-age, single-metallicity star clusters, binaries, or single stars, and for simulating such systems. BASE-9 uses a Markov chain Monte Carlo (MCMC) technique along with brute force numerical integration to estimate the posterior probability distribution for the age, metallicity, helium abundance, distance modulus, line-of-sight absorption, and parameters of the initial-final mass relation (IFMR) for a cluster, and for the primary mass, secondary mass (if a binary), and cluster probability for every potential cluster member. The MCMC technique is used for the cluster quantities (the first six items listed above) and numerical integration is used for the stellar quantities (the last three items in the above list).

  14. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  15. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  16. Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.

    PubMed

    Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana

    2015-05-01

    Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable.

  17. Transient forces generated by projectiles on variable quality mouthguards monitored by instrumented impact testing

    PubMed Central

    Warnet, L; Greasley, A

    2001-01-01

    Objectives—(a) To determine the force-time trace that occurs when a spring mounted simulated upper jaw is impacted; (b) to examine if mouthguards of variable quality have significant influence on such force-time traces; (c) to attempt to relate physical events to the profile of the force-time traces recorded. Methods—A simulated jaw, consisting of ceramic teeth inserted into a hard rubber arch reinforced with a composite jawbone, was fitted with various mouthguards as part of a previous round robin study. A clinical assessment distinguished good, bad, and poor mouthguards, and these were each fitted to the jaw, which was then submitted to instrumental impact tests under conditions expected to produce tooth fractures. The force-time trace was recorded for such impact events. Results—The spring mounting method caused two distinct peaks in the force-time trace. The initial one was related to inertia effects and showed an increase in magnitude with impactor velocity as expected. The second peak showed features that were related to the differences in the mouthguards selected. Conclusions—The use of a force washer within a conical ended impactor enabled force-time traces to be recorded during the impact of a spring mounted simulated jaw fitted with mouthguards of variable quality. The spring mounting system causes an initial inertial peak followed by a second peak once the spring mount has fully compressed. Good fitting guards, which keep most teeth intact, result in high stiffness targets that in turn generate high reaction forces in the impactor. If the spring mounting is omitted, the two peaks are combined to give even higher reaction forces. The force-time trace offers some potential for assessing both overall mouthguard performance and individual events during the impact sequence. Mouthguards with good retention to the jaw remained attached during the impact event and helped to preserve the structural integrity of the target. This in turn developed high

  18. Optical generation of fuzzy-based rules.

    PubMed

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-10

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  19. Meta-data based mediator generation

    SciTech Connect

    Critchlaw, T

    1998-06-28

    Mediators are a critical component of any data warehouse; they transform data from source formats to the warehouse representation while resolving semantic and syntactic conflicts. The close relationship between mediators and databases requires a mediator to be updated whenever an associated schema is modified. Failure to quickly perform these updates significantly reduces the reliability of the warehouse because queries do not have access to the most current data. This may result in incorrect or misleading responses, and reduce user confidence in the warehouse. Unfortunately, this maintenance may be a significant undertaking if a warehouse integrates several dynamic data sources. This paper describes a meta-data framework, and associated software, designed to automate a significant portion of the mediator generation task and thereby reduce the effort involved in adapting to schema changes. By allowing the DBA to concentrate on identifying the modifications at a high level, instead of reprogramming the mediator, turnaround time is reduced and warehouse reliability is improved.

  20. Precipitation variability within an urban monitoring network in terms of microcanonical cascade generators

    NASA Astrophysics Data System (ADS)

    Licznar, P.; De Michele, C.; Adamowski, W.

    2014-05-01

    Understanding the variability of precipitation at small scales is fundamental in urban hydrology. Stochastic models of precipitation are required to feed hydrodynamic models with high resolution data, in order to obtain a probabilistic assessment of urban drainage networks. Microcanonical random cascades are considered here to represent precipitation time series collected in 25 gauges of a monitoring network in Warsaw, Poland. Breakdown coefficients (BDCs) are calculated separately for a hierarchy of subdaily timescales from 5 min (time resolution) to 1280 min, for all gauges. Strong deformations of BDC histograms in form of sharp peaks at small timescales are observed due to the truncation of precipitation depths recorded by gauges. Satisfactory smoothing of empirical BDC histograms is obtained statistically by a slight randomization of nonzero precipitation amounts. The scarce representation of BDCs at large timescales, due to the short period of observation, is solved by the introduction of an algorithm based on overlapping moving windows. BDC histograms are modeled by a 2N-B distribution, which combines two Normal (N) and one Beta (B) distribution. A clear evolution of the distribution from 2N-B at small timescales, to N-B at intermediate timescales, and finally to Beta distribution for large timescales is observed in all gauges. The performance of the microcanonical cascades is evaluated for the considered gauges. Synthetic time series are analyzed with respect to their intermittency and variability of intensity, and compared to observed series. BDC histograms, for each timescale, are compared among the 25 gauges in Warsaw, and with other gauges located in Poland and Germany. The cluster analysis is used to identify patterns of BDC histograms among analyzed set of gauges and timescales, as well as to detect outlier gauges.

  1. Model Based Analysis and Test Generation for Flight Software

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep

    2009-01-01

    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.

  2. Determination of the DFN modeling domain size based on ensemble variability of equivalent permeability

    NASA Astrophysics Data System (ADS)

    Ji, S. H.; Koh, Y. K.

    2015-12-01

    Conceptualization of the fracture network in a disposal site is important for the safety assessment of a subsurface repository for radioactive waste. To consider the uncertainty of the stochastically conceptualized discrete fracture networks (DFNs), the ensemble variability of equivalent permeability was evaluated by defining different network structures with various fracture densities and characterization levels, and analyzing the ensemble mean and variability of the equivalent permeability of the networks, where the characterization level was defined as the ratio of the number of deterministically conceptualized fractures to the total number of fractures in the domain. The results show that the hydraulic property of the generated fractures were similar among the ensembles when the fracture density was larger than the specific fracture density where the domain size was equal to the correlation length of a given fracture network. In a sparsely fracture network where the fracture density was smaller than the specific fracture density, the ensemble variability was too large to ensure the consistent property from the stochastic DFN modeling. Deterministic information for a portion of a fracture network could reduce the uncertainty of the hydraulic property only when the fracture density was larger than the specific fracture density. Based on these results, the DFN modeling domain size for KAERI's (Korea Atomic Energy Research Institute) URT (Underground Research Tunnel) site to guarantee a less variable hydraulic property of the fracture network was determined by calculating the correlation length, and verified by evaluating the ensemble variability of the equivalent permeability.

  3. Amazon forest structure generates diurnal and seasonal variability in light utilization

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Rubio, J.; Cook, B. D.; Gastellu-Etchegorry, J.-P.; Longo, M.; Choi, H.; Hunter, M. O.; Keller, M.

    2015-12-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART) model to simulate leaf absorption of photosynthetically active radiation (lAPAR) for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80-0.82), light utilization varied seasonally (0.67-0.74), with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.

  4. Amazon forest structure generates diurnal and seasonal variability in light utilization

    NASA Astrophysics Data System (ADS)

    Morton, Douglas C.; Rubio, Jérémy; Cook, Bruce D.; Gastellu-Etchegorry, Jean-Philippe; Longo, Marcos; Choi, Hyeungu; Hunter, Maria; Keller, Michael

    2016-04-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART) model to simulate leaf absorption of photosynthetically active radiation (lAPAR) for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear-sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80-0.82), light utilization varied seasonally (0.67-0.74), with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry-season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.

  5. The Reliability of Randomly Generated Math Curriculum-Based Measurements

    ERIC Educational Resources Information Center

    Strait, Gerald G.; Smith, Bradley H.; Pender, Carolyn; Malone, Patrick S.; Roberts, Jarod; Hall, John D.

    2015-01-01

    "Curriculum-Based Measurement" (CBM) is a direct method of academic assessment used to screen and evaluate students' skills and monitor their responses to academic instruction and intervention. Interventioncentral.org offers a math worksheet generator at no cost that creates randomly generated "math curriculum-based measures"…

  6. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    SciTech Connect

    Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O'Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi

    2010-12-20

    An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.

  7. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    NASA Astrophysics Data System (ADS)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  8. A GIS-based variable source area hydrology model

    NASA Astrophysics Data System (ADS)

    Frankenberger, Jane R.; Brooks, Erin S.; Walter, M. Todd; Walter, Michael F.; Steenhuis, Tammo S.

    1999-04-01

    Effective control of nonpoint source pollution from contaminants transported by runoff requires information about the source areas of surface runoff. Variable source hydrology is widely recognized by hydrologists, yet few methods exist for identifying the saturated areas that generate most runoff in humid regions. The Soil Moisture Routing model is a daily water balance model that simulates the hydrology for watersheds with shallow sloping soils. The model combines elevation, soil, and land use data within the geographic information system GRASS, and predicts the spatial distribution of soil moisture, evapotranspiration, saturation-excess overland flow (i.e., surface runoff), and interflow throughout a watershed. The model was applied to a 170 hectare watershed in the Catskills region of New York State and observed stream flow hydrographs and soil moisture measurements were compared to model predictions. Stream flow prediction during non-winter periods generally agreed with measured flow resulting in an average r2 of 0·73, a standard error of 0·01 m3/s, and an average Nash-Sutcliffe efficiency R2 of 0·62. Soil moisture predictions showed trends similar to observations with errors on the order of the standard error of measurements. The model results were most accurate for non-winter conditions. The model is currently used for making management decisions for reducing non-point source pollution from manure spread fields in the Catskill watersheds which supply New York City's drinking water.

  9. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  10. Phenomenological model for transient deformation based on state variables

    SciTech Connect

    Jackson, M S; Cho, C W; Alexopoulos, P; Mughrabi, H; Li, C Y

    1980-01-01

    The state variable theory of Hart, while providing a unified description of plasticity-dominated deformation, exhibits deficiencies when it is applied to transient deformation phenomena at stresses below yield. It appears that the description of stored anelastic strain is oversimplified. Consideration of a simple physical picture based on continuum dislocation pileups suggests that the neglect of weak barriers to dislocation motion is the source of these inadequacies. An appropriately modified description incorporating such barriers then allows the construction of a macroscopic model including transient effects. Although the flow relations for the microplastic element required in the new theory are not known, tentative assignments may be made for such functions. The model then exhibits qualitatively correct behavior when tensile, loading-unloading, reverse loading, and load relaxation tests are simulated. Experimental procedures are described for determining the unknown parameters and functions in the new model.

  11. Mechanisms of internally generated decadal-to-multidecadal variability of SST in the Atlantic Ocean in a coupled GCM

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Schneider, Edwin K.; Wu, Zhiwei

    2016-03-01

    Mechanisms of the internally generated decadal-to-multidecadal variability of SST in the Atlantic Ocean are investigated in a long control simulation of the Community Climate System Model version 3 with constant external forcing. The interactive ensemble (IE) coupling strategy, with an ensemble of atmospheric GCMs (AGCM) coupled to an ocean model, a sea-ice model and a land model, is used to diagnose the roles of various processes in the coupled GCM (CGCM). The noise components of heat flux, wind stress and fresh water flux of the control simulation, determined from the CGCM surface fluxes by subtracting the SST-forced surface fluxes, estimated as the ensemble mean of AGCM simulations, are applied at the ocean surface of the IE in different regions and in different combinations. The IE simulations demonstrate that the climate variability in the control simulation is predominantly forced by noise. The local noise forcing is found to be responsible for the SST variability in the Atlantic Ocean, with noise heat flux and noise wind stress playing a critical role. The control run Atlantic multidecadal variability (AMV) index is decomposed into interannual, decadal and multidecadal modes based on the ensemble empirical mode decomposition. The AMV multidecadal mode, a combination of 50- and 100-year modes, is examined in detail. The North Atlantic Oscillation (NAO) pattern in the atmosphere, dominated by the noise component, forces the multidecadal mode through noise heat flux and noise wind stress. The noise wind stress forcing on the multidecadal mode is associated with ocean dynamics, including gyre adjustment and the Atlantic Meridional Overturning Circulation (AMOC). The AMV decadal mode is also found to be related to noise NAO forcing. The associated ocean dynamics are connected with both noise heat flux and noise wind stress, but the AMOC related to the decadal mode is more likely to be forced by noise heat flux. For both multidecadal and decadal modes, the

  12. Investigation on the spectral properties of 2D asynchronous fluorescence spectra generated by using variable excitation wavelengths as a perturbation

    NASA Astrophysics Data System (ADS)

    Wang, Jingdan; He, Anqi; Guo, Ran; Wei, Yongju; Feng, Juan; Xu, Yizhuang; Noda, Isao; Wu, Jinguang

    2016-11-01

    Properties of 2D asynchronous spectra generated from a series of fluorescence emission spectra are investigated. Variable excitation wavelengths are utilized as an external perturbation. Based on the results of mathematical analysis and computer simulation, we find that no cross peak will be produced on the 2D asynchronous spectrum if the fluorescent solute under investigation occurs in a single micro-environment. The observation of cross peaks implies that the fluorescent molecule may occur in different micro-environments in a solution. Based on these results, we use 2D asynchronous spectra to investigate the emission spectra of anthracene dissolved in cyclohexane. When the concentration of anthracene is low, no cross peak is produced in the resultant 2D asynchronous spectrum, confirming that anthracene is dissolved as single molecule in the solution. As the concentration elevated, cross peaks appear in the corresponding 2D asynchronous spectra. A plausible explanation of this phenomenon is that anthracene may undergo aggregation via π-π interaction or π-C-H interaction.

  13. Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros

    ERIC Educational Resources Information Center

    Bancroft, Stacie L.; Bourret, Jason C.

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time.…

  14. Variable-Length Character String Analyses of Three Data-Bases, and their Application for File Compression.

    ERIC Educational Resources Information Center

    Barton, Ian J.; And Others

    A novel text analysis and characterization method involves the generation from text samples of sets of variable-length character strings. These sets are intermediate in number between the character set and the total number of words in a data base; their distribution is less disparate than those of either characters or words. The size of the sets…

  15. Genetic variability in wild genotypes of Passiflora cincinnata based on RAPD markers.

    PubMed

    Cerqueira-Silva, C B M; Conceição, L D H C S; Santos, E S L; Cardoso-Silva, C B; Pereira, A S; Oliveira, A C; Corrêa, R X

    2010-12-21

    The genetic diversity and characteristics of commercial interest of Passiflora species make it useful to characterize wild germplasm, because of their potential use for fruit, ornamental and medicinal purposes. We evaluated genetic diversity, using RAPD markers, of 32 genotypes of Passiflora cincinnata collected from the wild in the region of Vitória da Conquista, Bahia, Brazil. Thirteen primers generated 95 polymorphic markers and only one monomorphic marker. The mean genetic distance between the genotypes estimated by the complement of the Dice index was 0.51 (ranging from 0.20-0.85), and genotype grouping based on the UPGMA algorithm showed wide variability among the genotypes. This type of information contributes to identification and conservation of the biodiversity of this species and for the identification of pairs of divergent individuals for maximum exploitation of existing variability.

  16. A Tether-Based Variable-Gravity Research Facility Concept

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk

    2006-01-01

    The recent announcement of a return to the Moon and a mission to Mars has made the question of human response to lower levels of gravity more important. Recent advances in tether technology spurred by NASA s research in MXER tethers has led to a re-examination of the concept of a variable-gravity research facility (xGRF) for human research in low Earth orbit. Breakthroughs in simplified inertial tracking have made it possible to consider eliminating the despun section of previous designs. This, in turn, improves the prospect of a facility based entirely around a tether, with the human module on one end and a countermass on the other. With such a configuration, propellantless spinup and spindown is also possible based on the conservation of angular momentum from a gravity-gradient configuration to a spinning configuration. This not only saves large amounts of propellant but vastly simplifies crew and consumable resupply operations, since these can now be done in a microgravity configuration. The importance of the science to be obtained and the performance improvements in this new design argue strongly for further investigation.

  17. [Design of Electrocardiogram Signal Generator Based on Typical Electrocardiogram Database].

    PubMed

    Wang, Yuting; Wang, Xiaofei; Li, Dongshang; Liu, Guili

    2016-02-01

    Using LabVIEW programming and high-speed multifunction data acquisition card PCI-6251, we designed an electrocardiogram (ECG) signal generator based on Chinese typical ECG database. When the ECG signals are given off by the generator, the generator can also display the ECG information annotations at the same time, including waveform data and diagnostic results. It could be a useful assisting tool of ECG automatic diagnose instruments.

  18. [Design of Electrocardiogram Signal Generator Based on Typical Electrocardiogram Database].

    PubMed

    Wang, Yuting; Wang, Xiaofei; Li, Dongshang; Liu, Guili

    2016-02-01

    Using LabVIEW programming and high-speed multifunction data acquisition card PCI-6251, we designed an electrocardiogram (ECG) signal generator based on Chinese typical ECG database. When the ECG signals are given off by the generator, the generator can also display the ECG information annotations at the same time, including waveform data and diagnostic results. It could be a useful assisting tool of ECG automatic diagnose instruments. PMID:27382747

  19. The Hebrewer: A Web-Based Inflection Generator

    ERIC Educational Resources Information Center

    Foster, James Q.; Harrell, Lane Foster; Raizen, Esther

    2004-01-01

    This paper reports on the grammatical and programmatical production aspects of the "Hebrewer," a cross-platform web-based reference work in the form of a Hebrew inflection generator. The Hebrewer, a Java applet/servlet combination, is currently capable of generating 2,500 nouns in full declension and 500 verbs in full conjugation, displaying the…

  20. Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost

    SciTech Connect

    Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

    2013-04-01

    Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e

  1. Highbay Generator Room, looking northwest Beale Air Force Base, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Highbay Generator Room, looking northwest - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  2. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    SciTech Connect

    Mills, Andrew; Wiser, Ryan

    2012-05-18

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal

  3. Resistance controllability and variability improvement in a TaO{sub x}-based resistive memory for multilevel storage application

    SciTech Connect

    Prakash, A. E-mail: amit.knp02@gmail.com Song, J.; Hwang, H. E-mail: amit.knp02@gmail.com; Deleruyelle, D.; Bocquet, M.

    2015-06-08

    In order to obtain reliable multilevel cell (MLC) characteristics, resistance controllability between the different resistance levels is required especially in resistive random access memory (RRAM), which is prone to resistance variability mainly due to its intrinsic random nature of defect generation and filament formation. In this study, we have thoroughly investigated the multilevel resistance variability in a TaO{sub x}-based nanoscale (<30 nm) RRAM operated in MLC mode. It is found that the resistance variability not only depends on the conductive filament size but also is a strong function of oxygen vacancy concentration in it. Based on the gained insights through experimental observations and simulation, it is suggested that forming thinner but denser conductive filament may greatly improve the temporal resistance variability even at low operation current despite the inherent stochastic nature of resistance switching process.

  4. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    SciTech Connect

    Jin Chen

    2009-12-07

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  5. Preserving Differential Privacy in Degree-Correlation based Graph Generation

    PubMed Central

    Wang, Yue; Wu, Xintao

    2014-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987

  6. Preserving Differential Privacy in Degree-Correlation based Graph Generation.

    PubMed

    Wang, Yue; Wu, Xintao

    2013-08-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model.

  7. Multi-band local microwave signal generation based on an optical frequency comb generator

    NASA Astrophysics Data System (ADS)

    Wang, Wen Ting; Liu, Jian Guo; Sun, Wen Hui; Chen, Wei; Zhu, Ning Hua

    2015-03-01

    We propose and experimental demonstrate a new method to generate multi-band local microwave signals based on an optical frequency comb generator (OFCG) by applying an optical sideband injection locking technique and an optical heterodyning technique. The generated microwave signal can cover multi bands from S band to Ka band. A tunable multiband microwave signal spanning from 5 GHz to 40 GHz can be generated by the beating between the optical carrier and injection locked modulation sidebands in a photodetector without an optical filter. The wavelength of the slave laser can be continuously and near-linearly adjusted by proper changing its bias current. By tuning the bias current of the slave laser, the wavelength of that is matched to one of the modulation sidebands of the OFCG. The performance of the arrangement in terms of the tunability and stability of the generated microwave signal is also studied.

  8. Method to implement the CCD timing generator based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin

    2010-07-01

    With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.

  9. The Role of Intraseasonal Atmosphere Variability in ENSO Generation in Future Climate

    NASA Astrophysics Data System (ADS)

    Matveeva, Tatiana; Gushchina, Daria

    2016-04-01

    The intraseasonal tropical variability (ITV) is a general component of the atmospheric circulation in the tropics, particularly, it plays the main role in the formation of El Niño-Southern Oscillation (ENSO). The ENSO is the general mode of interannual climate variability. It appears in two kinds of large-scale sea surface temperature (SST) anomalies in the equatorial Pacific Ocean: East Pacific (EP) El Niño (named also Canonical El Niño) characterized by anomalous warming in the eastern Pacific, and Central Pacific (CP) El Niño (so-called El Niño Modoki) with maximum SST anomalous in the center of the Pacific Ocean [Kao and Yu, 2009; Kug et al., 2009]. The ability of CMIP5 coupled ocean-atmosphere general circulation models (CGCMs) to simulate two flavors of El Niño is estimated using Empirical orthogonal functions (EOFs) analysis of SST anomalies fields (Experiment Pi-Control), in this study we assessed 20 CGCMs. Spatial distribution of the first mode (EOF 1) represents SST anomalies field structure of EP El Niño and the second mode (EOF 2) is analogue of SST anomalies spatial distribution during CP El Niño [Ashok et al., 2007]. To identify intensity and frequency ENSO we also considered both NINO3 and NINO4 SST indices. NINO3 and NINO4 regions have been defined based on EOF-analysis (EOF 1 and EOF 2, resp.). It's shown that only several models were able to simulate two kinds of ENSO. Then we tested chosen CGCMs' ability to correct simulation of ITV components. For identification ITV components in the tropical troposphere we applied double space-time Fourier analysis to zonal wind at 850 hPa (U850), following the method of WK99 [Wheler and Kiladis, 1999]. Then we defined wave activity and analyzed spatial pattern of the waves and relationship between the waves and ENSO. Besides, it is shown that the ITV characteristics are altered during different flavors of ENSO [Gushchina and Dewitte, 2012]. In [Yeh et al., 2009] it has been established that the ratio

  10. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work

  11. Data Generators for Learning Systems Based on RBF Networks.

    PubMed

    Robnik-Sikonja, Marko

    2016-05-01

    There are plenty of problems where the data available is scarce and expensive. We propose a generator of semiartificial data with similar properties to the original data, which enables the development and testing of different data mining algorithms and the optimization of their parameters. The generated data allow large-scale experimentation and simulations without danger of overfitting. The proposed generator is based on radial basis function networks, which learn sets of Gaussian kernels. These Gaussian kernels can be used in a generative mode to generate new data from the same distributions. To assess the quality of the generated data, we evaluated the statistical properties of the generated data, structural similarity, and predictive similarity using supervised and unsupervised learning techniques. To determine usability of the proposed generator we conducted a large scale evaluation using 51 data sets. The results show a considerable similarity between the original and generated data and indicate that the method can be useful in several development and simulation scenarios. We analyze possible improvements in the classification performance by adding different amounts of the generated data to the training set, performance on high-dimensional data sets, and conditions when the proposed approach is successful.

  12. A data based random number generator for a multivariate distribution (using stochastic interpolation)

    NASA Technical Reports Server (NTRS)

    Thompson, J. R.; Taylor, M. S.

    1982-01-01

    Let X be a K-dimensional random variable serving as input for a system with output Y (not necessarily of dimension k). given X, an outcome Y or a distribution of outcomes G(Y/X) may be obtained either explicitly or implicity. The situation is considered in which there is a real world data set X sub j sub = 1 (n) and a means of simulating an outcome Y. A method for empirical random number generation based on the sample of observations of the random variable X without estimating the underlying density is discussed.

  13. BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool

    ERIC Educational Resources Information Center

    Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.

    2006-01-01

    BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…

  14. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  15. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    PubMed

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  16. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    PubMed Central

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%. PMID:24453905

  17. Generation of Picosecond Electron-Bunch Trains with Variable Spacing Using a Multi-Pulse Photocathode Laser

    SciTech Connect

    Conde, M.; Gai, W.; Jing, C.; Konecny, R.; Liu, W.; Mihalcea, D.; Piot, P.; Power, J.G.; Rihaoui, M.; Yusof, Z.; /Argonne

    2012-07-08

    We demonstrate the generation of a train of electron bunches with variable spacing at the Argonne Wakefield Accelerator. The photocathode ultraviolet laser pulse consists of a train of four pulses produced via polarization splitting using two alpha-BBO crystals. The photoemitted electron bunches are then manipulated in a horizontally-bending dogleg with variable longitudinal dispersion. A downstream vertically-deflecting cavity is then used to diagnose the temporal profile of the electron beam. The generation of a train composed of four bunches with tunable spacing is demonstrated. Such a train of bunch could have application to, e.g., the resonant excitation of wakefield in dielectric-lined structures. We have presented preliminary measurements on a simple technique to generate a train of electron bunches with variable separation. In the initial experiment appreciable density modulation down to wavelengths of {approx}1.8 mm (corresponding to a temporal separation of {approx}6 ps) were achieved for a total charge of 0.5 nC. Finding ways to reach smaller separations is being explored with the help of numerical simulations and will be presented elsewhere.

  18. Estimating mental fatigue based on electroencephalogram and heart rate variability

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Yu, Xiaolin

    2010-01-01

    The effects of long term mental arithmetic task on psychology are investigated by subjective self-reporting measures and action performance test. Based on electroencephalogram (EEG) and heart rate variability (HRV), the impacts of prolonged cognitive activity on central nervous system and autonomic nervous system are observed and analyzed. Wavelet packet parameters of EEG and power spectral indices of HRV are combined to estimate the change of mental fatigue. Then wavelet packet parameters of EEG which change significantly are extracted as the features of brain activity in different mental fatigue state, support vector machine (SVM) algorithm is applied to differentiate two mental fatigue states. The experimental results show that long term mental arithmetic task induces the mental fatigue. The wavelet packet parameters of EEG and power spectral indices of HRV are strongly correlated with mental fatigue. The predominant activity of autonomic nervous system of subjects turns to the sympathetic activity from parasympathetic activity after the task. Moreover, the slow waves of EEG increase, the fast waves of EEG and the degree of disorder of brain decrease compared with the pre-task. The SVM algorithm can effectively differentiate two mental fatigue states, which achieves the maximum classification accuracy (91%). The SVM algorithm could be a promising tool for the evaluation of mental fatigue. Fatigue, especially mental fatigue, is a common phenomenon in modern life, is a persistent occupational hazard for professional. Mental fatigue is usually accompanied with a sense of weariness, reduced alertness, and reduced mental performance, which would lead the accidents in life, decrease productivity in workplace and harm the health. Therefore, the evaluation of mental fatigue is important for the occupational risk protection, productivity, and occupational health.

  19. Forces and moments generated by the human arm: Variability and control

    PubMed Central

    Xu, Y; Terekhov, AV; Latash, ML; Zatsiorsky, VM

    2012-01-01

    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n=10) exerted static forces on the handle in eight directions in a horizontal plane for 25 seconds. The forces were of 4 magnitude levels (10 %, 20%, 30% and 40% of individual MVC). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084

  20. Forces and moments generated by the human arm: variability and control.

    PubMed

    Xu, Y; Terekhov, A V; Latash, M L; Zatsiorsky, V M

    2012-11-01

    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n = 10) exerted static forces on the handle in eight directions in a horizontal plane for 25 s. The forces were of 4 magnitude levels (10, 20, 30 and 40 % of individual maximal voluntary contractions). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084

  1. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    NASA Astrophysics Data System (ADS)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  2. Automated optimization and construction of chemometric models based on highly variable raw chromatographic data.

    PubMed

    Sinkov, Nikolai A; Johnston, Brandon M; Sandercock, P Mark L; Harynuk, James J

    2011-07-01

    Direct chemometric interpretation of raw chromatographic data (as opposed to integrated peak tables) has been shown to be advantageous in many circumstances. However, this approach presents two significant challenges: data alignment and feature selection. In order to interpret the data, the time axes must be precisely aligned so that the signal from each analyte is recorded at the same coordinates in the data matrix for each and every analyzed sample. Several alignment approaches exist in the literature and they work well when the samples being aligned are reasonably similar. In cases where the background matrix for a series of samples to be modeled is highly variable, the performance of these approaches suffers. Considering the challenge of feature selection, when the raw data are used each signal at each time is viewed as an individual, independent variable; with the data rates of modern chromatographic systems, this generates hundreds of thousands of candidate variables, or tens of millions of candidate variables if multivariate detectors such as mass spectrometers are utilized. Consequently, an automated approach to identify and select appropriate variables for inclusion in a model is desirable. In this research we present an alignment approach that relies on a series of deuterated alkanes which act as retention anchors for an alignment signal, and couple this with an automated feature selection routine based on our novel cluster resolution metric for the construction of a chemometric model. The model system that we use to demonstrate these approaches is a series of simulated arson debris samples analyzed by passive headspace extraction, GC-MS, and interpreted using partial least squares discriminant analysis (PLS-DA).

  3. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  4. Hydrogen-based power generation from bioethanol steam reforming

    SciTech Connect

    Tasnadi-Asztalos, Zs. Cormos, C. C. Agachi, P. S.

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  5. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  6. Rolls-Royce Low Noise Highly Variable Cycle Nozzle for Next Generation Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Sokhey, Jack S.; Kube-McDowell, Matthew

    2008-01-01

    An overview of the work performed by Rolls-Royce under contract NNL08AA29C is presented. The work includes computational fluid dynamic (CFD) analysis for, and design of, a highly variable cycle exhaust model for the Supersonic project (NRA NN06ZEA001N). The CFD analysis shows that the latest design improvements to the clam shell doors have increased flow through the ejector over that achieved with previous designs.

  7. The guitar chord-generating algorithm based on complex network

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

    2016-02-01

    This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

  8. Quadripartite continuous-variable entanglement generation by nondegenerate optical parametric amplification cascaded with a sum-frequency process

    NASA Astrophysics Data System (ADS)

    Yu, Youbin; Wang, HuaiJun; Zhao, Junwei; Ji, Fengmin; Wang, Yajuan; Cheng, Xiaomin

    2016-10-01

    Quadripartite continuous-variable (CV) entanglement with different optical frequencies can be generated by nondegenerate optical parametric amplification cascaded with a sum-frequency process in only one optical superlattice. Firstly, the idler beam is generated by a different frequency process between pump and signal beams. Then, the sum-frequency beam will be generated by a cascaded sum-frequency process between pump and idler beams in the same optical superlattice. The conversion dynamics of the cascaded nonlinear processes is investigated by using a quantum stochastic method. The quantum correlations among pump, signal, idler and sum-frequency beams are calculated by applying a sufficient inseparability criteria for quadripartite CV entanglement. The results show that quadripartite CV entangled beams can be produced by this single-pass cascaded nonlinear process in one optical superlattice.

  9. Model Based Document and Report Generation for Systems Engineering

    NASA Technical Reports Server (NTRS)

    Delp, Christopher; Lam, Doris; Fosse, Elyse; Lee, Cin-Young

    2013-01-01

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  10. Model based document and report generation for systems engineering

    NASA Astrophysics Data System (ADS)

    Delp, C.; Lam, D.; Fosse, E.; Lee, Cin-Young

    As Model Based Systems Engineering (MBSE) practices gain adoption, various approaches have been developed in order to simplify and automate the process of generating documents from models. Essentially, all of these techniques can be unified around the concept of producing different views of the model according to the needs of the intended audience. In this paper, we will describe a technique developed at JPL of applying SysML Viewpoints and Views to generate documents and reports. An architecture of model-based view and document generation will be presented, and the necessary extensions to SysML with associated rationale will be explained. A survey of examples will highlight a variety of views that can be generated, and will provide some insight into how collaboration and integration is enabled. We will also describe the basic architecture for the enterprise applications that support this approach.

  11. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  12. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  13. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  14. Quantum-network generation based on four-wave mixing

    NASA Astrophysics Data System (ADS)

    Cai, Yin; Feng, Jingliang; Wang, Hailong; Ferrini, Giulia; Xu, Xinye; Jing, Jietai; Treps, Nicolas

    2015-01-01

    We present a scheme to realize versatile quantum networks by cascading several four-wave mixing (FWM) processes in warm rubidium vapors. FWM is an efficient χ(3 ) nonlinear process, already used as a resource for multimode quantum state generation and which has been proved to be a promising candidate for applications to quantum information processing. We analyze theoretically the multimode output of cascaded FWM systems, derive its independent squeezed modes, and show how, with phase controlled homodyne detection and digital postprocessing, they can be turned into a versatile source of continuous variable cluster states.

  15. Polymeric variable optical attenuators based on magnetic sensitive stimuli materials

    NASA Astrophysics Data System (ADS)

    de Pedro, S.; Cadarso, V. J.; Ackermann, T. N.; Muñoz-Berbel, X.; Plaza, J. A.; Brugger, J.; Büttgenbach, S.; Llobera, A.

    2014-12-01

    Magnetically-actuable, polymer-based variable optical attenuators (VOA) are presented in this paper. The design comprises a cantilever which also plays the role of a waveguide and the input/output alignment elements for simple alignment, yet still rendering an efficient coupling. Magnetic properties have been conferred to these micro-opto-electromechanical systems (MOEMS) by implementing two different strategies: in the first case, a magnetic sensitive stimuli material (M-SSM) is obtained by a combination of polydimethylsiloxane (PDMS) and ferrofluid (FF) in ratios between 14.9 wt % and 29.9 wt %. An M-SSM strip under the waveguide-cantilever, defined with soft lithography (SLT), provides the required actuation capability. In the second case, specific volumes of FF are dispensed at the end of the cantilever tip (outside the waveguide) by means of inkjet printing (IJP), obtaining the required magnetic response while holding the optical transparency of the waveguide-cantilever. In the absence of a magnetic field, the waveguide-cantilever is aligned with the output fiber optics and thus the intrinsic optical losses can be obtained. Numerical simulations, validated experimentally, have shown that, for any cantilever length, the VOAs defined by IJP present lower intrinsic optical losses than their SLT counterparts. Under an applied magnetic field (Bapp), both VOA configurations experience a misalignment between the waveguide-cantilever and the output fiber optics. Thus, the proposed VOAs modulate the output power as a function of the cantilever displacement, which is proportional to Bapp. The experimental results for the three different waveguide-cantilever lengths and six different FF concentrations (three per technology) show maximum deflections of 220 µm at 29.9 wt % of FF for VOASLT and 250 µm at 22.3 wt % FF for VOAIJP, at 0.57 kG for both. These deflections provide maximum actuation losses of 16.1 dB and 18.9 dB for the VOASLT and VOAIJP

  16. MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES

    EPA Science Inventory

    Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...

  17. An all fiber apparatus for microparticles selective manipulation based on a variable ratio coupler and a microfiber

    NASA Astrophysics Data System (ADS)

    Li, Baoli; Luo, Wei; Xu, Fei; Lu, Yanqing

    2016-09-01

    We propose an all fiber apparatus based on a variable ratio coupler which can transport microparticles controllably and trap particles one by one along a microfiber. By connecting two output ports of a variable ratio coupler with two end pigtails of a microfiber and launching a 980 nm laser into the variable ratio coupler, particles in suspension were trapped to the waist of microfiber due to a gradient force and then transported along the microfiber due to a total scattering force generated by two counter-propagating beams. The direction of transportation was controlled by altering the coupling ratio of the variable ratio coupler. When the intensities of two output ports were equivalent, trapped particles stayed at fixed positions. With time going, another particle around the micro fiber was trapped onto the microfiber. There were three particles trapped in total in our experiment. This technique combines with the function of conventional tweezers and optical conveyor.

  18. Osmosis-based pressure generation: dynamics and application.

    PubMed

    Bruhn, Brandon R; Schroeder, Thomas B H; Li, Suyi; Billeh, Yazan N; Wang, K W; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.

  19. Osmosis-Based Pressure Generation: Dynamics and Application

    PubMed Central

    Li, Suyi; Billeh, Yazan N.; Wang, K. W.; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators. PMID:24614529

  20. 3 generation pedigree with paternal transmission of the 22q11.2 deletion syndrome: Intrafamilial phenotypic variability.

    PubMed

    Vergaelen, Elfi; Swillen, Ann; Van Esch, Hilde; Claes, Stephan; Van Goethem, Gert; Devriendt, Koenraad

    2015-04-01

    In this case report, we present a paternal transmission of a classic 3 Mb 22q11.2 deletion syndrome (22q11.2 DS) in a 3 generation family. In this family a young girl, her father, her uncle and her grandfather were diagnosed with this disorder. All carriers showed phenotypic expression, there were no unaffected siblings in the second or third generation. Presenting symptoms in the patient in first generation (grandfather) were psoriatic arthritis, thrombocytopenia and a right aortic arch. There was no intellectual disability. The second generation uncle was known with a severe intellectual disability, mild facial characteristics, a septal defect and a clubfoot, whereas the second generation father had a tetralogy of Fallot, no intellectual disability and minimal facial characteristics. The third generation daughter had a moderate intellectual disability, hypernasal speech, triphalangeal thumb, severe speech and language development delay, pronounced facial characteristics and a diagnosis of ADHD. It was notable that the expression in the two brothers of the second generation gives two very different clinical phenotypes with a severe intellectual disability in the oldest brother. This report describes a pronounced clinical variability in a 3 generation familial 22q11.2 deletion with paternal transmission. We can assume that several mechanisms play an important role in the heterogeneity and part of the answer should be found in the genetic background underlying the 22q11.2 deletion. In addition in this family the neuropsychiatric phenotype and intellectual disability seem to be associated with a lower level of social and occupational functioning while a congenital heart disease does not. This clinical report illustrates that a detailed description of these patients can be very informative and still increase the knowledge on this heterogeneous syndrome. For the clinicians working with these patients it emphasizes the need for a multidisciplinary approach that takes

  1. A preferential flow model based on flow variability in macropores

    NASA Astrophysics Data System (ADS)

    Weiler, M.

    2004-12-01

    Simulating infiltration in soils containing macropores still provides unsatisfactory results, as existing models seem not to capture all relevant processes. Recent studies of macropore flow initiation in natural soils containing earthworm channels revealed a distinct flow rate variability in the macropores depending on the initiation process (Weiler & Naef, 2003, J of Hydrology, 273: 139-154). When macropore flow was initiated at the soil surface, most of the macropores received very little water while a few macropores received a large proportion of the total inflow. In contrast, when macropore flow was initiated from a saturated or nearly saturated soil layer, macropore flow rate variation was much lower. The objective of this study was to develop and test a model, which combines the macropore flow variability with several established approaches to model dual permeability soils. We then evaluate the INfiltration-INitiation-INteraction Model (IN3M) as a tool to explore the influence of macropore flow variability on infiltration behavior by performing a sensitivity analysis and applying IN3M to sprinkling and dye tracer experiments at various field sites with different macropore and soil matrix properties. The sensitivity analysis showed that the flow variability in macropores reduces interaction between the macropores and the surrounding soil matrix and thus increases bypass flow, especially for surface initiation of macropore flow and at higher rainfall intensities. The model application shows reasonable agreement between IN3M simulations and field data in terms of water balance, water content change, and dye patterns. The influence of macropore flow variability on the hydrological response of the soil was considerable and especially pronounced for soils where initiation occurs at the soil surface.

  2. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks.

    PubMed

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-01-01

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  3. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks.

    PubMed

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-01-01

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666

  4. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks

    PubMed Central

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-01-01

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666

  5. Trap generation and occupation in stressed gate oxides under spatially variable oxide electric field

    NASA Astrophysics Data System (ADS)

    Avni, E.; Shappir, J.

    1987-11-01

    The spatial variation of the oxide field in metal-oxide-silicon devices due to charge trapping under electron injection stress is included in a self-consistent trapping model. The model predicts the spatial distribution of the stress-generated trapping sites and their occupation level under different conditions of applied voltages and total injected charge. The calculated results agree quite well with the experimental results of prolonged charge injection, as expressed in shifts of the flatband voltage.

  6. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  7. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude

    NASA Astrophysics Data System (ADS)

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  8. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time. PMID:22852729

  9. Advanced Control of Permanent Magnet Synchronous Generators for Variable Speed Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Hostettler, Jacob

    Various environmental and economic factors have lead to increased global investment in alternative energy technologies such as solar and wind power. Although methodologies for synchronous generator control are well researched, wind turbines present control systems challenges not presented by traditional generation. The varying nature of wind makes achieving synchronism with the existing electrical power grid a greater challenge. Departing from early use of induction machines, permanent magnet synchronous generators have become the focus of power systems and control systems research into wind energy systems. This is due to their self excited nature, along with their high power density. The problem of grid synchronism is alleviated through the use of high performance power electronic converters. In achievement of the optimal levels of efficiency, advanced control systems techniques oer promise over more traditional approaches. Research into sliding mode control, and linear matrix inequalities with nite time boundedness and Hinfinity performance criteria, when applied to the dynamical models of the system, demonstrate the potential of these control methodologies as future avenues for achieving higher levels of performance and eciency in wind energy.

  10. Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira

    2016-09-01

    In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.

  11. Managing Wind-based Electricity Generation and Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Yangfang

    Among the many issues that profoundly affect the world economy every day, energy is one of the most prominent. Countries such as the U.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable energy---such as wind energy and solar energy---is free, abundant, and most importantly, does not exacerbate the global warming problem. However, most renewable energy is inherently intermittent and variable, and thus can benefit greatly from coupling with electricity storage, such as grid-level industrial batteries. Grid storage can also help match the supply and demand of an entire electricity market. In addition, electricity storage such as car batteries can help reduce dependence on oil, as it can enable the development of Plug-in Hybrid Electric Vehicles, and Battery Electric Vehicles. This thesis focuses on understanding how to manage renewable energy and electricity storage properly together, and electricity storage alone. In Chapter 2, I study how to manage renewable energy, specifically wind energy. Managing wind energy is conceptually straightforward: generate and sell as much electricity as possible when prices are positive, and do nothing otherwise. However, this leads to curtailment when wind energy exceeds the transmission capacity, and possible revenue dilution when current prices are low but are expected to increase in the future. Electricity storage is being considered as a means to alleviate these problems, and also enables buying electricity from the market for later resale. But the presence of storage complicates the management of electricity generation from wind, and the value of storage for a wind-based generator is not entirely understood. I demonstrate that for such a combined generation and storage system the optimal policy does not

  12. Pairwise Variable Selection for High-dimensional Model-based Clustering

    PubMed Central

    Guo, Jian; Levina, Elizaveta; Michailidis, George

    2009-01-01

    SUMMARY Variable selection for clustering is an important and challenging problem in high-dimensional data analysis. Existing variable selection methods for model-based clustering select informative variables in a “one-in-all-out” manner; that is, a variable is selected if at least one pair of clusters is separable by this variable and removed if it cannot separate any of the clusters. In many applications, however, it is of interest to further establish exactly which clusters are separable by each informative variable. To address this question, we propose a pairwise variable selection method for high-dimensional model-based clustering. The method is based on a new pairwise penalty. Results on simulated and real data show that the new method performs better than alternative approaches which use ℓ1 and ℓ∞ penalties and offers better interpretation. PMID:19912170

  13. A Pseudo-Random Number Generator Based on Normal Numbers

    SciTech Connect

    Bailey, David H.

    2004-12-31

    In a recent paper, Richard Crandall and the present author established that each of a certain class of explicitly given real constants, uncountably infinite in number, is b-normal, for an integer that appears in the formula defining the constant. A b-normal constant is one where every string of m digits appears in the base-b expansion of the constant with limiting frequency b{sup -m}. This paper shows how this result can be used to fashion an efficient and effective pseudo-random number generator, which generates successive strings of binary digits from one of the constants in this class. The resulting generator, which tests slightly faster than a conventional linear congruential generator, avoids difficulties with large power-of-two data access strides that may occur when using conventional generators. It is also well suited for parallel processing--each processor can quickly and independently compute its starting value, with the collective sequence generated by all processors being the same as that generated by a single processor.

  14. Temperature sensing based on a Brillouin fiber microwave generator

    NASA Astrophysics Data System (ADS)

    Yang, X. P.; Gan, J. L.; Xu, S. H.; Yang, Z. M.

    2013-04-01

    We propose and demonstrate a novel dual-frequency Brillouin fiber laser used for microwave generation. Based on this configuration, temperature sensing has been realized. The dual-frequency Brillouin lasing is generated independently from two pieces of fiber cascaded within one ring resonator. Microwave generation is acquired as the beat signal of the dual-frequency Brillouin fiber laser, with the beat frequency being linearly proportional to the temperature difference of the two fiber sections. In the experiment, the temperature coefficient of frequency shift is 1.015 ± 0.001 MHz °C-1. The temperature can be precisely measured by acquiring the frequency of the microwave generator, and this new configuration provides a promising application for temperature sensing.

  15. Effects of optical variables in immersion lens-based near-field optics.

    PubMed

    Kim, Wan-Chin; Yoon, Yong-Joong; Choi, Hyun; Park, No-Cheol; Park, Young-Pil

    2008-09-01

    We analyze the effects of optical variables, such as illumination state, focal position variation, near-field air-gap height, and refractive index mismatch, in immersion lens-based near-field optics on the resultant field propagation characteristics, including spot size, focal depth, and aberrations. First, to investigate the general behaviors of various incident polarization states, focused fields near the focal planes in simple two- or three-layered media structures are calculated under considerations of refractive index mismatch, geometric focal position variations, and air-gap height in a multi-layered medium. Notably, for solid immersion near-field optics, although purely TM polarized illumination generates a stronger and 15% smaller beam spot size in the focal region than in the case of circularly polarized incident light, the intensity of the focused field decreases sharply from the interface between air and the third medium. For the same optical configurations, we show that changes in geometric focal position to the recording or detecting medium increases focal depth. Finally, through focused field analysis on a ROM (read-only memory) and a RW (rewritable) medium, compound effects of considered variables are discussed. The resultant field propagation behaviors described in this study may be applicable to the design of either highly efficient reflection or transmission near-field optics for immersion lens based information storage, microscopy and lithographic devices. PMID:18773004

  16. Generating arbitrary photon-number entangled states for continuous-variable quantum informatics.

    PubMed

    Lee, Su-Yong; Park, Jiyong; Lee, Hai-Woong; Nha, Hyunchul

    2012-06-18

    We propose two experimental schemes that can produce an arbitrary photon-number entangled state (PNES) in a finite dimension. This class of entangled states naturally includes non-Gaussian continuous-variable (CV) states that may provide some practical advantages over the Gaussian counterparts (two-mode squeezed states). We particularly compare the entanglement characteristics of the Gaussian and the non-Gaussian states in view of the degree of entanglement and the Einstein-Podolsky-Rosen correlation, and further discuss their applications to the CV teleportation and the nonlocality test. The experimental imperfection due to the on-off photodetectors with nonideal efficiency is also considered in our analysis to show the feasibility of our schemes within existing technologies. PMID:22714485

  17. A next generation altimeter for mapping the sea surface height variability: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Fu, Lee-Lueng; Morrow, Rosemary

    2016-07-01

    The global observations of the sea surface height (SSH) have revolutionized oceanography since the beginning of precision radar altimetry in the early 1990s. For the first time we have continuous records of SSH with spatial and temporal sampling for detecting the global mean sea level rise, the waxing and waning of El Niño, and the ocean circulation from gyres to ocean eddies. The limit of spatial resolution of the present constellation of radar altimeters in mapping SSH variability is approaching 100 km (in wavelength) with 3 or more simultaneous altimetric satellites in orbit. At scales shorter than 100 km, the circulation contains substantial amount of kinetic energy in currents, eddies and fronts that are responsible for the stirring and mixing of the ocean, especially from the vertical exchange of the upper ocean with the deep. A mission currently in development will use the technique of radar interferometry for making high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT promises the detection of SSH at scales approaching 15 km, depending on the sea state. SWOT will make SSH measurement over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. A conventional radar altimeter will provide measurement along the nadir. This is an exploratory mission with applications in oceanography and hydrology. The increased spatial resolution offers an opportunity to study ocean surface processes to address important questions about the ocean circulation. However, the limited temporal sampling poses challenges to map the evolution of the ocean variability that changes rapidly at the small scales. The measurement technique and the development of the mission will be presented with emphasis on its science program with outlook on the opportunities and challenges.

  18. Three-Dimensional Flow of an Oldroyd-B Fluid with Variable Thermal Conductivity and Heat Generation/Absorption

    PubMed Central

    Shehzad, Sabir Ali; Alsaedi, Ahmed; Hayat, Tasawar; Alhuthali, M. Shahab

    2013-01-01

    This paper looks at the series solutions of three dimensional boundary layer flow. An Oldroyd-B fluid with variable thermal conductivity is considered. The flow is induced due to stretching of a surface. Analysis has been carried out in the presence of heat generation/absorption. Homotopy analysis is implemented in developing the series solutions to the governing flow and energy equations. Graphs are presented and discussed for various parameters of interest. Comparison of present study with the existing limiting solution is shown and examined. PMID:24223780

  19. Time-dependent sleep stage transition model based on heart rate variability.

    PubMed

    Takeda, Toki; Mizuno, Osamu; Tanaka, Tomohiro

    2015-01-01

    A new model is proposed to automatically classify sleep stages using heart rate variability (HRV). The generative model, based on the characteristics that the distribution and the transition probabilities of sleep stages depend on the elapsed time from the beginning of sleep, infers the sleep stage with a Gibbs sampler. Experiments were conducted using a public data set consisting of 45 healthy subjects and the model's classification accuracy was evaluated for three sleep stages: wake state, rapid eye movement (REM) sleep, and non-REM sleep. Experimental results demonstrated that the model provides more accurate sleep stage classification than conventional (naive Bayes and Support Vector Machine) models that do not take the above characteristics into account. Our study contributes to improve the quality of sleep monitoring in the daily life using easy-to-wear HRV sensors. PMID:26736763

  20. The electric organ discharge of Brachyhypopomus pinnicaudatus. The effects of environmental variables on waveform generation.

    PubMed

    Caputi, A A; Silva, A C; Macadar, O

    1998-01-01

    The electric organ discharge of Brachyhypopomus pinnicaudatus was studied by recording (1) the discharge field potentials in water at different conductivities and temperatures and (2) the spatiotemporal pattern of electromotive forces of the equivalent source. An early deflection, head positive (P wave), and a late deflection, head negative (N wave), are the major components of the discharge, however a striking double positive peak is generated at the abdominal level. Comparisons of this species with other pulse gymnotids provide evidence for common patterns of organization of the electrogenic system: (1) There is a head-to-tail activation wave along the fish; (2) the electromotive force increases exponentially from head to tail, but it is differentially attenuated by the passive tissues in male and females; (3) the abdominal region generates a complex species-specific waveform, whereas the tail discharge is similar across species. In B. pinnicaudatus the electric organ discharge waveform is sensitive to endocrine and environmental stimuli. The effect of seasonal sex differences on electrogenic and passive tissue, the changes in impedance matching between the fish's body and the environment, and the modulation of membrane properties by temperature, are able to modify the EOD waveform. Since these factors change during the breeding season, their appropriate combination might be crucial for reproduction.

  1. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. Annular force based variable curvature mirror aiming to realize non-moving element optical zooming

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Xie, Xiaopeng; Wei, Jingxuan; Ren, Guorui; Pang, Zhihai; Xu, Liang

    2015-10-01

    Recently, a new kind of optical zooming technique in which no moving elements are involved has been paid much attention. The elimination of moving elements makes optical zooming suitable for applications which has exacting requirements in space, power cost and system stability. The mobile phone and the space-borne camera are two typical examples. The key to realize non-moving elements optical zooming lies in the introduction of variable curvature mirror (VCM) whose radius of curvature could be changed dynamically. When VCM is about to be used to implement optical zoom imaging, two characteristics should be ensured. First, VCM has to provide large enough saggitus variation in order to obtain a big magnification ratio. Second, after the radius of curvature has been changed, the corresponding surface figure accuracy should still be maintained superior to a threshold level to make the high quality imaging possible. In this manuscript, based on the elasticity theory, the physical model of the annular force based variable curvature mirror is established and numerically analyzed. The results demonstrate that when the annular force is applied at the half-the-aperture position, the actuation force is reduced and a smaller actuation force is required to generate the saggitus variation and thus the maintenance of surface figure accuracy becomes easier during the variation of radius of curvature. Besides that, a prototype VCM, whose diameter and thickness are 100mm and 3mm respectively, have been fabricated and the maximum saggitus variation that could be obtained approaches more than 30 wavelengths. At the same time, the degradation of surface figure accuracy is weakly correlated to the curvature radius variation. Keywords: optical zooming; variable curvature mirror; surface figure accuracy; saggitus;

  3. Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems.

    PubMed

    Huang, Shih-Chia; Chen, Bo-Hao

    2013-12-01

    Automated motion detection, which segments moving objects from video streams, is the key technology of intelligent transportation systems for traffic management. Traffic surveillance systems use video communication over real-world networks with limited bandwidth, which frequently suffers because of either network congestion or unstable bandwidth. Evidence supporting these problems abounds in publications about wireless video communication. Thus, to effectively perform the arduous task of motion detection over a network with unstable bandwidth, a process by which bit-rate is allocated to match the available network bandwidth is necessitated. This process is accomplished by the rate control scheme. This paper presents a new motion detection approach that is based on the cerebellar-model-articulation-controller (CMAC) through artificial neural networks to completely and accurately detect moving objects in both high and low bit-rate video streams. The proposed approach is consisted of a probabilistic background generation (PBG) module and a moving object detection (MOD) module. To ensure that the properties of variable bit-rate video streams are accommodated, the proposed PBG module effectively produces a probabilistic background model through an unsupervised learning process over variable bit-rate video streams. Next, the MOD module, which is based on the CMAC network, completely and accurately detects moving objects in both low and high bit-rate video streams by implementing two procedures: 1) a block selection procedure and 2) an object detection procedure. The detection results show that our proposed approach is capable of performing with higher efficacy when compared with the results produced by other state-of-the-art approaches in variable bit-rate video streams over real-world limited bandwidth networks. Both qualitative and quantitative evaluations support this claim; for instance, the proposed approach achieves Similarity and F1 accuracy rates that are 76

  4. Intelligent real-time CCD data processing system based on variable frame rate

    NASA Astrophysics Data System (ADS)

    Chen, Su-ting

    2009-07-01

    In order to meet the need of image shooting with CCD in unmanned aerial vehicles, a real-time high resolution CCD data processing system based on variable frame rate is designed. The system is consisted of three modules: CCD control module, data processing module and data display module. In the CCD control module, real-time flight parameters (e.g. flight height, velocity and longitude) should be received from GPS through UART (Universal Asynchronous Receiver Transmitter) and according to the corresponding flight parameters, the variable frame rate is calculated. Based on the calculated variable frame rate, CCD external synchronization control impulse signal is generated in the control of FPGA and then CCD data is read out. In the data processing module, data segmentation is designed to extract ROI (region of interest), whose resolution is equal to valid data resolution of HDTV standard conforming to SMPTE (1080i). On one hand, Ping-pong SRAM storage controller is designed in FPGA to real-time store ROI data. On the other hand, according to the need of intelligent observing, changeable window position is designed, and a flexible area of interest is obtained. In the real-time display module, a special video encoder is used to accomplish data format conversion. Data after storage is packeted to HDTV format by creating corresponding format information in FPGA. Through inner register configuration, high definition video analog signal is implemented. The entire system has been implemented in FPGA and validated. It has been used in various real-time CCD data processing situations.

  5. Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems.

    PubMed

    Huang, Shih-Chia; Chen, Bo-Hao

    2013-12-01

    Automated motion detection, which segments moving objects from video streams, is the key technology of intelligent transportation systems for traffic management. Traffic surveillance systems use video communication over real-world networks with limited bandwidth, which frequently suffers because of either network congestion or unstable bandwidth. Evidence supporting these problems abounds in publications about wireless video communication. Thus, to effectively perform the arduous task of motion detection over a network with unstable bandwidth, a process by which bit-rate is allocated to match the available network bandwidth is necessitated. This process is accomplished by the rate control scheme. This paper presents a new motion detection approach that is based on the cerebellar-model-articulation-controller (CMAC) through artificial neural networks to completely and accurately detect moving objects in both high and low bit-rate video streams. The proposed approach is consisted of a probabilistic background generation (PBG) module and a moving object detection (MOD) module. To ensure that the properties of variable bit-rate video streams are accommodated, the proposed PBG module effectively produces a probabilistic background model through an unsupervised learning process over variable bit-rate video streams. Next, the MOD module, which is based on the CMAC network, completely and accurately detects moving objects in both low and high bit-rate video streams by implementing two procedures: 1) a block selection procedure and 2) an object detection procedure. The detection results show that our proposed approach is capable of performing with higher efficacy when compared with the results produced by other state-of-the-art approaches in variable bit-rate video streams over real-world limited bandwidth networks. Both qualitative and quantitative evaluations support this claim; for instance, the proposed approach achieves Similarity and F1 accuracy rates that are 76

  6. A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Randhir, Karuna; Kale, Anvita; Joshi, Sadhana

    2016-09-14

    Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p < 0.01) during pregnancy, increased systolic (p < 0.05) and diastolic (p < 0.01) blood pressure, and lowered the levels of plasma/liver DHA (p < 0.05 for both) but did not affect the lipid profile. Vitamin B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p < 0.05) the levels of plasma triglycerides. Omega-3 fatty acid supplementation to the vitamin B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial.

  7. A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Randhir, Karuna; Kale, Anvita; Joshi, Sadhana

    2016-09-14

    Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p < 0.01) during pregnancy, increased systolic (p < 0.05) and diastolic (p < 0.01) blood pressure, and lowered the levels of plasma/liver DHA (p < 0.05 for both) but did not affect the lipid profile. Vitamin B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p < 0.05) the levels of plasma triglycerides. Omega-3 fatty acid supplementation to the vitamin B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial. PMID:27528436

  8. Differential inhibition onto developing and mature granule cells generates high-frequency filters with variable gain

    PubMed Central

    Pardi, María Belén; Ogando, Mora Belén; Schinder, Alejandro F; Marin-Burgin, Antonia

    2015-01-01

    Adult hippocampal neurogenesis provides the dentate gyrus with heterogeneous populations of granule cells (GC) originated at different times. The contribution of these cells to information encoding is under current investigation. Here, we show that incoming spike trains activate different populations of GC determined by the stimulation frequency and GC age. Immature GC respond to a wider range of stimulus frequencies, whereas mature GC are less responsive at high frequencies. This difference is dictated by feedforward inhibition, which restricts mature GC activation. Yet, the stronger inhibition of mature GC results in a higher temporal fidelity compared to that of immature GC. Thus, hippocampal inputs activate two populations of neurons with variable frequency filters: immature cells, with wide‐range responses, that are reliable transmitters of the incoming frequency, and mature neurons, with narrow frequency response, that are precise at informing the beginning of the stimulus, but with a sparse activity. DOI: http://dx.doi.org/10.7554/eLife.08764.001 PMID:26163657

  9. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  10. Variable cooling circuit for thermoelectric generator and engine and method of control

    DOEpatents

    Prior, Gregory P

    2012-10-30

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  11. Variable-rate colour image quantization based on quadtree segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Li, C. Y.; Chuang, J. C.; Lo, C. C.

    2011-09-01

    A novel variable-sized block encoding with threshold control for colour image quantization (CIQ) is presented in this paper. In CIQ, the colour palette used has a great influence on the reconstructed image quality. Typically, a higher image quality and a larger storage cost are obtained when a larger-sized palette is used in CIQ. To cut down the storage cost while preserving quality of the reconstructed images, the threshold control policy for quadtree segmentation is used in this paper. Experimental results show that the proposed method adaptively provides desired bit rates while having better image qualities comparing to CIQ with the usage of multiple palettes of different sizes.

  12. Local search methods based on variable focusing for random K-satisfiability.

    PubMed

    Lemoy, Rémi; Alava, Mikko; Aurell, Erik

    2015-01-01

    We introduce variable focused local search algorithms for satisfiabiliity problems. Usual approaches focus uniformly on unsatisfied clauses. The methods described here work by focusing on random variables in unsatisfied clauses. Variants are considered where variables are selected uniformly and randomly or by introducing a bias towards picking variables participating in several unsatistified clauses. These are studied in the case of the random 3-SAT problem, together with an alternative energy definition, the number of variables in unsatisfied constraints. The variable-based focused Metropolis search (V-FMS) is found to be quite close in performance to the standard clause-based FMS at optimal noise. At infinite noise, instead, the threshold for the linearity of solution times with instance size is improved by picking preferably variables in several UNSAT clauses. Consequences for algorithmic design are discussed. PMID:25679737

  13. Local search methods based on variable focusing for random K -satisfiability

    NASA Astrophysics Data System (ADS)

    Lemoy, Rémi; Alava, Mikko; Aurell, Erik

    2015-01-01

    We introduce variable focused local search algorithms for satisfiabiliity problems. Usual approaches focus uniformly on unsatisfied clauses. The methods described here work by focusing on random variables in unsatisfied clauses. Variants are considered where variables are selected uniformly and randomly or by introducing a bias towards picking variables participating in several unsatistified clauses. These are studied in the case of the random 3-SAT problem, together with an alternative energy definition, the number of variables in unsatisfied constraints. The variable-based focused Metropolis search (V-FMS) is found to be quite close in performance to the standard clause-based FMS at optimal noise. At infinite noise, instead, the threshold for the linearity of solution times with instance size is improved by picking preferably variables in several UNSAT clauses. Consequences for algorithmic design are discussed.

  14. Ground-based full-sky imaging polarimeter based on liquid crystal variable retarders.

    PubMed

    Zhang, Ying; Zhao, Huijie; Song, Ping; Shi, Shaoguang; Xu, Wujian; Liang, Xiao

    2014-04-01

    A ground-based full-sky imaging polarimeter based on liquid crystal variable retarders (LCVRs) is proposed in this paper. Our proposed method can be used to realize the rapid detection of the skylight polarization information with hemisphere field-of-view for the visual band. The characteristics of the incidence angle of light on the LCVR are investigated, based on the electrically controlled birefringence. Then, the imaging polarimeter with hemisphere field-of-view is designed. Furthermore, the polarization calibration method with the field-of-view multiplexing and piecewise linear fitting is proposed, based on the rotation symmetry of the polarimeter. The polarization calibration of the polarimeter is implemented with the hemisphere field-of-view. This imaging polarimeter is investigated by the experiment of detecting the skylight image. The consistency between the obtained experimental distribution of polarization angle with that due to Rayleigh scattering model is 90%, which confirms the effectivity of our proposed imaging polarimeter. PMID:24718245

  15. Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise

    SciTech Connect

    Symul, Thomas; Alton, Daniel J.; Lance, Andrew M.; Lam, Ping Koy; Assad, Syed M.; Weedbrook, Christian; Ralph, Timothy C.

    2007-09-15

    In realistic continuous-variable quantum key distribution protocols, an eavesdropper may exploit the additional Gaussian noise generated during transmission to mask her presence. We present a theoretical framework for a post-selection-based protocol which explicitly takes into account excess Gaussian noise. We derive a quantitative expression of the secret key rates based on the Levitin and Holevo bounds. We experimentally demonstrate that the post-selection-based scheme is still secure against both individual and collective Gaussian attacks in the presence of this excess noise.

  16. D Octree Based Watertight Mesh Generation from Ubiquitous Data

    NASA Astrophysics Data System (ADS)

    Caraffa, L.; Brédif, M.; Vallet, B.

    2015-08-01

    Despite of the popularity of Delauney structure for mesh generation, octree based approaches remain an interesting solution for a first step surface reconstruction. In this paper, we propose a generic framework for a octree cell based mesh generation. Its input is a set of Lidar-based 3D measurements or other inputs which are formulated as a set of mass functions that characterize the level of confidence on the occupancy of each octree's leaf. The output is a binary segmentation of the space between occupied and empty areas by taking into account the uncertainty of data. To this end, the problem is then reduced to a global energy optimization framework efficiently optimized with a min-cut approach. We use the approach for producing a large scale surface reconstruction algorithm by merging data from ubiquitous sources like airborne, terrestrial Lidar data, occupancy map and extra cues. Once the surface is computed, a solution is proposed for texturing the mesh.

  17. All-optical pseudorandom bit sequences generator based on TOADs

    NASA Astrophysics Data System (ADS)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2016-03-01

    A scheme for all-optical pseudorandom bit sequences (PRBS) generator is demonstrated with optical logic gate 'XNOR' and all-optical wavelength converter based on cascaded Tera-Hertz Optical Asymmetric Demultiplexer (TOADs). Its feasibility is verified by generation of return-to-zero on-off keying (RZ-OOK) 263-1 PRBS at the speed of 1 Gb/s with 10% duty radio. The high randomness of ultra-long cycle PRBS is validated by successfully passing the standard benchmark test.

  18. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    SciTech Connect

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  19. Implementation of a High Throughput Variable Decimation Pane Filter Using the Xilinx System Generator

    SciTech Connect

    RADDER,JERAHMIE WILLIAM

    2003-01-01

    In a Synthetic Aperture Radar (SAR) system, the purpose of the receiver is to process incoming radar signals in order to obtain target information and ultimately construct an image of the target area. Incoming raw signals are usually in the microwave frequency range and are typically processed with analog circuitry, requiring hardware designed specifically for the desired signal processing operations. A more flexible approach is to process the signals in the digital domain. Recent advances in analog-to-digital converter (ADC) and Field Programmable Gate Array (FPGA) technology allow direct digital processing of wideband intermediate frequency (IF) signals. Modern ADCs can achieve sampling rates in excess of 1GS/s, and modern FPGAs can contain millions of logic gates operating at frequencies over 100 MHz. The combination of these technologies is necessary to implement a digital radar receiver capable of performing high speed, sophisticated and scalable DSP designs that are not possible with analog systems. Additionally, FPGA technology allows designs to be modified as the design parameters change without the need for redesigning circuit boards, potentially saving both time and money. For typical radars receivers, there is a need for operation at multiple ranges, which requires filters with multiple decimation rates, i.e., multiple bandwidths. In previous radar receivers, variable decimation was implemented by switching between SAW filters to achieve an acceptable filter configuration. While this method works, it is rather ''brute force'' because it duplicates a large amount of hardware and requires a new filter to be added for each IF bandwidth. By implementing the filter digitally in FPGAs, a larger number of decimation values (and consequently a larger number of bandwidths) can be implemented with no need for extra components. High performance, wide bandwidth radar systems also place high demands on the DSP throughput of a given digital receiver. In such

  20. Fully photonics-based physical random bit generator.

    PubMed

    Li, Pu; Sun, Yuanyuan; Liu, Xianglian; Yi, Xiaogang; Zhang, Jianguo; Guo, Xiaomin; Guo, Yanqiang; Wang, Yuncai

    2016-07-15

    We propose a fully photonics-based approach for ultrafast physical random bit generation. This approach exploits a compact nonlinear loop mirror (called a terahertz optical asymmetric demultiplexer, TOAD) to sample the chaotic optical waveform in an all-optical domain and then generate random bit streams through further comparison with a threshold level. This method can efficiently overcome the electronic jitter bottleneck confronted by existing RBGs in practice. A proof-of-concept experiment demonstrates that this method can continuously extract 5 Gb/s random bit streams from the chaotic output of a distributed feedback laser diode (DFB-LD) with optical feedback. This limited generation rate is caused by the bandwidth of the used optical chaos. PMID:27420532

  1. Fully photonics-based physical random bit generator.

    PubMed

    Li, Pu; Sun, Yuanyuan; Liu, Xianglian; Yi, Xiaogang; Zhang, Jianguo; Guo, Xiaomin; Guo, Yanqiang; Wang, Yuncai

    2016-07-15

    We propose a fully photonics-based approach for ultrafast physical random bit generation. This approach exploits a compact nonlinear loop mirror (called a terahertz optical asymmetric demultiplexer, TOAD) to sample the chaotic optical waveform in an all-optical domain and then generate random bit streams through further comparison with a threshold level. This method can efficiently overcome the electronic jitter bottleneck confronted by existing RBGs in practice. A proof-of-concept experiment demonstrates that this method can continuously extract 5 Gb/s random bit streams from the chaotic output of a distributed feedback laser diode (DFB-LD) with optical feedback. This limited generation rate is caused by the bandwidth of the used optical chaos.

  2. New negative resist design with novel photo-base generator

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Yun; Wu, Cheng Han; Su, Yu-Chang; Wu, Chen-Hao; Chang, Ya-Hui; Chang, Ching-Yu; Ku, Yao-Ching

    2013-03-01

    An alternate negative tone resist is investigated for advanced lithography. Unlike conventional negative tone development (NTD) resists developed with organic solvent, this negative resist use TMAH as its developer. Thermal acid generator (TAG) and photo base generator (PBG) are proposed for this resist. PBG decomposes and generates alkali at the exposed area and neutralizes the acid from TAG. Hence, positive resist can produce negative tone image (NTI), and gain better optical contrast than positive tone imaging. The new negative resist reported in this paper also shows better resolution than conventional negative resist. Several optimization studies are also reported. In addition, major limitations on further improving resist resolution are also pointed out in this paper. The solution proposed has been proven workable from experimental results. This opens the possibility to combine better optical contrast from NTI, high resist resolution from positive resist resin, and better development contrast from TMAH solution.

  3. Variable spatial pattern probe based on offset launch of multimode waveguide for optogenetics.

    PubMed

    Dong, Na; Jiang, Weifeng; Sun, Xiaohan

    2016-05-16

    We propose and demonstrate experimentally a variable spatial pattern probe based on offset launch at the input facet of multi-mode optical waveguide for the use of optogenetics, which could generate variable spatial patterns with micron scale at the output facet of the waveguide so that the optical stimulating location in the neural tissue can be changed. By using of coupling mode theory, finite element method (FEM) and light diffusion Monte-Carlo method, we simulate their mode patterns and evolvements for TE00, TE10, TE20 and TE11 modes, excited by offset launch at different input point of the probe with core size of 17.8 × 7.8 μm2, from the output port to 50μm in the tissue. The experimental chips including array multimode waveguides with different width are fabricated using the Silica-on-Silicon processing. We selectively excite TE00, TE10, TE20 and TE11 modes in the waveguide chip with core size of 17.8 × 7.8 μm2, test their patterns and obtain their evolvements. The experimental results are coincident with the simulation results.

  4. Methodology for definition of yellow fever priority areas, based on environmental variables and multiple correspondence analyses.

    PubMed

    Moreno, Eduardo Stramandinoli; Barata, Rita de Cássia Barradas

    2012-01-01

    Yellow fever (YF) is endemic in much of Brazil, where cases of the disease are reported every year. Since 2008, outbreaks of the disease have occurred in regions of the country where no reports had been registered for decades, which has obligated public health authorities to redefine risk areas for the disease. The aim of the present study was to propose a methodology of environmental risk analysis for defining priority municipalities for YF vaccination, using as example, the State of São Paulo, Brazil. The municipalities were divided into two groups (affected and unaffected by YF) and compared based on environmental parameters related to the disease's eco-epidemiology. Bivariate analysis was used to identify statistically significant associations between the variables and virus circulation. Multiple correspondence analysis (MCA) was used to evaluate the relationship among the variables and their contribution to the dynamics of YF in Sao Paulo. The MCA generated a factor that was able to differentiate between affected and unaffected municipalities and was used to determine risk levels. This methodology can be replicated in other regions, standardized, and adapted to each context.

  5. Homopolar artificial gravity generator based on frame-dragging

    NASA Astrophysics Data System (ADS)

    Tajmar, M.

    2010-05-01

    Space exploration is linked in many ways to the generation and challenges of artificial gravity. Space stations and drag-free satellite platforms are used to provide microgravity environments for scientific experiments. On the other hand, microgravity or reduced gravity environments such as on Moon and Mars are known to put limits for long-term human presence. Large centrifuges in space may provide Earth-like gravity environments during long-term travels, however, such technology certainly has its limits to provide similar environments for human outposts on other moons and planets. One can imagine a different technology using a prediction out of Einstein's general relativity theory which is called frame-dragging. In principle, frame-dragging might be used to generate artificial gravitational fields similar to electric fields generated by time-varying or moving magnetic fields. We will show that it is also possible to generate constant artificial gravitational fields that could provide microgravity or artificial gravity environments. Although such technology is possible in principle, the field strengths calculated from Einstein's theory are too small to be useful so far. However, recently detected anomalies around low-temperature spinning matter as well as fly-by anomalies point to possible enhancement mechanisms that might make an artificial gravity generator based on frame-dragging a reality in the future.

  6. The application of Kriging and empirical Kriging based on the variables selected by SCAD.

    PubMed

    Peng, Xiao-Ling; Yin, Hong; Li, Runze; Fang, Kai-Tai

    2006-09-25

    The commonly used approach for building a structure-activity/property relationship consists of three steps. First, one determines the descriptors for the molecular structure, then builds a metamodel by using some proper mathematical methods, and finally evaluates the meta-model. Some existing methods only can select important variables from the candidates, while most metamodels just explore linear relationships between inputs and outputs. Some techniques are useful to build more complicated relationship, but they may not be able to select important variables from a large number of variables. In this paper, we propose to screen important variables by the smoothly clipped absolute deviation (SCAD) variable selection procedure, and then apply Kriging model and empirical Kriging model for quantitative structure-activity/property relationship (QSAR/QSPR) research based on the selected important variables. We demonstrate the proposed procedure retains the virtues of both variable selection and Kriging model. PMID:17723710

  7. A Third-Generation Evidence Base for Human Spaceflight Risks

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Lumpkins, Sarah; Steil, Jennifer; Pellis, Neal; Charles, John

    2014-01-01

    NASA's Human Research Program seeks to understand and mitigate risks to crew health and performance in exploration missions center dot HRP's evidence base consists of an Evidence Report for each HRP risk center dot Three generations of Evidence Reports 1) Review articles + Good content - Limited authorship, infrequent updates 2) Wikipedia articles + Viewed often, very open to contributions - Summary of reviews, very few contributions 3) HRP-controlled wiki articles + Incremental additions to review articles with editorial control

  8. Generation of Lymphocytic Choriomeningitis Virus Based Vaccine Vectors.

    PubMed

    Ring, Sandra; Flatz, Lukas

    2016-01-01

    Vaccination with a recombinant LCMV based vector expressing tumor-associated or viral antigens is a safe and versatile method to induce an immune response against tumors or viral infections. Here, we describe the generation of recombinant LCMV vectors in which the gene encoding the viral LCMV-GP was substituted with a gene of interest (vaccine antigen). This renders the vaccine vector propagation-incompetent while it preserves the property of eliciting a strong cytotoxic T cell response. PMID:27076310

  9. Control System for a Diesel Generator and UPS Based Microgrid

    NASA Astrophysics Data System (ADS)

    Palamar, Andriy; Pettai, Elmo; Beldjajev, Viktor

    2010-01-01

    In this paper a microgrid composed of a diesel generator and two uninterruptible power supply systems with separate battery banks is introduced. The microgrid located in three academic buildings of Tallinn University of Technology. A three-level control and monitoring system for the microgrid based on the EtherNet/IP communication network is developed. In addition, a control strategy of the microgrid in the grid-connected and stand-alone mode of operation is proposed.

  10. Atom-chip-based generation of entanglement for quantum metrology.

    PubMed

    Riedel, Max F; Böhi, Pascal; Li, Yun; Hänsch, Theodor W; Sinatra, Alice; Treutlein, Philipp

    2010-04-22

    Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases. They have been used in diverse experiments involving low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing and quantum metrology. Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We use this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate; such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 +/- 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms; this could be used to improve an interferometric measurement by -2.5 +/- 0.6 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development.

  11. Spin-torque generation in topological insulator based heterostructures

    NASA Astrophysics Data System (ADS)

    Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eun-Ah

    2016-03-01

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  12. Variability of West African monsoon patterns generated by a WRF multi-physics ensemble

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Heinzeller, Dominikus; Bliefernicht, Jan; Kunstmann, Harald

    2015-11-01

    The credibility of regional climate simulations over West Africa stands and falls with the ability to reproduce the West African monsoon (WAM) whose precipitation plays a pivotal role for people's livelihood. In this study, we simulate the WAM for the wet year 1999 with a 27-member multi-physics ensemble of the Weather Research and Forecasting (WRF) model. We investigate the inter-member differences in a process-based manner in order to extract generalizable information on the behavior of the tested cumulus (CU), microphysics (MP), and planetary boundary layer (PBL) schemes. Precipitation, temperature and atmospheric dynamics are analyzed in comparison to the Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, the Global Precipitation Climatology Centre (GPCC) gridded gauge-analysis, the Global Historical Climatology Network (GHCN) gridded temperature product and the forcing data (ERA-Interim) to explore interdependencies of processes leading to a certain WAM regime. We find that MP and PBL schemes contribute most to the ensemble spread (147 mm month-1) for monsoon precipitation over the study region. Furthermore, PBL schemes have a strong influence on the movement of the WAM rainband because of their impact on the cloud fraction, that ranges from 8 to 20 % at 600 hPa during August. More low- and mid-level clouds result in less incoming radiation and a weaker monsoon. Ultimately, we identify the differing intensities of the moist Hadley-type meridional circulation that connects the monsoon winds to the Tropical Easterly Jet as the main source for inter-member differences. The ensemble spread of Sahel precipitation and associated dynamics for August 1999 is comparable to the observed inter-annual spread (1979-2010) between dry and wet years, emphasizing the strong potential impact of regional processes and the need for a careful selection of model parameterizations.

  13. Efficacy of Carraguard®-Based Microbicides In Vivo Despite Variable In Vitro Activity

    PubMed Central

    Turville, Stuart G.; Aravantinou, Meropi; Miller, Todd; Kenney, Jessica; Teitelbaum, Aaron; Hu, Lieyu; Chudolij, Anne; Zydowsky, Tom M.; Piatak, Michael; Bess, Julian W.; Lifson, Jeffrey D.; Blanchard, James; Gettie, Agegnehu; Robbiani, Melissa

    2008-01-01

    Anti-HIV microbicides are being investigated in clinical trials and understanding how promising strategies work, coincident with demonstrating efficacy in vivo, is central to advancing new generation microbicides. We evaluated Carraguard® and a new generation Carraguard-based formulation containing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (PC-817). Since dendritic cells (DCs) are believed to be important in HIV transmission, the formulations were tested for the ability to limit DC-driven infection in vitro versus vaginal infection of macaques with RT-SHIV (SIVmac239 bearing HIV reverse transcriptase). Carraguard showed limited activity against cell-free and mature DC-driven RT-SHIV infections and, surprisingly, low doses of Carraguard enhanced infection. However, nanomolar amounts of MIV-150 overcame enhancement and blocked DC-transmitted infection. In contrast, Carraguard impeded infection of immature DCs coincident with DC maturation. Despite this variable activity in vitro, Carraguard and PC-817 prevented vaginal transmission of RT-SHIV when applied 30 min prior to challenge. PC-817 appeared no more effective than Carraguard in vivo, due to the limited activity of a single dose of MIV-150 and the dominant barrier effect of Carraguard. However, 3 doses of MIV-150 in placebo gel at and around challenge limited vaginal infection, demonstrating the potential activity of a topically applied NNRTI. These data demonstrate discordant observations when comparing in vitro and in vivo efficacy of Carraguard-based microbicides, highlighting the difficulties in testing putative anti-viral strategies in vitro to predict in vivo activity. This work also underscores the potential of Carraguard-based formulations for the delivery of anti-viral drugs to prevent vaginal HIV infection. PMID:18776937

  14. Red beam generation based on aperiodically poled lithium niobate

    NASA Astrophysics Data System (ADS)

    Figen, Ziya Gürkan; Akın, Onur

    2014-04-01

    We propose a novel device with a simple architecture for high-power red beam generation. The device is an optical parametric generator based on an aperiodically poled LiNbO3 grating in which both the optical parametric amplification and sum frequency generation processes are simultaneously phase matched. The pump is a quasi-continuous-wave laser operating at 1064 nm. Aperiodic gratings which enable simultaneous phase matching of the two processes were designed using a method that gives the flexibility to adjust the relative strength of these two processes. A model that takes the diffraction of the beams into account was developed to characterize the red beam generation performance of the device depending on the parameters: the relative strength of these processes, the length of the crystal, the average pump power, and the pump beam waist radius. If one uses the 2-D Fourier transform in the solution of the coupled-mode equations, the computation power required for performing such a characterization on a personal computer is prohibitively large. Owing to the circular symmetry of the system, we employ the Hankel transform to overcome this bottleneck.

  15. 2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions.

    PubMed

    Lee, Kangsun; Kim, Choong; Kim, Youngeun; Jung, Keunhui; Ahn, Byungwook; Kang, Ji Yoon; Oh, Kwang W

    2010-04-01

    We present a 2-layer based microfluidic concentration generator by a hybrid of a serial and a volumetric dilution for dose-response experiments in drug screening. The hybrid dilution method using 2-layer based microfluidic network significantly reduces the total number of cascaded serial dilution stages. The proposed strategy is capable of generating a large number of universal stepwise monotonic concentrations with a wide range of logarithmic and linear scales. We have studied an equivalent electrical circuit to that of the 2-layer based microfluidic network, where the only variable parameter is channel length. We have designed a microfluidic dilution generator simultaneously covering 14 doses with a combination of 4-order logarithmic and 4-point linear concentrations. The design has been verified by a commercial circuit analysis software (e.g., P-Spice) for the electrical circuit analysis and a computational fluid dynamics software (e.g., CFD-ACE+) for the microfluidic circuit analysis. As a real-life application of the proposed dilution generator, we have successfully performed a dose-response experiment using MCF-7 human breast cancer cells. We expect that the proposed dilution method will be useful to study not only high throughput drug screening but also optimization in biology, chemistry, medicine, and material sciences.

  16. Transport model based on three-dimensional cross-section generation for TRIGA core analysis

    NASA Astrophysics Data System (ADS)

    Kriangchaiporn, Nateekool

    This dissertation addresses the development of a reactor core physics model based on 3-D transport methodology utilizing 3-D multigroup fuel lattice cross-section generation and core calculation for PSBR. The proposed 3-D transport calculation scheme for reactor core simulations is based on the TORT code. The methodology includes development of algorithms for 2-D and 3-D cross-section generation. The fine- and broad-group structures for the TRIGA cross-section generation problems were developed based on the CPXSD (Contributon and Point-wise Cross-Section Driven) methodology that selects effective group structure. Along with the study of cross section generation, the parametric studies for SN calculations were performed to evaluate the impact of the spatial meshing, angular, and scattering order variables and to obtain the suitable values for cross-section collapsing of the TRIGA cell problem. The TRIGA core loading 2 is used to verify and validate the selected effective group structures. Finally, the 13 group structure was selected to use for core calculations. The results agree with continuous energy for eigenvalues and normalized pin power distribution. The Monte Carlo solutions are used as the references.

  17. Synthetic ECG Generation and Bayesian Filtering Using a Gaussian Wave-Based Dynamical Model

    PubMed Central

    Sayadi, Omid; Shamsollahi, Mohammad B.; Clifford, Gari D.

    2011-01-01

    In this paper, we describe a Gaussian wave-based state space to model the temporal dynamics of electrocardiogram (ECG) signals. It is shown that this model may be effectively used for generating synthetic ECGs as well as separate characteristic waves (CWs) such as the atrial and ventricular complexes. The model uses separate state variables for each CW, i.e. P, QRS and T, and hence is capable of generating individual synthetic CWs as well as realistic ECG signals. The model is therefore useful for generating arrhythmias. Simulations of sinus bradycardia, sinus tachycardia, ventricular flutter, atrial fibrillation, and ventricular tachycardia are presented. In addition, discrete versions of the equations are presented for a model-based Bayesian framework for denoising. This framework, together with an extended Kalman filter (EKF) and extended Kalman smoother (EKS), were used for denoising the ECG for both normal rhythms and arrhythmias. For evaluating the denoising performance the signal-to-noise ratio (SNR) improvement of the filter outputs and clinical parameter stability were studied. The results demonstrate superiority over a wide range of input SNRs, achieving a maximum 12.7 dB improvement. Results indicate that preventing clinically relevant distortion of the ECG is sensitive to the number of model parameters. Models are presented which do not exhibit such distortions. The approach presented in this paper may therefore serve as an effective framework for synthetic ECG generation and model-based filtering of noisy ECG recordings. PMID:20720288

  18. Embedded wavelet-based face recognition under variable position

    NASA Astrophysics Data System (ADS)

    Cotret, Pascal; Chevobbe, Stéphane; Darouich, Mehdi

    2015-02-01

    For several years, face recognition has been a hot topic in the image processing field: this technique is applied in several domains such as CCTV, electronic devices delocking and so on. In this context, this work studies the efficiency of a wavelet-based face recognition method in terms of subject position robustness and performance on various systems. The use of wavelet transform has a limited impact on the position robustness of PCA-based face recognition. This work shows, for a well-known database (Yale face database B*), that subject position in a 3D space can vary up to 10% of the original ROI size without decreasing recognition rates. Face recognition is performed on approximation coefficients of the image wavelet transform: results are still satisfying after 3 levels of decomposition. Furthermore, face database size can be divided by a factor 64 (22K with K = 3). In the context of ultra-embedded vision systems, memory footprint is one of the key points to be addressed; that is the reason why compression techniques such as wavelet transform are interesting. Furthermore, it leads to a low-complexity face detection stage compliant with limited computation resources available on such systems. The approach described in this work is tested on three platforms from a standard x86-based computer towards nanocomputers such as RaspberryPi and SECO boards. For K = 3 and a database with 40 faces, the execution mean time for one frame is 0.64 ms on a x86-based computer, 9 ms on a SECO board and 26 ms on a RaspberryPi (B model).

  19. The Variability of Gender-Based Communication in Japanese Magazine Advertising.

    ERIC Educational Resources Information Center

    Maynard, Michael L.

    1995-01-01

    Analyzes Japanese magazine advertising text from an intracultural perspective based on gender. Uses content analysis to examine advertising text of eight gender-specific magazines. Reveals significant difference in the variability of message perception depending on target gender. Suggests the importance of recognizing intracultural variability,…

  20. One-to-one encapsulation based on alternating droplet generation

    PubMed Central

    Hirama, Hirotada; Torii, Toru

    2015-01-01

    This paper reports the preparation of encapsulated particles as models of cells using an alternating droplet generation encapsulation method in which the number of particles in a droplet is controlled by a microchannel to achieve one-to-one encapsulation. Using a microchannel in which wettability is treated locally, the fluorescent particles used as models of cells were successfully encapsulated in uniform water-in-oil-in-water (W/O/W) emulsion droplets. Furthermore, 20% of the particle-containing droplets contained one particle. Additionally, when a surfactant with the appropriate properties was used, the fluorescent particles within each inner aqueous droplet were enclosed in the merged droplet by spontaneous droplet coalescence. This one-to-one encapsulation method based on alternating droplet generation could be used for a variety of applications, such as high-throughput single-cell assays, gene transfection into cells or one-to-one cell fusion. PMID:26487193

  1. One-to-one encapsulation based on alternating droplet generation

    NASA Astrophysics Data System (ADS)

    Hirama, Hirotada; Torii, Toru

    2015-10-01

    This paper reports the preparation of encapsulated particles as models of cells using an alternating droplet generation encapsulation method in which the number of particles in a droplet is controlled by a microchannel to achieve one-to-one encapsulation. Using a microchannel in which wettability is treated locally, the fluorescent particles used as models of cells were successfully encapsulated in uniform water-in-oil-in-water (W/O/W) emulsion droplets. Furthermore, 20% of the particle-containing droplets contained one particle. Additionally, when a surfactant with the appropriate properties was used, the fluorescent particles within each inner aqueous droplet were enclosed in the merged droplet by spontaneous droplet coalescence. This one-to-one encapsulation method based on alternating droplet generation could be used for a variety of applications, such as high-throughput single-cell assays, gene transfection into cells or one-to-one cell fusion.

  2. Assessment of disk MHD generators for a base load powerplant

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Retallick, F. D.; Lu, C. L.; Stella, M.; Teare, J. D.; Loubsky, W. J.; Louis, J. F.; Misra, B.

    1981-01-01

    Results from a study of the disk MHD generator are presented. Both open and closed cycle disk systems were investigated. Costing of the open cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed cycle systems. Preliminary plant design for the open cycle systems was also completed. Based on the system study results, an economic assessment of the open cycle systems is presented. Costs of the open cycle disk conponents are less than comparable linear generator components. Also, costs of electricity for the open cycle disk systems are competitive with comparable linear systems. Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.

  3. Surface skeleton generation based on 360-degree profile scan

    NASA Astrophysics Data System (ADS)

    Chen, Lujie; Sass, Lawrence; Sung, Woong Ki; Noel, Vernelle

    2013-05-01

    A rapid prototyping method is invented, which works on a specific data structure produced by an optical metrology technique: 360-degree surface profile scanning. A computer algorithm takes an object profile data, restructure the format, generate horizontal and vertical ribs, lay out the ribs on a 2D canvas and output the geometries to a file format compatible with laser cutters. A laser cutting machine is subsequently used to cut all the ribs from sheet materials. Then, the ribs are manually assembled based on computer-generated assembly codes. Through this process, the original object's 3D surface can be prototyped rapidly at an arbitrary scale, which may well exceed the working dimension of the laser cutter.

  4. Seabed mapping and characterization of sediment variability using the usSEABED data base

    USGS Publications Warehouse

    Goff, J.A.; Jenkins, C.J.; Jeffress, Williams S.

    2008-01-01

    We present a methodology for statistical analysis of randomly located marine sediment point data, and apply it to the US continental shelf portions of usSEABED mean grain size records. The usSEABED database, like many modern, large environmental datasets, is heterogeneous and interdisciplinary. We statistically test the database as a source of mean grain size data, and from it provide a first examination of regional seafloor sediment variability across the entire US continental shelf. Data derived from laboratory analyses ("extracted") and from word-based descriptions ("parsed") are treated separately, and they are compared statistically and deterministically. Data records are selected for spatial analysis by their location within sample regions: polygonal areas defined in ArcGIS chosen by geography, water depth, and data sufficiency. We derive isotropic, binned semivariograms from the data, and invert these for estimates of noise variance, field variance, and decorrelation distance. The highly erratic nature of the semivariograms is a result both of the random locations of the data and of the high level of data uncertainty (noise). This decorrelates the data covariance matrix for the inversion, and largely prevents robust estimation of the fractal dimension. Our comparison of the extracted and parsed mean grain size data demonstrates important differences between the two. In particular, extracted measurements generally produce finer mean grain sizes, lower noise variance, and lower field variance than parsed values. Such relationships can be used to derive a regionally dependent conversion factor between the two. Our analysis of sample regions on the US continental shelf revealed considerable geographic variability in the estimated statistical parameters of field variance and decorrelation distance. Some regional relationships are evident, and overall there is a tendency for field variance to be higher where the average mean grain size is finer grained

  5. [Generation of a synthetic seismic data base]. Final report

    SciTech Connect

    Aldrich, C.H. III

    1995-10-22

    A consortium (Los Alamos, Sandia, OR, Livermore) have been collaborating under the GONII project to generate a synthetic seismic data base. Two deliverables were a common code that would run on the various site machines, and the use of these codes to generate parts of the final data base. The data base consists of a large number of shots applied to two geographic models developed by another part of GONII, the salt model and the overthrust model,s which were supplied as large files containing propagation velocity on a 3-D grid. Los Alamos was supplied with the source code of a seismic propagation code written by the French Petroleum Institute. A decision was made to port a subset of the code to Fortran on a node. Part of this contract was spent verifying/debugging the Fortran on a node code; a port of the code was made to run on the Cray. A total of 846 shots were run on the CM5. It was found that files on the SDA are not safe from corruption and the model velocity file may change.

  6. CRISPR-Based Typing and Next-Generation Tracking Technologies.

    PubMed

    Barrangou, Rodolphe; Dudley, Edward G

    2016-01-01

    Bacteria occur ubiquitously in nature and are broadly relevant throughout the food supply chain, with diverse and variable tolerance levels depending on their origin, biological role, and impact on the quality and safety of the product as well as on the health of the consumer. With increasing knowledge of and accessibility to the microbial composition of our environments, food supply, and host-associated microbiota, our understanding of and appreciation for the ratio of beneficial to undesirable bacteria are rapidly evolving. Therefore, there is a need for tools and technologies that allow definite, accurate, and high-resolution identification and typing of various groups of bacteria that include beneficial microbes such as starter cultures and probiotics, innocuous commensals, and undesirable pathogens and spoilage organisms. During the transition from the current molecular biology-based PFGE (pulsed-field gel electrophoresis) gold standard to the increasingly accessible omics-level whole-genome sequencing (WGS) N-gen standard, high-resolution technologies such as CRISPR-based genotyping constitute practical and powerful alternatives that provide valuable insights into genome microevolution and evolutionary trajectories. Indeed, several studies have shown potential for CRISPR-based typing of industrial starter cultures, health-promoting probiotic strains, animal commensal species, and problematic pathogens. Emerging CRISPR-based typing methods open new avenues for high-resolution typing of a broad range of bacteria and constitute a practical means for rapid tracking of a diversity of food-associated microbes.

  7. CRISPR-Based Typing and Next-Generation Tracking Technologies.

    PubMed

    Barrangou, Rodolphe; Dudley, Edward G

    2016-01-01

    Bacteria occur ubiquitously in nature and are broadly relevant throughout the food supply chain, with diverse and variable tolerance levels depending on their origin, biological role, and impact on the quality and safety of the product as well as on the health of the consumer. With increasing knowledge of and accessibility to the microbial composition of our environments, food supply, and host-associated microbiota, our understanding of and appreciation for the ratio of beneficial to undesirable bacteria are rapidly evolving. Therefore, there is a need for tools and technologies that allow definite, accurate, and high-resolution identification and typing of various groups of bacteria that include beneficial microbes such as starter cultures and probiotics, innocuous commensals, and undesirable pathogens and spoilage organisms. During the transition from the current molecular biology-based PFGE (pulsed-field gel electrophoresis) gold standard to the increasingly accessible omics-level whole-genome sequencing (WGS) N-gen standard, high-resolution technologies such as CRISPR-based genotyping constitute practical and powerful alternatives that provide valuable insights into genome microevolution and evolutionary trajectories. Indeed, several studies have shown potential for CRISPR-based typing of industrial starter cultures, health-promoting probiotic strains, animal commensal species, and problematic pathogens. Emerging CRISPR-based typing methods open new avenues for high-resolution typing of a broad range of bacteria and constitute a practical means for rapid tracking of a diversity of food-associated microbes. PMID:26772411

  8. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  9. Digitally based pattern generator for an electron-beam welder

    SciTech Connect

    Whitten, L.G. III

    1981-02-19

    A digitally based deflection generator for an electron-beam welder is presented. Up to seven patterns of any shape are stored in programmable read-only memory (PROM). The pattern resolution is 39% at frequencies from 10 Hz to 1 kHz and can be x-t, y-t, or x-y formed. Frequency and pattern selections may be chosen by the welder computer or manually selected on the front panel. The ability to repeatedly synchronize two waveforms of any shape and frequency enables an unlimited variety of welds.

  10. Membrane-based processes for sustainable power generation using water.

    PubMed

    Logan, Bruce E; Elimelech, Menachem

    2012-08-16

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production.

  11. A repetitive sequence assembler based on next-generation sequencing.

    PubMed

    Lian, S; Tu, Y; Wang, Y; Chen, X; Wang, L

    2016-01-01

    Repetitive sequences of variable length are common in almost all eukaryotic genomes, and most of them are presumed to have important biomedical functions and can cause genomic instability. Next-generation sequencing (NGS) technologies provide the possibility of identifying capturing these repetitive sequences directly from the NGS data. In this study, we assessed the performances in identifying capturing repeats of leading assemblers, such as Velvet, SOAPdenovo, SGA, MSR-CA, Bambus2, ALLPATHS-LG, and AByss using three real NGS datasets. Our results indicated that most of them performed poorly in capturing the repeats. Consequently, we proposed a repetitive sequence assembler, named NGSReper, for capturing repeats from NGS data. Simulated datasets were used to validate the feasibility of NGSReper. The results indicate that the completeness of capturing repeat is up to 99%. Cross validation was performed in three real NGS datasets, and extensive comparisons indicate that NGSReper performed best in terms of completeness and accuracy in capturing repeats. In conclusion, NGSReper is an appropriate and suitable tool for capturing repeats directly from NGS data. PMID:27525861

  12. Climatic spatial variability in Extremadura (Spain) based on viticultural bioclimatic indices.

    PubMed

    Moral, F J; Rebollo, F J; Paniagua, L L; García, A

    2014-12-01

    The evaluation of general suitability for viticulture in wine regions requires a knowledge of the spatial variation in temperature, which is also used to assess different grapevine cultivars and to delimit appropriate zones for winegrape production. However, usually temperature data and methods applied to properly delineate homogeneous areas are not adequate to generate accurate maps.With the aim of providing an analysis using four temperature-based indices, quantifying their spatial variability, and representing the spatial pattern of each index throughout Extremadura, one of the most important Spanish wine regions, temperature data from 117 meteorological stations, considering the 1980–2011 period, were utilized. The statistical properties of each index were assessed and, later, they were mapped by means of an integrated geographic information system (GIS) and a multivariate geostatistics (regression-kriging) approach. Results show that heat-sum temperature indices were highly related to the more simple growing season temperature; however, temperature regime differences varied upon which index was employed. The spatial variability of climate within Extremaduran natural regions (NR) is significant; although the warmer conditions predominate, some NR have part of their territory by up to eight climate classes. This information enables a better understanding of the viticulture suitability within each NR and delineating homogeneous zones. The use of consistent bioclimatic indices and an advanced geostatistical algorithm have made it possible to delimit and compare within-region climates and also enabled comparisons of Extremaduran NR with others worlwide, which should be taken into account to select varieties and assess the possibilities of producing new wines.

  13. Climatic spatial variability in Extremadura (Spain) based on viticultural bioclimatic indices

    NASA Astrophysics Data System (ADS)

    Moral, F. J.; Rebollo, F. J.; Paniagua, L. L.; García, A.

    2014-12-01

    The evaluation of general suitability for viticulture in wine regions requires a knowledge of the spatial variation in temperature, which is also used to assess different grapevine cultivars and to delimit appropriate zones for winegrape production. However, usually temperature data and methods applied to properly delineate homogeneous areas are not adequate to generate accurate maps. With the aim of providing an analysis using four temperature-based indices, quantifying their spatial variability, and representing the spatial pattern of each index throughout Extremadura, one of the most important Spanish wine regions, temperature data from 117 meteorological stations, considering the 1980-2011 period, were utilized. The statistical properties of each index were assessed and, later, they were mapped by means of an integrated geographic information system (GIS) and a multivariate geostatistics (regression-kriging) approach. Results show that heat-sum temperature indices were highly related to the more simple growing season temperature; however, temperature regime differences varied upon which index was employed. The spatial variability of climate within Extremaduran natural regions (NR) is significant; although the warmer conditions predominate, some NR have part of their territory by up to eight climate classes. This information enables a better understanding of the viticulture suitability within each NR and delineating homogeneous zones. The use of consistent bioclimatic indices and an advanced geostatistical algorithm have made it possible to delimit and compare within-region climates and also enabled comparisons of Extremaduran NR with others worlwide, which should be taken into account to select varieties and assess the possibilities of producing new wines.

  14. Climatic spatial variability in Extremadura (Spain) based on viticultural bioclimatic indices.

    PubMed

    Moral, F J; Rebollo, F J; Paniagua, L L; García, A

    2014-12-01

    The evaluation of general suitability for viticulture in wine regions requires a knowledge of the spatial variation in temperature, which is also used to assess different grapevine cultivars and to delimit appropriate zones for winegrape production. However, usually temperature data and methods applied to properly delineate homogeneous areas are not adequate to generate accurate maps.With the aim of providing an analysis using four temperature-based indices, quantifying their spatial variability, and representing the spatial pattern of each index throughout Extremadura, one of the most important Spanish wine regions, temperature data from 117 meteorological stations, considering the 1980–2011 period, were utilized. The statistical properties of each index were assessed and, later, they were mapped by means of an integrated geographic information system (GIS) and a multivariate geostatistics (regression-kriging) approach. Results show that heat-sum temperature indices were highly related to the more simple growing season temperature; however, temperature regime differences varied upon which index was employed. The spatial variability of climate within Extremaduran natural regions (NR) is significant; although the warmer conditions predominate, some NR have part of their territory by up to eight climate classes. This information enables a better understanding of the viticulture suitability within each NR and delineating homogeneous zones. The use of consistent bioclimatic indices and an advanced geostatistical algorithm have made it possible to delimit and compare within-region climates and also enabled comparisons of Extremaduran NR with others worlwide, which should be taken into account to select varieties and assess the possibilities of producing new wines. PMID:24659115

  15. Lot-to-Lot Variability in HLA Antibody Screening Using a Multiplexed Bead Based Assay

    PubMed Central

    Gandhi, Manish J.; Carrick, Danielle M.; Jenkins, Sarah; De Goey, Steven; Ploeger, Nancy A; Wilson, Gregory A.; Lee, Jar How; Winters, Jeffrey L.; Stubbs, James R.; Toy, Pearl; Norris, Philip J.

    2012-01-01

    Background Identifying antibodies to HLA (HLA-Abs) by solid phase assays is used to screen blood donors to mitigate TRALI risk. Various cutoffs for detection assays have been proposed in the literature, however, these do not take into consideration lot-to-lot variability of commercially available assays. Methods Samples from 93 non-transfused males were tested using five different lots of a multiplex bead-based HLA-Ab detection kit. A subset of 17 samples was tested on five days using a single lot. An additional 96 samples from donations with varied HLA-Ab levels were tested using kits from two different lots. Results were reported as an NBG (normalized background) ratio. Results For the 93 non-transfused donors, NBG values generated using the reference lot were significantly higher than those obtained with three of the four comparator lots. However, for the 96 samples with low, moderate, and higher level HLA-Abs, Class-I values were 1.4 times lower and Class-II values were 1.2 times lower using the reference versus comparator lot. For class-I antibodies the between lot SD was 1.36 (CI:1.19–1.60), while the between day SD was 1.27 (CI:1.08–1.52). Similarly, for class II antibodies the between lot SD was 0.81 (CI:0.70–0.95), while the between day SD was 0.50 (CI:0.43–0.60). Conclusions There is inter-lot variability in the tested HLA detection assay as well as significant bias between lots. It may be reasonable to develop a new cutoff when a new lot is obtained. PMID:23305156

  16. Incorporating Feature-Based Annotations into Automatically Generated Knowledge Representations

    NASA Astrophysics Data System (ADS)

    Lumb, L. I.; Lederman, J. I.; Aldridge, K. D.

    2006-12-01

    Earth Science Markup Language (ESML) is efficient and effective in representing scientific data in an XML- based formalism. However, features of the data being represented are not accounted for in ESML. Such features might derive from events (e.g., a gap in data collection due to instrument servicing), identifications (e.g., a scientifically interesting area/volume in an image), or some other source. In order to account for features in an ESML context, we consider them from the perspective of annotation, i.e., the addition of information to existing documents without changing the originals. Although it is possible to extend ESML to incorporate feature-based annotations internally (e.g., by extending the XML schema for ESML), there are a number of complicating factors that we identify. Rather than pursuing the ESML-extension approach, we focus on an external representation for feature-based annotations via XML Pointer Language (XPointer). In previous work (Lumb &Aldridge, HPCS 2006, IEEE, doi:10.1109/HPCS.2006.26), we have shown that it is possible to extract relationships from ESML-based representations, and capture the results in the Resource Description Format (RDF). Thus we explore and report on this same requirement for XPointer-based annotations of ESML representations. As in our past efforts, the Global Geodynamics Project (GGP) allows us to illustrate with a real-world example this approach for introducing annotations into automatically generated knowledge representations.

  17. Optimization of positrons generation based on laser wakefield electron acceleration

    NASA Astrophysics Data System (ADS)

    Wu, Yuchi; Han, Dan; Zhang, Tiankui; Dong, Kegong; Zhu, Bin; Yan, Yonghong; Gu, Yuqiu

    2016-08-01

    Laser based positron represents a new particle source with short pulse duration and high charge density. Positron production based on laser wakefield electron acceleration (LWFA) has been investigated theoretically in this paper. Analytical expressions for positron spectra and yield have been obtained through a combination of LWFA and cascade shower theories. The maximum positron yield and corresponding converter thickness have been optimized as a function of driven laser power. Under the optimal condition, high energy (>100 MeV ) positron yield up to 5 ×1011 can be produced by high power femtosecond lasers at ELI-NP. The percentage of positrons shows that a quasineutral electron-positron jet can be generated by setting the converter thickness greater than 5 radiation lengths.

  18. Copula-Based Approach to Synthetic Population Generation.

    PubMed

    Jeong, Byungduk; Lee, Wonjoon; Kim, Deok-Soo; Shin, Hayong

    2016-01-01

    Generating synthetic baseline populations is a fundamental step of agent-based modeling and simulation, which is growing fast in a wide range of socio-economic areas including transportation planning research. Traditionally, in many commercial and non-commercial microsimulation systems, the iterative proportional fitting (IPF) procedure has been used for creating the joint distribution of individuals when combining a reference joint distribution with target marginal distributions. Although IPF is simple, computationally efficient, and rigorously founded, it is unclear whether IPF well preserves the dependence structure of the reference joint table sufficiently when fitting it to target margins. In this paper, a novel method is proposed based on the copula concept in order to provide an alternative approach to the problem that IPF resolves. The dependency characteristic measures were computed and the results from the proposed method and IPF were compared. In most test cases, the proposed method outperformed IPF in preserving the dependence structure of the reference joint distribution. PMID:27490692

  19. Graphene-Based Photocatalysts for Solar-Fuel Generation.

    PubMed

    Xiang, Quanjun; Cheng, Bei; Yu, Jiaguo

    2015-09-21

    The production of solar fuel through photocatalytic water splitting and CO2 reduction using photocatalysts has attracted considerable attention owing to the global energy shortage and growing environmental problems. During the past few years, many studies have demonstrated that graphene can markedly enhance the efficiency of photocatalysts for solar-fuel generation because of its unique 2D conjugated structure and electronic properties. Herein we summarize the recent advances in the application of graphene-based photocatalysts for solar-fuel production, including CO2 reduction to hydrocarbon fuel and water splitting to H2. A brief overview of the fundamental principles for splitting of water and reduction of CO2 is given. The different roles of graphene in these graphene-based photocatalysts for improving photocatalytic performance are discussed. Finally, the perspectives on the challenges and opportunities for future research in this promising area are also presented. PMID:26079429

  20. Graphene-Based Photocatalysts for Solar-Fuel Generation.

    PubMed

    Xiang, Quanjun; Cheng, Bei; Yu, Jiaguo

    2015-09-21

    The production of solar fuel through photocatalytic water splitting and CO2 reduction using photocatalysts has attracted considerable attention owing to the global energy shortage and growing environmental problems. During the past few years, many studies have demonstrated that graphene can markedly enhance the efficiency of photocatalysts for solar-fuel generation because of its unique 2D conjugated structure and electronic properties. Herein we summarize the recent advances in the application of graphene-based photocatalysts for solar-fuel production, including CO2 reduction to hydrocarbon fuel and water splitting to H2. A brief overview of the fundamental principles for splitting of water and reduction of CO2 is given. The different roles of graphene in these graphene-based photocatalysts for improving photocatalytic performance are discussed. Finally, the perspectives on the challenges and opportunities for future research in this promising area are also presented.

  1. Copula-Based Approach to Synthetic Population Generation

    PubMed Central

    Kim, Deok-Soo

    2016-01-01

    Generating synthetic baseline populations is a fundamental step of agent-based modeling and simulation, which is growing fast in a wide range of socio-economic areas including transportation planning research. Traditionally, in many commercial and non-commercial microsimulation systems, the iterative proportional fitting (IPF) procedure has been used for creating the joint distribution of individuals when combining a reference joint distribution with target marginal distributions. Although IPF is simple, computationally efficient, and rigorously founded, it is unclear whether IPF well preserves the dependence structure of the reference joint table sufficiently when fitting it to target margins. In this paper, a novel method is proposed based on the copula concept in order to provide an alternative approach to the problem that IPF resolves. The dependency characteristic measures were computed and the results from the proposed method and IPF were compared. In most test cases, the proposed method outperformed IPF in preserving the dependence structure of the reference joint distribution. PMID:27490692

  2. Knowledge-based zonal grid generation for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1988-01-01

    Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.

  3. Ring Counter Based ATPG for Low Transition Test Pattern Generation

    PubMed Central

    Begam, V. M. Thoulath; Baulkani, S.

    2015-01-01

    In test mode test patterns are applied in random fashion to the circuit under circuit. This increases switching transition between the consecutive test patterns and thereby increases dynamic power dissipation. The proposed ring counter based ATPG reduces vertical switching transitions by inserting test vectors only between the less correlative test patterns. This paper presents the RC-ATPG with an external circuit. The external circuit consists of XOR gates, full adders, and multiplexers. First the total number of transitions between the consecutive test patterns is determined. If it is more, then the external circuit generates and inserts test vectors in between the two test patterns. Test vector insertion increases the correlation between the test patterns and reduces dynamic power dissipation. The results prove that the test patterns generated by the proposed ATPG have fewer transitions than the conventional ATPG. Experimental results based on ISCAS'85 and ISCAS'89 benchmark circuits show 38.5% reduction in the average power and 50% reduction in the peak power attained during testing with a small size decoding logic. PMID:26075295

  4. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses.

    PubMed

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An; Chang, Ya-Chun

    2015-10-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli.

  5. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses

    PubMed Central

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An

    2015-01-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  6. Utility-scale variable-speed wind turbines using a doubly-fed generator with a soft-switching power converter

    SciTech Connect

    Weigand, C.H.; Lauw, H.K.; Marckx, D.A.

    1996-12-31

    Utility-scale wind turbines operating at variable RPM have been studied for a considerable period of time. Whereas the increase in energy output originally has been considered the principal benefit of variable-speed operation, the ability to tightly control the drive-train torque by electronic means is becoming another very important cost factor, especially for turbine ratings above 500 kilowatts. This cost benefit becomes even more significant as optimum turbine ratings today are approaching (and surpassing) 1 Megawatt. Having identified the benefits for the turbine, the designer is confronted with the task of finding the most cost-effective variable-speed generation system which allows him to make use of the benefits, yet does not introduce well-known electrical problems associated with state-of-the-art variable-speed generator controls, such as drastically reduced generator winding life, excessive harmonics on the utility, and poor utility power factor. This paper will indicate that for high-power (> 500 kW), utility-scale wind turbines a doubly-fed generator system in connection with a soft-switching resonant power converter is the least-cost variable-speed generation system offering all of the desired benefits, yet avoids the introduction of the potential electrical problems stated above. 3 refs., 3 figs., 1 tab.

  7. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation.

    PubMed

    Rohr, Annette C; Campleman, Sharan L; Long, Christopher M; Peterson, Michael K; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-07-22

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios--pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended.

  8. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation

    PubMed Central

    Rohr, Annette C.; Campleman, Sharan L.; Long, Christopher M.; Peterson, Michael K.; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-01-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios—pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  9. Potential Occupational Exposures and Health Risks Associated with Biomass-Based Power Generation.

    PubMed

    Rohr, Annette C; Campleman, Sharan L; Long, Christopher M; Peterson, Michael K; Weatherstone, Susan; Quick, Will; Lewis, Ari

    2015-07-01

    Biomass is increasingly being used for power generation; however, assessment of potential occupational health and safety (OH&S) concerns related to usage of biomass fuels in combustion-based generation remains limited. We reviewed the available literature on known and potential OH&S issues associated with biomass-based fuel usage for electricity generation at the utility scale. We considered three potential exposure scenarios--pre-combustion exposure to material associated with the fuel, exposure to combustion products, and post-combustion exposure to ash and residues. Testing of dust, fungal and bacterial levels at two power stations was also undertaken. Results indicated that dust concentrations within biomass plants can be extremely variable, with peak levels in some areas exceeding occupational exposure limits for wood dust and general inhalable dust. Fungal spore types, identified as common environmental species, were higher than in outdoor air. Our review suggests that pre-combustion risks, including bioaerosols and biogenic organics, should be considered further. Combustion and post-combustion risks appear similar to current fossil-based combustion. In light of limited available information, additional studies at power plants utilizing a variety of technologies and biomass fuels are recommended. PMID:26206568

  10. Variable selection for confounder control, flexible modeling and Collaborative Targeted Minimum Loss-based Estimation in causal inference

    PubMed Central

    Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan

    2015-01-01

    This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129

  11. Generating volumetric composition maps from particle based computational geodynamic simulations.

    NASA Astrophysics Data System (ADS)

    May, D. A.

    2012-04-01

    The advent of using large scale, high resolution three-dimensional hybrid particle-grid based methods to study geodynamics processes is upon us. Visualizing and interpreting the three-dimensional geometry of the material configuration after severe deformation has occurred is a challenging task when adopting such a point based representation. In two-dimensions, the material configuration is readily visualized by creating a simple (x,y) scatter plot, using the particles position vector and coloring the points according to the lithology which each particle represents. Using only colored points (which do not need to be rendered as spheres), this approach unambiguous fills the 2D model domain with information defining the current material configuration. Along with an increased volume (i.e. MBytes) of output data generated by three-dimensional simulations, the higher dimensionality introduces additional complexities for visualization. The geometry of the deformed material in three-space will become topologically more complex than its two-dimensional counterpart. Secondly, the scatter plot approach used in 2D to represent the material configuration simply does not extend to three-dimensions as technique is unable to provide any sense of depth. To address some of the visualization challenges posed by such methods, we describe how an Approximate Voronoi Diagram (AVD) can be used to produce a volumetric representation of point based data. The AVD approach allows us to efficiently construct a volumetric partitioning of any subset of the model domain amongst a set points. From this representation, we can efficiently generate a representation of the material configuration which can be volume rendered, contoured, or from which cross sections can be extracted. The type of volumetric representations possible, and the performance characteristics of the AVD algorithm were demonstrated by applying the technique to simulation results from models of continental collision and salt

  12. Linear variable filter based oil condition monitoring systems for offshore windturbines

    NASA Astrophysics Data System (ADS)

    Wiesent, Benjamin R.; Dorigo, Daniel G.; Şimşek, Özlem; Koch, Alexander W.

    2011-10-01

    A major part of future renewable energy will be generated in offshore wind farms. The used turbines of the 5 MW class and beyond, often feature a planetary gear with 1000 liters lubricating oil or even more. Monitoring the oil aging process provides early indication of necessary maintenance and oil change. Thus maintenance is no longer time-scheduled but becomes wear dependent providing ecological and economical benefits. This paper describes two approaches based on a linear variable filter (LVF) as dispersive element in a setup of a cost effective infrared miniature spectrometer for oil condition monitoring purposes. Spectra and design criteria of a static multi-element detector and a scanning single element detector system are compared and rated. Both LVF miniature spectrometers are appropriately designed for the suggested measurements but have certain restrictions. LVF multi-channel sensors combined with sophisticated multivariate data processing offer the possibility to use the sensor for a broad range of lubricants just by a software update of the calibration set. An all-purpose oil sensor may be obtained.

  13. Variability of tsunami inundation footprints considering stochastic scenarios based on a single rupture model: Application to the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Goda, Katsuichiro; Yasuda, Tomohiro; Mori, Nobuhito; Mai, P. Martin

    2015-06-01

    The sensitivity and variability of spatial tsunami inundation footprints in coastal cities and towns due to a megathrust subduction earthquake in the Tohoku region of Japan are investigated by considering different fault geometry and slip distributions. Stochastic tsunami scenarios are generated based on the spectral analysis and synthesis method with regards to an inverted source model. To assess spatial inundation processes accurately, tsunami modeling is conducted using bathymetry and elevation data with 50 m grid resolutions. Using the developed methodology for assessing variability of tsunami hazard estimates, stochastic inundation depth maps can be generated for local coastal communities. These maps are important for improving disaster preparedness by understanding the consequences of different situations/conditions, and by communicating uncertainty associated with hazard predictions. The analysis indicates that the sensitivity of inundation areas to the geometrical parameters (i.e., top-edge depth, strike, and dip) depends on the tsunami source characteristics and the site location, and is therefore complex and highly nonlinear. The variability assessment of inundation footprints indicates significant influence of slip distributions. In particular, topographical features of the region, such as ria coast and near-shore plain, have major influence on the tsunami inundation footprints.

  14. FPGA Implementation of Metastability-Based True Random Number Generator

    NASA Astrophysics Data System (ADS)

    Hata, Hisashi; Ichikawa, Shuichi

    True random number generators (TRNGs) are important as a basis for computer security. Though there are some TRNGs composed of analog circuit, the use of digital circuits is desired for the application of TRNGs to logic LSIs. Some of the digital TRNGs utilize jitter in free-running ring oscillators as a source of entropy, which consume large power. Another type of TRNG exploits the metastability of a latch to generate entropy. Although this kind of TRNG has been mostly implemented with full-custom LSI technology, this study presents an implementation based on common FPGA technology. Our TRNG is comprised of logic gates only, and can be integrated in any kind of logic LSI. The RS latch in our TRNG is implemented as a hard-macro to guarantee the quality of randomness by minimizing the signal skew and load imbalance of internal nodes. To improve the quality and throughput, the output of 64-256 latches are XOR'ed. The derived design was verified on a Xilinx Virtex-4 FPGA (XC4VFX20), and passed NIST statistical test suite without post-processing. Our TRNG with 256 latches occupies 580 slices, while achieving 12.5Mbps throughput.

  15. Sensors based on galvanic cell generated electrochemiluminescence and its application.

    PubMed

    Luo, Lirong; Zhang, Zhujun

    2006-10-27

    In this paper, a novel electrochemiluminescence (ECL) imaging sensor array was developed for determination of hydrogen peroxide (H2O2), which was based on Cu/Zn alloy galvanic cell generated ECL. In alkaline solution, Cu/Zn galvanic cell was formed because of corrosion effect, the galvanic cell could supply stable potential for ECL generation of luminol, and the weak ECL emission could be enhanced by H(2)O(2). The galvanic cell sensor array was designed by putting Cu/Zn alloy in 96-well microtiter plates separately. The relative ECL intensity was proportional with the concentration of hydrogen peroxide in the range of 1.0 x 10(-6) to 1.0 x 10(-4) mol l(-1) and the detection limit was 3.0 x 10(-7) mol l(-1) (3sigma), the relative standard deviation (R.S.D.) for 11 parallel measurements of 1.0 x 10(-5)mol l(-1) H2O2 was 4.0%.

  16. Acoustically-driven thread-based tuneable gradient generators.

    PubMed

    Ramesan, Shwathy; Rezk, Amgad R; Cheng, Kai Wei; Chan, Peggy P Y; Yeo, Leslie Y

    2016-08-01

    Thread-based microfluidics offer a simple, easy to use, low-cost, disposable and biodegradable alternative to conventional microfluidic systems. While it has recently been shown that such thread networks facilitate manipulation of fluid samples including mixing, flow splitting and the formation of concentration gradients, the passive capillary transport of fluid through the thread does not allow for precise control due to the random orientation of cellulose fibres that make up the thread, nor does it permit dynamic manipulation of the flow. Here, we demonstrate the use of high frequency sound waves driven from a chip-scale device that drives rapid, precise and uniform convective transport through the thread network. In particular, we show that it is not only possible to generate a stable and continuous concentration gradient in a serial dilution and recombination network, but also one that can be dynamically tuned, which cannot be achieved solely with passive capillary transport. Additionally, we show a proof-of-concept in which such spatiotemporal gradient generation can be achieved with the entire thread network embedded in a three-dimensional hydrogel construct to more closely mimic the in vivo tissue microenvironment in microfluidic chemotaxis studies and cell culture systems, which is then employed to demonstrate the effect of such gradients on the proliferation of cells within the hydrogel. PMID:27334420

  17. Generation of a Fibrin Based Three-Layered Skin Substitute

    PubMed Central

    Kober, Johanna; Gugerell, Alfred; Schmid, Melanie; Kamolz, Lars-Peter; Keck, Maike

    2015-01-01

    A variety of skin substitutes that restore epidermal and dermal structures are currently available on the market. However, the main focus in research and clinical application lies on dermal and epidermal substitutes whereas the development of a subcutaneous replacement (hypodermis) is often disregarded. In this study we used fibrin sealant as hydrogel scaffold to generate a three-layered skin substitute. For the hypodermal layer adipose-derived stem cells (ASCs) and mature adipocytes were embedded in the fibrin hydrogel and were combined with another fibrin clot with fibroblasts for the construction of the dermal layer. Keratinocytes were added on top of the two-layered construct to form the epidermal layer. The three-layered construct was cultivated for up to 3 weeks. Our results show that ASCs and fibroblasts were viable, proliferated normally, and showed physiological morphology in the skin substitute. ASCs were able to differentiate into mature adipocytes during the course of four weeks and showed morphological resemblance to native adipose tissue. On the surface keratinocytes formed an epithelial-like layer. For the first time we were able to generate a three-layered skin substitute based on a fibrin hydrogel not only serving as a dermal and epidermal substitute but also including the hypodermis. PMID:26236715

  18. Generation of a Fibrin Based Three-Layered Skin Substitute.

    PubMed

    Kober, Johanna; Gugerell, Alfred; Schmid, Melanie; Kamolz, Lars-Peter; Keck, Maike

    2015-01-01

    A variety of skin substitutes that restore epidermal and dermal structures are currently available on the market. However, the main focus in research and clinical application lies on dermal and epidermal substitutes whereas the development of a subcutaneous replacement (hypodermis) is often disregarded. In this study we used fibrin sealant as hydrogel scaffold to generate a three-layered skin substitute. For the hypodermal layer adipose-derived stem cells (ASCs) and mature adipocytes were embedded in the fibrin hydrogel and were combined with another fibrin clot with fibroblasts for the construction of the dermal layer. Keratinocytes were added on top of the two-layered construct to form the epidermal layer. The three-layered construct was cultivated for up to 3 weeks. Our results show that ASCs and fibroblasts were viable, proliferated normally, and showed physiological morphology in the skin substitute. ASCs were able to differentiate into mature adipocytes during the course of four weeks and showed morphological resemblance to native adipose tissue. On the surface keratinocytes formed an epithelial-like layer. For the first time we were able to generate a three-layered skin substitute based on a fibrin hydrogel not only serving as a dermal and epidermal substitute but also including the hypodermis. PMID:26236715

  19. Peak flow regression equations for small, ungaged streams in Maine: comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela L.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  20. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  1. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-07-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  2. Design of time interval generator based on hybrid counting method

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  3. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  4. A first generation bovine BAC-based physical map

    PubMed Central

    Schibler, Laurent; Roig, Anne; Mahé, Marie-Françoise; Save, Jean-Claude; Gautier, Mathieu; Taourit, Sead; Boichard, Didier; Eggen, André; Cribiu, Edmond P

    2004-01-01

    A first generation clone-based physical map for the bovine genome was constructed combining, fluorescent double digestion fingerprinting and sequence tagged site (STS) marker screening. The BAC clones were selected from an Inra BAC library (105 984 clones) and a part of the CHORI-240 BAC library (26 500 clones). The contigs were anchored using the screening information for a total of 1303 markers (451 microsatellites, 471 genes, 127 EST, and 254 BAC ends). The final map, which consists of 6615 contigs assembled from 100 923 clones, will be a valuable tool for genomic research in ruminants, including targeted marker production, positional cloning or targeted sequencing of regions of specific interest. PMID:14713413

  5. Fiber-based generator for wearable electronics and mobile medication.

    PubMed

    Zhong, Junwen; Zhang, Yan; Zhong, Qize; Hu, Qiyi; Hu, Bin; Wang, Zhong Lin; Zhou, Jun

    2014-06-24

    Smart garments for monitoring physiological and biomechanical signals of the human body are key sensors for personalized healthcare. However, they typically require bulky battery packs or have to be plugged into an electric plug in order to operate. Thus, a smart shirt that can extract energy from human body motions to run body-worn healthcare sensors is particularly desirable. Here, we demonstrated a metal-free fiber-based generator (FBG) via a simple, cost-effective method by using commodity cotton threads, a polytetrafluoroethylene aqueous suspension, and carbon nanotubes as source materials. The FBGs can convert biomechanical motions/vibration energy into electricity utilizing the electrostatic effect with an average output power density of ∼0.1 μW/cm(2) and have been identified as an effective building element for a power shirt to trigger a wireless body temperature sensor system. Furthermore, the FBG was demonstrated as a self-powered active sensor to quantitatively detect human motion.

  6. Spike Detection Based on Normalized Correlation with Automatic Template Generation

    PubMed Central

    Hwang, Wen-Jyi; Wang, Szu-Huai; Hsu, Ya-Tzu

    2014-01-01

    A novel feedback-based spike detection algorithm for noisy spike trains is presented in this paper. It uses the information extracted from the results of spike classification for the enhancement of spike detection. The algorithm performs template matching for spike detection by a normalized correlator. The detected spikes are then sorted by the OSortalgorithm. The mean of spikes of each cluster produced by the OSort algorithm is used as the template of the normalized correlator for subsequent detection. The automatic generation and updating of templates enhance the robustness of the spike detection to input trains with various spike waveforms and noise levels. Experimental results show that the proposed algorithm operating in conjunction with OSort is an efficient design for attaining high detection and classification accuracy for spike sorting. PMID:24960082

  7. Nanopore-based Fourth-generation DNA Sequencing Technology

    PubMed Central

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-01-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications. PMID:25743089

  8. Multi-Variable Model-Based Parameter Estimation Model for Antenna Radiation Pattern Prediction

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Cravey, Robin L.

    2002-01-01

    A new procedure is presented to develop multi-variable model-based parameter estimation (MBPE) model to predict far field intensity of antenna. By performing MBPE model development procedure on a single variable at a time, the present method requires solution of smaller size matrices. The utility of the present method is demonstrated by determining far field intensity due to a dipole antenna over a frequency range of 100-1000 MHz and elevation angle range of 0-90 degrees.

  9. MeSH indexing based on automatically generated summaries

    PubMed Central

    2013-01-01

    Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. Results We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Conclusions Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can

  10. Simulated Annealing Based Hybrid Forecast for Improving Daily Municipal Solid Waste Generation Prediction

    PubMed Central

    Song, Jingwei; He, Jiaying; Zhu, Menghua; Tan, Debao; Zhang, Yu; Ye, Song; Shen, Dingtao; Zou, Pengfei

    2014-01-01

    A simulated annealing (SA) based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN), and partial least square support vector machine (PLS-SVM) to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model), 12.93% (ANN), and 12.94% (PLS-SVM) to 9.38%. Five-week average has been raised from 13.02% (chaotic model), 15.69% (ANN), and 15.92% (PLS-SVM) to 11.27%. PMID:25301508

  11. GIS based Spatial Precipitation Estimation using Next Generation Radar and Raingauge Data

    SciTech Connect

    Zhang, Xuesong; Srinivasan, Ragahvan

    2010-01-01

    Precipitation is one important input variable for land surface hydrologic and ecological models. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the conterminous United States at high resolution (approximately 4km×4km).

  12. Reducing experimental variability in variance-based sensitivity analysis of biochemical reaction systems.

    PubMed

    Zhang, Hong-Xuan; Goutsias, John

    2011-03-21

    Sensitivity analysis is a valuable task for assessing the effects of biological variability on cellular behavior. Available techniques require knowledge of nominal parameter values, which cannot be determined accurately due to experimental uncertainty typical to problems of systems biology. As a consequence, the practical use of existing sensitivity analysis techniques may be seriously hampered by the effects of unpredictable experimental variability. To address this problem, we propose here a probabilistic approach to sensitivity analysis of biochemical reaction systems that explicitly models experimental variability and effectively reduces the impact of this type of uncertainty on the results. The proposed approach employs a recently introduced variance-based method to sensitivity analysis of biochemical reaction systems [Zhang et al., J. Chem. Phys. 134, 094101 (2009)] and leads to a technique that can be effectively used to accommodate appreciable levels of experimental variability. We discuss three numerical techniques for evaluating the sensitivity indices associated with the new method, which include Monte Carlo estimation, derivative approximation, and dimensionality reduction based on orthonormal Hermite approximation. By employing a computational model of the epidermal growth factor receptor signaling pathway, we demonstrate that the proposed technique can greatly reduce the effect of experimental variability on variance-based sensitivity analysis results. We expect that, in cases of appreciable experimental variability, the new method can lead to substantial improvements over existing sensitivity analysis techniques.

  13. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  14. Variable sediment flux in generation of Permian subduction-related mafic intrusions from the Yanbian region, NE China

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Li, Hongxia; Fan, Weiming; Li, Jingyan; Zhao, Liang; Huang, Miwei

    2016-09-01

    This paper presents petrology, mineralogy, zircon U-Pb ages, and whole-rock major, trace element and Sr-Nd-Hf isotopic compositions of four Permian (273-253 Ma) subduction-related mafic intrusions (including the Qinggoushan and Qianshan gabbros, and the Wangqing and Shuguang diorites) from the Yanbian region, NE China, with aims to understand the role of subducted sediment flux in generation of arc mafic cumulates. These intrusions have mineral assemblages crystallized in water-saturated parental magmas and show variable degrees of crystal accumulation as observed in mafic cumulates in subduction zones. Mass-balance consideration indicates that their parental magmas were calc-alkaline with arc-type trace element features (enrichments in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depletions in Nb-Ta). They also have Sr-Nd-Hf isotopic compositions, i.e., 87Sr/86Sr(i) = 0.7029-0.7047, εNd(t) = + 0.9 ~ + 6.8, εHf(t) = + 5.6 ~ + 14.6, similar to modern arc basalts. The parental magmas were likely derived from a mantle wedge variably metasomatized by sediment melt and fluid from the subducting paleo-Asian Oceanic slab. Combined trace elemental and isotopic modeling results suggest that the parental magma of Qinggoushan gabbro was formed through 5-20% melting of the mantle wedge with 1% and 1.5% additions of sediment fluid and sediment melt, respectively; 5-10% melting of the mantle wedge through inputs of 1% sediment fluid and 2% sediment melt produced the Qianshan gabbro; 10-20% melting of the mantle wedge with additions of 1% sediment fluid and 3% sediment melt formed the Wangqing diorite; whereas 5-20% melting of the mantle wedge through an input of 1.5% sediment melt produced the Shuguang diorite. The Hf-Nd isotopic array of the Yanbian Permian mafic intrusions reflected the existence of an Indian Ocean-type mantle, which was isotopically distinct from the Pacific-type mantle during early Paleozoic in the Central Asian Orogenic

  15. Generation of optical vortex based on computer-generated holographic gratings by photolithography

    NASA Astrophysics Data System (ADS)

    Li, Shaoxiang; Wang, Zhenwei

    2013-09-01

    The Laguerre-Gaussian beam is a typical example of the optical vortices, which can be generated by computer-generated holograms (CGHs) with the topological charge controlled. Here, we fabricated transmission-amplitude CGH gratings (up to 100 lines per millimeter) on metal film by photolithography technique. Such CGH grating grooves feature high resolution and fine smoothness, so that the gratings can be used to generate Laguerre-Gaussian beam with perfect mode. They are also applicable for the generation of femtosecond optical vortices due to the high damage threshold of the metal film.

  16. LISP based simulation generators for modeling complex space processes

    NASA Technical Reports Server (NTRS)

    Tseng, Fan T.; Schroer, Bernard J.; Dwan, Wen-Shing

    1987-01-01

    The development of a simulation assistant for modeling discrete event processes is presented. Included are an overview of the system, a description of the simulation generators, and a sample process generated using the simulation assistant.

  17. Machine discovery based on numerical data generated in computer experiments

    SciTech Connect

    Murata, Tsuyoshi; Shimura, Masamichi

    1996-12-31

    In the discovery of useful theorems or formulas, experimental data acquisition plays a fundamental role. Most of the previous discovery systems which have the abilities for experimentation, however, require much knowledge for evaluating experimental results, or require plans of common experiments which are given to the systems in advance. Only few systems have been attempted to make experiments which enable the discovery based on acquired experimental data without depending on given initial knowledge. This paper proposes a new approach for discovering useful theorems in the domain of plane geometry by employing experimentation. In this domain, drawing a figure and observing it correspond to making experimentation since these two processes are preparations for acquiring geometrical data. EXPEDITION, a discovery system based on experimental data acquisition, generates figures by itself and acquires expressions describing relations among line segments and angles in the figures. Such expressions can be extracted from the numerical data obtained in the computer experiments. By using simple heuristics for drawing and observing figures, the system succeeds in discovering many new useful theorems and formulas as well as rediscovering well-known theorems, such as power theorems and Thales` theorem.

  18. Research of second harmonic generation images based on texture analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  19. Experimental investigation on a colloidal damper rendered controllable under the variable magnetic field generated by moving permanent magnets

    NASA Astrophysics Data System (ADS)

    Suciu, B.

    2016-09-01

    In this work, a colloidal damper rendered controllable under variable magnetic fields is proposed and its controllability is experimentally evaluated. This absorber employs a water- based ferrofluid (FERROTEC MSGW10) in association with a liquid-repellent nanoporous solid matrix, consisted of particles of gamma alumina or/and silica gel. Control of the dynamic characteristics is obtained by moving permanent neodymium annular magnets, which are placed either on the piston head (axial magnetic field) or on the external surface of the cylinder (radial magnetic field). In order to properly select these magnets, flow visualizations inside of a transparent model damper were performed, and the quantity of the displaced liquid by the magnets through the damper's filter and through the nanoporous solid matrix was determined. Experimental data concerning variation of the magnetic flux density at the magnet surface versus the height of the magnet, and versus the target distance was collected. Based on such data, the suitable magnet geometry was decided. Then, the 3D structural model of the trial colloidal damper obtained by using Solidworks, and the excitation test rig are presented. From excitation tests on a ball-screw shaker, one confirmed larger damping abilities of the proposed absorber relative to the traditional colloidal damper, and also the possibility to adjust the damping coefficient according to the excitation type.

  20. Auxiliary Variable-based Balancing (AVB) for source term treatment in open channel simulations

    NASA Astrophysics Data System (ADS)

    Delenne, Carole; Guinot, Vincent

    2012-08-01

    Practical engineering applications of open channel flow modelling involve geometric terms arising from variations in channel shape, bottom slope and friction. This paper presents the family of schemes that satisfy the generalised C-property for which static equilibrium is a particular case, in the framework of one-dimensional open channel flows. This approach, named Auxiliary Variable-based Balancing, consists of using an auxiliary variable in place of the flow variables in the diffusive part of the flux estimate. The auxiliary variable is defined so as to achieve a zero gradient under steady-state conditions, whatever the geometry. Many approaches presented in the literature can be viewed as a particular AVB case. Three auxiliary variables are presented in this paper: water elevation, specific force and hydraulic head. The methodology is applied to three classical Riemann solvers: HLL, Roe and the Q-scheme. The results are compared on five test-cases: three steady-state configurations including friction, singular head losses and variations in bottom elevation, channel width and banks slope and two transient test-case (dam-break problems on rectangular and triangular channel). In each case, the auxiliary variable that best preserves the steady-state configuration is the hydraulic head. Besides, using the head as auxiliary variable allows head loss functions due to singularities to be incorporated directly in the governing equations, without the need for internal boundaries. However, it is generally less accurate when sharp transients are involved.

  1. Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations*1

    NASA Astrophysics Data System (ADS)

    Sigrist, Mirna E.; Beldoménico, Horacio R.

    2004-07-01

    This work describes a study on the determination of inorganic arsenic species in ground water and synthetic experimental matrices, using a flow injection system with on-line hydride generation device coupled to an atomic absorption spectrometer with flame-heated quartz atomizer (FI HG AAS). Specific trivalent arsenic determination is based on the slow kinetics of As(V) on the hydride generation reaction using sufficiently low concentrations of sodium tetrahydroborate (NaBH 4) as reductant in highly acidic conditions (pH<0). Under these conditions, the efficiency of hydride generation from As(V) is much lower than that from As(III). The pentavalent form is determined by the difference between total inorganic arsenic and As(III). As(V) interferences were studied using As(III) solutions ranging from 0% to 50% of total inorganic As. The optimized NaBH 4 concentration was 0.035% (w/v). The detection limit was 1.4 μg l -1 As(III). As(V) interferences were 6% in the case of water samples with 6 μg l -1 As(III) in the presence of 54 μg l -1 As(V) (i.e. 10% As(III)). Interferences of methylated arsenic species (MMA and DMA) were evaluated. Speciation method was satisfactorily applied to 20 field arsenical water samples from Santa Fe, Argentina, with values ranging from 30 to 308 μg l -1 total As. We found from 0% to 36% As(III) in the 20 field samples. The developed methodology constitutes an economic, simple and reliable way to evaluate inorganic arsenic distribution in underground waters or similar systems with negligible or no content of organoarsenicals.

  2. Blastocystis Isolates from Patients with Irritable Bowel Syndrome and from Asymptomatic Carriers Exhibit Similar Parasitological Loads, but Significantly Different Generation Times and Genetic Variability across Multiple Subtypes

    PubMed Central

    Ramirez-Guerrero, Celedonio; Vargas-Hernandez, Ines; Ramirez-Miranda, Maria Elena; Martinez-Ocaña, Joel; Valadez, Alicia; Ximenez, Cecilia; Lopez-Escamilla, Eduardo; Hernandez-Campos, Maria Elena; Villalobos, Guiehdani; Martinez-Hernandez, Fernando; Maravilla, Pablo

    2015-01-01

    Blastocystis spp is a common intestinal parasite of humans and animals that has been associated to the etiology of irritable bowel syndrome (IBS); however, some studies have not found this association. Furthermore, many biological features of Blastocystis are little known. The objective of present study was to assess the generation times of Blastocystis cultures, from IBS patients and from asymptomatic carriers. A total of 100 isolates were obtained from 50 IBS patients and from 50 asymptomatic carriers. Up to 50 mg of feces from each participant were cultured in Barret’s and in Pavlova’s media during 48 h. Initial and final parasitological load were measured by microscopy and by quantitative PCR. Amplicons were purified, sequenced and submitted to GenBank; sequences were analysed for genetic diversity and a Bayesian inference allowed identifying genetic subtypes (ST). Generation times for Blastocystis isolates in both media, based on microscopic measures and molecular assays, were calculated. The clinical symptoms of IBS patients and distribution of Blastocystis ST 1, 2 and 3 in both groups was comparable to previous reports. Interestingly, the group of cases showed scarce mean nucleotide diversity (π) as compared to the control group (0.011±0.016 and 0.118±0.177, respectively), whilst high gene flow and small genetic differentiation indexes between different ST were found. Besides, Tajima’s D test showed negative values for ST1-ST3. No statistical differences regarding parasitological load between cases and controls in both media, as searched by microscopy and by qPCR, were detected except that parasites grew faster in Barret’s than in Pavlova’s medium. Interestingly, slow growth of isolates recovered from cases in comparison to those of controls was observed (p<0.05). We propose that generation times of Blastocystis might be easily affected by intestinal environmental changes due to IBS probably because virulent strains with slow growth may be

  3. Generalized additive modeling with implicit variable selection by likelihood-based boosting.

    PubMed

    Tutz, Gerhard; Binder, Harald

    2006-12-01

    The use of generalized additive models in statistical data analysis suffers from the restriction to few explanatory variables and the problems of selection of smoothing parameters. Generalized additive model boosting circumvents these problems by means of stagewise fitting of weak learners. A fitting procedure is derived which works for all simple exponential family distributions, including binomial, Poisson, and normal response variables. The procedure combines the selection of variables and the determination of the appropriate amount of smoothing. Penalized regression splines and the newly introduced penalized stumps are considered as weak learners. Estimates of standard deviations and stopping criteria, which are notorious problems in iterative procedures, are based on an approximate hat matrix. The method is shown to be a strong competitor to common procedures for the fitting of generalized additive models. In particular, in high-dimensional settings with many nuisance predictor variables it performs very well. PMID:17156269

  4. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  5. Text generation from Taiwanese Sign Language using a PST-based language model for augmentative communication.

    PubMed

    Wu, Chung-Hsien; Chiu, Yu-Hsien; Guo, Chi-Shiang

    2004-12-01

    This paper proposes a novel approach to the generation of Chinese sentences from ill-formed Taiwanese Sign Language (TSL) for people with hearing impairments. First, a sign icon-based virtual keyboard is constructed to provide a visualized interface to retrieve sign icons from a sign database. A proposed language model (LM), based on a predictive sentence template (PST) tree, integrates a statistical variable n-gram LM and linguistic constraints to deal with the translation problem from ill-formed sign sequences to grammatical written sentences. The PST tree trained by a corpus collected from the deaf schools was used to model the correspondence between signed and written Chinese. In addition, a set of phrase formation rules, based on trigger pair category, was derived for sentence pattern expansion. These approaches improved the efficiency of text generation and the accuracy of word prediction and, therefore, improved the input rate. For the assessment of practical communication aids, a reading-comprehension training program with ten profoundly deaf students was undertaken in a deaf school in Tainan, Taiwan. Evaluation results show that the literacy aptitude test and subjective satisfactory level are significantly improved.

  6. How to quantify uncertainty and variability in life cycle assessment: the case of greenhouse gas emissions of gas power generation in the US

    NASA Astrophysics Data System (ADS)

    Hauck, M.; Steinmann, Z. J. N.; Laurenzi, I. J.; Karuppiah, R.; Huijbregts, M. A. J.

    2014-07-01

    This study quantified the contributions of uncertainty and variability to the range of life-cycle greenhouse gas (LCGHG) emissions associated with conventional gas-fired electricity generation in the US. Whereas uncertainty is defined as lack of knowledge and can potentially be reduced by additional research, variability is an inherent characteristic of supply chains and cannot be reduced without physically modifying the system. The life-cycle included four stages: production, processing, transmission and power generation, and utilized a functional unit of 1 kWh of electricity generated at plant. Technological variability requires analyses of life cycles of individual power plants, e.g. combined cycle plants or boilers. Parameter uncertainty was modeled via Monte Carlo simulation. Our approach reveals that technological differences are the predominant cause for the range of LCGHG emissions associated with gas power, primarily due to variability in plant efficiencies. Uncertainties in model parameters played a minor role for 100 year time horizon. Variability in LCGHG emissions was a factor of 1.4 for combined cycle plants, and a factor of 1.3 for simple cycle plants (95% CI, 100 year horizon). The results can be used to assist decision-makers in assessing factors that contribute to LCGHG emissions despite uncertainties in parameters employed to estimate those emissions.

  7. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  8. A new method to extract stable feature points based on self-generated simulation images

    NASA Astrophysics Data System (ADS)

    Long, Fei; Zhou, Bin; Ming, Delie; Tian, Jinwen

    2015-10-01

    Recently, image processing has got a lot of attention in the field of photogrammetry, medical image processing, etc. Matching two or more images of the same scene taken at different times, by different cameras, or from different viewpoints, is a popular and important problem. Feature extraction plays an important part in image matching. Traditional SIFT detectors reject the unstable points by eliminating the low contrast and edge response points. The disadvantage is the need to set the threshold manually. The main idea of this paper is to get the stable extremums by machine learning algorithm. Firstly we use ASIFT approach coupled with the light changes and blur to generate multi-view simulated images, which make up the set of the simulated images of the original image. According to the way of generating simulated images set, affine transformation of each generated image is also known. Instead of the traditional matching process which contain the unstable RANSAC method to get the affine transformation, this approach is more stable and accurate. Secondly we calculate the stability value of the feature points by the set of image with its affine transformation. Then we get the different feature properties of the feature point, such as DOG features, scales, edge point density, etc. Those two form the training set while stability value is the dependent variable and feature property is the independent variable. At last, a process of training by Rank-SVM is taken. We will get a weight vector. In use, based on the feature properties of each points and weight vector calculated by training, we get the sort value of each feature point which refers to the stability value, then we sort the feature points. In conclusion, we applied our algorithm and the original SIFT detectors to test as a comparison. While in different view changes, blurs, illuminations, it comes as no surprise that experimental results show that our algorithm is more efficient.

  9. Analytical and experimental investigation of a wound-rotor variable-speed, constant-frequency generator for small wind energy systems

    NASA Astrophysics Data System (ADS)

    Higashi, K. K.; Minges, G. P.; Price, G. D.

    1982-10-01

    The use of a wound rotor variable speed, constant frequency generator with small wind systems was investigated. The main initial objective was to demonstrate proof of concept under controlled conditions. The feasibility of this application was confirmed and it was shown that improved performance could be expected over a constant speed, constant frequency generator systems. The ability to maintain a constant tip speed ratio near the maximum rotor performance coefficient over a wide range of wind speeds is noted. A substantial increase in annual energy output can be expected from VSCF operation. Controlled start up and shutdown can also reduce the high transient torques and concomitant inrush currents common to induction generator systems.

  10. A Research on the Generative Learning Model Supported by Context-Based Learning

    ERIC Educational Resources Information Center

    Ulusoy, Fatma Merve; Onen, Aysem Seda

    2014-01-01

    This study is based on the generative learning model which involves context-based learning. Using the generative learning model, we taught the topic of Halogens. This topic is covered in the grade 10 chemistry curriculum using activities which are designed in accordance with the generative learning model supported by context-based learning. The…

  11. Sequential triangle strip generator based on Hopfield networks.

    PubMed

    Síma, Jirí; Lnĕnicka, Radim

    2009-02-01

    The important task of generating the minimum number of sequential triangle strips (tristrips) for a given triangulated surface model is motivated by applications in computer graphics. This hard combinatorial optimization problem is reduced to the minimum energy problem in Hopfield nets by a linear-size construction. In particular, the classes of equivalent optimal stripifications are mapped one to one to the minimum energy states reached by a Hopfield network during sequential computation starting at the zero initial state. Thus, the underlying Hopfield network powered by simulated annealing (i.e., Boltzmann machine), which is implemented in the program HTGEN, can be used for computing the semioptimal stripifications. Practical experiments confirm that one can obtain much better results using HTGEN than by a leading conventional stripification program FTSG (a reference stripification method not based on neural nets), although the running time of simulated annealing grows rapidly near the global optimum. Nevertheless, HTGEN exhibits empirical linear time complexity when the parameters of simulated annealing (i.e., the initial temperature and the stopping criterion) are fixed and thus provides the semioptimal offline solutions, even for huge models of hundreds of thousands of triangles, within a reasonable time.

  12. Fiber-based generator for wearable electronics and mobile medication.

    PubMed

    Zhong, Junwen; Zhang, Yan; Zhong, Qize; Hu, Qiyi; Hu, Bin; Wang, Zhong Lin; Zhou, Jun

    2014-06-24

    Smart garments for monitoring physiological and biomechanical signals of the human body are key sensors for personalized healthcare. However, they typically require bulky battery packs or have to be plugged into an electric plug in order to operate. Thus, a smart shirt that can extract energy from human body motions to run body-worn healthcare sensors is particularly desirable. Here, we demonstrated a metal-free fiber-based generator (FBG) via a simple, cost-effective method by using commodity cotton threads, a polytetrafluoroethylene aqueous suspension, and carbon nanotubes as source materials. The FBGs can convert biomechanical motions/vibration energy into electricity utilizing the electrostatic effect with an average output power density of ∼0.1 μW/cm(2) and have been identified as an effective building element for a power shirt to trigger a wireless body temperature sensor system. Furthermore, the FBG was demonstrated as a self-powered active sensor to quantitatively detect human motion. PMID:24766072

  13. Multiple Exciton Generation in Semiconductor Nanostructures: DFT-based Computation

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Kryjevski, Andrei; Kilin, Dmitri; Kilina, Svetlana; Vogel, Dayton

    Multiple exciton generation (MEG) in nm-sized H-passivated Si nanowires (NWs), and quasi 2D nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbation theory calculations based on the DFT simulations. In perturbation theory, we work to the 2nd order in the electron-photon coupling and in the (approximate) RPA-screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. To describe MEG we calculate exciton-to-biexciton as well as biexciton-to-exciton rates and quantum efficiency (QE). We consider 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Egap is predicted in these nanoparticles except for the crystalline NW and film where QE ~=1. MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE vs. photon energy curves. Nm-sized a-Si NWs and films are predicted to have effective MEG within the solar spectrum range. Also, we find efficient MEG in the chiral single-wall Carbon nanotubes and in a perovskite nanostructure.

  14. Multi-Objective Optimization Design for Cooling Unit of Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Qiang, J. W.; Yu, C. G.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.; Yuan, X. H.

    2016-03-01

    In order to improve the performance of cooling units for automotive thermoelectric generators, a study is carried out to optimize the cold side and the fin distributions arranged on its inner faces. Based on the experimental measurements and numerical simulations, a response surface model of different internal structures is built to analyze the heat transfer and pressure drop characteristics of fluid flow in the cooling unit. For the fin distributions, five independent variables including height, length, thickness, space and distance from walls are considered. An experimental study design incorporating the central composite design method is used to assess the influence of fin distributions on the temperature field and the pressure drop in the cooling units. The archive-based micro genetic algorithm (AMGA) is used for multi-objective optimization to analyze the sensitivity of the design variables and to build a database from which to construct the surrogate model. Finally, improvement measures are proposed for optimization of the cooling system and guidelines are provided for future research.

  15. Flexible Control of Safety Margins for Action Based on Environmental Variability

    PubMed Central

    Hadjiosif, Alkis M.

    2015-01-01

    To reduce the risk of slip, grip force (GF) control includes a safety margin above the force level ordinarily sufficient for the expected load force (LF) dynamics. The current view is that this safety margin is based on the expected LF dynamics, amounting to a static safety factor like that often used in engineering design. More efficient control could be achieved, however, if the motor system reduces the safety margin when LF variability is low and increases it when this variability is high. Here we show that this is indeed the case by demonstrating that the human motor system sizes the GF safety margin in proportion to an internal estimate of LF variability to maintain a fixed statistical confidence against slip. In contrast to current models of GF control that neglect the variability of LF dynamics, we demonstrate that GF is threefold more sensitive to the SD than the expected value of LF dynamics, in line with the maintenance of a 3-sigma confidence level. We then show that a computational model of GF control that includes a variability-driven safety margin predicts highly asymmetric GF adaptation between increases versus decreases in load. We find clear experimental evidence for this asymmetry and show that it explains previously reported differences in how rapidly GFs and manipulatory forces adapt. This model further predicts bizarre nonmonotonic shapes for GF learning curves, which are faithfully borne out in our experimental data. Our findings establish a new role for environmental variability in the control of action. PMID:26085634

  16. Variable-rate nitrogen application algorithm based on canopy reflected spectrum and its influence on wheat

    NASA Astrophysics Data System (ADS)

    Liang, Hongxia; Zhao, Chunjiang; Huang, Wenjiang; Liu, Liangyun; Wang, Jihua; Ma, Youhua

    2005-01-01

    This study was to develop the time-specific and time-critical method to overcome the limitations of traditional field sampling methods for variable rate fertilization. Farmers, agricultural managers and grain processing enterprises are interested in measuring and assessing soil and crop status in order to apply adequate fertilizer quantities to crop growth. This paper focused on studying the relationship between vegetation index (OSAVI) and nitrogen content to determine the amount of nitrogen fertilizer recommended for variable rate management in precision agriculture. The traditional even rate fertilizer management was chosen as the CK. The grain yield, ear numbers, 1000-grain weight and grain protein content were measured among the CK, uniform treatments and variable rate fertilizer treatments. It indicated that variable rate fertilization reduced the variability of wheat yield, ear numbers and dry biomass, but it didn't increased crop yield and grain protein content significantly and did not decrease the variety of 1000-grain weight, compared to traditional rate application. The nitrogen fertilizer use efficiency was improved, for this purpose, the variable rate technology based on vegetation index could be used to prevent under ground water pollution and environmental deterioration.

  17. Graph-based variability estimation in single-trial event-related neural responses.

    PubMed

    Gramfort, Alexandre; Keriven, Renaud; Clerc, Maureen

    2010-05-01

    Extracting information from multitrial magnetoencephalography or electroencephalography (EEG) recordings is challenging because of the very low SNR, and because of the inherent variability of brain responses. The problem of low SNR is commonly tackled by averaging multiple repetitions of the recordings, also called trials, but the variability of response across trials leads to biased results and limits interpretability. This paper proposes to decode the variability of neural responses by making use of graph representations. Our approach has several advantages compared to other existing methods that process single-trial data: first, it avoids the a priori definition of a model for the waveform of the neural response; second, it does not make use of the average data for parameter estimation; third, it does not suffer from initialization problems by providing solutions that are global optimum of cost functions; and last, it is fast. We proceed in two steps. First, a manifold learning algorithm, based on a graph Laplacian, offers an efficient way of ordering trials with respect to the response variability, under the condition that this variability itself depends on a single parameter. Second, the estimation of the variability is formulated as a combinatorial optimization that can be solved very efficiently using graph cuts. Details and validation of this second step are provided for latency estimation. Performance and robustness experiments are conducted on synthetic data, and results are presented on EEG data from a P300 oddball experiment. PMID:20142163

  18. Examining High School Students' Attitudes towards Context Based Learning Approach with Respect to Some Variables

    ERIC Educational Resources Information Center

    Baran, Medine; Maskan, A. Kadir; Baran, Mukadder; Türkan, Azmi; Yetisir, M. Ikbal

    2016-01-01

    The present study aimed at determining and examining high school first, second, third and fourth class grade students' attitudes towards context based learning approach with respect to the variables of gender, class grade and school. The study was carried out with a total of 5325 high school students in Turkey (n1(first class grade) = 1509,…

  19. Multi-document Summarization of Dissertation Abstracts Using a Variable-Based Framework.

    ERIC Educational Resources Information Center

    Ou, Shiyan; Khoo, Christopher S. G.; Goh, Dion H.

    2003-01-01

    Proposes a variable-based framework for multi-document summarization of dissertation abstracts in the fields of sociology and psychology that makes use of the macro- and micro-level discourse structure of dissertation abstracts as well as cross-document structure. Provides a list of indicator phrases that denote different aspects of the problem…

  20. Relationship between ICT Variables and Mathematics Achievement Based on PISA 2006 Database: International Evidence

    ERIC Educational Resources Information Center

    Guzeller, Cem Oktay; Akin, Ayca

    2014-01-01

    The purpose of this study is to determine the predicting power of mathematics achievement from ICT variables including the Internet/entertainment use (IEU), program/software use (PRGUSE), confidence in internet tasks (INTCONF) and confidence in ICT high level tasks (HIGHCONF) based on PISA 2006 data. This study indicates that the ICT variables…

  1. A Study of Interrelationships between Selected Variables in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Jaradat, Suhair A.; Almekhlafi, Abdurrahman G.

    2012-01-01

    Web-based instruction (WBI) is the latest wave of distance education development and one of the most promising instructional modes. Recent WBI research reports have indicated the effectiveness and utility of this instructional method for students and teachers. However, the relationships between the variables that have an impact on WBI have not…

  2. A Direct Latent Variable Modeling Based Method for Point and Interval Estimation of Coefficient Alpha

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…

  3. A Program Complexity Metric Based on Variable Usage for Algorithmic Thinking Education of Novice Learners

    ERIC Educational Resources Information Center

    Fuwa, Minori; Kayama, Mizue; Kunimune, Hisayoshi; Hashimoto, Masami; Asano, David K.

    2015-01-01

    We have explored educational methods for algorithmic thinking for novices and implemented a block programming editor and a simple learning management system. In this paper, we propose a program/algorithm complexity metric specified for novice learners. This metric is based on the variable usage in arithmetic and relational formulas in learner's…

  4. Improving community-based conservation near protected areas: the importance of development variables.

    PubMed

    Balint, Peter J

    2006-07-01

    Community-based conservation projects implemented in conjunction with protected area management often struggle to meet expectations. This article argues that outcomes will improve if project leaders pay closer attention to four development indicators-rights, capacity, governance, and revenue-that are often taken for granted or considered beyond the scope of local conservation projects. I make the case for focusing on these variables in four steps. First, I distinguish community-based conservation linked to protected area management from community-based institutions studied by scholars of the commons. Second, I draw on the theory and practice of international development to highlight the central relevance of the variables highlighted in this article to development projects at all levels. Third, I discuss the four variables in some detail, considering problems of definition and measurement and reviewing possible interactions among them. Fourth, to illustrate the influence of the variables in particular cases, I review outcomes from community-based conservation projects implemented near protected areas in El Salvador and Zimbabwe.

  5. PLS-Based and Regularization-Based Methods for the Selection of Relevant Variables in Non-targeted Metabolomics Data

    PubMed Central

    Bujak, Renata; Daghir-Wojtkowiak, Emilia; Kaliszan, Roman; Markuszewski, Michał J.

    2016-01-01

    Non-targeted metabolomics constitutes a part of the systems biology and aims at determining numerous metabolites in complex biological samples. Datasets obtained in the non-targeted metabolomics studies are high-dimensional due to sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Therefore, a proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study). The orthogonal projections to latent structures-discriminant analysis (OPLS-DA) without and with multiple testing correction as well as the least absolute shrinkage and selection operator (LASSO) with bootstrapping, were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction selected 46 and 218 variables based on the VIP criteria using Pareto and UV scaling, respectively. For the PH study, 217 and 320 variables were selected based on the VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built after correcting for multiple testing, selected 4 and 19 variables as in terms of Pareto and UV scaling, respectively. For the PH study, 14 and 18 variables were selected based on the VIP criteria in terms of Pareto and UV scaling, respectively. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3 and 100%, respectively. In the light of PLS-based models, the larger the search space the higher the probability of developing models that fit the training data well with simultaneous poor predictive performance on the validation set. The LASSO offers potential improvements over standard linear regression due to the presence of the constrain, which promotes sparse solutions. This paper is the first one to date

  6. PLS-Based and Regularization-Based Methods for the Selection of Relevant Variables in Non-targeted Metabolomics Data.

    PubMed

    Bujak, Renata; Daghir-Wojtkowiak, Emilia; Kaliszan, Roman; Markuszewski, Michał J

    2016-01-01

    Non-targeted metabolomics constitutes a part of the systems biology and aims at determining numerous metabolites in complex biological samples. Datasets obtained in the non-targeted metabolomics studies are high-dimensional due to sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Therefore, a proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study). The orthogonal projections to latent structures-discriminant analysis (OPLS-DA) without and with multiple testing correction as well as the least absolute shrinkage and selection operator (LASSO) with bootstrapping, were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction selected 46 and 218 variables based on the VIP criteria using Pareto and UV scaling, respectively. For the PH study, 217 and 320 variables were selected based on the VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built after correcting for multiple testing, selected 4 and 19 variables as in terms of Pareto and UV scaling, respectively. For the PH study, 14 and 18 variables were selected based on the VIP criteria in terms of Pareto and UV scaling, respectively. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3 and 100%, respectively. In the light of PLS-based models, the larger the search space the higher the probability of developing models that fit the training data well with simultaneous poor predictive performance on the validation set. The LASSO offers potential improvements over standard linear regression due to the presence of the constrain, which promotes sparse solutions. This paper is the first one to date

  7. PLS-Based and Regularization-Based Methods for the Selection of Relevant Variables in Non-targeted Metabolomics Data.

    PubMed

    Bujak, Renata; Daghir-Wojtkowiak, Emilia; Kaliszan, Roman; Markuszewski, Michał J

    2016-01-01

    Non-targeted metabolomics constitutes a part of the systems biology and aims at determining numerous metabolites in complex biological samples. Datasets obtained in the non-targeted metabolomics studies are high-dimensional due to sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Therefore, a proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study). The orthogonal projections to latent structures-discriminant analysis (OPLS-DA) without and with multiple testing correction as well as the least absolute shrinkage and selection operator (LASSO) with bootstrapping, were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction selected 46 and 218 variables based on the VIP criteria using Pareto and UV scaling, respectively. For the PH study, 217 and 320 variables were selected based on the VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built after correcting for multiple testing, selected 4 and 19 variables as in terms of Pareto and UV scaling, respectively. For the PH study, 14 and 18 variables were selected based on the VIP criteria in terms of Pareto and UV scaling, respectively. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3 and 100%, respectively. In the light of PLS-based models, the larger the search space the higher the probability of developing models that fit the training data well with simultaneous poor predictive performance on the validation set. The LASSO offers potential improvements over standard linear regression due to the presence of the constrain, which promotes sparse solutions. This paper is the first one to date

  8. An ensemble method based on uninformative variable elimination and mutual information for spectral multivariate calibration.

    PubMed

    Tan, Chao; Wang, Jinyue; Wu, Tong; Qin, Xin; Li, Menglong

    2010-12-01

    Based on the combination of uninformative variable elimination (UVE), bootstrap and mutual information (MI), a simple ensemble algorithm, named ESPLS, is proposed for spectral multivariate calibration (MVC). In ESPLS, those uninformative variables are first removed; and then a preparatory training set is produced by bootstrap, on which a MI spectrum of retained variables is calculated. The variables that exhibit higher MI than a defined threshold form a subspace on which a candidate partial least-squares (PLS) model is constructed. This process is repeated. After a number of candidate models are obtained, a small part of models is picked out to construct an ensemble model by simple/weighted average. Four near/mid-infrared (NIR/MIR) spectral datasets concerning the determination of six components are used to verify the proposed ESPLS. The results indicate that ESPLS is superior to UVEPLS and its combination with MI-based variable selection (SPLS) in terms of both the accuracy and robustness. Besides, from the perspective of end-users, ESPLS does not increase the complexity of a calibration when enhancing its performance.

  9. A tandem-based compact dual-energy gamma generator

    SciTech Connect

    Persaud, A.; Kwan, J.W.; Leitner, M.; Leung, K.N.; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.; Antolak, A.J.; Morse, D.H.; Raber, T.

    2009-11-11

    A dual-energy tandem-type gamma generator has been developed at E.O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications.

  10. A Multivariate Statistical Approach based on a Dynamic Moving Storms (DMS) Generator for Estimating the Frequency of Extreme Storm Events

    NASA Astrophysics Data System (ADS)

    Fang, N. Z.; Gao, S.

    2015-12-01

    Challenges of fully considering the complexity among spatially and temporally varied rainfall always exist in flood frequency analysis. Conventional approaches that simplify the complexity of spatiotemporal interactions generally undermine their impacts on flood risks. A previously developed stochastic storm generator called Dynamic Moving Storms (DMS) aims to address the highly-dependent nature of precipitation field: spatial variability, temporal variability, and movement of the storm. The authors utilize a multivariate statistical approach based on DMS to estimate the occurrence probability or frequency of extreme storm events. Fifteen years of radar rainfall data is used to generate a large number of synthetic storms as basis for statistical assessment. Two parametric retrieval algorithms are developed to recognize rain cells and track storm motions respectively. The resulted parameters are then used to establish probability density functions (PDFs), which are fitted to parametric distribution functions for further Monte Carlo simulations. Consequently, over 1,000,000 synthetic storms are generated based on twelve retrieved parameters for integrated risk assessment and ensemble forecasts. Furthermore, PDFs for parameters are used to calculate joint probabilities based on 2-dimensional Archimedean-Copula functions to determine the occurrence probabilities of extreme events. The approach is validated on the Upper Trinity River watershed and the generated results are compared with those from traditional rainfall frequency studies (i.e. Intensity-Duration-Frequency curves, and Areal Reduction Factors).

  11. Amplified CWDM-based Next Generation Broadband Access Networks

    NASA Astrophysics Data System (ADS)

    Peiris, Sasanthi Chamarika

    The explosive growth of both fixed and mobile data-centric traffic along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks will ultimately lead to an all-packet-based converged fixed-mobile optical transport network from the core all the way out to the access network. To address the increasing capacity and speed requirements in the access networks, Wavelength-Division Multiplexed (WDM) and/or Coarse WDM (CWDM)-based Passive Optical Networks (PONs) are expected to emerge as the next-generation optical access infrastructures. However, due to several techno-economic hurdles, CWDM-PONs are still considered an expensive solution and have not yet made any significant inroads into the current access area. One of the key technology hurdles is the scalability of the CWDM-based PONs. Passive component optical insertion losses limit the reach of the network or the number of served optical network units (ONUs). In the recent years, optical amplified CWDM approaches have emerged and new designs of optical amplifiers have been proposed and demonstrated. The critical design parameter for these amplifiers is the very wide optical amplification bandwidth (e.g., 340 nm combined for both directions). The objective of this PhD dissertation work is first to engineer ring and tree-ring based PON architectures that can achieve longer unamplified PON reach and/or provide service to a greater number of ONUs and customers. Secondly is to develop new novel optical amplifier schemes to further address the scalability limitation of the CWDM-based PONs. Specifically, this work proposes and develops novel ultra wide-band hybrid Raman-Optical parametric amplifier (HROPA) schemes that operate over nearly the entire specified CWDM band to provide 340 nm bidirectional optical gain bandwidth over the amplified PON's downstream and upstream CWDM wavelength bands (about 170 nm in each direction). The performance of the proposed HROPA schemes is assessed

  12. A system to simultaneously detect tick-borne pathogens based on the variability of the 16S ribosomal genes

    PubMed Central

    2013-01-01

    Background DNA microarrays can be used to quickly and sensitively identify several different pathogens in one step. Our previously developed DNA microarray, based on the detection of variable regions in the 16S rDNA gene (rrs), which are specific for each selected bacterial genus, allowed the concurrent detection of Borrelia spp., Anaplasma spp., Francisella spp., Rickettsia spp. and Coxiella spp. Methods In this study, we developed a comprehensive detection system consisting of a second generation DNA microarray and quantitative PCRs. New oligonucleotide capture probes specific for Borrelia burgdorferi s.l. genospecies and Candidatus Neoehrlichia mikurensis were included. This new DNA microarray system required substantial changes in solution composition, hybridization conditions and post-hybridization washes. Results This second generation chip displayed high specificity and sensitivity. The specificity of the capture probes was tested by hybridizing the DNA microarrays with Cy5-labeled, PCR-generated amplicons encoding the rrs genes of both target and non-target bacteria. The detection limit was determined to be 103 genome copies, which corresponds to 1–2 pg of DNA. A given sample was evaluated as positive if its mean fluorescence was at least 10% of the mean fluorescence of a positive control. Those samples with fluorescence close to the threshold were further analyzed using quantitative PCRs, developed to identify Francisella spp., Rickettsia spp. and Coxiella spp. Like the DNA microarray, the qPCRs were based on the genus specific variable regions of the rrs gene. No unspecific cross-reactions were detected. The detection limit for Francisella spp. was determined to be only 1 genome copy, for Coxiella spp. 10 copies, and for Rickettsia spp., 100 copies. Conclusions Our detection system offers a rapid method for the comprehensive identification of tick-borne bacteria, which is applicable to clinical samples. It can also be used to identify both pathogenic

  13. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements

  14. A Correlation-Based Transition Model using Local Variables. Part 1; Model Formation

    NASA Technical Reports Server (NTRS)

    Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but from a framework for the implementation of correlation-based models into general-purpose CFD methods.

  15. Single-mode fiber variable optical attenuator based on a ferrofluid shutter.

    PubMed

    Duduś, Anna; Blue, Robert; Uttamchandani, Deepak

    2015-03-10

    We report on the fabrication and characterization of a single-mode fiber variable optical attenuator (VOA) based on a ferrofluid shutter actuated by a magnetic field created by a low voltage electromagnet. We compare the performance of a VOA using oil-based ferrofluid, with one VOA using water-based 12 ferrofluid, and demonstrate broadband optical attenuation of up to 28 dB with polarization dependent 13 loss of 0.85 dB. Our optofluidic VOA has advantages over MEMS-based VOAs such as simple construction and the absence of mechanical moving parts. PMID:25968370

  16. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    PubMed

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  17. Stellar population models based on new generation stellar library

    NASA Astrophysics Data System (ADS)

    Koleva, M.; Vazdekis, A.

    The spectral predictions of stellar population models are not as accurate in the ultra-violet (UV) as in the optical wavelength domain. One of the reasons is the lack of high-quality stellar libraries. The New Generation Stellar Library (NGSL), recently released, represents a significant step towards the improvement of this situation. To prepare NGSL for population synthesis, we determined the atmospheric parameters of its stars, we assessed the precision of the wavelength calibration and characterised its intrinsic resolution. We also measured the Galactic extinction for each of the NGSL stars. For our analyses we used Ulyss, a full spectrum fitting package, fitting the NGSL spectra against the MILES interpolator. As a second step we build preliminary single stellar population models using Vazdekis (2003) synthesis code. We find that the wavelength calibration is precise up to 0.1 px, after correcting a systematic effect in the optical range. The spectral resolution varies from 3 Å in the UV to 10 Å in the near-infrared (NIR), corresponding to a roughly constant reciprocal resolution R=λ/δλ ≈1000 and an instrumental velocity dispersion σ_{ins} ≈ 130 kms. We derived the atmospheric parameters homogeneously. The precision for the FGK stars is 42 K, 0.24 and 0.09 dex for teff, logg and feh, respectively. The corresponding mean errors are 150 K, 0.50 and 0.48 dex for the M stars, and for the OBA stars they are 4.5 percent, 0.44 and 0.18 dex. The comparison with the literature shows that our results are not biased. Our first version of models compares well with models based on optical libraries, having the advantages to be free from artifacts due to the atmosphere. In future we will fine-tune our models by comparing to different models and observations of globular clusters.

  18. Generation of a novel phase-space-based cylindrical dose kernel for IMRT optimization

    SciTech Connect

    Zhong Hualiang; Chetty, Indrin J.

    2012-05-15

    Purpose: Improving dose calculation accuracy is crucial in intensity-modulated radiation therapy (IMRT). We have developed a method for generating a phase-space-based dose kernel for IMRT planning of lung cancer patients. Methods: Particle transport in the linear accelerator treatment head of a 21EX, 6 MV photon beam (Varian Medical Systems, Palo Alto, CA) was simulated using the EGSnrc/BEAMnrc code system. The phase space information was recorded under the secondary jaws. Each particle in the phase space file was associated with a beamlet whose index was calculated and saved in the particle's LATCH variable. The DOSXYZnrc code was modified to accumulate the energy deposited by each particle based on its beamlet index. Furthermore, the central axis of each beamlet was calculated from the orientation of all the particles in this beamlet. A cylinder was then defined around the central axis so that only the energy deposited within the cylinder was counted. A look-up table was established for each cylinder during the tallying process. The efficiency and accuracy of the cylindrical beamlet energy deposition approach was evaluated using a treatment plan developed on a simulated lung phantom. Results: Profile and percentage depth doses computed in a water phantom for an open, square field size were within 1.5% of measurements. Dose optimized with the cylindrical dose kernel was found to be within 0.6% of that computed with the nontruncated 3D kernel. The cylindrical truncation reduced optimization time by approximately 80%. Conclusions: A method for generating a phase-space-based dose kernel, using a truncated cylinder for scoring dose, in beamlet-based optimization of lung treatment planning was developed and found to be in good agreement with the standard, nontruncated scoring approach. Compared to previous techniques, our method significantly reduces computational time and memory requirements, which may be useful for Monte-Carlo-based 4D IMRT or IMAT treatment planning.

  19. Magnetohydrodynamic generators in power generation. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-06-01

    The citations include research on performance, costs, efficiency, and design of MHD generators and their use in fusion and fission reactors, and fossil fueled plants. This updated bibliography contains 272 abstracts, 40 of which are new entries to the previous edition.

  20. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson’s Disease

    PubMed Central

    Ellis, Robert J.; Ng, Yee Sien; Zhu, Shenggao; Tan, Dawn M.; Anderson, Boyd; Schlaug, Gottfried; Wang, Ye

    2015-01-01

    Background A well-established connection exists between increased gait variability and greater fall likelihood in Parkinson’s disease (PD); however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention) remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application (“SmartMOVE”) to address both needs. Methods The accuracy of smartphone-based gait analysis (utilizing the smartphone’s built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths) was validated against two heel contact–based measurement devices: heel-mounted footswitch sensors (to capture step times) and an instrumented pressure sensor mat (to capture step lengths). 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously. Results Four outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls) yielded medium-to-large effect sizes (eta-squared values), and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues) yielded small-to-medium effect sizes—while at the same time, device-related measurement error yielded small-to-negligible effect sizes. Conclusion These findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways), particularly when those methods are cost-prohibitive, cumbersome, or inconvenient. PMID:26517720

  1. Graph-based and statistical approaches for detecting spectrally variable target materials

    NASA Astrophysics Data System (ADS)

    Ziemann, Amanda K.; Theiler, James

    2016-05-01

    In discriminating target materials from background clutter in hyperspectral imagery, one must contend with variability in both. Most algorithms focus on the clutter variability, but for some materials there is considerable variability in the spectral signatures of the target. This is especially the case for solid target materials, whose signatures depend on morphological properties (particle size, packing density, etc.) that are rarely known a priori. In this paper, we investigate detection algorithms that explicitly take into account the diversity of signatures for a given target. In particular, we investigate variable target detectors when applied to new representations of the hyperspectral data: a manifold learning based approach, and a residual based approach. The graph theory and manifold learning based approach incorporates multiple spectral signatures of the target material of interest; this is built upon previous work that used a single target spectrum. In this approach, we first build an adaptive nearest neighbors (ANN) graph on the data and target spectra, and use a biased locally linear embedding (LLE) transformation to perform nonlinear dimensionality reduction. This biased transformation results in a lower-dimensional representation of the data that better separates the targets from the background. The residual approach uses an annulus based computation to represent each pixel after an estimate of the local background is removed, which suppresses local backgrounds and emphasizes the target-containing pixels. We will show detection results in the original spectral space, the dimensionality-reduced space, and the residual space, all using subspace detectors: ranked spectral angle mapper (rSAM), subspace adaptive matched filter (ssAMF), and subspace adaptive cosine/coherence estimator (ssACE). Results of this exploratory study will be shown on a ground-truthed hyperspectral image with variable target spectra and both full and mixed pixel targets.

  2. Automatic code generation from the OMT-based dynamic model

    SciTech Connect

    Ali, J.; Tanaka, J.

    1996-12-31

    The OMT object-oriented software development methodology suggests creating three models of the system, i.e., object model, dynamic model and functional model. We have developed a system that automatically generates implementation code from the dynamic model. The system first represents the dynamic model as a table and then generates executable Java language code from it. We used inheritance for super-substate relationships. We considered that transitions relate to states in a state diagram exactly as operations relate to classes in an object diagram. In the generated code, each state in the state diagram becomes a class and each event on a state becomes an operation on the corresponding class. The system is implemented and can generate executable code for any state diagram. This makes the role of the dynamic model more significant and the job of designers even simpler.

  3. Pollen-based reconstruction of Holocene climate variability in the Eifel region evaluated with stable isotopes

    NASA Astrophysics Data System (ADS)

    Kühl, Norbert; Moschen, Robert; Wagner, Stefanie

    2010-05-01

    Pollen as well as stable isotopes have great potential as climate proxy data. While variability in these proxy data is frequently assumed to reflect climate variability, other factors than climate, including human impact and statistical noise, can often not be excluded as primary cause for the observed variability. Multiproxy studies offer the opportunity to test different drivers by providing different lines of evidence for environmental change such as climate variability and human impact. In this multiproxy study we use pollen and peat humification to evaluate to which extent stable oxygen and carbon isotope series from the peat bog "Dürres Maar" reflect human impact rather than climate variability. For times before strong anthropogenic vegetation change, isotope series from Dürres Maar were used to validate quantitative reconstructions based on pollen. Our study site is the kettle hole peat bog "Dürres Maar" in the Eifel low mountain range, Germany (450m asl), which grew 12m during the last 10,000 years. Pollen was analysed with a sum of at least 1000 terrestrial pollen grains throughout the profile to minimize statistical effects on the reconstructions. A recently developed probabilistic indicator taxa method ("pdf-method") was used for the quantitative climate estimates (January and July temperature) based on pollen. For isotope analysis, attention was given to use monospecific Sphagnum leaves whenever possible, reducing the potential of a species effect and any potential artefact that can originate from selective degradation of different morphological parts of Sphagnum plants (Moschen et al., 2009). Pollen at "Dürres Maar" reflect the variable and partly strong human impact on vegetation during the last 4000 years. Stable isotope time series were apparently not influenced by human impact at this site. This highlights the potential of stable isotope investigations from peat for climatic interpretation, because stable isotope series from lacustrine

  4. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    NASA Astrophysics Data System (ADS)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    schemes provide less oscillatory solutions when compared to ADER finite volume schemes based on the reconstruction in conserved variables, especially for the RMHD and the Baer-Nunziato equations. For the RHD and RMHD equations, the overall accuracy is improved and the CPU time is reduced by about 25 %. Because of its increased accuracy and due to the reduced computational cost, we recommend to use this version of ADER as the standard one in the relativistic framework. At the end of the paper, the new approach has also been extended to ADER-DG schemes on space-time adaptive grids (AMR).

  5. Generation of GHZ states with invariant-based shortcuts

    NASA Astrophysics Data System (ADS)

    Ye, Li-Xiang; Lin, Xiu; Chen, Xiang; He, Juan; Yang, Rong-Can; Liu, Hong-Yu

    2016-07-01

    A scheme is proposed to generate three-atom GHZ states by applying the inversely engineered control method on the basis of Lewis-Riesenfeld invariants. In the proposal, three atoms that have different configurations are trapped in a bimodal cavity. Numerical simulations indicate that our protocol has an obvious improvement of speed for the generation of GHZ states. Moreover, the present scheme is robust against both parameter fluctuations and dissipation.

  6. Simple Arduino based pulse generator design for electroporation

    NASA Astrophysics Data System (ADS)

    Sulaeman, Muhammad Yangki; Widita, Rena

    2015-09-01

    This research will discuss the design of electroporation generator using Arduino as the pulse controller. The pulse parameters are the most important thing in electroporation method, therefore many researches aimed to produce generator to control its parameters easily. Arduino will be used as the microcontroller to create low amplitude signal trigger to get the high voltage pulse for electroporation. 124.4 VDC will be used and tested in cuvette contained NaCl solution with various concentration between 0% - 1%.

  7. A Optical Random Number Generator Based on Photoevent Locations

    NASA Astrophysics Data System (ADS)

    Martino, Anthony J.

    1990-01-01

    The well-known Monte Carlo method was combined with the relatively new technique of quantum-limited imaging to produce an optical random number generator in which the locations of detected photoevents provided the random numbers. The optical random number generator used a two -dimensional, position-sensitive, photon-counting detector. The spatial distribution of photoevent locations was dictated by imaging a control object onto the detector. An iterative calibration procedure was developed to determine the brightness function written onto the control object, which was a piece of film or a video monitor. With both control objects, the iterative calibration procedure led to improvements in the performance of the system. The ideal control object would combine the spatial resolution and temporal stability of film with the reproducibility and quick reconfiguration of the video monitor. Use of the optical random number generator was demonstrated in Monte Carlo matrix inversion and a simulation of sunlight scattering from raindrops. The optical random number generator was shown to have the advantage of speed over available pseudorandom number generators. With film as the control object, it also had the advantage of producing true random numbers. Even with the video monitor, it did not produce a repeating sequence. The pseudorandom number generator had the advantage of producing a wider range of random numbers. The wider range made no difference in the behavior of the matrix inversion algorithm. However, with the rainbows, where continuous quantities were simulated, noticeable effects occurred.

  8. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    PubMed Central

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method. PMID:25133237

  9. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    PubMed

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  10. Research on the high-brightness traffic variable message sign based on laser diodes

    NASA Astrophysics Data System (ADS)

    Feng, Li-li; Huang, Hai-tao; Ruan, Chi

    2015-10-01

    Researches indicate that foggy weather is one of the most critical factors that restrict human's traffic activities and cause traffic accidents. It will reduce the visibility of traffic message board, which could cause the insecurity of transportation. Commonly, light-emitting diodes (LEDs) were used as light source for variable message sign, which could not be seen clearly in the foggy low visibility condition. A high-brightness light source which could be used for variable information board was firstly put forward in this paper. And a new type of variable message sign used in low visibility condition was also introduced. Besides, the attenuation characteristics of laser diode (LD) and light-emitting diode (LED) were analyzed respectively. Calculation and simulation show that the attenuation of red light source is fastest, and the yellow LED light has the better transmittance property. In the experiment, LDs were used to make variable message board for verifying image definition. A 16*16 array structure composed of LDs was designed and could display Chinese characters. By comparing the display effect of LDs and LEDs driven with same power, they were placed in fog chamber of the visibility less than 5 meters. And experiment results show that the penetrability of red LD light is better than that of red LED. So traffic variable message sign based on LDs could improve the image definition and the information could be seen more clearly in the foggy weather. In addition to the high-brightness, good coherence, good direction, experimental results show that traffic variable message board based on LD has better visual effect in low visibility condition.

  11. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses

    PubMed Central

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-01-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. PMID:24462600

  12. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    PubMed

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach.

  13. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  14. MCM generator: a Java-based tool for generating medical metadata.

    PubMed

    Munoz, F; Hersh, W

    1998-01-01

    In a previous paper we introduced the need to implement a mechanism to facilitate the discovery of relevant Web medical documents. We maintained that the use of META tags, specifically ones that define the medical subject and resource type of a document, help towards this goal. We have now developed a tool to facilitate the generation of these tags for the authors of medical documents. Written entirely in Java, this tool makes use of the SAPHIRE server, and helps the author identify the Medical Subject Heading terms that most appropriately describe the subject of the document. Furthermore, it allows the author to generate metadata tags for the 15 elements that the Dublin Core considers as core elements in the description of a document. This paper describes the use of this tool in the cataloguing of Web and non-Web medical documents, such as images, movie, and sound files.

  15. MCM generator: a Java-based tool for generating medical metadata.

    PubMed

    Munoz, F; Hersh, W

    1998-01-01

    In a previous paper we introduced the need to implement a mechanism to facilitate the discovery of relevant Web medical documents. We maintained that the use of META tags, specifically ones that define the medical subject and resource type of a document, help towards this goal. We have now developed a tool to facilitate the generation of these tags for the authors of medical documents. Written entirely in Java, this tool makes use of the SAPHIRE server, and helps the author identify the Medical Subject Heading terms that most appropriately describe the subject of the document. Furthermore, it allows the author to generate metadata tags for the 15 elements that the Dublin Core considers as core elements in the description of a document. This paper describes the use of this tool in the cataloguing of Web and non-Web medical documents, such as images, movie, and sound files. PMID:9929299

  16. The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator.

    PubMed

    Li, Wen-Chang; Merrison-Hort, Robert; Zhang, Hong-Yan; Borisyuk, Roman

    2014-04-23

    Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left-right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony.

  17. A Correlation-Based Transition Model using Local Variables. Part 2; Test Cases and Industrial Applications

    NASA Technical Reports Server (NTRS)

    Langtry, R. B.; Menter, F. R.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods.

  18. Spatial Variability of Soil Properties and Their Effect on Methane Generation, Oxidation, and Emission from Soils Covering Landfills

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Mei, C.; Yazdani, R.; Han, B.; Mostafid, M.

    2013-12-01

    Soils covering landfills mitigate gas emissions from degrading refuse, particularly emissions of methane, a potent greenhouse gas. To enhance the oxidative capacity of these soils, materials with high organic matter are proposed for landfill covers, e.g., compost and aged greenwaste. We report field tests of these materials in pilot-scale test cells. While moisture conditions and gas transport were initially uniform, after one year significant spatial variability of gas flow developed that was associated with spatially variable dry bulk density and volumetric water content. For a test cell with organic matter content of 38%, a single-domain porous medium model was adequate for describing water retention and continuum modeling was capable of describing spatially variable gas flow and methane oxidation. A second test cell with organic matter of 61% was best described as a dual-domain porous medium, and continuum modeling was inadequate for describing spatially variable gas flow. Here, the dual-domain medium resulted in significant subgrid scale variability in moisture conditions that affected gas transport and methane oxidation. The results from these field tests suggest that proposed one-dimensional models of gas transport and methane oxidation in landfill cover soils may be inadequate for soils composed of high organic matter that require dual-domain models for water retention.

  19. Seasonal forecasts in the Sahel region: the use of rainfall-based predictive variables

    NASA Astrophysics Data System (ADS)

    Lodoun, Tiganadaba; Sanon, Moussa; Giannini, Alessandra; Traoré, Pierre Sibiry; Somé, Léopold; Rasolodimby, Jeanne Millogo

    2014-08-01

    In the Sahel region, seasonal predictions are crucial to alleviate the impacts of climate variability on populations' livelihoods. Agricultural planning (e.g., decisions about sowing date, fertilizer application date, and choice of crop or cultivar) is based on empirical predictive indices whose accuracy to date has not been scientifically proven. This paper attempts to statistically test whether the pattern of rainfall distribution over the May-July period contributes to predicting the real onset date and the nature (wet or dry) of the rainy season, as farmers believe. To that end, we considered historical records of daily rainfall from 51 stations spanning the period 1920-2008 and the different agro-climatic zones in Burkina Faso. We performed (1) principal component analysis to identify climatic zones, based on the patterns of intra-seasonal rainfall, (2) and linear discriminant analysis to find the best rainfall-based variables to distinguish between real and false onset dates of the rainy season, and between wet and dry seasons in each climatic zone. A total of nine climatic zones were identified in each of which, based on rainfall records from May to July, we derived linear discriminant functions to correctly predict the nature of a potential onset date of the rainy season (real or false) and that of the rainy season (dry or wet) in at least three cases out of five. These functions should contribute to alleviating the negative impacts of climate variability in the different climatic zones of Burkina Faso.

  20. Coarse-grained variables for particle-based models: diffusion maps and animal swarming simulations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Safford, Hannah R.; Couzin, Iain D.; Kevrekidis, Ioannis G.

    2014-12-01

    As microscopic (e.g. atomistic, stochastic, agent-based, particle-based) simulations become increasingly prevalent in the modeling of complex systems, so does the need to systematically coarse-grain the information they provide. Before even starting to formulate relevant coarse-grained equations, we need to determine the right macroscopic observables—the right variables in terms of which emergent behavior will be described. This paper illustrates the use of data mining (and, in particular, diffusion maps, a nonlinear manifold learning technique) in coarse-graining the dynamics of a particle-based model of animal swarming. Our computational data-driven coarse-graining approach extracts two coarse (collective) variables from the detailed particle-based simulations, and helps formulate a low-dimensional stochastic differential equation in terms of these two collective variables; this allows the efficient quantification of the interplay of "informed" and "naive" individuals in the collective swarm dynamics. We also present a brief exploration of swarm breakup and use data-mining in an attempt to identify useful predictors for it. In our discussion of the scope and limitations of the approach we focus on the key step of selecting an informative metric, allowing us to usefully compare different particle swarm configurations.

  1. Micromachined ultrasonic droplet generator based on a liquid horn structure

    NASA Astrophysics Data System (ADS)

    Meacham, J. M.; Ejimofor, C.; Kumar, S.; Degertekin, F. L.; Fedorov, A. G.

    2004-05-01

    A micromachined ultrasonic droplet generator is developed and demonstrated for drop-on-demand fluid atomization. The droplet generator comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the ejection fluid, and a silicon micromachined liquid horn structure as the nozzle. The nozzles are formed using a simple batch microfabrication process that involves wet etching of (100) silicon in potassium hydroxide solution. Device operation is demonstrated by droplet ejection of water through 30 μm orifices at 1.49 and 2.30 MHz. The finite-element simulations of the acoustic fields in the cavity and electrical impedance of the device are in agreement with the measurements and indicate that the device utilizes cavity resonances in the 1-5 MHz range in conjunction with acoustic wave focusing by the pyramidally shaped nozzles to achieve low power operation.

  2. Materials-based process tolerances for neutron generator encapsulation.

    SciTech Connect

    Berry, Ryan S.; Adolf, Douglas Brian; Stavig, Mark Edwin

    2007-10-01

    Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies in the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.

  3. Optical pendulum generator based on photomechanical liquid-crystalline actuators.

    PubMed

    Tang, Rong; Liu, Ziyi; Xu, Dandan; Liu, Jian; Yu, Li; Yu, Haifeng

    2015-04-29

    For converting light energy into electricity, an optical pendulum generator was designed by combining photomechanical movement of liquid-crystalline actuator (LCA) with Faraday's law of electromagnetic induction. Bilayer cantilever actuators were first fabricated with LDPE and LCA. Their photomechanical movement drove the attached copper coils to cut magnetic line of force generating electricity. The output electricity was proportional to the changing rate of the magnetic flux, which was greatly influenced by light intensity, film thickness, and sample size. Continuous electrical output was also achieved. This simple strategy may expand applications of photoactive materials in the capture and storage of light energy.

  4. Hybrid propulsion based on fluid-controlled solid gas generators

    NASA Technical Reports Server (NTRS)

    Cohen, Norman S.; Strand, Leon D.

    1993-01-01

    The use of fuel-rich solid (gas generator-type) propellants for hybrid propulsion affords some design and utilization efficiency advantages. Both forward and aft liquid injection control concepts are evaluated from the operational standpoints of ballistics, throttling, stability and extinguishment. Steady-state and non-steady ballistics analyses are employed for this evaluation. Stability of solid motor operation is enhanced by fluid injection with adequate injector pressure drop. Efficient throttling and reliable extinguishment are attained through a combination of solid propellant combustion tailoring, grain design, control valves and sensors. Initial results from a laboratory-scale slab combustor, combining a gas generator propellant with gaseous oxygen injection, are also presented.

  5. Alternative approaches to space-based power generation

    NASA Technical Reports Server (NTRS)

    Gregory, D. L.

    1977-01-01

    Satellite Power Stations (SPS) would generate electrical power in space for terrestrial use. Their geosynchronous orbit location permits continuous microwave power transmission to ground receiving antenna farms. Eight approaches to the generation of the electrical power to be transmitted were investigated. Configurations implementing these approaches were developed through an optimization process intended to yield the lowest cost for each. A complete program was baselined for each approach, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed, including the associated launches, orbital assembly, and maintenance operations. The required electric power charges to amortize these costs were calculated. They range from 26 to 82 mills/kWh (ground busbar).

  6. Feedback-Based Coverage Directed Test Generation: An Industrial Evaluation

    NASA Astrophysics Data System (ADS)

    Ioannides, Charalambos; Barrett, Geoff; Eder, Kerstin

    Although there are quite a few approaches to Coverage Directed test Generation aided by Machine Learning which have been applied successfully to small and medium size digital designs, it is not clear how they would scale on more elaborate industrial-level designs. This paper evaluates one of these techniques, called MicroGP, on a fully fledged industrial design. The results indicate relative success evidenced by a good level of code coverage achieved with reasonably compact tests when compared to traditional test generation approaches. However, there is scope for improvement especially with respect to the diversity of the tests evolved.

  7. Optical pendulum generator based on photomechanical liquid-crystalline actuators.

    PubMed

    Tang, Rong; Liu, Ziyi; Xu, Dandan; Liu, Jian; Yu, Li; Yu, Haifeng

    2015-04-29

    For converting light energy into electricity, an optical pendulum generator was designed by combining photomechanical movement of liquid-crystalline actuator (LCA) with Faraday's law of electromagnetic induction. Bilayer cantilever actuators were first fabricated with LDPE and LCA. Their photomechanical movement drove the attached copper coils to cut magnetic line of force generating electricity. The output electricity was proportional to the changing rate of the magnetic flux, which was greatly influenced by light intensity, film thickness, and sample size. Continuous electrical output was also achieved. This simple strategy may expand applications of photoactive materials in the capture and storage of light energy. PMID:25875214

  8. Vegetation canopy optical and structural variability based on radiometric and laser analysis

    NASA Astrophysics Data System (ADS)

    Dim, Jules R.; Kajiwara, Koji; Honda, Yoshiaki

    2007-10-01

    For a comprehensive vegetation monitoring and/or management, a good understanding of the distribution of the solar radiation energy among components of this vegetation is needed. The energy received by the vegetation is measured by spectroradiometers either at satellite elevations or near the ground (in situ measurements). In this study, in situ, radiometric data and laser scanning techniques are combined, in order to evaluate the contribution of the vegetation structure to the variability of canopy reflectance. Advanced processing laser techniques are not only an efficient tool for the generation of physical models but also give information about the vertical structure of canopies (height, shape, density) and their horizontal extension. To conduct this study, airborne multispectral radiation data and, laser pulse returns are recorded from a low flying helicopter above the vegetation of a boreal forest. These measurements are used to derive canopy optical and structural variables. The impact of the canopy 2-dimensional structural variability on the distribution of the solar radiation reflected by plants of this area is discussed. The results obtained show that the laser technology can be used for the selection of the most appropriate configuration of radiation measurements, and optimization of canopy physical characteristics, in future airborne missions.

  9. Causal Inference Based on the Analysis of Events of Relations for Non-stationary Variables

    PubMed Central

    Yin, Yu; Yao, Dezhong

    2016-01-01

    The main concept behind causality involves both statistical conditions and temporal relations. However, current approaches to causal inference, focusing on the probability vs. conditional probability contrast, are based on model functions or parametric estimation. These approaches are not appropriate when addressing non-stationary variables. In this work, we propose a causal inference approach based on the analysis of Events of Relations (CER). CER focuses on the temporal delay relation between cause and effect, and a binomial test is established to determine whether an “event of relation” with a non-zero delay is significantly different from one with zero delay. Because CER avoids parameter estimation of non-stationary variables per se, the method can be applied to both stationary and non-stationary signals. PMID:27389921

  10. Causal Inference Based on the Analysis of Events of Relations for Non-stationary Variables.

    PubMed

    Yin, Yu; Yao, Dezhong

    2016-01-01

    The main concept behind causality involves both statistical conditions and temporal relations. However, current approaches to causal inference, focusing on the probability vs. conditional probability contrast, are based on model functions or parametric estimation. These approaches are not appropriate when addressing non-stationary variables. In this work, we propose a causal inference approach based on the analysis of Events of Relations (CER). CER focuses on the temporal delay relation between cause and effect, and a binomial test is established to determine whether an "event of relation" with a non-zero delay is significantly different from one with zero delay. Because CER avoids parameter estimation of non-stationary variables per se, the method can be applied to both stationary and non-stationary signals. PMID:27389921

  11. Contact resonance atomic force microscopy for viscoelastic characterization of polymer-based nanocomposites at variable temperature

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Passeri, Daniele; Reggente, Melania; Tamburri, Emanuela; Terranova, Maria Letizia; Rossi, Marco

    2016-06-01

    Characterization of mechanical properties at the nanometer scale at variable temperature is one of the main challenges in the development of polymer-based nanocomposites for application in high temperature environments. Contact resonance atomic force microscopy (CR-AFM) is a powerful technique to characterize viscoelastic properties of materials at the nanoscale. In this work, we demonstrate the capability of CR-AFM of characterizing viscoelastic properties (i.e., storage and loss moduli, as well as loss tangent) of polymer-based nanocomposites at variable temperature. CR-AFM is first illustrated on two polymeric reference samples, i.e., low-density polyethylene (LDPE) and polycarbonate (PC). Then, temperature-dependent viscoelastic properties (in terms of loss tangent) of a nanocomposite sample constituted by a epoxy resin reinforced with single-wall carbon nanotubes (SWCNTs) are investigated.

  12. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  13. Generation of Potent T-cell Immunotherapy for Cancer Using DAP12-Based, Multichain, Chimeric Immunoreceptors.

    PubMed

    Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C

    2015-07-01

    Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity toward B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared with standard first- and second-generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors.

  14. Imaging Stokes polarimeter based on a single liquid crystal variable retarder.

    PubMed

    Woźniak, Władysław A; Prętka, Marzena; Kurzynowski, Piotr

    2015-07-10

    A description of a compact imaging Stokes polarimeter constructed and tested in our laboratory is presented. Our polarimeter is based on a simple construction using only one retarder and one linear polarizer. Three fast intensity distribution measurements realized in three different configurations of linear and elliptical analyzers allow for calculating the basic polarization parameter distribution of the examined light. Using a liquid crystal variable retarder makes this construction compact and mechanically simple. PMID:26193390

  15. Surface solar radiation variability over Eastern Mediterranean: A high spatial resolution view from satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Meleti, Charikleia; Balis, Dimitris

    2013-04-01

    Surface Solar Radiation (SSR) has been measured for decades from ground-based observations for several spots around the planet. On the other hand, during the last decades, satellite observations made possible the assessment of the spatial variability of the SSR at a global as well as regional scale. In this study, a detailed view of the SSR spatiotemporal variability is presented at a high spatial resolution, focusing on the region of Eastern Mediterranean. This is a region of particular interest since it is affected by aerosols of various origins (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. The SSR satellite data used in this study have been obtained from the Satellite Application Facility on Climate Monitoring (CM SAF) (www.cmsaf.eu). The CM SAF SSR dataset is based on reflections in the visible channel of Meteosat First Generation, has a spatial resolution of 0.03ox0.03o and spans from 1983 to 2005. The satellite observations are validated against ground-based measurements for the city of Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean. Measurements from two pyranometers, an Eppley Precision pyranometer (1983-1992) and a Kipp & Zonen CM-11 pyranometer (1993-2005), both located at the center of the city, were homogenized and a uniform time series for the 23 year period was constructed. SSR was also calculated with the use of MODIS level-2 aerosol and cloud satellite data for the region of Thessaloniki and the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. These new satellite-based results are compared to both CM SAF and ground-based observations in order to examine whether SBDART and MODIS could be further used for the investigation of the spatial patterns of SSR in the area.

  16. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  17. Interannual variability of the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data

    NASA Astrophysics Data System (ADS)

    Liu, Qin-Yan; Feng, Ming; Wang, Dongxiao; Wijffels, Susan

    2015-12-01

    Based on 30 year repeated expendable bathythermograph (XBT) deployments between Fremantle, Western Australia, and the Sunda Strait, Indonesia, from 1984 to 2013, interannual variability of geostrophic transport of the Indonesian Throughflow (ITF) and its relationships with El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are investigated. The IOD induced coastal Kelvin waves propagate along the Sumatra-Java coast of Indonesia, and ENSO induced coastal Kelvin waves propagate along the northwest coast of Australia, both influencing interannual variations of the ITF transport. The ITF geostrophic transport is stronger during La Niña phase and weaker during El Niño phase, with the Niño3.4 index leading the ITF variability by 7 months. The Indian Ocean wind variability associated with the IOD to a certain extent offset the Pacific ENSO influences on the ITF geostrophic transport during the developing and mature phases of El Niño and La Niña, due to the covarying IOD variability with ENSO. The ITF geostrophic transport experiences a strengthening trend of about 1 Sv every 10 years over the study period, which is mostly due to a response to the strengthening of the trade winds in the Pacific during the climate change hiatus period. Decadal variations of the temperature-salinity relationships need to be considered when estimating the geostrophic transport of the ITF using XBT data.

  18. Device variability and circuit redundancy in signal processing based on nanoswitches

    NASA Astrophysics Data System (ADS)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2009-11-01

    Signal processing based on molecular switches whose conductance can be tuned by an external stimulus between two (on and off) states has been proposed recently (Cervera et al 2008 J. Appl. Phys. 104 084317). The basic building block is a metal nanoparticle linked to two electrodes by an organic ligand and a nanoswitch. The net charge delivered by this nanostructure exhibits a sharp resonance when the alternating potential applied between the electrodes has the same frequency as the periodic variation between the on and off conductance states induced on the nanoswitch. This resonance can be used to process an external signal by selectively extracting the weight of the different harmonics. However, because of the fabrication process at the nanoscale, the nanostructures will show a significant variability in the physical characteristics. By using a phenomenological model that includes this variability, the stochastic nature of electron transference, and the thermal noise, we demonstrate that reliable signal processing can still be achieved by adapting the number of nanoswitches per bit of information (circuit redundancy) to the nanostructure tolerance (device variability). Extensive kinetic Monte Carlo simulations show that a moderate level of redundancy can compensate for significant nanostructure variability. This result gives support to the concept of ensembles of redundant switches as reliable components for signal processing at the nanoscale.

  19. Classification of collected trot, passage and piaffe based on temporal variables.

    PubMed

    Clayton, H M

    1997-05-01

    The objective was to determine whether collected trot, passage and piaffe could be distinguished as separate gaits on the basis of temporal variables. Sagittal plane, 60 Hz videotapes of 10 finalists in the dressage competitions at the 1992 Olympic Games were analysed to measure the temporal variables in absolute terms and as percentages of stride duration. Classification was based on analysis of variance, a graphical method and discriminant analysis. Stride duration was sufficient to distinguish collected trot from passage and piaffe in all horses. The analysis of variance showed that the mean values of most variables differed significantly between passage and piaffe. When hindlimb stance percentage was plotted against diagonal advanced placement percentage, some overlap was found between all 3 movements indicating that individual horses could not be classified reliably in this manner. Using hindlimb stance percentage and diagonal advanced placement percentage as input in a discriminant analysis, 80% of the cases were classified correctly, but at least one horse was misclassified in each movement. When the absolute, rather than percentage, values of the 2 variables were used as input in the discriminant analysis, 90% of the cases were correctly classified and the only misclassifications were between passage and piaffe. However, the 2 horses in which piaffe was misclassified as passage were the gold and silver medallists. In general, higher placed horses tended toward longer diagonal advanced placements, especially in collected trot and passage, and shorter hindlimb stance percentages in passage and piaffe.

  20. Autonomously generating operations sequences for a Mars Rover using AI-based planning

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg

    2001-01-01

    This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.

  1. Two-color beam generation based on wakefield excitation

    NASA Astrophysics Data System (ADS)

    Bettoni, S.; Prat, E.; Reiche, S.

    2016-05-01

    Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  2. An Enterprise Ontology Building the Bases for Automatic Metadata Generation

    NASA Astrophysics Data System (ADS)

    Thönssen, Barbara

    'Information Overload' or 'Document Deluge' is a problem enterprises and Public Administrations alike are still dealing with. Although commercial products for Enterprise Content or Records Management are available since more than two decades, especially in Small and Medium Enterprises and Public Administrations they didn't get through. Because of the wide range of document types and formats full-text indexing is not sufficient, but assigning metadata manually is not possible. Thus, automatic, format-independent generation of metadata for (public) enterprise documents is needed. Using context to infer metadata automatically has been researched for example for web-documents or learning objects. If (public) enterprise objects were modelled 'machine understandable' they could be build the context for automatic metadata generation. The approach introduced in this paper is to model context (the (public) enterprise objects) in an ontology and using that ontology to infer content-related metadata.

  3. Study on the variable cycle engine modeling techniques based on the component method

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan

    2016-01-01

    Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.

  4. Assessment of heart rate variability based on mobile device for planning physical activity

    NASA Astrophysics Data System (ADS)

    Svirin, I. S.; Epishina, E. V.; Voronin, V. V.; Semenishchev, E. A.; Solodova, E. N.; Nabilskaya, N. V.

    2015-05-01

    In this paper we present a method for the functional analysis of human heart based on electrocardiography (ECG) signals. The approach using the apparatus of analytical and differential geometry and correlation and regression analysis. ECG contains information on the current condition of the cardiovascular system as well as on the pathological changes in the heart. Mathematical processing of the heart rate variability allows to obtain a great set of mathematical and statistical characteristics. These characteristics of the heart rate are used when solving research problems to study physiological changes that determine functional changes of an individual. The proposed method implemented for up-to-date mobile Android and iOS based devices.

  5. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  6. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  7. A Robot Emotion Generation Mechanism Based on PAD Emotion Space

    NASA Astrophysics Data System (ADS)

    Qingji, Gao; Kai, Wang; Haijuan, Liu

    A robot emotion generation mechanism is presented in this paper, in which emotion is described in PAD emotion space. In this mechanism, emotion is affected by the robot personality, the robot task and the emotion origin, so the robot emotion will change naturally when it senses the extern stimuli. We also experiment on Fuwa robot, and demonstrate that this mechanism can make the robot's emotion change be more easily accepted by people and is good for human-robot interaction.

  8. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation.

    PubMed

    Frykholm, Carina; Klar, Joakim; Arnesson, Hanna; Rehnman, Anna-Carin; Lodahl, Marianne; Wedén, Ulla; Dahl, Niklas; Tranebjærg, Lisbeth; Rendtorff, Nanna D

    2015-05-25

    Linkage to an interval overlapping the DFNA10 locus on chromosome 6q22-23 was found through genome wide linkage analysis in a seven-generation Swedish family segregating postlingual, autosomal dominant nonsyndromic sensorineural hearing impairment. A novel heterozygous frame-shift mutation (c.579_580insTACC, p.(Asp194Tyrfs*52)) in EYA4 was identified that truncates the so-called variable region of the protein. The mutation is predicted to result in haploinsufficiency of the EYA4 product. No evidence for dilated cardiomyopathy was found in the family, contrasting to a previous family with a deletion resulting in a similar truncation in the variable region. A highly variable age of onset was seen in the mutation carriers. For assessment of the aetiology of this variability, clinical and audiometric data analyses were performed. The affected family members all had similar cross-sectional and longitudinal deterioration of pure tone average (PTA) once the process of hearing deterioration had started, and no gender, parent-of-origin or family branch differences on PTA could be found. Age at onset varied between the family branches. In summary, this is the ninth published genetically verified DFNA10 family. The results imply that unidentified factors, genetic or environmental, other than the EYA4 mutation, are of importance for the age at onset of DFNA10, and that mutation early in the variable region of the EYA4 protein can occur in the absence of dilated cardiomyopathy.

  9. Current drive generation based on autoresonance and intermittent trapping mechanisms.

    PubMed

    Gell, Y; Nakach, R

    1999-09-01

    Two mechanisms for generating streams of high-velocity electrons are presented. One has its origin in auto resonance (AR) interaction, which takes place in the system after a trapping conditioning stage, the second being dominated by the trapping process itself. These mechanisms are revealed from the study of the relativistic motion of an electron in a configuration consisting of two counterpropagating electromagnetic waves along a constant magnetic field in a dispersive medium. Using a Hamiltonian formalism, we have numerically solved the equations of motion and presented the results in a set of figures showing the generation of streams of electrons having high parallel velocities. Insight into these numerical results is gained from a theoretical analysis, which consists of a reformulation of the equations of motion. The operation of these mechanisms was found to circumvent the deterioration of the electron acceleration process that is characteristic for a dispersive medium, thus allowing for an effective generation of a current drive. Discussion of the results follows.

  10. A collision-based model for measuring bedload transport from the seismic waves generated by rivers

    NASA Astrophysics Data System (ADS)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Stark, C. P.

    2011-12-01

    Accurately predicting rates of coarse sediment transport in river channels is a central goal of fluvial geomorphology and civil engineering. However, it is difficult to evaluate sediment transport and bedrock abrasion models in large rivers because quantitative measures of bedload transport are labor intensive and often dangerous to obtain in floods. Two recent studies show that the amplitude of seismic waves near rivers may record bedload flux, indicating that seismometers near rivers provide a potential means of monitoring bedload transport. In an effort to better interpret seismic waves generated by rivers, we seek a relationship between the variables governing bedload transport and seismic waves. Our approach relies on the fact that elastic waves are generated when momentum is transferred to the bed during a bedload particle impact. For an impacting particle of known mass and velocity, the momentum transfer can be computed from Hertzian impact theory. Here we combine analytic results based on Hertzian and elastic wave theories with empirical equations developed to describe the ballistics of bedload particles in terms of fluid shear stress and grain size. From this synthesis we arrive at a semi-analytic expression that predicts how the characteristic frequencies and amplitudes of seismic waves generated from saltating bedload particles should scale with fluid shear stress, grain size, and coarse sediment flux. Preliminary tests of our predictions using previously published and newly acquired laboratory data indicate that seismic signals near rivers can record information about the size, velocity and number of particles impacting the bed. Additionally, our analytical results help identify bedload transport events in seismic data collected along the Chijiawan River in Taiwan. Here the river is evolving rapidly in response to a dam removal - resulting in predictable changes in bedload transport efficiency in time and space that we can compare to local seismic data.

  11. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.

    PubMed

    Beard, Matthew C; Luther, Joseph M; Semonin, Octavi E; Nozik, Arthur J

    2013-06-18

    Improving the primary photoconversion process in a photovoltaiccell by utilizing the excess energy that is otherwise lost as heat can lead to an increase in the overall power conversion efficiency (PCE). Semiconductor nanocrystals (NCs) with at least one dimension small enough to produce quantum confinement effects provide new ways of controlling energy flow not achievable in thin film or bulk semiconductors. Researchers have developed various strategies to incorporate these novel structures into suitable solar conversion systems. Some of these methods could increase the PCE past the Shockley-Queisser (SQ) limit of ∼33%, making them viable "third generation photovoltaic" (TGPV) cell architectures. Surpassing the SQ limit for single junction solar cells presents both a scientific and a technological challenge, and the use of semiconductor NCs to enhance the primary photoconversion process offers a promising potential solution. The NCs are synthesized via solution phase chemical reactions producing stable colloidal solutions, where the reaction conditions can be modified to produce a variety of shapes, compositions, and structures. The confinement of the semiconductor NC in one dimension produces quantum films, wells, or discs. Two-dimensional confinement leads to quantum wires or rods (QRs), and quantum dots (QDs) are three-dimensionally confined NCs. The process of multiple exciton generation (MEG) converts a high-energy photon into multiple electron-hole pairs. Although many studies have demonstrated that MEG is enhanced in QDs compared with bulk semiconductors, these studies have either used ultrafast spectroscopy to measure the photon-to-exciton quantum yields (QYs) or theoretical calculations. Implementing MEG in a working solar cell has been an ongoing challenge. In this Account, we discuss the status of MEG research and strategies towards implementing MEG in working solar cells. Recently we showed an external quantum efficiency for photocurrent of greater

  12. Age-Based Methods to Explore Time-Related Variables in Occupational Epidemiology Studies

    SciTech Connect

    Janice P. Watkins, Edward L. Frome, Donna L. Cragle

    2005-08-31

    Although age is recognized as the strongest predictor of mortality in chronic disease epidemiology, a calendar-based approach is often employed when evaluating time-related variables. An age-based analysis file, created by determining the value of each time-dependent variable for each age that a cohort member is followed, provides a clear definition of age at exposure and allows development of diverse analytic models. To demonstrate methods, the relationship between cancer mortality and external radiation was analyzed with Poisson regression for 14,095 Oak Ridge National Laboratory workers. Based on previous analysis of this cohort, a model with ten-year lagged cumulative radiation doses partitioned by receipt before (dose-young) or after (dose-old) age 45 was examined. Dose-response estimates were similar to calendar-year-based results with elevated risk for dose-old, but not when film badge readings were weekly before 1957. Complementary results showed increasing risk with older hire ages and earlier birth cohorts, since workers hired after age 45 were born before 1915, and dose-young and dose-old were distributed differently by birth cohorts. Risks were generally higher for smokingrelated than non-smoking-related cancers. It was difficult to single out specific variables associated with elevated cancer mortality because of: (1) birth cohort differences in hire age and mortality experience completeness, and (2) time-period differences in working conditions, dose potential, and exposure assessment. This research demonstrated the utility and versatility of the age-based approach.

  13. Tree-ring based reconstruction of spring hydroclimate variability in the Caucasus

    NASA Astrophysics Data System (ADS)

    Martin-Benito, Dario; Köse, Nesibe; Güner, Tuncay; Pederson, Neil

    2015-04-01

    The Caucasus region has been identified as one of the most prominent biodiversity hotspots in the world. The region experiences recurrent droughts that not only affect natural vegetation but also the agriculturally-based economies in the Caucasus. Across northeastern Turkey and the Caucasus region, instrumental records providing information on climate variability are generally scarce. Thus the magnitude and frequency of past droughts in this biologically important region are less known. Additionally, despite the increase of climate reconstructions in the past decades for many parts of Europe and Asia, relatively little work has been done to understand hydroclimate variability in the Caucasus region. Nearly all efforts in the region have focused on the Mediterranean part of Turkey and the Middle East region. We developed new tree-ring width chronologies from different elevation sites in northeastern Turkey with the goal to reconstruct annually-resolved estimates of temperature and hydroclimate across the region. We developed the first reconstruction of spring hydroclimate variability for the Caucasus and the southeastern Black Sea Region since 1750 CE using a nested procedure. Despite the high mean annual precipitation in the region, our reconstruction accounted for over 45% of May-June precipitation variability from 1925 to 2006. We observed no evidence of a decrease in spring precipitation during the recent decades. However, we do see a decrease in precipitation variability over the last 75 years with respect to previous periods that, at this time, does not appear to be related to sample replication. Although our reconstructed precipitation shows important similarities with previous work from Mediterranean and northern Turkey, we find distinct drought periods are also evident suggesting a wider range of climate dynamics in the broader Black Sea region than what has been previously identified. Distinct episodes of drought at the larger scales could have important

  14. Classification Models for Neurocognitive Impairment in HIV Infection Based on Demographic and Clinical Variables

    PubMed Central

    Muñoz-Moreno, Jose A.; Pérez-Álvarez, Núria; Muñoz-Murillo, Amalia; Prats, Anna; Garolera, Maite; Jurado, M. Àngels; Fumaz, Carmina R.; Negredo, Eugènia; Ferrer, Maria J.; Clotet, Bonaventura

    2014-01-01

    Objective We used demographic and clinical data to design practical classification models for prediction of neurocognitive impairment (NCI) in people with HIV infection. Methods The study population comprised 331 HIV-infected patients with available demographic, clinical, and neurocognitive data collected using a comprehensive battery of neuropsychological tests. Classification and regression trees (CART) were developed to obtain detailed and reliable models to predict NCI. Following a practical clinical approach, NCI was considered the main variable for study outcomes, and analyses were performed separately in treatment-naïve and treatment-experienced patients. Results The study sample comprised 52 treatment-naïve and 279 experienced patients. In the first group, the variables identified as better predictors of NCI were CD4 cell count and age (correct classification [CC]: 79.6%, 3 final nodes). In treatment-experienced patients, the variables most closely related to NCI were years of education, nadir CD4 cell count, central nervous system penetration-effectiveness score, age, employment status, and confounding comorbidities (CC: 82.1%, 7 final nodes). In patients with an undetectable viral load and no comorbidities, we obtained a fairly accurate model in which the main variables were nadir CD4 cell count, current CD4 cell count, time on current treatment, and past highest viral load (CC: 88%, 6 final nodes). Conclusion Practical classification models to predict NCI in HIV infection can be obtained using demographic and clinical variables. An approach based on CART analyses may facilitate screening for HIV-associated neurocognitive disorders and complement clinical information about risk and protective factors for NCI in HIV-infected patients. PMID:25237895

  15. Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation

    SciTech Connect

    Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A.

    2008-07-22

    Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.

  16. Towards Next Generation Activity-Based Learning Systems

    ERIC Educational Resources Information Center

    Sampson, Demetrios G.; Karampiperis, Pythagoras

    2006-01-01

    The need for e-learning systems that support a diverse set of pedagogical requirements has been identified as an important issue in web-based education. Until now, significant research and development effort has been devoted to aiming towards web-based educational systems tailored to specific pedagogical approaches. The most advanced of them are…

  17. Variable Speed Wind Power Generation System Using Direct Torque Control Suited for Maximum Power Control within Voltage and Current Limitations of Converter

    NASA Astrophysics Data System (ADS)

    Inoue, Yukinori; Morimoto, Shigeo; Sanada, Masayuki

    This paper proposes a variable speed wind generation system using a direct torque controlled interior permanent magnet synchronous generator. The proposed system has no wind speed and generator position sensors, and thus, it is considered that the proposed system has cost and reliability advantages. The proposed direct torque control (DTC) system in wind power generation has several advantages over conventional current control. First, DTC is well suited for the maximum power point tracking (MPPT) control that is implemented by controlling the generator torque. Second, the method of flux-weakening to maintain the terminal voltage at the limiting value of the converter is simple. Finally, a novel method is proposed for torque limiting, which makes it easy to maintain the armature current at the limiting value. The proposed method accomplishes current limiting using the reactive torque, which is calculated as the inner product of the flux and current. This does not require generator parameters such as magnet flux and inductances. Experimental results demonstrate the effectiveness of the proposed system using a wind turbine emulator instead of the actual wind turbine.

  18. A mechanism of aftershock generation based on progressive material softening

    NASA Astrophysics Data System (ADS)

    Dyskin, Arcady; Pasternak, Elena; Bunger, Andrew; Kear, James

    2015-04-01

    Observations of aftershocks after major seismic events show that the rate of aftershock generation reduces according to the generalised Omori's law. This law reproduces itself at a variety of scales starting from the scales of the earthquakes to the laboratory scale. Furthermore, the Omori's law holds for different types of fracture event from shear fracture propagation over the faults to failure in compression to failure in tension. In particular our tests show that the Omori's law describes the aftershocks in crystalline rocks in a laboratory model of hydraulic fracture and after bending failure of beams. We propose a new universal mechanism of aftershock generation that reproduces the Omori's law. We firstly note that it is not the residual stress, as conventionally assumed, but the residual strain that is created by the preceding fracture process. The aftershocks are created by the residual stress that is related to the residual strain through elastic moduli. The accumulation of the aftershock-related microcracks reduces the elastic moduli and thus reduces the residual stress. This overall reduction of the residual stress with the number of aftershocks is the reason for the rate reduction in aftershock generation. Naturally this process might be accompanied by the reduction in wave velocities, albeit, as we show, the reduction is rather low. The effect the accumulated microcracks have on the moduli considerably depends on the microcrack distribution over both positions and orientations. We found that (a) if the microcracks have isotropic distribution over orientations the classical Omori's law is reproduced; (b) if the microcracks are shear and parallel to each other but randomly situated in space the generalised Omori's law is reproduced with the exponent p<1; (c) if the microcracks are represented by sliding zones distributed over a fault, the generalised Omori's law is reproduced with the exponent p>1. The main feature of the latter case is the existence of

  19. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  20. Optical cross-correlator based on supercontinuum generation

    SciTech Connect

    Filip, Catalin V.; Toth, Csaba; Leemans, Wim P.

    2006-03-20

    A novel cross-correlator that can be used for temporal characterization of femtosecond laser pulses has been developed. The correlation trace is obtained by ''sampling'' the structure of the laser pulse with a single, high-contrast pulse produced through femtosecond white-light generation in a line focus. This correlator has, therefore, fewer ''ghosts'' than a conventional third-order cross-correlator and it can be used with laser pulses that span across a wide wavelength range. Both scanning and single-shot experimental arrangements are described.

  1. Allocation Variable-Based Probabilistic Algorithm to Deal with Label Switching Problem in Bayesian Mixture Models

    PubMed Central

    Pan, Jia-Chiun; Liu, Chih-Min; Hwu, Hai-Gwo; Huang, Guan-Hua

    2015-01-01

    The label switching problem occurs as a result of the nonidentifiability of posterior distribution over various permutations of component labels when using Bayesian approach to estimate parameters in mixture models. In the cases where the number of components is fixed and known, we propose a relabelling algorithm, an allocation variable-based (denoted by AVP) probabilistic relabelling approach, to deal with label switching problem. We establish a model for the posterior distribution of allocation variables with label switching phenomenon. The AVP algorithm stochastically relabel the posterior samples according to the posterior probabilities of the established model. Some existing deterministic and other probabilistic algorithms are compared with AVP algorithm in simulation studies, and the success of the proposed approach is demonstrated in simulation studies and a real dataset. PMID:26458185

  2. Variability of the honey bee mite Varroa destructor in Serbia, based on mtDNA analysis.

    PubMed

    Gajic, Bojan; Radulovic, Zeljko; Stevanovic, Jevrosima; Kulisic, Zoran; Vucicevic, Milos; Simeunovic, Predrag; Stanimirovic, Zoran

    2013-09-01

    Only two mitochondrial haplotypes (Korea and Japan) of Varroa destructor, the ectoparasitic honey bee mite, are known to be capable of infesting and successfully reproducing in Apis mellifera colonies worldwide. Varroa destructor (then called Varroa jacobsoni) was observed in Serbia for the first time in 1976. In order to obtain insight into the genetic variability of the mites parasitizing A. mellifera we analyzed 45 adult female mites sampled from nine localities dispersed throughout Serbia. Four fragments within cox1, atp6, cox3 and cytb mtDNA genes were sequenced. The Korea haplotype of V. destructor was found to be present at all localities, but also two new haplotypes (Serbia 1 and Peshter 1) were revealed, based on cox1 and cytb sequence variability. The simultaneous occurrence of Korea and Serbia 1 haplotypes was observed at five localities, whereas Peshter 1 haplotype was identifed at only one place.

  3. A variable neighborhood Walksat-based algorithm for MAX-SAT problems.

    PubMed

    Bouhmala, Noureddine

    2014-01-01

    The simplicity of the maximum satisfiability problem (MAX-SAT) combined with its applicability in many areas of artificial intelligence and computing science made it one of the fundamental optimization problems. This NP-complete problem refers to the task of finding a variable assignment that satisfies the maximum number of clauses (or the sum of weights of satisfied clauses) in a Boolean formula. The Walksat algorithm is considered to be the main skeleton underlying almost all local search algorithms for MAX-SAT. Most local search algorithms including Walksat rely on the 1-flip neighborhood structure. This paper introduces a variable neighborhood walksat-based algorithm. The neighborhood structure can be combined easily using any local search algorithm. Its effectiveness is compared with existing algorithms using 1-flip neighborhood structure and solvers such as CCLS and Optimax from the eighth MAX-SAT evaluation. PMID:25177732

  4. A Variable Neighborhood Walksat-Based Algorithm for MAX-SAT Problems

    PubMed Central

    Bouhmala, Noureddine

    2014-01-01

    The simplicity of the maximum satisfiability problem (MAX-SAT) combined with its applicability in many areas of artificial intelligence and computing science made it one of the fundamental optimization problems. This NP-complete problem refers to the task of finding a variable assignment that satisfies the maximum number of clauses (or the sum of weights of satisfied clauses) in a Boolean formula. The Walksat algorithm is considered to be the main skeleton underlying almost all local search algorithms for MAX-SAT. Most local search algorithms including Walksat rely on the 1-flip neighborhood structure. This paper introduces a variable neighborhood walksat-based algorithm. The neighborhood structure can be combined easily using any local search algorithm. Its effectiveness is compared with existing algorithms using 1-flip neighborhood structure and solvers such as CCLS and Optimax from the eighth MAX-SAT evaluation. PMID:25177732

  5. Variable stiffness and damping semi-active vibration control technology based on magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Zhao, Shiyu; Deng, Huaxia; Zhang, Jin; Sun, ShuaiShuai; Li, Weihua; Wang, Lei

    2013-10-01

    Vibration is a source to induce uncertainty for the measurement. The traditional passive vibration control method has low efficiency and limited working conditions. The active vibration control method is not practical for its power demanding, complexity and instability. In this paper, a novel semi-active vibration control technology based on magnetorheological (MR) fluid is presented with dual variable stiffness and damping capability. Because of the rheological behavior depending on the magnetic field intensity, MR fluid is used in many damping semi-active vibration control systems. The paper proposed a structure to allow the both overall damping and stiffness variable. The equivalent damping and stiffness of the structure are analyzed and the influences of the parameters on the stiffness and damping changing are further discussed.

  6. A new active variable stiffness suspension system using a nonlinear energy sink-based controller

    NASA Astrophysics Data System (ADS)

    Anubi, Olugbenga Moses; Crane, Carl D.

    2013-10-01

    This paper presents the active case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism which consists of a horizontal control strut and a vertical strut. The horizontal strut is used to vary the load transfer ratio by actively controlling the location of the point of attachment of the vertical strut to the car body. The control algorithm, effected by a hydraulic actuator, uses the concept of nonlinear energy sink (NES) to effectively transfer the vibrational energy in the sprung mass to a control mass, thereby reducing the transfer of energy from road disturbance to the car body at a relatively lower cost compared to the traditional active suspension using the skyhook concept. The analyses and simulation results show that a better performance can be achieved by subjecting the point of attachment of a suspension system, to the chassis, to the influence of a horizontal NES system.

  7. Natural Oxidant Demand Variability, Potential Controls, and Implications for in Situ, Oxidation-Based Remediation of Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Dettmer, A.; Cruz, S.; Dungan, B.; Holguin, F. O.; Ulery, A. L.; Hunter, B.; Carroll, K. C.

    2014-12-01

    Naturally occurring reduced species associated with subsurface materials can impose a significant natural oxidant demand (NOD), which is the bulk consumption of oxidants by soil water, minerals, and organic matter. Although injection of oxidants has been used for chemical transformation of organic contaminants, NOD represents a challenge for the in-situ delivery of oxidants as a remediation alternative. Co-injection of complexation agents with oxidants has been proposed to facilitate the delivery of oxidants for in situ chemical oxidation remediation of contaminated groundwater. This study investigates variability of NOD for different oxidants and sediments. The effect of the addition of various complexation agents, including EDTA, tween 80, hydroxypropyl-beta-cyclodextrin (HPCD), humic acid, and four generations of poly(amidoamine) (PAMAM) dendrimers, on the NOD was also examined. NOD was measured for a clay loam (collected from Air Force Plant 44 in Tucson, AZ). Varying amounts of biosolids were mixed with subsamples of the clay loam to create three additional reference soils in order to study the effect of organic matter and other soil characteristics on the NOD. Bench-scale laboratory experiments were conducted to determine the NOD for various oxidants, using the four soils, and replicated with and without various delivery agents. Measured NOD showed variability for each soil and oxidant composition. Additionally, significant differences were observed in NOD with the addition of delivery agents. The results support the elucidation of potential controls over NOD and have implications for in situ, oxidation-based remediation of contaminated groundwater.

  8. Quantum mechanical energy-based screening of combinatorially generated library of tautomers. TauTGen: a tautomer generator program.

    PubMed

    Harańczyk, Maciej; Gutowski, Maciej

    2007-01-01

    We describe a procedure of finding low-energy tautomers of a molecule. The procedure consists of (i) combinatorial generation of a library of tautomers, (ii) screening based on the results of geometry optimization of initial structures performed at the density functional level of theory, and (iii) final refinement of geometry for the top hits at the second-order Möller-Plesset level of theory followed by single-point energy calculations at the coupled cluster level of theory with single, double, and perturbative triple excitations. The library of initial structures of various tautomers is generated with TauTGen, a tautomer generator program. The procedure proved to be successful for these molecular systems for which common chemical knowledge had not been sufficient to predict the most stable structures.

  9. Impact of region contouring variability on image-based focal therapy evaluation

    NASA Astrophysics Data System (ADS)

    Gibson, Eli; Donaldson, Ian A.; Shah, Taimur T.; Hu, Yipeng; Ahmed, Hashim U.; Barratt, Dean C.

    2016-03-01

    Motivation: Focal therapy is an emerging low-morbidity treatment option for low-intermediate risk prostate cancer; however, challenges remain in accurately delivering treatment to specified targets and determining treatment success. Registered multi-parametric magnetic resonance imaging (MPMRI) acquired before and after treatment can support focal therapy evaluation and optimization; however, contouring variability, when defining the prostate, the clinical target volume (CTV) and the ablation region in images, reduces the precision of quantitative image-based focal therapy evaluation metrics. To inform the interpretation and clarify the limitations of such metrics, we investigated inter-observer contouring variability and its impact on four metrics. Methods: Pre-therapy and 2-week-post-therapy standard-of-care MPMRI were acquired from 5 focal cryotherapy patients. Two clinicians independently contoured, on each slice, the prostate (pre- and post-treatment) and the dominant index lesion CTV (pre-treatment) in the T2-weighted MRI, and the ablated region (post-treatment) in the dynamic-contrast- enhanced MRI. For each combination of clinician contours, post-treatment images were registered to pre-treatment images using a 3D biomechanical-model-based registration of prostate surfaces, and four metrics were computed: the proportion of the target tissue region that was ablated and the target:ablated region volume ratio for each of two targets (the CTV and an expanded planning target volume). Variance components analysis was used to measure the contribution of each type of contour to the variance in the therapy evaluation metrics. Conclusions: 14-23% of evaluation metric variance was attributable to contouring variability (including 6-12% from ablation region contouring); reducing this variability could improve the precision of focal therapy evaluation metrics.

  10. Wing/kite-based wind energy generation: An overview

    NASA Astrophysics Data System (ADS)

    Milanese, M.

    2013-06-01

    Several technologies, aimed at converting high-altitude wind into electricity, are actually being investigated by companies, research centers and universities worldwide, and the community of people working in this field has coined the term airborne wind energy (AWE) as a common umbrella for these concepts. Indeed, many basic ideas that are now being developed in the context of AWE were already present in patents and publications since the '70s. Then, these ideas remained somehow silent, until more recent years, when several research groups and companies started to carry out theoretical, numerical and experimental analyses, made possible by important advances in diverse fields like materials, aerodynamics, sensors, computation and control. In this lecture, the basic AWE concepts and results that have been up to date accomplished are overviewed, with a focus on a particular class of AWE generators, namely with flexible wings and ground level generators, and emphasis on optimization and control aspects. Finally, we delineate what challenges are still to be faced, in order to fully demonstrate the viability of airborne wind energy.

  11. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  12. Sleep Quality Estimation based on Chaos Analysis for Heart Rate Variability

    NASA Astrophysics Data System (ADS)

    Fukuda, Toshio; Wakuda, Yuki; Hasegawa, Yasuhisa; Arai, Fumihito; Kawaguchi, Mitsuo; Noda, Akiko

    In this paper, we propose an algorithm to estimate sleep quality based on a heart rate variability using chaos analysis. Polysomnography(PSG) is a conventional and reliable system to diagnose sleep disorder and to evaluate its severity and therapeatic effect, by estimating sleep quality based on multiple channels. However, a recording process requires a lot of time and a controlled environment for measurement and then an analyzing process of PSG data is hard work because the huge sensed data should be manually evaluated. On the other hand, it is focused that some people make a mistake or cause an accident due to lost of regular sleep and of homeostasis these days. Therefore a simple home system for checking own sleep is required and then the estimation algorithm for the system should be developed. Therefore we propose an algorithm to estimate sleep quality based only on a heart rate variability which can be measured by a simple sensor such as a pressure sensor and an infrared sensor in an uncontrolled environment, by experimentally finding the relationship between chaos indices and sleep quality. The system including the estimation algorithm can inform patterns and quality of own daily sleep to a user, and then the user can previously arranges his life schedule, pays more attention based on sleep results and consult with a doctor.

  13. Categorical variables with many categories are preferentially selected in bootstrap-based model selection procedures for multivariable regression models.

    PubMed

    Rospleszcz, Susanne; Janitza, Silke; Boulesteix, Anne-Laure

    2016-05-01

    Automated variable selection procedures, such as backward elimination, are commonly employed to perform model selection in the context of multivariable regression. The stability of such procedures can be investigated using a bootstrap-based approach. The idea is to apply the variable selection procedure on a large number of bootstrap samples successively and to examine the obtained models, for instance, in terms of the inclusion of specific predictor variables. In this paper, we aim to investigate a particular important problem affecting this method in the case of categorical predictor variables with different numbers of categories and to give recommendations on how to avoid it. For this purpose, we systematically assess the behavior of automated variable selection based on the likelihood ratio test using either bootstrap samples drawn with replacement or subsamples drawn without replacement from the original dataset. Our study consists of extensive simulations and a real data example from the NHANES study. Our main result is that if automated variable selection is conducted on bootstrap samples, variables with more categories are substantially favored over variables with fewer categories and over metric variables even if none of them have any effect. Importantly, variables with no effect and many categories may be (wrongly) preferred to variables with an effect but few categories. We suggest the use of subsamples instead of bootstrap samples to bypass these drawbacks.

  14. An integrated crop- and soil-based strategy for variable-rate nitrogen management in corn

    NASA Astrophysics Data System (ADS)

    Roberts, Darrin F.

    Nitrogen (N) management in cereal crops has been the subject of considerable research and debate for several decades. Historic N management practices have contributed to low nitrogen use efficiency (NUE). Low NUE can be caused by such things as poor synchronization between soil N supply and crop demand, uniform application rates of fertilizer N to spatially variable landscapes, and failure to account for temporally variable influences on soil N supply and crop N need. Active canopy reflectance sensors and management zones (MZ) have been studied separately as possible plant- and soil-based N management tools to increase NUE. Recently, some have suggested that the integration of these two approaches would provide a more robust N management strategy that could more effectively account for soil and plant effects on crop N need. For this reason, the goal of this research was to develop an N application strategy that would account for spatial variability in soil properties and use active canopy reflectance sensors to determine in-season, on-the-go N fertilizer rates, thereby increasing NUE and economic return for producers over current N management practices. To address this overall goal, a series of studies were conducted to better understand active canopy sensor use and explore the possibility of integrating spatial soil data with active canopy sensors. Sensor placement to assess crop N status was first examined. It was found that the greatest reduction in error over sensing each individual row for a hypothetical 24-row applicator was obtained with 2-3 sensors estimating an average chlorophyll index for the entire boom width. Next, use of active sensor-based soil organic matter (OM) estimation was compared to more conventional aerial image-based soil OM estimation. By adjusting regression intercept values for each field, OM could be predicted using either a single sensor or image data layer. The final study consisted of validation of the active sensor algorithm

  15. MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Blackall, J. M.; Ahmad, S.; Miquel, M. E.; McClelland, J. R.; Landau, D. B.; Hawkes, D. J.

    2006-09-01

    Respiratory organ motion has a significant impact on the planning and delivery of radiotherapy (RT) treatment for lung cancer. Currently widespread techniques, such as 4D-computed tomography (4DCT), cannot be used to measure variability of this motion from one cycle to the next. In this paper, we describe the use of fast magnetic resonance imaging (MRI) techniques to investigate the intra- and inter-cycle reproducibility of respiratory motion and also to estimate the level of errors that may be introduced into treatment delivery by using various breath-hold imaging strategies during lung RT planning. A reference model of respiratory motion is formed to enable comparison of different breathing cycles at any arbitrary position in the respiratory cycle. This is constructed by using free-breathing images from the inhale phase of a single breathing cycle, then co-registering the images, and thereby tracking landmarks. This reference model is then compared to alternative models constructed from images acquired during the exhale phase of the same cycle and the inhale phase of a subsequent cycle, to assess intra- and inter-cycle variability ('hysteresis' and 'reproducibility') of organ motion. The reference model is also compared to a series of models formed from breath-hold data at exhale and inhale. Evaluation of these models is carried out on data from ten healthy volunteers and five lung cancer patients. Free-breathing models show good levels of intra- and inter-cycle reproducibility across the tidal breathing range. Mean intra-cycle errors in the position of organ surface landmarks of 1.5(1.4)-3.5(3.3) mm for volunteers and 2.8(1.8)-5.2(5.2) mm for patients. Equivalent measures of inter-cycle variability across this range are 1.7(1.0)-3.9(3.3) mm for volunteers and 2.8(1.8)-3.3(2.2) mm for patients. As expected, models based on breath-hold sequences do not represent normal tidal motion as well as those based on free-breathing data, with mean errors of 4

  16. Index for Wind Power Variability

    SciTech Connect

    Kiviluoma, Juha; Holttinen, Hannele; Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Scharff, Richard; Milligan, Michael; Weir, David Edward

    2014-11-13

    Variability of large scale wind power generation is dependent on several factors: characteristics of installed wind power plants, size of the area where the plants are installed, geographic dispersion within that area and its weather regime(s). Variability can be described by ramps in power generation, i.e. changes from time period to time period. Given enough data points, it can be described with a probability density function. This approach focuses on two dimensions of variability: duration of the ramp and probability distribution. This paper proposes an index based on these two dimensions to enable comparisons and characterizations of variability under different conditions. The index is tested with real, large scale wind power generation data from several countries. Considerations while forming an index are discussed, as well as the main results regarding what the drivers of variability experienced for different data.

  17. HLA-E coding and 3' untranslated region variability determined by next-generation sequencing in two West-African population samples.

    PubMed

    Castelli, Erick C; Mendes-Junior, Celso T; Sabbagh, Audrey; Porto, Iane O P; Garcia, André; Ramalho, Jaqueline; Lima, Thálitta H A; Massaro, Juliana D; Dias, Fabrício C; Collares, Cristhianna V A; Jamonneau, Vincent; Bucheton, Bruno; Camara, Mamadou; Donadi, Eduardo A

    2015-12-01

    HLA-E is a non-classical Human Leucocyte Antigen class I gene with immunomodulatory properties. Whereas HLA-E expression usually occurs at low levels, it is widely distributed amongst human tissues, has the ability to bind self and non-self antigens and to interact with NK cells and T lymphocytes, being important for immunosurveillance and also for fighting against infections. HLA-E is usually the most conserved locus among all class I genes. However, most of the previous studies evaluating HLA-E variability sequenced only a few exons or genotyped known polymorphisms. Here we report a strategy to evaluate HLA-E variability by next-generation sequencing (NGS) that might be used to other HLA loci and present the HLA-E haplotype diversity considering the segment encoding the entire HLA-E mRNA (including 5'UTR, introns and the 3'UTR) in two African population samples, Susu from Guinea-Conakry and Lobi from Burkina Faso. Our results indicate that (a) the HLA-E gene is indeed conserved, encoding mainly two different protein molecules; (b) Africans do present several unknown HLA-E alleles presenting synonymous mutations; (c) the HLA-E 3'UTR is quite polymorphic and (d) haplotypes in the HLA-E 3'UTR are in close association with HLA-E coding alleles. NGS has proved to be an important tool on data generation for future studies evaluating variability in non-classical MHC genes.

  18. Noise Reduction in Arterial Spin Labeling Based Functional Connectivity Using Nuisance Variables

    PubMed Central

    Jann, Kay; Smith, Robert X.; Rios Piedra, Edgar A.; Dapretto, Mirella; Wang, Danny J. J.

    2016-01-01

    Arterial Spin Labeling (ASL) perfusion image series have recently been utilized for functional connectivity (FC) analysis in healthy volunteers and children with autism spectrum disorders (ASD). Noise reduction by using nuisance variables has been shown to be necessary to minimize potential confounding effects of head motion and physiological signals on BOLD based FC analysis. The purpose of the present study is to systematically evaluate the effectiveness of different noise reduction strategies (NRS) using nuisance variables to improve perfusion based FC analysis in two cohorts of healthy adults using state of the art 3D background-suppressed (BS) GRASE pseudo-continuous ASL (pCASL) and dual-echo 2D-EPI pCASL sequences. Five different NRS were performed in healthy volunteers to compare their performance. We then compared seed-based FC analysis using 3D BS GRASE pCASL in a cohort of 12 children with ASD (3f/9m, age 12.8 ± 1.3 years) and 13 typically developing (TD) children (1f/12m; age 13.9 ± 3 years) in conjunction with NRS. Regression of different combinations of nuisance variables affected FC analysis from a seed in the posterior cingulate cortex (PCC) to other areas of the default mode network (DMN) in both BOLD and pCASL data sets. Consistent with existing literature on BOLD-FC, we observed improved spatial specificity after physiological noise reduction and improved long-range connectivity using head movement related regressors. Furthermore, 3D BS GRASE pCASL shows much higher temporal SNR compared to dual-echo 2D-EPI pCASL and similar effects of noise reduction as those observed for BOLD. Seed-based FC analysis using 3D BS GRASE pCASL in children with ASD and TD children showed that noise reduction including physiological and motion related signals as nuisance variables is crucial for identifying altered long-range connectivity from PCC to frontal brain areas associated with ASD. This is the first study that systematically evaluated the effects of

  19. Noise Reduction in Arterial Spin Labeling Based Functional Connectivity Using Nuisance Variables

    PubMed Central

    Jann, Kay; Smith, Robert X.; Rios Piedra, Edgar A.; Dapretto, Mirella; Wang, Danny J. J.

    2016-01-01

    Arterial Spin Labeling (ASL) perfusion image series have recently been utilized for functional connectivity (FC) analysis in healthy volunteers and children with autism spectrum disorders (ASD). Noise reduction by using nuisance variables has been shown to be necessary to minimize potential confounding effects of head motion and physiological signals on BOLD based FC analysis. The purpose of the present study is to systematically evaluate the effectiveness of different noise reduction strategies (NRS) using nuisance variables to improve perfusion based FC analysis in two cohorts of healthy adults using state of the art 3D background-suppressed (BS) GRASE pseudo-continuous ASL (pCASL) and dual-echo 2D-EPI pCASL sequences. Five different NRS were performed in healthy volunteers to compare their performance. We then compared seed-based FC analysis using 3D BS GRASE pCASL in a cohort of 12 children with ASD (3f/9m, age 12.8 ± 1.3 years) and 13 typically developing (TD) children (1f/12m; age 13.9 ± 3 years) in conjunction with NRS. Regression of different combinations of nuisance variables affected FC analysis from a seed in the posterior cingulate cortex (PCC) to other areas of the default mode network (DMN) in both BOLD and pCASL data sets. Consistent with existing literature on BOLD-FC, we observed improved spatial specificity after physiological noise reduction and improved long-range connectivity using head movement related regressors. Furthermore, 3D BS GRASE pCASL shows much higher temporal SNR compared to dual-echo 2D-EPI pCASL and similar effects of noise reduction as those observed for BOLD. Seed-based FC analysis using 3D BS GRASE pCASL in children with ASD and TD children showed that noise reduction including physiological and motion related signals as nuisance variables is crucial for identifying altered long-range connectivity from PCC to frontal brain areas associated with ASD. This is the first study that systematically evaluated the effects of

  20. Noise Reduction in Arterial Spin Labeling Based Functional Connectivity Using Nuisance Variables.

    PubMed

    Jann, Kay; Smith, Robert X; Rios Piedra, Edgar A; Dapretto, Mirella; Wang, Danny J J

    2016-01-01

    Arterial Spin Labeling (ASL) perfusion image series have recently been utilized for functional connectivity (FC) analysis in healthy volunteers and children with autism spectrum disorders (ASD). Noise reduction by using nuisance variables has been shown to be necessary to minimize potential confounding effects of head motion and physiological signals on BOLD based FC analysis. The purpose of the present study is to systematically evaluate the effectiveness of different noise reduction strategies (NRS) using nuisance variables to improve perfusion based FC analysis in two cohorts of healthy adults using state of the art 3D background-suppressed (BS) GRASE pseudo-continuous ASL (pCASL) and dual-echo 2D-EPI pCASL sequences. Five different NRS were performed in healthy volunteers to compare their performance. We then compared seed-based FC analysis using 3D BS GRASE pCASL in a cohort of 12 children with ASD (3f/9m, age 12.8 ± 1.3 years) and 13 typically developing (TD) children (1f/12m; age 13.9 ± 3 years) in conjunction with NRS. Regression of different combinations of nuisance variables affected FC analysis from a seed in the posterior cingulate cortex (PCC) to other areas of the default mode network (DMN) in both BOLD and pCASL data sets. Consistent with existing literature on BOLD-FC, we observed improved spatial specificity after physiological noise reduction and improved long-range connectivity using head movement related regressors. Furthermore, 3D BS GRASE pCASL shows much higher temporal SNR compared to dual-echo 2D-EPI pCASL and similar effects of noise reduction as those observed for BOLD. Seed-based FC analysis using 3D BS GRASE pCASL in children with ASD and TD children showed that noise reduction including physiological and motion related signals as nuisance variables is crucial for identifying altered long-range connectivity from PCC to frontal brain areas associated with ASD. This is the first study that systematically evaluated the effects of

  1. Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables

    NASA Astrophysics Data System (ADS)

    Zeng, Yuandi; Liu, Yanfang; Liu, Yaolin; de Leeuw, Jan

    2007-06-01

    Information on the spatial distribution of grass communities in wetland is increasingly recognized as important for effective wetland management and biological conservation. Remote sensing techniques has been proved to be an effective alternative to intensive and costly ground surveys for mapping grass community. However, the mapping accuracy of grass communities in wetland is still not preferable. The aim of this paper is to develop an effective method to map grass communities in Poyang Lake Natural Reserve. Through statistic analysis, elevation is selected as an environmental variable for its high relationship with the distribution of grass communities; NDVI stacked from images of different months was used to generate Carex community map; the image in October was used to discriminate Miscanthus and Cynodon communities. Classifications were firstly performed with maximum likelihood classifier using single date satellite image with and without elevation; then layered classifications were performed using multi-temporal satellite imagery and elevation with maximum likelihood classifier, decision tree and artificial neural network separately. The results show that environmental variables can improve the mapping accuracy; and the classification with multitemporal imagery and elevation is significantly better than that with single date image and elevation (p=0.001). Besides, maximum likelihood (a=92.71%, k=0.90) and artificial neural network (a=94.79%, k=0.93) perform significantly better than decision tree (a=86.46%, k=0.83).

  2. Variability for Categorical Variables

    ERIC Educational Resources Information Center

    Kader, Gary D.; Perry, Mike

    2007-01-01

    Introductory statistics textbooks rarely discuss the concept of variability for a categorical variable and thus, in this case, do not provide a measure of variability. The impression is thus given that there is no measurement of variability for a categorical variable. A measure of variability depends on the concept of variability. Research has…

  3. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    PubMed

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field. PMID:26907066

  4. High frequency seismic noise generated from breaking swallow water ocean waves and the link to time-variable sea states

    NASA Astrophysics Data System (ADS)

    Poppeliers, C.; Mallinson, D. J.

    2015-12-01

    Breaking waves in the near-shore are known to generate a significant amount of high frequency (f>5 Hz) energy. We investigate the correlation between the spectrum of seismic energy and the local sea states. We deployed a single three-component broadband seismometer approximately 50 m from the sea shore and recorded continuously for approximately 10 days. Our observations show that during elevated sea states, and presumably larger breaking waves in the surf zone, the power spectral density of the wave-generated seismic energy shifts to lower frequencies and higher spectral amplitudes. The correlation of the seismic spectral power to the height and period of ocean waves suggests that seismic observations can be used as a proxy for local sea states, which may have implications for sea shore sediment transport.

  5. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals.

    PubMed

    Fani, Melpomeni; André, João P; Maecke, Helmut R

    2008-01-01

    PET (positron emission tomography) is a powerful diagnostic and imaging technique which requires short-lived positron emitting isotopes. The most commonly used are accelerator-produced (11)C and (18)F. An alternative is the use of metallic positron emitters. Among them (68)Ga deserves special attention because of its availability from long-lived (68)Ge/(68)Ga generator systems which render (68)Ga radiopharmacy independent of an onsite cyclotron. The coordination chemistry of Ga(3+) is dominated by its hard acid character. A variety of mono- and bifunctional chelators have been developed which allow the formation of stable (68)Ga(3+)complexes and convenient coupling to biomolecules. (68)Ga coupling to small biomolecules is potentially an alternative to (18)F- and (11)C-based radiopharmacy. In particular, peptides targeting G-protein coupled receptors overexpressed on human tumour cells have shown preclinically and clinically high and specific tumour uptake. Kit-formulated precursors along with the generator may be provided, similar to the (99)Mo/(99m)Tc-based radiopharmacy, still the mainstay of nuclear medicine.

  6. Regression based modeling of vegetation and climate variables for the Amazon rainforests

    NASA Astrophysics Data System (ADS)

    Kodali, A.; Khandelwal, A.; Ganguly, S.; Bongard, J.; Das, K.

    2015-12-01

    Both short-term (weather) and long-term (climate) variations in the atmosphere directly impact various ecosystems on earth. Forest ecosystems, especially tropical forests, are crucial as they are the largest reserves of terrestrial carbon sink. For example, the Amazon forests are a critical component of global carbon cycle storing about 100 billion tons of carbon in its woody biomass. There is a growing concern that these forests could succumb to precipitation reduction in a progressively warming climate, leading to release of significant amount of carbon in the atmosphere. Therefore, there is a need to accurately quantify the dependence of vegetation growth on different climate variables and obtain better estimates of drought-induced changes to atmospheric CO2. The availability of globally consistent climate and earth observation datasets have allowed global scale monitoring of various climate and vegetation variables such as precipitation, radiation, surface greenness, etc. Using these diverse datasets, we aim to quantify the magnitude and extent of ecosystem exposure, sensitivity and resilience to droughts in forests. The Amazon rainforests have undergone severe droughts twice in last decade (2005 and 2010), which makes them an ideal candidate for the regional scale analysis. Current studies on vegetation and climate relationships have mostly explored linear dependence due to computational and domain knowledge constraints. We explore a modeling technique called symbolic regression based on evolutionary computation that allows discovery of the dependency structure without any prior assumptions. In symbolic regression the population of possible solutions is defined via trees structures. Each tree represents a mathematical expression that includes pre-defined functions (mathematical operators) and terminal sets (independent variables from data). Selection of these sets is critical to computational efficiency and model accuracy. In this work we investigate

  7. Spatiotemporal variability of four precipitation-based drought indices in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Li, Yi; Yao, Ning; Sahin, Sinan; Appels, Willemijn M.

    2016-05-01

    Global increases in duration and prevalence of droughts require detailed drought characterization at various spatial and temporal scales. In this study, drought severity in Xinjiang, China was investigated between 1961 and 2012. Using meteorological data from 55 weather stations, the UNEP (1993) index (I A), Erinç's aridity index (I m), and Sahin's aridity index (I sh) were calculated at the monthly and annual timescales and compared to the Penman-Monteith based standard precipitation evapotranspiration index (SPEIPM). Drought spatiotemporal variability was analyzed for north (NX), south (SX), and entire Xinjiang (EX). I m could not be calculated at 51 stations in winter as T max was below 0. At the monthly timescale, I A, I m, and I sh correlated poorly to SPEIPM because of seasonality and temporal variability, but annual I A, I m, and I sh correlated well with SPEIPM. Annual I A, I m, and I sh showed strong spatial variability. The 15 extreme droughts denoted by monthly SPEIPM occurred in NX but out of phase in SX. Annual precipitation, maximum temperature, and relative and specific humidity increased, while air pressure and potential evapotranspiration decreased over 1961-2012. The resulting increases in the four drought indices indicated that drought severity in Xinjiang decreased, because the local climate became warmer and wetter.

  8. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables.

    PubMed

    Fyfe, Jackson J; Bishop, David J; Stepto, Nigel K

    2014-06-01

    Concurrent training is defined as simultaneously incorporating both resistance and endurance exercise within a periodized training regime. Despite the potential additive benefits of combining these divergent exercise modes with regards to disease prevention and athletic performance, current evidence suggests that this approach may attenuate gains in muscle mass, strength, and power compared with undertaking resistance training alone. This has been variously described as the interference effect or concurrent training effect. In recent years, understanding of the molecular mechanisms mediating training adaptation in skeletal muscle has emerged and provided potential mechanistic insight into the concurrent training effect. Although it appears that various molecular signaling responses induced in skeletal muscle by endurance exercise can inhibit pathways regulating protein synthesis and stimulate protein breakdown, human studies to date have not observed such molecular 'interference' following acute concurrent exercise that might explain compromised muscle hypertrophy following concurrent training. However, given the multitude of potential concurrent training variables and the limitations of existing evidence, the potential roles of individual training variables in acute and chronic interference are not fully elucidated. The present review explores current evidence for the molecular basis of the specificity of training adaptation and the concurrent interference phenomenon. Additionally, insights provided by molecular and performance-based concurrent training studies regarding the role of individual training variables (i.e., within-session exercise order, between-mode recovery, endurance training volume, intensity, and modality) in the concurrent interference effect are discussed, along with the limitations of our current understanding of this complex paradigm.

  9. Quantifying Spatial and Seasonal Variability in Atmospheric Ammonia with In Situ and Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Pinder, Robert W.; Walker, John T.; Bash, Jesse O.; Cady-Pereira, Karen E.; Henze, Daven K.; Luo, Mingzhao; Osterman, Gregory B.; Shepard, Mark W.

    2011-01-01

    Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a field campaign combining co-located surface measurements and satellite special observations from the Tropospheric Emission Spectrometer (TES). Our study includes 25 surface monitoring sites spanning 350 km across eastern North Carolina, a region with large seasonal and spatial variability in NH3. From the TES spectra, we retrieve a NH3 representative volume mixing ratio (RVMR), and we restrict our analysis to times when the region of the atmosphere observed by TES is representative of the surface measurement. We find that the TES NH3 RVMR qualitatively captures the seasonal and spatial variability found in eastern North Carolina. Both surface measurements and TES NH3 show a strong correspondence with the number of livestock facilities within 10 km of the observation. Furthermore, we find that TES H3 RVMR captures the month-to-month variability present in the surface observations. The high correspondence with in situ measurements and vast spatial coverage make TES NH3 RVMR a valuable tool for understanding regional and global NH3 fluxes.

  10. Research on test of product based on spatial sampling criteria and variable step sampling mechanism

    NASA Astrophysics Data System (ADS)

    Li, Ruihong; Han, Yueping

    2014-09-01

    This paper presents an effective approach for online testing the assembly structures inside products using multiple views technique and X-ray digital radiography system based on spatial sampling criteria and variable step sampling mechanism. Although there are some objects inside one product to be tested, there must be a maximal rotary step for an object within which the least structural size to be tested is predictable. In offline learning process, Rotating the object by the step and imaging it and so on until a complete cycle is completed, an image sequence is obtained that includes the full structural information for recognition. The maximal rotary step is restricted by the least structural size and the inherent resolution of the imaging system. During online inspection process, the program firstly finds the optimum solutions to all different target parts in the standard sequence, i.e., finds their exact angles in one cycle. Aiming at the issue of most sizes of other targets in product are larger than that of the least structure, the paper adopts variable step-size sampling mechanism to rotate the product specific angles with different steps according to different objects inside the product and match. Experimental results show that the variable step-size method can greatly save time compared with the traditional fixed-step inspection method while the recognition accuracy is guaranteed.

  11. 78 FR 56690 - Seneca Generation, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Seneca Generation, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding, of Seneca Generation, LLC's application for market-based rate authority, with...

  12. CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS

    PubMed Central

    McParland, Damien; Gormley, Isobel Claire; McCormick, Tyler H.; Clark, Samuel J.; Kabudula, Chodziwadziwa Whiteson; Collinson, Mark A.

    2014-01-01

    The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual household asset survey in order to quantify household socio-economic status (SES) in a rural population living in northeast South Africa. The survey contains binary, ordinal and nominal items. In the absence of income or expenditure data, the SES landscape in the study population is explored and described by clustering the households into homogeneous groups based on their asset status. A model-based approach to clustering the Agincourt households, based on latent variable models, is proposed. In the case of modeling binary or ordinal items, item response theory models are employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial probit model, is used. Both model types have an underlying latent variable structure—this similarity is exploited and the models are combined to produce a hybrid model capable of handling mixed data types. Further, a mixture of the hybrid models is considered to provide clustering capabilities within the context of mixed binary, ordinal and nominal response data. The proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD). The MFA-MD model is applied to the survey data to cluster the Agincourt households into homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-economic strata within the Agincourt region. PMID:25485026

  13. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  14. A Generative Model for Image Segmentation Based on Label Fusion

    PubMed Central

    Thomas Yeo, B. T.; Van Leemput, Koen; Fischl, Bruce; Golland, Polina

    2012-01-01

    We propose a nonparametric, probabilistic model for the automatic segmentation of medical images, given a training set of images and corresponding label maps. The resulting inference algorithms rely on pairwise registrations between the test image and individual training images. The training labels are then transferred to the test image and fused to compute the final segmentation of the test subject. Such label fusion methods have been shown to yield accurate segmentation, since the use of multiple registrations captures greater inter-subject anatomical variability and improves robustness against occasional registration failures. To the best of our knowledge, this manuscript presents the first comprehensive probabilistic framework that rigorously motivates label fusion as a segmentation approach. The proposed framework allows us to compare different label fusion algorithms theoretically and practically. In particular, recent label fusion or multiatlas segmentation algorithms are interpreted as special cases of our framework. We conduct two sets of experiments to validate the proposed methods. In the first set of experiments, we use 39 brain MRI scans—with manually segmented white matter, cerebral cortex, ventricles and subcortical structures—to compare different label fusion algorithms and the widely-used FreeSurfer whole-brain segmentation tool. Our results indicate that the proposed framework yields more accurate segmentation than FreeSurfer and previous label fusion algorithms. In a second experiment, we use brain MRI scans of 282 subjects to demonstrate that the proposed segmentation tool is sufficiently sensitive to robustly detect hippocampal volume changes in a study of aging and Alzheimer’s Disease. PMID:20562040

  15. Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint

    SciTech Connect

    Ibanez, E.; Brinkman, G.; Hummon, M.; Lew, D.

    2012-08-01

    Increasing penetrations of wind a solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic (PV) power and compares it to the wind-based methodology. The solar reserve methodology is applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included.

  16. Design of broadly tuned FIR FEL based on a variable-period microwiggler

    SciTech Connect

    Qing-Xiang Liu |; Yong Xu

    1995-12-31

    A varible-period microwiggler is proposed and investigated. The fundamental period of the microwiggler is designed as {lambda}o=2mm, and the period of the microwiggler can be turned from {lambda}o to n{lambda}o (n=1,2,3,{hor_ellipsis}) The wiggler fields with the period 3{lambda}o, 4{lambda}o, and 5{lambda}o are measured and compared with the theoretical results. Finally, a broadly tuned FIR FEL is designed based on the performance of the variable-period microwiggler.

  17. Generating New Knowledge Bases in Educational Administration Professional Preparation Programs.

    ERIC Educational Resources Information Center

    Powers, P. J.

    This paper examines college and university educational administration (EDAD) professional-preparation programs and their current inertia caused by an intellectually based "war over standards" of knowledge and information. It describes how much of EDAD professional-preparation programs' approach to knowledge is largely premised in conventional…

  18. Development of Web-Based Learning Application for Generation Z

    ERIC Educational Resources Information Center

    Hariadi, Bambang; Dewiyani Sunarto, M. J.; Sudarmaningtyas, Pantjawati

    2016-01-01

    This study aimed to develop a web-based learning application as a form of learning revolution. The form of learning revolution includes the provision of unlimited teaching materials, real time class organization, and is not limited by time or place. The implementation of this application is in the form of hybrid learning by using Google Apps for…

  19. A flow system for generation of concentration perturbation in two-dimensional correlation near-infrared spectroscopy: application to variable selection in multivariate calibration.

    PubMed

    Pereira, Claudete Fernandes; Pasquini, Celio

    2010-05-01

    A flow system is proposed to produce a concentration perturbation in liquid samples, aiming at the generation of two-dimensional correlation near-infrared spectra. The system presents advantages in relation to batch systems employed for the same purpose: the experiments are accomplished in a closed system; application of perturbation is rapid and easy; and the experiments can be carried out with micro-scale volumes. The perturbation system has been evaluated in the investigation and selection of relevant variables for multivariate calibration models for the determination of quality parameters of gasoline, including ethanol content, MON (motor octane number), and RON (research octane number). The main advantage of this variable selection approach is the direct association between spectral features and chemical composition, allowing easy interpretation of the regression models. PMID:20482969

  20. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    PubMed Central

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733